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5.1 Introduction 

Expected Learning Outcomes  
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Electric Charge 

Coulomb’s Law 

The Principle of Superposition  
  

      

STUDY GUIDE           

 

5.3      Electric Field               

      Electric Field due to a Point Charge               

Electric Field due to Multiple Discrete Charges  

Electric Field due to Continuous Charge Distributions 

5.4    Summary 

5.5       Terminal Questions 

5.6 Solutions and Answers 

 

We hope that you have studied thoroughly the concepts of vector algebra given in Block 1 of 

the course BPHCT-131 on Mechanics and the concepts of vector calculus presented in   

Block 1 of this course. You can revise the basic concepts of vector algebra from the Appendix 

given in Block 1 of this course. You have to make sure that you know all these concepts very 

well and only then you should study this block and the remaining blocks of this course. In this 

unit, you will learn about the basic concept of electrostatic force between charges, its 

quantitative definition given by Coulomb’s law, which you have learnt in school physics. You 

will also learn the concept of electric field and its relation with the electrostatic force. The 

presentation of these concepts may be new to you. To help you learn the concepts and their 

application better, we have given many Examples and SAQs within the unit and Terminal 

Questions at its end. Most of these should take you at most 5 to 10 minutes to solve. You 

should study all sections thoroughly and make sure that you can solve the SAQs and 

Terminal Questions on your own before studying the next unit.  

Lightning in clouds is the most 

powerful display of strong 

electrostatic forces and electric 

fields in nature!  

“Science is beautiful when it makes simple explanations of 

phenomena or connections between different observations.” 

 

Stephen Hawking 
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5.1   INTRODUCTION 

In your school physics, you have studied about electrostatic force between 

electric charges and Coulomb’s law. How are these concepts related to your 

direct experiences? 

During the rainy season, you must have seen flashes of lightning in dark 

clouds lighting them up. You may have wondered what causes lightning. Do 

you know that it was Benjamin Franklin who first proved the electric nature of 

lightning through his experiment with the flying kite? He also gave the idea 

that clouds possess electric charges, which when discharged in the 

atmosphere, give rise to a giant spark of lightning.  

Actually, human beings have known about the effect of electric charges for 

thousands of years  the Greeks knew that rubbing amber on a piece of fur 

made it attract light objects such as feathers. It was later found that many 

materials such as silk, wax, precious stones, flannel, etc., when rubbed with 

other materials developed the ability to attract light objects. For example, 

rubbing glass with silk made it attract pieces of paper. Such materials were 

called ‘electrics’. It was said that the materials became ‘electrified’ or ‘acquired 

vitreous or resinous electricity’. You may have observed this effect yourself. If 

you run a comb through your dry hair or rub any dry synthetic fabric, you will 

notice that small bits of paper or hair cling to them.  

The concept of ‘positive’ and ‘negative’ charges was developed by Benjamin 

Franklin and other scientists in the eighteenth century to explain a large 

number of such observations (as above) made in many experiments.  A 

notable thing about electric charges is that the force between them is 

extremely large. This force is now known as the electrostatic force. As you 

may recall from Sec. 6.2.5 of Unit 6 of the course Mechanics (BPHCT-131),                     

the electrostatic force is a fundamental force in nature that controls everyday 

phenomena such as friction, tension, normal force, etc. It helps form 

electrically neutral stable atoms, molecules, solids and liquids.  

So in Sec. 5.2, we explain the concept of electrostatic force between positive 

and negative charges. To do so, we revise the concept of electric charge. 

Then we give the mathematical expression of the force law known as 

Coulomb’s law and use it to calculate the electrostatic force between two 

charges. We then discuss the concept of electric field in Sec. 5.3. You have 

been introduced to vector fields in the first block of this course. You have 

learnt that the electric field is a vector field, which is set up due to a charge or 

distribution of charges in the region surrounding it. You will learn how to 

calculate the electric field due to different simple charge distributions. In the 

next unit, you will study the concept of electric flux. You will use it to learn the 

easier and more elegant Gauss’s law for determining the electric field due to 

various charge distributions.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 use Coulomb’s law to calculate the electrostatic force between two given 

charges at rest; 

‘Electrica’ is a Latin word 

coined from elektron, the 

Greek word for amber. 

Electrica was translated 

as electrics in English 

and later the two words 

electrical and electricity 

were coined. All 

electrical effects due to 

rubbing together of 

various materials were 

ascribed to two forms of 

electricity – ‘vitreous’ 

electricity and ‘resinous’ 

electricity. Franklin 

identified the term 

‘positive’ with vitreous 

electricity and ‘negative’ 

with resinous electricity.  

Benjamin Franklin 

(1706- 1790), an 

American polymath 

(meaning expert in many 

subjects), was one of 

the founding fathers of 

the United States of 

America. In physics, he 

is well known for his 

pioneering work on 

electricity. He was also a 

great inventor. The 

lightning rod, bifocal 

glasses and urinary 

catheter are some of his 

well known inventions in 

use today. Franklin 

coined several terms in 

electricity which we use 

today: battery, charge, 

conductor, plus, minus, 

positively, negatively, 

condenser ( 

capacitor).   
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 apply the principle of superposition of forces to calculate the resultant 

force due to a system of more than two charges;  

 define electric field due to multiple discrete charges and continuous 

distribution of charges; and 

 calculate the net electric field due to a distribution of multiple discrete 

charges and infinite uniform line charge. 

5.2   ELECTROSTATIC FORCE 

Do you recall the concepts of charge and electrostatic forces between like and 

unlike charges and Coulomb’s law from school physics? Do you remember 

studying that like charges repel each other and unlike charges attract each 

other? You have studied about positive and negative charges and the forces 

between them in your school physics. You may like to revise the concepts by 

solving the problems in the pre-test given below. Otherwise, study this section 

and then try to solve these problems again. 

 

1. A glass rod rubbed with silk is said to be ‘positively’ charged and amber or 

plastic rubbed with fur, ‘negatively’ charged. Select the correct conclusion 

for each observation given below: 

Observation 1: An object is repelled by a piece of glass that has been 

rubbed with silk.  

a) The object is positively charged. 

b) The object is negatively charged. 

Observation 2: Two objects are both attracted to a piece of amber that has 

been rubbed with fur.  

a) Both objects are positively charged. 

b) Both objects are negatively charged. 

2. State whether the following statements are true or false: 

a) The charge on free particles has also been measured to be a fraction 

of the charge on the electron, 19106.1  C. 

b) Objects are electrically neutral because they have equal numbers of 

positive protons and negative electrons. 

c) The total charge in the universe is conserved. 

d) The force between two charges at rest is independent of their 

magnitude. 

e) The force between two charged particles at rest is proportional to the 

product of the magnitudes of the charge on them.  

f) The force between two charged particles at rest is an inverse square 

force. 

PRE-TEST 
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If you have solved these problems correctly, you know the basic concepts 

about charges and the force between them. You may like to quickly go 

through the remaining part of Sec. 5.2 and solve the SAQs given in it. 

Otherwise, study it thoroughly and try the pre-test and SAQs again. 

 

5.2.1    Electric Charge 

In this section, we will quickly revise what you have learnt about electric 

charges in your school physics, viz., the types of charge, the unit of charge, 

quantisation of charge and charge conservation. 

Types of Charge and the Unit of Charge 

You have learnt in school physics that charge is a scalar quantity and is of 

two types: positive and negative. Electrons and protons are the most 

familiar examples of negative and positive charges having the same 

magnitude of charge, i.e., 19106.1  C. As you can see, the SI unit of charge 

is coulomb (denoted by C) named after the French physicist                                

Charles-Augustin de Coulomb (1736 – 1806).   

Atoms and molecules are electrically neutral because they are made up of an 

equal number of electrons and protons. You may also have read an 

explanation of how two materials when rubbed together become electrically 

charged. On rubbing, electrons flow from one material (which becomes 

positively charged) to another (which is then negatively charged). This way of 

charge transfer is called charging by friction (because you are rubbing one 

material with another). There are other ways of charging an object about 

which you have studied in your school physics and we will not go into those 

details here.  

Quantisation of Charge 

In the eighteenth century, scientists (including Benjamin Franklin) thought that 

electric charge was a continuous invisible fluid present in all matter and could 

flow in and out of objects to charge them positively or negatively. Later 

experiments about the nature of matter revealed that it was made up of atoms, 

and molecules and atoms were made up of electrons, protons and neutrons. 

Today we know that the smallest free charge that is possible to obtain is that 

of an electron or proton. The magnitude of this charge is denoted by e.  

Electric charge was first measured in 1909 by an American Nobel Laureate 

physicist Robert Millikan (1868 – 1953). His famous experiment known as the 

oil-drop experiment is now performed in school and college laboratories. In 

this experiment, you can observe the motion of a charged oil drop falling 

between two electrified metallic plates under the influence of two forces: the 

force of gravitation and an electric force being exerted on it in a direction 

opposite to the gravitational force. Millikan made observations on a large 

number of drops and found that charges on different drops were integral 

multiples of an elementary charge 19106.1  C. This is not only true for 

negative charges but also for positive charges. 

Mathematically, any positive or negative charge on a free particle is written as 

Actually, electric charge 

could have been given 

any other name by 

scientists. How it came 

to be used is interesting. 

In older English 

language, the word 

charge was used for a 

load carried by 

anything, such as a 

cannon or a horse. 

Since the property/ 

substance/‘fluid’ was 

‘carried’ by matter, it 

was called ‘electric 

charge’. 

Coulomb, the unit of 

charge is defined in 

terms of magnetic forces 

and you will learn about 

them in Block 3. 
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.....,3,2,1,  nneq   (5.1a) 

where  

  19106.1 e C (5.1b) 

You may know that when a physical quantity can have only discrete values 

rather than any arbitrary continuous value, we say that it is quantised. We do 

not know why electric charge is quantised. But it is an experimental 

observation that has had no exception so far. Thus, we say that  

Charge is quantised; it takes discrete values that are integral multiples of e.  

For example, we can find a free particle (such as positron, -particle) or 

charged object (say, a charged sphere or a charged drop) that has a charge 

equal to an integral multiple of e, i.e.,  4e or  4e, but never a free particle 

having a charge of, say, 0.77e or  2.55e. You may know that protons and 

neutrons are made up of tightly bound quarks having charges  e/3 and                    

.3/2e However, quarks are yet to be detected as free particles. So on the 

basis of experimental evidence so far, we can say that  

   

 

Conservation of Charge 

Experiments on electric charges also show that whenever any two objects are 

in contact (e.g., due to rubbing, touching, etc.) and there is an excess charge 

on any one of these two objects after contact, then there is an excess charge 

on the other object too. These excess charges on the two objects in contact 

are equal in amount but opposite in sign. This means that when electric 

charge (electrons) is transferred from one object to another, no electrons are 

destroyed or created. Thus, the amount of charge contained in the two objects 

is a conserved quantity. This is true for all isolated systems in nature.  

Actually, based on his experiments Benjamin Franklin was the first scientist to 

propose the hypothesis of conservation of charge. No violations of this law 

have been found in countless experiments done on microscopic particles such 

as elementary particles, nuclei, atoms and molecules as well as large charged 

objects. So, we can add electric charge to the list of conserved quantities such 

as linear momentum, energy and angular momentum and state the law of 

conservation of charge. Experimental evidence shows that 

 

 

 

 

 

Charge is quantised, i.e., charges on free particles have always been 

measured to be integral multiples of 19106.1  C, never a fraction.  

 

In an isolated system, the total amount of electric charge (that is, the 

algebraic sum of the positive and negative charge present in the 

system at any time) never changes. We say that it is conserved. 

Charge-carrying particles can be transferred from one object to 

another, but the charge associated with those particles cannot be 

created or destroyed. It follows that the total electric charge in the 

universe is conserved.  

 

 

Conservation of total 

electric charge in the 

universe also points to 

the existence of                   

anti-particles. 
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You may like to go back to the pre-test and attempt questions 1 and 2a to c 

before studying further. We now revise Coulomb’s law which tells us how 

much force is exerted by one charged object on another. 

5.2.2    Coulomb’s Law 

The force law for charged particles at rest was arrived at after a series of 

careful experiments by Coulomb. He discovered that the magnitude of the 

force (electric, Coulomb or electrostatic force as we know it today) between 

two charged particles 1q  and 2q  at rest is given by  

               
2

21

r

qq
kF       (5.2) 

where r is the distance between the charged particles and k is the constant of 

proportionality. The force is directed along the line joining the two particles. 

The force on either particle is directed toward the other particle if the two have 

opposite (unlike) charges and away if the two have similar (like) charges. So 

we say that like charges repel and unlike charges attract each other. Since 

force is a vector quantity, let us write down Eq. (5.2) in vector form for both 

like and unlike charges in one place.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2q  

1q  

21r̂  

21F


 

1r


 

2r


 

O 

Fig. 5.1: The electrostatic 

force between two               

electric charges at rest. 

 

The electrostatic force on a particle carrying a charge 1q  by a particle 

carrying a charge 2q situated at a distance r  from it is given by   

                           212
21

21
21 r̂

r
F 

 qq
k       (5.3a) 

where 21r̂  is the unit vector along the line joining the particles and 

directed from 2q  to 1q  (see Fig. 5.1) and k is called the Coulomb 

constant. Note that 2121 rrr


  and .21 rr


 Here 1r


 and 2r


 are the 

position vectors of 1q  and ,2q respectively. Note that the particles are at 

rest. In SI units, Coulomb’s law is written as 

                           212
21

21

0
21 ˆ

4

1
r

r
F 

 qq


       (5.3b) 

where the units of 1q  and 2q  are coulomb, those of 21r


 and 21F


 are 

metre and newton, respectively. Here 0 is the permittivity of free space. 

Coulomb constant .CmN1099.8
4

1 229

0




 

Note that Eqs. (5.3a and b) account for the attractive and repulsive nature 

of the electrostatic force if 1q  and 2q  include the sign of the charge. So, if 

the charges are like, that is, both charges are either positive or negative, 

the force 21F


 on 1q  points away from ,2q  along 21r


, i.e., it is repulsive. 

If the charges are unlike, that is, one of them is positive and the other 

negative, the force 21F


 on 1q  is towards ,2q  in the direction opposite to 

21r


, i.e., it is attractive. 

 

 

 

COULOMB’S LAW 

Charles-Augustin de 

Coulomb (1736 – 1806) 

was a French physicist 

who is best known for 

his law describing the 

electrostatic forces 

between charged 

particles. Coulomb’s law 

has been firmly 

established after 

countless experiments. 

It applies to all electrical 

charges whether free or 

between the positively 

charged nucleus and 

electrons bound within 

an atom. It accounts for 

the forces that bind 

atoms to form 

molecules, and atoms 

and molecules to form 

all types of matter. Thus, 

it accounts for the 

stability of matter.    
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Did you notice that the expression for the attractive Coulomb force between 

unlike charges is similar to the expression of the gravitational force you have 

studied in Unit 7 of Block 2 of the course on Mechanics (BPHCT-131)?  

We have used the same sign convention here. The force of repulsion differs 

only in sign. So, the mathematical expression of Coulomb’s law given by              

Eq. (5.3a or b) sums up four experimental observations: 

 

 

 

 

 

 

 

 

 

 

 

Let us now take up an example to show you how to apply Coulomb’s law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine the magnitudes and directions of the electrostatic force on the 

following charged particles at rest and show them on a diagram:  

  C,0.51 q  C122 q  at a distance of 30 m. 

SOLUTION   The electrostatic force on each charge is given by 

Coulomb’s law, i.e., Eq. (5.3b).  

We substitute the values of 21, qq  and r in each case and take 

.CmN1099.8
4

1 229

0




  

The magnitude of the force on each particle is 

N100.6
m)30(

C12C0.5
)CmN1099.8( 8

2

229 


 F  

Since the charges on the particles are unlike, they will attract each other. 

The force on each particle will be directed toward the other particle. 

Mathematically, we write the forces as: 

Force on 1q  by 2q  is 21
8

21 ˆN100.6 rF 


 and  

Force on 2q  by  1q  is 21
8

12
8

12 ˆN100.6ˆN100.6 rrF 


 

since .ˆˆ 2112 rr   Both forces are shown in Fig. 5.2. 

You can see that the force is very large. 

 

                 

 

XAMPLE 5.1 :  APPLYING COULOMB’S LAW 

 

 

 

Fig. 5.2: The electrostatic 

forces for Example 5.1. 

2q  

1q  

21r̂  
12F


 

21F


 

1. Unlike charges attract and like charges repel; 

2. The force between two charged particles is exerted along the line 

joining them; 

3. The force between any two charged particles is proportional to the 

magnitude of charge on each particle; and 

4. It is an inverse square force, i.e., it is inversely proportional to the 

square of the distance between the particles.  
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Let us take up another example of applying Coulomb’s law and then you can 

test yourself by solving an SAQ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAQ  1 -  Coulomb’s law 

 

 

 

 

 

 

 

 

 

In Example 5.2, we have used the term point charge. What does it mean? A 

point charge is a hypothetical charge located at a single point in space. In 

that sense, it has no size: it is dimensionless. It is a purely abstract 

mathematical concept used in electrostatics. For many purposes, we consider 

 

  

Two point charges 1Q  and 2Q  are 3.0 m apart and their combined charge 

is 20 C. If one charge repels the other with a force of 0.075 N, what are 

the magnitudes of the two charges? 

SOLUTION   Once again we use Coulomb’s law given by Eq. (5.3b).  

We are given that the charges repel each other. Therefore, they are like 

charges. Let 1Q  and 2Q  represent their magnitudes. 

Substituting the values of the distance and the force in the scalar form of 

Eq. (5.3b), we get 

          
2

21229

m)0(3.
)CmN1099.8(N075.0

QQ
   

or    226212
21 C)(75C)10(75C1075  QQ  (i) 

Also              1221 C20C20 QQQQ    (ii) 

Substituting 2Q  from Eq. (ii) in Eq. (i), we get a quadratic equation in 1Q : 

          07520)C20(C)(75 1
2
111

2  QQQQ  

where 1Q  is in C. Solving the equation gives the magnitudes of the 

charges  

C0.51 Q  and C152 Q    or    C151 Q  and C0.52 Q  

 

               

 

 

 

                 

 

 

 

 

 

 

XAMPLE 5.2 :  APPLYING COULOMB’S LAW 

 

 

 

a) Determine the electrostatic force on 1q due to 2q for : 

i) C,0.81 q  C0.82 q  at a distance of 0.04 m. 

ii) C,m151 q  Cm102 q  at a distance of 3.0 m. 

b) The hydrogen atom consists of an electron and a proton separated by an 

average distance of .m103.5 11  Calculate the magnitude of the 

electrostatic force between the electron and proton taking them to be at 

rest. Compare it with the magnitude of the gravitational force between 

them. It is given that the mass of the electron is kg,101.9 31  mass of  

the proton is kg107.1 27 and  .kgmN107.6 2211 G    

c)  
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the electron to be a point charge. However, its size can be characterized by a 

length scale known as the electron radius. We often use the term point 

charge in electrostatics when we do not wish to take the size (dimensions) 

of the particle into consideration. 

So far, you have learnt how to determine the electrostatic force between two 

static charged particles. How do we calculate the electrostatic force on a 

charge in a system having more than two charges at rest? We use the 

principle of superposition. Recall that you have studied this principle for the 

force of gravitation in Sec. 7.2.1 of Unit 7 of the course BPHCT-131 entitled 

Mechanics. Let us now explain it for electrostatic forces. 

5.2.3 The Principle of Superposition 

The first thing to understand is that electrostatic forces are two-body forces. 

This means that the electrostatic force between any pair of charged objects 

does not change if other charged objects are present in their surroundings. In 

a system having more than two charged objects, the electrostatic force 

between each pair of objects is given by Coulomb’s law. 

To determine the net electrostatic force on any given charged particle in a 

system of charged particles, exerted by the other charged particles in the 

system, we simply take the vector sum of the forces being exerted on it by the 

other charged particles in the system.  

Suppose there are three charges 21, qq  and 3q  at rest in the system. Then 

the net electrostatic force 1F


 exerted on 1q  by 2q  and 3q  is the vector sum of 

the electrostatic force 21F


 exerted on 1q  by 2q  and the electrostatic force 31F


 

exerted on 1q  by 3q , i.e.,  

       31211 F F F


                 (5.4a) 

or              132
31

31

0
212

21

21

0
1 ˆ

4

1
ˆ

4

1
rrF

r

qq

r

qq









 (5.4b) 

In general, the electrostatic force iF


 on the ith charge iq  due to all other 

charges ,...,..., .,21 jqqq  in a many-particle system of charged particles is given 

by 

                  





ij

ji
ji

ji

ij

jii
r

qq
rFF ˆ

4

1
2

0


 (5.4c) 

Note that the summation in Eq. (5.4c) does not include the ith charge. This is 
indicated by putting ij   under the summation signs. 

 

 

 

 

Note that while 

applying Eqs. (5.4b 

and 5.4c), you have to 

take into account the 

sign of the charges as 

shown in Example 5.3. 

PRINCIPLE OF SUPERPOSITION 

 

 According to the principle of superposition, in a many-particle system 

of charged particles, the resultant electrostatic force on any charged 

particle is the vector sum of the electrostatic forces exerted by all 

other charged particles on it [as given by Eq. (5.4c)]. 
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You may like to work through an example to apply the principle of 

superposition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So far you have revised the concepts of charge and electrostatic force 

between charged particles/objects at rest. You have also revised Coulomb’s 

law and the superposition principle, and learnt how to determine the 

magnitude and direction of electrostatic forces between like and unlike 

charges. We now discuss the concept of electric field that you have also learnt 

in school physics.   

5.3   ELECTRIC FIELD 

Although the notion of electric field first figured in the work of British physicist 

Michael Faraday (1791 – 1867) on electromagnetic induction, he did not 

develop its concept. This was done by James Clerk Maxwell (1831 – 1879), a 

Scottish physicist. You will read more about the work of these two physicists in 

Block 4 of this course. You are familiar with the concept of vector fields from 

Fig. 5.3: Diagram for 

Example 5.3. 

2q  

1q  

3q  

x 

y 

0.3 m 

0
.4

 m
 

 

 

Three charges  C,0.21 q  C0.92 q  and C0.163 q  are 

situated at the corners of a right-angled triangle as shown in Fig. 5.3. 

Calculate the electrostatic force exerted on 1q  by 2q  and .3q   

SOLUTION   We use the principle of superposition given by Eq. (5.4b) for 

a system of three charges. Since ir ˆ
2̂1   and ,̂3̂1 jr   we have 

               
















 )ˆ(

)(
)ˆ(

)(4

1
2

31

31
2

21

21

0
1 jiF

r

qq

r

qq
                  (i) 

where î and ĵ  are unit vectors along the x and y-axes (Fig. 5.3). 

Substituting all numerical values (with the sign of the charges) in                  

Eq. (5.4b), we get  
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










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








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
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m)4.0(

C)100.16(C)100.2(
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m)3.0(
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)CmN1099.8(

2

66

2
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229
1


    (ii) 

 

or             Nˆ1.8ˆ8.11 jiF 


 

The magnitude of the force is   N5.2N)8.1()8.1( 22    

The direction of the force is given by the angle  it makes with the positive 

x-axis: 45)1(tan
8.1

8.1
tan 11 








   

XAMPLE  5.3 : PRINCIPLE OF SUPERPOSITION 
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Block 1. You have studied about the gravitational field in Unit 7 of the course 

on Mechanics. You know that the concept of electric field is a very powerful 

concept that gives us a simple tool for determining the electrostatic force on 

any charge due to another charge.  

The advantage of this concept is that to calculate the net electrostatic force on 

a given charge due to other charges, we need not follow the lengthy process 

of Coulomb’s law (where we need to know the relative positions of these 

charges) and vector addition. You will appreciate this point better as you study 

this section further and learn the concept of electric field. You may ask: How 

do we define electric field? We begin with the simplest case of a point 

charge. 

5.3.1 Electric Field due to a Point Charge 

Let us define the electric field due to a point charge. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You have learnt how to visualise electric fields due to a point charge Q defined 

by Eqs. (5.6a and b) in Sec. 2.2.2 of Unit 2. The representations of these 

electric fields are shown in Figs. 5.5a and b for positive and negative charges.                

 

A point charge Q sets up an electric field in the region surrounding it. If 

another charge, say ,q  is placed in this region, it experiences the 

electrostatic force in accordance with Coulomb’s law. The electric field 

generated by an electric charge or a group of charges is a vector field 

defined as follows: 

Suppose a positive charge q of an infinitesimal (negligibly small) 

magnitude, called a test charge, is placed at a position r


 relative to a 

point charge Q (Fig. 5.4). According to Coulomb’s law, at that point, the test 

charge q will experience the electrostatic force  

                         rrF ˆ
4

1
)(

2
0 r

qQ





     (5.5) 

where r̂ is the unit vector along .r


Then the electric field of the point charge 

Q at a point having position vector r


 is defined as the electrostatic force on 

a test charge at that point divided by the magnitude of the test charge. It is 

denoted by ).(rE


 Mathematically, it is given by 

                         r
rF

rE ˆ
4

1)(
)(

2
0 r

Q

q 





     (5.6a) 

Its magnitude is given by 

             
2

04

1

r

Q
E


      (5.6b) 

 

 

 

 

                                                       

ELECTRIC FIELD 
 

Fig. 5.4: Unit vector for 

electric field at point P 

due to a point charge 

Q. 

Q
  

P
  

r̂

  

r  
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Note that the magnitude of the electric field is the same for both positive and 

negative electric charge ( Q or  Q). However, the directions are different as 

these are given by the direction of the electrostatic force experienced by the 

respective test charges. The electric field due to a positive point charge is 

directed away from the charge (Fig. 5.5a). For a negative point charge, it 

points towards the charge (Fig. 5.5b). The arrows in both Figs. 5.5a and b 

indicate the direction of the electric field. The continuous lines are called field 

lines (or the lines of force).  

 

 

 

 

 

Fig. 5.5: Electric field lines around a) positive electric charge; b) negative 

electric charge. 

So, to draw electric field lines, you should always remember that  

 

  

 

 

 

From Eq. (5.6a), you should also note that the electrostatic force on the 

charge q when it is placed in the electric field of charge Q is given by 

                         EF


q  (5.7) 

So, if you know the electric field in a region of space (could be due to a charge 

or system of charges), you can determine the electrostatic force on any 

charge placed in that electric field using Eq. (5.7). 

Before studying further, you may like to calculate the electric field due to a few 

point charges. Work out SAQ 2. 

SAQ  2 -  Electric field due to point charge  

 

 

 

 

a) Determine the electric field due to the point charges (i)  5 C at a point  

30 cm from it and (ii)  10 C at a point 1 m from it. Show them in 

properly labelled diagrams. 

b) If a point charge  6C is placed in the electric fields at the respective 

points given in part (a), what electrostatic force would be exerted on it 

in both cases? 

 

 

  

Electric field lines (or lines of force) begin at positive charges and 

end at negative charges. Electric field lines may also go to infinity 

without terminating. These lines do not intersect.  

These are close together near the point charges where the electric 

field is strong and far apart at large distances from the charges 

where the electric field is weak. 

 

 

 

(a)  (b)  



  

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You may now like to ask: How is the electric field due to a group of 

charges defined? This is what you will now learn. 

5.3.2 Electric Field due to Multiple Discrete Charges 

Consider a group of point charges ,jq having position vectors .jr


 Let us place 

a test charge iq  having position vector ir


 in the electric field of these charges. 

From the principle of superposition for electrostatic forces, the net electrostatic 

force on the test charge iq  due to this group of charges is given by 

   
 



ij

ji

ji

ji qq
r

rr

F ˆ
4

1
2

0



 (5.8) 

The electric field due to the group of charges at the point with position vector 

ir


 is defined as  

     
 



ij

ji

ji

j

i

q

q
r

rr

F
E ˆ

4

1
2

0





 (5.9) 

Eq. (5.9) defines the electric field at a point in space due to a group of 

point charges. Now, in Eq. (5.9), each charge appears only once. So if only 

one charge, say ,jq  were present, we could write the electric field due to it as                                  

     ji

ji

j
j

q
r

rr

E ˆ
4

1
2

0







  (5.10) 

So, Eq. (5.9) becomes     

   

j

jEE


 (5.11) 

In other words, the total electric field due to a group of charges is the 

vector sum of the individual electric fields of the charges. This is just the 

principle of superposition at work. You may like to study Fig. 5.6 to get a 

sense of the vectors involved in Eq. (5.10) before reading further.    

 

 

 

 

 

 

  

 

Once again, if a charge q is placed in the electric field given by Eq. (5.9), the 

electrostatic force exerted on it will be given by Eq. (5.7). This makes the 

calculation of electrostatic force on a charge due to a group of charges much 

easier than using Coulomb’s law. Let us now consider an example to calculate 

Fig. 5.6: The vectors involved in defining the electric field due to a group of charges. 

The vector )(
jiji

rrr


  represents the vector joining jq to the point P 

having position vector .
i

r


The vector 
ji

r̂ is the unit vector along .
ji

r


 

 

1q

  

P
  

1
r


  

2q

  

3q

  

jq

  
O
  

2
r


  

3
r


  

j
r


  

i
r


  
)(

ji
rr
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

  



  

166  

Block 2                                                                                         Electrostatics 

the electric field due to a special arrangement of two charges called the 

electric dipole.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

You may like to solve an SAQ to determine the electric field of a dipole.  

 

 

 

Let us now calculate the electric field of an electric dipole at a point off its axis.  

 

 

 

 

 

Fig. 5.8: Diagram for 

SAQ 3. 

 q  

 
 q  

d
  

C
  

d
  

r̂

  SAQ  3 -  Electric field due to an electric dipole 

Determine the electric field due to an electric dipole at the midpoint of its axis.  

 

 

  

Fig. 5.7: An electric 

dipole made up of equal 

and opposite charges, 
,q  separated by 

distance 2d. The 

vector d


2 along the 

axis of the dipole is 

drawn from the 

negative to the 

positive charge. The 

point P lies on the 

dipole axis at a distance 

r from the midpoint C.  

d  

 q   q  P  C  r


  

r 

 

 

Two point charges q and

 

q are separated by distance 2d (see         

Fig. 5.7). Such an arrangement of equal and opposite charges placed at 

some distance from each other is called an electric dipole. Determine the 

net electric field due to the charges at the point P located on the dipole 

axis (i.e., the line joining the charges) at a distance r from the midpoint C of 

the dipole axis. 

SOLUTION   From Eq. (5.10), we determine the electric field due to each 

charge at the point P and then use Eq. (5.11). 

From Eq. (5.9), the electric fields due to both charges at the point P are, 

respectively, 

                
2

0 )(

ˆ

4 dr

q
q




r
E


  and     
2

0 )(

ˆ

4

)(

dr

q
q






r
E


 

Here r̂ is the unit vector pointing from the charge q  to the charge 

q along the line joining them and d is the distance of the midpoint from 

each charge (see Fig. 5.7). From Eq. (5.11), the resultant or net electric 

field at the point P due to the two charges is:  

                















  222

0 )(

4

4

ˆ

dr

rdq
qq

r
EEE


 

If we assume that the point P lies far away from the dipole so that ,dr   

we can neglect the term 2d in comparison to 2r in the denominator of the 

expression for .E


 Under this assumption, the net electric field at P is  

               
3

0
4

0

2

4

1)4(ˆ

4

1

rr

rdq pr
E







  (i)  

where )2(ˆ2 d rp


qqd   is a vector quantity called dipole moment. 

 

 

 

XAMPLE  5.4 : ELECTRIC FIELD OF AN ELECTRIC DIPOLE 

 

 

 

 

Determine the net electric field due to the electric dipole of Example 5.4 at 

a point P situated on the perpendicular bisector at a distance r from the 

midpoint C of the dipole axis.  

 

 

 

XAMPLE  5.5 : ELECTRIC FIELD OF AN ELECTRIC DIPOLE 
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You may now like to learn how to determine the electric field due to a system 

of more than two charges. Consider the following example. 

 

SOLUTION   As in Example 5.4, we use Eq. (5.10) to determine the 

electric field due to each charge at point P and then apply Eq. (5.11). 

The distance of the point P from both the charges  q and  q  is 

22( rd   and therefore, from Eq. (5.10), the magnitudes of the electric 

fields at P due to these charges are equal and, respectively, given by: 

               
22

04

1

rd

q
E q


       and      

22
04

1

rd

q
E q


  

From Fig. 5.9a, you can see that the direction of the field is away from the 

charge  q and towards the charge  q. To obtain the expression for the 

resultant field at P, we take the vector sum of the two electric fields using 

the parallelogram law of vector addition. From Fig. 5.9a, note that the 

angle between the two electric field vectors is 2. So we obtain the 

magnitude and direction of the resultant electric field as follows                      

[Eqs. (A1.3a and b) in the Appendix A1 of Block 1]: 

          


  cos
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1
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EEEEE qqqq  
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qd
E
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         since 

22
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rd

d


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The direction of the resultant electric field is given by the angle  it makes 

with qE


 (Fig. 5.9b): 

            






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 tantan
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qq
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Note that E


 is anti-parallel to .p


So, we can express E


 at point P as 

               
2/322

0 )(4 dr 


p
E


  

If the point P is located far away from the dipole so that ,dr   we can 

express the electric field due to the electric dipole at the point as 

               
3

04 r


p
E


 (i)  

 

 

 

 

Fig. 5.9: Diagram for 

Example 5.5. 

(a) 

(b) 

 q   q  

2d  

P  

d  

r  

  

  

  

  

qE


 

qE


 

P  

  

qE


 

qE


 

E


 

 

 

Three charges  q,  2q and  q are kept in the xy plane at three vertices of 

a square ABCD of side a (as shown in Fig. 5.10). Determine the net electric 

field due to these charges at the point B.  

SOLUTION   We use Eq. (5.10) to determine the electric field at point B 

due to each charge. Then we apply Eq. (5.11) to obtain the net electric 

field. 

 

 

 

XAMPLE  5.6 : ELECTRIC FIELD OF MANY CHARGES 

 

 

Fig. 5.10: Diagram for 

Example 5.6. 

A B 

C D 

q 

2q 

q 

a 

a 

y 

x 
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Before studying further, you may like to practice how to calculate the electric 

field due to many charges. 

 

 

 

So far, we have defined the electric field and calculated its value for an 

isolated point charge or an arrangement of two or more point charges. You 

may like to ask: What is the electric field of a continuous charge 

distribution, for example, charge distribution on a wire, lamina or 

sphere? Let us find out. 

The electric field at B due to charge  q is iE ˆ
4

1
2

0 a

q
q





 where î  is 

the unit vector along the x-axis. To simplify the algebra, we write  

                 
2

0
0

4
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a

q
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
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The electric field at B due to charge  q  is  jjE ˆ)ˆ(
4

1
02

0

E
a

q
q 





  

Using the geometry of Fig. 5.10, we resolve the electric field at B due to 

charge  2q  along the x and y-axes to get  

jiE ˆ45sinˆ45cos 222
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The net electric field at B is, therefore,       
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The magnitude of the resultant electric field is [Eq. (A1.3a), Appendix A1 of 

Block 1]: 
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The direction of the resultant electric field is given by the angle 
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The resultant electric field has magnitude .
4

3
2

0 a

q


  

It makes an angle of 9.6 with the x-axis. 

 

 

 

 

 

 

 

 

 

 

SAQ  4 -  Electric field due to many charges  

Four charges  2q,  2q,  4q and  4q are placed at the vertices of a square              

of side a (Fig. 5.11). Determine the net electric field due to the charges at the 

centre P of the square given that C100.1 9q  and .cm0.6a   

 

 

 

  

Fig. 5.11: Diagram 

for SAQ 4. 

 2q 

 2q 

 4q 

 4q 

   P 
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5.3.3    Electric Field due to Continuous Charge 
Distributions 

Let us calculate the electric field at point P with position vector ir


 due to any 

continuous distribution of charge (like the one shown in Fig. 5.12). Let us take 

the continuous charge distribution to be made up of infinitesimal charges .jdq  

Then from Eq. (5.10), the electric field jdE


 due to the infinitesimal charge jdq  

(having position vector )jr


 at the point P is given by 

     ji

ji

j
j

dq
d r

rr

E ˆ
4

1
2

0





   (5.12) 

From the principle of superposition [Eqs. (5.11 and 5.9)], the net electric field 

E


 at point P due to the charge distribution will be just the vector sum of 

electric fields due to all such infinitesimal charges comprising the 

distribution:  
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
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ji
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dq
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rr

EE ˆ
4

1
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0



 (5.13) 

But in the limit as the charges are infinitesimally small and tend to zero, the 

sum in Eq. (5.13) can be written as the following integral: 

     rE ˆ
4

1
2

0



r

dq
   (5.14) 

The limits of the integral are defined so that the entire region over which 

charge is distributed is included. Remember that in Eq. (5.14), r̂  is the unit 

vector from the charge dq to the point P (having position vector )r


at which  

the electric field is being determined (see Fig. 5.12).  

Now, the charge may be continuously distributed over a line, a surface or a 

volume as shown in Figs. 5.13a, b and c. In such distributions, instead of 

charges, we speak of the density of charges. The charge density (line, surface 

or volume) will, in general, be a function of the coordinates. However, in this 

course, we will consider only those charge distributions that have constant 

charge density. 

 

 

 

 

 

 

 

If the charge is distributed over a line, as in a wire, (Fig. 5.13a), then we speak 

of the line charge density, i.e., charge per unit length and usually denote it 

by . The SI unit of  is .mC 1   

Fig. 5.12: Determining 

electric field at a point 

due to a continuous 

charge distribution. 

P 

r


 

dq  

Fig. 5.13: Determining electric field due to a) line charge distribution;                   

b) surface charge distribution; c) volume charge distribution. 

 

(b) 

Surface charge density  

 

P 

 

r


 
ad   

P 

(c) 

Volume charge density  

 

r


 
d  

(a) 

Line charge density  

 

P 

 

r


 

ld   



  

170  

Block 2                                                                                         Electrostatics 

The line charge is, in general, a function of the position along the line. Its 

expression is given in the margin. If the line charge is distributed uniformly, 

i.e., the line charge density  is constant, then we have 

                  dLdq   (5.15a) 

So, the electric field due to a uniformly distributed line charge is defined by 

     rE ˆ
4

1
2

0




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C
r

dL
   or    rE ˆ

4 2
0





C
r

dL
 (5.15b) 

For continuous charge distribution over a surface (Fig. 5.13b), we define the 

surface charge density  as the charge per unit area. Its SI unit is .mC 2 It 

is constant for a uniformly distributed charge on any surface. In this case, 

     dSdq   (5.16a) 

and the electric field due to a uniformly distributed surface charge is 

defined as 

     rE ˆ
4 2

0





S
r

dS
  (5.16b) 

Eq. (5.16b) is a surface integral about which you have studied in Unit 4. 

If the continuous charge distribution is spread over a volume (Fig. 5.13c), then 

we use the volume charge density , which is the charge per unit volume. 

Its SI unit is .Cm 3  For a uniformly distributed charge over any volume,  is 

constant and 

     dVdq   (5.17a) 

The electric field due to a uniformly distributed volume charge is defined as 

     




V
r

dV
rE ˆ

4 2
0


  (5.17b) 

Let us take up an example to apply the simplest of these equations,                              

Eq. (5.15b), to calculate the electric field of a uniform line charge.  

 

 

 

 

 

 

 

 

 

In general, when the 

line charge density is 

not constant, we have 

Lddq  )(r


 

and  
C

Ldq )(r


 (i) 

Suppose we use the 

Cartesian coordinates 

to solve these 

integrals. Then in              

Eq. (i), we will 

integrate with respect 

to only one variable x, 

y or z depending on 

whether the line 

charge is distributed 

along the x, y or z-axis.  

For a non-uniform 

surface charge 

distribution,  is not 

constant, and we have 

Sddq  )(r


 

 

S

Sdq )(r


      (ii) 

Since an area is 

defined in two 

dimensions, we will 

integrate Eq. (ii) with 

respect to any two 

variables x and y, y 

and z or z and x.  

For a non-uniform 

volume charge 

distribution,  is not 

constant, and we have 

Vddq  )(r


 

and  

 
V

Vdq )(r


    (iii) 

Now we will have to 

integrate Eq. (iii)        

with respect to the 

variables x, y and z 

since volume is 

defined in three 

dimensions. These 

calculations are 

beyond the scope of 

this course. 

 

 

 

 

A straight line of infinite length carries a uniform charge with line charge 

density . Determine the electric field at a distance y above the midpoint of 

the line.  

SOLUTION   We apply Eq. (5.15b) to determine the electric field due to a 

uniformly distributed infinite line charge. 

Study Fig. 5.14, which shows the charge distribution in the given geometry. 

Let us choose the xy coordinate system to solve this problem with its origin 

at the midpoint.  

        

 

XAMPLE  5.7 : ELECTRIC FIELD OF INFINITE LINE CHARGE 
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You will agree that this way of calculating the electric field is quite lengthy as it 

involves solving complicated integrals. You will learn a much simpler way of 

Here          dxdq         (i) 

By definition, the magnitude of the electric field due to dq at the point P 

directly above the origin is given by 

                  rE ˆ
4

1
2

0 r

dq
d





      (ii) 

where r is the distance of dq from P and ,r̂ the unit vector from dq to P. 

Note that the direction of r̂  will be different for different elements of 

charge. Now to determine the net electric field, we write the electric field 

E


d  in terms of its x and y-components and then integrate each component 

over the respective variable x or y. 

Our choice of the coordinate system simplifies the calculation. Note that for 

each infinitesimal charge dq placed at the point  x to the right of the origin, 

we can place a corresponding infinitesimal charge dq at the point  x to the 

left of the origin. So these form a pair. Now the x-components of the 

electric fields due to this pair cancel out as shown in Fig. 5.14. This will be 

the case for each pair of points x  on the x-axis. Therefore, the                        

x-component of the electric field E


d  will be zero. The y-component of the 

electric field due to the element of charge dq is given by               

        
r

y

r

dq

r

dq
dEdE y 2

0
2

0 4

1
cos

4

1





    )cos(

r

y
   (iii) 

where  is the angle between r̂ and the y-axis. We add the y-components 

of the electric fields of the two elements at the points x  that will be in the 

same direction to get the net electric field due to them as, 

       jjE ˆ

)(

2

4

1ˆ2

4

1
2/322

0
2

0 yx

dxy

r

y

r

dq
d net












    )( dxdq   

The net electric field due to the infinite line charge is obtained by 

integrating netdE


with respect to x with the limits from 0 to .                 

Although the line extends from   to  ,  we integrate over only half the 

line because the expression we are integrating is already the electric field 

of a charge pair dq.  

Thus,         jEE ˆ

)(

2

4

1
2/322

0 0 yx

dxy
d

x

x

netnet





 






  (iv) 

 

Integrating the right hand side of Eq. (iv) gives (read the margin remark): 

 

                  jE ˆ2

4

1

0 y







 

 

 

 

Let .tan yx   

Then 
2

secdydx  

with the limits from 0 to 

.
2


 The electric field is 

then given by 

 











 2/

0
33

2

0

ˆ

sec

sec

2
j

E

y

dyy

net



 







 2/

00

ˆcos
2

jd
y

  

ĵsin
2

2/

0
0









y
 

ĵ
2 0y


  

 

                  

 

 
 

Fig. 5.14: Electric field of 

a uniform infinite line 

charge. 
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
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determining the electric field of such continuous charge distributions that have 

some symmetry of this kind in the next unit.  

Let us now stop and review what you have learnt in this section. To sum up, 

you have learnt the definition of the electric field and calculated it for a point 

charge, arrangements of discrete point charges and a continuous line charge. 

But while going through this section, this question may still have puzzled you: 

What exactly is an electric field?  

You should think of the electric field as a real physical entity which exists in 

the space in the neighbourhood of any charge, groups of charges or 

continuous charge distributions, which set up the electric field. Any charge 

kept in the electric field experiences the electrostatic force given by Eq. (5.7). 

The concept of electric field is abstract and it is difficult to imagine it 

concretely. But you have learnt how to calculate the electric field and also the 

electrostatic force experienced by a charge kept in the electric field.  

This is actually all that we are supposed to do in electrostatics: Determine the 

electrostatic forces and electric fields due to a given charge distribution. 

However, as you may have felt while working through Example 5.7, the 

integrals involved in calculating electric fields can be quite complicated even 

for simple charge distributions. So, much of electrostatics is about learning the 

tools and methods that simplify these calculations so that we have no need to 

solve such complicated integrals. This is what you will be learning in the 

remaining units of this block and Units 10 and 11 of the next block. 

We now summarise the concepts you have studied in this unit. 

 

5.4   SUMMARY 

Concept Description 

Electric charge  

 

 

 From a large number of observations and experiments, it has been 

deduced that there exist two types of electric charges in nature, which are 

arbitrarily called positive and negative charges. In SI system, the unit of 

electric charge is coulomb denoted by C.  

Like charges repel and unlike charges attract.  

In an isolated system, electric charge is always conserved. Thus, the total 

positive charge is equal to the total negative charge in an isolated system. 

Free electric charge is quantised and can take only discrete values that are 

integer multiples of the charge on the electron.  

Electrostatic force 

and Coulomb’s law                          

 

                     

 The magnitude of the electrostatic force between two charged particles at 

rest is proportional to the product of the magnitudes of charges on them 

and inversely proportional to the square of the distance between them. The 

quantitative expression of the electrostatic force between two charges is 

given by Coulomb’s law: The electrostatic force on a particle carrying a 

charge 1q by a particle carrying a charge 2q situated at a distance r from it 

is given by   
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                         212
21

21
21 r̂

r
F 

 qq
k        

       where 21r̂  is the unit vector along the line joining the particles and is 

directed from 2q  to 1q . Note that r21r


 and 2121 rrr


  where 1r


               

and 2r


are the position vectors of 1q  and ,2q respectively. In SI units, 

Coulomb’s law is written as 

                         212
21

21

0
21 ˆ

4

1
r

r
F 

 qq


                       

Principle of  

superposition 

 

 According to the principle of superposition, in a many-particle system of 

charged particles at rest, the resultant electrostatic force on any charged 

particle is the vector sum of the electrostatic forces exerted by all other 

particles on it. In general, the electrostatic force iF


 on the ith charged 

particle due to all other charges ,...,..., .,21 jqqq  in a many-particle system               

of charged particles at rest is given by 

                        







ij

ji
ji

ji

ij

jii
r

qq
rFF ˆ

4

1
2

0



            

       Note that the above summation does not include the ith charge and jir̂  is 

the unit vector along the line joining the ith and jth particles and is directed 

from jq  to .iq   

Electric field due  

to a point charge 

 

 The electric field due to a point charge or charge distribution at a point is 

defined in terms of the electrostatic force experienced by a test charge q  

placed at that point divided by the magnitude of the test charge: 

            
q

F
E



  

       The electric field due to a charge Q at a point having position vector r


 is 

given by 

                        r
F

E ˆ
4

1
2

0 r

Q

q 





   

 where r̂  is the unit vector pointing from the charge to the point at which            

the electric field is being calculated.  

  Electric field due                

to multiple discrete              

charges 

 

 The electric field due to a distribution of charges at the point with position 

vector ir


 is given from the principle of superposition as  

                  







j

ji

ji

j

i

q

q
r

rr

F
E ˆ

4

1
2

0





    

where jir̂  is the unit vector along the line joining the ith and jth particles and 

is directed from jq  to .iq  We can write this equation as 

                  



j

jEE

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5.5   TERMINAL QUESTIONS 

1. The electrostatic force exerted by two point charges on each other has 

magnitude 10 N when these are at rest and placed a distance r apart. 

What would the magnitude of the electrostatic force between them be if 

the distance between them is a) 4r, b) 100r, c) 
4

r
 and d) ?

100

r
 

2. Two identical charged particles are placed at rest at a separation of 1 m. 

What is the charge on them if the magnitude of the electrostatic force 

exerted on each particle is 1 N? 

3. Three charged particles A, B and C, each having a charge of 1.0 C, are 

placed at rest on a straight line. The distance between A and B is 0.01 m. 

What is the net electrostatic force exerted on particle C if it is placed a) at 

a distance 0.01 m to the right of the particle B along the line AB,  b) to the 

left of the particle B along the line AB, at the midpoint of AB?  

4. Two point charges  4q and  q are placed at rest at a distance ‘a’ from 

each other. Determine the position of a charge  q placed on a straight 

line joining these two charges, if it is in equilibrium.  

5. What is the electric field of a particle having charge C100.9 9  at a 

point 1.0 m away from it? Determine the electrostatic force exerted on a 

proton placed at that point. 

where         ji

ji

j
j

q
r

rr

E ˆ
4

1
2

0





    

So, the total electric field due to a group of charges is the vector sum 

of the electric fields due to individual charges of the distribution. 

Electric field due  

to continuous 

charge 

distributions 

 

 The electric field due to a continuous distribution of charge is given by,  

                     rE ˆ
4

1
2

0



r

dq
 

      The electric field due to a uniformly distributed line charge with constant 

line charge density  is given by        

                   rE ˆ
4 2

0





C
r

dL
 

The electric field due to a uniformly distributed surface charge with 

constant surface charge density  is given by the surface integral 

                    rE ˆ
4 2

0





S
r

dS
       

The electric field due to a uniformly distributed volume charge with 

constant volume charge density  is given by the volume integral 

                   




V
r

dV
rE ˆ

4 2
0


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6. The electric field due to a charged particle at a point 0.5 m away from it 

has magnitude .CN36 1

 

What is the magnitude of the electric charge on 

the particle?  

7. When a particle having charge C109 9  is placed at a certain point in 

an electric field, the electrostatic force exerted on it is of 

magnitude N103 9

 

and directed along the negative x-axis. What is the 

electric field at this point? What would the magnitude and direction of the 

electrostatic force acting on an electron placed at this point be? 

8. Three particles each having charge  q are placed at the vertices of an 

equilateral triangle with each side of length r. Calculate the magnitude of 

the net electric field at the midpoint of any side of the triangle. 

9. Three particles having charge  q,  q and  2q are placed at the same 

distance a from the origin as shown in Fig. 5.15. Calculate the net electric 

field at the origin. 

10. Four charges  2q,  2q,  2q and  2q are placed at the vertices of a 

rectangle of sides 3.0 m and 4.0 m. What is the net electric field due to 

the charges at the point of intersection of the diagonals given that 

C?100.3 9q   

5.6   SOLUTIONS AND ANSWERS 

Pre-test 

1. Observation 1: Correct answer is (a) since the glass rubbed with silk is 

positively charged. Since the object is repelled by the glass, it must have 

the same charge as the glass. 

Observation 2: Correct answer is (a) since the amber rubbed with fur is 

negatively charged. Since both objects are attracted to it, therefore, both 

must have the opposite charge to that of amber. 

2. a) False. So far, no such measurements have been made for free 

 particles. 

b) True.  

c) True. 

d) False. It depends on the product of their magnitudes. 

e) True. 

f) True. 

Self-Assessment Questions 

1. a)   From Eq. (5.3b), the electrostatic force on charge 1q  due to charge 2q   

at rest is given by Coulomb’s law as  212
21

21

0
21 ˆ

4

1
r

r
F 

 qq


  where 21r̂  

is the unit vector along the line joining the particles and directed from 

2q  to 1q  and .21 rr


 Also .CmN1099.8
4

1 229

0




 

Fig. 5.15: Diagram for  

TQ 9. 

 q 

 q 

 2q 

   O 

   a 

   a 

120 

   a 



  

176  

Block 2                                                                                         Electrostatics 

Substituting the values of ,1q 2q  and r for both cases, we get 

i) 21212

229
21 ˆN360ˆ

m)04.0(

C)0.8(C)0.8(
CmN1099.8 rrF 


 


 

ii) 212

229
21 ˆ

m)0.3(

C)m10(C)m15(
CmN1099.8 rF


 


 

21
5 ˆN105.1 r  

b) From Eq. (5.3b), the magnitude of the electrostatic force between the 

electron and the proton is given by 

         
2

21

04

1

r

qq
Felec


   since  .21 rr


 

Substituting the values of the magnitudes of the charges of electron 

and proton, i.e., C106.1 19
21

 qq  and m,103.5 11r  we 

get 

         
211

1919
229

m)103.5(

C)106.1(C)106.1(
CmN1099.8









elecF  

                   N102.8 8  

The gravitational force between the electron and the proton is given by 

         
2

21

r

mm
GFgrav   

Substituting the values of the masses of electron and proton, i.e.,  

kg,101.9 31
1

m  kg,107.1 27
2

m  m103.5 11r  and 

,kgmN107.6 2211 G

  

we get 

        
211

2731
2211

m)103.5(

kg)107.1(kg)101.9(
kgmN107.6









gravF  

                  N107.3 47  

Hence, 39

47

8

102.2
107.3

102.8











grav

elec

F

F
 

Thus, the electrostatic force is much stronger ( 3910 times stronger) 

than the gravitational force.  

2.  a) Substituting for Q (with its sign) and r in Eq. (5.6a), we get 

(i) For C5Q  and m,30.0r       

rrE ˆ
m)30.0(

C)105(
CmN1099.8)(

2

6
229


 




r̂CN105 15   

(ii) For C10Q  and m,1r    

rrrE ˆCN109ˆ
m)1(

C)1010(
CmN1099.8)( 14

2

6
229 


 





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Note that the electric field due to the negative charge is directed 

towards it. The electric fields at the points P and R are shown in                 

Figs. 5.16a and b. Note that the tails of the electric fields are placed              

at P and R, respectively.  

b) From Eq. (5.7), the electrostatic force is given by ).()( rErF


q  For 

C,6q  it is given as follows: 

(i)  rr ˆN3ˆN106105 65     

(ii)  rr ˆN5.0ˆN106109 64    up to one significant digit. 

3. See Fig. 5.17. The midpoint C of the dipole axis is at equal distance d from 

each charge. From Eq. (5.6b), the magnitudes of the electric fields of both 

charges at the midpoint are, respectively, 

            
2

0
2

0 4

1)(

4

1

d

q

d

q
q







E


   and     

2
04

1

d

q
q


E


 

The directions of the electric fields at the point C due to both charges are 

opposite to ,r̂  the unit vector along the line joining the two charges as 

shown in Fig. 5.17. From Eq. (5.11), the resultant or net electric field at the 

midpoint C due to the two charges is:  

            rEEE ˆ
2

4

1
2

0 d

q
qq


 


 

4. Let us choose the x and y-axes as shown in Fig. 5.18 by the dashed 

arrows.  

 

          

 

 

 

 

 

Note from Fig. 5.18 that the distance of the point P from any of the four 

charges is ,
22

2 aa
  where a is the side of the square. Now the net 

electric field at the point P is the vector sum of the electric fields due to all 

charges at that point: 

             4321 EEEEE


  (i) 

where 1E


 is the electric field due to the charge  2q, ,2E


 the electric field 

due to the charge  4q, ,3E


the electric field due to the charge  2q and 

,4E


the electric field due to the charge  4q. We use Eq. (5.6a) to determine 

each one of these electric fields and then take their vector sum. Note that 

with the choice of axes in  Fig. 5.18, the direction of the position vector r̂  of 

the point P with respect to each charge can be expressed in terms of î and 

Fig. 5.16: Diagrams for 

the answers of SAQ 2a 

(i) and (ii). The 

diagrams are not to 

scale.  

(a) 

)(rE


 

m30.0r  

C5  

C10  

(b) 

)(rE


 

m1r  

P 

R 

Fig. 5.18: Diagram for answer to SAQ 4. 
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Fig. 5.17: Diagram for  

the answer of SAQ 3. 
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ĵ  or their combinations. Also .
2

a
r   So, from Fig. 5.18, we can write             

the electric field at P due to the charge 1 as  

 iiiE ˆ4

4

1ˆ22

4

1ˆ

)2/(

)2(

4

1
2

0
2

0
2

0
1

a

q

a

q

a

q















 ( i r ˆˆ  )  (ii) 

We write 
2

0
0

4

4

1

a

q
E


 so that the expressions become simpler to write. 

The electric fields at P due to the charges 2, 3, 4 are: 

     ,̂2ˆ42

4

1
02

0
2 jjE E

a

q








               )ˆˆ( j r   (iii) 

             iiE ˆ)ˆ(
)2(2

4

1
02

0
3 E

a

q








        ( i r ˆˆ  ) (iv) 

 and      jjE ˆ2)ˆ(
)4(2

4

1
02

0
4 E

a

q








    )ˆˆ( j r   (v) 

Substituting Eqs. (ii) to (v) in Eq. (i), we can write 

   )ˆ2ˆ(2ˆ4ˆ2 0004321 jijiEEEEE  EEE


 (vi) 

Now for C100.1 9q  and m,06.0a     

     
2

9
229

2
0

0
m)06.0(

C100.14
CmN1099.8

4

4

1 
 





a

q
E  

          14
0 CN100.1 E    and   )ˆ2ˆ(CN100.2 14 jiE  


 

Terminal Questions 

1. We use Eq. (5.2) for the magnitude of the electrostatic force with 

.
4

1

0
k  It is given that N10

4

1
2

21

0
1 


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r

qq
F  is the magnitude of 

the electrostatic force exerted by two point charges on each other when 

these are placed a distance r apart. The magnitudes of the electrostatic 

force between them for various distances will be, respectively, 
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d)  N1010000
)100/(4

1 5
12

21

0
5 


 F

r

qq
F  

2. Let the charge on the identical particles be q. We use Eq. (5.2) for the 

magnitude of the electrostatic force with 
04

1


k  . It is given that the 

charges are identical and the distance between them is 1m. Substituting 

these values in Eq. (5.2), we have 

            
2

2

0 m)1(4
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
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3. a) Refer to Fig. 5.19a. The net electrostatic force exerted on particle C is 

the vector sum of the electrostatic forces exerted on it by the particles 

A and B as given by Eq. (5.4b). In terms of the unit vector î along the                 

x-axis, it is given by  

             i
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b) Refer to Fig. 5.19b. The net electrostatic force exerted on particle C is 

the vector sum of the electrostatic forces exerted on it by the particles 

A and B. In this case, the electric field due to B will be in the opposite 

direction to that of A since it points away from the positive charge. In 

terms of the unit vector î along the x-axis, it is given by Eq. (5.4b): 
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4. Refer to Fig. 5.20. Let the charges lie along the x-axis. Let the position                

of the charge 3 (  q) be at a distance x from the charge 1 (   4q)               

such that x   a. At this point the charge 2 (  q) is at a distance (a  x) 

from the charge 3. Therefore, the net electrostatic force exerted on the                  

charge 3 due to the charges 1 and 2 is given by Eq. (5.4b) as 
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When the charge 3 is in equilibrium, the net force on it is zero. Thus,  
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Fig. 5.20: Diagram for 

the answer of TQ 4. 
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Fig. 5.19: Diagram for 

the answer of TQ 3. 
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or       
22 )(

14

xax 


  
        22)(4 xxa     xxa  )(2  

For the positive sign of x, 
3

2a
x   and for the negative sign of x, .2ax    

Since x   a, 
3

2a
x   is the only possible value of x. Therefore, for the 

charge 3 ( q) to be in equilibrium, it should be placed at a distance 
3

2a
 

from the charge  4q.  

5. From Eq. (5.6a), the electric field of a particle having charge 

C109 9Q  at a point 1 m away from it is given by        
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It is directed towards the negatively charged particle. The electrostatic 

force experienced by a proton placed at that point is an attractive force 

directed towards the charge Q and is given by 

             rrErF ˆ)CN81(C)106.1()()( 119  


e r̂N101.3 17  

up to 2 significant digits. 

6. Substituting 1NC36 E  and m5.0r  in Eq. (5.6a), we have 
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         nC1C101 9  Q  

7. From Eq. (5.7), we have    

                  )()( rErF


Q       (i)  

where C109 9Q  and .̂N103 9 iF 


 Substituting these values 

in Eq. (i), we get  
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It is directed along the positive x-axis. The electrostatic force exerted on 

an electron placed at this point is given by 
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8. Refer to Fig. 5.21. Let us take the x and y-axes as shown in the figure. 

Then the electric fields at the midpoint P due to two charges 1 and 2 of 

Fig. 5.21: Diagram for the 

answer to TQ 8. 
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magnitude  q  along the x-axis will be equal in magnitude and opposite in 

direction to each other: 
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The magnitude of the net electric field will be just the magnitude of the 

electric field due to charge 3 on the y-axis. The distance of the charge 3 

from the midpoint of the side of the triangle along the x-axis is given by 
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Therefore, the magnitude of the net electric field at the midpoint of the 

base of this equilateral triangle is given by 
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This result holds for any side of the equilateral triangle. 

9. Refer to Fig. 5.22. Let us choose the coordinate axes so that the problem 

becomes simplified. We choose the x-axis to be along the line joining the 

charges 1 and 2 as shown in the figure. The net electric field at the origin 

is the vector sum of the electric fields due to the charges 1, 2 and 3: 

            )()()()( 321 rErErErE


      (i) 

Let us determine the electric fields due to the three charges at the origin. 

You can see that the charges q and q  are at the same distance (a) 

from the origin. So, the origin is at the midpoint of the line joining them. 

Therefore, for our choice of the x-axis, we get                          
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The magnitude of the electric field due to the third charge q2 is 
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Since the charge 3 is a negative charge, the direction of the electric field 

due to it is towards the charge. The net electric field E


 due to the charges 

1 and 2 and the electric field 3E


 due to charge 3 are shown in Fig. 5.23. 

Note that the tails of the vectors are placed at the point where the net 

electric field is to be determined. To determine the net electric field at the 

origin, we resolve the electric field )(3 rE


along the x and y-axes: 

      
2

120cos 3
33

E
EE x      and    333

2

3
120sin EEE y    (iii) 

Therefore, combining the results of Eqs. (ii) and (iii) with Eq. (i), the net 

electric field at O is given as: 

 q 

Fig. 5.22: Diagram for 

the answer of TQ 9. 
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Fig. 5.23: Electric fields 

for the answer of TQ 9. 
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The magnitude of the net electric field is given by 
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10. Refer to Fig. 5.24 showing the four charges A, B, C, D, viz.  2q,  2q,              

 2q and  2q placed at the vertices of a rectangle of sides m0.3AB  

and .m0.4BC The net electric field due to the charges at the point of 

intersection of the diagonals is the vector sum of the electric fields of the 

respective charges at that point. Let us choose the x and y-axes as shown 

in the figure. The length of the diagonal of the rectangle is  

.m0.5m)0.4()0.3( 22   Note from Fig. 5.24 that the electric fields 

due to the charges placed at the vertices A and C point in the same 

direction since the charges are unlike. So is the case for the charges 

placed at the vertices B and D. The magnitudes of the electric fields due to 

all four charges are the same since the magnitudes of the charges are 

equal and their distances from the point P are equal. Thus, the magnitude 

of the electric field due to each charge is given by 
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The net electric field is the resultant of the electric fields 1E


 and 2E


 shown 

in Fig. 5.24 with their tails at the point P. Note that their magnitudes are: 

EEE 221   

Note also from Fig. 5.24 that the x-components of these electric fields are 

equal and opposite so they cancel out. Their y-components are equal in 

magnitude and in the same direction and are given by: 
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So, the magnitude of the net electric field is  

111
21 CN28CN8.13CN8.13   yy EEE   

up to 2 significant digits. It is directed along the y-axis. 

  

 

Fig. 5.24: Diagram for 

the answer of TQ 10. 
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                    UNIT 6 

GAUSS’S LAW AND 
APPLICATIONS  

Structure 

6.1     Introduction 

Expected Learning Outcomes 

6.2     Electric Flux 

6.3     Gauss’s Law 

Gauss’s Law and Symmetric Charge Distributions 

6.4     Electric Field due to a Point Charge 

6.5     Electric Field due to a Uniformly Charged Sphere    

            

STUDY GUIDE           

 

6.6 Electric Field due to a Uniformly 

Charged Thin Spherical Shell  

6.7 Summary 

6.8       Terminal Questions 

6.9 Solutions and Answers 

 

In Unit 5, you have studied the concepts of charge, electrostatic force, Coulomb’s law, 

electric field and calculated the electrostatic force on charges, electric field of point charges 

and continuous line charge.  

In this unit, you will study Gauss’s law that simplifies the calculation of electric fields and 

electrostatic forces for distributions of discrete point charges and symmetric continuous 

charge distributions. You will learn how to apply Gauss’s law to a point charge and 

spherically symmetric systems like uniformly charged sphere and spherical shell for which 

the electric field has spherical symmetry. You have learnt about the divergence theorem in 

Unit 4, which you will also use in this unit. You should revise Units 1 to 4 of this course as 

you will be using them all the time to learn the concepts of this unit. Of course, you should 

also know the concepts of vector algebra thoroughly. We advise you to solve the SAQs and 

Terminal Questions given in this unit. You should study all sections of this unit thoroughly 

and make sure you can solve the SAQs and Terminal Questions on your own.  

Gauss's law is used to find the 

electric fields in symmetrical 

capacitors. The Earth is a 

huge spherical capacitor that 

we use all the time. How do we 

do so? You will learn the 

answer in this unit!  

“All the measurements in the world do not balance one theorem 

by which the science of eternal truths is actually advanced.” 

 

Carl F. Gauss 
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6.1   INTRODUCTION 

In Unit 5, you have revised the concept of charge and Coulomb’s law. You 

have learnt the concept of electric field and calculated the electric field due to 

point charges and continuous line charge. You have also learnt how to 

calculate the electrostatic force on a charge kept in any given electric field.  

This is what electrostatics is about: Calculating electric fields due to charges 

and electrostatic forces on a charge or distribution of charges placed in an 

electric field. You also saw how involved the calculation of the electric field of 

a line charge was. Would you not like to learn simpler methods for doing these 

calculations? This is what we do in the rest of this block. Most of this block 

involves learning the tools that simplify the calculation of electric fields and 

electrostatic forces.                  

In this unit, we describe an alternative to Coulomb’s law and the principle of 

superposition to help us determine electric fields of discrete charges and 

charge distributions. This is the Gauss’s law which relates electric charge 

distributions and electric fields. It gives us a simpler method to determine 

electric fields associated with symmetric charge distributions. If we know the 

electric fields in any region, we can also use the law to determine the net 

charge of the charge distributions that give rise to them.  

We begin our study of Gauss’s law by defining a new quantity called electric 

flux (Sec. 6.2). We then present the law in Sec. 6.3. You will learn that 

Gauss’s law is particularly useful when applied to systems that possess some 

symmetry, a concept that you may know but will learn again in this unit. In 

Sec. 6.4, we apply the law to spherically symmetric systems and determine 

the electric fields due to a point charge, a uniform spherical charge distribution 

and a uniformly charged spherical shell.  

You may ask: Why is it important for you to learn these applications of 

Gauss’s law? One of the most important uses of these applications is in 

calculating the electric fields in capacitors and consequently their 

capacitances. You would know from your school physics that capacitors are 

important devices used to store electric charge and electrical energy. You will 

learn in detail about them in Unit 11 of Block 3. The Earth is one huge 

spherical capacitor that we use all the time as you will learn in Sec. 6.5.  

In the next unit, we continue the discussion on Gauss’s law for systems 

having cylindrical and planar symmetry such as a uniform line charge, a 

uniformly charged cylinder and a plane sheet of charge. You will learn some 

more applications of the law and then you will be able to appreciate the power 

of this law.    

Expected Learning Outcomes 

After studying this unit, you should be able to: 

 define electric flux and calculate the electric flux due to an arbitrary 

distribution of charges; 

 state Gauss’s law; 

Carl Friedrich Gauss 

(1777 – 1855), a 

German mathematician 

and physicist, is 

referred to as the 

‘greatest mathematician 

since antiquity’. He 

made exceptional 

contributions in the 

areas of mathematics 

such as algebra, 

number theory, 

analysis, differential 

geometry, and physics 

such as mechanics, 

electrostatics, magnetic 

fields, optics, etc. He is 

known as one of 

history’s most influential 

mathematicians with 

equally significant 

contributions in physics.  
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 apply Gauss’s law to calculate the electric field due to a point charge; 

 apply Gauss’s law to calculate the electric field due to a uniformly 

charged sphere; and 

 using Gauss’s law, determine the electric field due to a uniformly 

charged spherical shell. 

6.2   ELECTRIC FLUX 

You have learnt the concept of flux of a vector field in Sec. 4.2.1 of Unit 4 of 

this course. Here we briefly explain the concept again so that you can 

understand the concept of electric flux. You know that flux is defined for any 

vector field but is most easily pictured for the flow of fluids. So, we begin the 

discussion with a brief revision of the concept of flux for fluid flow.  

Imagine that a stream of water or some fluid is flowing and the velocity of the 

particles in it is described by the velocity vector field. We now place a very 

small flat wire loop of area dS in the stream so that it is normal (perpendicular) 

to the direction of the flow (Fig. 6.1a). We choose this flat element of area to 

be small enough so that the velocity of all fluid particles flowing through it is 

constant. The volume flux of the fluid through the loop is defined as the rate 

of flow of the fluid through the area (of the loop). Let us determine its value.  

Suppose V is the volume of the fluid that passes through the small loop of 

area dS in time t. Since its area is flat and very small, we can take the speed 

v of the small amount of fluid flowing through it to be constant. So, during the 

time interval t, the fluid moves a length .tvx   The volume of fluid that 

flows through the loop during that time interval is then given by 

  tvdSxdSV    (6.1) 

So, the rate of flow of fluid through the very small area dS is given by 

  dSv
t

V





  (6.2a)     

This is just the volume flux of the fluid when the small area chosen is normal 

(perpendicular) to the direction of its flow. 

 

 

 

 

 

 

 

 

(a)   (c)  
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dS  
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

 

S


d  

S


d  

v


 

(b)  

v


 
S


d  

Fig. 6.1: A wire loop placed in a stream a) normal and b) parallel to the direction of the flow or the velocity 

field v


; c) the same loop placed at an angle  to the direction of fluid flow. In parts (a) and (c) of 

this figure, we have shown only a few lines for the fluid flow but the loop is immersed in the 

stream. 

 

The word flux has its 

origins in the old 

French word ‘flus’ and 

the Latin word ‘fluxus’ 

both meaning 

‘flowing’ or ‘to flow’. 

When we say that 

something is in the 

state of flux, we mean 

that it is changing. 
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What would the flux be if we kept the loop parallel to the direction of fluid flow 

as shown in Fig. 6.1b? You can see that no fluid will now flow across the 

wire loop or across the area dS. So, the volume flux will be zero in this case. 

What would the flux be if we kept the loop at some angle  to the direction of 

fluid flow as shown in Fig. 6.1c? 

In this case, the fluid will pass through only that component of the area, which 

is perpendicular to the direction of fluid flow. This is just .cos dSdS   

Therefore, substituting cosdS  for dS in Eq. (6.2a), the volume flux through 

the loop kept at an angle  to the direction of the fluid flow will be  

   cosdSvdSv  (6.2b) 

Now, we use the definition of the scalar product to express the volume flux 

given by Eqs. (6.2a and b) as 

  Sv


ddS .  (6.3) 

where v


 is the velocity field and ,S


d  the area vector corresponding to the 

area dS of the loop (see Fig. 6.2). The area vector gives the magnitude of the 

area and its direction gives the sense of the flux through the area. In our 

example (Figs. 6.1a and c), the sense of the flux is from left-hand side of the 

loop to its right-hand side. If we choose the direction of the area vector to be 

opposite to this, i.e., from right to left, the sense of the flux would also be from 

the right-hand side of the loop to its left-hand side. We can choose either 

direction for the area vector but once chosen, it should remain the same and 

be specified.  

Note that the scalar product of Eq. (6.3) reflects all three situations we have 

considered: When the loop is normal to the flow, 90  and Eq. (6.3) gives 

the volume flux as ,dSv  which is just Eq. (6.2a). If the loop is parallel to the 

flow, 0  and the flux through the loop is zero. For any other value of ,     

Eq. (6.3) gives the volume flux as ,cosdSv  which is just Eq. (6.2b).  

The definition of volume flux can be extended to the flux of any vector field 

including the electric field. In an electrostatic field, nothing is flowing but 

we define the flux of the electric field in analogy to Eq. (6.3). 

By definition, the electric flux Ed  of an electric field E


 through a small flat 

surface of area dS is defined as 

  S.E


dd E   (6.4) 

where S


d  is the area vector of magnitude dS directed normal to the 

surface. Its orientation is defined to be outward to the surface. Note that 

electric flux is a scalar quantity.  

In Eq. (6.4), we have considered a small flat surface of area dS to define 

electric flux. You may ask: What is the electric flux through a surface of 

any arbitrary shape? 

Fig. 6.2: Area vector 

S


d for any surface of 

area dS is directed 

normal to the surface 

(refer to Sec. 4.3 of 

Unit 4 for the sense 

of the normal vector 

to the surface). 

dS 
S


d  
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In that case, we divide the surface into a large number (say n) of small flat 

surfaces represented by area vectors ,idS


 all pointing outwards from the 

same side of the surface. Let iE


be the electric field through the element of 

surface area .idS


Since flux is a scalar quantity, the electric flux through the 

surface S is just the sum of the electric flux through all such flat surfaces:  

  



n

i
iiE d

1

S.E


 (6.5) 

We then make the sizes of the flat surfaces smaller and smaller so that               

n   and collectively these surface elements approach the surface S.     

Then as you have learnt in Unit 4, the sum given in Eq. (6.5) approaches a 

limiting value which is equal to the electric flux through the surface S. In that 

limit, we can write the sum as a two-dimensional surface integral and the 

electric flux is given by 

   


S

i

i

i
n

E dd S.ES.E


Lim  (6.6a) 

As you have learnt in Unit 4, the subscript S under the integral sign tells us 

that the area of integration is the entire surface S. If the surface is closed, we 

write the surface integral and Eq. (6.6a) as follows: 

  

S

E dS.E


 (6.6b) 

In Unit 4, you have learnt how to determine surface integrals for different 

cases. From Eqs. (6.6a and b), you can see that electric flux is expressed as a 

surface integral. You may now like to determine the electric flux of an electric 

field through a surface using Eq. (6.6b). We take up the example of calculating 

the electric flux of a point charge through a closed surface. In the process, we 

shall arrive at Gauss’s law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determine the electric flux for the electric field generated by a point charge 

q through a closed surface S of a sphere of radius R enclosing the charge 

such that the charge is placed at the centre of the sphere.  

SOLUTION   We use Eq. (6.6b) to determine the electric flux through the 

surface of a sphere (of radius R) enclosing the charge q. From Eq. (6.6b), 

the electric flux through a closed surface is given by 

                                     

S

E dS.E


 

where S is the surface of a sphere of radius R enclosing the charge q, 

which is kept at its centre. The electric field of the charge q at a point on 

the surface of the sphere is given from Eq. (5.6a) as 

                                rE ˆ
4

1
2

0 R

q





   

 

XAMPLE 6.1 :  ELECTRIC FLUX OF A POINT CHARGE  
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Did you note in Example 6.1 that the radius of the sphere cancels out? This is 

because while the field decreases as ,
1
2r

 the surface area increases as .2r  

So, their product is constant. REMEMBER: This result arises because of the 

inverse square nature of the electrostatic force field and the electric 

field.  

Also note that we have obtained Eq. (6.7) in Example 6.1 for the electric flux 

of a point charge across a spherical surface enclosing the charge. However, 

it is true for a surface of any shape enclosing a charge. This is what Gauss’s 

law is about. So you will study it in greater detail in the next section. But 

before that, you may like to attempt an SAQ to determine electric flux for 

another simple situation.  

SAQ  1 -  Electric flux 

 

 

 

You should always remember the following about electric flux. 

 

 

 

 

 

 

 

 

where r̂  is the unit vector along the radial direction. Now, for a sphere, the 

direction of the area vector S


d  is along the outward normal to its surface at 

all points on the surface. From Fig. 6.3 (showing one such point), you can 

see that it is along the vector .r̂  Thus, we have 

                      rS ˆdSd 


      and      dSEdSEd  r.rS.E ˆˆ


 

The electric flux of the point charge through the sphere’s surface is then 

           
0

2
2

0
2

0

4
44 




















 

q
R

R

q
dS

R

q
d

S

S.E


 (6.7) 

 

                 

 

 

 

 

 

 
 

Fig. 6.4: Diagram for                        

SAQ 1. 

x 

y 

z 

m0.1x  m0.2x  

Right  

face 

Top face 

Fig. 6.3: Calculation of  

the electric flux through  

a spherical surface 

enclosing charge q. 

q  
r̂  

E


 

R  
 

r̂  

S


d  

S

A cube of side 1.0 m is kept in an electric field (in units of )CN 1  given by 

jiE ˆ5.0ˆ0.8  x


 as shown in Fig. 6.4. Determine the electric flux through 

the right and top faces of the cube.  

 

 

 

 

 

 

 Electric flux through a surface (of area S) represents the 

summation of electric flux elements )( S.E


d  over the entire 

surface.  

 Each electric flux element represents the product of a small flat 

element of area on the surface with the component of the electric 

field along the normal to that area element.  

 This product is nothing but the scalar product of the electric field 

vector and the area element vector.  

 Electric flux does not represent flow or change the way volume 

flux does. 
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Let us now study Gauss’s law. 

6.3   GAUSS’S LAW 

In Example 6.1, we have enclosed a point charge in a spherical surface and 

arrived at Eq. (6.7), which relates the electric flux through a spherical surface 

to the point charge q enclosed by it. This is just Gauss’s law for a point 

charge. However, we have enclosed the point charge in a spherical surface, 

which is a special case. Gauss’s law applies to any arbitrary surface 

enclosing a charge or charge distribution. Any imaginary surface enclosing 

a charge or a charge distribution is called a Gaussian surface. We usually 

choose the Gaussian surface so that our calculations become easier. 

Therefore, in this section, we first generalise Eq. (6.7) for any arbitrary surface 

enclosing the point charge and arrive at a formal statement of Gauss’s law. 

So, let us find out whether the same equation [Eq. (6.7)] applies to any 

arbitrary surface enclosing a point charge.  

Consider the electric field of a positive point charge in free space. Imagine that 

the charge is enclosed in a closed Gaussian surface S of an arbitrary 

shape (Fig. 6.5).  

 

 

 

 

 

 

Note from Fig. 6.5 that we have chosen the origin of the coordinate system to 

be at the location of the charge. Let P be a point on the Gaussian surface,  

having position vector .r̂r r


 We choose a small element of area S


d  centred  

at the point P on the Gaussian surface. As you know from Eq. (5.6a), the 

electric field at the point P is given by 

  
rr

q

r

q r
rE



2
0

2
0 4

1
ˆ

4

1





  (6.8) 

Then from Eq. (6.4), the element of electric flux passing through S


d  is given 

by 

  S.rS.E


d
r

q
dd E 3

04

1


  (6.9) 

Now, you know that if  is the angle between r


 and ,S


d  then 

    S.r cosdSrd


 (6.10a) 

You also know from vector algebra that  cosdS is the projection of S


d  along 

.r


 From Sec. 4.3.5 of Unit 4, you know that the quantity  

Fig. 6.5: Gauss’s law for a point charge enclosed by an arbitrary surface. 

q 
O 

x 

y 

z 

P 

)(rE


 

S


d  

 



  

190  

Block 2                                                                                         Electrostatics 








 
d

r

dS
2

cos
 (6.10b) 

is defined as the solid angle (d) subtended by the area S


d  at O, the location 

of the charge (Fig. 6.6). Then using Eq. (6.10b), we can write Eq. (6.9) as 

  






 d

q

r

dSrq
dd E

0
3

0 4

cos

4
S.E


 (6.11a) 

The total electric flux through the surface S is determined by integrating over 

the entire closed surface as follows: 

   




SS

E d
q

d
04

S.E


 (6.11b) 

Now since the surface S surrounds the point O and the total solid angle 

around any point is 4 (see Sec. 4.3.5 of Unit 4), we have 

   4

S

d  (6.11c) 

So, we can write Eq. (6.11b) as 

  
0

 
q

d

S

E S.E


 (6.12) 

Eq. (6.12) is the same as Eq. (6.7) for a spherical surface. Let us see whether 

we can extend Eq. (6.12) to a distribution of charges. Suppose that instead of 

a single charge at the centre of a sphere, many charges are situated in some 

region of space. From the principle of superposition [Eq. (5.11)], you know that 

the net electric field is the vector sum of all individual electric fields: 

  

j

jEE


 (6.13) 

By definition [Eq. (6.6b)], the electric flux through a closed surface that 

encloses all these charges is given by 

     

















j j

j

S

j

S

E qdd
0

1
S.ES.E


 (6.14) 

where we have substituted E


 from Eq. (6.13) and used Eq. (6.12) for 

individual charges, i.e., we have written 

  
0


j

S

j

q
dS.E


 (6.15a) 

Let us write the sum of all charges enclosed by the surface as ,enclQ i.e., 

enclQ  is the total or net charge enclosed by the surface S: 

   

j

jencl qQ  (6.15b) 

Fig. 6.6: The solid angle 

d subtended by an area 

element S


d at a point O. 

Recall Sec. 4.3.5 of    

Unit 4 for the definition 

of solid angle. 

O 

P 
d 

S


d  
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Then, we can write Eq. (6.14) as follows: 

  
0


encl

S

Q
dS.E


 (6.16) 

Eq. (6.16) is the quantitative statement of Gauss’s law. Let us now give a 

formal statement of Gauss’s law. 

 

 

 

 

 

 

 

 

 

 

What Eq. (6.16) tells us is that the flux of the electric field through any surface 

would be the same regardless of its shape. It is proportional to the charge 

enclosed by it. This point is easier to visualise for a point charge if you picture 

its electric field in terms of the field lines passing through a surface. A surface 

of any shape enclosing the charge would have the same number of field lines 

passing through as that of the sphere’s surface (Fig. 6.7). So the electric flux 

through any surface enclosing charge q is .
0

q
 

Eq. (6.16) is the integral form of Gauss’s law. We can write Gauss’s law in 

the differential form using the divergence theorem, which you have studied 

in Unit 4. For this, we write the charge enclosed by a surface in terms of the 

volume charge density  and substitute it in Eq. (6.16). Then we get 

   

V

encl dVQ  (6.17a) 

And   




VS

dVd
0

1
S.E


 (6.17b) 

Now you may recall the divergence theorem from Unit 4 given as 

   

VS

Vdd ES.E


.  (6.17c) 

We substitute the value of 
S

dS.E


from Eq. (6.17c) in the left hand side of  

Eq. (6.17b). 

Fig. 6.7: The same 

number of electric field 

lines will pass through 

surfaces of different 

shapes. Two Gaussian 

surfaces, one spherical 

and the other of 

arbitrary shape, are 

shown here for positive 

and negative charges. 

(a)  

(b)  



  



  

GAUSS’S LAW 

 

 Gauss’s law states that the net electric flux through any imaginary closed 

surface S (called the Gaussian surface) is directly proportional to the net 

charge )( enclQ  enclosed by the surface. In SI units, it is equal to 
0

enclQ
. 

The net charge is the algebraic sum (sum with sign of the charge included) 

of all charges enclosed within the Gaussian surface.  

Mathematically, we write the law as 

  
0


encl

S

Q
dS.E


 (6.16) 
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 Then Eq. (6.17b) becomes 

   




VV

VV dd
0

1
.E


 (6.17d) 

Since Eq. (6.17d) holds for any volume, the integrands must be equal and we 

have:  

                             (6.18) 

 

Eq. (6.18) gives Gauss’s law in its differential form.  

It is easier to apply Gauss’s law in its differential form. However, note that we 

have expressed it only for volume charge density. Since the integral 

form of Gauss’s law can be applied to point, line, surface and volume 

charges, it has wider use.  

In the next section, we consider some applications of Gauss’s law to 

spherically symmetric systems. But before that you may like to remember the 

following aspects of Gauss’s law and then try an SAQ to check your 

understanding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





0

1
.E


 

 In Eq. (6.16), enclQ is the net charge enclosed by the surface taking 

into account the algebraic sign of the charges (in case of many 

charges). So, if a surface encloses equal and opposite charges, 

the net electric flux through it is zero.  

 From the statement of Gauss’s law, it is clear that the charges lying 

outside the closed surface are not included in .enclQ  If the closed 

surface does not enclose any net charge, or if all charges lie 

outside the closed surface, then the electric flux through the 

surface is zero. This implies that the electric field through such a 

surface is zero. 

 We can calculate the net charge enclosed inside any closed 

surface using this law if we know the net electric flux through the 

surface enclosing the charges. 

 The form and location of the charges inside the closed surface do 

not matter in the calculations. What matters is the total charge 

enclosed by the closed surface and its sign. This very fact makes 

the calculation of electric fields using the Gauss’s law far easier in 

comparison with Coulomb’s law.  

 Gauss’s law essentially follows from Coulomb’s law and the principle of 

superposition. It contains no additional information that was not already 

present in Coulomb’s law. The law follows from the inverse square 

nature of the electrostatic force. Without that, the cancellation of 2r  

would not take place. Then the total flux would also depend on the 

surface chosen and not only upon the charge enclosed.  
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SAQ  2 -  Gauss’s law 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You may be wondering: Why do we need another method for calculating 

electric fields when we already have Coulomb’s law? This is because we 

can use Gauss’s law to calculate the electric fields due to symmetric charge 

distributions in a much simpler way. You will discover in the next section and 

the next unit that Gauss’s law is a powerful tool for determining electric fields 

of symmetric continuous charge distributions. Let us explain this point further. 

6.3.1    Gauss’s Law and Symmetric Charge Distributions 

Let us first explain: What are symmetric charge distributions? 

Symmetric charge distributions are arrangements of charges that remain 

unchanged (or invariant) or look the same after a transformation. 

These charge distributions could be translated along some axis, reflected or 

rotated about some axis and would still appear the same.  

Symmetry in physics essentially means that a system or an object 

remains unchanged (or invariant) under some transformation. You may 

already know of several examples of symmetric objects, e.g., a straight line, 

square, plane, sphere, cylinder, etc.  

Due to the symmetries of charge distributions, the calculations of electric flux 

and electric fields due to them become far easier.  

Fig. 6.8: Diagram for       

SAQ 2d. 

P 

1q  

2q  
3q  

1S  

2S  

a) Can we apply Gauss’s law to the surfaces shown in Figs. 6.1a, b and c? 

b) A point charge is enclosed by a spherical Gaussian surface. Would the 

electric flux through the surface change 

i) If the Gaussian surface is chosen to be a closed cylinder or a cube? 

ii) If the sphere is replaced by a cube that has one-tenth of its volume? 

iii) If the charge is located at some other point within the sphere instead 

of its centre? 

iv) If the charge is moved outside the Gaussian surface? 

v) If another charge is placed inside the Gaussian surface? 

vi) If another charge is placed outside the Gaussian surface?  

c) The electric flux through a closed spherical Gaussian surface of radius 

0.5 m surrounding a charged particle is equal to .CmN500 12   

Determine the value of the charge on the particle. If the radius of the 

surface were to be halved, what would the value of the electric flux 

through it be? 

d) Determine the net electric flux through two overlapping closed surfaces 

1S  and 2S  shown in Fig. 6.8, given that the values of the charges on 

the three particles are nC,1.31 q  nC9.52 q  and .nC1.33 q  

The particle P enclosed by the surface 1S  carries no charge. 
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We will be dealing with three kinds of symmetry while applying Gauss’s law: 

1. Spherical symmetry 

2. Cylindrical symmetry 

3. Planar symmetry 

We will talk about each of these symmetries when we apply Gauss’s law to 

symmetric charge distributions in this unit and the next unit.  

In the next three sections of this unit, you will learn how to apply Gauss’s law. 

We will determine the electric field due to a point charge. We will also 

determine the electric fields due to spherically symmetric charge 

distributions such as a uniformly charged sphere and a spherical shell carrying 

uniform charge using Gauss’s law. In the next unit, we will apply Gauss’s law 

to infinitely long line of uniform charge, which has cylindrical symmetry and a 

plane sheet of charge having planar symmetry. So we will explain both these 

symmetries in the next unit. 

Here we answer the question: What is a spherically symmetric charge 

distribution?  

A charge distribution is said to be spherically symmetric if it remains 

invariant (the same)  

 when it is rotated around any axis passing through its centre. It is said 

to possess rotational symmetry about that axis.  

 when it is reflected across any plane passing through its centre. This 

is the reflection symmetry. 

For such spherically symmetric charge distributions, we choose a spherical 

Gaussian surface. For a point charge, the centre of the Gaussian surface lies 

at the position of the charge. For a spherical charge distribution or a spherical 

shell, the Gaussian surfaces are concentric with them.  

The electric field of a spherically symmetric charge distribution is in the radial 

direction. It points outward from the centre of the sphere for positive charge 

and inward for negative charge. The magnitude of the electric field depends 

only on the distance r from the centre of the sphere. You may ask: Why is it 

so? Let us answer this question for both the direction and the magnitude of 

the electric field due to a spherically symmetric charge distribution.  

Let us first answer the question: Why is the electric field due to a 

spherically symmetric charge distribution directed radially i.e., it either 

points outward from the centre of the sphere, or inward along the radius 

of the sphere? 

Suppose the electric field at some point P outside the sphere is not directed 

radially, i.e., along the radius of the sphere. Suppose it points in some other 

direction, say in the direction of a point Q on the sphere’s surface along the 

line PQ (see Fig. 6.9). Now suppose we rotate the sphere around the sphere's 

axis that passes through point P by 180. The point Q shifts to position Q  on 

the sphere. Note that the sphere remains exactly the same and the point P 

Fig. 6.9: If the electric 

field is not radially 

directed, it will not 

remain the same under 

rotation or any other 

symmetry 

transformation of the 

sphere.   

P 

O Q 

Q  
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would also be in the same place. But the electric field would now point in a 

different direction  in the direction of Q  along the line .QP   

This is a contradiction because you know that the electric field at the same 

point due to the same charge distribution has to be in the same 

direction; it cannot be in two different directions. When will the electric field at 

any point be in the same direction under any symmetry operation performed 

on the spherical charge distribution? This will happen only if the electric field 

is directed along the axis of rotation of the sphere passing through that 

point. This means that it must point along the axis of rotation (or the radius) of 

the sphere, i.e., in the radial direction.  

Let us now answer the question: Why does the magnitude of the electric 

field due to a symmetric charge distribution at any point depend only on 

its distance r from the centre of symmetry?  

Study Fig. 6.10. Suppose we have to determine the electric field at a point P 

at a distance r from the sphere. Consider a spherical surface S of radius r 

passing through that point, concentric with the spherical charge distribution. 

Now, consider any two points P and Q on the surface S. Note that these two 

points have the same radial coordinate but different angular coordinates.  

Let us now ask: What would happen if the magnitude of the electric field 

depended on the angular coordinates of the points P and Q? If this were 

so, the magnitude of the electric field due to the spherical charge distribution 

would be different at these two points.  

But this is a contradiction because due to spherical symmetry, the 

spherical charge distribution looks the same for all points on S and 

hence for both these points. Therefore, for the same charge distribution, 

the magnitude of the electric field cannot be different for different points 

on S. It has to be the same for all points on the spherical surface S, i.e., all 

points at the same distance r from the centre of the charge distribution.  

Hence, the magnitude of the electric field at any point on the spherical 

surface S (of a fixed radius) cannot depend on the angular coordinates of 

that point. It will only depend on the radius of the spherical surface, i.e., the 

radial coordinate of the point, which is just the distance of the point from the 

centre of the charge distribution. Therefore, we have 

         )()( rEE r


 for a spherically symmetric charge distribution 

So, all points on the spherical surface S of radius r are equivalent as far as the 

magnitude of the electric field is concerned. You must always remember the 

following for any spherically symmetric charge distribution. 

 The electric field due to the spherical charge distribution is directed 

radially.  

 The magnitude of the electric field at any point depends only on the 

distance r of the point from the centre of the charge distribution.  

 

 

 

Fig. 6.10: The magnitude 

of the electric field at any 

point P on the spherical 

surface S depends only 

on the radius r of the 

surface, i.e., the radial 

coordinate of P. Due to 

spherical symmetry, it is 

independent of the 

angular coordinates of 

the point.  

P 

O 
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Let us now apply Gauss’s law to determine the electric field due to a point 

charge. 

6.4   ELECTRIC FIELD DUE TO A POINT CHARGE 

Using Gauss’s law, let us determine the electric field due to a positive point 

charge q at point P situated at a distance r from the charge. 

We use Gauss’s law given by Eq. (6.16) taking .qQencl    

We draw a spherical Gaussian surface of radius r passing through the point P 

with the charge at the centre of the sphere (Fig. 6.11). Now, you have learnt in 

Sec. 6.3.1 that for spherical symmetry, the electric field points radially 

outwards for a positive charge, i.e., the direction of the electric field is normal 

to the sphere’s surface. The area vector S


d  for any surface area element of 

the sphere is also normal to its surface. So, it is parallel to the electric field E


 

and .dSEd S.E


 Then Gauss’s law becomes 

0
 

q
dSEd

SS

S.E


 

Due to spherical symmetry, the magnitude of the electric field due to the 

charge would be the same for all points on the spherical surface and we can 

take it to be constant for S. So, we can take E out of the integral and write  

  
0

 
q

dSEdSE
SS

 

So, the integral is just the area of the spherical surface, i.e., it is .4 2r Thus, 

  
0

24



q

rE       

or  
2

04

1

r

q
E


    

and  rE ˆ
4

1
2

0 r

q





 (6.19) 

Did you notice that Eq. (6.19) is the same as Eq. (5.6a) of Unit 5 that was 

obtained from Coulomb’s law? This means that Gauss’s law and Coulomb’s 

law give us the same result for the electric field due to a point charge. Gauss’s 

law is equally true for a distribution of charges. You have seen it in arriving at              

Eq. (6.16).  

The result for the electric field due to a charge distribution will be the same 

whether we use Gauss’s law or Coulomb’s law to calculate it. The only 

difference between the two laws is this: It is easier to use Coulomb’s law for a 

charge distribution having many discrete point charges. But it is far easier to 

use Gauss’s law if the charge distributions are continuous and symmetric. You 

have learnt this in this section for a point charge and will learn in the next two 

Fig. 6.11: Spherical 

Gaussian surface S for 

determining electric field 

due to a positive point 

charge.    

P 

q  

Q 
r 

S 
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sections and next unit for other charge distributions. Otherwise, these two laws 

are not independent laws but the same law expressed in different ways. 

6.5   ELECTRIC FIELD DUE TO A UNIFORMLY 
CHARGED SPHERE 

Let us now apply Gauss’s law to a spherical charge distribution having uniform 

volume charge density. You can verify that a charged sphere possesses 

spherical symmetry. It remains invariant (the same)  

 when it is rotated around any axis passing through its centre; and  

 when it is reflected across any plane passing through its centre.  

The volume charge density (charge per unit volume) of a spherically 

symmetric charge distribution such as the charged sphere is the same at all 

points situated at the distance r from its centre. At any point, it depends only 

on the distance of that point from the centre of the sphere and not on the 

direction. Thus, the volume charge density  of a spherically symmetric 

charge distribution is a function of only r.  

You have learnt in Sec. 6.3.1 that the magnitude of the electric field due to 

a spherically symmetric charge distribution at any point depends only on r. 

The direction of the electric field is radially outward for positive charge 

distribution and radially inward for a negative charge distribution. Let us now 

apply Gauss’s law to determine the electric field due to a uniformly charged 

sphere.  

Consider a non-conducting charged sphere of radius R carrying total positive 

charge Q (Fig. 6.12). It is uniformly charged, which means that its volume 

charge density  is constant. Let us determine the electric field due to this 

charge distribution at a point P outside it, at a distance r from the centre of the 

sphere.  

We draw a spherical Gaussian surface S of radius r through the point P. Since 

the point P lies outside the sphere, r    R and .QQencl   From Gauss’s law 

[Eq. (6.16)], we have 

  
0


Q

d

S

S.E


 (6.20) 

Due to spherical symmetry, the magnitude of the electric field is the same on 

all points on the Gaussian surface. So we can take it to be constant for this 

Gaussian surface. The direction of the electric field is radially outwards for the 

positive charge, i.e., in the same direction as .S


d  So, E


 and S


d  are parallel 

and  

  dSEd S.E


  (6.21a) 

Since E (the magnitude of the electric field on the Gaussian surface) is 

constant, we can pull it out of the surface integral.  

Fig. 6.12: Determining 

the electric field due            

to a uniformly charged 

sphere of radius R 

carrying net charge Q 

at a point P outside the 

sphere.  

P 

Q 

r 
 

S  

R 
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Therefore, Eq. (6.21a) becomes 

  
0

24


 
Q

rEdSEd
SS

S.E


 (6.21b) 

or  
2

04

1

r

Q
E


         for r    R (6.21c) 

The electric field is given by 

  rE ˆ
4

1
2

0 r

Q





       for  r    R (6.22) 

Notice that we have included the points lying on the surface of the spherical 

charge distribution in the result because the Gaussian sphere of radius R 

would enclose the entire charge. Did you also notice that the electric field 

given by Eq. (6.22) is the same as that due to a point charge [given by             

Eq. (6.19)]? It is as if the entire charge within the spherical surface is 

concentrated at the centre of the sphere. Note that this result is a 

consequence of spherical symmetry. So, a uniformly charged sphere would 

exert the same force on a charge placed anywhere outside it as an equivalent 

single charge would. 

 

 

 

 

Let us now determine the electric field at a point inside a spherical charge 

distribution carrying net charge Q , i.e., at points for which r    R (see                    

Fig. 6.13). 

For this, we draw a spherical Gaussian surface of radius r    R. We apply                     

Eq. (6.20), in which Q has now to be replaced by the charge (q) enclosed by 

the Gaussian sphere of radius r.  

What is the value of the charge enclosed by the Gaussian sphere of radius r? 

You know that the volume charge density is uniform for the charged sphere of 

radius R, i.e.,   is constant. The volume of the spherical charge distribution is 

.
3

4 3R


 Since the volume charge density  (charge per unit volume) is 

constant, for the sphere of volume 3

3

4
R


 carrying charge Q, it is given by 

  
3

3

4
R

Q


  (6.23a) 

Therefore, the charge enclosed by the Gaussian sphere of volume 3

3

4
r


 will 

be the product of its volume with the volume charge density:  

The electric field due to a uniformly charged sphere and the 

electrostatic force exerted by it on a charge situated outside the 

sphere are the same as the electric field and electrostatic force due 

to a point charge (equal to the charge of the sphere) situated at its 

centre.  

 

 

Fig. 6.13: Determining 

the electric field of a 

uniformly charged 

sphere of radius R 

carrying net charge Q at 

a point P inside the 

sphere.  

P 

Q 

R 
 

S 
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3

3
3

3

3

3

4

3

43

4

R

r
Qr

R

Q
rq 







 





  (6.23b) 

Using Eq. (6.23b) for q and the result 24 rEdSEd
SS

  S.E


 from              

Eq. (6.21b) in Eq. (6.16), we have 

  
3

3

00

24
R

rQq
rE





  

or  
3

04 R

rQ
E


    for    r    R (6.24a) 

The electric field at a point inside the uniformly charged sphere is given by 

  rE ˆ
4 3

0 R

rQ





   for    r    R (6.24b) 

Note from Eqs. (6.24a) and (6.22) that the electric field inside the spherical 
charge distribution increases linearly with distance from its centre ).( rE   

However, for points outside the sphere, the electric field falls off as  .
1
2r

 We 

show this behaviour of the electric field in Fig. 6.14.   

We have said in the introduction that these results for the electric field due to  

a  spherical charge distribution will be of use when you determine the 

capacitance of a spherical capacitor. As we have said on the first page of this 

unit, the Earth is one huge spherical capacitor that we use all the time. The 

Earth’s capacitance is so large ( 0.0007 F) that we can dump charge in it or 

take it out without changing its electric field much. That is why, we ‘ground’            

or ‘earth’ the electrical circuits in our homes and all electrical appliances and 

instruments. That is also why we connect the lightning rods in buildings to   

the Earth so that most excess charge flows into it without hurting people.  

Another example of spherical charge distributions is an isolated atom of inert 

gases. Since the atom is neutral, it carries no net charge and from Gauss’s 

law, the electric field outside it is zero. Even when the atoms of an inert gas 

are in the neighbourhood of other atoms in it, they depart only slightly from 

spherical symmetry, and the electric fields near them remain small. So, we 

can say that the feeble chemical activity of inert gases is related to their 

spherically symmetric charge distributions. In the next section, you will learn 

how to apply Gauss’s law to determine the electric field due to a spherical 

shell. Before that, you should solve an SAQ. 

SAQ  3 -  Applying Gauss’s law to charged sphere 

 

 

 

The electric field due to a uniformly charged sphere of radius 0.1 m has the 

magnitude 9.0 1CN  at a distance of 0.3 m from the centre. What is the net 

charge on the sphere? What is the volume charge density of the charge 

distribution?  

 

 

 

Fig. 6.14: The behaviour 

of the electric field due 

to a uniformly charged 

sphere of radius R.  
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6.6   ELECTRIC FIELD DUE TO A UNIFORMLY 
CHARGED THIN SPHERICAL SHELL  

As a first step, do convince yourself that a thin spherical shell possesses 

spherical symmetry, i.e., it remains the same under any rotation about its axis 

and any reflection about a plane passing through its centre and axis of 

rotation. You can rotate or reflect a hollow sphere with a thin surface (such as 

a hollow ball) to verify the spherical symmetry of a spherical shell. 

Now, consider a non-conducting thin spherical shell of radius R carrying a 

total positive charge Q that is distributed uniformly over its surface (Fig. 6.15). 

Let us determine the electric field due to this shell at a point lying outside it.  

For a point P lying outside the shell, we draw a spherical Gaussian surface 1S  

through the point and concentric with the spherical shell. You can see that the 

Gaussian surface lies outside the shell. Let us determine the electric field at 

the point P (see Fig. 6.15).  

Due to the spherical symmetry of the charged spherical shell, its electric field 

has the same magnitude at every point on any spherical Gaussian surface 

and is directed radially. We apply Gauss’s law [Eq. (6.16)] with QQencl   to 

the spherical surface 1S and note that the electric field E


 is in the same 

direction as S


d for 1S so that E


and S


d are parallel. Therefore,  

  dSEd S.E


  (6.25a) 

and since E (the magnitude of the electric field on the Gaussian surface) is 

constant, we can pull it out of the surface integral. Therefore, Eq. (6.16) 

becomes 

  
0

24


 
Q

rEdSEd

SS

S.E


 (6.25b) 

or  
2

04

1

r

Q
E


    for    r    R (6.25c) 

The electric field at any point lying outside the spherical shell of radius R is 

given by 

  rE ˆ
4

1
2

0 r

Q





   (spherical shell, for r    R) (6.26) 

Note that the electric field given by Eq. (6.26) is the same as that due to a 

point charge [given by Eq. (6.19)].  

For the electric field at a point lying outside the spherical shell, it is as if 

the entire charge Q of the spherical shell were replaced by a single equal 

charge placed at the centre of the shell.  

Thus, a uniformly charged spherical shell would exert the same force on a 

charge placed anywhere outside the shell as a single equal charge would. 

Fig. 6.15: A thin 

uniformly charged 

spherical shell of 

radius R carrying a net 

charge Q. The                    

cross-section of the 

Gaussian surface 1S  is 

shown for a point lying 

outside the shell. It is 

concentric with the 

shell. 

1S   

R  Q  

E

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So always remember,  

 

 

 

 

What is the electric field at a point inside the shell, i.e., at a point lying 

anywhere in the empty interior part of the shell?  

For a point lying inside the shell, we draw a spherical Gaussian surface 

2S concentric with the spherical shell, lying in the empty interior of the shell 

(see Fig. 6.16). Since this Gaussian surface encloses no net charge, from 

Gauss’s law, the electric field is zero at all points inside the shell:  

  0E


       (spherical shell, for r    R) (6.27) 

So, always remember, when a charge is enclosed by a uniformly charged 

spherical shell so that the charge lies inside the shell, no electrostatic 

force is exerted on the charge by the shell.  

Let us apply what you have learnt in this section to an example of two 

concentric thin spherical shells. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The electric field due to a spherical shell with a uniform charge 

distribution and the electrostatic force exerted by it on a charge 

situated outside the shell are the same as due to a single charge 

(equal to the charge of the shell) situated at its centre.  

 

 

1R  

A 

r  1R  

Fig. 6.18: The electric 

field at a point inside 

the inner shell is 

zero since the 

charge enclosed by 

it is zero. 

 

Two concentric thin spherical shells of radii 1R  and 2R  (with 2R    1R ) 

carry uniformly distributed charges 1q  and ,2q  respectively (Fig. 6.17). Use 

Gauss’s law to determine the electric fields at the points 

a)   r    ,1R                  

b)   2R    r    1R  and  

c)    r    .2R   

SOLUTION   We use Gauss’s law along with the results obtained for a 

thin spherical shell.  

a) For the point r    ,1R  that is, any point A lying inside the inner 

spherical shell, we can draw the spherical Gaussian surface through it 

(Fig. 6.18).  

You can see that the charge enclosed by that Gaussian surface is 

zero. From Eq. (6.27) obtained using Gauss’s law for a point inside the 

thin spherical shell, we get the result that the electric field for                 

r    1R  is zero: 

               0E


       (inside the inner spherical shell, for r    1R ) 

  

                 

 

XAMPLE 6.2 : TWO CONCENTRIC THIN SPHERICAL SHELLS 

 

 

 

Fig. 6.17: Diagram for 

Example 6.2. 

1R  

2R  

1q  

2q  

Fig. 6.16: The cross-

section of a Gaussian 

surface 2S enclosing                  

the empty interior of 

the thin uniformly 

charged spherical shell 

of radius R carrying a 

net charge Q. 
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What would your answers be if the charges on the inner shell and outer shell 

were equal to q ? To know this, answer the following SAQ! 

 

SAQ  4 -  Uniformly charged thin spherical shell 

 

 

 

 

With this discussion on the applications of Gauss’s law to spherically 

symmetric charge distributions, we end this unit. In the next unit, we continue 

our study of the applications of Gauss’s law to charge distributions possessing 

cylindrical and planar symmetry. Let us now summarise what you have learnt 

in this unit. 

6.7   SUMMARY 

Concept Description 

Electric flux  

 

 

 

 

 

 

 The electric flux through a surface (of area S) represents the sum of 

electric flux elements )( idS.E


 over the entire surface. Each flux element 

represents the product of a small flat element of area on the surface and the 

component of the electric field along the normal to that area element. 

This product is nothing but the scalar product of the electric field vector and 

the area element vector. Mathematically, electric flux or the flux of an 

electric field E


through a surface of area S is defined as 

                    

S

E dS.E


 

b) For the point 1R    r    ,2R  that is, the point lying between the two 

concentric shells, the net charge enclosed by the Gaussian surface of 

radius r is just the charge 1q  on the inner spherical shell                      

(Fig. 6.19a). Therefore, from Eq. (6.26), the electric field at any point 

between the two thin concentric shells is 

                rE ˆ
4

1
2
1

0 r

q





              (for 1R    r    2R ) 

c) For the point r    ,2R   that is, the point lying outside the outer 

spherical shell (Fig. 6.19b), the net charge enclosed by the Gaussian 

surface of radius r  is the sum of the charges 1q  and .2q  Therefore,  

from Eq. (6.26), the electric field at any point outside the outer 

spherical shell is 

                 rE ˆ
)(

4

1
2

21

0 r

qq 





          (for r    2R ) 

  

                 

 

 

 

 

 

 

Each of two concentric thin spherical shells of radii 1R  and 2R  (with                         

2R   1R ) carries uniformly distributed charge +q. Use Gauss’s law to 

determine the electric fields due to the shells at the points a) r    ,1R                        

b) 2R    r    1R  and c)  r    .2R   

 

 

 

 

 

 

Fig. 6.19: Diagram for 

parts (b) and (c) of 

Example 6.2. 

(a) 

1R  

2R  B 

1q  

2q  

r   2R  

1R  r  2R  

(b) 

1R  

2R   

C 

1q  

2q  
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Remember, electric flux does not represent flow or change of any 

entity. 

Gauss’s law                          

 

                     

 Gauss’s law states that the net electric flux through any imaginary closed 

surface S of arbitrary shape (called the Gaussian surface) is directly 

proportional to the net charge )( enclQ  enclosed by the surface. In SI units, it 

is equal to 
0

enclQ
. The net charge is the algebraic sum (sum with sign of the 

charge included) of all charges enclosed within the Gaussian surface.  

Mathematically, the law in its integral form is  
0


encl

S

Q
dS.E


                                

The differential form of Gauss’s law is             
0


 E.


                            

where  is the volume charge density of the charge distribution. 

 

                                   

 

 

Applications of 

Gauss’s law to 

spherically 

symmetric  

systems 

 

 

 

 

 

Point charge 

 

Uniformly charged 

sphere 

 

 Using Gauss’s law, we can determine the electric field due to a point 

charge, distribution of discrete charges and continuous charge distributions 

enclosed by arbitrary surfaces. In this unit, we have considered spherically 

symmetric charge distributions. 

A charge distribution is said to be spherically symmetric if it remains 

invariant (the same)  

 when it is rotated around any axis passing through its centre. It is 

said to possess rotational symmetry about that axis.  

 when it is reflected across any plane passing through its centre. This 

is the reflection symmetry. 

Examples are a point charge, a uniformly charged sphere and a uniformly 

charged spherical shell. 

The magnitude of the electric field of a spherically symmetric charge 

distribution at any point depends only on r, the distance of the point from the 

centre of symmetry. The direction of the electric field is radially outward for 

positive charge distribution and radially inward for a negative charge 

distribution. 

 The electric field of a point charge q at a distance r  from it is given by 

                                   rE ˆ
4

1
2

0 r

q





 

 The electric field due to a uniformly charged sphere of radius R 

carrying charge Q at a point located outside the sphere at a distance r  is 

given by 

                      rE ˆ
4

1
2

0 r

Q





 for   r    R 
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6.8   TERMINAL QUESTIONS 

1. Calculate the flux of the electric field iE ˆNC100 1


 through the surfaces 

of area 2m0.1  situated in the xy, xz and yz planes, respectively.  

2. A particle carrying a charge of C107.2 9  is enclosed in a cubical 

Gaussian surface of side 0.5 m. Calculate the electric flux through the 

surface of the cube and any one of its faces.  

3. Consider a system of four charges: 3q, q,  3q and  q. Draw a Gaussian 

surface enclosing at least two charges of the system so that the net 

electric flux through it is a) zero, b) ,
4

0














q
 c) 














0

2q
 and d) .

2

0














q
  

4. The electric field in some region of space is given by ,r̂E cr


where c is a 

constant. Use the differential form of Gauss’s law to calculate the volume 

charge density, which gives rise to this electric field. Obtain the total 

charge contained in a sphere of radius R, centred at the origin in this 

region of space.  

5. Suppose that a Gaussian surface encloses zero net charge. (a) Does 

Gauss’s law require that the electric field be zero for all points on the 

surface? (b) If the electric field is zero everywhere on the Gaussian 

surface, does Gauss’s law require that the net charge inside the surface 

be zero?  

6. Is Gauss’s law useful in calculating the electric field due to three equal 

charges placed at the corners of an equilateral triangle? Explain. 

7. A charge q is placed at a corner of a cube as shown in Fig. 6.20. 

Determine the flux of the electric field of the charge through the right face 

(ABCD) of the cube? (Hint: Solving this problem requires a clever choice 

of the Gaussian surface.) 

8. a) The electric flux due to a point charge passing through a spherical 

Gaussian surface of radius 0.10 m centred on the charge is 

 

Uniformly charged 

thin spherical 

shell 

 

 

  For a point inside the sphere, it is given by 

                             rE ˆ
4 3

0 R

rQ





      for    r    R  

 The electric field due to a uniformly charged thin spherical shell of 

radius R carrying charge Q at any point lying outside the shell at a 

distance r  from its centre is given by  

                            rE ˆ
4

1
2

0 r

Q





 (spherical shell, for r    R) 

At all points lying anywhere in the empty interior part of the shell, the 

electric field is zero:  

                                0E


             (spherical shell, for r    R) 

  

Fig. 6.20: Diagram 

for TQ 7.  

q  
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.CNm900 12   What is the value of the point charge? What is the      

electric field due to the point charge at a point on the Gaussian 

surface? What would the electric flux through the Gaussian surface be 

if its radius were increased to 0.30 m? 

b)  The magnitude of the electric field due to a non-conducting charged 

sphere of radius 0.30 m at a distance of 0.10 m from its centre is 

.NC100.3 13   What is the net charge on the sphere? 

9. A non-conducting sphere of radius R carrying net positive charge Q is 

enclosed by a concentric non-conducting thin spherical shell of radius r 

carrying net negative charge q. Determine the electric field (a) inside the 

sphere, (b) between the sphere and the shell, and (c) outside the shell. 

10. A charged non-conducting spherical shell having inner radius 3.0 m and 

outer radius10 m carries a charge of magnitude 9.0 nC distributed 

uniformly over its volume. Determine the electric field due to it at a 

distance of 6.0 m from its centre.  

6.9   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. We can determine the electric flux through the faces of the cube by using 

Eq. (6.6a), i.e., by integrating the scalar product SE


d.  over the right and 

top faces of the cube. Refer to Fig. 6.21. For the choice of the coordinate 

axes, the area vector for the right face is iS ˆdSd 


and for the top face, it 

is .̂jS dSd 


 So, the electric flux through the right face of the cube is 

given as: 

          i.jiS.E  

SS

E dSxd ˆ)ˆ5.0ˆ0.8(


 

             

SS

dSxdSx )()0.8(ˆˆ)0.8( i.i  )0ˆˆ1,ˆˆ(  j.ii.i  

Now, on the right face of the cube, x is constant and has the value             

x = 2.0 m. Therefore, for the right face, we get  

         

SS

E dSdS )0.16()0.2()0.8(  

Now the integral 
S

dS is equal to the area of the right face of the cube, 

which is just .m0.1 2  Therefore, the electric flux through the right face of 

the cube is 

            
21mNC)0.16( E  

Now, we follow the same steps for the top face of the cube as we followed 

for the right face of the cube. Since for the top face, jS ˆdSd 


 and 

,0ˆˆ1,ˆˆ  j.ij.j  the electric flux through the top face of the cube is 

given as: 

Fig. 6.21: Diagram for the 

answer of SAQ 1. 

x 

y 

z 

m0.1x  m0.2x  

iS ˆdSd 


 

jS ˆdSd 

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  

SS

E dSxd j.jiS.E ˆ)ˆ5.0ˆ0.8(


 

S

dS)0.5( 

S

dS)0.5(    

Now the integral 
S

dS is equal to the area of the top face of the cube, 

which is just .m0.1 2  Therefore, the electric flux through the top face of the 

cube is .mNC)0.5( 21E  

2. a)  We cannot apply Gauss’s law to the surfaces shown in Figs. 6.1a, b 

  and c as these are open surfaces (these do not define an enclosed 

  volume) and Gauss’s law can be applied to only closed surfaces. 

b) i)    No, the electric flux through the surface would not change as the  

Gaussian surface can be of any shape and the electric flux is equal 

to only the net charge enclosed by it.  

ii) No, since the net charge enclosed by the surface is the same. 

iii) No, because the location of the charge within the surface does not 

matter.  

iv) Yes, because the net charge enclosed by the surface would 

change.  

v) Yes, because the net charge enclosed by the surface would 

change.  

vi) No, since the net charge enclosed by the surface is the same. 

c) From Eq. (6.12), the value of the charge on the particle is given by  

C1042.4CmN500)mNC1085.8( 91221212
0

  Eenclq   

The electric flux through the surface would not change since the  

 net charge enclosed by it remains the same.  

d) Refer to Fig. 6.22. The net charge enclosed by the surface 1S  is 

.nC1.31 q  Since the particle P enclosed by the surface 1S  carries 

no charge, it makes no contribution to the electric flux. The remaining 

charges are outside the surface. Therefore, from Eq. (6.12), 

      
12

21212

9

0

1

0

CmN350
mNC1085.8

C101.3 

















qqencl
E  

 The net charge enclosed by the surface 2S  is 

      nC9.5nC)1.3(nC)9.5(nC1.3321  qqq   

Therefore, from Eq. (6.12), 

   
122

21212

9

0

CmN107.6
mNC1085.8

C109.5 












 encl

E
q

 

3. We use Eq. (6.22) for the electric field of a uniformly charged sphere 

since the point lies outside the sphere and take the magnitude only. 

Therefore, the net charge on the sphere is                 

Fig. 6.22: Diagram for the 

answer of SAQ 2d. 

P 

1q  

2q  
3q  

1S  

2S  
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  nC1.0nC09.0
mNC1099.8

m)3.0()CN0.9(
)4(

229

21
2

0 









rEQ  

Since the sphere is uniformly charged, its volume charge density is given 

by Eq. (6.23a): 

                     38

3

9

3
mC101.2

m)1.0(
3

4

C1009.0

3

4













R

Q
 

4. Refer to Fig. 6.23. We follow the steps in Example 6.2 with .21 qqq    

a) For the point r    ,1R the net charge enclosed by a spherical Gaussian 

surface passing through r, (i.e., a point inside the inner shell) is zero. 

Hence, for r    ,1R  

                                0E


  

b) For 2R    r    ,1R  (i.e., a point lying between the two concentric 

shells), the net charge enclosed by a spherical Gaussian surface 

passing through r is just q and hence, for 2R    r    ,1R  

                               rE ˆ
4

1
2

0 r

q





 

c) For r    ,2R   (i.e., a point lying outside the outer shell), the net charge 

enclosed by a spherical Gaussian surface passing through r is 

qqq 2 and hence, for r    ,2R    

                              rE ˆ
2

4

1
2

0 r

q





 

Terminal Questions 

1. Refer to Fig. 6.24. A surface of area S in the xy plane is represented by 

the vector k̂S  since k̂ is the unit vector perpendicular to the xy plane. 

Therefore, the flux of the electric field iE ˆNC100 1


 through a surface 

of area 2m0.1S  situated in the xy plane is  

0)ˆˆ(mNC100ˆ)m0.1(ˆNC100ˆ. 2121   k.ik.ikE SE


 

The area vector in the xz plane is given by ĵS  and for ,m0.1 2S  the flux 

of the electric field iE ˆNC100 1


  through the xz plane is  

0)ˆˆ(mNC100ˆ)m0.1(ˆNC100ˆ. 2121   j.ij.ijE SE


 

In the yz plane, the area vector is given by îS  and for ,m0.1 2S  the flux 

of the electric field iE ˆNC100 1


  through the yz plane is 

     212121 mNC100)ˆˆ(mNC100ˆ)m0.1(ˆNC100ˆ.   i.ii.iiE SE


 

2. Let us choose the surface of the cube as the Gaussian surface. From 

Gauss’s law [Eq. (6.16)], the electric flux through this surface is  

         212
21212

9

0

mCN100.3
mNC1085.8

C107.2 














q
E  

Fig. 6.23: Diagram for             

the answer of SAQ 4. 

1R  

2R  

q  

q  

Fig. 6.24: Area vectors for 

the answer of TQ 1. 

 

x 
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Since the cube has 6 faces, the electric flux through any one of the cube’s 

faces is  

             21
212

0

mCN50
6

mCN100.3

66




 









qE

E  

3. Refer to Figs. 6.25a to e. We use Eq. (6.16): 
0


q

E  

a) For the net electric flux through the Gaussian surface to be zero, the 

net electric charge enclosed by it should be zero. In Figs. 6.24a and b, 

the two Gaussian surfaces shown enclose the charges so that the net 

charge within each one of them and hence the electric flux through 

them is zero. You can draw a third one too enclosing only the charges 
q  and .q  

b) For the net electric flux through the Gaussian surface to be ),/4( 0 q  

the net electric charge enclosed by it should be .4q In Fig. 6.24c, the 

Gaussian surface encloses the charges q3  and q  so that the net 

charge within it is q4  and the net electric flux through it is )./4( 0 q  

c) For the net electric flux through the Gaussian surface to be ),/2( 0 q  

the net electric charge enclosed by it should be .2q  In Fig. 6.24d, the 

Gaussian surface encloses the charges q3  and q  so that the net 

charge within it is q2  and the net electric flux through it is )./2( 0 q  

d) For the net electric flux through the Gaussian surface to be ),/2( 0 q  

the net electric charge enclosed by it should be .2q  In Fig. 6.24e, the 

Gaussian surface encloses the charges q3  and q  so that the net 

charge within it is q2  and the net electric flux through it is )./2( 0 q  

4. We use Eq. (6.18) to calculate the volume charge density  and write 

          )(.)ˆ(.. 000 rrE


ccr         









r

r
r



 ˆ  

In Unit 2, you have learnt how to calculate the divergence of a vector field.       

)ˆˆˆ().ˆˆˆ(.)(. 000 kjikjirr zyx
zyx

ccc 
















 

        c
z

z

y

y

x

x
c 00 3)( 














  

In this region of space, the total charge contained in a sphere of radius R, 

centred at the origin is just the volume integral . 

V

dVQ  Since  is 

constant and the volume integral equals the volume of the sphere of 

radius R, we have 

                3
0

3
00 4

3

4
33 RcRcdVcQ

V




    

5. a)  When the Gaussian surface encloses zero net charge, Gauss’s law  

     yields .0. SE


d However, this does not mean that the electric field is  

     zero for all points on the surface. SE


d. can be zero even when E


 and   

    S


d are perpendicular to each other. 

Fig. 6.25: Diagram for the 

answer of TQ 3. 

(b) 

q3  q  

(a) 

(c) 

(d) 

q3  

(e) 

q3  q  q  q3  

q3  

q3  q3  

q3  q3  

q3  

q  

q  

q  

q  

q  
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b) If the electric field is zero everywhere on the Gaussian surface, Gauss’s  

     law requires that there should be no net charge inside the surface, i.e.,  

     the net charge should be zero.  

6. Gauss’s law is not useful in calculating the electric field due to three equal 

charges placed at the corners of an equilateral triangle because it is not 

possible to find a closed surface of appropriate symmetry over which the 

electric field can be taken to be constant and its direction can be taken to 

be either parallel or normal to the surface to evaluate the surface integral. 

7. The electric flux through the shaded right face (ABCD) of the cube having 

area, say ,S  is 

                          


 

S

S dS.E


 

To determine ,S the trick is to choose an appropriate Gaussian surface 

that encloses the charge q. We can put together 8 cubes of the same size 

as the original cube in the problem to construct the Gaussian surface as 

shown in Fig. 6.26. It includes the right face ABCD of the original cube and 

encloses the charge q. Note that the area of the Gaussian surface is 24 

times the area of the right face ABCD. So, now we can apply Gauss’s law 

to this problem. 

 

 

 

 

 

 

 

 

 

From Gauss’s law, we have 
0


encl

S

Q
dS.E


where S is the surface area of 

the Gaussian surface enclosing the charge. Since the area of the 

Gaussian surface is 24 times the area S of ABCD, we have  

         
0

24


 


q
dd

SS

S.ES.E


   or    
024




q
d

S

S.E


 

Thus, the electric flux through the right face (ABCD) of the cube is  

024
 

q
S   

8. a) We use Eq. (6.12) to determine the value of the point charge: 

        nC96.7)CNm900()mNC1085.8( 1221212
0  

Eq  

From Eq. (6.19), the electric field of q at a distance of 0.10 m from it is  

    rE ˆ
m)10.0(

C1096.7
)mNC1099.8(

2

9
229


 




 r̂)CN102.7( 13   

The electric flux through the Gaussian sphere of radius 0.30 m would remain 

the same as the charge enclosed by it is the same. It will be .CNm900 12   

Fig. 6.26: Diagram for answer to TQ 7.  

Gaussian surface  

q  

A
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b) We use Eq. (6.24b) for the magnitude E to determine the net charge 

on the sphere since the point at which the electric field is given lies 

inside the sphere. From Eq. (6.24b) for E, we have .4
3

0 E
r

R
Q   

Upon substituting the numerical values given in the problem, we get     

          nC90)CN100.3(
m)10.0(

m)30.0(

)mNC1099.8(

1 13
3

229



 


Q  

9. a) Since the electric field inside the shell is zero, from Eq. (6.24b), the net 

 electric field at a point r   inside the sphere (see Fig. 6.27) is given as: 

                           rE ˆ
4 3

0 R

rQ 





 

b)   At a point r   between the sphere and the shell, the total charge 

enclosed by a spherical Gaussian surface passing through r   is the 

charge Q on the sphere and the electric field is given by Eq. (6.22): 

                           rE ˆ
4

1
2

0 r

Q





 

c) At a point r  outside the shell, the total charge enclosed by a spherical 

Gaussian surface passing through the point is the charge Q on the 

sphere and the charge q on the spherical shell. The electric field is 

given by Eq. (6.22) or Eq. (6.26) where the net charge enclosed by the 

Gaussian surface passing through r   is :)( qQ   

                     rE ˆ
)(

4

1
2

0 r

qQ









 

10. We have to first determine the volume charge density of the spherical 

shell: .
V

Q
   For this, we need to calculate the volume of the spherical 

shell, which is   333 m4077m)0.3(m)10(
3

4



V                

                 312
3

Cm102.2
m4077

nC0.9 
V

Q
 

To determine the electric field at the point 6.0 m away from the centre, we 

draw a spherical Gaussian surface of radius 6.0 m passing through the 

point (Fig. 6.28). Let us first calculate the total charge Q  enclosed by the 

Gaussian surface of radius 6.0 m. The volume of the part of the spherical 

shell that contains the charge Q  is  

                  333 m792m)0.3(m)0.6(
3

4



V  

           nC7.1m792Cm102.2 3312  VQ      

From Gauss’s law, we have     
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Fig. 6.27: Diagram for the 

answer of TQ 9. 
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Fig. 6.28: Diagram for the 

answer of TQ 10 (not to 

scale). 
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                     UNIT 7 

APPLICATIONS OF 
GAUSS’S LAW 

Structure 
 

7.1 Introduction 

Expected Learning Outcomes  

7.2   Electric Field Due to Cylindrically Symmetric  

Charge Distributions 

  Gauss‟s Law and Cylindrically Symmetric Charge  

Distributions 

  Infinite Uniform Line Charge 

  Uniformly Charged Infinite Cylinder 

      

STUDY GUIDE           

 

7.3  Electric Field due to an Infinite 

Uniformly Charged Plane Sheet 

7.4  Charged Isolated Conductor 

7.5  Summary 

7.6  Terminal Questions 

7.7   Solutions and Answers 

 

 

In Unit 6, you have studied the concept of electric flux and Gauss‟s law. You have learnt 

how to apply Gauss‟s law to discrete point charges and continuous charge distributions that 

are spherically symmetric such as a uniformly charged sphere and thin spherical shell. In 

this unit, you will learn applications of Gauss‟s law to some more continuous charge 

distributions having cylindrical and planar symmetry such as a uniform infinite line charge 

and a plane sheet of charge. You will determine the electric fields due to a uniformly 

charged infinite wire, a uniform cylindrical charge distribution and an infinite sheet of charge.  

You will also learn of its application to an isolated charged conductor.   

You will learn how to choose appropriate Gaussian surfaces to solve the surface integrals 

involved in each case. Revise the divergence theorem that you have learnt in Unit 4. You 

should also revise the methods of solving surface and volume integrals to be able to master 

the concepts of this unit. Try to solve the Examples, SAQs and Terminal questions given in 

this unit on your own.  

“It is not knowledge, but the act of learning, not possession but 

the act of getting there, which grants the greatest enjoyment.” 

 

Carl F. Gauss 

 

How can sitting inside a closed 

conducting surface such as a 

car prevent you from being 

struck by lightning? Find the 

answer in this unit! 



  

212  

Block 2                                                                                         Electrostatics 

7.1   INTRODUCTION 

In Unit 6, you have learnt the concept of electric flux and studied Gauss‟s law. 

You have also learnt how to apply Gauss‟s law to obtain the electric flux and 

electric field due to discrete charges. You have applied the law to continuous 

charge distributions that are spherically symmetric and uniformly charged 

such as a uniformly charged sphere and thin spherical shell. You have learnt 

that the Gaussian surface for such charge distributions is spherical and 

concentric with them. It also passes through the point at which the electric 

field is to be determined.  

In this unit, you will first learn how to apply Gauss‟s law to charge distributions 

having cylindrical symmetry such as uniform line charge and uniformly 

charged cylinder (Sec. 7.2). You will begin by learning the concept of 

cylindrical symmetry. Then we will explain why Gauss‟s law is useful for 

determining the electric fields due to cylindrically symmetric charge 

distributions. With this understanding, you can learn how to apply Gauss‟s law 

to determine the electric fields due to an infinite uniform line charge and 

infinite uniformly charged cylinder. 

In Sec. 7.3, you will learn how to apply Gauss‟s law to calculate the electric 

field due to an infinite uniformly charged sheet that possesses planar 

symmetry. Once again, we will explain what planar symmetry is and how 

Gauss‟s law is useful for determining the electric fields due to charge 

distributions having planar symmetry.  

The applications of Gauss‟s law described in Secs. 7.2 and 7.3 find use in 

computing the capacitance of coaxial capacitors and parallel plate capacitors 

as you will learn in Unit 11 of the next block. As you may know, such 

capacitors are very commonly used around us, for example, in electronic 

appliances like the TV and computers, and power storage systems, etc. 

Finally, in Sec. 7.4, we apply Gauss‟s law to an isolated charged solid 

conductor and a conductor with a cavity. This too has many interesting 

applications in real life. One of these is shown in the picture on the first page 

of this unit.   

In the next two units, we introduce the concept of electric potential and its 

relation with the electric field. You will learn another way of calculating electric 

fields and electrostatic forces using the concept of electric potential.    

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 apply Gauss‟s law to determine the electric field due to cylindrically 

symmetric charge distributions such as a uniform infinite line charge and 

an infinite uniformly charged cylinder; 

 determine the electric field due to an infinite uniform plane sheet of 

charge using Gauss‟s law; and 

 use Gauss‟s law to explain why the electric field inside an isolated 

charged conductor is zero and why the charge on it is distributed entirely 

on its surface. 
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7.2   ELECTRIC FIELD DUE TO CYLINDRICALLY 
 SYMMETRIC CHARGE DISTRIBUTIONS 

We have said in the introduction of this unit that in this section we will 

determine the electric field due to charge distributions that possess cylindrical 

symmetry such as a line charge and a charged cylinder. You may like to ask:  

 What is cylindrical symmetry?  

 How is Gauss’s law useful for a charge distribution that possesses 

cylindrical symmetry?  

Let us begin our discussion by answering these two questions. 

7.2.1 Gauss’s Law and Cylindrically Symmetric Charge 
Distributions 

Let us answer the first question and define cylindrical symmetry. 

A charge distribution (or any object) is said to possess cylindrical symmetry                   

if it remains unchanged (or is invariant) when it is 

 moved along its axis (AB in Fig. 7.1a and CD in Fig. 7.1b), that is, the line 

running through its core (translational symmetry);  

 rotated around its axis (rotational symmetry);   

 rotated by 180° around any axis perpendicular to its axis, (PQ in Fig. 7.1a               

and RS in Fig. 7.1b), (180° rotational symmetry);  

 reflected across any plane passing through its axis (reflection symmetry);  

 reflected across any plane perpendicular to its axis (reflection symmetry).  

Try to apply the above transformations to any cylindrical object around you                 

such as a can or a water pipe. Verify that it possesses cylindrical symmetry 

before studying further. An infinite line or wire (like the axis of an infinite 

cylinder) also possesses cylindrical symmetry (Fig. 7.1b). 

Let us now answer the second question and explain how Gauss’s law is 

useful for determining the electric field due to a cylindrically symmetric charge 

distribution. 

While studying Secs. 6.4 to 6.6 of Unit 6, you would have noted that due to the 

choice of the spherical Gaussian surface enclosing the charge distribution, the 

calculations became very simple for two reasons:  

 the electric field was directed parallel to the area vector for a surface 

element on the Gaussian surface so that ;. dSEd SE


 and 

 the magnitude E  of the electric field was the same at all points on the 

Gaussian surface so that it could be treated as constant and taken out of 

the surface integral. 

Fig. 7.1: a) The axis AB 

(dotted line) of a cylinder; 

b) for a line or a wire, the 

axis CD lies on the 

line/wire itself.  
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Let us now ask: What is the direction of the electric field at any point due to 

a cylindrical charge distribution?  

Consider Fig. 7.2a showing a small section of an infinite cylinder carrying 

positive charge (it could also be a charged infinite wire). The direction of the 

electric field of the charge distribution is perpendicular to its axis, and the 

electric field is directed radially outward from the axis for positively charged 

cylinder (Fig. 7.2a). For a negative cylindrical charge distribution, it will be 

directed radially inward and perpendicular to its axis. You may ask: Why? 

To answer this question, suppose that the electric field due to the cylindrical 

charge distribution at some point P is directed in some other direction as 

shown in Fig. 7.2b. Note that we have arbitrarily labelled one end of this 

section of the cylinder as „top‟ and the other one as „bottom‟ just to show what 

happens when it is reflected.  

Now let us reflect this cylindrical charge distribution about a horizontal line 

perpendicular to its axis and passing through P. So the „top‟ of the section is 

now its „bottom‟ and the „bottom‟, its „top‟ (Fig. 7.2c). 

What is the direction of the electric field after the cylindrical charge distribution 

is reflected? After reflection, the direction of the electric field becomes as 

shown in Fig. 7.2c because the electric field is also reflected in the same 

manner.  

Now compare Figs. 7.2b and 7.2c by putting them alongside each other as in 

Fig. 7.2d. What do you find? You can see that the charge distribution remains 

the same after reflection but the electric fields are different. (The labels „top‟ 

and „bottom‟ were only for our convenience. Otherwise, we cannot tell the 

difference.)  

This is a contradiction: How can there be different electric fields at the 

same point for the same charge distribution? If the charge distribution 

remains unchanged, the electric field also has to be the same. If it is not so, 

there must be some mistake.  

Now we ask: What is the direction of the electric field that will not lead to 

such a contradiction? From Fig. 7.2d, you can see that if the electric field 

(shown by dotted arrows) were in the direction perpendicular to the cylindrical 

axis, it would remain the same under this symmetry operation.  

You can check it for all other symmetry operations on the cylinder. This is how 

we conclude from symmetry considerations that the direction of the electric 

field due to a cylindrical charge distribution at a point can only be 

perpendicular to its axis. 

It points outward, for a positive charge distribution and inward, for a 

negative charge distribution.  

Now you may like to know: What does the magnitude of the electric field of 

a charge distribution having cylindrical symmetry depend on? 

The answer is: It depends only on the perpendicular distance, say r, of the 

point from the cylinder‟s axis. Why is it so? 

Fig. 7.2: a) The direction            

of electric field E


due to                  

a section of an infinite 

charged cylinder is 

perpendicular to its axis; 

b) electric field in some 

other direction;                     

c) reflected electric field;  

d) the directions of   

electric fields are different 

at the same point for the 

same charge distribution, 

which is not possible.                 

So, E


can only be in the 

direction shown by                 

dotted arrows. 
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Suppose the magnitude of the electric field due to the cylindrical charge 

distribution at any point varied with the angular coordinates of the point. 

Then it would have different values at different points, say, P and Q situated at 

the same perpendicular distance from the axis (i.e., on the dotted cylindrical 

surface of the same radius r in Fig. 7.3). But this is a contradiction. This is 

because due to cylindrical symmetry, the charged cylinder will look the same 

from all points on the cylindrical surface of radius r (Fig. 7.3). So,  

The magnitude of the electric field cannot have different values at 

different points on a given cylindrical surface for the same cylindrical 

charge distribution.  

Therefore, at any point, it will depend only on the perpendicular distance of the 

point from the axis of the cylindrical charge distribution.  

To conclude, due to cylindrical symmetry, the magnitude of the electric field 

due to a cylindrical charge distribution at any point depends only on the 

perpendicular distance of the point from the cylindrical axis. So, all points on 

the cylindrical surface of a given radius are equivalent as far as the magnitude 

of the electric field of any cylindrical charge distribution is concerned: it could 

be a line charge, charged wire or charged solid/hollow cylinder. 

Then we can treat the magnitude of the electric field of such systems at a 

given cylindrical surface as constant and take it out of the surface integral. 

You will appreciate this point better in the next section.  

To sum up, you must always remember the following for any charge 

distribution having cylindrical symmetry: 

 

 

 

 

So now can you quickly say what kind of Gaussian surface we should choose 

for a cylindrically symmetric charge distribution such as a line charge? The 

Gaussian surface should indeed be cylindrical. Why so? 

As you have learnt just now, for a cylindrical Gaussian surface coaxial with the 

cylindrical charge distribution (charged line or cylinder), the electric field is 

normal to the surface at all points on it. You know that for any area element 

centred at a point on the Gaussian surface, the area vector S


d  is directed 

normal to the surface (Fig. 7.4). So, the electric field E


 at any point due to the 

cylindrically symmetric charge distribution will be parallel to the area vector 

S


d  and, therefore  

  dSEd SE


.  (7.1) 

You have also learnt that the magnitude of the electric field at any point is the 

same everywhere on the cylindrical Gaussian surface passing through that 

point. So we can treat it as constant for that surface and take it out of the 

surface integral.  

Fig. 7.4: Area vector 

S


d  for an element of 

area centred at any 

point P on a 

cylindrical Gaussian 

surface is normal to 

the surface.  

S


d

  

P  

 The electric field due to a charge distribution having cylindrical 

symmetry is directed perpendicular to its axis of symmetry.  

 The magnitude of the electric field at any point depends only on 

its perpendicular distance from the axis of symmetry.  

 

 

 

Fig. 7.3: The magnitude                

of the electric field due              

to a cylindrical charge 

distribution at any point 

depends on its 

perpendicular distance 

r from the axis of 

symmetry. If it were not 

so, the magnitude of 

the electric field would 

be different at different 

points, (e.g., P and Q) 

on the same surface for 

the same charge 

distribution, which is 

incorrect.  

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ + 

Q  

P  
r  

r  



  

216  

Block 2                                                                                         Electrostatics 

With this understanding of cylindrical symmetry of charge distributions, we can 

apply Gauss‟s law to a uniform infinite line charge.  

7.2.2    Infinite Uniform Line Charge 

Recall that you have calculated the electric field for an infinite line charge 

using Coulomb‟s law in Example 5.7 of Unit 5. You have learnt how to solve 

the lengthy integral involved in the calculation. Let us now apply Gauss‟s law 

to a similar problem. Consider an infinitely long wire carrying uniform linear 

charge density . Let us determine the electric field at a distance r from the 

wire using Gauss‟s law.  

Before studying further, you may like to quickly verify that the infinite line 

charge distribution has cylindrical symmetry by carrying out the symmetry 

operations on a wire. Let us now draw a Gaussian surface, i.e., the surface of 

a right circular cylinder of radius r and length L coaxial with the wire (Fig. 7.5).  

 

 

 

 

 

 

 

What is the magnitude of the electric field at any point on the cylindrical 

Gaussian surface? You have learnt in Sec. 7.2.1 that due to cylindrical 

symmetry, it would be the same everywhere on the surface of the cylinder as it 

depends only on the perpendicular distance of the point from the wire‟s axis. 

As you can see in Fig. 7.5, this distance is just the radius (r) of the cylinder. 

So, it is the same for all points on the cylindrical surface of radius r and can be 

treated as constant for that particular surface. 

For a cylindrical surface, the direction of the electric field is normal to the 

surface at all points as shown in Fig. 7.5. For positively charged wire, the 

electric field is directed radially outwards from the wire‟s axis. If the charge on 

the wire were negative, the electric field would point inwards towards the 

wire‟s axis. Thus, E


 and S


d  are parallel to each other for each area element 

on the curved part of the cylinder‟s surface:  

                              dSEd SE


.  (7.2a) 

The electric flux at all points through both circular ends of the cylinder is zero 

because E


 and S


d  are perpendicular to each other on these ends (Fig. 7.5). 

Therefore, the product S.E


d  is finite only for the curved part of the cylindrical 

surface.  
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Fig. 7.5: Applying Gauss’s law to an infinite uniformly charged wire carrying 

positive charge. The Gaussian surface is cylindrical having length L 

and radius r. It encloses a section of the charged wire. 
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Thus, from Gauss‟s law, we have 

 
0

2

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encl

SSS

Q
rLEdSdSEdSEdS.E
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  (7.2b) 

where we have taken E out of the integral as it is constant on this Gaussian 

surface S. In Eq. (7.2b), we have also used the result that the area of the 

curved surface of a cylinder of radius r and length L is .2 rL  So from                  

Eq. (7.2b), we have 

  
0

2


 enclQ
rLE  

or   
Lr

Q
E encl

02
  (7.2c) 

For the uniform line charge density , the charge enclosed by the cylinder of 

length L is given by  

  ,

00

LldldQ

LL

encl    since  is constant (7.2d) 

Substituting Eq. (7.2d) in Eq. (7.2c), we get 

Lr
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Lr

Q
E encl

00 22 



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  

or  
r

E
02


                          (7.3) 

The electric field is directed perpendicular to the line charge or charged 

wire. This is the same result as the one we got in Example 5.7 after a very 

lengthy calculation! So, you see that for a symmetrical distribution of charges, 

the calculation of electric field becomes quite simple if we use Gauss‟s law. 

You should, however, note that Gauss’s law is always true, no matter what 

the distribution of charges. But it is very useful for symmetric charge 

distributions since its application makes the calculation much simpler.  

You may like to know: Why do charge distributions have to be symmetric 

for Gauss’s law to be applied to determine electric fields?  

Recall what you have learnt so far and you will be able to arrive at the answer: 

The symmetry of the distribution helps us determine the surfaces over which 

the magnitude of the electric field is constant (i.e., the distance r is constant). 

Also we know the direction of the electric field for a given type of symmetry.  

Then the trick is to choose the Gaussian surface to be the surface over 

which the magnitude of the electric field is constant. Also, the direction 

of the electric field should be parallel/perpendicular to the area vector at 

all points on the surface.  

In applying Gauss‟s law, 

the choice of the 

Gaussian surface is 

very important for 

simplifying calculations. 

This is especially true 

for symmetric charge 

distributions as you 

have learnt in Unit 6. 

You will appreciate this 

point time and again in 

this unit. 

Note that the electric 

field in Eq. (7.3) 

does not depend on 

the length of the 

cylindrical Gaussian 

surface. 
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You must note that this is true for all applications of Gauss‟s law that you have 

studied so far, such as the charged sphere and the spherical shell in Unit 6 

and the infinite charged wire in this section. For example, in this unit, for the 

infinite line charge, you have seen that the magnitude of the electric field is the 

same at all points of the curved part of the cylindrical surface as its radius is 

constant. The direction of E


 is normal to the curved part of the surface and 

therefore, in the same direction as the area element .S


d  Since E


 is 

perpendicular to S


d  on the cylinder‟s ends, for all points on the circular ends 

of the cylinder, .0S.E


d  This has made the calculation of electric field quite 

simple. Of course, it is also simple because the line charge density is uniform, 

i.e., constant. 

Suppose, we had chosen some other shape for the Gaussian surface, then 

Gauss‟s law would still apply but E


 may not have been in the same direction 

as S


d  and its magnitude may not have been constant over the surface. Then 

we could not have taken E out of the integral. That would have made the 

calculation difficult. So, symmetry is important for such applications of 

Gauss’s law. You must have appreciated this point by now having studied 

charge distributions possessing spherical and cylindrical symmetry. We end 

this section with an SAQ for you. 

SAQ  1 –  Applying Gauss’s law to line charge 

The electric field due to an infinite line charge has magnitude 13 NC100.9   

at a distance of 1.0 m. Calculate the linear charge density. 

Let us now determine the electric field due to an infinite uniformly charged 

cylinder using the same symmetry considerations as for the wire at points both 

outside and inside the cylinder. Such calculations of electric fields for a 

cylindrical charge distribution are required for determining the capacitance of 

capacitors having cylindrical geometry.   

7.2.3    Uniformly Charged Infinite Cylinder 

Consider an infinitely long charged solid cylinder of radius R, which has 

uniform volume charge density . Let us determine the electric field due to this 

charge distribution at a point outside the cylinder.  

We use Gauss‟s law to obtain the electric field for the uniformly charged 

infinite cylinder at a point P lying outside it at a distance r from its axis. 

Study Fig. 7.6 showing a section of the infinite cylinder by a solid line. You can 

verify that the charge distribution is cylindrically symmetric. For a point P 

outside the cylinder, we draw a cylindrical Gaussian surface of length L and 

radius r, passing through P. Recall that we have drawn a similar surface for 

the infinitely long wire in Fig. 7.5. We now follow the same steps and 

argument as in Sec. 7.2.1 to determine the electric field due to a uniformly 

charged infinitely long cylinder for r    R.  

Once again we note that for the curved part of the cylindrical Gaussian 

surface, the direction of the electric field is normal to the surface at all points. 

Also, the electric field is directed radially outwards from the positively charged 

Fig. 7.6: Electric field at a 

point P lying outside a 

uniformly charged 

infinite cylinder. The 

cylindrical Gaussian 

surface is of length L and 

radius r   R.  

R 

P r 

E


 
L  

S 
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cylinder‟s axis. Therefore, E


 and S


d  are parallel to each other for each area 

element on the curved part of the Gaussian surface and .. dSEd SE


 As in 

Sec. 7.2.2, you can see that the electric flux through both circular ends of the 

cylindrical Gaussian surface is zero because E


 and S


d  are perpendicular to 

each other at all points on these ends. Therefore, from Gauss‟s law, we have 
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 (7.4a) 

Here, since E is the same on all points of the Gaussian surface S, we have 

taken it to be constant for the surface and have taken it out of the integral. In 

Eq. (7.4a), we have also used the result that the total surface area of a 

cylinder of radius r and length L is .2 rL  So from Eq. (7.4a), we have 

 
Lr

Q
E encl

02
      for r    R (7.4b) 

We now have to determine enclQ  in Eq. (7.4b), which is the net charge 

enclosed by the cylindrical Gaussian surface, given that  is constant. It is just 

the charge on the cylinder of length L and radius R (because the charge 

distribution of the infinite cylinder is zero beyond its radius R). By definition, it 

is given by the following volume integral: 

      

V

encl dVQ    (7.5a) 

Since  is uniform (constant), we can take it out of the integral and write 

     LRdVQ

V

encl
2    (7.5b) 

where the volume integral is just the volume of the cylinder of length L and 

radius R. Therefore, 

  
Lr
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E
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
      for  r   R  (7.5c) 

or                                                                 

  rE ˆ
2 0

2

r

R







   for  r   R  (7.6) 

where r̂  is the unit vector in the radial direction pointing outward from the 

cylinder‟s axis. Notice from Eq. (7.6) that the electric field of a cylindrical 

charge distribution at points lying outside it decreases as the distance from the 

axis increases. 

Let us now ask: What is the electric field of an infinite uniformly charged 

cylinder at a point inside it? 

You will learn the answer in Example 7.1. 
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For an infinite uniformly charged cylinder, always remember the following: 

 

  The electric field of an infinite uniformly charged cylinder at points 

outside it decreases with an increase in distance from its axis. 

 The electric field inside an infinite uniformly charged cylinder 

increases linearly with an increase in distance from its axis.  

  

 

 

 

 

An infinitely long uniformly charged cylinder of radius R has positive volume 

charge density . Determine the electric field at a point inside the cylinder.  

SOLUTION   We use Gauss‟s law to obtain the electric field at a point P 

inside the cylinder at a distance r from its axis. 

Since the charge distribution is cylindrically symmetric, we draw a 

cylindrical Gaussian surface of length L and radius r passing through P 

(Fig. 7.7). For any point inside the cylinder, r    R and the Gaussian 

surface lies inside the cylinder. From symmetry considerations that you 

have learnt in Sec. 7.2.1 for cylindrical charge distributions, you know that 

the electric flux has contribution only from the curved surface of the 

Gaussian cylinder and not its ends. Hence, from Gauss‟s law, we have 
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The charge enclosed by this Gaussian surface is 

                                

V

encl dVQ                        

where the volume is just the volume of the cylinder of length L and radius r. 

Therefore, 
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and          (7.7)                       

where r̂  is the unit vector in the radial direction pointing outward from the 

cylinder‟s axis. 

So, inside the cylindrical charge distribution, the electric field increases 

linearly with an increase in the distance from the axis. 

 

    

    

 

 

 

                 

 

XAMPLE 7.1 :  ELECTRIC FIELD INSIDE A CYLINDER 
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Fig. 7.7: Electric field 

inside an infinite 

uniformly charged 

cylinder. The 

Gaussian surface is a 

cylindrical surface of 

length L and radius                  

r  R.  
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In the next section, we will apply Gauss‟s law to a charge distribution having 

planar symmetry. Examples of such charge distributions are uniform two-

dimensional sheets of charge, thin plate carrying charge or uniform slabs of 

charge as well as combinations of such sheets or slabs like the ones used in 

parallel plate capacitors. But before you study further, try an SAQ to revise 

what you have learnt in this section. 

SAQ  2 –  Applying Gauss’s law to a solid charged cylinder 

A long non-conducting solid cylinder of radius 0.60 m carries a uniform volume 

charge density .mC8.4 3  Calculate the magnitude of the electric field at a 

distance of (a) 0.40 m and (b) 1.0 m from the axis of the cylinder. 

7.3   ELECTRIC FIELD DUE TO AN INFINITE 
UNIFORMLY CHARGED PLANE SHEET 

In this section, we apply Gauss‟s law to an infinite uniformly charged plane              

sheet carrying a constant surface charge density . A large plastic sheet 

uniformly charged on one side is an example of a non-conducting sheet of 

charge. An aluminium foil is an example of a conducting sheet.  

What kind of symmetry does an infinite sheet (planar charge 

distribution) possess? It remains the same if it is 

 translated parallel to itself,  

 rotated about any axis perpendicular to its plane, and  

 reflected about any axis lying in its plane or perpendicular to its plane.  

It follows from the symmetry considerations for a sheet of charge that the                 

electric field due to it is everywhere perpendicular to the plane of the sheet. It 

is directed outward from the sheet, if positively charged and inward, if 

negatively charged. You may like to know: Why is the electric field 

perpendicular to the plane everywhere?  

To answer this question, we follow the same line of argument as we have 

done for all symmetric charge distributions so far. 

Refer to Fig. 7.8a, which shows the side view of a small section of the infinite 

sheet of charge. Suppose that the electric field of the sheet at some point P               

were directed in some other direction as shown in Fig. 7.8a. Note that we 

have arbitrarily labelled one end of this section of the infinite sheet as „top‟ and 

the other one as „bottom‟ just to show what happens when the sheet is 

reflected.  

Let us now reflect this sheet of charge about a horizontal line perpendicular to               

its plane and passing through P.  So the „top‟ of the sheet is now the „bottom‟                  

of the sheet and the „bottom‟, its „top‟ (Fig. 7.8b). What is the direction of the 

electric field after the sheet is reflected? After reflection, the direction of the 

electric field at P becomes as shown in Fig. 7.8b because the electric field is 

also reflected in the same manner.  

Fig. 7.8: a) and b) If the 

electric field at any point 

due to a sheet of charge 

is not perpendicular to  

its plane everywhere, it 

will have different values 

at the same point for the 

same charge distribution 

under reflection, which   

is a contradiction; c) this 

contradiction does not 

exist if the electric field 

(shown by the dotted 

arrows) at any point due 

to the sheet of charge is 

perpendicular to its  

plane everywhere.  
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But you can compare Figs. 7.8a and b by putting them alongside each other 

as in Fig. 7.8c. What do you find? You can see that the charge distribution 

remains the same after reflection. As before, we have labelled „top‟ and 

„bottom‟ on the sheet for our convenience. Otherwise, we cannot tell the 

difference. In this case, we find again that the electric fields before and after 

reflection are different at the same point. This is a contradiction: How can 

there be different electric fields at a given point for the same charge 

distribution? If the charge distribution remains unchanged, the electric 

field at the point P cannot be different; it has to be the same. Since it is 

not so, the direction of the electric field in Fig. 7.8a is incorrect.  

Again we ask: What is the direction of the electric field that does not lead 

to such a contradiction? From Fig. 7.8c, you can see that the electric field 

remains the same under reflection only if it is directed perpendicular to the 

sheet of charge. It is shown by dotted arrows in Fig. 7.8c. You can verify that 

this is indeed the electric field direction for all other symmetry operations on 

the sheet. This is how we conclude that from symmetry of the sheet of charge, 

the direction of the electric field can only be perpendicular to its plane. 

Let us now determine the electric field due to the infinite uniformly charged 

sheet at a distance r from it. Let its surface charge density be . Here we 

assume that the thickness of the sheet is much less than r. Now to use 

Gauss‟s law meaningfully, we need to choose a Gaussian surface that 

exploits the fact that the electric field is directed normal to the charged sheet. 

What is that Gaussian surface? We choose a closed cylindrical Gaussian 

surface perpendicular to the sheet with each end of the cylinder located at an 

equal distance (r) from the sheet. So, the length of the Gaussian cylindrical 

surface is 2r (see Fig. 7.9a). Such a Gaussian surface is also called the 

Gaussian ‘pillbox’. In Fig. 7.9b, we show the side view of the sheet and the 

pillbox. Let the area of cross-section of the Gaussian pillbox (i.e., the area of 

its ends) be S.  

 

 

 

 

 

 

 

 Fig. 7.9: a) A sheet of positive charge and the Gaussian pillbox for which the 

electric field E


and area vector S


d are parallel at the ends and 

perpendicular to each other on the curved part of the surface; b) the 

sheet in its side view showing the electric field vectors and area                

vectors for the pillbox.  
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Since the charge is positive, the electric field is directed away from the sheet 

and is perpendicular to the sheet. This means that for the curved part of the 

cylindrical Gaussian surface, the electric field vector is perpendicular to the 

area vector at all points (see Fig. 7.9b). Thus,  

       0S.E


d   for all points on the curved part of the cylindrical surface 

The electric field vectors point in an outward direction from the two ends of the 

Gaussian pillbox, i.e., in the same direction as the area vectors for the ends. 

So, the contribution to the electric flux is only from the ends of the Gaussian 

pillbox and 

         dSEd S.E


 for all points on one end of the cylindrical surface  

Since there are two ends on the Gaussian pillbox, we need to consider the 

surfaces of both ends while applying Gauss‟s law and divide the surface 

integral into three parts corresponding to the two ends and the curved part. 

Then Gauss‟s law gives us   

0

0...


 
encl

endsBoth
part
CurvedS

Q
SESEddd SESESE


   (7.8a) 

or 
S

Q
E encl

02
  (7.8b) 

Now, we need to express the charge on the sheet enclosed by the Gaussian 

cylinder in terms of the uniform surface charge density . This is just the 

charge enclosed by the area of the sheet equal to the cylinder‟s cross-section, 

i.e., the area S. Since  is uniform (i.e., constant), it is equal to the ratio of the 

charge on a given surface to its area. Therefore, for the charge enclQ  

enclosed by the area S, it is  

  SQ
S

Q
encl

encl   (7.9) 

Substituting the value of enclQ  from Eq. (7.9) in Eq. (7.8b), we get 

  
02


E  (7.10) 

where the direction of the electric field is perpendicular to the sheet.   

Eq. (7.10) holds for both non-conducting and conducting sheets of 

charge provided the layer of charge on the sheet is very thin (or its 

thickness is very small compared to the distance at which the electric 

field is being calculated). It also holds for very large sheets of charge at 

points far from the edges of the sheet and at distances much larger than the 

thickness of the sheet or the layer of charge on the sheet. Eq. (7.10) tells us 

that 

 

 

The electric field due to an infinite (or very large) uniformly 

charged sheet has the same value at all points lying outside it 

and points in a direction perpendicular to the sheet.  
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Let us apply Gauss‟s law to two infinite or large sheets of charge in the 

following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two thin infinite non-conducting charged sheets are kept parallel to each 

other as shown in Fig. 7.10a. The surface charge density of the negatively 

charged left sheet is 1  and that of the right sheet carrying a positive   

charge is .2  Determine the net electric field in the region (1) to the left of 

the sheets, (2) between the sheets and (3) to the right of the sheets. 

SOLUTION   We apply Gauss‟s law to both sheets using the result 

obtained for an infinite uniformly charged sheet. We use the fact that the 

charges are fixed and obtain the electric field due to each sheet as if it 

were isolated. Then we apply the principle of superposition to obtain the 

net electric field. 

Remember that from Eq. (7.10), the magnitude of the electric field at any 

point does not depend on the distance of the point from the sheet. It 

depends only on the surface charge density. The directions of the electric 

fields depend on the sign of the charge carried by them. The magnitudes of 

the electric field due to the negatively and positively charged sheets having 

surface charge densities 1  and ,2  respectively, are given by 

                
0

1

2


E         and            

0

2

2


E  

 

 

 

 

 

Fig. 7.10b shows the directions of the electric fields in each region. Note 

that the electric field due to the positively charged sheet points away from it 

in each of the three regions. The electric field due to the negatively 

charged sheet points towards it in each region. Let us denote the unit 

vector to the right of the sheets by î (Fig. 7.10c). Then the resultant electric 

field in each of these regions (Fig. 7.10c) is given by 

a) Region (1):       iiiEEE ˆ)(
2

1ˆ)()ˆ()( 21
0

1 


  EE


 

b) Region (2):       iiEEE ˆ)(
2

1
)ˆ()( 21

0
2 


  EE


   

c) Region (3):       iiiEEE ˆ)(
2

1
)ˆ()(ˆ)( 12

0
3 


  EE


                                   

 

 

 

XAMPLE 7.2 : TWO INFINITE SHEETS OF CHARGE 

 

 

 

Fig. 7.10: Diagram for Example 7.2.  
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You will realise the importance of these calculations when you determine the 

electric fields of parallel plate capacitors in the next block and learn how useful 

capacitors are in our daily lives. You may now like to attempt an SAQ.  

SAQ  3 –  Uniformly charged thin sheets 

Suppose in Example 7.2, the surface charge density of the negatively charged 

sheet is 29
1 Cm100.9   and that of the positively charged sheet is 

.Cm100.6 29
2

  Determine the magnitudes and directions of the 

electric fields in the three regions. What would the net electric fields in the 

three regions be if the two sheets were interchanged? 

While studying Unit 6 and Unit 7 so far, you must have realised that the 

symmetry of the charge distribution plays an important role in applications of 

Gauss‟s law. As you have learnt, the calculation of the surface integral in 

Gauss‟s law is greatly simplified for symmetric charge distributions. You have 

learnt about three kinds of symmetry for which application of Gauss‟s law is 

particularly useful. These are: spherical symmetry, cylindrical symmetry 

and planar symmetry. Let us revise the method of applying Gauss‟s law for 

each one of these. 

 

APPLICATIONS OF GAUSS’S LAW 

 

 1. For a spherically symmetric charge distribution, you should draw 

a concentric Gaussian sphere. This means that the centre of the 

Gaussian sphere should be on the point charge or the centre of the 

charged sphere or spherical shell. Also the point on which the electric 

field is to be determined should be on the surface of the Gaussian 

sphere. Then the electric field is normal to the Gaussian spherical 

surface, E

 S


d  so that dSEd S.E


 and E is constant on the surface. 

2. For a cylindrically symmetric charge distribution, you should draw 

a coaxial cylindrical Gaussian surface. This means that the axis of 

the cylindrical Gaussian surface should be the same as that of the 

charge distribution (charged wire or charged cylinder). Also the point on 

which the electric field is to be determined should lie on the Gaussian 

surface. Then the electric field is normal to the curved part of the 

Gaussian cylindrical surface (E

 S


d  so that dSEd S.E


) and parallel 

to the flat ends of the Gaussian cylinder (E

 S


d  so that 0S.E


d ). 

Also, E is constant on the Gaussian surface. 

3. For a planar charge distribution, you should draw a Gaussian 

pillbox with its axis perpendicular to the plane of the charge 

distribution. Then the electric field is perpendicular to the curved 

surface of the Gaussian pill box (E

 S


d  so that 0S.E


d ) and 

parallel to the flat ends of the Gaussian pill box (E

 S


d  so that 

dSEd S.E


). Also E is constant on the Gaussian surface. 
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So far, we have applied Gauss‟s law to non-conducting charged distributions. 

Does the law give different results for charged conductors? In the last section 

of this unit, we will apply Gauss‟s law to isolated charged conductors. This 

application of Gauss‟s law is quite important in our daily lives. This is 

especially so when we are caught in a thunderstorm. It will help you 

understand what you should do when you are travelling in a vehicle and are 

caught in a thunderstorm accompanied by lightning. 

7.4   CHARGED ISOLATED CONDUCTOR 

We can use Gauss‟s law to verify the following property of charged isolated 

conductors: 

“If any excess unbalanced, static charges are placed on a conductor, 

they must reside on the surface of the conductor. The excess 

amount of charge moves to the surface of the conductor. When the 

charges stop moving, none of the charges will remain within the 

body of the conductor.” 

Let us use Gauss‟s law to explain how this is possible. 

Consider the cross-section of an insulated solid metallic conductor such as  

the one shown in Fig. 7.11 carrying an excess charge q. We choose the 

Gaussian surface to lie just inside the actual surface of the conductor. The 

dashed line in Fig. 7.11 shows the Gaussian surface. 

Once the excess charge stops moving, the electric field inside the 

charged conductor must become zero. Why is this so? We can see why 

this is so without a formal calculation. Suppose that this were not true and that 

there was an electric field inside conductor. Then a force would be exerted by 

the electric field on the charges inside the conductor that are always present in 

it and are free to move (e.g., electrons in this case).  

Thus, internal currents would be set up and would always exist within a 

conductor because charge would flow from one point to another under the 

action of this force. But no such perpetual currents are observed in any 

isolated charged conductor. So, the only conclusion is that the internal electric 

field of an isolated charged conductor is zero. Its interior is always free of 

electric fields.  

For the time when the conductor is being charged, internal electric fields do 

exist inside it. But once the charging stops and the conductor is isolated, the 

excess charge is quickly distributed in a way that the net electric field is zero 

everywhere inside the conductor.  

Now since the electric field is zero inside the conductor, it must be zero for all 

points on the Gaussian surface because that surface, though close to the 

surface of the conductor, lies inside it. This means that the electric flux 

through the Gaussian surface is zero. Then according to Gauss‟s law, the net 

charge enclosed by the Gaussian surface is also zero. So, if the excess 

charge is not inside the Gaussian surface, it must lie outside it. This means 

that it must lie on the actual surface of the isolated conductor.  

So, always remember that 

Fig. 7.11: An isolated 

charged solid metallic 

conductor carrying 

excess charge q and 

the Gaussian surface 

just inside it.   

Gaussian  
surface 

Solid conductor  
carrying charge q  

Conductor‟s 

surface  
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You may like to know: What is the electric field at any point lying outside a 

conductor carrying a net charge on its outer surface? 

The results for the electric fields for all conducting symmetric charge 

distributions at a point outside the conductor will be the same as the 

results obtained for the corresponding non-conducting charge 

distributions. So, the electric fields due to various symmetric conducting 

and non-conducting charge distributions (at any point lying outside 

them) are same and are given in Table 7.1. 

Table 7.1: Electric fields due to conducting and non-conducting charge 

distributions at points lying outside them.  

Conducting and non-conducting 

charge distribution 

Electric field at a point lying outside 

the charge distribution 

Uniform spherical charge 

distribution of radius R carrying 

net positive charge Q  

  rE ˆ
4

1

2
0 r

Q





 r    R   

Uniformly charged thin spherical 

shell of radius R carrying net 

charge Q  

  rE ˆ
4

1

2
0 r

Q





 r    R 

Infinite line of charge having 

uniform line charge density  
  

r
E

02


   

directed perpendicular to the line 

charge 

Infinite cylindrical charge 

distribution of radius R having 

uniform volume charge density  

 rE ˆ
2 0

2

r

R







       r     R     

Infinite thin sheet of charge 

having uniform surface charge 

density   

 
02


E     

directed perpendicular to the sheet 

SAQ  4 –  Charged isolated conductor 

An isolated conducting sphere of radius 1.0 m carries a uniform surface 

charge density .mC7.2 2  What is the net charge on the sphere? Calculate 

the net electric flux leaving the surface of the sphere. What is the electric field 

due to the conductor at a point 3.0 m from its centre? 

We now consider an example for determining the electric field due to two 

concentric conductors in different regions around them. Such problems are 

useful in determining the electric fields due to various geometries in 

capacitors.  

The net electric field is zero everywhere inside the conductor. If a net 

charge does reside on an isolated conducting body/object, it can be 

distributed only over the surface layer of that conductor. 
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2Q

  

Fig. 7.12: Diagram for 

Example 7.3.  
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Remember, you have 

to take the algebraic 

sum of charges to 

determine the net 

charge. So, while 

solving problems, 

always take into 

account the signs of 

the charges. 

  

 

A solid conducting sphere is concentric with a thin conducting spherical 

shell as shown in Fig. 7.12a. The sphere of radius 1r  carries charge 1Q  

and the spherical shell of radius 2r  carries charge 2Q  with 1r   .2r   

Determine the electric fields at a distance r from the centre of the sphere 

for (a) r  1r ,   (b) 1r   r  2r  and (c) r  .2r  d) What will happen if the 

sphere and the shell are connected with a wire? e) What will the electric 

fields be for r  2r  and r  2r  after this?   

SOLUTION   We apply Gauss‟s law to both conducting sphere and 

conducting shell using the result obtained for a conductor in this section.  

Remember that the electric field at any point inside a conductor is zero.  

a) The points corresponding to r  1r  lie inside the conducting sphere. 

Therefore, the electric field at all such points is zero.  

b) For the points 1r   r  2r , we draw a spherical Gaussian surface of 

radius r  at any point between the conducting sphere and the 

conducting shell (see Fig. 7.12b). The net charge enclosed by it is just 

the charge on the conducting sphere, i.e., .1Q  Therefore, from                        

Eq. (6.22), the electric field is given as 

                    rE ˆ
4

1
2
1

0 r

Q





      for   1r   r  2r  

c) For the points r   ,2r  we draw a spherical Gaussian surface of radius             

r  (  2r ) lying outside the conducting shell (Fig. 7.12c). The surface 

encloses a net charge ).( 21 QQ   Therefore, from Eq. (6.22), the 

electric field is given as 

                    rE ˆ
)(

4

1
2

21

0 r

QQ 





      for   r    2r  

d) When the conducting sphere and the conducting shell are connected 

with a wire, charges flow in the system until equilibrium is reached. At 

equilibrium, there is no charge inside both the conductors and the 

system behaves like a single conductor. So there is no charge on either 

the inner sphere or the inner surface of the shell. The net charge 

)( 21 QQ   resides on the outer surface of the spherical shell.  

e) The electric field for r   2r  will be zero since the point lies inside a 

conductor.  

If we draw a spherical Gaussian surface for r   ,2r  it encloses the net 

charge ).( 21 QQ  Therefore, we have 

         rE ˆ
)(

4

1
2

21

0 r

QQ 





      for   r    2r  

 

 

 

XAMPLE 7.3 : CONCENTRIC SPHERE AND SHELL 
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You may quickly like to apply the results of Example 7.3 for practice. Attempt 

the following SAQ. 

SAQ 5 –  Charged conductors 

Suppose in Example 7.3, QQ 1  and .22 QQ   What will the electric fields 

be for (a) r  1r ,   (b) 1r   r  2r  and (c) r  ,2r  if all other parameters are the 

same? 

Now suppose we create a cavity inside the conductor. Will the results for 

charged isolated conductors still hold? We explain what happens in this case 

in the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results obtained in this section have many practical applications. We can 

now answer the question: What should we do when we get caught in a 

thunderstorm while travelling in a vehicle? From what you have studied in this 

section, you can answer the question as follows: 

We should shut all windows and doors of the vehicle and keep ourselves 

insulated from all electronic gadgets present in it. If lightning strikes the 

vehicle, the entire charge will be distributed on its outer metallic surface. Its 

effects inside of the conductor (vehicle) will be substantially reduced: We will 

not be struck by lightning if we are sitting in a closed vehicle or any other 

closed space that is made of conducting material. On the other hand, if we 

were inside a non-conducting material like a wooden crate, lightning would 

pass right through it and we would be struck by it. The crate could also catch 

fire.  

 

A cavity is created inside an isolated conductor. Explain why any excess 

charge placed on the conductor will reside on its outer surface.  

SOLUTION   We use Gauss‟s law to give the explanation. 

Consider Fig. 7.13, which shows an isolated conductor with a cavity inside 

it. Now, you have learnt that there are no unbalanced charges inside the 

solid conductor. Therefore, we can assume reasonably that when we 

scoop out some of the material, leaving a hollow cavity, we do not change 

the charge distribution or the electric fields that existed in the solid 

conductor.  

Once again, we draw the Gaussian surface so that it is inside the 

conductor and surrounds the cavity wall very close to it as shown in                 

Fig. 7.13. Since the net electric field inside the conductor is zero 

),( 0E


net the electric flux through this surface must also be zero. 

Therefore, from Gauss‟s law, this surface cannot enclose any net charge. 

Thus, we can say that there is no net charge on the cavity wall. All excess 

charge remains on the outer surface of the isolated conductor. 

 

 

                 

 

 

 

 

 

 

XAMPLE 7.4 : AN ISOLATED CONDUCTOR WITH A CAVITY 

 

 

Fig. 7.13: An isolated 

charged conductor 

having a cavity within it. 

The Gaussian surface 

lies within the 

conductor outside the 

cavity and very close to 

the cavity’s surface.  

Metallic 
surface 

Gaussian  
surface 
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The fact that the electric field inside an isolated conductor with a cavity is zero 

has an interesting application in experimental physics called the Faraday 

cage. It is used in experiments which involve the measurement of very low 

power electrical signals generated, e.g., in computer chips or in neurons of 

animals. You can read about it at https://en.wikipedia.org/wiki/Faraday_cage. 

This is also the reason why your mobile phones, radio receivers, etc. will not 

work inside metal cages or metallic buildings.  

With this we complete the discussion on Gauss‟s law and its applications. Let 

us now summarise the contents of this unit. 

7.5   SUMMARY 

Concept Description 

Infinite line              

charge 

 

 

 

 From Gauss‟s law, the electric field due to conducting and non-conducting 

infinite line or wire of charge with uniform line charge density  is 

directed perpendicular to the line of charge and its magnitude is given by 

             
r

E
02


    at any point r 

        Infinite                             

non-conducting 

cylindrical               

charge    

distribution  

 The electric field due to a non-conducting infinite solid cylinder of 

radius R with uniform volume charge density  is given by 

                    rE ˆ
2 0

2

r

R







         for  r     R         

                   rE ˆ
2 0




r
           for r    R 

  

      

Infinite                           

non-conducting 

sheet of charge  

 The electric field due to a non-conducting infinite sheet of charge with 

uniform surface charge density  at any point is given by 

                       
02


E   

and points in a direction perpendicular to the sheet. 

Charged isolated 

conductor               

without and with                

a cavity 

 

 If any excess unbalanced, static charges are placed on an isolated 

conductor, they must reside on the surface of the conductor. It follows that 

if a net charge does reside on an isolated conducting body/object, it 

can be distributed only over the surface layer of that conductor. In an 

isolated conductor having a cavity, all excess charge placed on the 

conductor will reside only on its outer surface. 

  Electric field due    

to charged  

isolated conductor 

at points lying 

inside and outside 

the conductor 

 The electric field at points lying inside an isolated charged conductor is 

zero. 

The electric field at a point lying outside an isolated charged conductor is 

the same as that of a non-conductor of the same geometry/symmetry (see 

Table 7.1). 

https://en.wikipedia.org/wiki/Faraday_cage
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7.6   TERMINAL QUESTIONS 

1. What is the magnitude of the electric field at a distance of 2.0 m from an 

infinitely charged wire given that the linear charge density is ?mC6.3 1   

2. A solid metal wire of length 1000 m and diameter 1.0 cm carries a net 

charge C,0.5 q which is distributed uniformly in it. Determine the 

electric field at a distance of a) 5.0 cm and b) 0.50 cm, respectively, from 

the wire‟s axis. Assume that the point where the electric field is to be 

determined is far from the ends of the wire. 

3. A thin metal wire of length 30 m and diameter 0.04 cm carries a net 

charge C0.6   distributed uniformly over its surface. Calculate the electric 

field at the points at the distances of (a) 0.01 cm and (b) 0.09 cm from its 

axis. Assume that these points lie far away from the ends of the wire. 

4. A Gaussian surface of cylindrical shape (of radius 1.0 m and height 20 m) 

encloses a few positive charges. Assuming that the electric field due to 

these charges is normal to the Gaussian surface and has magnitude 

,NC900 1 calculate the volume charge density of the charge distribution. 

5. A coaxial cable consists of a thin inner solid copper wire and an outer 

sheath of braided copper wire (see Fig. 7.14). The linear charge density of 

the inner wire is  and that of the outer wire is . Determine the electric 

Electric field due  

to charged  

isolated conductor 

at points lying 

inside and outside 

the conductor 

 The electric field due to 

 a uniform conducting spherical charge distribution (of radius R and 

carrying charge Q) at a point at a distance r  from its centre is  

             rE ˆ
4

1
2

0 r

Q





          r    R                    

 a thin uniform conducting spherical shell (of radius R and carrying 

charge Q) at a point at a distance r  from its centre is  

                       rE ˆ
4

1
2

0 r

Q





          r    R    

 an infinite conducting wire carrying uniform linear charge density   at 

r  is  

       
r

E
02


    directed perpendicular to the line of charge 

 an infinite conducting solid cylinder having radius R and uniform 

volume charge density  at a point at a distance r is      

                     
r

R
E

0

2

2


     in the radial direction  for  r     R                     

 an infinite conducting thin sheet of charge carrying uniform surface 

charge density is  

                      
02


E   directed perpendicular to the sheet. 

 

Fig. 7.14: Diagram for 

TQ 5. 

Solid 
copper 
wire 

Braided 
wire 
sheath Plastic 

covering 
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fields at a point (a) in the region inside the inner wire, (b) in the region 

between the wires and (c) in the region outside the coaxial cable.  

6. A flat sheet of charge of surface area A has uniform surface charge 

density . An electrostatic force of magnitude N106.3 12  pointing in a 

perpendicular direction away from the sheet, is exerted on an electron at a 

distance of 0.03 m from its centre. Calculate the net charge on the sheet 

for .m56.2 2A  

7. Two identical infinite non-conducting sheets having equal positive surface 

charge densities  are kept parallel to each other as shown in Fig. 7.15. 

Determine the electric field at a point in (a) region I above the sheets,                      

(b) region II between the sheets and (c) region III below the sheets.  

8. A very long conducting thin solid cylinder of length L carrying a net charge 

q  is enclosed in a thin conducting cylindrical hollow tube of the same 

length. The tube carries a net charge .2q  Determine the electric fields at  

(a) a point lying outside the conducting tube; and  

(b) a point lying in the region between the solid cylinder and the tube.  

In both cases, the point lies far away from the edges of the conductors. 

9. The net charge on an isolated conductor is .C151 q  A charge  

C0.52 q  is later placed inside a cavity in the conductor. Determine the 

charge on the wall of the cavity. What is the charge on the outer surface of 

the conductor after 2q is placed inside the cavity?   

10. A concentric spherical cavity of radius 3.0 m is created in a conducting 

sphere of radius 6.0 m. A point charge Q is kept at the centre of the 

sphere/cavity. The net charge on the conducting sphere is .nC0.9 The 

electric field at a point 2.0 m away from the centre of the sphere is 
1CN2.7   and points radially inward.  

a)  What is the value of the charge Q?  

b) What is the charge on the wall of the cavity, i.e., the inner surface of 

the sphere?  

c)  Calculate the value of the charge on the sphere‟s outer surface. 

d)  Determine the electric field at a point 4.0 m away from the centre of the 

sphere.  

7.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. From Eq. (7.3), the linear charge density is .2 0 Er  Substituting the 

numerical values of r and E along with the constants, we get  

171321212 mC100.5NC100.9m)0.1(mNC1085.82  

 

2. a) The point at a distance of 0.40 m from the cylinder‟s axis lies inside it.  

Therefore, we use Eq. (7.7) to calculate the magnitude of the electric 

field: 

Fig. 7.15: Diagram for 

TQ 7. 

I 

II 

III 
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b) The point at a distance of 1.0 m from the cylinder‟s axis lies outside it. 

Therefore, we use Eq. (7.6) to calculate the magnitude of the electric 

field: 

       14
21212

23
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2
CN108.9
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3. As explained in Example 7.2, for 29
1 Cm100.9   and 

,Cm100.6 29
2

  the magnitudes and directions of the electric fields 

in the three regions are given by 
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Region (3): iE ˆ)(
2

1
12

0
3 





 î
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Refer to Fig. 7.16. If the two sheets are interchanged, then we have 

negative 29
1 mC100.9   and positive .mC100.6 29

2
   

 

 

 

 

 

 

Fig. 7.16: Diagram for answer of SAQ 3. Part (c) is not to scale. 

From Fig. 7.16b, the magnitudes and directions of the electric fields in the 

three regions are now given by 
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        iiiEEE ˆ)(
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0
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
  EE
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îNC107.1 12   

Of course, when you solve this problem, you have to start from the 

beginning and follow all steps given in Example 7.2. 

4. The net charge on the sphere is ,SQ  where 24 RS   is the area of 

the surface of the sphere of radius R. Therefore, 

          C34m)0.1(Cm7.244 222  RQ  

From Gauss‟s law [Eq. (7.4a)], the net electric flux leaving the surface of 

the sphere is 

   126

21212
0
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Since the point lies outside the sphere, the electric field due to the 

conductor at a point 3.0 m from its centre is  

      
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 rE ˆ
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5. Substituting QQ 1  and QQ 22   in the results of Example 7.3, we get 

a) For r  1r ,    0E
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b) For 1r   r  ,2r     ,ˆ
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Terminal Questions 

1. From Eq. (7.3), the magnitude of the electric field is 

   14
1

229

0

CN102.3
m0.2

Cm6.3
)mNC1099.8(2
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




r
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2. Although the wire is not infinite, for points close to it and sufficiently far 

from its ends, we can approximate it as one. This is because at such 

points we can neglect the contribution of the electric fields due to distant 

charges.  

a) We use Eq. (7.4b) to calculate the electric field at a point 5.0 cm from 

the wire‟s axis, since it lies outside the wire and get    

       
m1000m100.5

C0.5
)mNC1099.8(2

2 3
229

0 


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






Lr

Q
E encl  

           14 CN108.1   

b) The metal wire is a conductor. Therefore, the electric field at the point  

0.50 cm from the wire‟s axis is zero, 0E


 since the point lies inside 

the conductor. 
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3. The thin metal wire in the problem cannot strictly be taken as an infinite 

line charge. But for points close to the wire and sufficiently far from its 

ends, the contribution of the electric fields from distant charges can be 

taken to be negligible. Therefore, we can approximate the electric field of 

the wire to that of an infinite line charge. (a) Since the metal wire is a 

conductor, the electric field at the point 0.01 cm from the wire‟s axis, which 

lies inside it, will be zero: .0E


  (b) The electric field at the point outside 

the wire at a distance of 0.09 cm from its axis is given by Eq. (7.2c) and 

we get 

16
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229
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Q
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4. We are given the electric field and the radius and height of the cylindrical 

Gaussian surface and we have to determine the volume charge density of 

the charge distribution enclosed by it. Since the surface area of the 

cylinder is ,2 hr  the electric flux through the Gaussian surface is 
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)2(


 encl
E

Q
hrESE  

or          hErQencl 02  

The volume charge density  of the charge distribution is the net charge 

enclosed per unit volume. 
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                     38 mC106.1     

5. a) The electric field at a point inside the inner copper wire (region I) is 

 zero since it is a conductor: 0E


 . 

b) Refer to Fig. 7.17. We take the Gaussian surface to be a coaxial 

cylindrical surface of radius r and length L lying in the region II 

between the wires. Note that the net charge enclosed by the Gaussian 

surface is ,LQencl   where   is the linear charge density of the 

inner wire. From Gauss‟s law given by Eq. (7.4a),            

00

2






 

LQ
LrEdSEdSEd encl

SSS

S.E


 

So, we have             rE ˆ
2 0r





 

where r̂  is the unit vector perpendicular to the cylindrical axis pointing 

away from the axis. So, the electric field in region II is directed radially 

inward.  

c)  For the point that lies outside the cable, the electric field is zero. This is 

because the two wires have equal and opposite linear charge densities 

and the net charge enclosed by a Gaussian surface outside both wires 

will be zero:  .0E


  

Fig. 7.17: Diagram for 

the answer of TQ 5. 
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6. The sheet is effectively infinite for the point at a distance of 0.03 m from its 

centre assuming that the point lies far from its edges. Let the net charge 

on the sheet be q. The electric field due to the sheet is given by Eq. (7.10):  

         
02


E   directed perpendicular to the sheet, where  

A

q
  

The magnitude of the electrostatic force on an electron is given by  

         eEF           or            
A

eq
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00 22 
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


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since the surface charge density is charge per unit area and A is the area 

of the sheet. Thus,              
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The negative sign shows that the charge on the sheet is negative. This is 

expected because the electrostatic force between the sheet and the 

electron is negative, i.e., the electron is repelled by the sheet. 

7. Let 1E


 be the electric field due to sheet 1 and 2E


 be the electric field due 

to sheet 2 at some point in each of the three regions. The magnitudes of 

the electric fields due to the sheets will be equal since their surface charge 

densities are equal. Let us denote the magnitudes by E. Then from                    

Eq. (7.10),  

                           
02


E  

Since both sheets are charged positively, the electric fields due to them 

would be directed away from them in each region. The electric fields due 

to the sheets in the three regions are shown in Fig. 7.18. Now we can 

determine the net electric field at any given point in each region as follows: 

a) Region I above the sheets: The electric fields due to the sheets are in 

the same direction, say, ,ĵ  as both sheets are positively charged. 

Therefore, the net electric field at a point in region I is  

                jjEEE ˆˆ
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b) Region II between the sheets: The electric field due to sheet 1 is 

directed opposite to the electric field due to sheet 2. Therefore, the net 

electric field at a point in region II is  
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c) Region III below the sheets: The electric fields are again in the same 

direction, but opposite to .ĵ  Therefore, the net electric field at a point in 

region III is  
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8. We use Gauss‟s law given by Eq. (7.4a) to determine the electric fields in 

the two regions for conducting cylindrical charge distributions.  

Fig. 7.18: Diagram for 

answer of TQ 7. 
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a) For a point lying outside the conducting tube, the net charge enclosed 

by a Gaussian cylindrical surface of radius r and length L passing 

through the point is the algebraic sum of the total charge on the solid 

cylinder and the cylindrical tube, i.e., .3q Therefore, from Eq. (7.4a), 

we get  
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or         
Lr

q
E

02

3


  directed radially outward 

b) For a point lying in the region between the solid cylinder and the tube, 

the net charge enclosed by a Gaussian cylindrical surface of radius r 

and length L passing through the point is just the charge on the solid 

cylinder, i.e., .q  Therefore, from Eq. (7.4a), we get  
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or         
Lr

q
E

02
  directed radially outward 

9. Refer to Fig. 7.19. The net charge on the conductor is .C151 q  

Suppose the charge on the wall of the cavity is Q. Let S be the Gaussian 

surface enclosing the cavity. The electric flux S through S is zero since 

the electric field inside the conductor is zero. Since the charge  

C0.52 q  is placed inside the cavity in the conductor, the net charge 

enclosed by the Gaussian surface is the algebraic sum of the charge Q on 

the cavity wall (which is also the inner surface of the conductor) and .2q  

So, from Gauss‟s law, 

0
0

2

0








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qQQencl
S  

 C0.50 22  qQqQ  

Let the net charge on the outer surface of the conductor be q after the 

charge C0.52 q  is placed inside the cavity. From conservation of 

charge, the net charge on the conducting sphere is equal to the algebraic 

sum of the charge on its inner surface and the charge on its outer surface. 

Therefore, we have 

             qQq 1     

So, the charge on the outer surface of the conductor is  

           C20C)0.5(C15 q  

10. a) It is given that the electric field at a point 2.0 m away from the centre of  

the sphere/cavity points inward. Refer to Fig. 7.20a. We draw a 

spherical Gaussian surface S of radius 2.0 m. So, its surface area is 
2m)0.2(4 and the net charge enclosed by it is Q. Thus, from Gauss‟s 

law, we have 

Fig. 7.20: Diagram for 

the answer of TQ 10.  

(b)  

Q 
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(a)  

Q 

S 

Fig. 7.19: Diagram for 

the answer of TQ 9.  
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S   ESEQ 2

00 m)0.2(4   
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b) We follow the same steps as in the solution of TQ 9. The Gaussian 

surface S  lies inside the conductor and surrounds the cavity as  

shown in Fig. 7.20b. The net charge enclosed by S  is the algebraic 

sum of the charge Q and the charge on the wall of the cavity, say .q  

Since the electric field inside the conductor is zero, from Gauss‟s law, 

the net charge enclosed by the Gaussian surface is zero. Therefore,  

           Cn2.30  QqqQ  

c) From conservation of charge, the total charge on the conducting 

sphere is equal to the algebraic sum of the charge q on its inner 

surface (i.e., the wall of the cavity) and the charge on its outer surface. 

Therefore, if the charge on the outer surface of the sphere is ,q  then 

we have 

Net charge on the sphere qq  nC0.9   

or                                  nC8.5nC2.3nC0.9 q  

d) Since the point at a distance of 4.0 m from the centre lies inside the 

conducting sphere, the electric field at that point is zero. 

Q 
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                      UNIT 8 

ELECTRIC POTENTIAL 

Structure 
 

8.1 Introduction 

Expected Learning Outcomes  

8.2 Work done in Moving a Charge 

Line Integral of Electric Field 

Electrostatic Potential Energy 

8.3 Electric Potential due to Point Charges               

Electric Potential due to a Point Charge               

Electric Potential due to a System of  

Discrete Charges 

 

STUDY GUIDE           

 

8.4 Relation between Electric Field and Electric 

 Potential 

8.5 Electric Potential due to an Electric Dipole 

8.6 Dipole in an Electric Field 

8.7  Summary 

8.8 Terminal Questions 

8.9 Solutions and Answers 

 

In this unit, you will study electric potential which is a concept closely related to electrostatic 

force and electric field. It is a very useful concept for studying the behaviour of charged 

objects in an electric field. You know that the electrostatic force and electric field are vector 

quantities. The electric potential, however, is a scalar quantity. Since electric potential is a 

scalar quantity, the calculation of electric potential at a point in space due to a charge or a 

system of charges is much easier than that of an electric field – a vector quantity. To 

understand the contents of this unit better, you should refresh vector algebra given in Block 1 

and the concepts of conservative force and potential energy from Block 2 of the 1st semester 

course entitled Mechanics (BPHCT-131). You should also revise the vector calculus given in 

Block 1 of this course. In particular, you should refresh the concept of gradient of a scalar 

field, integration of a vector function, line integral of scalar and vector fields discussed in  

Block 1 of this course. We advise you to work through the steps of mathematical derivations 

as you study the unit. You should also try to solve SAQs and TQs yourself to check your 

understanding of the concepts discussed in the unit. 

“You must be ready to give up even the most attractive ideas 

when experiment shows them to be wrong.” 
 

Alessandro  
Volta 

 

Electric potential and potential 

differences abound in nature ranging 

from several hundred million volts in 

a typical lightning bolt to about 90 mV 

in heart cell membranes. (Picture source: 

Wikimedia Commons)  
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8.1   INTRODUCTION 

In Unit 5 of this block, you have learnt Coulomb’s law which enables us to 

calculate the electrostatic force between any two charges. You have also 

learnt the concept of electric field which makes the computation of 

electrostatic force far easier and convenient than using Coulomb’s law. In 

Units 6 and 7, you have learnt how to calculate electric field directly or by 

using Gauss’s law. 

In most problems in electrostatics, our aim is to calculate the electric field. 

Since electric field is a vector quantity, its determination requires calculation of 

each of its scalar components. Many a time, to make this calculation easier, 

we first calculate a scalar quantity known as the electric potential V, from 

which electric field can be determined using a simple relation. Since electric 

potential is a scalar quantity, its calculation in most cases is not as difficult as 

the calculation of electric field.  

The concept of electric potential is also important because it is closely linked 

to the work done by the electrostatic force due to charged particles and their 

potential energies. To explain the concept of electric potential, we draw 

analogy from mechanics (Unit 10, BPHCT-131). In that unit, you studied 

gravitational potential energy, which arises from the work done in moving an 

object from one point to another against gravitational force. You have learnt in 

Unit 5 of this course that the gravitational force between charges is very small 

(compared to the electrostatic force). So, the gravitational potential energy of 

a charge is negligible. In the same way, when a charge is moved from one 

point to another against electrostatic force (or field), work needs to be done 

which is stored as electrostatic potential energy of the charge. And, the 

electric potential at a point in an electric field is defined as electrostatic 

potential energy per unit charge at that point.  

We begin this unit by determining the work done in moving a charge from one 

point to another in an electric field in Sec. 8.2. In doing so, you will learn how 

to calculate the line integral of electric field .E


 In Sec. 8.3, we shall define a 

scalar quantity called electric potential in terms of the line integral of electric 

field and calculate its value at a point due to an isolated charge as well as due 

to a system of charges. In Sec. 8.4, you will learn how to calculate electric 

field at a point if the value of electric potential at that point is known. 

You have learnt the concept of electric dipole in Unit 5. You know that it is a 

unique configuration of two charges which is of immense practical utility in 

physics. Therefore, in Sec. 8.5 of this unit, we shall explain how to determine 

electric potential due to electric dipole at a given point. In Sec. 8.6, we discuss 

the effect of electric field on an electric dipole and explain the conditions under 

which electrostatic potential energy can be stored in an electric dipole. 

In the next unit, you will learn how to calculate electric potential due to 

continuous charge distributions. 
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Expected Learning Outcomes 
After studying this unit, you should be able to: 

 calculate the work done in moving a charge from one point to another in 

an electric field; 

 define electric potential as line integral of an electric field; 

 determine the electric  potential at a point due to a single charge and a 

system of charges; 

 establish the relation between electric potential and electric field;  

 calculate electric field at a point knowing the electric potential; 

 determine the electric potential due to an electric dipole at a given point; 

and 

 determine the torque experienced by an electric dipole in a uniform 

electric field. 

8.2   WORK DONE IN MOVING A CHARGE 

The concept of electric potential is closely linked to (a) the work done by 

electrostatic force in moving a charge from one point to another in an electric 

field, and (b) the relation between work done and potential energy. For the 

gravitational force, you have learnt how to determine the work done in moving 

an object from one point to another in Example 9.8 of Unit 9 of the course on 

Mechanics (BPHCT-131). You have also learnt in Unit 10 that the gravitational 

force is a conservative force which enables us to define the gravitational 

potential energy. On similar lines, we shall determine the work done by the 

electrostatic force in moving a charge from one point to another in an electric 

field. We shall also show that the electrostatic force is conservative and 

thereby define electrostatic potential energy and electric potential. 

From Sec. 5.3 of Unit 5, you know that a single charge, say Q, sets up an 

electric field in the region surrounding it. The electric field E


due to the charge 

at a point is defined as the electrostatic force experienced by a unit positive 

test charge placed at that point. If, instead of a unit positive charge, we place a 

charge q at that point, then electrostatic force F


experienced by the charge q 

in the electric field E


is given by 

  EF


q  (8.1a) 

where the electric field E


is given by Eq. (5.6a) of Unit 5: 

  rE ˆ
4

1
2

0 r

Q





 (8.1b) 

where r̂  is a unit vector in the radial direction away from charge Q.  



  

242  

Block 2                                                                                         Electrostatics 

Now, let us suppose that the charge q is moving from point a to b along an 

arbitrary path as shown in Fig. 8.1.  

 

Fig. 8.1: The charge q moves from point a to point b along an arbitrary path in 

electric field E


of charge Q (not shown in the figure).  

From Sec. 3.3 of Unit 3, you may recall that the work W, done in moving the 

charge q from point a to b is given by the line integral [Eq. (3.18b)]: 

  
 

b

a

b

a

dqdW l.El.F


     (8.2) 

Now, what happens if instead of the charge q, we move only a unit positive 

charge between a and b? You can see that in this case, the work ,W   done is 

obtained simply by dividing W by q, i.e., 

  


b

a

d
q

W
W l.E


'

 
(8.3) 

We will be solving the line integrals of Eqs. (8.2) and (8.3) and obtain W   for a 

given charge. We will thus arrive at some interesting results. But, before 

proceeding further, we would like you to solve an SAQ. 

SAQ  1 -  Work done in moving a charge 

Calculate the work done in moving a unit positive charge through a distance l 

in a uniform electric field parallel to the field direction. 

Let us now evaluate the line integral of the electric field. 

8.2.1 Line Integral of Electric Field 

Let us consider the electric field due to a charge Q as shown in Fig. 8.2a. Let 

there be two points a and b at distances ar  and br  from the charge Q as 

shown in Fig. 8.2a. Let us determine the line integral given by Eq. (8.3) for an 

arbitrary path between points a and b. Note that the path from a to b is a 

continuous curve. Let us evaluate Eq. (8.3), i.e., the work done in moving a 

unit positive charge from a to b. Suppose the unit charge moves from a to a 

(which is an arc of a circle) and then from a to b as shown in Fig. 8.2a. Then 

we can write [(recall Eq. (3.33), Unit 3, Block 1 of this course]:
   

                             
 






b

a

b

a

a

a

dddW l.El.El.E


     (8.4) 
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Fig. 8.2: Work done in moving a unit positive charge from point a to point b 

along the path shown as continuous curve.  

The first line integral on the right-hand side of Eq. (8.4) represents the work 

done in moving the unit charge from a to a  along the arc of a circle of radius 

say, .ar  The second integral represents the work done in moving the same 

charge from a to b along a straight line. The integrand l.E


d  of the first line 

integral is equal to zero as E


 and l


d  are perpendicular to each other (see 

Fig. 8.2b). The integrand l.E


d of the second line integral in Eq. (8.4) is equal 

to lE


d  as both E


and l


d are parallel to each other along the path ab (see 

Fig. 8.2c). Can you tell why it is so? This is because, in the case of first 

integral,  is 90 and hence 0cos  and in the second integral,  is zero and 

hence 1cos   (see the margin remark).  

Let us now determine the second integral of Eq. (8.4). Using Eq. (8.1b) for ,E


 

replacing l


d  by r


d  (since the path from a  to b is radial), and writing drd rr ˆ


 

(where r̂  is a unit vector in the radial direction away from charge Q), we can 

write Eq. (8.4) as:
 

 
















 

 ba

r

r

r

r

r

r

b

a
rr

Q

r

drQ
dr

r

Q
ddW

b

a

b

a

b

a

11

44
)(

ˆˆ

4
0

0
2

0
2

0

r.r
r.El.E


 

since .aa rr   

Therefore, Eq. (8.4) becomes 

 











 

ba

b

a
rr

Q
dW

11

4 0

l.E


 
 (8.5) 

for the path shown in Fig. 8.3a between points a and b. 

Now, you may recall from Sec. 3.4.1 of Unit 3, Block 1 of this course that 

a scalar potential can be associated with a conservative vector field. 

Since our aim here is to define an electric potential associated with electric 

field, we should establish that it is a conservative vector field. To do so, we 

examine if the electric field of a charge is conservative. 

From Eq. (8.5), we note that the work done in moving a unit positive charge 

between any two points in the electric field of charge Q depends only on the 

distance of those points from charge Q and is independent of the path we 

Note that when we 

integrate over r, the limits 

of integration are from 

ar   to .br  

The dot or scalar product 

of two vectors  a


 
and b


         

is defined as 

      
 cosbab.a



 
where  is the angle 

between vectors 

a


 
and .b


 

One  of the characteristics 

of a conservative force is 

that the work done by this 

force in moving a particle 

from one point to another 

is independent of the path 

chosen to move the 

particle between the two 

points. The converse of 

this statement is also true: 

if the work done by a 

force in moving a particle 

from one point to another 

is independent of the 

path, the force is a 

conservative force.  

This characteristic is 

exhibited by gravitational 

force (for a particle) as 

well as by electrostatic 

force (for a charged 

particle).  
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choose to move the unit charge from one point to the other. So, the line 

integral of the electric field is independent of the path. Therefore, the 

electric field is a conservative vector field.  

 

 

 
8.2.2 Electrostatic Potential Energy 

Recall from Sec. 10.3 of Unit 10, Block 2 of the Semester 1 course entitled 

Mechanics (BPHCT-131) that gravitational force is conservative. You have 

learnt that we can define potential energy of an object moving under the 

influence of a conservative force. For example, you have learnt that the 

change in gravitational potential energy, U in moving an object from point a 

to point b is equal to the negative of the work done by the gravitational force in 

moving it from point a to b, that is,  

 abba WU  )(  

Now, you have learnt in Sec. 8.2.1 of Unit 8 that the electric field is a 

conservative vector field. Thus, we can say that the electrostatic force is a 

conservative force. So, we can also define electrostatic potential energy in the 

same way as we defined gravitational potential energy.  

Thus, we can say that the change in electrostatic potential energy of a charge 

q in moving it from point a to b in an electric field of a charge Q is equal to the 

negative of the work done by the electrostatic force in moving the charge from 

point a to point b. If aU  and bU  are the initial and final electrostatic potential 

energy, respectively, of charge q, then we can write 

 abab WUUU  )(  (8.6) 

where, abW  is the work done by the electrostatic force in moving the positive 

charge q from point a to point b in the electric field E


due to charge Q. Now, 

from Eqs. (8.3) and (8.5), we can write: 

 












ba
ab

rr

Qq
WqW

11

4 0

 (8.7) 

where W  is the work done in moving a unit positive charge from point a to 

point b. So, from Eqs. (8.6) and (8.7), we can write 

 

























abba
ab

rr

Qq

rr

Qq
UUU

11

4

11

4
)(

00

  (8.8) 

Eq. (8.8) gives the change in electrostatic potential energy of a positive charge 

q when it is moved from point a to b in the electric field due to charge Q. To fix 

these ideas, you may like to go through the following example.  

The electric field of a stationary charge is conservative. 
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Before proceeding further, you should answer an SAQ.  

SAQ  2 -  Electrostatic potential energy 

In a region, the uniform electric field is .NCˆ200 1i  Calculate the work done in 

moving i) an electron, ii) a proton through a distance 30 m along the field 

direction. What will be the change in electrostatic potential energy of these 

charged particles?  

With this understanding of work done by electrostatic force in moving a charge 

and the related concept of electrostatic potential energy, you can learn about 

electric potential. 

8.3 ELECTRIC POTENTIAL DUE TO POINT 
CHARGES  

In Unit 5 of this Block, you have learnt that the electric field, defined as 

electrostatic force per unit charge, is a very useful concept for determining the 

forces experienced by a charge or a group of charges of any sign and 

magnitude. Now, let us ask ourselves: Can we define a simpler concept 

which enables us to determine the electrostatic force and electric field 

 

The magnitude of a uniform electric field E


 along the positive x-axis is       

120 NC1. Calculate the change in electrostatic potential energy of a proton 

moving along a path parallel but opposite to the direction of E


 through a 

distance 25 m. 

SOLUTION   We know that the work done by a constant force F


 in 

moving a particle through a displacement d


 is given as 

 d.F


W  

In the instant case, the electrostatic force on charge q due to an electric 

field E


is .EF


q Thus, the work done on the proton is 

    cosqEdqW d.E


 

where  is the angle between E


and .d


 Now, the displacement of proton is 

parallel and opposite to the direction of ,E


 i.e. .180  Thus, we have 

  


180cosm) 25()NC120(C)106.1(180cos
119

qEdW  

          J108.4 16
  

If iU  and fU  are the initial and final electrostatic potential energy of the 

proton, we can write 

  J108.4 16 WUUU if  

So, we discover that the electrostatic potential energy of proton increases 

(as )fi UU  when it moves opposite to the direction of electric field. 

 

 

                 

 

 

 

 

 

 

XAMPLE 8.1 :  ELECTROSTATIC POTENTIAL ENERGY 
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due to a charge or a system of charges? The answer is, yes, we can. The 

electric potential is such a concept. Let us elaborate it with the help of the 

relation between work done and electrostatic potential energy discussed in 

Sec. 8.2.2. 

8.3.1 Electric Potential due to a Point Charge 

Let us first define electric potential. The electric potential is defined as 

electrostatic potential energy per unit charge, that is, 

  
q

U
V   (8.9) 

where V is electric potential at a given point in the electric field and U is the 

electrostatic potential energy of charge q at that point. You know that the 

difference in electrostatic potential energy of charge q, when it is moved from 

point a to b in the electric field of charge Q is given by Eq. (8.8). Thus, on the 

basis of the definition of electric potential given above, we can write the 

difference in electric potential between points a and b as 

 
q

U
V


  

or 















ab

ab
ab

rr

Q

q

UU
VV

11

4 0
 (8.10) 

You know that U is related to the work done by the electrostatic force in 

moving charge q from point a to b through Eq. (8.6). Also, the work done per 

unit charge is related to the electric field by Eq. (8.3). Thus, on the basis of 

Eqs. (8.6) and (8.3), we can write Eq. (8.10) in terms of the line integral of 

electric field E


 as 

 

b

a

ab
ab d

q

W
VV l.E


 (8.11) 

Further, from Eq. (8.10) we note that the difference in electric potential is a 

difference between two numbers (or scalars): 








 br

Q

04
 and 









 ar

Q

04
.  

Let us now see what happens if we assume that initial point a is at infinity (that 

is, )ar  and the electric potential at infinity is zero, that is, .0aV Then, we 

can write Eq. (8.10) as 

 
b

b
r

Q
V

04
  (8.12) 

Eq. (8.12) gives the electric potential at point b at a distance br  from a point 

charge Q. Further, for the condition that point a is located at infinity, i.e.,  

ar  and ,0aV  Eq. (8.11), which defines electric potential at point b at a 

distance br  in terms of line integral of ,E


 reduces to  

 




br

b dV l.E


 (8.13) 
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Note that Eqs. (8.12) and (8.13) are equivalent definitions of electric potential. 

Eq. (8.12) signifies that electric potential is a scalar quantity. Eq. (8.13) helps 

us understand what we mean when we say that the electric potential at a point 

in an electric field has some finite value. The RHS of Eq. (8.13) tells us that 

the electric potential at any point b at a distance br  is the work done in 

bringing a unit positive charge from infinity up to that point (see Fig. 8.3). The 

SI unit for electric potential is the joule / coulomb (JC1). This combination 

occurs so often that a special unit, the volt (abbreviation V named after 

Alessandro Volta), is used to represent the unit of electric potential.   

 

 

 

 

 

 

 

 

From Eq. (8.14), we note that in the electric field of a positive charge Q, the 

potential at a point at distance r is positive; while for a negative charge, it is 

negative. Now, let us pause for a moment and ask ourselves: What is the 

physical meaning of this statement?  

Note that in the electric field due to a positive charge, work is done on the 

unit positive test charge to move it from infinity to the given point against the 

repulsive force between the positive charge and the test charge. This work 

done by an external agent increases the electrostatic potential energy of the 

system and hence electric potential due to a positive charge at some finite 

distance is positive. On the other hand, in the electric field due to a negative 

charge, the work is done by the electric field in bringing the unit positive 

charge from infinity and the electrostatic potential energy of the system 

decreases. Therefore, the electric potential due to a negative charge at some 

finite distance is negative. 

It is, therefore, clear that, when work is done against the force field (in this 

case electric field), potential energy of the system increases. This can be 

easily understood by considering an example in the case of gravitational field. 

When a body of finite mass is raised to a height against the force of gravity 

acting downwards, then the potential energy of the body increases. Here, 

work is done against gravity. And when work is done by the force of gravity as 

in case of free fall of a body, the potential energy decreases. The difference in 

potential energy gets converted into kinetic energy of the freely falling object. 

 

Electric potential associated with electric field E


 due to a charge Q at a 

point at distance r from it is defined as 

 
r

Q
V

04
  (8.14) 

Electric potential V associated with the electric field E


 due to a point 

charge Q at a distance r from it is given in terms of line integral as 

 




r

dV l.E


 (8.15) 

ELECTRIC POTENTIAL DUE TO A POINT CHARGE 

Fig. 8.3: Work done in 

moving a unit positive 

charge from point a (at 

infinity) to point b in 

the electric field of 

charge Q. 



  

248  

Block 2                                                                                         Electrostatics 

 

 

 

So far, you have learnt the concept of work done in moving a charge in an 

electric field, electrostatic potential energy and electric potential and how 

these concepts are related to each other.  

Now, to concretise these ideas, you should go through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential Difference and Zero Potential 

The way we have defined the electric potential at a point by Eq. (8.14) may 

give you an impression that it is an absolute quantity. It is, however, not true 

because we have arbitrarily chosen a reference point at infinity and 

assumed that the electric potential at infinity is zero. The more 

fundamental quantity is the potential difference as given by Eq. (8.10) and 

Eq. (8.11) which refers to the change in electrostatic potential energy or the 

work done when a unit positive charge is moved from one point to another in 

an electric field. To determine the potential difference between any two points 

in an electric field, we do not need any reference point.  

Potential difference is a very important concept in the field of electrostatics 

and current electricity. Its knowledge helps us in determining the exact value 

of the current which flows between any two points in an electric circuit, 

provided the (electric) resistance between the two points is known. 

Though potential difference is a more fundamental concept than 

absolute potential, it is of immense practical importance to define a 

In electrostatics, we 

associate three quantities 

with a static electric 

charge. The magnitude 

of the electrostatic force 

on a test charge q at a 

distance r from the point 

charge Q is given as 

 
2

04

1

r

Qq
F


  

The magnitude of the 

electric field at a point 

distance r is given as 

 
2

0
4

1

r

Q
E


  

The electric potential at 

distance r from the point 

charge Q is given as 

 
r

Q
V

04

1


  

Note the nature of 

dependence of these 

quantities on the distance 

r, point charge Q and test 

charge q. 

 

 

 

 

A particle of charge 5.0 C is located on the x-axis at the point cm. 0.6x  

Calculate the electric potential due to this charge at the origin, .0x   Also 

calculate the work done in moving a charge C 0.6   from infinity to the 

origin keeping the first charge fixed. 

SOLUTION  From Eq. (8.14), we write the electric potential as 

  
r

Q
V

04

1


  

Substituting the values of C100.5 6Q , m100.6 2r  and 

229
0 CNm100.9)4/1(   we have 

  V1048.7
m100.6

C 100.5
)CNm100.9( 5

2

6
229 









V  

Further, to calculate the work done in moving the charge  6.0 C from 

infinity to the origin, we use Eq. (8.11) with the understanding that potential 

at infinity is zero: 

 J 48.4V)1048.7(C)100.6(/ 56  qVWqWV  

 

 

XAMPLE 8.2 : ELECTRIC POTENTIAL DUE TO A POINT 

CHARGE 

 

 

 

A positive point charge produces positive electric potential and a 

negative point charge produces negative electric potential. 
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reference point where the value of potential can be taken to be zero. 

Such a reference point with zero potential enables us to assign an absolute 

value of electric potential to a point in electric field. We did that by choosing 

the reference point at infinity with zero potential and defined electric potential 

at a point by Eq. (8.14). 

You should, however, remember that the choice of the reference point 

with zero potential is arbitrary and it is done in such a manner which 

makes the mathematical treatment of the problem simpler. For example, 

in most of the problems involving electric potential in electrical circuits, the 

potential of the Earth is taken as reference point with zero potential. This 

choice of reference potential is guided by the fact that the potential of the 

Earth remains constant even if it gains or loses electricity. This choice of 

reference with zero potential for electric situations is similar to our choice of 

sea level as reference point for describing the height of a place or a mountain 

on the Earth. 

Before studying further, try to solve the following SAQ. 

SAQ  3 -  Calculating electric potential, potential difference and 

         work done  

a) Refer to Fig. 8.4 which shows two points X and Y located at distances 8 m 

and 12 m, respectively, from a point charge .C7  (i) Calculate the 

electric potential at points X and Y and the potential difference between 

points X and Y. (ii) Suppose that the point charge C7
 
is replaced by a 

point charge C.7
 
Calculate the electric potential at points X and Y and 

the potential difference between X and Y. (iii) If the point charge C7
 
is 

fixed at its position, calculate the work done in moving a charge C3  

from infinity to the point X. 

b) The radius of a gold nucleus is m106.6 15  and the atomic number, Z of 

gold is 79. Assuming that the nucleus acts as a point charge, and 

electronic charge C,106.1 19e
 
calculate the electric potential at the 

surface of a gold nucleus. 

 

From Eq. (8.14), you know how to determine electric potential due to an 

isolated charge at a point located at distance r from the charge. Now, suppose 

that we have many discrete changes located at different points in space. How 

do we determine electric potential at some given point due to this system of 

discrete charges? You will learn it now. 

8.3.2 Electric Potential due to a System of Discrete 
 Charges 

From Unit 5 of this course, you know that electric field obeys superposition 

principle which enables us to calculate E


at a given point due to a system of 

discrete charges. The superposition principle for electric fields implies that   

(a) the electric field at a given point due to any one charge of the system is 

Fig. 8.4: Diagram for 

SAQ 3a. 
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unaffected by the presence of the remaining charges, and (b) the net value of 

E


at a given point is the vector sum of the fields due to individual charges of 

the system, at that point. 

You may, therefore, ask: Can we use the superposition principle to 

determine the value of electric potential due to a system of charges? The 

answer is: Yes, we can. Since electric potential is a scalar quantity, its value at 

a given point is the algebraic sum of the electric potential due to individual 

charges of the system. Thus, using the superposition principle for electric 

potential is much simpler than using it for E


 because, in case of ,E


 we have 

to deal with vector sum of the fields due to individual charges. 

Suppose we have a system of charges Nqqq ,,..., 21  located at distances 

,...,,, 21 Nrrr  respectively, from the point P. So, according to the superposition 

principle, the potential at point P can be written as the algebraic sum of the 

potential at P due to :,...,, 21 Nqqq   

 
N

N
P

r

q

r

q

r

q
V

020

2

10

1

4
...

44 






     

Note that here each individual charge is acting as if the other charges are not 

present. The above expression may be written in a summation form as: 

 






N

i i

i
P

r

q
V

104

1
 (8.16) 

As a caution, you may keep in mind that the sum given in Eq. (8.16) is an 

algebraic sum and not a vector sum as the potential at a point is a scalar 

quantity. To get a feel for the value of potential due to a system of discrete 

charges, go through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

Three point charges are placed on the x-axis: C2 at C3cm, 20 x at 

C4cm, 30 x at
 

cm. 40x Calculate the electric potential at .0x   

SOLUTION   To calculate the electric potential at a point due to many 

discrete charges, we use Eq. (8.16): 

  






3

104

1

i i

i

r

q
V  

On substituting the numerical values of 
i

q  and 
i

r , we get 

 







 











m40.0

C104

m30.0

C103

m20.0

C102
CNm109

666
229V

 

 

 

                 

 

XAMPLE 8.3 : ELECTRIC POTENTIAL DUE TO MANY 

DISCRETE CHARGES 
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Before proceeding further, answer an SAQ.  

SAQ  4 -  Electric potential due to many charges 

Two point charges q  and q2  are placed along a straight line at a distance 

of 9 m from each other. Determine the distance of a point, from the charge 

,q  between the two charges where the electric potential is zero. 

On the basis of the discussion so far, you have learnt that the electric field 

E


at a point in space gives us the magnitude and direction of electrostatic 

force and electric potential gives the work done by the electrostatic force in 

moving a unit positive charge from one point to another. So, if we have a 

relation which enables us to compute electric field at a point if the potential at 

that point is known, solving problems of electrostatics becomes far easier. It is 

far easier to use the concept of electric potential since it is a scalar. You will 

agree that working with vectors is more complicated than working with scalars. 

Let us now learn the relation between electric field and electric potential. 

8.4   RELATION BETWEEN ELECTRIC FIELD AND 
 ELECTRIC POTENTIAL 

You know from Eq. (8.11) that the difference in electric potential, 

)( abba VVV   between two points b and a in the electric field E


of charge Q 

is equal to the negative of the line integral of E


between the same two points: 

 

b

a

abba dVVV l.E


 

If the separation l


d  between the two points a and b is small, we can write the 

potential difference dV between any two points as 

 l.E


ddV   (8.17) 

or l


dEdV  cos  

or 
l


d

dV
E  cos  (8.18) 

The presence of cos  term in Eq. (8.18) indicates that the electric field is not 

a simple derivative of the potential function V; rather, it is some special kind of 

       
]m10m10m10[CNm109 151515229    

or                 V109CNm109 414  V   

Note that each of the three charges are placed at different points on the 

same line (x-axis). But, the electric potential at a given point )0( x  on the 

same line due to one charge is not affected by the presence of the other 

two charges. 
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derivative of the potential. We call it directional derivative about which you 

studied in Unit 1, Block 1 of this course. 

As you have studied in Sec. 1.3, Unit 1, Block 1 of this course, the rates of 

change of scalar fields such as temperature and potential in different 

directions can be expressed by using the gradient operator. From Eq. (1.8), 

you know that the difference df in the value of a scalar function f between two 

points separated by r


d is given as 

 r


dVdf .)(  

Since electric potential is a scalar function, we can use the above general 

relation and write the electric potential difference between two points 

separated by l


d  as 

 l


dVdV .)(  (8.19) 

So, comparing Eqs. (8.17) and (8.19), we can write 

 























z

V

y

V

x

V
V kjiE ˆˆˆ


 (8.20) 

The components of E


along x, y and z directions are 

 
z

V
E

y

V
E

x

V
E zyx














 ,,  (8.21) 

Thus, we find that the electric field E


is the negative of the gradient of the 

electric potential V at any point. 

Eq. (8.20) or Eq. (8.21) enables us to calculate the electric field at a point if we 

know the value of electric potential at that point. To understand this method, 

go through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The electric potential at a point is given by the relation CzByAxV   

where A, B and C are constants. Determine the electric field E


at that point.  

SOLUTION   From Eq. (8.20), we have 

 V
zyx

V 





















 kjiE ˆˆˆ


 

Substituting the value of V, we get 

 )(ˆˆˆ CzByAx
zyx























 kjiE


 

 ]ˆˆˆ[ kjiE CBA 


 

 

 

 

XAMPLE 8.4 : ELECTRIC FIELD FROM ELECTRIC 

POTENTIAL 
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Now apply this method yourself to solve SAQ 5.  

 
SAQ  5 -  Electric field from electric potential  

The electric potential at any point is given by ).4( 22 xyxV   Calculate the 

electric field E


at that point. 

 

In Unit 5 of this block, you have learnt how to calculate electric field due to 

multiple discrete charges and, especially the electric dipole. In the following 

section, you will learn how to determine the electric potential due to an electric 

dipole. 

8.5   POTENTIAL DUE TO AN ELECTRIC DIPOLE 

In Unit 5, you have learnt about the electric dipole. You know that it is a pair of 

equal and opposite charges, ,q  separated by some distance, 2a. Then a


2  

is a vector along the axis of the dipole, drawn from the negative to the 

positive charge (Fig. 8.5).  

Let us now determine the electric potential due to a dipole. We shall use polar 

coordinates for mathematical convenience. Refer to Fig. 8.5 which shows 

point P at a distance r from the midpoint C of the dipole AB. The line joining P 

and C makes an angle  with the dipole axis. So, the polar coordinates of 

point P are r and  with the origin at C, the midpoint of dipole.  We now 

determine the electric potential at P due to the two charges qq  and of the 

dipole. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.5: An electric dipole AB of length 2a and point P at a distance r from the 

mid-point C of the dipole. 

Study Fig. 8.5. Note that the distances of point P from q  and q  are AP 

and BP, respectively. Also note we have drawn perpendiculars from B to S 

and A to T. Thus, under the condition that point P is far away from the dipole 

so that r   2a, you can see from the figure that  

  cosarCSPCSPBP   

and   cosarCPTCTPAP  
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Thus, using the superposition principle [Eq. (8.16)], we can write the potential 

at P due to charges q and q of the dipole as: 

 )cos(4

cos2

)cos(

1

)cos(

1

4 222
00 


















ar

aq

arar

q
V  (8.22) 

Now, let us suppose that r


is a vector from C to P and the unit vector along 

r


is .r̂  Also, you know [Eq. (5.11)] that the dipole moment, .2 ap


q  Since 

,cos2ˆ2ˆ  qaq r.ar.p


 we can write Eq. (8.22) for V as 

 
)cos(4

ˆ

222
0 


ar

V
r.p



 (8.23) 

When point P is far away from the dipole, 2r
 
is large compared to .cos22 a  

So, we can neglect 22 cosa  in the denominator in comparison to ,2r  and 

write Eq. (8.23) as 

 
2

0
2

0 4

cos

4

ˆ.

r

p

r
V









rp


 

    (8.24) 

Eq. (8.24) gives the general expression for the electric potential due to dipole 

at a distance r from its mid point.  

On the basis of Eq. (8.24), you can conclude that: 

 

 

 

 

 

 

 

We will now determine the electric field of a dipole from its electric potential. 

But before studying further, you may like to solve an SAQ. 

SAQ  6 -  Electric potential due to an electric dipole 

A straight line from the centre of an electric dipole and along the axis of the 

dipole first passes through point 1P and then through point .2P  The distances 

of points 1P and 2P from the centre of the dipole are 40 cm and 60 cm, 

respectively. The dipole length is much smaller than 40 cm. If the potential at 

point 1P  is 60 V, calculate the potential at point .2P  

 

To determine the electric field from electric potential, we will use the relation 

given by Eq. (8.20). However, since we have used polar coordinates to specify 

the location of point P, we must use the expression for the del operator in       

 The electric potential due to dipole varies with r as 2/1 r
 
whereas 

the potential due to point charge varies as ./1 r
 
The comparison 

of these variations shows that the potential decreases more 

rapidly with r for a dipole than for a point charge. 

 The electric potential due to dipole is zero for all points which lie 

on the perpendicular bisector of the dipole axis because, for any 

such point,  = 90 and cos = 0. Hence, no work is done in 

moving a test charge along the perpendicular bisector. 
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Eq. (8.20) in polar coordinates. In polar coordinates, the operator 


 is given 

as 

    









rr

1ˆˆ r


 

Thus, Eq. (8.20) can be expressed in polar coordinates as  

 
V

rr
V 



















̂
r̂E


   

Now, substituting the value of V from Eq. (8.24), we can write 

 









































































2
0

2
0

2
0 4

cosˆ

4

cos
ˆ

4

cosˆ
ˆ

r

p

rr

p

rr

p

rr


rrE



 

    
 


 sinˆ)cos2(ˆ

4

1

3
0

r
r

p
  (8.25) 

From Eq. (8.25), we can write the radial )( rE and tangential )( E components 

of electric field E


at point P (see Fig. 8.5) as 

 30

cos2

4

1

r

p
Er




  (8.26) 

 30

sin

4

1

r

p
E




  (8.27) 

The radial and tangential components of the electric field E


at point P are 

shown in Fig. 8.5. From the figure, note that the resultant electric field E


at 

point P is directed along PR and it makes an angle  with the (extended) line 

CP, i.e. the direction of the radial component .rE  

Thus, the magnitude of the electric field is given as 

 1cos3
4

sincos4
4

2
30

22
30

22 






 r

p

r

p
EErE


 

   (8.28) 

To determine the direction of the resultant field ,E


 we make use of Eqs. (8.26) 

and (8.27) and note from the geometry of Fig. 8.5: 

  






tan

2

1

cos2

sin
tan

rE

E
 (8.29) 

The advantage of using polar coordinates for obtaining expressions for 

potential and hence electric field at a point due to dipole can be understood on 

the basis of Eqs. (8.26) and (8.27). Refer to Fig. 8.5. If we take  = 0, then the 

point P will shift to a point along the axis of the dipole. For any such point,   

Eqs. (8.26) and (8.27) show that only the radial component will be present; the 

tangential component, E  will be zero because of the sin  term. So, the 

magnitude of the electric field due to the dipole at a point along its axis can be 

written as 
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3

0

2

4

1

r

p


E


 

And, Eq. (8.29) indicates that direction of the electric field will be along the 

axis of the dipole because, for  = 0,  = 0 and  is the angle between the 

resultant electric field and the dipole axis. Thus, the electric field due to dipole 

at a point along its axis at a distance r from the mid point of dipole, such that   

r >> a, is given as 

  
3

0

2

4

1

r

p
E




  (8.30) 

Eq. (8.30) is the same as Eq. (i) of Example 5.4, Unit 5 obtained for electric 

field due to dipole at a point along its axis.  

For ,2/  point P will be a point on the perpendicular bisector of the dipole 

axis (Fig. 8.6). In this case, the radial component of electric field will be zero 

as 0cos   in Eq. (8.26). Thus, the magnitude of the electric field at such a 

point will have contribution only from the tangential compound, E . Thus, we 

can write Eq. (8.28): 

  
30

2

4

1

r

p
E


 E


 (8.31) 

We cannot use Eq. (8.29) for determining the direction of E


 at a point on the 

bisector of the dipole because, )2/tan(tan   is not defined. We can, 

however, make use of the fact that the value of potential at every point on the 

bisector is zero [see Eq. (8.24)]. This means that no work is done in moving a 

charge along the bisector of a dipole. Further, the work done in moving a unit 

charge by distance l


d  is given as .l.E


d  Thus, 0l.E


d implies that field E


 is 

perpendicular to ,l


d  the direction of the perpendicular bisector. Now, to 

determine whether E


 is along or opposite to ,p


 refer to Fig. 8.6 which shows 

the electric field due to the dipole at point P. The components  sinqE  and 

 sinqE  of qE


 and qE


 respectively will cancel each other. However, the 

component  cosqE  and  cosqE  will add up along PD, a direction 

perpendicular to the bisector and opposite to the direction of dipole moment 

.p


 Thus, the electric field due to the dipole at any point on its perpendicular 

bisector is anti-parallel to .p


 Thus, we can write 

  
3

04

1

r

p
E




  (8.32) 

Eq. (8.32) is same as Eq. (i) of Example 5.5, Unit 5 obtained by computing 

electric fields due to dipole at a point on its bisector. 

We mentioned in the beginning of this section that understanding the 

behaviour of an electric dipole under the influence of an external electric field 

is very useful in analysing the effect of electric field on dielectric materials.  

So, let us now study the effect of electric field on a dipole. 

8.6 DIPOLE IN AN ELECTRIC FIELD 

Let us consider a dipole of length 2a in a uniform external electric field E


 as 

shown in Fig. 8.7. A uniform electric field means that its magnitude and 

Fig. 8.6: Direction of 

electric field at a point 

on the perpendicular 

bisector of dipole.  
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direction are the same everywhere. Let the dipole moment vector )2( ap


q  

makes an angle  with the electric field, .E


 

 

Fig. 8.7: Torque experienced by a dipole placed in a uniform electric field .E


 

Due to the external electric field E


, the charge +q of the dipole experiences a 

force EF


q while the charge q experiences an equal and opposite force 

.EF


q  Since the field is uniform, the net force F


 on the dipole is zero, i.e., 

 0EEFFF


  qqnet  (8.33) 

As the net force on the dipole is zero, the centre of mass of the dipole is not 

accelerated, that is, there is no effect on its translational motion.  

You may, therefore, ask: Does it mean that the external electric field has no 

effect on the dipole? No, it is not so. The dipole still experiences a turning 

effect due to the torque about its centre of mass C. This turning effect arises 

because the two equal and opposite forces, which cancel each other as free 

vectors, are acting at different points. That is, the forces experienced by 

charges q  and q  of the dipole do not have same line of action and hence 

they provide a turning effect.  

From Fig. 8.7, note that the centre of mass C of the dipole is at a distance a 

from each charge of the dipole. Thus, we can write the magnitude of net 

torque 


 as  

  sinsin2sinsin pEqaEqEaqEa  

The above expression can be written in vector form as 

 Ep


  (8.34) 

You know that the unit of torque is Newton metre (N m). The direction of the 

torque is obtained from right-hand rule (refer Sec. 12.3, Unit 12 of 1st semester 

course BPHCT-131) and is along k


  if the electric field E


 and dipole are in 

the xy-plane. 

Under the action of the torque, the dipole tend to align itself along the field 

direction with dipole moment vector p


 parallel to E


 vector. So, when p


 is 

aligned along ,E


 the torque on the dipole is zero because for .0sin,0   

The system (that is, the dipole) is in stable equilibrium when p


 is 

aligned with .E


  

From Fig. 8.7, we note that the torque acting on the dipole tends to align it 

along .E


 So, the rotation of the dipole is in the clockwise direction.  
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Potential Energy of an Electric Dipole 

Now, let us ask ourselves: What will happen to the potential energy of the 

dipole if it is rotated from its stable position? Whenever the dipole is rotated 

from its stable configuration (p


parallel to )E


external work must be done. This 

external work is stored as potential energy of the dipole.  

To obtain an expression for the potential energy of a dipole we need to 

calculate the work done by the electric field to rotate the dipole from some 

initial value of  to final value of . The work done, in terms of torque and 

angular displacement d is  

  ddW  

          dpE sin  (8.35) 

The negative sign in Eq. (8.35) indicates that the torque opposes any increase 

in . Thus, the work done by E


 to rotate the dipole from an angle 0  to  is 

 



0

dWW  

        







0

)sin( dpE  

       )cos(cos 0  pE  (8.36) 

The change in potential energy U of the dipole is the negative of the work 

done by the electric field. Thus, we have 

 )cos(cos 0 pEWUUU if  (8.37) 

Note that 0cos pEUi  is the potential energy at the initial or reference 

orientation of the dipole. As in the case of point charge for which we define 

potential energy to be zero at infinity, we need to define the orientation of 

dipole with respect to E


 for which we can consider its potential energy to be 

zero. It turns out that when the dipole is aligned perpendicular to ,E


 that is, 

when 2/  in Fig. 8.7, potential energy of the dipole can be taken to be 

zero. 

Thus, the initial potential energy .0iU  So, we can write Eq. (8.37) as  

 cospEU   

or E.p


U  (8.38) 

Eq. (8.38) gives the potential energy of a dipole in a uniform electric field. It 

shows that the potential energy is minimum (most negative) when the dipole is 
aligned along the field direction (i.e., ),0  and is maximum (most positive) 

when it is aligned opposite to the field direction (i.e., ).180  

Let us now sum up what we have learnt in this unit. 
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8.7   SUMMARY  

Concept Description 

Work done and 

line integral  

 

 

 The work W   done by the electric field E


 in moving a unit positive charge 

from point a to b, is equal to the line integral of E


: 

 

b

a

dW l.E


 

Path 

independence                          

                     

 The work done, that is, the line integral of ,E


 in moving a unit positive charge 

from one point to another in an electric field is independent of the path 

between the two points.                     

Electrostatic 

potential energy 
 The difference in electrostatic potential energy of a charge between two 

points a and b in an electric field is equal to the negative of the work done by 

the field in moving the charge from a to b: 

 abab WUUU   

Electric potential 

as line integral 
 The negative of the work W  done by the electric field in carrying a unit 

positive charge from infinity to some point at distance r from the charge giving 

rise to the field is defined as the electric potential V at that point: 

 




r

dWV l.


E  

Electric potential  The electric potential V at a point at a distance r from a point charge Q is 

given as: 

 
r

Q
V

04 
  

Relation between 

V and E


 

 The electric field E


 at a point is the negative gradient of the electric potential 

V at that point: 

 V


E  

Electric potential 

due to dipole 
 The electric potential at any point P, at a distance r from the midpoint of the 

dipole, on a line which makes an angle  with the axis of the dipole is given 

by: 

 
2

0
2

0 4

cos

4

ˆ.

r

p

r
V









rp


 

where r̂
 
is a unit vector from the centre of dipole to the point P where 

potential is to be determined and )2( ap


q
 
is the dipole moment vector. 

Torque on a dipole 

in electric field 
 Electric dipole in a uniform electric field experiences a turning effect. The 

torque 


 experienced by the dipole is given by: 

 Ep


  

Electrostatic 

potential energy of 

the dipole 

 The electrostatic potential energy of an electric dipole in an electric field is 

given by Ep


.U . Its value is minimum when dipole moment vector p


 
is 

parallel to electric field E


 
and maximum when dipole moment vector p



 
is 

anti-parallel to .E

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8.8   TERMINAL QUESTIONS  

1. Show that the line integral of the electric field E


 over a closed path is 

equal to zero. 

2. Show that, in a pair of oppositely charged plane parallel plates, the electric 

field E


 is equal to the potential difference between the plates divided by 

their separation. You may assume that the electric field is confined 

between the plates as shown in Fig. 8.8. 

3. Calculate the electric potential at two points A and B at distances of 10 cm 

and 50 cm from a charge C0.2 
 
as shown in Fig. 8.9. Also calculate the 

work done in bringing a charge of C05.0  from point B to A.  

4. Calculate the potential difference between points A and B assuming that a 

test charge 0q  is moved without acceleration from A to B along the path 

shown in Fig. 8.10. 

5. Mark the following statements as True or False: 

a) If the electric field is zero in some region of space, the electric potential 

must also be zero in that region. 

b) If the electric potential is zero at a point, the electric field must also be 

zero at that point.  

c) The value of potential can be chosen to be zero at any convenient 

point. 

d) Electric field at a point is negative of the gradient of electric potential at 

that point. 

e) The electric field and potential due to an electric dipole decrease much 

faster with distance as compared to a point charge. 

6. A uniform electric field of 13 NC103   is in the positive x-direction. A 

positive point charge 2 C is released from rest at the origin. 

a) Calculate the potential difference V (5 m) – V (0). 

b) What is the change in electrostatic potential energy of the charge 

when it is moved from 0x  to m? 5x  

c) Calculate the kinetic energy of the charge when it is at m. 5x  

d) Calculate the value of the potential V(x) if electric potential is chosen 

to be zero at i) 0x  and ii) m. 1x  

7. A uniform electric field is in the negative x-direction. Two points a and b 

are at m 3x  and m, 7x  respectively. 

a) Is the potential difference ab VV  positive or negative? 

b) If the value of the potential difference of )( ab VV   is ,V104  calculate 

the magnitude of the electric field. 

8. How much work needs to be done to transport an electron from the 

positive terminal of a 12 V battery to its negative terminal?  

Fig. 8.10: Diagram 

for TQ 4. 

Fig. 8.8: Diagram for 

TQ 2. 

Fig. 8.9: Diagram 

for TQ 3. 
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8.9 SOLUTIONS AND ANSWERS  

Self-Assessment Questions 

1. Let the electric field be E


 and l


d
 
be the element of path length. Since 

both E


 and l


d are parallel, the angle  between the two vectors is zero. 

Thus, using Eq. (8.3), we write the work done in moving a unit positive 

charge as 

      
 lE


dW .   dlEdlE )0(cos)(cos 

 Edl El  

2. The work done by a constant force F


 in moving a particle through 

displacement l


is  cos. FlW lF


 
where  is the angle between F


 and 

l


. 

 i) As per the problem, the electron is moving along the direction of .E


 

So, .0  Thus, the work done is 

    0cos)( lqEW   

        m) (30)NC200(C)106.1( 119   J106.9 16  

  The change in electrostatic potential energy of the electron is 

   J106.9 16 WUUU if  

  Thus, the electrostatic potential energy of electron increases as it 

moves along the direction of the electric field. 

 ii) As per the problem, the proton is moving along .E


 So, .0  Thus, 

we have 

     0cosqElW  

         J109.6 m) 30()NC (200C)106.1( 16119    

   So, the change in electrostatic potential energy of proton is 

    J109.6 16 WUUU if  

 Thus, we find that the electrostatic potential energy of proton 

decreases as it moves along the direction of the electric field.  

3. a) From Eq. (8.14), we have the electric potential due to a point charge 

    
r

Q
V .

4

1

0
  

  i) So, the electric potential at point X is 

        m) (8C)]10(7)CNm10[(9V 6229  X  

               V108V107.87 33   

    up to one significant digit. And the electric potential at point Y is 

        m) (12C)]10(7)CNm10[(9V 6229  Y  

             V105V105.25 33   

   Thus, the potential difference between the points X and Y is 

       V103V102.62V)105.25V10(7.87 3333  YX VV  
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  ii) When the point charge C7  is replaced by C,7  we have 

electric potential at point X  

     V1087.7m) (8C)]107()CNm109[( 36229  
XV  

     V1025.5m) (12C)]107()CNm109[( 36229  
YV  

   Thus, the potential difference between the points X and Y is 

            V103V102.62V)105.25(V1087.7 3333  YX VV  

  iii) The work done in moving the charge C3  from infinity to point 

  X is   

   J102J102.36V)1087.7()C103( 2236   XqVW  

 b) Charge on the nucleus C106.179 19 ZeQ and 

m 106.6 15r   

  Thus, from Eq. (8.14), we have 

 m106.6

C)106.179()CmN109(

4

1
15

19229

0












r

Q
V    

                         
)CJmCN(V101.7CNm107.1 11717   
 

4. Let the point P be at a distance x from the point charge q  and the 

electric potential at P due to the two charges be zero (Fig. 8.11). The 

electric potential at point P is 

   

















)9(

)2(

4

1

0 x

q

x

q

r
V

 

 Since V = 0 at P, we have 

   
m3392)9(

)9(

2
 


 xqxqqxxq

x

q

x

q

 

5.  The relation between E


 and V is: 

   























z

V

y

V

x

V
kjiE ˆˆˆ


 

 As per the problem, )4( 22 xyxV 
 

 Thus, 

 
  ;12]4[ 2232 xyxxy

x

V

x

V










 xyxxy

y

V

y

V
2]4[ 32 









 

   0]4[ 32 








xxy

z

V

z

V
 

 So,  )]0(ˆ)2(ˆ)12(ˆ[E 22 kji  xyxy


ji ˆ2ˆ)12( 22 xyyx 
 

  

Fig. 8.11: Diagram for 

answer to SAQ 4. 
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6. The electric potential due to an electric dipole is given by Eq. (8.24): 

   
2

04

cos

r

p
V




  

 So, for point 1P  we have  

   
2

0 )m40.0(4

cos
)(

1





p
V P  2

0
m) (0.40 V)60(

4

cos




p
 (i) 

 For point ,2P  we can write using Eq. (i) 

   
2

0 )m60.0(4

cos
)(

2





p
V P 2

2

m) (0.60

m) (0.40 V)60( 
  V27  

Terminal Questions 

1. Let us consider a closed path starting from and ending at a as shown in 

Fig. 8.12. Let b be some point on this closed path. A unit positive charge 

can be moved between points a and b through two paths: L and L.  If aV  

and bV  are potentials at a and b, respectively, we can write 

   
 

b

Lalong
a

ab VVd l.E


  (i) 

 also  




b

Lalong
a

ab VVd l.E


 (ii) 

 Now, by changing the limits of integration, we can write Eq. (ii) as:  

   
ba

b

Lalong
a

a

Lalong
b

VVdd   
' '

l.El.E


 
 (iii) 

 Adding Eqs. (i) and (ii) and making use of Eq. (iii), we can write 

  
0 



baab

a

Lalong
b

b

Lalong
a

b

Lalong
a

b

Lalong
a

VVVVdddd l.El.El.El.E


 

 That is, along a closed path, the line integral of the electric field is equal to 

zero. 

 Alternative method: We can also use the fact that the line integral of 

electric field is independent of the path. Thus, we can write  

  





b

Lalong
a

b

Lalong
a

dd l.El.E


 

Fig. 8.12: Diagram for 

answer to TQ 1. 
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 or 

  
00  



a

Lalong
b

b

Lalong
a

b

Lalong
a

b

Lalong
a

dddd l.El.El.El.E


 

 Note that )( LL   implies a closed path between points a and b in        

Fig. 8.12. 

2. Let A and B be two oppositely charged plates separated by a distance d 

(Fig. 8.8). Let E


 be the uniform electric field between the two plates. 

Then, the potential difference between the two plates can be written as 

[Eq. (8.11)]:  

  
)( AB

B

A

VVd   l.E


 

 where  BA VV and
 
are the potentials at the plates A and B respectively. 

 In the present case, writing  
B

A

x

x

dxasd

2

1

,î.El.E


and noting that both E


and 

dxî  are parallel, we can write 

  
 

1

22

1

ˆ

x

x
xEdxVV

x

x

AB   i.E


 dExxE  )( 12  

 That is, the magnitude of the electric field between two oppositely charged 

parallel plates is equal to the difference of potential between them divided 

by their separation.  

3. The electric potential V at a point distant r from a charge Q is given by        

Eq. (8.14): 

  
r

Q
V

04
   

 As per the problem, 2  CNm109)4/(1,C100.2C0.2 29
0

6Q  

m10.0and r m.50.0and Substituting these values, we get  

  
V101.8

m0.10

C1002.
)CNm109( 5

6
229 







AV  

  
V1036.0

m50.0

C100.2
)CNm109( 5

6
229 







BV  

 Work done in moving charge 0.5 C from point B to A is ),( BA VVqW    

,C1005.0w here 6q  

  V)1036.0108.1()C1005.0( 556  W J102.7 3     

4. We can write 

  
)()( ACCBAB VVVVVV    

B

C

C

A

dd l.El.E

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 For path E


,to BC
 
and l


d are perpendicular to each other. Therefore,  

 090cos 
B

C

dd lEl.E


     

 For path A to C, the angle between  E


 and .135l


d
 
Thus,  

    

C

A

C

A

Edld 135cosl.E


 

   Edd
E

AC
E

dl
E

C

A

  2
2

)(
22

  

 since .245cos/ ddAC    Thus, we have  

  

C

A

AB dVV l.E


Ed  

 You may note that this is also the value obtained via the direct path from A 

to B (shown in Fig. 8.10 by dotted lines.) 

5. a) False  

 b)  False (See Eq. (8.24) and (8.32) for any point on the perpendicular 

bisector of an electric dipole.) 

 c) True 

  d) True 

 e) True 

6. a)   
m5

0

13 m)5()NC103()0(m) 5( EdldVV

B

A

l.E


V1015 3  

 b) The difference in electrostatic potential energy and potential difference 

is related by 

   J103.0V)1015(C)102( 236   VqU  

 c) From the conservation of energy, we know that 

   0 KU  

  where U  is the change in potential energy and K  is the change in 

kinetic energy. So, 

   UKUKK  m) 5(0)]0(m) 5([ J100.3 2  

 d) We know that for uniform electric field, .EdV   So 

   )()0()( 0xxEVxV x  )()NC103( 0
13 xx    

  i) for 0)0( V  

    xxV )NC103()( 13   
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  ii) for 0)m 1( V  

    )1()NC103(0)( 13   xxV  

   or xxV )Vm10(3V103)( 133   

7. Note that the electric field is along negative x-direction. So, the relation 

between potential and electric field can be written as 

   
dx

dV
Ex   

 So, the value of potential will be higher for larger value of x. So, )( AB VV   

is positive.  

Further, to determine the magnitude of xE  for V,104 AB VV  we can 

write 

   13
4

Vm102.5
m 4

V10

m)4 m (7










 AB

x
VV

x

V
E  

8. In going from the positive terminal of a battery to the negative terminal, the 

electron (a negatively charged particle) moves from a point at a higher 

potential to a point at a lower potential. Thus, if A and B are, respectively, 

the positive and negative terminals of the battery, we have  

 
V12 AB VV

 

Thus, the work done in moving an electron from the positive to the 

negative terminal is
 

J101.92V)12(C)106.1()( 1819   AB VVqW  
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                      UNIT 9 

ELECTRIC POTENTIAL OF 
CONTINUOUS CHARGE 

DISTRIBUTIONS 

Structure 
 

9.1 Introduction 

Expected Learning Outcomes  

9.2 Electric Potential of Continuous Charge 

Distributions 

Line Charge 

Uniformly Charged Spherical Shell 

Uniformly Charged Non-conducting Sphere 

9.3 Equipotential Surfaces               
 

STUDY GUIDE           

 

In this unit, we will continue our discussion on electric potential begun in the previous unit. 

You will learn how to determine the electric potential of continuous charge distributions such 

as charged wire, spherical shell and non-conducting solid sphere. While studying this unit, you 

should focus on how to calculate the total charge for a given continuous charge distribution. 

The mathematical tools used for these calculations are similar to those you have learnt in 

Block 1 of this course. However, you will do better if you revise Units 3 and 4 of Block 1 on 

vector integral calculus and school integral calculus. Further, you should also focus on how 

the value of electric field can be calculated at a point using the expression for potential at that 

point due to a given continuous charge distribution. To help you understand and practice the 

method of determining electric potential better, we have given several examples, SAQs and 

TQs. Try to solve them yourself to check your understanding of the concepts and methods 

discussed in the unit. 

 

9.4 Electrostatic Potential Energy 

9.5 Summary 

9.6 Terminal Questions 

9.7 Solutions and Answers 

 

“I have not failed. I've just found 10,000 ways that won't work.” 

 

Thomas A.  
Edison 

 

Particle accelerators utilise very high 

potential differences to produce high 

energy charged particles used in atom 

smashing experiments for studying 

nuclear structure. This is a picture of 

the Large Hadron Collider located at 

CERN, near Geneva.  

(Picture source: Wikimedia Commons)  
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9.1   INTRODUCTION 

In the previous units of this block, you have learnt how to determine the 

electric field E


 and electric potential V due to a point charge and a system of 

discrete charges. You have learnt how to calculate potential by evaluating the 

line integral of .E


 You have also learnt how to calculate E


 from potential V by 

taking its gradient. In this unit, we shall extend these ideas to determine 

electric potential of continuous charge distributions.  

You know that the electrical appliances we use in our homes work on a 

potential difference of 220 V. Apart from these appliances, the concept of 

potential difference plays an important role in the design and manufacturing of 

high voltage sources used by physicists to do interesting experiments. For 

example, if a charged particle is allowed to fall through a potential difference, it 

accelerates and its kinetic energy increases. The machines called particle 

accelerators have been designed on this basic principle to produce high 

energy charged particles used in atom smashing experiments for studying 

nuclear structure. In electrical appliances and machines, the desired potential 

difference is created by charging objects of appropriate geometry. Therefore, 

it is important to study electric potential of continuous charge distributions. 

We begin the discussion by determining the electric potential of three types of 

continuous charge distributions, namely, line charge, spherical shell and non-

conducting solid sphere (Sec. 9.2). In Sec. 9.3, you will learn about 

equipotential surface which is a useful concept because it is characterised by 

the fact that no net work is done in moving a charge from one point to other on 

this surface. In Sec. 9.4, you will learn how to calculate electrostatic potential 

energy of a system of discrete charges as well as continuous charge 

distributions if electric potential is known. 

In the next unit (Block 3), you will study the macroscopic properties of the 

dielectrics kept in an electric field. The understanding of the concepts of 

electric field and potential studied in this block will help you appreciate the 

properties of dielectrics better. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 obtain the expression for electric potential of a line charge; 

 determine the electric potential of a uniformly charged spherical shell; 

 derive the expression of electric potential of uniformly charged non-

conducting sphere; 

 explain the concept of equipotential surface; and 

 calculate the electrostatic potential energy for a given charge distribution. 

9.2   ELECTRIC POTENTIAL OF CONTINUOUS 
 CHARGE DISTRIBUTIONS 

In the previous unit, you have learnt how to determine the electric potential of 

a point charge at a given point. You have also learnt how to use the 
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Can we consider a 

charged object as a 

collection or 

distribution of discrete 

charges and use the 

method described in 

the previous unit for 

determining its electric 

potential? No, we 

cannot. This is so 

because for such 

uniformly charged 

objects, we can only 

know the total charge 

on them. There is no 

way to ascertain the 

position of individual 

charges because the 

charge is uniformly 

distributed all over the 

object. A uniformly 

charged object is 

called continuous 

charge distribution 

because the 

separation between 

individual charges on 

such objects is very, 

very small. 
 

NOTE 
superposition principle to obtain the expression for electric potential of multiple 

discrete charges.  

Now, suppose that we need to determine the electric potential of a charged 

object such as a metal rod or a solid sphere. In general, for determining the 

electric potential of a continuous charge distribution, we first calculate 

the potential due to a small element of the charge distribution and then 

integrate this expression over appropriate limits to include the effect of 

total charge in it. We now determine the electric potential of three types of 

continuous charge distributions: line charge, uniformly charged spherical shell 

and uniformly charged non-conducting sphere. 

9.2.1 Line Charge 

In Unit 7 of this block, you have learnt how to determine the electric field at a 

point near an infinitely long charged wire (or a line charge). It is given by: 

  
rE ˆ

2 0r





    (9.1) 

where  is the charge per unit length on the wire or the linear charge 

density, r is the perpendicular distance of the point from the wire, 0
 
is the 

permittivity of free space, and r̂ is the unit vector along the direction of 

increasing r from the line charge (Fig. 9.1). 

The question now is: What is the potential of this wire at a point a situated at a 

perpendicular distance of ar  from the wire? From Eq. (8.15) of Unit 8, you can 

write  

  





ar

dV l.E


    (9.2) 

Let us evaluate the line integral in Eq. (9.2) by first moving a unit positive 

charge from a finite distance br  instead of infinity, to point a at distance ar  

and then let br
 
go to infinity. Here br is the distance of point b from the wire 

(see Fig. 9.1). This integral then gives us the difference in potentials between 

points a and b, i.e. 

  
 
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       (9.3) 

because for the path a to b, l


d  is parallel to .r


d  Inserting the expression for 

E


 from Eq. (9.1) we get  
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d  are in the same direction, we have  
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Fig. 9.1: Electric potential 

at a point a due to an 

infinitely long charged 

wire.  
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As you have learnt in the previous unit, we take a point at infinity with zero 

potential as our reference point and calculate the potential at a given point 

with respect to infinity. In the instant case, if we consider point b to be located 

at infinity, i.e. br  and take the potential bV equal to zero, then the RHS of 

Eq. (9.4) tells us that the potential aV at point a will be infinite. This is expected 

also because the infinitely long line charge having uniform charge distribution 

means an infinite amount of charge. Therefore, the sum of finite contributions 

from each part or element of an infinite line charge leads to an infinite 

potential.  

Thus, to have a physically meaningful expression for potential at a point finite 

distance away from the line charge, we cannot take infinity with zero potential 

as our reference point. However, the inability to have a reference point with 

zero potential does not cause any problem because in practical situations, we 

are interested in difference in potential between two points rather than its 

absolute value at a given point. Thus, Eq. (9.4) which gives the potential 

difference between points a and b (Fig. 9.1) with both ar and br  having finite 

values meets our requirement.  

Further, to check whether we can obtain the value of electric field at a point, 

say a, using Eq. (9.4), let us assume that point b located at a finite distance 

br  is the reference point with zero potential. This implies that br  is fixed and 

.0bV  Hence, the second term on the RHS of Eq. (9.4) is constant. Thus, we 

can write Eq. (9.4) as 

  
const

2

ln

0





 a

a
r

V
       (9.5) 

You may recall that electric field E


 and electric potential V are related by          

Eq. (8.20):  

  
rrE ˆ

2
ˆ

0rdr

dV
V

a







    (9.6) 

Note that Eq. (9.6) is the same as Eq. (9.1). 

To concretise the ideas discussed above, go through the following example. 

 

 

 

 

 

 

 

 

 

 

Note that an infinite line 

charge contain infinite 

amount of charge. Thus, 

we cannot calculate V at 

a point for such a 

continuous charge 

distribution by taking total 

charge into consideration. 

That method will not work 

as it will give infinite 

potential everywhere. 

That is why we have used 

the relation between V 

and E


 and the 

expression for E


 for an 

infinite line charge to 

obtain a physically 

meaningful expression for 

V. 
 

 

An infinite line charge has linear charge density .mC 0.2 1 Calculate 

the electric potential at a point on a line perpendicular to the line charge, at 

a distance of 3.0 m from the line charge. Assume that the electric potential 

of the line charge is zero at the perpendicular distance of 4.0 m. 

SOLUTION   From Eq. (9.4), note that the potential difference between 

two points a and b due to an infinite line charge is given as 

  
)/(ln

2 0
baba rrVV




      (i) 

XAMPLE 9.1 :  ELECTRIC POTENTIAL OF A LINE CHARGE 
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Before proceeding further, solve an SAQ. 

SAQ  1 -  Electric potential of a line charge 

The linear charge density of an infinite line charge is .m C100.3 16   

Assuming that the electric potential at a perpendicular distance of 5.0 m from 

the wire is zero, calculate the potential at the perpendicular distance of 6.0 m.  

Now, let us discuss how to determine the electric potential of a uniformly 

charged spherical shell at a given point. 

9.2.2    Uniformly Charged Spherical Shell 

You know that a spherical shell is a hollow sphere. For determining the 

electric potential of a uniformly charged spherical shell, there are two regions 

of interest: one at a point inside the spherical shell and the other at a point 

outside. 

 

Fig. 9.2: A uniformly charged spherical shell of radius R and point P is an 

external point.  

Study Fig. 9.2, which shows a uniformly charged spherical shell of radius R. 

To obtain an expression for the potential at an external point P, we first 

identify a suitable element of charged shell. The charged surface of the shell 

can be considered as a collection of a large number of thin rings such as the 

ring AB. The orientation of these rings are so selected that the axis of the 

rings is along OP, the line joining the centre O of the shell with the point P. 

Now, let the ring AB be contained between the directions  and  + d with 

respect to the axis OP. Let it be of infinitesimal width so that every point on it 

is at the same distance, say r, from P. The angular width of the ring is d, its 

width is Rd  and its radius is .sinR  The circumference of the ring is 

 sin2 R  and hence, its area is given by 

From the problem, we have m 0.3ar  and m. 0.4br  It is also given that 

0bV at m. 0.4br  Substituting these values and 16 m C100.2   in 

Eq. (i), we get 

  

















m 4.0

m 0.3
ln

)m F1085.8(14.32

m C100.2
0

112

16

aV
 

or  V1093.10 3aV
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   dRdRRdA sin2)sin2( 2  (9.7) 

What is the charge on the ring? If the total charge on the shell is Q, then 

charge per unit area, ).4/( 2RQ    Thus, using Eq. (9.7) we can write the 

charge on the ring 

  


 d
Q

dR
R

Q
Qring sin

2
)sin2(

4
2

2
 (9.8) 

We shall now determine the electric potential at point P due to the ring AB. 

The ring is made up of a large number of point charges each having charge 

equal to, say Q. So, the electric potential for one such point charge is 

.
4

1

0 r

Q






 So, the electric potential due to the ring will be 

    




















r

Q
Q

rr

Q
dV

ring
ring

000 4

1

4

1

4

1
 

So, on using Eq. (9.8), we get 
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24

1

0

 (9.9) 

As we mentioned above, the shell can be imagined to be made of rings like 

AB having a common axis OP. Since electric potential is a scalar quantity, we 

shall integrate Eq. (9.9) to get the electric potential V of the shell. 

Note that on the RHS of Eq. (9.9), we have two variables  and r. It will be 

convenient if we can express it in terms of a single variable. For this, we shall 

consider the relation between r, r and R. To do so, refer to Fig. 9.3a. From 

triangle OAP, we have (see Margin Remark): 

   cos2222 rRRrr  

On differentiating with respect to , we get 
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
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 sin
 (9.10) 

Substituting Eq. (9.10) in Eq. (9.9), we get 
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 (9.11) 

To obtain the electric potential due to the entire shell, we need to integrate   

Eq. (9.11) over appropriate limits of integration to include the contribution of 

every ring of the shell: 
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Fig. 9.3: Diagrams for 

calculating electric 

potential of charged 

spherical shell.  

For triangle OAP  

(Fig. 9.3a): 
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where 1r   and 2r   are, respectively, the minimum and maximum values of .r   To 

write the values of 1r   and 2r   in terms of r and R, we consider the two cases – 

point P outside the shell and point P inside the shell – separately : 

a) Point P outside the shell 

 In this case, as shown in Fig. 9.3b, the values of 1r   and 2r   are 

   Rrr 1      and     Rrr 2  

 So, Eq. (9.12) becomes 
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 (9.13) 

Eq. (9.13) gives the electric potential due to a uniformly charged spherical 

shell at a point outside the shell. Note that Eq. (9.13) is same as Eq. (8.14) 

which is for the electric potential of a point charge at a point at distance r. 

 

 

 

b) Point P inside the shell 

Refer to Fig. 9.3c which depicts the point P inside the shell. From the 

figure, you may note that for r < R 

   rRr 1      and     rRr 2  

Substituting these values of 1r   and 2r   as limits of integration in Eq. (9.12), 

we get 
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 (9.14) 

From Eq. (9.14), which gives electric potential at an internal point P, we note 

that the electric potential is independent of r, the distance of point P from the 

centre O of the shell. This means that the electric potential at every point 

inside the shell is same and its value is equal to its value at the surface. If we 

plot the variation of potential for a spherical shell with distance from its centre, 

we obtain a curve as shown in Fig. 9.4. 

On the basis of Eq. (9.14) and Fig. 9.4, can you guess what will the value 

of electric field inside the uniformly charged spherical shell be? Note 

from Fig. 9.4 that the electric potential is constant everywhere inside the shell. 

So, if we move a test charge from one point to another inside the shell, no 

work is to be done because both the points are at the same potential. This is 

possible only if the value of the electric field inside the shell is zero. Thus, we 

conclude that: 

Thus, we may conclude that, for an external point, the uniformly 

charged spherical shell behaves as a point charge located at the 

centre of the shell. 

Fig. 9.4: The variation 

of electric potential 

due to a spherical shell 

shell with distance 

from its centre.  
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Now, before proceeding further, solve an SAQ. 

SAQ  2 -  Electric potential of a uniformly charged spherical shell  

The radius and surface charge density of a uniformly charged spherical shell 

are 20 cm and ,m C0.3 2 respectively. Calculate the electric potential at a 

distance (a) 40 cm and (b) 15 cm from the centre of the shell.  

9.2.3 Uniformly Charged Non-conducting Sphere 

Let  be the volume charge density (charge per unit volume) of a uniformly 

charged non-conducting sphere. Let the radius of the sphere be R (see           

Fig. 9.5). As in the case of spherical shell, here also we have two regions of 

interest for determining electric potential: one at a point outside the sphere 

and the other at a point inside it. 

 

Fig. 9.5: A uniformly charged non-conducting sphere of radius R with point 1P  

outside the sphere and point 2P  inside the sphere. 

a) Electric potential at a point outside the sphere 

For points outside the non-conducting sphere, such as ,1P
 located at 

distance r from the centre O of the sphere, the whole charge spread 

throughout the volume of the sphere behaves like a point charge located 

at its centre O. This fact can easily be deduced on the basis of the 

derivation of the potential at an external point due to a spherical shell 

discussed in the previous section. We can divide the non-conducting 

sphere into a large number of thin concentric shells as shown in Fig. 9.5. 

For each of these shells, the charge can be regarded as concentrated at 

the centre O for points outside the shell. Thus, for a point outside the 

sphere, such as 1P
 in Fig. 9.5, the whole charge of the sphere can be 

regarded as a point charge located at its centre O. Hence, for points 

outside the sphere, the expression for electric potential due to a non-

conducting charged sphere will be the same as for a uniformly charged 

spherical shell [(Eq. (9.13)]: 

The value of electric field inside a uniformly charged spherical shell is 

zero. 

Fig. 9.10: 
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r

Q
V

04 
    (9.15) 

where   3)3/4( RQ
 
is the total charge on the sphere and r is the 

distance of external point 1P  from the centre O of the sphere. You must, 

however, note that the expression for the total charge, Q is different 

for a uniformly charged non-conducting solid sphere from that for 

the uniformly charged spherical shell (it is spread in a volume, whereas 

for a shell, it is spread on its surface). 

b) Electric potential at a point inside the sphere 

Let point 2P  be an internal point at a distance r from the centre O such 

that r < R (see Fig. 9.5). If we divide the sphere into a large number of thin 

concentric shells with centre O, then for shells with radii ,r  point 2P  is 

outside and for shells which have radii between r and R, point 2P  is inside. 

For shells with radii less than or equal to r, potential 1V  at 2P  can be 

written as if point 2P  is an external point and hence it is given by Eq. 

(9.15): 
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To evaluate the contribution to electric potential by the shells for which 2P  

is inside the sphere, let us consider a shell of radius x and thickness dx as 

shown in Fig. 9.5.  For this shell, the total charge 2Q  is equal to volume 

times charge density, i.e. .4 2
2  dxxQ  This charge contributes a 

constant electric potential 2dV at any internal point and is given by (see              

Eq. (9.14)): 
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For adding the contributions from all such shells for which 2P  is an internal 

point, we integrate Eq. (9.17) for x varying from r to R. This gives the 

electric potential 2V  at 2P
 due to shells for which point 2P  is internal as  
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Thus, adding Eqs. (9.16) and (9.18), we can write the electric potential V 

of the non-conducting sphere at an internal point 2P  as: 
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 (9.19) 

where ])3/4([ 3 RQ is the total charge on the uniformly charged non-

conducting sphere.  

To fix these ideas, you may like to go through the following example, which is 

for conducting sphere. 
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Now, you may like to solve an SAQ. 

SAQ  3 -  Electric potential of a charged conducting sphere  

An isolated solid sphere of aluminium having radius 7.0 cm is at a potential of 

500 V. Calculate the number of electrons which have been removed from the 

sphere to raise it to this potential.  

Let us now learn about the concept of equipotential surface. 

Note that the spheres in 

Example 9.2 are 

conducting spheres. 

 

 

Two charged spherical conductors of radius cm 0.81 r  and cm 0.22 r  

are separated by a distance much larger than 10 cm. These spheres are 

connected by a conducting wire and a total of 60 nC charge is placed on 

one of the spheres. (a) Calculate the charge on each sphere. b) Calculate 

the electric potential of each sphere at a point on their surfaces. 

SOLUTION   Since the charged conducting sphere is connected through 

a conducting wire to the uncharged sphere, the 60 nC charge will 

redistribute between the two sphere in such a manner so that both sphere 

have same electric potential. Let the final charge be 1q  (on the larger 

sphere) and 2q  on the smaller sphere.  

(a) From the conservation of charge, we have 

   
nC 6021  qq  (i) 

Further, since the electric potential of both spheres are equal, we can 

write, 
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 From Eqs. (i) and (ii), we can write 
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 So,  nC 12nC) 48nC 60(2 q  

b) Using the values of 1q  and ,2q we can write the potential 1V  and 2V of 

the two spheres at a point on their surfaces as 
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XAMPLE 9.2 : ELECTRIC POTENTIAL DUE TO CHARGED 

CONDUCTING SPHERE 
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9.3   EQUIPOTENTIAL SURFACES 

To understand the concept of equipotential surface, recall that electric 

potential of a point charge Q, at a point at distance r is given as: 

   












r

Q
V

1

4 0

     

From the above equation, we note that electric potential depends only on r. 

Now, you know that the locus of points having the same value of r is the 

surface of a sphere of radius r with the point charge as its centre. For a 

different value of r, we get a different surface of the sphere (see Fig. 9.6a). On 

any such surface, the value of electric potential will be the same everywhere 

because r is same for all points of this surface. Such a surface is called an 

equipotential surface. Formally, we define equipotential surface as the 

locus of all points having the same electric potential. Further, the 

geometry of Fig. 9.6a suggests that the electric field lines due to the point 

charge Q located at the centre of the concentric spheres are everywhere 

perpendicular to the equipotential surfaces. The consequences of this fact are 

very important which we shall discuss shortly. 

 

Fig. 9.6: a) Equipotential surfaces of a point charge ;Q  the electric field lines 

are radial (dashed). Solid circles are intersections of equipotential 

surfaces on the plane of paper; b) The equipotential surfaces 

(cylindrical surfaces) of a uniform infinite line charge.  

Can you guess the nature of equipotential surfaces for a uniform infinite line 

charge? From Eq. (9.5), you may note that for a uniform infinite line charge, 

the electric potential is same at all points equidistant from the line charge. 

Therefore, for such a charge distribution, equipotential surfaces are cylindrical 

with the line charge as the axis of the cylinder (Fig. 9.6b).  

Yet another example of an equipotential surface is a conducting surface. An 

ideal conducting surface must be an equipotential surface. Can you 

guess why it is so? This is because if there were any potential difference 

between two points on the conducting surface, charges would move from 

higher to lower electric potential (or vice-versa) until the electric potential 

everywhere became equal. You will see later in Unit 11 that this property of 

conductors helps us determine the electric field and potential in the space 

between the plates of a capacitor easily.  

Since an equipotential surface is a surface having constant electric 

potential, the potential difference between any two points on it is zero. This 
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implies that the work done in moving a unit charge from one point to another 

on such a surface is also zero. Thus, if a and b are two points on a 

equipotential surface, we can write 

   
0.  

b

a

ab dVV lΕ


  (9.20) 

where aV
 
and bV  are potential at points a and b, respectively. You will agree 

that Eq. (9.20) will hold only when the electric field Ε


and the small 

displacement vector l


d  are perpendicular to each other. Since l


d  is an 

infinitesimal displacement on the equipotential surface, Ε


 has to be 

perpendicular at all points on such a surface (see Fig. 9.7). It is for this reason 

that we have drawn the electric field lines as perpendicular to the equipotential 

surfaces in Fig. 9.6.  

For an arbitrary charge distribution, the equipotential surfaces may look like 

the ones drawn in Fig. 9.8. By convention, the equipotential surfaces are 

drawn such that there is a constant difference of potential, say ,V  

between the adjacent surfaces as shown in Fig. 9.8.  

Further, you may note in Fig. 9.9 which depicts the equipotential surfaces for 

an arbitrary charge distribution, that the equipotential surfaces may or may not 

be parallel to each other. They are relatively closer where the magnitude of E


 

is large, and are relatively far apart where the magnitude of E


is small. It is so 

because the difference in potential, V between any two given equipotential 

surfaces is constant and we know that 

   lEEdV    (9.21) 

Thus, for constant ,V  if l decreases, E must increase. 

 

 

So, we have seen that the sketch of equipotential surfaces gives us a fairly 

good idea about the magnitude of electric field in that region. You have also 

learnt that the electric field is directed perpendicular to an equipotential 

surface. Can we also draw some inference about the sense of the direction of 

electric field on the basis of equipotentials? Yes, we can. To find out, refer 

again to Fig. 9.9. Note that, on the left hand side of the figure, equipotential 

surfaces are closer to each other as compared to the right hand side. Now, 

you may recall from Unit 8 that the relation between E


 and electric potential is 

given by: 

   V


E  (9.22) 

The negative sign in Eq. (9.22), along with the fact that the electric field E


is 

always perpendicular to equipotential surfaces, implies that E


 always points 

in the direction of decreasing V. To understand this better, let us consider two 

probable directions APB and AQC for the electric field E


(Fig. 9.9). Let the 

separation between two adjacent equipotentials along APB and AQC be l  

The magnitude of electric field is greater in the region where 

equipotentials are closer to each other. 

Fig. 9.9: Direction of 

electric field E


from 

equipotential surfaces.  

Fig. 9.8: Separation 

between equipotential 

surfaces for arbitrary 

distribution of charges. 

Portions of four 

equipotential surfaces 

are shown. 

Fig. 9.7: Direction of 

electric field vector 

Ε


relative to equipotential 

surfaces. PQRS and 

PQRS are part of 

equipotential surfaces.  
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and l  respectively. Since V  is constant and the geometry of the figure 

suggests that ,ll   we have 

   
l

V

l

V









 

This implies that E


 is directed along ,l


  that is, along APB because the 

decrease in V is fastest along this line. Thus, we conclude that the electric 

field E


is always along the direction of maximum (or the steepest) 

decrease of potential, V.  

 Thus, a sketch of the equipotential surfaces gives us a visual picture of both 

the direction and the magnitude of E


in a region of space containing a single 

charge, a group of charges, or a charge distribution of some particular form (or 

shape).  

On the basis of the above discussion, we can summarise the properties of 

equipotential surfaces as follow: 

 

 

 

 

 

 

 

 

So far, we have described the electrostatic field in terms of electric field 

vector, potential and equipotential surfaces. In the next section we shall 

discuss the electrostatic energy associated with discrete and continuous 

charge distributions. But, before studying the next section, you may like to try 

an SAQ. 

SAQ  4 -  Equipotential surfaces  

a) Suppose you are given a sketch of electric field lines due to a group of 

charges and asked to draw the equipotential surfaces. List the various 

points you will keep in mind while drawing equipotential surfaces. 

b) The equipotential surfaces for a charged solid metal object are shown in 

Fig. 9.10. Draw the electric field lines. 

9.4   ELECTROSTATIC POTENTIAL ENERGY 

In the previous unit, you have learnt about the electrostatic potential energy of 

charge q in the field of another charge Q. We now extend this discussion to 

discrete and continuous charge distributions. 

 The electric field is perpendicular to equipotential surface. 

 The electric field is directed along the maximum (steepest) 

decrease of potential. That is, it points from surface at higher 

electric potential to lower electric potential. 

 No work is done in moving a charge between any two points on 

an equipotential surface. 

 The tangential component of electric field along an 

equipotential surface is zero. If it were not so, a finite work 

would be required to be done in moving a charge along the 

surface. 

Fig. 9.10: Diagram for 

SAQ 4b. 



  

280  

Block 2                                                                                         Electrostatics 

Let us first consider two charged particles 1q  and 2q  very far apart from one 

another as shown in Fig. 9.11a. Now, if we bring these two particles slowly 

towards each other to a distance between them be ,21r  then how much work 

is done in this process? Recall that the work done will be the same whether 

we move 2q  and keep 1q
 
fixed or vice-versa. The work done is the integral of 

the product of the force between the charges and displacement in the 

direction of force. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.11: a) Two charged particles 1q  and 2q  at a very large distance from each 

other; b) the two charges at a separation 21r

 

from each other; c) three 

charges ,1q 2q  and 3q

 

are brought near one another. 

The work done in bringing the charges 1q  and 2q  separated by a large 

distance to a separation 21r from each other is: 

    






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 (9.23a) 

Note that we have taken distance as ( dr) because r is changing from  to 

.21r
 
We have taken 1q  and 2q  to be positive; so the charges must be pushed 

together and the displacement is opposite to the direction of Coulomb force.  

You know from Unit 8 that the work done in moving a charge from infinity to a 

finite distance r in a field due to another charge is independent of the path we 

take. With this understanding, let us now bring a third charge 3q from infinity 

(that is, from very large distance from charges 1q  and )2q  and bring it to a 

position such that its distance from 1q  is 31r  and from 322,rq  (Fig. 9.11c). So, 

the work done in moving charge 3q
 
to this position is 

   
   r.Fr.FlFFl.F


dddd 32313231 ).(   (9.23b) 

Eq. (9.23b) is written due to the fact that the work done to bring 3q
 
to point 

3P
 
is the sum of the work needed when 1q

 
alone is present and the work 

needed when 2q  alone is present. So, 

   



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So, the total work done in assembling this arrangement of three charges 

21,qq  and 3q
 
is 
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   




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The work done given by Eq. (9.24) is defined as electrostatic potential energy 

of the system.  

We can now generalise the result contained in Eq. (9.24) to any number of 

charges. If we have N different charges in any configuration in space, the 

electrostatic potential energy of the system can be written as sum over all 

pairs. So, for a system of N charges ,,...,,, 321 Nqqqq  the electrostatic 

potential energy can be written as 

    
 






N

j

N

k jk

kj

jk

r

qq
P.E.

1 1 042

1
  (9.25) 

Note that the double summation notation.  
 



N

j

N

k
jk

1 1

implies that when we take 

,1j  we need to sum over all values of k except 1; that is, we sum over          

;...,,3,2 Nk   then we take 1j  and sum over Nk ...,,4,3,1  (leaving          

),2k  and so on. So, we find that the double summation includes every pair 

twice and the factor of (1/2) has been included in Eq. (9.25) to correct this 

double counting. 

In terms of electric potential jV  at the position of charge ,jq  Eq. (9.25) may 

be written as 





N

j

jj VqE.P.

1
2

1       where    






N

jk

k
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k
kj

r

q
V

1 04
 (9.26) 

Eq. (9.26) implies that, for calculating the electrostatic potential energy for a 

group of point charges, one may consider each charge by turn, and the 

corresponding potential at its position due to all other charges except the one 

under consideration. 

Continuous Charge Distribution  

Since most of the charged real physical systems such as the plates of parallel 

plate capacitor are described as continuous charge distributions, you may like 

to know how to determine their electrostatic or electrical potential energy. To 

learn the method, take a simple example of adding point charges gradually, in 

steps, on an isolated conductor. In such a situation, the work done can be 

calculated as follows.  

Let the charge on a conductor at a given time be q. Then, the potential V of 

this charged conductor is proportional to q. Thus, the work done W in adding 

an additional charge q  on q (isolated conductor) is  

   
qVW    

Further, we can write V as kqV   where k is the constant of proportionality. 

Hence  

   
qkqW   

As we go on adding more and more charges to this conductor, the total work 

done is the electrical potential energy of the charged body. The total work 
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done can be calculated by integration (equivalent to summation). Thus, if Q is 

the final charge on the isolated conductor, then its electrical potential energy 

can be expressed as: 

     







Q QQ
q

kqqkWEP

0 0

2

0
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.. fV
QQ

k
22

2
  (9.27) 

where )( QkVf  is the final electric potential of the charged isolated 

conductor. 

Eq. (9.27) gives the electrical potential energy of a charged conductor. We 

can write this expression in terms of charge density. For example, if in an 

infinitesimal volume d, we assemble point charges such that the volume 

charge density is  and the electric potential is V then Eq. (9.27) for electrical 

potential energy can be written as  

   
 

volume

VdEP.
2

1
.     (9.28) 

Note that d  in Eq. (9.28) gives charge in the volume element d and when 

we integrate it over volume, we get Q, total charge on the conductor.  

Similarly, for a charge distribution on a surface, if σ is the charge per unit area, 

then Eq. (9.28) takes the form 

   


surface

dSVP.E.
2

1
     (9.29) 

where dS is the element of surface area. And for a line charge distribution, if  

is the charge per unit length, then Eq. (9.27) for potential energy becomes  

   
 

line

dlVEP
2

1
..     (9.30) 

where dl is line element. 

Now, let us work out an example on electrical potential energy. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.12: 

 

Three charges are arranged as shown in Fig. 9.12. Calculate the electrical 

potential energy of the system. Assume .m01.0and,C100.1 5   dq
 

SOLUTION   The total electrical potential energy (P.E.) of the system is 

the algebraic sum of the electrical potential energies of all pair of charges, 

viz., 
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XAMPLE 9.3 :  ELECTRICAL POTENTIAL ENERGY 

 

 

Fig. 9.12: Diagram for 

Example 9.3. 
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SAQ  5 -  Electrical potential energy 

With the help of a suitable diagram, estimate the number of terms that will 

contribute to the electrical potential energy for a system of five point charges. 

We now sum up what you have learnt in this unit. 

9.5   SUMMARY 

Concept Description 

Potential due to 

infinite line 

charge  

 

 

 The potential difference between two points a and b on the line perpendicular 

to infinite line charge at distance ar  and ,br  respectively is: 

 00 2

ln

2

ln











ba
ba

rr
VV  

If we assume that point b is at finite distance br  and it is the reference point 

having zero electric potential (that is, 0bV ), then 

 
const 

2

ln
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



 a

a
r

V  

Potential due to 

uniformly 

charged spherical 

shell                     

 At a point distant r from the centre and outside the spherical shell of radius R: 

 r

Q
V

04


 

 where .4 2 RQ  

At a point inside the shell: 

 R

Q
V

04
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Potential due to 

uniformly charged 

non-conducting 

sphere 

 At an external point at distance r from the centre of the sphere: 
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Q
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 where .)3/4( 3 RQ  

At an internal point: 
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Q
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where R is the radius of the sphere and r (< R) is the distance of the internal 

point from the centre.
 

Equipotential 

surface 

 Equipotential surfaces are surfaces on which the potential at each point is 

same. 

The electric field E


is always directed perpendicular to an equipotential 

surface. It is always along the direction of the fastest decrease of the electric 

potential. 

No work is done in moving a charge between any two points on an 

equipotential surface. 

Equipotential surfaces are closer to each other in regions of strong electric 

field and are relatively far apart in regions of weak electric field. 
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9.6   TERMINAL QUESTIONS 

1. If electric field E


equals zero at a given point, must V (electric potential) 

equal zero at that point? Give one example to justify your answer. 

2.  An infinite charged sheet has a surface charge density σ of  

.Cm100.1 27   How far apart are the equipotential surfaces whose 

potentials differ by 5.0 V? 

3. A uniformly charged sphere has electric potential of 375 V on its surface. 

At a radial distance of 25 cm from the surface of the sphere, the electric 

potential is 125 V. Calculate the radius and charge on the sphere. 

4. Derive an expression for the work required to put the four charges 

together as indicated in Fig. 9.13. 

5. Calculate the gain or loss of electrical potential energy when a droplet of 

radius R carrying a charge Q splits into two equal sized droplets of charge 

2/Q and radius r. Assume that the droplets are repelled to a large 

distance compared to r because of electrostatic repulsion. 

6. There are two charged conducting spheres of radii a and b. Suppose that 

they are connected by a conducting wire. What will happen? Using the 

result from this arrangement, explain why charge density on sharp and 

pointed ends of a conductor is higher than on its flatter portions. 

7. Devise an arrangement of three point charges, separated by finite 

distances, that has zero potential energy. 

Electrical 

potential energy 

 The electrical potential energy is the energy stored in a system of charges. It 

is equal to the amount of work done in assembling the system together by 

bringing the charges from infinity.  

The electrical potential energy for a group of N discrete point charges is given 

as: 

 



N

j

jj VqE.P.

1
2

1

 

where  jV  is the potential at the position of charge jq  due to all the charges 

except the charge .jq
 

The electrical potential energy of a charged conductor is 

 
 

v olume
2

1
VdE.P.

 

where  is volume charge density.
 

The electrical potential energy of a charge distribution on a surface is 

 
 
surf ace

)2/1( SVdE.P.
 

 The electrical potential energy of a line charge is 

 
 
line

)2/1( VdlE.P.  

Fig. 9.13: Diagram for 

TQ 4. 
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9.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. We know that the potential difference between two points P and Q due to 

an infinite line charge is given as [Eq. (9.4)]: 

    
)/ln(

2 0
QPQP rrVV




  

As per the problem, let point Q be at a distance of 5.0 m from the line 

charge where potential .0QV  So, the potential at point P located at 6.0 

m can be written as 
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2. a) The point located at 40 cm from the centre of the shell where potential 

is to be calculated is an external point because radius is 20 cm. So, we 

can write 
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 b) The point located at 15 cm from the centre is an internal point. For any 

such point, potential has a constant value given by 
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3. Let Q be the charge on the aluminium sphere and n number of electrons 

have been removed to raise it to potential of 500 V. So, ,neQ   where e  

is electronic charge. So, )./( eQn   Further, the potential of the sphere is 

given as 

   r
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 So,  8
19229
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4. a) i) Equipotentials are always perpendicular to the electric field lines.
 

  ii) Separation between the equipotentials depends on the strength of 

the electric field. 

 b) Electric field lines for the charged metal object are shown in Fig. 9.14. 

Fig. 9.14: Diagram for 

answer to SAQ 4b. 
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5. The diagram for a system of five charges is shown in Fig. 9.15. Since each 

pair of charge has a potential energy and there are 10 pairs between 5 

point charges, 10 terms would be contributing to the potential energy of 5 

charges.  

(Rule: If there are n charges, the number of terms (pairs) contributing to 

the potential energy is 
2

)1( nn
 ).  

Terminal Questions 

1. We know that the electric field is related to potential as )./( dxdVE


 

Thus, if ,0E


electric potential has to be a constant. It is not necessary 

that V be equal to zero when .0E


Consider, for example two identical 

charges separated by a distance .2a  At the mid-point between the 

charges,  

  a

q
V

02

1
but,0


E


  

2. The magnitude of electric field near an infinite charged sheet is given by 

(see Unit 6):  

02


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where   is the surface charge density. Therefore, for the problem under 

consideration, 
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 The spacing l  between the equipotential surface is given by 

)/( EVl   where V is the potential difference between the adjacent 

surfaces. With V,0.5V  we have   
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3. The potential of a charged sphere is 
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 Also, as per the problem 
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 From Eqs. (i) and (ii) 

    
r

r m) 25.0(

 V125

 V375 
   

    m 25.03  rr       m 13.0r  

Fig. 9.15: Diagram for 

answer to SAQ 5. 
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 And, total charge on the sphere is 

    rVQ )4( 0 = 
229 CNm109

m 0.13 V375




C102.5 9   

4. The work required to assemble four charges together as shown in              

Fig. 9.13 is equal to the electric potential energy of the system. The 

electrical potential energy of the system may be obtained by considering 

the charges in pairs:  
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24
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1 22
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)24(
4

1



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5. Total volume of 2 droplets after splitting .)3/4(2 3r  Volume of the 

original droplet .)3/4( 3R
 
Since volumes have to be equal, we have  

  

33 )3/4()3/4(2 Rr      Rr 3/1)2/1(    (i) 

 Electrical potential energy (P.E.) of the original droplet with charge Q is 

R

Q

R

Q
QQVP.E.

0

2

0 842

1

2

1





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  (ii) 

 Total electrical potential energy of 2 droplets after splitting is 

r

Q

r

QQ
EP

0

2

0
split

8

2/

4

2/

22

1
2.).(
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


  

 Using Eq. (i), we have  

   

3/2

0
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2

1

8
.).( 











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EP      (iii) 

Thus, the loss in electrical potential energy after splitting is 











 3/2
0

2

)2(

1
1

8 R

Q
   

6. When  two charged conducting  spheres are connected by a wire as 

shown in Fig. 9.16, the charges redistribute themselves till both spheres 

are at the same potential, i.e., 

b

q

a

q
V 2

0

1

0 4

1

4

1





  

where 21 and qq   are charges on spheres of radii a and b respectively. 

This gives  

b

a

q

q


2

1    (i) 

 The surface charge densities 21 and 
 
on these spheres are: 

2

2
22

1
1

4
and

4 b

q

a

q





    

Fig. 9.16: Diagram 

for answer to TQ 6. 
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 Thus, we can write 

2

2

2

1

2

1

a

b

q

q





    (ii) 

 Combining Eqs. (i) and (ii), we get  

a

b

a

b

b

a






2

2

2

1    

Thus, we see that the surface charge densities of conducting spheres are 

inversely proportional to their radii. For sharp and pointed ends, the radii 

are small, resulting in high surface charge densities. For flatter ends, the 

radii are larger which result in smaller surface charge densities. See           

Fig. 9.17. 

7. If we devise an arrangement as shown in Fig. 9.18, the electrical potential 

energy (P.E.) turns out to be zero because the P.E. of the arrangement is: 

0
)()(

2

)()(

2

)(

4

1

0

















a

qq

a

qq

a

qq
P.E.     Fig. 9.18: Diagram for 

the answer to TQ 7. 

Fig. 9.17: Diagram for 

the answer of TQ 6. 
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