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APPENDIX A2  

DOUBLE INTEGRALS 
In Unit 3, you have learnt how to integrate vector functions of single variables. 

It is possible to extend the idea of a definite integral to calculate double and 

triple integrals which are integrals of functions of two and three variable 

respectively. Double and triple integrals have many applications in physics. 

For example, we use these integrals to determine the volume of an object 

bound by an arbitrary surface, its mass, its centre of mass or its moment of 

inertia. In this appendix, we explain in brief how to evaluate a double integral, 

which is an integral of a function of two variables.  

A2.1 DOUBLE INTEGRALS 

We first develop the geometrical concept of the double integral. Before we do 

this, however, you should revise the concept of the definite integral of a 

function.  

 

 

 

 

 

 

 

Fig. A2.1:  Definite integral of the function :)(xf
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dxxf )(  as area under a curve. 

We define the definite integral of a function f (x) over the interval [a, b] on the 

x-axis, denoted by dxxf

b

a

 )(  as the limit of a sum. We start by dividing the 

interval [a, b] into n sub-intervals, the ith sub-interval having a width ,ix  as 

shown in Fig. A2.1. The sum ii xxf  )( is the total area of the n rectangles 

we see in the figure. Then the sum of the areas of the rectangles is 

approximately the area under the curve. It is also clear that if we increase the 

number of sub-intervals, i.e., increase the value of n, the rectangles become 

narrower, and the total area of the rectangles comes closer and closer to the 

area under the curve. The exact area is then given by the limit of the sum as n 

goes to infinity:  
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The expression on the right hand side of Eq. (A2.1a) is called the definite 

integral of f(x) from a to b and denoted as follows: 
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Fig. A1.1: Geometric 

representation 
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vector is a 

directed line 
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magnitude and 

direction 

specified by the 

angle . 

b  

 

a  

 

)(xf  

 

y  

 

)( ixf  

 ix  

 

x  
 



   

137  

 Appendix A2                                                                                             Double Integrals 

 






ni

i

ii
n

b

a

xxfdxxf

1

)(lim)(  (A2.1b) 

This definition of the definite integral holds even if f (x) has both positive and 

negative values in the interval [a, b]. The integral exists if the function f is 

continuous on [a, b] or has only a finite number of jump discontinuities. 

Let us now explain the concept of double Integral of the function f (x,y) over 

a bounded region R on the xy-plane denoted by 

 
R

dydxyxf ),(  

 

 

 

 

 

 

 

 

Fig. A2.2: Double Integral 
R

dxdyyxf ),( as the volume under a surface 

),( yxf and above the region R in the xy plane. 

The definition of the double integral is similar to that of a definite integral. We 

divide the region R in the xy plane into n tiny rectangles by drawing lines 

parallel to the x and y axes. Each rectangle has an area iA (see Fig. A2.2).  

We number the rectangles within R from i = 1 to i = n and choose a point 

),( ii yx  in each rectangle. Now consider the sum:  
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  (A2.2) 

We can evaluate this sum for increasing values of n such that the maximum 

diagonal of the rectangles goes to zero as the number of rectangles goes to 

infinity. If ),( yxf  is a continuous function in R, these sums (also called the 

Reimann sums) converge to a limiting value which does not depend on either 

the values of ),( ii yx  or the choice of subdivision. This limit is the double 

integral of the function ),( yxf  over the region R. 

The double integral of a function f(x, y), which is defined for all (x, y) in a 

closed, bounded region R in the xy plane, is written as the limit of a sum as 

follows:  
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 (A2.3)   
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PROPERTIES OF THE DOUBLE INTEGRALS 
  
For two functions ),( yxf  and ),,( yxg which are defined and continuous in 

a region R:  

1.    

RR

dxdyyxfcdxdyyxfc ),(),(    (A2.4) 

 where c is a constant.  

2.  Linearity   

             

RRR

dxdyyxfdxdyyxfdxdyyxgyxf ),(),(),(),(  (A2.5) 

where  and   are constants.  

3.  Additivity  

If the region of integration R can be broken up into a finite number of 
non overlapping regions R1 , R2  ……..Rn, (Fig. A2.3), then we can 
write: 

     

1

),(),(

RR

dxdyyxfdxdyyxf  

nRR

dxdyyxfdxdyyxf ),(....),(

2

 

   (A2.6) 
4.  Area Property 

 If the function being integrated is f(x,y)  = 1, then 

    Area1 
R

dxdy  of the region R    (A2.7) 

 
 
 

  

 

 

 

 

 

 

 

 

 

For ,0),( yxf the double integral gives us the volume of the solid that lies 

below the surface ),( yxf  and above the region R in the xy plane (read the 

margin remark). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

We briefly explain how to evaluate double integrals 

A2.2 EVALUATION OF DOUBLE INTEGRALS 

To evaluate a double integral 
R

dxdyyxf ),( over a region R, we have to carry 

out two successive integrations over the variables x and y. How is this done? 

You will see that there are actually two ways of doing this. Let us see what 

these are. 

First let us define the region of integration R shown in Fig. A2.4 as: 

 )()(; xpyxqbxa   (A2.8) 

As you can see from Fig. A2.4, the values of the x coordinate at the two 

extremities of the region are x = a and x = b. Now in between these two values 

of x, the region R is bound by the two curves 1C and .2C These two curves 

are given by the equations y = p(x) and y = q(x), respectively. What does this 

tell us?  
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Fig. A1.1: Geometric 

representation 

of a vector.  A 

vector is a 

directed line 

segment 

having both 

magnitude and 

direction 

specified by the 

angle . 

Fig. A2.3: The region R 

is broken up into three 

overlapping regions 

,1R   2R and .3R  

Just as the area 

under the curve f (x) 

in Fig. A2.1b is the 

area under the curve 

above the x-axis.  
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Fig. A2.4: Evaluating        

the double integral as 

an iterated integral                 

(Eq. A2.9). 
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It tells us that for each value of x in the interval [a, b], the value of y ranges 

between q(x) and p(x) which are the points on the lower and upper curves 

bounding the region R. So for any value of x, for example 0xx   in [a, b], the 

values of y range from )( 0xq  to ).( 0xp  Now if we were to first integrate the 

function f(x, y) over the variable y, holding x as a constant, the limits in y 

would be from y = q(x) to y = p(x). The result would be a function of only x. 

Next we integrate this function of x with respect to x from x = a to x = b. Thus, 

we cover the entire region of R while integrating over the two variables.  

Therefore:  

  
 
















b

ax

xp

xqyR

dxdyyxfdxdyyxf

)(

)(

),(),(     (A2.9) 

The quantity in the brackets, which is evaluated first is the integral of f(x, y) 

over y alone, with the limits as specified. The result of this integral is a function 

of x alone which is then integrated over x, over the limits shown.  

We could have chosen to carry out this integration in another way. Refer to 

Fig. A2.5. We can write down the limits on x and y for the same region R in a 

different way as we describe below:  

)()(; yhxygdyc      (A2.10) 

Now for any value of y in the interval [c, d] the value of x is decided by the 

function h(y) (curve )3C  and g(y) (curve ),4C  which respectively now defined 

the upper and lower boundaries of R. Now we can integrate the function f(x, y) 

over the variable x, holding y as a constant, the limits of the integral would be 

from x = g(y) to x = h(y) and the result would be a function of only y. We then 

integrate this function of y over x from y = c to y = d. So we get an alternative 

expression for the evaluation of the double integral: 
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),(),(  (A2.11) 

As before, the integral within the brackets is carried out first. Both Eqs. (A2.9) 

and (A2.11) are equivalent methods of determining the double integral. In  

Eq. (A2.9), the integral over the variable y is carried out first. In Eq. (A2.11), 

the integral over x is carried out first. 

Suppose R cannot be represented by the inequalities shown in Eq. (A2.8) or       

Eq. (A2.10), but can be subdivided into many parts that can be represented by 

inequalities, then we evaluate the double integral over each part and sum up 

to get the result as the double integral over R. 

The integrals of the form  
 
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)(

)(

),(  are 

called iterated (repeated) integrals because they are evaluated first by 

integrating with respect to one variable, either x or y, as the case may be and 

then integrating the result with respect to the second variable. Multiple 

integrals are usually integrated as iterated integrals. We shall use the same 

technique to evaluate triple integrals as you will see in Unit 4. Let us 

summarise these results. 

Both these iterated 

integrals defined in  

Eqs. (A2.9) and (A2.11) 

are equal if p(x), q(x), 

g(y), h(y) are continuous 

functions, for the limits 

defined in Eqs. (A2.8) 

and (A2.10). This is the 

consequence of a 

theorem in multivariable 

calculus called the 

Fubini’s theorem, which 

is beyond the scope of 

this course.  

 

 

Fig. A2.5: Evaluating the 

double integral as an 

iterated integral                        

(Eq. A2.11). 
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In some textbooks that the iterated integrals are sometimes written without the 

bracket as follows: 

    
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and     




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




d

c

d
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b

a

dxdyyxfdydxyxf ),(),(     (A2.12b) 

Note: The order of integration in Eqs. (A2.12a and b) is different. It is as 

shown in the left hand side of each of these equations. 

In Eq. (A2.12a), we write dy dx in the integrand. This means that we first 
integrate with respect to y over the interval ],[ dc and then with respect to x 

over ],[ ba . In Eq. (A2.12b), we write dx dy in the integrand. So, the integration 

is first with respect to x and then with respect to y. 

A Special Case 

An important special case is when we evaluate double integrals for which the 

following is true: 

i) the region R is a rectangle defined by the limits, say 
dycbxa  , (Fig. A2.6). 

ii) The function f(x, y) = h(x) g(y), that is  f(x, y) is a product of two functions, 

one of which is a function of only x, h(x) and the other a function of only y, 

that is g(y). 

Then the double integral can be evaluated as:  
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)()(),(  (A2.13) 

As you can see, here we can integrate with respect to each variable 

separately. We now evaluate some double integrals to illustrate these 

methods. 

 

 

Suppose that f(x, y) is a continuous function on the region R. If R is 
described by the inequalities ),()(, xpyxqbxa   then  
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If R is described by the inequalities )()(, yhxygdyc  , then  
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EVALUATION OF A DOUBLE INTEGRAL 

By convention, the 

limits of integration on 

the variable over 

which the integration 

is carried out first, 

appears on the inner 

integral sign. 

Fig. A2.6: A rectangular 

region of integration  
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Note that if the region R is rectangular, but ),( yxf  cannot be written as the 

product of two functions i.e., ),()(),( ygxhyxf   we shall have to carry out an 

iterated integral.  

Let us now work out an example of an iterated integral.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluate the integral 
R

dydxyx cossin  where R is a square on the xy 

plane defined by .2/0,2/0  yx  

SOLUTION   Using (Eq. A2.13), we solve the integral as: 
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XAMPLE A2.1:  DOUBLE INTEGRAL OVER A 

RECTANGULAR REGION 

 

 

  

              

  

1 2   x y   

  
2 2 x y    

  

 

 

Evaluate the integral  

R

dydxyx )4( where R is the region bounded by the 

curves 22xy   and .1 2xy   

SOLUTION   In Fig. A2.7, we plot the two curves 22xy   and 12  xy  

which define R. Now, as you can see from the figure, the two curves 

intersect at the points A and B. At the points of intersection of the two 

curves, we have .12 22  xx  Solving for x we have: 

1,1112 222  xxxx  

So the points of intersection are 1x  and .1x  This marks the limits of 

x for the region of integration. As you can see, for each value of x in the 

range 11  x , the value of y will vary in the range 22 12 xyx  .  Now 

let us use Eq. (A2.9) to evaluate the integral with 22)( xxq   and 

1)( 2  xxp . Then we write:  
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You can see that we have used .1,1  ba  Now we first carry out the 

integration within the bracket, integrating over y and taking x as a constant.              

2222221
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             432 642 xxxx            (ii) 

Substituting the quantity in the bracket in Eq. (i) by the expression in       

Eq. (ii) we get, 

XAMPLE A2.2:  DOUBLE INTEGRAL  

 

 

Fig. A2.7: Region of 

integration for Example 

A2.2. The two curves 

intersect at 1x  and  

.1x  
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 
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SAQ  -  Double integrals over a rectangular region 

1. Evaluate the following integrals:  

 a)    

2

0

2

0

)( dydxxye yx    

 b)  



0

1

2

0
4

sin dxdy
x

y    

2. Evaluate ,)2( 4
 

R

dydxyx  where R is the region defined by the 

equations  11  x  and .22 xyx   

A2.3 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. a) Using Eq. (A2.13), we write the integral: 
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b) Using Eq. (A2.13), we write  
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2. We use Eq. (A2.9) to write: 
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Carrying out the integral over y first and applying the limits of integration, 

we get: 
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 We now integrate over x to get: 
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Fig. A1.1: Geometric 

representation 

of a vector.  A 
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directed line 

segment 
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specified by the 
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4. (sin ) cos
d

x x
dx

  13.                ( ) ( )
d df dg

f x g x g f
dx dx dx

   
    

   
 

5. (cos ) sin
d

x x
dx

   14. 

2

( )
, 0

( )

df dg
g f

d f x dx dx g
dx g x g


 

  
 

 

6. 2(tan ) sec
d

x x
dx

  15. ( )x xd
e e

dx
  

7. 1

2

1
(sin )

1

d
x

dx x

 



 16. 
1

ln
d

x
dx x

  

8. 1

2

1
(cos )

1

d
x

dx x

  



 17. ( ) ln ,x xd
c c c c

dx
   0 

9. 1

2

1
(tan )

1

d
x

dx x

 


 18. 
1

log 1,
ln

c
d

x c c
dx x c

      0 

 

Table A1.1: Derivatives of simple functions 

TABLES OF DERIVATIVES AND INTEGRALS 
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S. 
No. 

Integral S. 
No. 

Integral 

1. , and constantsa dx ax c a c    5. sin cos , constantx dx x c c    

2. 1

, constant
1

n
n x

x dx c c
n



 
  

6. cos sin , constantx dx x c c   

3. 1
ln , constantdx x c c

x
   

7. tan ln sec , constantx dx x c c   

4. , constantx xe dx e c c   8.     , and constantsax axe dx ae c a c   

 

Table A1.2: Integrals of simple functions 




