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                    UNIT 10 
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DIELECTRICS 

Structure 
 

10.1 Introduction 
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10.2 Dielectrics 

10.3 Dielectric Materials in Electric Fields:  

Polarisation  

Induced Dipoles in Neutral Atoms and  

Non-polar Molecules 

Alignment of Polar Molecules in Electric Fields 

Polarisation of Dielectrics and  

Polarisation Vector P


 

 

STUDY GUIDE           

 

10.4 Electric Field of a Polarised Object 

 Physical Interpretation of Bound Charge Density 

10.5 Electrostatic Equations in Dielectrics: 

Displacement Vector D


and Gauss’s Law 

10.6  Summary 

10.7 Terminal Questions 

10.8 Solutions and Answers 

 

In this unit, you will study the effect of electric field on a dielectric (or insulator). Before 

studying this unit, you should refresh your knowledge about electrical conductors and 

insulators from your school physics. Dielectric materials are characterised by the fact that 

there are no free charges in them to move around under the influence of electric field. To 

understand the mathematical treatment given in this unit, you should revise vector analysis 

given in Block 1 of this course. Also, we advise you that you should work out the mathematical 

derivations while you are studying this unit. Passive reading of the mathematical derivations 

will not be of much help. We also advise you to try to solve SAQs and TQs yourself. This will 

help you understand and be more familiar with mathematical derivations involving vector 

calculus. 

“Science is a way of thinking much more than it is a body of 

knowledge.”  
Carl Sagan 
 

 

Dielectric material is used in a transformer 

(shown above) to withstand high voltages 

present within it as it is an insulator, and 

dissipate heat generated in the 

transformer windings. You will learn about 

dielectrics in this unit. (Picture source: Wikimedia 

Commons) 
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10.1   INTRODUCTION 

In Block 2, you have studied electrostatics in free space. You have learnt the 

concepts of electrostatic force, electric field, electric potential and 

electrostatic energy when charges are placed in vacuum. However, in real 

life, we mostly have situations in which electric phenomena take place in 

matter. Matter, as you know, can be in any form: solid, liquid or gas. Different 

kinds of matter behave differently in the electric field. From school physics, 

you know that on the basis of their electrical properties, we can broadly 

classify most materials around us into two categories: conductors and 

insulators. Insulators are also called dielectrics. In this unit, you will study 

how dielectric materials behave in the presence of electric fields and learn 

how Gauss’s law is modified in a dielectric medium.  

You may like to know: Why do we need to study about macroscopic 

properties of dielectrics?  This is what we shall explain in the beginning of 

this unit when we introduce dielectrics (Sec. 10.2). In Sec. 10.3, we shall use 

a simple model of dielectric materials to explain what happens when a 

dielectric is placed in an external electric field. You will learn that this 

results in the phenomenon of polarisation of dielectrics. We shall define 

electric polarisation P


and introduce the displacement vector D


 to determine 

the electric field in a dielectric material. In Sec. 10.4, we shall obtain the 

electric field due to a polarised object and explain its physical meaning. 

Finally, in Sec. 10.5, we shall deduce the electrostatic equations or Gauss’s 

law in a dielectric medium in terms of .D


  

In Unit 11, you will study about capacitors in detail, wherein dielectric 

materials find major applications. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain the behaviour of dielectrics in an electric field; 

 define electric polarisation and explain the mechanism of polarisation in 

polar and non-polar dielectrics; 

 define displacement vector D


 and deduce Gauss’s law in a dielectric 

medium; 

 relate D


 to the electric field ;E


 and 

 define dielectric constant. 

10.2   DIELECTRICS 

Dielectrics (or insulators) are an important class of materials used in a variety 

of applications such as in electrical insulation, capacitors, radio frequency 

transmission lines, printed circuit boards, etc. The study of dielectrics helps us 

understand how a proper dielectric is chosen for a capacitor, as well as many 

optical phenomena such as reflection, refraction and double refraction in 
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quartz or calcite crystals. Natural rubber, cotton, wood are some examples of 

good electrical insulators. Paper, mica, glass and a large number of plastics 

are good dielectrics which are used in capacitors. You may have studied in 

your school physics that dielectrics are used in capacitors to increase their 

capacitance manifold. Why does this happen? Since the physics of 

capacitors is well known to you from School, we would like to explain why you 

need to learn about dielectrics by answering this question. 

In fact, this effect was demonstrated in 1837 by Faraday. Faraday repeated 

independently the experiments performed by Cavendish in about 1770. He 

showed that when a slab of dielectric material (such as glass or mica) was 

introduced between a central ball and a concentric brass shell of a spherical 

capacitor (see Fig. 10.1), its capacitance increased manifold (by a factor 

called the dielectric constant). The value of this factor is 1 for vacuum and 

greater than 1 for various dielectrics. The dielectric constants for a few 

materials are given in Table 10.1.  

The dielectric constant is one of the important macroscopic electrical 

properties of a dielectric material and its value varies widely for different 

dielectrics. For example, for water, it is 80.4 and for different types of glass, it 

is around 6. So the capacitance increases according to the dielectric being 

used in it. The choice of a dielectric in a capacitor depends on the application 

for which it is to be designed. You will learn more about this aspect of 

capacitors in Unit 11.  

For now, we are interested in knowing: How do we explain the increase in 

the capacitance of a capacitor when a dielectric is placed between two 

conductors?  

To understand this phenomenon, let us consider a parallel plate capacitor with 

some free charge Q on its conducting plates (Fig. 10.2). Let us assume a 

negative charge on the upper plate and a positive charge on the lower plate. If 

A is the area of the plates and d the distance between them, you know from 

school physics that the capacitance of the capacitor is given by:  

 
d

A
C 0  (10.1) 

and a charge Q  on the plates results in a potential difference given by: 

 
C

Q
V   (10.2) 

Now it is an experimental fact that if we put a dielectric slab between the 

plates, we find that the capacitance increases. How is that possible? 

From Eq. (10.2), you can see that an increase in capacitance means that the 

potential difference between the plates decreases. How does this happen? 

We can try and understand this using the concepts you have studied in    

Block 2. 

Fig. 10.1: Spherical 

capacitors used by 

Faraday. Faraday showed 

that when dielectric 

material was placed 

between the central brass 

ball and a concentric 

brass shell, the 

capacitance of the 

spherical capacitor 

increased manifold. The 

factor by which it 

increased was different 

for different dielectric 

materials. (Source: 

Collectionsonline.nmsi.ac.uk) 

Table 10.1: Dielectric 

constants of some 

common materials. 

Material Dielectric 
constant 

Air 1.0006 

Mica 5  9 

Glass 4.5  7.00 

Paper 2 2.3 

Water 80.4 
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Fig. 10.2: A parallel plate capacitor with a dielectric material inserted between its 

plates. 

Study Fig. 10.2. Consider a Gaussian surface S (a rectangular box lying 

partially inside the dielectric material and partially inside the conducting plate) 

as shown in the figure. Recall from Unit 6 that Gauss’s law tells us that the 

electric flux out of the surface is related to the enclosed charge :enq   

  


S

enq
d

0

. SE


  

Since the capacitance of the capacitor is found to increase, from Eq. (10.2) 

this means that the potential difference or the voltage between the plates is 

decreased. You know that potential difference or voltage is proportional to 

the electric field. Therefore, when capacitance increases, the electric field 

must decrease. From Gauss’s law, this, in turn, implies that the charge should 

decrease. This can happen only if (somehow) a positive charge has 

appeared on the upper surface of the dielectric. This positive charge, of 

course, has to be smaller than the negative charge placed on the plate of the 

capacitor.   

Thus, we can explain the increase in capacitance due to a dielectric material 

only if we can understand: How is a positive charge induced on one surface of 

a dielectric material and a negative charge on the other surface when it is 

placed in an electric field? This requires an understanding of the behaviour of 

dielectric materials in an electric field, which we now discuss. In doing so, we 

arrive at an understanding of polarisation of dielectrics in electric fields. 

10.3 DIELECTRIC MATERIALS IN ELECTRIC  
 FIELDS: POLARISATION 

From school physics, you know very well the behaviour of conductors which 

have free electrons to conduct electricity. In Block 2, you have learnt that the 

electric field inside a conductor is zero and the total charge of a conductor 

resides on its surface. The electric field due to this charge is normal to the 

surface of a conductor. Also the surface of a conductor is an equipotential 

surface.  

What can you say about dielectric materials? We use the following simple 

model for describing dielectric materials that you may have learnt in school 

(see Fig. 10.3): 

                       

                       

          

          

Conductor 

Conductor 

Dielectric 
E


 

Free charges 

Free charges 

 Induced charges 

S 

d 

Fig. 10.3: Model of a 

dielectric made up of 

atoms. The charges 

in the dielectric are 

not free to move 

around; they are 

bound to the atoms. 

The + sign depicts 

the positive nucleus 

and the grey sphere 

represents the 

negatively charged 

electron cloud.  

  

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 

+ + + 
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 Like all matter, dielectrics are made up of a large number of atoms and 

molecules.  

 Every atom consists of positively charged nucleus and negatively charged 

electron cloud distributed around it. 

 The total positive charge is equal to the total negative charge so that the 

atom/molecule is electrically neutral.  

 In contrast to conductors, the charges attached to atoms and molecules 

are not free to move around in dielectric materials: at most they can move 

within the atom/molecule. The charges are bound in the atoms and 

molecules of a dielectric.   

 A molecule may be made of atoms of similar kind or of a different kind.  

We will now understand the behaviour of dielectrics in electric fields with the 

help of this model. Let us ask: What happens when we put a dielectric 

material in an external electric field? 

Since the dielectric is made up of atoms and molecules as described above, to 

answer this question, we need to first understand: What happens to a neutral 

atom or molecule of the dielectric when it is placed in an external electric 

field? Your first reaction could be that nothing would happen since the atoms 

and molecules are charge neutral. But this is not correct. The behaviour of a 

dielectric in an electric field depends on whether it is made up of neutral 

atoms/non-polar molecules or polar molecules. 

Broadly there are two types of dielectrics: non-polar dielectrics made up of 

neutral atoms or non-polar molecules and polar dielectrics made up of 

polar molecules. You will learn about non-polar and polar molecules in the 

next two sections.  

There are two mechanisms by which an external electric field affects the 

charge distribution in a dielectric: 

1. By inducing dipoles in neutral atoms or non-polar molecules in a non-

polar dielectric. 

2. By aligning the permanent dipoles of the polar molecules in a polar 

dielectric. 

We now explain both these mechanisms. 

10.3.1 Induced Dipoles in Neutral Atoms and Non-polar 
Molecules 

Let us first ask: When a dielectric is placed in an electric field E,


 what 

happens to a neutral atom in it? You may think that nothing will happen 

because the atom is electrically neutral. But this is not true. To find out what 

happens, let us consider the following crude model of an atom (Fig. 10.4a):  

Fig. 10.4: a) An atom with 

a positively charged 

nucleus and a cloud of 

negatively charged 

electrons such that the 

centres of the positive 

and negative charge 

coincide; b) In the 

presence of an electric 

field, the centres of 

positive and negative 

charge in the atom no 

longer coincide. These 

are separated and an 

induced dipole appears. 

The figure, of course, is 

not to scale and has 

been magnified by many 

orders of magnitude.  

 

E


 d 

+ 
p


 

(b) 

+ Electron 
cloud 

Positive nucleus 

(a) 
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 the positive nucleus is present at the centre of the atom,  

 the negatively charged electrons are distributed in a spherical cloud about 

the centre, 

 the centre of positive charges and the centre of negative charges coincide, 

and  

 the atom is electrically neutral and also has no electric dipole moment.  

Now when the neutral atom is placed in an external electric field, the two 

regions of positive and negative charges within the atom are influenced by the 

electric field:  the positive nucleus is displaced in the direction of the field and 

the negatively charged electrons in the atom are displaced in the opposite 

direction. But the positive and negative charges also attract each other, and 

the atom is held together. If the electric field is very large, it ionizes the atom.  

If the external electric field is not very large, equilibrium is soon established. 

The two opposing forces, one due to the external electric field pushing the 

positive nucleus and the electron cloud apart, and the other due to their 

mutual electrostatic attraction pulling them closer, reach a balance. When this 

happens, the centre of positive charge is shifted slightly in one direction and 

the centre of negative charge is shifted in the opposite direction. This results in 

a small separation of the centres of positive and negative charges and 

an induced dipole appears (Fig. 10.4b). Note that the electron cloud is 

distorted by the external electric field. 

Thus, a dipole moment is induced in the neutral atom in the presence of an 

external electric field E.


 The dipole moment is in the same direction as the 

electric field. Let us determine the expression of the induced dipole moment. 

Suppose d is the distance between the centres of positive and negative 

charges in the atom. Then the dipole moment of the atom is given by:  

 dnp


qdq  ˆ   (10.3) 

where n̂  is a unit vector in the direction of d


 and points in the same direction 

as .E


 Typically, the displacement d


 is proportional to the external electric 

field unless the fields are very large. (In that case, it could even result in the 

ionization of the atom.) Since d E
 

 (as long as E


 is not too large) and 

,dp


q  the induced dipole moment is proportional to the electric field: 

                     p E


    and    Ep


  (10.4) 

The constant of proportionality  is called the atomic polarisability and its 

unit is 2 1C mN .  Its value depends on the structure of the atom. Let us take 

up an example to estimate the atomic polarisability of an atom using            

Eq. (10.4). 
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Fig. 10.5: a) A neutral 

atom of radius a; b) A 

dipole is induced in 

the atom in the 

presence of an 

electric field. We 

assume that at 

equilibrium, the 

electron cloud is 

spherical in shape. 

 

(a) 

(b) 

E


 

+ 

b 

p


 

+ Electron 
cloud 

Positive nucleus 

a  

Consider an atom of radius a in the presence of an external electric field E 

(Fig. 10.5). Calculate the separation between the positive nucleus and the 

centre of the negatively charged electron cloud and its dipole moment. 

Calculate its atomic polarisability and estimate its value for the hydrogen 

atom of radius .m10 10
0

a  Take the value of E to be .mV10 16   

SOLUTION   You have learnt that in the presence of an external electric 

field, the positive nucleus is pulled opposite to the centre of negative 

charge. For keeping the calculation simple, we assume that at 

equilibrium, the negative charge cloud keeps its spherical shape and is 

merely displaced by an amount b with respect to the positive nucleus (see 

Fig. 10.5b). At equilibrium, the force on the nucleus due to the external 

electric field E


 is balanced by the attractive force due to the negative 

charge cloud. You know from Unit 5 that the force on the nucleus due to 

the external electric field is +q ,E


 where q is the charge on the nucleus. 

Now, let us calculate the value of the electric field eE  due to electron cloud 

at the new location of the nucleus. To do so, recall from Unit 6 that the 

electric field due to a uniformly charged non-conducting sphere at an 

internal point is given as: 

     
3

04

1

a

qb
Ee


  

where b is the distance between the centre of the electron cloud and the 

nucleus, q is the magnitude of the total charge of the electron cloud and a 

is the radius of the uniformly charged spherical electron cloud.  

Thus, at equilibrium, we can write the magnitude of the external electric 

field as 

  eEE   

or  
3

04

1

a

qb
E


  

or  
q

Ea
b

3
04

  

From Eq. (10.3), the dipole moment .4 3
0 Eaqbp   

Therefore, from Eq. (10.4), the atomic polarisability is given by: 

  3
04 a

E

p
  

For the hydrogen atom, m.10 10
0

 aa Let us estimate the atomic 

polarisability of the hydrogen atom based on this crude model. It is: 

   1240123012 NmC1011.1NmC101085.84    

 

XAMPLE 10.1:  ATOMIC POLARISABILITY  
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So far we have seen how an electric dipole moment is induced in a neutral 

atom in the presence of an external electric field. What happens in the case of 

a molecule? Is the situation the same or different? Let us find out. 

In one type of molecules called non-polar molecules, the centres of positive 

and negative charges always coincide. Such molecules have zero dipole 

moment in the absence of external electric fields. The dielectrics made up of 

such molecules are called non-polar dielectrics. Some examples of non-

polar molecules are air, hydrogen, oxygen (Fig. 10.6), benzene, carbon 

tetrachloride, etc.  

 

 

 

 

 

 

 

 

 

 

So the non-polar molecules do not possess any permanent dipole moment 

(their dipole moment is zero in the absence of an external electric field). 

Hence, you can immediately say that their behaviour in the presence of an 

external electric field should be the same as that of a neutral atom.  

Thus, when a neutral atom or non-polar molecule is placed in an external 

electric field, it acquires (by induction) a tiny dipole moment in the direction of 

the electric field. 

10.3.2 Alignment of Polar Molecules in Electric Fields 

Some molecules are so made that the centres of positive and negative 

charges do not coincide. Such molecules, e.g., water and glass, are 

Fig. 10.6: In an oxygen molecule, the centres of positive and negative 

charges coincide and it has zero dipole moment in the absence of 

an external electric field. 

  

  

  
  

  

  
  

  

  
  

  
    

  

  
  
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  
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    

  

  

  
  

  

  
  

  

  
  

  
    

  

  
  
  

    

  
    

  

  

  
  

  

  
  

  

  

  

  

    

Centres of positive charges and 

negative charges coincide 

Model of an oxygen 

molecule 

The separation b in the presence of a modest electric field 
16 Vm10 E is 

 m
101.6

10101085.84

19

63012








b m109.6 15  

Although this atomic model is very crude, the estimated value of the atomic 

polarisability given by Eq. (10.4) based on this model is not too bad. It is 

accurate to within a factor of four for simple atoms. Compare the value of  

obtained from this crude model with its experimental value for the 

hydrogen atom. In units of ,m10 330 the experimental value of 
04


for 

the hydrogen atom is 0.667. 
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electrically neutral but have electric dipole moments even in the absence of 

external electric fields and are called polar molecules. We say that polar 

molecules have permanent dipole moments. Dielectrics made up of such 

molecules are called polar dielectrics.  

For example, study the simple structure of the hydrogen chloride (HCl) 

molecule shown in Fig. 10.7. It is a diatomic molecule made up of dissimilar 

atoms. Originally, the H and Cl atoms are spherical. When the HCl molecule is 

formed from these atoms, the electron of the H atom shifts partially over to the 

Cl structure, leaving the positive hydrogen nucleus behind. Thus, there is an 

excess of negative charge at the chlorine end and an excess of positive 

charge at the hydrogen end of the molecule. This separation of the centres of 

positive and negative charge gives rise to a permanent dipole moment in the 

HCl molecule. 

You have just learnt that polar molecules have permanent electric dipoles. If 

these molecules are placed in an external electric field, the force F


 on the 

positive charge will exactly cancel the force F


on the negative charge. 

But notice from Fig. 10.8 that these forces form a couple.  Therefore, each 

electric dipole would experience a torque that will tend to align it along the 

electric field.  

 

 

 

 

 

 

 

Fig. 10.8: A polar molecule experiences a torque arising due to forces on the 

separated positive and negative charges in the presence of external 

electric field. Due to this torque, the molecule tends to orient itself in 

the direction of the field. 

In Secs. 10.3.1 and 10.3.2, you have learnt how neutral atoms/non-polar 

molecules and polar molecules behave when they are placed in an external 

electric field.  We can now answer the question: What happens when a 

dielectric material is placed in an external electric field?  

10.3.3 Polarisation of Dielectrics and Polarisation 

 Vector P


 

You have learnt that there are two types of dielectrics, non-polar dielectrics 

made up of neutral atoms/non-polar molecules and polar dielectrics made up 

of polar molecules. So, we need to actually understand: How do the polar 

and non-polar dielectrics behave in the presence of an external electric 

field? On the basis of what you have learnt in Secs. 10.3.1 and 10.3.2, we can 

summarise the answer as follows: 

q  

q  

E


 

F


 

F


 

Fig. 10.7: The hydrogen 

chloride molecule in 

which the positive and 

negative charge 

centres do not 

coincide and the 

molecule has a 

permanent electric 

dipole moment.  

Cl
 

H
 

p

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1. Non-polar dielectrics: When a non-polar dielectric, which is made up of 

neutral atoms or non-polar molecules is placed in an external electric field, 

the atoms/non-polar molecules of the dielectric acquire (by induction) a tiny 

dipole moment in the direction of the electric field. 

2. Polar dielectrics: When a polar dielectric, which is made up of polar 

molecules (having permanent dipole moments) is placed in an external 

electric field, the permanent dipole moments of the polar molecules 

experience a torque tending to align them in the direction of the electric 

field.  

Thus, both mechanisms (induction of dipoles in neutral atoms/non-polar 

molecules and alignment of permanent dipoles in polar molecules) produce 

atomic/molecular dipoles in the dielectric pointing along the direction of 

the field. We say that the dielectric material is polarised. The dielectric as a 

whole remains electrically neutral and inside the dielectric slab there is no 

excess charge in any volume element.  

However, the atoms/molecules are constantly in random thermal motion and 

collide with each other. Therefore, alignment of the electric dipoles is not 

complete and increases as the electric field is increased or the temperature 

decreases. The random motion of the molecules tends to destroy the 

alignment of the dipoles at higher temperature, and particularly when the 

electric field is removed. Thus, to sum up, qualitatively we can say that 

 

 

 

 

 

 

 

 

We now give a quantitative definition of the polarisation of a dielectric.  Let us 

consider a homogeneous and isotropic dielectric slab. This means that 

the properties of the dielectric are the same at all points and in all 

directions. Let the dielectric slab be placed in an external electric field E0.


 

The external electric field could be applied by any means, e.g., due to 

charges on the plates of a parallel plate capacitor as shown in Fig. 10.9a. If 

the dielectric material is made up of neutral atoms/non-polar molecules, a 

dipole moment will be induced in each atom or molecule of the dielectric. 

If the dielectric material is made up of polar molecules, each permanent 

dipole would experience a torque tending to align it along the electric 

field. You have learnt in Secs. 10.3.1 and 10.3.2 that the direction of the 

dipole moments in either case will be the same as that of the electric field. 

The polarisation of a dielectric due to an applied external field results from  

 The induction of dipole moments due to relative displacement of the 

centres of negative and positive charges in neutral atoms/non-polar 

molecules in a non polar dielectric  

or 

 The alignment of permanent dipoles (in polar molecules) in polar 

dielectric material. 

In a homogeneous 

dielectric, its properties 

e.g., permittivity and 

susceptibility, are the 

same at all points in 

the dielectric, i.e., they 

do not vary with 

position. In an isotropic 

dielectric, its properties 

are the same in all 

directions. 
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Fig. 10.9: a) In a dielectric slab placed in an external electric field E0,


the 

centres of positive and negative charges are separated and it gets 

polarised; b) the separation of charges produces surface charges on 

the slab faces, which set up a field E


opposite to E0.


 This is an 

idealised picture. In reality, the atoms/molecules in the dielectric are 

in random motion. 

The separation of the centres of positive and negative charges produces 

surface charges on the faces of the dielectric slab as shown in Fig. 10.9b. The 

surface charges on the dielectric faces produce an electric field, say E


 in the 

direction opposite to the external electric field. The resultant electric field E


 

inside the dielectric is given by the vector sum of the electric fields E0


 and 

E .


It is in the same direction as E0


 but smaller in magnitude.  

To describe this phenomenon mathematically, we define the polarisation P


 

as the total dipole moment per unit volume: 

 P 


Dipole moment per unit volume 

Defined in this manner, polarisation is simply the mean dipole moment 

averaged over a large volume that contains a very large number of 

atoms/molecules. It is thus an average macroscopic property of the 

dielectric, which is a large scale manifestation of the electric dipole moments 

of the atoms and molecules the dielectric is made up of. If there are N 

polarised molecules per unit volume in the dielectric, we have 

 pP


N  (10.5) 

For an ideal, homogeneous and isotropic dielectric, polarisation P


is 

proportional to the electric field E


 in the dielectric and we can write 

 EPEP


0or   (10.6) 

The constant of proportionality  in Eq. (10.6) is called the electric 

susceptibility. The constant 0  appears in Eq. (10.6) so that  is 

dimensionless. Dielectric materials that satisfy Eq. (10.6) are called linear 

dielectrics.  

Eq. (10.6) is found to be experimentally true for many substances, provided 

that the electric field is not too strong. Eq. (10.6) tells us that the susceptibility 

of a dielectric provides a measure of the extent to which it can be polarised 
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when it is kept in an external electric field. The susceptibility  of a dielectric 

depends on the microscopic structure of the material and also on external 

factors such as temperature. Note that in Eq. (10.6), E


 is the net electric field 

in the dielectric. It is due to both free charges and the polarisation of the 

dielectric. So if we put a dielectric material in an external electric field 

E0,


we cannot calculate P


 directly from Eq. (10.6).  

This is because the external electric field will polarise the material; the 

resulting polarisation will produce its own electric field. This contributes to the 

net electric field, which gets modified. The modified electric field again 

modifies polarisation and this process continues. Thus, in reality, the 

phenomenon of polarisation of a dielectric is far more complex and we shall 

not go into the details here. For the time being, we are interested in knowing: 

What field does a polarised dielectric itself produce? This is what you will 

learn in the next section. But you may like to work out a simple SAQ before 

studying further. 

SAQ  1 -  Unit of polarisation vector 

Determine the unit of .P


 

10.4 ELECTRIC FIELD OF A POLARISED  
 OBJECT 

Consider a polarised dielectric object, which contains a large number of 

atomic/molecular dipoles aligned in the direction of the applied electric field. 

Let the dipole moment per unit volume of this material be given by .P


 We now 

ask: What is the electric field produced by this object at a given point? 

Remember that from Unit 5 we know the electric field of an individual dipole at 

a given point. 

So to find the answer, we divide the material into a large number of such 

infinitesimal dipoles and integrate their electric fields to get the net electric field 

of the object. This is a standard method in physics about which you have 

studied in Block 1 of this course. And you may know that the problem is easier 

to solve for the electric potential since it is a scalar. Then we can obtain the 

electric field from its expression.  

So we consider a small volume element d  of this material which has a dipole 

moment dP


. We first calculate the electric potential due to this dipole 

element at the given point. The total electric potential is then obtained by 

integrating over the entire material. You know from Unit 8 that for a single 

dipole ,p


 the electric potential produced at a point r


from the dipole is given 

by: 

                   
2

0

.ˆ

4

1

r
V

p r



  (10.7) 
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Study Fig. 10.10. It shows a volume element d of the dielectric material. It is 

situated at ),,( zyx r


and has dipole moment .dP


 The electric potential dV 

due to this volume element at the point P (x, y, z) is given by: 

 )(
ˆ.

4

1ˆ.

4

1
2

1

1

0
2

1

1

0







 dd
rr

dV Pp
rPrp 





 (10.8) 

where  rrr 


1  (10.9) 

 

 

 

 

 

 

 

 

 

Fig. 10.10: Calculating the electric field due to a dielectric. 

Integrating over the entire volume of the material, we get the total electric 

potential as  

 





 dV
2

1

0

ˆ.

4

1
)r(

rr

rP





 (10.10) 

Now, you can show that 

  
2

1

1

1

ˆ1

rr

r












 (10.11) 

where 


is evaluated at ),,( zyx  . In fact, you can do this calculation and 

arrive at Eq. (10.11) yourself. Solve SAQ 2 before studying further. 

SAQ  2 -  Electric potential of a polarized dielectric 

Derive Eq. (10.11).  

Using Eq. (10.11) in Eq. (10.10), we can write 

 













 d

r
V

10

1
.

4

1
)r(


P  (10.12) 

We now make use of the following vector identity in Eq. (10.12): 

                   fff 


..)(. AAA   

where A


 andf  are scalar and vector fields, respectively. We substitute  

1

1
f

r
  and PA


  in the vector identity. Then we get  

r 


 

P


 

r


 

r r r1 
  

 
( , , )P x y z  

d   

y  

z  

x  
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P
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1 1 1
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. . ( )
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   
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Substituting this result in Eq. (10.12), we can write the expression for the 

electric potential as 

        



























  

 
d

r
d

r
V )(

1

4

1

110

P.
P

.





 (10.13) 

We now apply the divergence theorem to the first term in Eq. (10.13) and 

rewrite the expression of the potential. Thus we get  

         








 d
r

d
r

V

S

)(
1

4

11

4

1

1010

P.S.P


 (10.14) 

The first term in Eq. (10.14) is equivalent to the electric potential produced by 

a surface charge density b  (see the last equation in the margin remark) if 

we define b  as 

  (10.15) 

 

where n̂  is the unit vector normal to the surface. The second term in                           

Eq. (10.14) is equivalent to the electric potential produced by a volume 

charge density b  (see the equation in the margin remark) if we define b  

as 

  (10.16) 

With these definitions, we can write Eq. (10.14) as  

 











 d

r
Sd

r
V b

S

b

1010 4

1

4

1
 (10.17) 

Thus, the electric potential and hence the electric field of a polarised 

object is the same as that produced by a volume charge density 

P


.b  and a surface charge density nP ˆ . 


b  of bound charges in 

the dielectric. So we do not need to calculate the contributions of all 

infinitesimal dipoles in a polarised object to solve Eq. (10.10). Instead, we can 

determine the bound charges and then calculate the electric fields they 

produce. This is the same as calculating the electric field of any volume or 

surface charge density using Gauss’s law. You may now like to understand 

the physical meaning of these bound charge densities in a polarised dielectric. 

10.4.1 Physical Interpretation of Bound Charge 
 Density 

So far you have learnt that the electric field of a polarised object is the same 

as that produced by a certain distribution of “bound charges” having densities 

b  and .b  But we had just defined these quantities to recast the integral of            

Eq. (10.12) in a certain form without explaining the physical basis for these 

bound charge densities. This is what we do now. We will now demonstrate 

that the bound electric charge densities b  and b  represent actual 

accumulation of charge.  

n.P ˆ


b  

P.


b  

From Units 8 and 9, you 

know that the electric 

potential due to a point 

charge q at a distance r 

from it is  

r
0

1
( )

4

q
V

r





 

and the electric  potential 

of a distribution of 

charges is 

r
0

1
( )

4

i

i

q
V

r






 

For a continuous 

distribution of charges: 

r
0

1
( )

4

dq
V

r


 


  

For a charge distribution 

having volume charge 

density r( )


: 

r
r

0

1 ( )
( )

4
V d

r










 

For a surface charge 

distribution having 

surface charge density 

r( )


: 

r
r

0

1 ( )
( )

4
V dS

r




 



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Let us first consider surface charge density b . Let N be the number of 

molecules per unit volume in the dielectric. In the presence of an external 

electric field ,E


 the centres of positive and negative charges are separated 

by a distance d. Let us assume for simplicity that the centres of negative 

charges remain fixed and the centres of positive charges move to produce a 

dipole moment p


 per molecule. Now consider an element of surface area 

A


d in the dielectric (Fig. 10.11). In the presence of an external electric field 

,E


 the centres of positive charges would cross the element of surface area 

A


d by moving in the direction of .E


  

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.11: A


d is along the normal to the shaded surface. The circles represent 

positive and negative charges in the molecule, which are separated 

by a distance d in the direction of the electric field. 

The number of centres of positive charges that will cross the element of 

surface area A


d  will be the number of molecules contained in a 

parallelepiped of volume                    

 d.A


ddV   (10.18) 

Therefore, the charge in the volume dV is  

    dAddNdqNdVqNdQ  n.PA.PA.pA.d ˆ


  (10.19) 

where dp


q is the dipole moment, pP


N  is the polarisation and n̂ is the 

unit vector normal to the surface. From Fig. 10.11, you can see that if A


d is 

an element of area on the surface of the dielectric, the charge dQ will 

accumulate there in a layer of thickness nd ˆ . 


. Since d is of the order of 

molecular size, we can consider the charge to be present on the surface of 

the dielectric. Therefore, the surface charge density, i.e., surface charge per 

unit area, is given by 

 n.P ˆ



dA

dQ
b  (10.20) 

The effect of polarisation is, therefore, to give rise to a bound charge 

over the surface of the material. 

Next, consider the case when the polarisation is non-uniform, that is, it is 

different at different points in the dielectric. This means that the dielectric is 

  
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  

 

  

  

  

d 

A n̂d dA


 

n̂  

F 

d


 

E


 

dA 



  

22  

Block 3                                             Electrostatics in Medium and Magnetism 

not a linear dielectric. It is anisotropic (polarisation is not the same in all 

directions) and non-homogeneous (polarisation varies with position).  

In this case we get an accumulation of bound charge within the material 

along with the bound charge on its surface. Let us calculate the bound 

charge density in this case. Since polarisation is non-uniform, a net charge Q 

flows out of the volume dV of the parallelepiped through the element of 

surface area A


d . We can obtain its value by integrating dQ given by                     

Eq. (10.19) over the entire surface: 

  A.P


dQ  (10.21) 

The net bound charge that remains inside a given volume is equal and 

opposite to the charge that flows out of it. Therefore,  

 

S

dQ A.P


 (10.22a) 

As you know, we can express this net bound charge in terms of the bound 

volume charge density as follows:  

 b

V

Q dV       

V

b

S

dVdA.P


 (10.22b) 

You know from Gauss’s divergence theorem (Unit 4) that 

        

VS

dVd P.A.P


 (10.23) 

Substituting Eq. (10.22b) in Eq. (10.23), we get 

   

V

b

V

dVdVP.


 (10.24) 

Since this result is true for all volume elements, we have 

  P.


b  (10.25) 

Eq. (10.25) tells us that if the polarisation of the dielectric is non-uniform, 

its divergence results in the net pile-up of bound charges in the 

material. The volume charge density is associated with this bound charge. 

(The volume charge density is zero for isotropic dielectrics since P. 0 


 for 

them.) These are perfectly real charge densities which we have called here 

(surface and volume) bound or polarisation charge density. You may now 

like to calculate these charge densities for a concrete situation. 

SAQ  3 -  Calculating bound charge densities 

a) A dielectric block is polarised such that 

.Cm)ˆˆˆ(2102.5 27   kjiP x


  Calculate the bound volume charge 

density for the block. 

b) Consider a polarised rectangular block of a dielectric (Fig. 10.12) whose 

polarisation .Cmˆ102.0 26  kP


 Calculate the bound surface charge 

density on the six faces of the block. 



   

23  

 Unit 10                                  Macroscopic Properties of Dielectrics 

 

 

 

 

 

 

 

 

We now discuss how Gauss’s law is modified inside a dielectric. 

10.5 ELECTROSTATIC EQUATIONS IN 

DIELECTRICS: DISPLACEMENT VECTOR D


  
AND GAUSS’S LAW 

You have studied the fundamental equation of electrostatics, namely, 

Gauss’s law in Unit 6. Recall from Unit 6 that the differential form of Gauss’s 

law is given by:  

 
0

 . 



 E


 (10.26) 

Here  is the volume charge density of all electric charges and E


is the total 

electric field of all these charges. For modifying Gauss’s law for dielectric 

materials, we find that it is convenient to separate the electric field of                     

Eq. (10.26) into two parts:  

1. one that results from the bound polarisation charge density ),( b  and  

2. the other that is due to everything else (which, for want of a better term, 

we call free charge).  

The free charge is any other charge in the material that is not the result of 

polarisation; it could be due to electrons on a conductor or ions embedded in 

a dielectric material or due to any other factor. Let us not at the moment worry 

about the source of the free charge. Then we can express the total volume 

charge density   within the dielectric as the sum of bound polarisation 

charge density b  and the free charge density :f   

 f b      (10.27a) 

Eq. (10.26) or Gauss’s law then becomes  

 ).(
.

.
00
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
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




 b

fbf  (10.27b) 

or 
00

.
















 fP

E




 (10.28a) 

or    f PE


0.  (10.28b) 

We define a new vector D


 called the electric displacement as follows: 

Fig. 10.12: Diagram for SAQ 3b. 
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  PED


 0  (10.29) 

Substituting Eq. (10.29) in Eq. (10.28b), we get Gauss’s law for a dielectric 

medium in terms of :D


  

  fD


.  (10.30a) 

In the integral form, Gauss’s law for a dielectric medium is given by: 

    enclosedfQd )(S.D


 (10.30b) 

where ( )f enclosedQ  is the total free charge in the volume. This is a very useful 

way of expressing Gauss’s law for dielectric materials as it refers to only free 

charges enclosed in the volume. So we can calculate D


 by the standard 

methods using Gauss’s law for charge distributions having some kind of 

symmetry (linear, planar, spherical or cylindrical). The equation for curl of 

E


remains unchanged: 

 0E 


  (10.31) 

From Eq. (10.6) of Sec. 10.3, you know that for linear dielectrics, the 

polarisation P


is proportional to the electric field and is given by:  

 EP


 
0
  (10.32) 

provided E


 is not too strong. You have learnt that  is called the electric 

susceptibility of the dielectric material/medium. It is a macroscopic 

property of the material and depends on the microscopic structure of the 

medium. It is a measure of the extent to which a dielectric is polarised by 

an external electric field. The greater the susceptibility of the dielectric, the 

greater is the polarisation of the material in response to the electric field, 

thereby reducing the electric field inside the material.  

Using Eq. (10.32) in Eq. (10.29), we can write D


 for linear dielectrics as 

  EEED


)1(000   (10.33) 

If we define a new parameter  given by 

  )1(0   (10.34) 

Then we can write the D


 field inside dielectrics given by Eq. (10.33) as 

  ED


  (10.35) 

The constant of proportionality  defined by Eq. (10.34) is called the 

permittivity of the dielectric material. Eq. (10.35) tells us that the 

displacement D


 is proportional to the total electric field .E


 If we divide                  

Eq. (10.34) by the factor 0, we get a dimensionless quantity r  or K:  

  Kr 



 1

0

 (10.36) 

The constant r  or K is called the relative permittivity or the dielectric 

constant of the material/medium. Henceforth, we shall use the symbol K for 

the dielectric constant in this block. Thus, we can write Eq. (10.35) as 

You may like to 

memorise Eqs. (10.29) 

to (10.37), since these 

will be used quite often 

in this block.  
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ED


K0  (10.37)  

The susceptibility and dielectric constant are important macroscopic properties 

of dielectric materials. The dielectric constant is also a measure of the extent 

to which a dielectric is polarised by an external electric field. If a material with 

a large dielectric constant is placed in an electric field, the magnitude of the 

electric field will be significantly reduced inside the dielectric. This property is 

used for increasing the capacitance and is important in the design of 

capacitors for various applications. You may like to pause and reflect over 

what you have studied so far. You may also like to try an SAQ to calculate the 

value of dielectric constant.  

SAQ  4 -  Dielectric constant of a dielectric material 

Two parallel plates, which have cross-sectional area of ,cm 100 2 carry equal 

and opposite charge of C. 100.1 7  The space between the plates is filled 

with a dielectric material and the electric field within the dielectric is 

. Vm103.3 15   What is the dielectric constant of the dielectric if the electric 

field across the plates without the dielectric is given by ,
0

0



E  where  is 

the surface charge density of the plates? 

Thus, the laws of electrostatics in vacuum given by 

  0  and 
0

0







 EE. f  (10.38a) 

are modified as follows for linear dielectrics, (i.e., when polarisation is 

proportional to the electric field): 

 0EED






     and    ).(or.

0

f
f K  (10.38b) 

If K is same everywhere, i.e., it is a constant, then we can write  

 0DEE


 )(K  (10.38c) 

Note that Eqs. (10.38b and c) for KE are of the same form as Eq. (10.38a) for 

,0E  the electric field in vacuum. We, therefore, have the solution 

 0EKE   (10.39a) 

Eq. (10.39a) implies that in a dielectric medium with dielectric constant K the 

electric field is everywhere reduced by a factor K.  

Recall from Eq. (8.15) of Unit 8 that the potential difference between any two 

points a and b is just the negative of the line integral of the electric field: 

 

b

a

ab dVV rE


.  (10.39b) 

Therefore, the potential difference or voltage is reduced by the same factor K. 

For a parallel plate capacitor, the charge placed on the capacitor plates is the 

same. Hence, its capacitance 
V

Q
C    is increased by a factor K. From             

Eq. (10.1), it is given by:  
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d

KA
C 0  (10.39c) 

You may like to apply these equations to a parallel plate capacitor. 

SAQ  5 -  Electric displacement and polarisation 

Consider a parallel plate capacitor made up of two rectangular plates of area 

of cross-section 24m1045.6   and separated by a distance of .m100.2 3  

A voltage of 100 V is applied across the plates. If a dielectric material of 

dielectric constant 6.0 is introduced between the plates of the capacitor, 

calculate the 

a) capacitance of the capacitor; 

b) charge stored on each plate of the capacitor; 

c) displacement D; and 

d) polarisation P. 

You may now like to know: What is the force between two point charges 

placed in a dielectric? 

To answer this question, consider two charges 1q  and 2q  situated in a 

homogeneous dielectric like a liquid or gas. We take a Gaussian spherical 

surface in this material centred around the charge 1q  and of radius r, the 

distance between the two charges 1q  and 2q  (see Fig. 10.13).  

Let us apply Gauss’s law to this surface. For a spherical surface, D


 is along 

the radius vector. Thus, it is parallel to n̂, the unit vector normal to the surface 

S and we have 

                enclosed

SSS

QdSDdSd   nDSD ˆ. .


      

For the Gaussian sphere of radius r enclosing the charge ,1q  applying 

Gauss’s law for constant D, we get 

 
2

1
1

2

4
or4

r

q
DqDr


  

From Eq. (10.37), we can write this result as           

  EK
r

q
D 02

1

4



  

or  
Kr

q
E

2
0

1

4 
    and  rE ˆ

4 2
0

1

Kr

q





 (10.40) 

Here r̂ is the unit vector along the radius pointing from 1q  to .2q  

The force experienced by the charge 2q is, therefore, 

  rEF ˆ
4 2

0

21
2

rK

qq
q





 (10.41) 

From Eq. (10.41), you can see that the force between any two charges in a 

dielectric medium is reduced by the factor K.  

We now take up an example to calculate the electric field in a dielectric. 

O 
1q  2q  

r 

S 

Fig. 10.13: Two 

charges 1q  and 2q  

situated in a 

homogeneous 

dielectric medium. 
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You may now like to solve a problem on your own. 

SAQ  6 -  Electric field in a dielectric 

A large metal plate of area 2m 0.1  carries a charge C.104.4 10  Calculate 

the electric field at a point near the plate. 

 

We now summarise what you have studied in this unit. 

In solving the integrals 

in Eq. (10.44), we 

have used the result 
 

2

1 1
dr

rr
   

 
Hence, 

2 44

b

a

a

b

Q Q
dr

rr


 


          

1 1

4

Q

a b
 



 
 
 

 

 

Other integrals are 

special cases. 
 

 

 

 

A metal sphere of radius a carries charge Q. It is surrounded by a linear 

dielectric material of dielectric constant K up to distance b. Calculate the 

electric field in the three regions (i) r < a, (ii) bra   and (iii) br   and 

the electric potential at the centre of the sphere. 

SOLUTION   Refer to Fig. 10.14. Since the charge in a conductor 

resides on its surface, we have from Gauss’s law: 

  arE  for0  

For calculating the electric field in the region bra  where the dielectric 

medium is present we use Eq. (10.30b) given as   

S

enclosedQdS.D


 

    rD ˆ
4

4
2

2

r

Q
QrD





    for  bra   (10.42) 

From Eq. (10.37),  ED


K0        or        
K0


D

E




  

 Thus,            rrE ˆ
4

ˆ
4 22

0 r

Q

Kr

Q








   for  bra   (10.43a) 

In the region br  where the dielectric material is not present, the electric 

field is given by: 

  rE ˆ
4 2

0r

Q





         for     br   (10.43b) 

The electric potential at the centre of the sphere is, therefore, 

   
 









0 0

22
0

0
44

a

b a

b

drdr
r

Q
dr

r

Q
dV l.E


 (10.44) 

Hence, 

















bab

Q
V

111

4 0

 (10.45) 

 

 

 

 

 

 

   

 

XAMPLE 10.2:  CALCULATION OF ELECTRIC FIELD IN A 

DIELECTRIC 

 

 

 

Fig. 10.14: Diagram for 

Example 10.2 

Q  

a 

b 
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10.6 SUMMARY 

Concept Description 

Dielectric in electric 

field  

 When an insulating material called a dielectric is placed in an external 

electric field it gets polarised.  

Dielectric polarisation  Electric dipole moment per unit volume P


is called polarisation. 

At the atomic level, polarisation of the dielectric material or medium 

takes place in two ways: 

i) If the dielectric material is made up of neutral atoms/molecules in 

which the centres of positive and negative charges coincide, the 

neutral atom/molecule (called non-polar molecule) does not have 

any electric dipole moment. The effect of external electric field on 

neutral atoms/molecules is that the centres of positive and negative 

charges in them are separated and the material develops a net 

electric dipole moment. 

ii) If the dielectric material is made up of polar molecules, then in the 

absence of the electric field the permanent dipole moments move 

randomly due to the thermal motion of the molecules. However, in 

the presence of external electric field, the permanent dipole 

moments tend to align along the direction of the electric field and the 

dielectric material develops a net electric dipole moment.  

Atomic polarisability  The electric dipole moment acquired by an atom/molecule is 

proportional to the electric field and can be written as 

                        Ep


  

where  is called the atomic/molecular polarisability. 

Bound charge  The electric field produced by a polarised dielectric is equivalent to 

the electric field produced by a bound surface charge density 

n.P ˆ


b  and a bound volume charge density .P.


b  

Gauss’s law for 

dielectric 

 Gauss’s law of electrostatics gets modified in a dielectric medium 

and it is convenient to introduce a displacement vector D


 for the 

medium given by: 

 PED


 0                                                                                     

 In terms of ,D


 Gauss’s law states that the flux of D


through a closed 

surface is equal to the total free charge enclosed in the volume 

bounded by the closed surface: 

   enclosedf

S

Qd )( S.D


     or     f D.


 

Electric susceptibility, 

permittivity and 

dielectric constant 

 

 For ideal, homogeneous and isotropic dielectrics, called linear 

dielectrics 

                   EP


 0   
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10.7 TERMINAL QUESTIONS 

1. Two parallel conducting plates of area of cross-section 2.0 2m  are 

separated by a distance of 21.0 10 m.  The potential difference (V0) 

between them in vacuum is 3000 V. When a dielectric sheet of thickness 

1.0 cm is introduced between them, the voltage is found to decrease to 

1000 V. Calculate 

 a) the dielectric constant K, the permittivity  of the dielectric and its 

susceptibility , 

 b) the electric field between the plates in vacuum, 

 c) the electric field in the dielectric, and 

 d) the electric field produced by the bound charges. 

2. Consider two isotropic dielectric mediums A and B of permittivity 1  and 

2,  respectively, separated by a charge free boundary as shown in                

Fig. 10.15. The electric field  1E


 is incident at the boundary of the mediums 

at an angle of incidence i  and the electric field 2E


 in medium B makes an 

angle of refraction .r  Assuming that at the interface of the two dielectrics, 

the normal component of D


 and tangential component of E


 are 

continuous, show that 1

2

tan

tan
i

r

 


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of dielectrics on 

capacitance 

where  is called the electric susceptibility of the medium. The 

displacement vector D


 for linear dielectrics is 

 EED


  )1(0  

where  is called the permittivity of the medium. We define a 

dimensionless quantity K called the dielectric constant as 

  
0


K  and hence  ED


 0K      

D


 depends only on the free charges and can be obtained without any 

reference whatsoever to the bound charges in a dielectric. 

 In a dielectric, the electric field due to a distribution of free 

charges is reduced by a factor K. This has the effect of increasing 

the capacitance of a capacitor filled with a dielectric by a factor equal 

to the dielectric constant of the material.  

Fig. 10.15: Diagram for TQ 2. 

                       

f  

A 

dielectric 
E


 

f  

                       

B 

1d  

2d  

i  

r  

E1


 

E2


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3. Show that the polarisation (bound) charge density at the interface of two 

charge free dielectrics of permittivity 21 and     is given by 

    n.EPP.n ˆ)(ˆ 1
2

21
021






b  

 where n̂ is a unit vector normal to the surface. Assume that the normal 

component of D


 and tangential component of E


 are continuous at the 

interface of the two dielectrics. 

4. A thin dielectric rod of cross-section A extends along the x-axis from 0x  

to .Lx  The polarisation of the rod is along its length and is given by 

.̂)( 2 iP bax 


 Obtain the bound volume charge densities and the surface 

charge densities at each end of the rod. Show explicitly that the total 

bound charges vanish. 

10.8 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. P


is dipole moment per unit volume. Therefore, unit of P


 is: 

    2

3
Cmor

(metre)

metre Coulomb 
 

2.   From the definition of the gradient, i j k
1 1

1 1ˆ ˆ ˆ
r x y z r

      
       

        


   

  where from Eq. (10.9), .)()()( 222
1 zzyyxxr   Now     

              
32 2 21 1

1 1 ( )
,

( ) ( ) ( )

x x

x r x rx x y y z z

        
            

  

  
32 2 21 1

1 1 ( )

( ) ( ) ( )

y y

y r y rx x y y z z

        
            

 and 

       
32 2 21 1

1 1 ( )

( ) ( ) ( )

z z

z r z rx x y y z z

        
            

 

  Therefore,  

   
i j k

i j k
3

1 1

ˆ ˆ ˆ1 ( ) ( ) ( )ˆ ˆ ˆ x x y y z z

x y z r r

            
    

      
 

                                                    
r r

r r1 1
1 1 13 2

1 1

ˆ
ˆ( )r

r r
  




  

where we have used Eq. (10.9) for the expression of r1.


 Hence, we get              

Eq. (10.11):    
r1
2

1 1

ˆ1

r r

 
  
 


 

3. a) From Eq. (10.25), the volume charge density b  is given by   

         37 Cm102.5)ˆˆˆ2(.ˆˆˆ. 





















 kjikjiP x

zyx
b


 

             3737 Cm100.5Cm102.52    
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 b) Surface charge density is the component of P


normal to the surface. 

Now refer to Fig. 10.12. The faces BFEC and AGHD have normals 

along ĵ and ,̂j  respectively. The charge densities on these surfaces 

are zero since 0ˆˆ k.j :  0ˆ j.P


 and 0.ˆ  j.P


 The faces ABCD 

and GFEH have normals along î and ,̂i  respectively. The charge 

densities on these surfaces too are zero because 0.ˆˆ k . i  

   Charge density on the face DCEH 26 Cm100.2ˆ  k.P


 

   Charge density on the face ABFG  26 Cm100.2ˆ  k.P


 

4. The surface charge density on the plates is 

    25

24

7

mC100.1
m10100

C100.1 











A

Q
 

 The electric field between the plates in the absence of any dielectric is 

    1
7

21212

25

0
0 Vm

85.8

100.1

mNC108.85

mC100.1 



 










  E  

 In the presence of the dielectric, the field is reduced by a factor equal to 

the dielectric constant. Therefore, from Eq. (10.39a),  

                       0E
E

K
  

       4.3
103.38.85

100.1
5

7
0 






E

E
K  

5. a) From Eq. (10.39c), the capacitance C of a parallel plate capacitor filled 

with a dielectric material of dielectric constant K is given by 

    F107.1F
1002.

1045.61085.80.6 11

3

412
0  














d

A
KC  

 b)  The voltage applied is 100 V. Therefore, 

   Charge stored on each plate CV    

                                                          C107.1C100107.1 911    

 c) Applying Gauss’s law for the dielectric 















S

enclosedfQd )(S.D


 to this 

case, we get   QDA     or   
A

Q
D    

    262

4

9

m C106.2m C
1045.6

107.1 











A

Q
D   

 d)   PED  0    and   ,
d

V
E   we get 

                  2

3

12
6

0 m C
100.2

1001085.8
106.2 























 EDP                 

  or 26276 m C102.2m C)104.4106.2(  P  
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6. Let  be the charge density on the surface of the plates. Now consider a 

“Gaussian pill box” which extends to equal distances above and below the 

plane of the positively charged plate (Fig. 10.16). Let us apply Gauss’s law 

to this surface: 

                      


S

enclosedfQ
d

0

)(
S.E


 (i) 

 If A is the area of the lid of the pill box, then for this case 

                          ( )f enclosedQ A   (ii) 

 Only the top and bottom surfaces of the pill box contribute to the integral 

since for other surfaces, E


 and Sd


 are perpendicular to each other and 

their scalar product is zero.  

 For both the top and bottom surfaces of the pill box, the electric field points 

away from the plane (since the vector Sd


 is normal to the surfaces). It is 

upwards for the points above the plane and downwards for the points 

below the plane.  

 Thus, we take the contributions of only the top and bottom surfaces of the 

pill box to the electric field into account. Then using Eq. (ii), the value of 

the integral of Eq. (i) is given by                     

                 




S

A
AEd

0

2S.E


      or        
02

E





                        

 Since 21.0 m ,A 
210

2

10

m C104.4
m0.1

 C104.4 






A

Q
 

      
10 2

1 1

12 2 1 2
0

4.4 10 C m
24.9 Vm 25 Vm

2 2 8.85 10 C N m
E

 
 

  

 
    

  
 

Terminal Questions 

1. a) From Eq. (10.39a), the dielectric constant  

    3
1000

300000 
V

V

E

E
K  

  From Eq. (10.36):  
00

3 K and 21  K  

 b)   151

2
0

0 mV100.3mV
100.1

3000 







d

V
E  

 c)   151

2
mV100.1mV

100.1

1000 







d

V
E  

 d) The electric field E is the resultant of the electric field 0E  and the field 

bE  set up by bound charges.  

    15
0 mV 100.2  EEEb  

2. As given in the problem, at the interface of the two dielectrics, the normal 

component of D


and the tangential component of E


 are continuous. 

Therefore, 

Fig. 10.16: Diagram 

for SAQ 6. 

E  

E  

A  
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      ri EE  sinsin 21  (i) 

      and       ri DD  coscos 21      (ii) 

 But from Eq. (10.35), ED   and therefore, 

         1 1 1 2 2 2andD E D E     

 Hence, Eq. (ii) becomes ri EE  coscos 2211  (iii) 

 Dividing Eq. (i) by Eq. (iii), we get   

   ri 





tan
1

tan
1

21

          or            
2

1

tan

tan










r

i  

3. The surface charge density of a polarised medium is given by ,n̂.P


b  

 where n̂  is the unit vector normal to the face on which polarisation (bound) 

charges appear. Let 
1

P


 and 
2

P


 be the polarisation vectors in the two 

media. 

At the interface, the net surface charge density b  is given by: 

 )(ˆ 21 PP.n


b  

Now EDPPED


00   

and )()( 2102121 EEDDPP


  

 )(ˆ)(ˆ 21021 EE.nDD.n


b     (i) 

As per the problem, the normal components of D


 are continuous at the 

interface. Thus, we have 

0)(ˆ 21 DD.n


 

Therefore, from Eq. (i) ).(ˆ)(ˆ 120210 EE.nEE.n


b  But ED


  

and therefore, 

  0)(ˆ0)(ˆ 221121  EE.nDD.n


  

or              n . E n . E1
2 1

2

ˆ ˆ





 
 

        n . E E . n1 1 2
0 1 0 1

2 2

ˆ ˆ1b

      
        

    

 
 

4. It is given that P i2 ˆ( ) .ax b 


 See Fig. 10.17. 

 

 

 

 

The volume charge density is given by  

      P i j k i2ˆ ˆ ˆ ˆ. . ( ) 2b ax b ax
x y z

   
          

   


    (i) 

Fig. 10.17: Diagram for TQ 4. 
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Since n îˆ    at the face at 0,x   the surface charge density at 0x   is 

given by 

       P. n P. i 2
0 0 0

ˆˆ ( )b x x x
ax b b

  
        

 
  (ii) 

 Since n îˆ   at the face ,x L  the surface charge density at x L  is 

          P. n P. i 2 2ˆˆ ( ) ( )b x L x L x L

ax b aL b
 



      
 

  (iii) 

Since ,dV Adx  using Eq. (i), we get the total bound volume charge as                      

             2

0

( 2 )

L
V
b b

V

Q dV a x Adx a AL          

 Using Eq. (ii), we get the bound surface charge on the surface 1S  at 0x   

as  

          1
0

S
bb x

Q A b A


     

 Using Eq. (iii), we get the bound surface charge on the surface 2S  at 

x L  as  

             2 2( )
S

bb x L
Q A aL b A


     

Thus the total bound charge on the rod is  

          1 2 2 2( ) 0
S Stotal V

b b b b
Q Q Q Q a AL bA aL b A          

as expected. 
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              UNIT 11 

CAPACITORS 

Structure 
 

11.1 Introduction 

Expected Learning Outcomes  

11.2 Capacitance 

Charging of a Capacitor and Energy Stored in It 

11.3 Parallel Plate Capacitor 

Parallel Plate Capacitor with Dielectric  

Material Inserted between its Plates 

Energy Stored in a Dielectric Medium 

11.4 Capacitance of Spherical and  

Cylindrical Capacitors 

 

 

STUDY GUIDE           

 

11.5 Capacitors in Series and in Parallel 

Combination of Capacitors in Parallel  

Combination of Capacitors in Series 

11.6 Applications of Dielectrics in Practical 

Capacitors 

11.7  Summary 

11.8 Terminal Questions 

11.9 Solutions and Answers 

 

In this unit, you will study about capacitor which is an electrical component used in a variety of 

electrical and electronic applications. The utility of capacitors is enhanced manifold when dielectric 

materials are filled between its plates. Thus, we shall refer to dielectrics and its behaviour in electric 

field (Unit 10) very frequently in this unit. You should, therefore, read Unit 10 before studying this 

unit.  

For calculating capacitance of capacitors of different geometrical shapes, you will need to 

determine electric field and electric potential. We have used Gauss‟s law for calculating electric field 

due to charge on the capacitors. You should refresh the applications of Gauss‟s law form Units 6 

and 7. Also, you should revise the concept of electric potential discussed in Unit 9.  

You know the mathematics used in this unit as you have studied it in the previous units of this 

course. However, you should work through the mathematical derivations yourself as you study the 

unit. We also advise you to try to solve the SAQs and TQs yourself before looking up their answers 

given at the end. 

“No amount of experimentation can ever prove me right; 

a single experiment can prove me wrong.”  
Albert Einstein  

 

 

Capacitors of different shapes and sizes 

shown here are integral components of 

electrical and electronic circuits. The use of 

dielectric materials in capacitors enhances 

their capacitance and helps in miniaturisation 

of electrical and electronic appliances. (Picture 

source: Wikimedia Commons) 
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11.1   INTRODUCTION 

In Unit 10, you have studied the behaviour of dielectric materials in electric 

fields and electric fields of polarised dielectrics. You have deduced Gauss‟s 

law for dielectric materials and learnt about their susceptibility and dielectric 

constant. As you know, dielectric materials are used very widely in the 

fabrication of capacitors for a variety of applications. Therefore, we focus on 

capacitors in this unit. In school physics and in Unit 10, you have learnt that 

the potential of a conductor increases as the charge placed on it is increased. 

This means that the charge on a conductor is directly proportional to the 

voltage across it and the constant of proportionality is called the capacitance 

of the conductor. Mathematically, we write this condition as Q V or 

,Q CV where the constant C is the capacitance. You know that any device 

that has capacitance is called a capacitor. You are already familiar with this 

device from your school physics. 

Capacitors have many applications in our daily lives. When we turn the 

„tuning‟ knob on a radio receiver to get the radio station of our choice, we 

actually change the capacitance. Capacitors are used in many electrical or 

electronic circuits. They are used to provide coupling between amplifier stages 

and to smoothen the output of power supplies. Capacitors are commonly used 

in motors and fans. In combination with inductances, they are used to produce 

oscillations which when transmitted become radio signals/TV signals, etc. 

Besides these, capacitors have a variety of applications in electrical power 

transmission.  

In Sec. 11.2 of this unit, you will learn about capacitance and the charging of 

a capacitor. We also determine the energy stored in a capacitor. In               

Sec. 11.3, we discuss the parallel plate capacitor and calculate its 

capacitance when a dielectric material is inserted between its plates. We 

also determine the energy stored in a dielectric medium. In Sec. 11.4, we 

determine the capacitance of spherical capacitor and cylindrical capacitor. In 

electrical circuits, capacitors are connected in parallel and/or in series. 

Therefore, in Sec. 11.5, you will learn how to calculate the resultant 

capacitance of these two types of combinations of capacitors in a circuit. 

Finally, in the last section (Sec. 11.6) of this Unit, you will learn about the 

applications of dielectrics in capacitors and some capacitors used in practical 

applications. We also briefly talk about the voltage rating of a capacitor.  

In the next unit we discuss the magnetic field and its relation with electric 

current.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 define the capacitance of a capacitor; 

 calculate the energy stored in a capacitor and in a dielectric medium; 

 calculate the capacitance of a capacitor when a dielectric material is 

inserted in a capacitor; 

 determine the capacitance of parallel plate, spherical and cylindrical 

capacitors; 
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 obtain the effective capacitance of a given combination of capacitors in 

series and in parallel; and 

 describe practical capacitors and list their applications. 

11.2   CAPACITANCE 

Consider two conductors carrying charges Q  and ,Q  respectively (see 

Fig. 11.1).  You have studied in Unit 9 that the voltage V on a conductor is 

constant because a conductor is an equipotential surface. 

 

 

 

Fig. 11.1: Two conductors carrying charges Q  and Q , respectively. 

By definition, the potential difference between the two conductors is  

 



  l.E


dVVV  (11.1) 

where V is the potential of the conductor carrying positive charge and ,V  

the potential of the conductor carrying the negative charge. You know from 

school physics that the potential on the conductor increases if the charge on it 

increases. You also know that for a system of two conductors for which the 

potential difference is given by V as defined by Eq. (11.1), charge Q is 

proportional to V:  

                     Q V         or       CVQ   (11.2) 

The constant of proportionality is called the capacitance of the system. 

From Eq. (11.2), we get  

 
V

Q
C   (11.3) 

You have learnt in school physics that capacitance is determined by the 

shape and size of the conductors as well as the separation between 

them. Notice that, by definition, V is the difference between the potential of 

the positive conductor and the potential of the negative conductor and Q is 

the charge of the positive conductor. Thus C is a positive quantity.  

We can also talk of the capacitance of a single conductor. In this case, the 

second conductor is an imaginary spherical shell of infinite radius 

surrounding the conductor and it contributes nothing to the field.  

For example, consider an insulated conducting spherical shell of radius R. Let 

us place a charge Q on the surface of this shell which is an equipotential 

surface. The potential on the outer surface of the shell (see Sec. 9.2 of Unit 9) 

is given by: 

 
R

Q
V

04 
  (11.4) 

under the assumption that a shell having (very large) infinite radius is at zero 

potential. Instead of a shell of infinity radius we can regard the ground (Earth) 

at zero potential. Then the capacitance of this shell (with respect to the 

ground) is 

Q  Q  
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volt

coulomb
4 0R

V

Q
C   (11.5) 

where R is in m. The unit of capacitance C in SI system is farad (denoted by 

F) and is defined as: 

 
volt1

coulomb1
farad1   (11.6) 

If 1.0m,R   the capacitance of the above shell is 

.F101.1m)0.1(4 10
0

  We notice that farad is an inconveniently large 

unit. The more practical units of capacitance are microfarad F)10( 6 and 

picofarad F).10( 12  The symbol of a capacitor used in electric circuits is:                   

Before studying further, you may like to answer an SAQ based on the 

concepts discussed so far. 

SAQ  1 -  Capacitance of the Earth 

Consider a spherical shell of radius equal to that of the Earth (6000 km).             

What is its capacitance? 

 
11.2.1 Charging of a Capacitor and Energy Stored in It  

In order to “charge up” a capacitor, we have to remove electrons from the 

positive conductor and carry them to the negative conductor. In doing so, we 

have to do work against the electric field which is pulling them back to the 

positive conductor and pushing them away from the negative conductor. 

Suppose we start putting charge on the conductor. At an intermediate stage 

when the charge on the conductor is q, the potential difference is 
C

q
V   and 

to bring an additional charge dq to the conductor, we have to do an amount of 

work dW given by:  

 dq
C

q
dqVdW   (11.7) 

The total work done in charging a capacitor from zero charge ( 0)q   to some 

final charge Qq   is  

  









Q

C

Q
dq

C

q
W

0

2

2

1
 (11.8) 

This work is stored as the electric potential energy U in a capacitor. 

Since ,CVQ  we have 

 2

2

1
CVU   (11.9) 

where V is the final potential of the capacitor. Eqs. (11.8) and (11.9) hold no 

matter what the geometry (that is, the shape or size) of the capacitor is.  

The energy stored in a 1F capacitor when charged to a potential of 10 V is 

thus 

 J1050V)(10F)10(
2

1 626  U   

We now discuss the parallel plate capacitor, which is a capacitor of the 

simplest geometry and the most familiar to you. 

In a nutshell, a 

capacitor is an 

electronic device for 

storing electrical 

energy by allowing 

charges to 

accumulate on metal 

conductors. The 

electrical energy 

stored in the 

capacitor is recovered 

when these charges 

are allowed to move 

from these 

conductors to the 

electrical circuit they 

are a part of.  
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11.3   PARALLEL PLATE CAPACITOR 

A parallel plate capacitor consists of two metal plates (rectangular or circular) 

arranged parallel to each other and separated by a distance d (see Fig. 11.2). 

The distance d is usually very small compared to the size of the plates.  

If we put a charge Q  on the top plate and the charge Q  on the bottom 

plate, the charges will spread uniformly over the surfaces. The surface charge 

density is then 
A

Q
  on the top plate, where A is the area of the plate. 

 

 

 

Fig. 11.2: Geometry of a parallel plate capacitor. 

We can calculate the electric field between the plates by using Gauss‟s law. It 

is given by: 

        
0


E  (11.10) 

The electric field is normal to the surface and is uniform between the plates 

provided the distance between the plates is very small compared to the size of 

the plates. You may like to prove this result before studying further. Attempt 

the following SAQ. 

SAQ  2 -  Electric field in a parallel plate capacitor 

Using Gauss‟s law calculate the electric field between the plates of a parallel 

plate capacitor carrying a surface charge density . 

From Unit 8 (solution of TQ 2), you know that the potential difference between 

the plates A and B of the capacitor is given by 

  d
A

Q
dEddV

A

B
00 





  l.E


 (11.11) 

and, therefore, 

 
d

A
C 0  (11.12) 

If, for example, the plates of the capacitor are square in shape with sides of    

10 cm and are held 41.0 10 m ( 0.1 mm) apart, then its capacitance is                

 F108.9pF 885mNC1085.8
m100.1

m)100.1( 1021212
4

21










C  

SAQ  3 -  Capacitance of a parallel plate capacitor 

Calculate the capacitance of a parallel plate capacitor having plates of size  

1.0 cm2 with a separation of 41.0 10 m between the plates. What is the 

energy stored in it when it is connected across a cell of voltage 1.5 V? 

A 

B d 
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What happens when we place a dielectric material between the plates of a 

parallel plate capacitor? Let us find out.   

11.3.1 Parallel Plate Capacitor with Dielectric Material 
Inserted between its Plates 

You have already learnt in Sec. 10.5 of Unit 10 [Eq. 10.39a)] that in a 

dielectric medium, the electric field is reduced by an amount K called the 

dielectric constant. We can extend this result to a parallel plate capacitor: 

Whenever a dielectric material is inserted between the plates of a parallel 

plate capacitor, the electric field between plates is reduced by the dielectric 

constant K.  

To verify this result, let us consider a parallel plate capacitor of area of cross-

section A with a dielectric material inserted between the plates (Fig. 11.3).  

 

 

 

 

Fig. 11.3: A parallel plate capacitor with dielectric material inserted between the 

plates. 

Let d be the distance between the plates and  the surface charge density on 

the plates. We now apply Gauss‟s law for dielectric materials [Eq. (10.30b) of 

Unit 10] to a Gaussian surface of area S as shown in Fig. 11.3: 

   enclosed)(. fQdSD


 

Since electric displacement D


 is perpendicular to the plates of the capacitor 

and only the free surface charge density contributes to it, we have 

  )/( AQD  (11.13) 

Note that as you have learnt in Unit 10, the bound surface charges do not 

contribute to the flux of D. Further, from Eq. (10.37), we also have  

  
D

D E E0
0

orK
K

  



  

 (11.14a) 

Therefore, from Eqs. (11.13) and (11.14a), we get 

                  
0 0

D
E

K K


 

 
 (11.14b) 

The potential difference V between the plates is given by V Ed  and using 

Eq. (11.14b), we get the capacitance as 

 0A KQ A
C

V E d d

 
  


 

or              0 K A
C

d


  (11.15) 

Comparing Eq. (11.15) with Eq. (11.12), we find that the value of the 

capacitance of the parallel plate capacitor increases by a factor K, the 

dielectric constant of the material. 

Thus, the effect of introducing a dielectric between plates is to increase 

the capacitance of a capacitor.  

           

 

           

 

Gaussian 
surface of area S 

 

Dielectric 

d 
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The dielectric constant of a material can thus be determined by measuring the 

ratio of the capacitance of a parallel plate capacitor with the dielectric and 

without it, viz. 

                 
Capacitance with dielectric between plates

Capacitance with free space between plates
K    

Table 11.1 gives the relative permittivity r  or the dielectric constant K of 

some common materials. Since we can write the capacitance given by Eq. 

(11.15) as 

 0

( / )

A
C

d K


  (11.16) 

we can say that a dielectric of thickness d has an equivalent free space 

thickness .
d

K
  

The concept of the equivalent free space thickness allows us to answer the 

question: What is the capacitance of a parallel plate capacitor when the 

space between the plates is only partially filled by the dielectric? Let us 

solve this problem in an Example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a parallel plate capacitor of area A. Let a dielectric slab of 

thickness t and dielectric constant K be kept between its plates as shown in 

Fig. 11.4. Notice that the upper surface of the dielectric slab is at a distance 

1d  from the upper plate of the capacitor and the distance between the 

lower surface of the dielectric and the lower plate of the capacitor is .2d  

Calculate the capacitance of this capacitor. 

SOLUTION    

 

 

 

 

 

Fig. 11.4: Calculation of capacitance in terms of the equivalent free space 

thickness. 

To calculate the capacitance of the partially filled capacitor [Fig. 11.4], we 

will use the concept of the equivalent free space thickness. From Fig. 11.4, 

you can see that the free space between the plates is ( ).d t  From        

Eq. (11.16), the slab of dielectric constant K of thickness t has equivalent 

free space of thickness ( / ).t K  Thus, the total free space between the 

plates is ( / )d t t K   and the capacitance C of this capacitor is  

  0 0

/

A A K
C

d t t K Kd Kt t

 
 

   
 (11.17) 

XAMPLE 11.1:  CAPACITOR PARTIALLY FILLED WITH A 

DIELECTRIC 

 

 

 

 d 

2d

 

1d  

t K 

A note regarding 

symbols. In some 

books, dielectric 

constant, K is called 

relative permittivity 

and is denoted by .r   

We shall use the term 

dielectric constant and 

denote it by K. 

However, for the sake 

of completeness, we 

have made a mention 

of equivalent term 

relative permittivity 

and its symbol .r  

Table 11.1: Relative 

permittivity/dielectric 

constants of some 

common materials. 

Material Dielectric 

constant 

Air 1.0006 

Castor oil 4.7 

Mica 5  9 

Glass 4.5  7.0 

Bakelite 4.5  7.5 

Paper 2.0  2.3 

Porcelain 5.5 

Quartz 1.5 

Water 80.4 
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We can also calculate the capacitance by calculating the potentials. From              

Fig. 11.4, you can also see that 

 1 2d d d t    (11.18) 

Now suppose  

1V  is the potential difference between the upper plate of the capacitor and 

the upper surface of the dielectric,  

2V  is the potential difference between the upper and lower surfaces of the 

dielectric, and  

3V  is the potential difference between the lower surface of the dielectric 

and the lower plate of the capacitor.  

The three potential differences are shown in Fig. 11.5. 
 
 
 
 
 
 
 
 

Fig. 11.5: Calculation of capacitance from the potential differences. 

The total voltage V across the capacitor is the sum of these three potential 

differences.  

Thus,  1 2 3V V V V    (11.19) 

If E


 is the electric field inside the capacitor, we have 

         1 1 2 3 2, and
t

V d E V E V d E
K

    (11.20) 

                1 2 1 2( )
E t E t

V d E d E d d E
K K

         

 Using the result 1 2d d d t    from Eq. (11.18), we can write 

               ( ) ( )
E t t

V d t E d t E
K K

        (11.21) 

Comparing Eq. (11.21) with the general expression of V in terms of E and 

d ( ),V Ed  we note that the equivalent free space thickness of the 

dielectric is  

          ( )
t

d t
K

   (11.22) 

Therefore, the capacitance C is,  

         
)/(

0

Kttd

A
C




  (11.23) 

as before [Eq. (11.17)]. 

1V  

3V  

 d 

2d

 

1d  

t K 2V  
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You may now like to solve a problem based on what you have learnt so far. 

SAQ  4 -  Capacitor partially filled with dielectric 

A dielectric of dielectric constant 3 is filled in the gap between the plates of a 

capacitor. Calculate the factor by which the capacitance is increased, if the 

dielectric is only sufficient to fill up 3/4 of the gap. 

You have learnt in Sec. 11.2.1 that capacitors can be used to store charge 

and energy. You also know that their capacitance (and hence the capacity to 

store charge and energy) increases if a dielectric material is inserted in the 

space between the two conductors forming the capacitor. A logical question 

that follows is: What is the energy stored in a dielectric medium? Let us 

answer this question for a parallel plate capacitor. 

11.3.2 Energy Stored in a Dielectric Medium 

From Eq. (11.9), you know that the energy stored in a parallel plate capacitor 

is given by: 

 
2

21

2 2
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U CV

C
   

From Eq. (11.12), you know that the capacitance of a parallel plate capacitor 

with free space between its plates is given by: 
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Also           V E d  

Putting these values in the expression of energy U given by Eq. (11.9), we get 
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
 where the volume Ad  (11.24) 

Eq. (11.24) gives the energy per unit volume in the capacitor. 

When a dielectric of dielectric constant K fills the space between the plates of 

the capacitor, then the effective capacitance is given by Eq. (11.15) as 

                     0
dielectric

KA
C

d


  

The energy stored in a capacitor with a dielectric material of dielectric constant 

K inserted between its plates is given by:  
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Here D


 is the electric displacement in the dielectric. Thus, in the case of a 

parallel plate capacitor with free space between its plates, the energy stored 

per unit volume is 2
0

1

2
E  which becomes E. D2

0
1 1

2 2
K E 

 
 when the 

dielectric material is inserted between the plates of the capacitor.  

Thus, the energy stored per unit volume in a dielectric medium is given by: 

 3Jm
2

1 


D.E
U

 (11.26) 

We have considered here the case of a linear dielectric for which E


 and D


 

are in the same direction. 

So far, we have calculated the capacitance of a parallel plate capacitor. We 

now determine the capacitance of a spherical capacitor and a cylindrical 

capacitor. 

11.4 CAPACITANCE OF SPHERICAL AND 
 CYLINDRICAL CAPACITORS 

Let us first consider a spherical capacitor. 

a) Spherical capacitor 

 

Fig. 11.6: Spherical capacitor comprising two concentric conducting spheres 

of radius a and b. 

Fig. 11.6 shows a spherical capacitor comprising two concentric spherical 

shells of radii a and b, respectively, such that b   a. Suppose that the 

inner shell carries positive charge Q. If  is the surface charge density, 

then 24 .Q a    Now consider a spherical Gaussian surface S of radius 

r lying between the concentric spherical shells. Let us apply Gauss‟s law 

to this surface. Note that E


 is in the radial direction and hence it is parallel 

to the normal Sd


to the surface and ,EAd

S

 S.E


 where A is the area of 

the spherical shell‟s surface. Thus, we get  
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 The potential difference ( )a bV V is given by 

In solving the integral  

for V we have used 

the result 
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 When the outer surface is at , b   and we have 04 .C a   

b) Cylindrical capacitor 

Fig. 11.7a shows the schematic diagram of a cylindrical capacitor. It is 

made up of two hollow coaxial cylindrical conductors of radii a and b, 

respectively. The space between the cylinders is filled with a dielectric of 

dielectric constant K. A slightly enlarged cross-section of this capacitor is 

shown in Fig. 11.7b.  

 

 

 

 

Fig. 11.7: a) Cylindrical capacitor; b) cross-section of the cylindrical capacitor. 

Some examples of such capacitors are: 

i) A coaxial cable, in which the inner conductor is a wire and the outer 

conductor is normally a mesh of conducting wire separated from the inner 

conductor by an insulator (usually plastic). 

ii) The submarine cable, in which a copper conductor is covered by 

polystyrene (the outer conductor is sea water).  

These capacitors are used quite commonly around us and, therefore, it is 

important to determine their capacitance. We now determine the capacitance 

per unit length for a cylindrical capacitor. 

Since both the inner and outer cylinders of a coaxial capacitor are conductors, 

they are equipotential surfaces (see Sec. 9.3 of Unit 9). The electric field is 

radial (normal to the surface of the cylinder). Let  be the charge per unit 

length on the inner cylinder of the capacitor shown in Fig. 11.8. The outer 

cylinder is grounded. An equal and opposite amount of charge will appear on 

the inner side of the outer cylinder (not shown in the figure). This is because 

the electric field inside the conductor is zero. To evaluate the electric field for 

the cylindrical capacitor, we consider a coaxial closed cylindrical Gaussian 

surface ABCD of length L and radius r. 

 

 

 

Fig. 11.8: Calculating the capacitance of a cylindrical capacitor. ABCD is the 

Gaussian surface. 

(a)  (b)  
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The electric field is normal to the surface of the inner cylinder. It is also 

confined in the space between the inner and outer cylinders. The flux of 

electric displacement vector D


 through the bottom and top circular surfaces of 

the Gaussian cylinder ABCD is zero as D


 is parallel to these faces and 

therefore perpendicular to Sd


 (since by definition, Sd


 is perpendicular to the 

surface) so that D. Sd


 is zero.  

The flux of D


 is only through the curved part of the surface of ABCD. Since D


 

is in the radial direction, it is normal to this part of the surface at all points and 

parallel to Sd


 so that D. Sd


 is non-zero. Therefore, the flux through the 

curved part of the closed Gaussian surface is given by: 

  LrDdd )2(ˆ Sn.DS.D


 charge enclosed L  (11.30) 

or 0
2

D E KE
r


    


 (11.31) 

where  L is the free charge enclosed by the Gaussian surface and K is the 

dielectric constant. Hence, 
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
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 
 (11.32) 

To find the capacitance, we need to calculate the potential difference between 

the inner and outer cylinders. In Unit 9, you have studied that the general 

expression for the potential difference for a continuous charge distribution is 

given by: 
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Since for cylindrical symmetry, E


 and rd


 are in the same direction, 
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 and, therefore, 
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 (11.34) 

Thus, the capacitance per unit length of the cylindrical capacitor is given by: 

      02

ln( / )

K
C

V b a


   (11.35) 

In the expression for the capacitance per unit length of a cylindrical capacitor, 

Eq. (11.35), we find that the capacitance depends only on the ratio of the 

radii of the inner and outer cylinders of the capacitor and not on their 

absolute values. You may like to solve a couple of problems to calculate the 

capacitance of different capacitors. Try the following SAQ. 



   

47  

 Unit 11                                                                                Capacitors 

SAQ  5 -  Capacitance of cylindrical and spherical capacitors 

a) Two cylindrical capacitors are of equal length and have the same 

dielectric. In one of them, the radii of the inner and outer cylinders are 8 

cm and 10 cm, respectively, and in the other they are 4 cm and 5 cm. 

Determine the ratio of their capacitances.  

b) The thickness of air layer in a spherical capacitor is 4.0 cm. The capacitor 

has the same capacitance as the capacitance of an insulated conducting 

sphere of diameter 30 cm. Calculate the radii of the surfaces of the 

spherical capacitor. 

11.5 CAPACITORS IN SERIES AND IN PARALLEL 

Just like resistors, capacitors are connected in many different ways in 

electrical circuits, for example, in series, in parallel or in their combinations. In 

this section, we shall determine the equivalent capacitor of capacitors 

connected in series and in parallel. The underlying principle is that the 

equivalent capacitor holds the same charge when kept at the same 

potential difference as the combination of the capacitors. The 

capacitance of that capacitor is known as the effective capacitance of the 

combination.  

We first determine the effective capacitance of capacitors connected in 

parallel. 

11.5.1 Combination of Capacitors in Parallel 

Fig. 11.9 shows two capacitors connected in parallel. In this combination, we 

find that 

 the potential difference between the plates remains the same; and 

 the total charge is the sum of the charge on each capacitor (since more 

area is available for storing charges). 

We now determine the effective capacitance of the combination of three 

capacitors in parallel shown in Fig. 11.10. 

 

 

Fig. 11.10: Three capacitors connected in parallel. 

Here 1 2,C C  and 3C  are the capacitances of the individual capacitors. The 

charges on them are 1 2,Q Q  and 3Q  respectively and V is the potential 

difference between the plates of each capacitor. Let C be the effective 

capacitance of the combination.  

The total charge Q of the parallel combination is  

 1 2 3Q Q Q Q    (11.36) 

Since the potential difference V for the parallel combination of the capacitors 

is the same as for individual capacitors, we have 

           1 2 3 31 2Q Q Q QQ QQ
C

V V V V V

 
      

or       

 321 CCCC   (11.37) 

Fig. 11.9: Two capacitors 

connected in parallel. 

1C  2C  3C  
1Q  2Q  3Q  

V  
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Thus, the effective capacitance of a parallel combination of capacitors is 

equal to the sum of the individual capacitances. 

Let us now consider the case of capacitors connected in series in a circuit. 

11.5.2 Combination of Capacitors in Series 

Fig. 11.11 shows the combination of capacitors connected in series. In this 

combination, we find that 

 If a voltage source is connected across the two end plates of the first and 

last capacitor of the series, equal charges are induced in each capacitor; 

and 

 the potential difference across each capacitor depends upon its 

capacitance. 

Let us determine the effective capacitance of a combination of three 

capacitors in series shown in Fig. 11.12. 

 

 

Fig. 11.12: Capacitors in series. 

Here 1 2,C C  and 3C are the capacitances of the individual capacitors. When a 

voltage V is applied across this combination at terminals A and B, a charge 

Q  is induced on one plate, which induces a charge Q on the other plate. 

The other plates acquire equal and opposite charges, because of electrostatic 

induction. The potential drop across each capacitor is inversely proportional to 

its capacitance (since / , /C Q V V Q C  ).  Since Q is fixed, 1/ .V C   

Thus, for the potential drops across the capacitors, we have 

                1 11/ ,V C    2 21/V C       and   3 31/V C   

Now, we replace the three capacitors by a single capacitor of capacitance C 

that holds the charge Q when subjected to the potential difference 

1 2 3.V V V V     The capacitance C is known as the effective 

capacitance of the combination. Thus, we have 

             
Q

C
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         or        
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But 1 2 3.V V V V    Therefore, 

 1 2 3 31 21 V V V VV V

C Q Q Q Q

 
     

or          

  (11.38) 

 

Thus, for capacitors connected in series, the reciprocals of the 

capacitances add to give the reciprocal of the effective capacitance. 

Before studying the last section of this unit, you may like to work out an SAQ. 

1 2 3

1 1 1 1

C C C C
    

V C 

Q  

1C  2C  3C  

A B 
Q  Q  Q  Q  Q  Q  

Fig. 11.11: Capacitors 

in series. 
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SAQ  6 -  Capacitors in combinations 

a) Determine the equivalent capacitance of the combination of capacitors 

shown in Fig. 11.11 and the voltage drop across each capacitor given that 

C1 = 0.05 F, C2 = 0.02 F, C3 = 0.01 F and V = 220 V.    

b) Calculate the effective capacitance of three capacitors arranged in such a 

way that two of them (C1 and C2) are in series and the third (C3) is in 

parallel with this series combination. 

11.6 APPLICATIONS OF DIELECTRICS IN 
PRACTICAL CAPACITORS 

You have learnt in Unit 10 and this unit that dielectrics are used very widely in 

capacitors. Although the actual requirements vary depending on the 

application, there are certain characteristics which are desirable for their use 

in capacitors. In general, a practical capacitor should be small, have high 

resistance, be capable of being used at high temperatures and have long life. 

From a commercial point of view it should also be cheap.  

A variety of dielectric materials such as kraft paper, thin films, ceramics, etc. 

are used in different capacitors having varied functions. For example, specially 

prepared thin kraft paper, free from holes and conducting particles, is used in 

power capacitors where withstanding high voltages is more important than 

incurring dielectric losses. In addition, the kraft paper is impregnated with a 

suitable liquid such as chlorinated di phenyl. This increases the dielectric 

constant. This reduces the size of the capacitor and in addition, the 

breakdown voltage is increased. 

Thin films of Teflon, mylar or polythene used in capacitors not only reduce 

their sizes but also have high resistivity. Teflon is used at high frequencies as 

it has low loss. In such capacitors, an electrolyte is deposited on the 

impregnating paper. The size of such a capacitor is small as the film is very 

thin. Polarity and the maximum operating voltage are important specifications 

for these capacitors. 

Some ceramics can be used as temperature compensators in electronic 

circuits. High dielectric constant materials, where small variations in dielectric 

constant with temperature can be tolerated, help in miniaturising capacitors. 

Barium titanate and its modifications are the best examples of such materials. 

Let us now study some of the common capacitors that use such dielectrics.  

Capacitors may be broadly classified into two groups: fixed capacitors and 

variable capacitors. They may be further classified according to their 

construction and use as follows: 

 

 

 

 

 

 

Fig. 11.13: Classification of Practical Capacitors. 

Types of capacitors 
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of transistor 
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Trimmer 
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We now briefly discuss some practical capacitors listed in Fig. 11.13. 

Fixed Capacitors 

As their name suggests, these capacitors have fixed capacitance. These are 

essentially parallel plate capacitors, but compact enough to occupy much less 

space. These capacitors consist of two very thin layers of metal coated on the 

two surfaces of mica or paper having a uniform coating of paraffin. The mica 

or paper forms the dielectric between the conductors. This arrangement is 

rolled up so that the capacitor is in a compact form (Fig. 11.14).  

Though paraffin-wax paper capacitors are cheaper, they absorb a good 

amount of power. For this reason these capacitors are used in alternating 

current circuits, radio-sets, etc. 

Ceramic Capacitors 

These are low loss capacitors at all frequencies. Ceramic materials can be 
made to have very high relative permittivity. For example, for Teflon 8  but 

when titanium is added to it, the value of  becomes 100 and when barium 

titanate is added to it, the value of   may be increased to 5000. Each piece of 

such dielectric is coated with silver on the two sides to form a capacitor of 

large capacitance.  

Yet another advantage with these ceramic dielectrics is that they have 

negative temperature coefficient. Ceramic capacitors are widely used in 

transistor circuits. 

Electrolytic Capacitors 

An electrolytic capacitor consists of two electrodes of aluminium, called the 

positive and negative plates. The positive plate is electrolytically coated with a 

thin layer of aluminium oxide. This coating serves as the dielectric. The two 

electrodes are in contact through the electrolyte which is a solution of 

glycerine and sodium (or a paste of borates, for example, ammonium borate). 

There are two types of electrolytic capacitors  the wet type and the dry type. 

In the wet type electrolytic capacitor (Fig. 11.15), the positive plate (A) is in the 

form of a cylinder and presents a large surface area. This is immersed in the 

electrolyte (E) contained in a metal can (M). This can act as a negative plate.  

In the dry type electrolytic capacitor (Fig. 11.16), both plates are in the form of 

long strips of aluminium foils. Aluminium oxide is deposited electrically on one 

(A) of the foils. This is kept separated from the other (B) by cotton gauze (C) 

soaked in the electrolyte. It is then rolled up into a cylindrical form. The oxide 

films on aluminium offer a low resistance to current in one direction and a very 

high resistance in the other direction. Hence an electrolytic capacitor must 

be placed in a DC circuit such that the potential of the oxide plate is 

always positive relative to the other plate. 

Variable Air Capacitor/Gang Capacitor 

A very common capacitor whose capacitance can be varied continuously is 

used for tuning in a radio station. The capacitance of this capacitor can be 

uniformly varied by rotating a knob (Fig. 11.17). 

Fig. 11.14: Fixed 

capacitors. 

Fig. 11.15: Wet type 

electrolytic capacitor. 

A 
E 

M 

  

  

Fig. 11.16: Dry type 

electrolytic capacitor. 

A C 

B 
C 

  

  
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Fig. 11.17: Variable air capacitor. (Source: freewebs.com) 

The capacitor consists of two sets of semicircular aluminium plates. One set of 

the plates is fixed and the other set of plates can be rotated by the knob. As it 

is rotated, the moving set of plates gradually gets into (or comes out of) the 

space between the fixed set of plates. The area of overlap between the two 

sets of plates can thus be uniformly varied. This changes the capacitance of 

the capacitor. The air between the plates acts as the dielectric. Usually it 

consists of two capacitors attached to the same knob (ganged). When the 

knob is rotated, the variation of capacitance in both the plates takes place 

simultaneously. This type of capacitor is widely used in wireless sets and 

electronic circuits.  

Voltage Rating of a Capacitor 

Capacitors are designed and manufactured to operate at a certain maximum 

voltage which depends on the distance between the plates of the capacitor. If 

the voltage is exceeded, the electrons jump across the space between the 

plates and this can result in permanent damage to the capacitor. The 

maximum safe voltage is called the working voltage. The capacitance and the 

working voltage (WV) are marked on the capacitor in the case of bigger 

capacitors. These are indicated by the colour code (similar to that of 

resistance) in the case of capacitors having low values of capacitance. 

In Table 11.2, we give the capacitance range, maximum rating voltage and 

use of different types of capacitors. 

Table 11.2: Range, ratings and uses of different types of capacitors 

Type of 

Dielectric 

Capacitance 

Range 

Maximum 

Rating Voltage 

Remarks 

Paper 250 pF  10 F 150 kV Cheap, used in circuits where 

losses are not important. 

Mica 25 pF  0.25 F    2 kV High quality, used in low loss 

circuit. 

Ceramic 0.5 pF  0.01 F 500 kV High quality used in low loss 

precision circuit where 

miniaturisation is important. 

Electrolytic 

(Aluminium 

oxide) 

1F  1000 F 600 V at small 

capacitance 

Used where large 

capacitance is needed. 
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We now summarise what you have studied in this unit. 

11.7 SUMMARY 

11.8 TERMINAL QUESTIONS 

1. A parallel plate capacitor has n similar plates of cross-sectional area A at 

equal spacing d, with the alternate plates connected together. If dielectric 

of dielectric constant K is filled between these plates, show that its 

capacitance is equal to 0( 1) / .n K A d   

2. The plates of a parallel plate capacitor are separated by a distance of       

0.5 cm. What should the potential difference between the plates be so that 

Concept Description 

Capacitance   Any device which can store charges is a capacitor. The capacitance of a 

parallel plate capacitor with free space between its plates is given by: 

  0 AQ
C

V d


   

 The capacitance of a parallel plate capacitor with a dielectric material of 

dielectric constant K inserted between its plates is given by: 

                0 AK
C

d


   

Energy stored in 

capacitor 

 The energy stored in a capacitor is given by: 
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2 2

Q
U CV

C
   

Effect of dielectric on 

capacitance 

 If an insulator of thickness „t‟ is introduced between the two plates of a 

parallel plate capacitor, its resultant capacitance is given by: 

 
)]/([
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
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Energy stored in 

dielectric medium 

 The energy stored per unit volume in a dielectric medium is given by: 
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Spherical capacitor  The capacitance of a spherical capacitor is 
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


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where a and b are the radii of inner and outer spherical shells. 

Cylindrical capacitor  The capacitance per unit length of a cylindrical capacitor with dielectric is 

given by: 

  02
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K
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Capacitors in series  The resultant capacitance of two capacitors 1C  and 2C  connected in  

series is given by: 
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Capacitors in parallel  The resultant capacitance of two capacitors 1C  and 2C  connected in 

parallel is given by: 

 21 CCC   
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Fig. 11.20: Diagram 

for TQ 6. 

1K

 
2K

 

d 

the force of gravity on a proton equals the force on it due to the electric 

field? Take the mass of proton as 271.67 10 kg.  

3. A capacitor is made up of two hollow concentric metal spheres of radii a 

and b such that b > a (Fig. 11.18). The space between the concentric 

spheres is filled with a dielectric material of dielectric constant K and the 

outer sphere is earthed. Determine the capacitance of the capacitor.  

4. In the arrangement shown in Fig. 11.19, obtain the condition on the 

capacitances such that when a voltage is applied between the terminals A 

and B, the voltage between terminals C and D is zero. 

 

 

 

 

 

5. Two capacitors, one charged and the other uncharged, are connected in 

parallel. Show that the final energy of the combination is less than the sum 

of the initial energy of the individual capacitors. Derive the formula for the 

loss of energy in terms of the initial charges and the capacitances of the 

two capacitors. 

6. Consider a parallel plate capacitor of area A with distance d between the 

plates. The capacitor is filled equally with two dielectric materials of 

dielectric constants 1K  and 2K  as shown in Fig. 11.20. Calculate the 

capacitance of the arrangement. What is its capacitance when 1 2 ?K K  

7. The space of thickness d between the plates of a parallel plate capacitor is 

filled with two charge-free slabs of dielectric material each of thickness d/2 

and dielectric constants 1K  and 2K , respectively (Fig. 11.21). Here d is 

the distance between the capacitor‟s plates. The free charge densities on 

the upper and lower plates are    and ,   respectively.  

 

 

 

 

Obtain the 

a) electric displacement in each slab;  

b) electric field in each slab;  

c) potential difference between the plates; and  

d) capacitance of the capacitor assuming the area of the plates to be A. 

8. Consider two concentric metallic spherical shells of radii a and c, 

respectively. The region between the shells is partially filled with a 

dielectric as shown in Fig. 11.22. Calculate the surface charge densities at 

r b  and .r c  Calculate the potential difference between the outer 

Fig. 11.18: Diagram for  

TQ 3. 

Q  

Q  

a 

b 

Fig. 11.21: Diagram for TQ 7 

1K  

2K  

/ 2d  

/ 2d  

  

  

Fig. 11.19: Diagram for TQ 4. 

A 

1C  2C  

3C  4C  

C 

D 
B 

1 2 

3 4 

Fig. 11.22: Diagram for 

TQ 7. 

b 

a 

  0  

c 
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and inner shells when a charge Q is placed on the inner shell. What is the 

capacitance of this arrangement? 

11.9 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. From Eq. (11.5), the capacitance of a spherical shell of radius R (in m) is  

          12 3
04 4 8.85 10 6000 10 FC R         46.67 10 F   

2. Let   and  be the surface charge densities on the upper and lower 

plates of a parallel plate capacitor (Fig. 11.23). Consider a Gaussian 

surface lying inside the upper plate and in the space between the plates. 

To apply Gauss‟s law to this surface, we first calculate the value of the 

integral 
S

dS.E


 for it.  

Its value through the surface ABFG is zero as the electric field E


inside the 

conducting surface is zero.  

Similarly its values through the surfaces ABCD, EFGH, BCEF and ADHG 

are zero since these surfaces are parallel to the electric field. 

Since E


 is normal to the surface DCEH, the value of the integral through 

the surface DCEH is equal to EA where A is area of the surface. From 

Gauss‟s law this integral is equal to 
0

,enQ


 where enQ  is the charge 

enclosed by the Gaussian surface. Thus, we have  

  
0 0 0

enQ A
E A E

 
   

  
  

3. The capacitance of the capacitor is given by  

            
12 2 2

0
4

8.85 10 (1.0 10 )
F 8.85 pF

1.0 10

A
C

d

 



   
  


  

 Energy stored is given by 21
.

2
U CV  Thus, 

     12 2 12 111
[ 8.85 10 (1.5) ] J 9.95 10 J 1.0 10 J
2

U            

4. We know that 
Capacitance with the dielectric

Capacitance with free space
K    

Here 3.K  Thus the capacitance increases by a factor of 3 when the 

dielectric is introduced. From Eq. (11.15), the capacitance of the capacitor 

without the dielectric is given by 0 .freespace
A

C
d


 If a dielectric material 

of thickness t is introduced in the parallel plate capacitor with gap d, its 

capacitance is given by Eq. (11.17)/(11.23) as 

  0

( / )
dielectric

A
C

d t t K




 
 

 
( / )

dielectric

freespace

C d

C d t t K
 

 
 

Fig. 11.23: Diagram for 

answer of SAQ 2. 

E


 

  

  

A 

C 

B 

D 

F G 

E H 
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Here 
3

4
t d   and 3.K   

 
3 3

/
4 4 3 2

d d
d t t K d d      


   

and 2

2

dielectric

freespace

C d

dC
    

That is, the capacitance will get doubled. 

5. a) From Eq. (11.35),  0
1

2

ln(10 / 8)

K
C


   and  0

2
2

ln(5 / 4)

K
C


  

  1
1 2

2

ln(5 / 4)
1 or

ln(10 / 8)

C
C C

C
     

 b) Refer to Fig. 11.24 which shows two concentric spherical shells of radii 

a and b. As per the problem, 

    m. 0.04cm 0.4)(  ab  (i) 

  From Eq. (11.29), we know that the capacitance of spherical capacitor 

is given as 

    
)m 04.0(

4

)(

4 00
1

ab

ab

ab
C







  (ii) 

  Also, from Eq. (11.5), we know that the capacitance of an insulated 

conducting sphere having radius a can be written as 

    aC 02 4  

  As per the problem, the radius a of the isolated sphere is 
m. .15cm 15cm)/2] 30[(   

  So, 

    m) 15.0(4 02 C  (iii) 

  As per the problem, 

    21 CC   

  Thus, from Eqs. (ii) and (iii), we have 

   m) 15.0(
m) 04.0(


ab

 

   m 006.0ab  

  And, we can write 

   ababab 4)()( 22   

                 m) 006.0(4)m 04.0( 2   

   m 16.0 ab  (iv) 

  So, we have from Eqs. (i) and (iv), 

   cm 10      and      cm 0.6  ba  

6. a) When the capacitors are connected in series, the equivalent  

   capacitance C is given by: 

   
1 2 3

1 1 1 1

C C C C
    

                
1 1 1 1 1

F
0.05 0.02 0.01 170

C
C

 
       

 
 

Fig. 11.24: Diagram for 

answer of SAQ 5b. 

a 

b 
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 and   6 61
10 220 C 1.3 10 C

170
Q CV         

               
6

1 6
1

1.3 10
V 26 V

0.05 10

Q
V

C






  


 

              
6

2 6
2

1.3 10
V 65 V

0.02 10

Q
V

C






  


 

               
6

2
3 6

3

1.3 10
V 1.3 10 V

0.01 10

Q
V

C






   


 

 b) The arrangement is shown in Fig. 11.25. Let 4C  be the effective 

capacitance of 1C  and 2.C  Using the result for capacitors in series, we 

have 

    1 2
4

4 1 2 1 2

1 1 1
or

C C
C

C C C C C
  


 

 The capacitance 4C  then adds to 3C to give the total capacitance C of 

the combination: 

          4 3C C C          or       1 2
3

1 2

C C
C C

C C
 


     

   

 

 

 

 

Terminal Questions 

1. From Fig. 11.26, you can see that n plates provide (n 1) capacitors 

connected in parallel. Dielectric of dielectric constant K is filled between 

these plates. For example in Fig. 11.26, the first 3 plates A, B, C give two 

capacitors AB and BC, and so on. 

 The effective capacitance C of (n1) capacitors, of equal capacitance 

connected in parallel is equal to the sum of the individual capacitance of 

all capacitors: 

      ( 1)C n    capacitance of a single capacitor   0( 1)
A

n K
d


   

2. Let V be the required potential. Then 3 1/ /(5 10 ) VmE V d V       

and the force on the proton due to the electric field is  

          19(200 1.6 10 )NqE V                                   

 The gravitational force on the proton is 

         27(1.67 10 9.8)Nmg      

 Equating the two we get 

                
27

10

19

(1.67 10 9.8)
V 5 10 V

(200 1.6 10 )
V






 
  

 
 

Fig. 11.25: Diagram for answer to SAQ 6b. 

1C  2C  

3C  

Fig.  11.26: Diagram for 

answer to TQ 1. 

B 
C 

A 
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3. If a charge Q  is placed on the inner sphere of radius „a‟, an equal and 

opposite amount of charge appears on the inner side of the outer sphere. 

The electric field gets confined to the space between the concentric 

spheres. To determine the capacitance, we have to calculate the 

displacement D.


 We consider a spherical Gaussian surface S of radius r 

lying in the dielectric (Fig. 11.27). The displacement D


is normal to this 

surface and so applying Gauss‟s law, we get 

                         24 r D Q         

      Since D E0 ,K 
 

 we have 

                       
2

0 0

1

4

D Q
E

K K r

  
    

    
   

The potential of the inner sphere with reference to the outer sphere is 

         


b

a

b

a

a

b

ba
r

dr

K

Q
ddVVV

2
04

r.Er.E


      

 because E. rd E dr
 

. The outer sphere is earthed and is, therefore, at 

zero potential and  0.bV   

  


















b

a
a

rK

Q
VV

1

4 0

            

or       
0

1 1

4

Q
V

K a b

 
  

  
   

Therefore, the capacitance is given by 
 

04 abKQ
C

V b a


 


 

4. The potentials of the two plates of the capacitors 1 and 2 connected to the 

point C are the same. Hence if a charge 1q  is placed on one of these 

plates, the other plate will have an equal and opposite charge. Let a 

voltage be applied between A and B. Suppose a charge 1q  accumulates 

on capacitor 1 of capacitance 1C  and a charge 2q accumulates on 

capacitor 3 of capacitance .3C  Then the potential differences between the 

plates of the capacitors 1, 2, 3 and 4 are, respectively, given by: 

 1 1 2 2

1 2 3 4

, , and
q q q q

C C C C
  

If the potential difference between C and D is equal to zero, then the 

potential difference across 2C  potential difference across 4C  and the 

potential difference across 1C  potential difference across 3C  

                 1 2

2 4

q q

C C
       and         1 2

1 3

q q

C C
   

or           1 2 1

2 4 3

q C C

q C C
   

Q  

Q  

Fig. 11.27: Diagram 

for answer to TQ 3. 

a 

r 
b 

S  
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This is the required condition for zero potential difference between C and 

D. 

5. Let the initial charge on the charged capacitor be q and its capacitance be 

1.C  When this capacitor is connected to the uncharged capacitor of 

capacitance 2,C  then the charge q is distributed on both the capacitors. 

Since the capacitors are connected in parallel, the charge is distributed 

until the potentials of the capacitors are equal. Suppose in this process, a 

charge 2q flows from the charged capacitor to the uncharged one. 

Suppose a charge 1q  remains on the initially charged capacitor after the 

potentials on the capacitors are equal. Then 1 2.q q q  Since the 

potentials are equal, we have 

 1 2 2

1 1 2

q q q q

C C C


   

Solving these two equations for 1q  and 2,q  we get  

     2
2

1 2( )

C q
q

C C



 (i) 

 and          1
1

1 2( )

C q
q

C C



    (ii)  

The initial energy iE of the charged capacitor (before the distribution of 

the charges) is 

 
1

2

2C

q
Ei     

 The final energy fE of the two capacitors is given by: 

 
2

2
2

1

2
1

22 C

q

C

q
Ef   

 Substituting for 1q  and 2q from Eqs. (ii) and (i), we get 

 
)(2)(2)(2 21

2

2
21

2
2

2
21

2
1

CC

q

CC

qC

CC

qC
Ef








  

 Hence the loss in energy is  
)(2

11

2 211

2
2

211

2

CCC

Cq

CCC

q













  

6. The arrangement shown in Fig. 11.20 is equivalent to two capacitors of 

area ,
2

A
 thickness d, which are filled with dielectric materials of dielectric 

constants 1K  and 2,K respectively. These capacitors are arranged in 

parallel (because the upper and lower plates of one capacitor are joined 

with the respective upper and lower plates of the other capacitor). Now 

from Eq. (11.15), we get 

 0 1 0 2
1 2

/ 2 / 2
and

K A K A
C C

d d

 
   

      0 0
1 2 1 2 1 2

/ 2
( ) ( )

2

A A
C C C K K K K

d d

 
          

         When 1 2,K K we get the well known result 0 K A
C

d


 . 
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1K  

2K  

/ 2d  

/ 2d  

Fig. 11.28: Diagram for answer to TQ 7. 

7. a) Consider the Gaussian surfaces 1S  and 2S  each of area A in the two 

  slabs (Fig. 11.28). 

  Let the displacements in the two slabs be D1


 and D2,


 respectively. 

 

 

 

 

 

Applying Gauss‟s law to surface 1,S  we get 

               D . S
1

1

1 en S

S

d Q


  

or                  1 1D A A D       (i) 

 Similarly for surface 2,S                     2D    (ii) 

b) Since D E0 ,K 
 

 we get    1
1

0 1 0 1

D
E

K K


 

 
 (iii) 

 and                                      2
2

0 2 0 2

D
E

K K


 

 
 (iv) 

 c) The potential difference between the plates is given by: 

           E. r E . r E . r

/ 2 / 2

1 2 1 2

0 0 / 2 0 / 2

d d d d d

d d

V d d d E dr E dr        
    

 

or     
/ 2

1 2 1 20 / 2 2 2

d d

d

d d
V E r E r E E     

Using Eqs. (iii) and (iv) in this expression, we get 

               
0 1 2

1 1

2

d
V

K K

 
  

  
  (v) 

d) From Eq. (v),  
)(

2

11

2
21

210

21

0

KK

KK

d

A

KK

d

A

V

Q
C



















  

8. In order to calculate the surface charge densities at r b  and ,r c  we 

need to calculate the polarisation for both cases. We do it as follows:  

Due to spherical symmetry, the electric fields and the displacements are 

radial for both cases. Now consider a spherical Gaussian surface of radius 

r  such that a < r < b (Fig. 11.29). Since Q is the charge enclosed by this 

sphere, from Gauss‟s law, we have 

   
21

2
1

4
4

r

Q
DQrD


  

 Now recall from Unit 6 that the electric field 

                bra
r

Q



 rE ˆ

4 2
0

1


 (i) 

 In the same way, we can show that for the region b < r < c, 

          crb
r

Q



 rE ˆ

4 22


 (ii) 

b 

Fig. 11.29: Diagram 

for answer to TQ 8. 

a 

  

0  

c 

r 

1S  

1S  
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 Now, you know that for linear dielectrics,  

                EEEDP


)1()( 000  K  

      Therefore, at  ,r b      P E1 0 1( 1)K  
 

 

 Since the normal to the dielectric surface at r b  is along ,r̂  we have 

      

2
0

0

2
0

0

101

4
)1(

ˆ.ˆ
4

)1(

ˆ.)1(ˆ.

b

Q
K

r

Q
K

K

br

brbrb
br














rr

rErP


 

 or  
24

)1(

b

KQ
brb







                                                     

To determine b  at ,r c  we follow the same method as above.  

Since the normal to the dielectric surface at cr   (see the margin remark) 

is along ,r̂  we have  

  
crcrcrb K


 r.Er.P


202 )1(  

              
20

4
)1(

c

Q
K


  

              
















0
2

0
0

4
)1( K

Kc

Q
K   

 or        
24

)1(

cK

KQ
crb







 

To determine the potential difference between the outer and inner shells, 

we begin from its definition   

            

c

b

b

a

c

a

a

c

ddddV r . Er . Er . Er . E


21  

 Substituting E1


 and E2


 from Eqs. (i) and (ii), we get 

       )(
44

02
0

2
0

K
r

dr

K

Q

r

drQ
V

c

b

b

a







    

                    
0 0

1 1

4 4

b c

a b

Q Q

r K r

   
     

    
 

      
























bcK

Q

ab

Q 11

4

11

4 00

 

 Simplifying the expression for V, we get   

                      






 







ab

ab

cbK

bcQ
V

04
  

      and          

ab

ab

cbK

bcV

Q
C







 04

 

Notice that the unit 

vector normal to the 

dielectric‟s surface 

points outward with 

respect to the dielectric 

sphere, which is r̂  at 

r c  but r̂  at .r b   
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                UNIT12 

MAGNETIC FIELD 

Structure 
 

12.1 Introduction 

Expected Learning Outcomes  

12.2 Electric Current and Current Density 

12.3 Magnetic Field 

Source of Magnetic Field 

Definition of Magnetic Field  

12.4 Gauss’s Law for Magnetism 

 

 

STUDY GUIDE           

 

12.5 Biot-Savart Law 

12.6 Force between Two Parallel Conductors 

(Definition of Ampere)  

12.7  Summary 

12.8 Terminal Questions 

12.9 Solutions and Answers 

 

So far, in this course, you have learnt the concept of electric field and electric potential. You 

have also learnt how dielectric materials respond to electric field. The focus of these 

discussions has been on learning laws, concepts and techniques which enable us to 

determine electrostatic force and electric field due to static electric charges and charge 

distributions. 

We now shift our focus to magnetic field. In the present and the next two units, you will study 

about magnetic field and related concepts. To understand the contents of this unit better, you 

should look for analogies between magnetic field and electric field. For example, as electric 

field is produced by static electric charge(s), what produces magnetic field? Are there any 

laws to determine the value of magnetic field similar to Coulomb’s law and Gauss’s law for 

electric field?  

You are, therefore, advised to refresh the basic laws of electrostatics such as Coulomb’s law 

and Gauss’s law given in Units 5 and 6 of this course. Since you will be using the concepts of 

vector calculus extensively in this unit, you must revise Units 1 to 4 of this course. Further, 

while studying this unit, you should notice the differences and similarities between the electric 

field and the magnetic field. You should try to solve all the SAQs and TQs yourself. 

“In questions of science, the authority of a thousand is not 

worth the humble reasoning of a single individual.”  
Galileo Galilei  

 

 

Compass was used for navigation even in 

ancient times, when there was not enough 

understanding about magnetism. You will 

learn about modern understanding of 

magnetism in this unit. (Picture source: 

Wikimedia Commons) 
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12.1   INTRODUCTION 

In Unit 5 (Block 2) of this course, you have learnt the concept of electrostatic 

force between stationary charges and its description in terms of static electric 

field and electric potential. You have learnt how to calculate electrostatic force 

and field using Coulomb’s law and Gauss’s law. You may now like to know: 

What happens when charges are moving? A moving charge experiences 

two types of forces: (i) electrostatic force due to the electric field of other 

charges at rest; and (ii) a magnetic force when it is in the presence of steady 

flow of charge (i.e., a steady current) or a permanent magnet. Like 

electrostatic force, the magnetic force is described in terms of a vector field, 

called magnetic field, which is the topic of this unit. However, there are some 

major differences between the electric and magnetic fields, which you will 

discover as you study this unit. 

In the science laboratory, during your school days, you must have been 

fascinated with magnets. Recall that when you tried to push two magnets 

together in a way they didn’t want to go, you felt a mysterious force!  

In the 19th century, it was discovered that electric current produce magnetic 

field. In view of close relation between electric current and magnetic field, we 

begin this unit by first discussing the concept of electric current and current 

density in Sec. 12.2. In this section, you will also learn the continuity equation 

which expresses one of the basic laws of physics – conservation of charge – 

in differential form. In Sec. 12.3, we discuss the sources of magnetic field and 

define magnetic field in terms of the force experienced by current and charge. 

You have learnt Gauss’s law for electrostatics in Unit 6 of this course. The 

form that Gauss’s law takes for magnetism is discussed in Sec. 12.4. In          

Sec. 12.5, you will learn Biot-Savart law which gives us a method to determine 

the magnetic field produced by steady currents. You will also learn how to 

determine the magnetic field due to steady currents using this law. We end 

this unit by calculating the force between two parallel current carrying 

conductors which enables us to arrive at the definition of Ampere – the unit of 

electric current. 

In the next unit, we will continue our discussion of magnetic field and you will 

learn Ampere’s law and its applications for determining magnetic field due to 

steady currents flowing in different geometries. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain the concept of current density and derive continuity equation; 

 describe the conduction mechanism and explain the concept of drift 

velocity;  

 deduce the relation between electric current and the magnetic field;  

 define the magnetic field at a point in terms of the force on a steady 

current element and also on a moving charge particle; 
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Note that current is a 

scalar quantity, 

because both q and t 

are scalars. It is not a 

vector quantity as it 

does not obey the 

vector laws. Often, a 

current in a wire is 

represented by an 

arrow. Such arrows 

are not vectors; they 

only show a direction 

(or sense) of flow of 

charges along a 

conductor, not a 

direction in space. 
 

NOTE 

 use the expression for the force on a steady current element or on a 

charged particle due to a magnetic field to calculate the force on certain 

simple current carrying circuits; 

 state and explain Gauss’s law for magnetic field; 

 use Biot-Savart law to determine the magnetic field generated by a 

simple current flow; and 

 determine the force between two parallel current-carrying conductors.  

12.2   ELECTRIC CURRENT AND CURRENT 
DENSITY 

In Block 2 of this course, you have learnt that when a positive charge is placed 

in an electric field, it experiences the electrostatic force and moves in the 

direction of the field. If the ends of a conductor, say, a copper wire, are 

connected to a battery, an electric field E


 is set up at every point within the 

conductor. Due to the presence of the field, the electrons present in the wire 

move in the wire. You know that electric current flows whenever charges 

move. In the case of a copper wire, the flow of electrons constitutes the 

electric current. It is defined as the amount of charge moving across a 

given cross-section of the wire per unit time.  

When the current is not constant, i.e., the current varies with time, we define 

an instantaneous value of the current i(t). Refer to Fig. 12.1 which shows a 

conductor wire PQ connected to a battery. If a net charge q  crosses the 

shaded area A which is perpendicular to the axis of the wire PQ (Fig. 12.1) in 

time ,t  the instantaneous current is given by 

  
dt

dq

t

q
ti t 







lim

0)(  (12.1) 

Eq. (12.1) shows that the unit of current is coulomb per second ).sC( 1  In the 

SI system of units, it has been given the name ampere (abbreviated as A).  

An electric current may consist of either positive or negative charge in motion, 

or it may involve both positive and negative charges. By convention, the 

direction of current is defined as the direction in which the positive 

charge flows. If the moving charge is negative, as with electrons in a metal, 

then the direction of current flow is opposite to the flow of the actual charges. 

When the current is due to both positive and negative charges, it is 

determined by the net charge motion; that is, by the algebraic sum of the 

currents associated with both kinds of charges. For example, when salt (NaCl) 

is dissolved in water, it splits up into Na+ ions and Cl ion. The sodium ion is 

positively charged and the chlorine ion is negatively charged. Under the 

influence of the electric field established between the two electrodes, these 

ions move through the liquid in opposite direction. Thus the motion of both 

positive and negative ions contributes to the current in the same direction.  

Fig. 12.1: The 

instantaneous current 

along a wire is defined 

as the net rate at which 

the charge passes 

through an area 

perpendicular to the axis 

of the wire.  
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Current Density 

As defined earlier, current is the total charge passing through the entire corss-

section of a wire per unit time. Therefore, the current is determined by the total 

charge that flows through the wire. It does not matter whether or not the 

charge passing through every element of the cross-section of the wire is the 

same. It is for this reason that current is a macroscopic quantity. If the 

charge passing through various elements of the cross-section of the wire is 

not the same, it is necessary to define a quantity at every point of the 

conductor. This is called the current density which is a microscopic quantity 

and it is denoted by .J


 It is defined as the charge flowing per unit time per 

unit area-normal-to-flow and has a direction in which the positive charge 

moves.  

Let us consider a simple system in which particles, each of charge q, are 

moving to the right as shown in Fig. 12.2. Imagine a small cylindrical surface 

of cross-sectional area dS around point P. So all the particles crossing this 

small cylinder may be assumed to have the same speed v. Then, the length of 

the cylinder through which charges flow in time dt is vdt as shown in Fig. 12.2. 

So, the volume of the cylinder is dSvdt. If n is the number of charged particles 

per unit volume, then the number of charged particles found in the cylinder is 

ndSvdt. Therefore, the average rate at which charge flows through dS, i.e. the 

current through dS, is given by 

  ndSvq
dt

ndSvdtq
i 

)(
 (12.2) 

Since current density J, is defined as the current per unit area held normal to 

the velocity of the current carriers, we have, 

  nqv
dS

i
J    (12.3) 

Since the direction of J is the direction of the actual flow of charges at that 

point, the above equation can be written in vector form as  

  vJ


nq   (12.4) 

Thus, J


is a vector quantity. In SI system of units, J


is expressed in amperes 

per square meter. When the current carriers are electrons, eq   and          

Eq. (12.4) takes the form  

  vJ


ne   (12.5) 

The product nq in Eq. (12.4) represents the volume charge density ρ of the 

current carriers. Hence, in terms of ρ, the current density [Eq. (12.4)] is 

expressed as follows: 

  vJ


   (12.6) 

If current density is uniform over the cross section S of the wire, we can 

calculate the total current by multiplying the current density by the cross- 

section of the wire. If the current density is not at right angles to the cross-

sectional area, we consider only that component of J


 which is perpendicular 

to it. If we define a vector S


 whose magnitude is the cross-sectional area S 

Fig. 12.2: Calculation of 

current in terms of 

velocity of charge. 
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and the direction is along the perpendicular to the area, then a uniform current 

density J


 gives rise to a total current S.J


i (Fig. 12.3). When the current 

density and/or surface orientation vary with position, we can follow the same 

process for many small areas ,S


d  and then sum the result to get the total 

current (Fig. 12.4). The current through a small area S


d is , S.J


d  so that the 

total current, i, through the entire surface is 



S

di S.J


 (12.7) 

where the limit of the integral is chosen to cover the entire surface. Eq. (12.7) 

should remind you of the definition of the electric flux you have learnt in Unit 6 

of Block 2. Indeed, the electric current though a surface is the flux of the 

current density through that surface. Eq. (12.7) shows that electric current is a 

scalar quantity because the integral S.J


d is a scalar.  

 

Fig. 12.4: When the current density and/or surface orientation vary with 

position, the total current is written as .. SJ


di    

In Fig. 12.4, we have taken the surface S to be an open surface. In such a 

situation, the vector S


d is taken to be positive in that direction along which the 

current through S is required. 

But, when S is a closed surface, as shown in Fig. 12.5, the direction of every 

vector S


d  is taken along the outward normal to the surface. For such 

closed surfaces, the integral of J


 over S gives the rate at which the charge is 

going out of the volume enclosed by S.  

Now one of the basic laws of physics is that an electric charge is 

indestructible; it is never destroyed or created. Electric charges can move 

from place to place but never appear from nowhere. We say that the charge 

is conserved. Hence, if there is a net current out of a closed surface, it must 

be equal to the rate at which the total charge within the volume is depleting.  

Using Eq. (12.7), we can write the law of conservation of charge as follows: 

  )( insideq
dt

d
d

S

 S.J


 (12.8) 

Fig. 12.3: The current 

through a surface of 

area S


 is given by       

JS  cos , or S.J


where  

is the angle between the 

vectors S


 and .J


 

Fig. 12.5: The integral 


S

dS.J


over a closed 

surface is the rate of 

change of total 

charge inside.  
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You know that the charge within the volume can be written as a volume 

integral of the charge density ρ:  

   

v

i dVq nside     (12.9) 

where V is the volume enclosed by surface S. Using Eq. (12.9) in Eq. (12.8) 

we get 

   

VS

dV
dt

d
dS.J


 (12.10) 

Since we are dealing with a fixed volume V, the time derivative operates only 

on the function ρ. Since ρ is a function of spatial coordinates as well as time, 

the time derivative of  is written as the partial derivative with respect to time 

when it is moved inside the integral. Hence, Eq. (12.10) can be written as 

   




VS

dV
t

dS.J


 (12.11) 

The surface integral on the left hand side of the Eq. (12.11) can be converted 

into a volume integral using the divergence theorem (see Sec. 4.7, Unit 4 of 

Block 1), leading to 

  dV
t

dV

V V

  


 )( J.


  

or   













V

dV
t

0J.


 (12.12)   

Now, since the volume V is completely arbitrary, Eq. (12.12) will hold for an 

arbitrary volume element only when the integrand is zero. Thus, we have  

  0





t
J.


 (12.13) 

The differential equation [Eq. (12.13)] is known as the continuity equation. It 

expresses the conservation of charge in a differential form. Its meaning is 

clearer in Eq. (12.12), according to which the change in the quantity of charge 

in any arbitrary volume must be accompanied by a net flow of charge inwards 

or outwards across its surface.  For steady currents, we have 

  0




t
   (12.14) 

This is because a steady current is one for which J


is constant in time at 

every point. In other words, equal charges flow in and flow out of a section 

and, hence, there cannot be any accumulation of charge at any point of the 

system. Thus, for steady currents, the continuity equation [Eq. (12.13)] 

becomes 

  0 J.


 (12.15) 

According to the 

Divergence theorem,  

 

VS

dVd )( J.S.J

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Before proceeding further, solve an SAQ. 

SAQ  1 -  Calculating electric current  

The amount of charge passing through a cross section of a wire is given by 

  C 5.2)sC5.4()( 22   ttq  

for t varying between 0 and 5.0 s. a) Write the expression for instantaneous 

current i(t) in this time interval. b) Calculate the value of current at t = 3.0 s. 

Now let us discuss why metals conduct electricity. This will lead us to a 

relation between current density and electric field causing current flow.  

Current Density and Electric Field 
In an electrical conductor like metal, the metal ions are fixed in a regular array, 

known as lattice, making them relatively immobile. The metal ions are 

positively charged because the atoms forming the metal lose one or more 

electrons which become free in the sense that these electrons wander through 

the ion lattice as shown in Fig. 12.6. It is the motion of these negatively 

charged electrons that gives metals their conducting properties.  

When a battery is connected between the ends of a metallic wire MN as 

shown in Fig. 12.7, we find that current flows through it from M to N (current 

flowing in the wire can be detected by putting an ammeter in series). Let us 

find out why and how the current starts flowing in a particular direction by 

taking a microscopic view of the situation.  

When the metallic conductor is not connected to the battery, the free electrons 

present in the metal are in constant motion because of their thermal energy. 

Their motion is random and their velocities are oriented randomly as shown in 

Fig. 12.8a. 

 

Fig. 12.8: Motion of some free electrons a) in the absence of an external field;   

b) in the presence of an external field. Here tv


represents thermal 

velocity, Ev


 is the velocity only in the presence of electric field and 

v


is the net velocity (as shown by the solid lines).  

In this state, the free electrons undergo frequent collisions with positive ions 

and impurity atoms (if any). In each collision, the velocity changes both in 

magnitude and direction. Since the motion is completely random, at any 

instant, the average thermal velocity tv


 along any direction in the bulk of the 

conductor is zero. Hence no current flows. But remember that average speed 

of these free electrons at any instant is not zero. Its value is of the order of     

.sm10 15    

Fig. 12.6: A schematic 

view of the crystal 

structure of a metal. The 

positive metal ions exist 

on a rigid lattice. Each 

atom, on forming an ion, 

gives up one or more 

electrons, which are 

then free to wander 

through the crystal. 

Fig. 12.7: A battery 

(source of emf) can 

maintain an electric field 

within a conducting 

wire. 
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When a battery is connected between the ends of the metallic wire, it 

maintains a uniform electric field E


 at each point in the wire. The electrons 

experience a force in a direction opposite to that of the applied electric field.  

Due to this force, besides having a thermal velocity ,tv


an electron also 

experiences a constant acceleration ,/ emeEa  where em is the mass of the 

electron. You may now ask: In the presence of the electric field, does the 

electron velocity, ,Ev


 increase continuously as it moves in the wire? 

Experiments show that this does not happen. As an electron picks up speed 

under the action of the field, it collides with the ions or the impurity atoms 

within the metal. The result of these collisions is that the electron loses its 

velocity acquired due to acceleration in the field. In other words, in each 

collision the velocity of the electron is randomised, and it begins afresh and 

accelerates in the direction of the field. If u


is the velocity of an electron just 

after a collision, its velocity Ev


 just before the next collision will be  

  t
m

e

e
E

E
uv



  (12.16) 

where t is the time of travel between the two collisions. The average of the 

velocities of all electrons before collision can be written as  

  t
m

e

e
E

E
uv



  (12.17) 

where the sign   denotes the average value of the parameter. Since the 

effect of each collision is to reduce the velocity to zero and to restore the 

random thermal motion, we can write u


 as tv


which is zero, as explained 

earlier. If t  is represented by , then we can write Eq. (12.17) as  

  
e

E
m

eE
v




   (12.18)  

So, Ev


 does not increase continuously with time, but will rather have an 

average value Ev


 as given by Eq. (12.18). Here  denotes the average time 

between successive collisions, i.e., the time over which the electron 

accelerated freely under the action of the electric field. This is called mean 

free time. The thermal motion of the free electrons is, therefore, modified as 

shown in Fig. 12.8b. It is clear from the figure that at any instant, the resultant 

velocity is Et vv


  and for each electron it is different. The average resultant 

velocity of all the electrons can be expressed as  

  EtEt vvvvv


  (12.19) 

As explained above, tv


is zero, but Ev


is not zero because of the fact that 

the Ev


 for all the free electrons is in the same direction. Therefore, 

.Evv


  Hence, the free electrons in a metallic wire have an average 

velocity which is caused only by the applied electric field. This velocity is 

called the drift velocity of the electrons and it is denoted by .dv


 Thus, we 

write Eq. (12.18) as  

  
e

d
m

eE
v




 (12.20) 

You may know that a 

freely falling body in 

vacuum has a velocity v 

= gt which increases 

continuously with time. 

But, if the body falls 

through a viscous fluid, 

its terminal motion 

becomes uniform with a 

constant limiting 

velocity. By analogy, 

the effect of the crystal 

lattice can be 

represented by a 

viscous force, acting on 

the conduction 

electrons when their 

natural motion is 

disturbed by the applied 

electric field. 
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The velocity v


of electrons which appeared in Eq. (12.4) is actually the drift 

velocity, dv


 given by Eq. (12.20). Thus, the current density in a conductor can 

be written as  

  dnq vJ


  (12.21) 

In most substances and over a wide range of electric field strengths, it has 

been experimentally found that the current density is proportional to the 

electric field that causes it. Thus, the relation may be written as  

  EJ


  (12.22)  

where σ is the proportionality constant and is known as the conductivity of 

the material. Eq. (12.22) is a statement of Ohm’s law. It is an empirical law, a 

generalisation derived from experiments for some materials under certain 

conditions. It is not a theorem that must be universally obeyed. The value of σ 

is very large for metallic conductors and extremely small for good insulators. It 

may also depend on the physical state of the material, for instance, on its 

temperature. But for many common conductors, for given conditions, it does 

not depend on the magnitude of .E


 Such materials are called ohmic or linear 

and for such materials Eq. (12.22) implies that the direction of J


 is always the 

same as the direction of .E


 Instead of the conductivity, we can use its 

reciprocal, called resistivity ρ, in stating the relation between current density 

and electric field as follows: 

  JE


  (12.23) 

The units of resistivity are m. Since both E


and J


are microscopic 

parameters, ρ also defines a microscopic property of the conductor.   

If we use Eq. (12.20) in Eq. (12.21) and replace charge q by electronic charge 

e, we can write  

  EvJ


e
d

m

ne
ne




2

  

By comparing the above expression with Eq. (12.22), we can write the 

expression for conductivity as follows: 

  
em

ne 


2

 (12.24) 

Then the resistivity is given by 

  



2ne

me  (12.25)  

Eqs. (12.24) and (12.25) show that the conductivity or resistivity of a metal 

depends on the density of the free electrons, their mass and charge, and on 

mean free time. With the above background knowledge about electric current 

Eq. (12.22) holds only 

for isotropic materials:  

materials in which the 

electric properties are 

the same in all 

directions.  

 

It is customary to use  

as the symbol for 

resistivity and σ as the 

symbol for conductivity 

inspite of their use in 

some of our other units 

for volume charge 

density and surface 

charge density, 

respectively. Thus, you 

should be careful 

about these symbols 

and take into 

consideration the 

context of their use in 

an expression. 
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and current density, you are now ready to study magnetic field. You will see 

later in this unit that the magnetic field is produced by electric current.  

12.3   MAGNETIC FIELD 

Whenever we speak of magnetic field, we normally think of bar magnets since 

this is the way magnetic fields were first studied. You are already aware of the 

basic features of a magnetic field from your school days. For example, you 

know that the poles of a bar magnet experience force when placed in a 

magnetic field. If a bar magnet is suspended by a delicate fibre as shown in 

Fig. 12.9, a particular end of the magnet will always point towards north. This 

end of the magnet is called its north pole. The other end is called the south 

pole. Do you recall that this arrangement is a simple compass?  

The north poles of two magnets repel each other. The south pole of a magnet 

is always attracted by the north pole of another magnet. If one tries to break 

off the north or south pole from a simple bar magnet, then this exercise proves 

to be futile. The broken magnet becomes two new bar magnets each having a 

north and a south pole. This shows that an isolated magnetic pole does 

not exist.  

In order to plot the direction of the magnetic field due to a bar magnet, we 

need only a compass needle. The direction in which the compass needle 

points is taken to be direction of the magnetic field. In your school physics 

classes, you must have used this fact to plot the magnetic field in the vicinity 

of the bar magnet as shown in Fig. 12.10a. The magnetic field lines are drawn 

in such a way that a compass needle placed on the line aligns itself 

tangentially to the line. Fig. 12.10b shows the typical magnetic field for the bar 

magnet. Notice that the field lines emerge from the north pole and enter 

the south pole.  

These are some of qualitative features of magnetic field with which we are all 

familiar. Let us now discuss what causes magnetic field. 

12.3.1 Source of Magnetic Field 

As you know, the space near a rubbed glass rod (rubbed either by rubber or 

rabbit’s fur) is characterised by an electric field which is denoted by .E


  

Similarly, a magnetic field around a magnet may be represented by the 

symbol .B


In electrostatics, the electric charges set up an electric field and the 

electric field, in turn, exerts an electrostatic force on another electric charge 

that may be placed in that field. Now, by analogy, can we think of a similar 

relation for magnetism? The answer is that we cannot. This is because a 

single isolated magnetic pole or a magnetic charge is not known to exist.  

Thus, the question is: If magnetic charges do not exist to give rise to 

magnetic field as electric charge gives rise to electric field, then how 

does the magnetic field arise? Let us try to find out the answer to this 

question by considering a simple experiment.  

Fig. 12.9: When a 

magnet is freely 

suspended, a 

particular end of it 

points towards north. 

This end of the magnet 

is defined as the north 

pole. 

Fig. 12.10: a) A 

compass needle points 

in the direction of the 

magnetic field;  

b) magnetic field lines 

of a magnet drawn 

using the fact that a 

compass needle 

should line up along 

the field lines.  
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Fig. 12.11: a) Parallel wires carrying currents in the same direction are pulled 

together; b) parallel wires carrying currents in opposite directions 

are pushed apart; c) a sheet of metal between the two wires does not 

affect these forces.   

Let us consider two conducting wires, running parallel to one another, as 

shown in Fig. 12.11a. If the current in the two wires flows in the same 

direction, then the wires are found to attract each other. If the direction of one 

of the currents is reversed, as shown in Fig. 12.11b, then the wires repel each 

other. If a sheet of metal is put between the two wires, the force with which 

wires attract or repel each other is not affected at all (Fig. 12.11c).  

Now, the question is: How do we explain the above observations? Does 

electrostatic force account for the attraction or repulsion of the parallel wires? 

No, the force acting between the wires is not an electrostatic or Coulomb 

force. This is because (i) there is no net charge on the conductor (the charge 

density of conduction electrons just compensates for the positive charge on 

the lattice ions); (ii) the force is reversed in sign by reversing the direction of 

either current; (iii) the force ceases as soon as the circuit is broken; (iv) the 

force is not affected by the presence of a simple medium; (v) the attraction 

and repulsion of the electric currents is contrary to the attraction or repulsion 

of the electric charges.  

The observations of the experiments depicted in Fig. 12.11 can be explained if 

we assume that there is an additional force associated with a moving charge, 

which is different from the electrostatic force. This new force that comes 

into play when charges are moving is called the magnetic force. A charge 

sets up an electric field whether the charge is at rest or is moving. However, a 

charge sets up a magnetic field only if it is moving.  

You may now ask a simple question: A bar magnet sets up a magnetic field 

in its vicinity, but where are the moving electric charges in a bar 

magnet? Actually, the circulating electrons in the atoms of the bar magnet 

(magnetic material) are responsible for its magnetism. You will learn more 

about it in Unit 14 of this bock.  

Thus, you have learnt that (i) a moving charge or a current sets up a magnetic 

field and also (ii) if we place a moving charge or a wire carrying a current in a 

magnetic field, a force will act on it. Now, with this qualitative understanding 
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about the origin of magnetic field, let us define it. But before learning this, try 

to answer the following SAQ.  

SAQ  2 -  Magnetic field and electric motor 

You have probably studied about an electric motor in your school, and you 

may know the principle on which it works. Briefly explain how an electric motor 

illustrates the relation between electric current and magnetic field. 

 

12.3.2 Definition of Magnetic Field 

In Unit 5 (Block 2), you have learnt that the electric field E


 at a point, in terms 

of the electrostatic force EF


 that acted on a test charge q at rest at that point, 

is given by:  

  EF


qE   (12.26) 

We can define the magnetic field in terms of the magnetic force exerted on a 

moving electric charge. It can also be defined in terms of the magnetic force 

on a current. Since current is a flow of electric charge, the two definitions are 

related. First, let us state the definition in terms of force on a current-carrying 

wire.  

a)  Force on currents  

Experiments show that a current-carrying wire placed in a magnetic field, 

experiences a force. Fig. 12.12 shows a wire carrying a current i in a 

magnetic field produced by a magnet. Since the field lines come out of the 

north pole and enter the south pole, the field in Fig. 12.12 is directed from 

right to left. It is found that the wire experiences a force, which is 

proportional to both the current and the strength of the magnetic field. 

When the wire is placed parallel (or anti parallel) to the field lines, it 

experiences no force. But when the wire is placed perpendicular to the 

field lines, the force on the wire is maximum. These two cases are shown 

in Fig. 12.13.  

 

Fig. 12.13: The force on a current carrying wire is a) zero if the wire is parallel or 

anti-parallel to the field lines; b) maximum when the wire is 

perpendicular to field lines. 

This shows that the force on a wire is due entirely to the component of the 

field that is perpendicular to the wire. In other words, the force also 

depends on the relative orientation of the wire and the field lines. In       

Fig. 12.12: A straight 

current-carrying wire 

experiences force when 

it is placed in a magnetic 

field.  

Fig. 12.14: The force on 

the wire is B sin ; that 

is, it is proportional to 

B.  
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Fig. 12.14, suppose, the angle between the field lines (represented by 

)B


and the current-carrying wire is . As explained above, the force F


on 

the wire of length L is due entirely to the component of B


that is 

perpendicular to the wire. This component, represented as B is given by 

(see Fig. 12.14): 

B = B sin  (12.27) 

Further, the force on the wire of length L depends on L itself and the 

current i in the wire. We, therefore, conclude that the force F on a length L 

of the wire is given by  

    siniLBF  (12.28) 

Recall that the vector product DC


 gives rise to a vector of magnitude 

CD sin  which is perpendicular to the plane containing C


and .D


Using 

this in Eq. (12.28), we can write 

 )( BLF


 i  (12.29) 

Here, L


is a vector of magnitude L which is the length of the wire and its 

direction is along the direction of current flow. Eq. (12.28) or (12.29) 

shows that the SI units of B are NA1m1. This unit is also given the name 

weber per square meter or tesla (abbreviated as T). One tesla is a 

strong magnetic field; thus, a smaller unit called the gauss (G) is often 

used.  

   gauss10tesla1 4    

Since gauss is not an SI unit, we should always convert it to tesla before 

using it in equations. The quantity B has several names. Its correct 

name is magnetic induction. It is also designated as the magnetic field 

intensity. However, for historical reasons, we will call the quantity B as 

magnetic field. Also, we shall define another quantity in Unit 14 which we 

shall call magnetic field intensity or simply magnetic intensity and 

denote it by H.  

The direction of the force on the wire is always perpendicular to the plane 

defined by B


and i. To determine the direction of the force, we use the 

right-hand rule as shown in Fig. 12.15.  

 

 

 

 

We now apply Eq. (12.28) or (12.29) to a simple situation so that you can 

understand its meaning better.  

If a surface of area A is 

placed perpendicular to 

a uniform magnetic 

field B, then the 

product BA is an 

important physical 

quantity, which is 

called magnetic flux 

through the surface 

area A. It is denoted by 

. Thus,  

BA  

or     
A

B


     

The unit of magnetic 

flux is weber. Hence 

the unit of B is also 

weber per square 

metre. It is also called 

tesla (T). 

 
 

Fig. 12.15: Right -

hand rule. 

According to the right-hand rule: if one’s right hand is held flat with 

the fingers pointing in the direction of the magnetic field and the 

thumb pointing in the direction of the current, then the palm of the 

hand will push in the direction of the force. 
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Now, you should solve an SAQ to concretise the ideas discussed above. 

SAQ  3 -  Force on current-carrying wire in magnetic field  

 

 

 

 

The conditions given in Example 12.1 and SAQ 3 were rather simple and 

straight forward. Suppose the wire carrying current is not straight so that, at 

each point, its orientation relative to the field changes. Another possible 

scenario is that the field changes in magnitude/direction over the length of the 

current-carrying wire. How do we calculate the magnetic force in such 

situations? We can still use Eq. (12.29) to calculate the force. For this purpose 

we imagine the wire to be broken up into small segments so that each of 

these segments can be considered straight, and the field is essentially 

constant over its length (see Fig. 12.16). Under these assumptions,                  

Eq. (12.29) can be applied to each segment of the current-carrying wire. 

If the length of a small segment of the current-carrying wire is L


d then we can 

write for a small magnetic force F


d on the segment as  

  )( BLF


 did  (12.30) 

 

 

A horizontal wire is carrying current from east to west. What is the direction 

of the force on this current-carrying wire if we assume that at this location 

the magnetic field of the Earth points due north?  If the wire carries a 

current of 20 A, calculate the force per unit length on it due to the Earth’s 

magnetic field, which is about 1.0 G. 

SOLUTION   We use the right-hand rule to determine the force 

experienced by the wire for the orientation of the wire and the Earth’s 

magnetic field. We find that when the thumb of the right hand points west 

and the fingers point north, the palm faces down. Hence, the force on this 

wire will be down (into the page). 

Earth’s magnetic field lines are in a direction perpendicular to the wire. 

Thus, we have  = 90 and we can write Eq. (12.28) as 

 iLBiLBF  90sin  

So, force per unit length on the wire is 

 134 Nm100.2T10A20   iB
L

F
 

XAMPLE 12.1:  FORCE ON A CURRENT-CARRYING WIRE 

 

 

 

A current of 9.5 A is flowing in a wire which is oriented perpendicular to a 

uniform magnetic field. If the magnitude of the magnetic force on a 0.70 m 

length of the wire is 15 mN, what is the magnitude of the magnetic field? If 

the direction of the current flow in the wire is from east to west and the 

magnetic force acting on it is directed towards south, determine the 

direction of the magnetic field. 



   

75  

 Unit 12                                                                          Magnetic Field 

 

Fig. 12.16: a) A curved wire L in a non-uniform magnetic field B


; b) a small 

enough segment of the wire can be considered as straight wire in a 

uniform field.  

We can obtain the total magnetic force on this arbitrarily shaped long    

current-carrying wire placed in a non-uniform magnetic field ,B


by summing 

the expression for F


d in Eq. (12.30) over the whole wire:  

     BLFF


idd  

If we let the length L


d approach zero, this sum becomes an integral, and we 

write the above expression as  

     BLF


di  (12.31) 

Do you recognise the right hand side of the Eq. (12.31)? From Unit 3 of this 

course, you know that it is a line integral taken over the length of the wire. 

The current i, being a constant, is taken out of the integral. In particular, if the 

magnetic field is uniform, which means that B


is constant both in magnitude 

and direction at all points of the wire, then we can write Eq. (12.31) as  

     BLF


 di  

In this expression, L


d is the vector joining the initial point of the segment of 

wire to its final point and the integral is over length of the wire. Further, if the 

current-carrying wire is straight and its length is L, then we have  

 )( BLF


 i  

This expression for magnetic force is the same as Eq. (12.29). 

So far, we considered the force on the current in a wire. An electric current is 

simply a group of charged particle sharing a common motion, so we should 

expect a moving charge to experience force in the magnetic field. This gives 

another way of defining the magnetic field.  

b) Force on a moving charge  

The force which a magnetic field exerts on a moving positive charge can 

be obtained from Eq. (12.29). Recall from Sec. 12.2 that the velocity v    
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of charge q in a wire of cross-section A is related to current i by Eq. (12.2) 

as follows:  

qnAvi      

where n is the number of charges per unit volume. Substituting this 

expression for i into Eq. (12.30) gives 

  BvF


 AnqdLd )(  (12.32) 

Here (dL) A represents the volume of the wire segment of length (dL). So 

(dL) An is the number of moving charges in that portion of the wire for 

which we are writing the force. Hence, the force F


on a single moving 

charge is given by .)/( AndLdF


Thus, we can write 

   BvF


 q  (12.33) 

The magnitude of the force is given by .sinqvB  The direction of the force 

on the moving charge can be obtained by right-hand rule (Fig. 12.15 

with i replaced by v). Note that, if the particle is negatively charged, 

the direction of F


will be reversed.  

Now, go through the following example so that you can understand how the 

force on a charged particle is calculated. It also illustrates the use of the right- 

hand rule for determining the direction of force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a certain region, a magnetic field of 0.10 T points vertically upward. 

Three protons enter the region, two horizontally and one vertically upward 

as shown in Fig. 12.17. All the three protons are moving with the same 

speed 13 sm100.2  . Determine the force on each proton. 

SOLUTION   Proton 2 is moving vertically upward, i.e., parallel to the 

field and sin  = 0. So, from Eq. (12.33), we have .0sin  qvBF


 

Therefore, it experiences no force. Protons 1 and 3 are moving at right 

angles to the field, so sin  = 1 in Eq. (12.33). Thus, the forces on these 

two protons have the same magnitude given by  

       N102.3)T10.0()sm100.2()C106.1( 171319   qvBF  

Since the protons carry a positive charge, the direction of the force is the 

direction of the vector .Bv


  For proton 1, moving to the right, Bv


  points 

out of the page. For proton 3, moving to the left, the force points into the 

page. This example clearly shows that the magnetic field alone does not 

determine the force. Identical charged particles moving in the same field 

may experience different forces, if their velocities are not identical. If the 

particles were electrons, the negative sign of the electron charge would 

have indicated a force opposite to the direction of .Bv


   

XAMPLE 12.2:  FORCE ON A CHARGED PARTICLE 

MOVING IN MAGNETIC FIELD 

 

 

 

Fig. 12.17: Diagram 

for Example 12.2.  
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Now, answer an SAQ. 

SAQ  4 -  Force on a charged particle moving in magnetic field 

Of the three vectors in the equation ,BvF


 q  which pairs are always at right 

angles to one another? Which of these may have any angle between them? 

 

Eq. (12.33) is equivalent to Eq. (12.29) so that either of them can be taken as 

the defining equation for .B


 In practice, we define B


from Eq. (12.29), 

because it is much easier to measure the force acting on a wire than that on a 

single moving charge.  

In this section, you have learnt that a moving charge gives rise to a magnetic 

field. You have also learnt how to define magnetic field in terms of the force 

exerted by it on a current-carrying wire and a moving charge. Now, suppose 

there is a current-carrying wire, and you are asked to calculate the magnetic 

field produced due to it at any point of space. This is similar to the problem of 

calculating electric field at a point in space due to a charge or system of 

charges (in electrostatics). In electrostatics, you used Coulomb’s law and 

Gauss’s law to find the solution. So, you would like to have laws for magnetic 

field which are analogous to Coulomb’s law and Gauss’s law. Let us first find 

out Gauss’s law for magnetism.  

12.4   GAUSS’S LAW FOR MAGNETISM 

Suppose magnetic charges – monopoles – exist. Then, they would give rise to 

magnetic fields like the electric fields due to electric point charges. In such a 

situation, we can describe the magnetic fields due to monopoles and due to 

those of magnetic charge distributions by laws analogous to Gauss’s law for 

electrostatics. That is, Gauss’s law for magnetic field would require that the 

flux of the magnetic field through any closed surface depend only on the 

enclosed magnetic charge. Thus, under the assumption that magnetic 

charges exist, we may write Gauss’s law for magnetism as  

  gd 0 S.B


 (12.34) 

where the integral on the left is the flux of B


 over a closed surface enclosing 

the magnetic charge or monopoles denoted by g and 0 is some constant. 

But, the very existence of the magnetic monopoles is uncertain. And 

even if they do exist, they seem to play no significant role in our world. In the 

absence of the magnetic monopoles, we must put g = 0 and then the 

magnetic flux through any closed surface must be zero. We state this 

mathematically as Gauss’s law for magnetism and write it as follows: 

    0S.B


d  (12.35) 

A consequence of Gauss’s law for magnetism is that magnetic field lines can 

never begin or end (Fig. 12.18). Unlike the electric field lines, the magnetic 

field lines have to form closed loops. If we convert the surface integral of       

Eq. (12.35) into a volume integral using the divergence theorem, we obtain 

    0dVB.


 (12.36) 

Fig. 12.18: In the 

absence of magnetic 

monopoles, the 

magnetic flux through a 

closed surface must be 

zero. a) There can be no 

point where magnetic 

field lines begin or end 

because a closed 

surface surrounding 

such a point would have 

non-zero net flux;               

b) Instead, magnetic 

field lines form closed 

loops.  
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The integration in Eq. (12.36) is over the volume enclosed by the closed 

surface of Eq. (12.35). Since Eq. (12.36) holds for any arbitrary volume of 

integration, we must have  

  0 B.


 (12.37) 

Eq. (12.37) is true even if B


 varies with time. Eqs. (12.35 and 12.37) are the 

integral and differential forms of Gauss’s law for magnetism.  

 

 

 

 

Now, let us discuss Biot-Savart law which is analogous to Coulomb’s law. 

12.5 BIOT-SAVART LAW 

In the previous sections, you have learnt the effect of magnetic field on a 

current-carrying wire and moving charges and have calculated the magnetic 

force experienced by them. Now, the question is: How do we calculate the 

magnetic fields produced by a current? Can we show that a current loop 

has the magnetic field of a dipole? Interest in questions like these led the 

French scientists Jean-Baptiste Biot and Felix Savart to experimentally 

determine the form of the magnetic field arising from a steady current. 

Known as Biot-Savart law, its result gives the magnetic field at a point due to a 

small element of current.  

In Unit 5, you have learnt how to calculate the electric field due to a given 

distribution of charges in the surrounding space. Our approach was to divide 

the charge distribution into charge elements dq as in Fig. 12.19a. We then 

calculated the field E


d  due to a given charge element at an arbitrary point P.  

Finally, we calculated E


 at point P by integrating E


d  over the entire charge 

distribution. Recall that the magnitude of E


d  is given as:  

  
2

04

1

r

dq
dE


     

where r is the distance from the charge element to the point P. 

 

 

 

 

 

 

 

Fig. 12.19: a) The electric field E


d  at point P due to a charge element dq; b) the 

magnetic field B


d  at point P due to a current element .l


id  

In the case of magnetic field, our approach will be the same. Fig. 12.19b 

shows a wire of arbitrary shape carrying a steady current i. We wish to know: 

Gauss’s law for magnetism implies that the magnetic field does not 

have any source similar to electric charge(s) for electric field. In other 

words, magnetic monopoles do not exist. Mathematically, it means 

that divergence of B

 is zero.  

 

 


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What is the magnetic field B


at an arbitrary point P near this wire? We first 

break up the wire into differential current elements ,l


id corresponding to the 

charge elements dq of Fig. 12.19a. Here the vector l


d is a differential element 

of length, pointing along the tangent to the wire in the direction of the current. 

Note that the differential charge element dq is a scalar, but the differential 

current element l


id is a vector.  

Under these conditions, the Biot-Savart law says that the magnitude of the 

magnetic field due to a given current element idl at point P at distance r is 

given as follows:  

  
2

0 sin

4 r

idl
d






B


 (12.38) 

Here 0  is a constant, called the permeability of free space. Its value is 

.AmT104 17   This constant plays a role in magnetic problems, much like 

the role that the permittivity 0  plays in electrostatic problems. 

The expression for B


d in vector form is 

  
2

0 ˆ

4 r

id
d

rl
B











 (12.39) 

where r̂  is a unit vector pointing from l


d towards P. Eq. (12.39) is the analog 

of Coulomb’s law for electrostatics and is called Biot-Savart law. The 

direction of B


d in Fig. 12.19b is that of the vector ,r̂l 


d  where r̂  is a unit 

vector that points from the current element to the point P at which we wish to 

know the field.  

Recall from Unit 5 that Coulomb’s law gives the electric field of a point 

charge in terms of the charge and the distance from the charge to the field 

point.  The electric field varies as the inverse square of the distance, and its 

direction lies along the line joining the charge with the field point. 

Analogously, Biot-Savart law gives the magnetic field at a given point in 

terms of the current element (source of the magnetic field) and the distance 

to the field point from the current element. Like the electric field of a point 

charge, the magnetic field of an isolated current element varies as the inverse 

square of the distance. But here the analogy ends.  

Unlike the electric charge in Coulomb’s law, the current element l


id in          

Biot-Savart law has associated with it a direction as well as a magnitude. 

Hence, the magnetic field of the current element is not symmetric about the 

element; it depends on the position of the field point relative to the direction of 

the current element. This directional character is expressed by the cross 

product in Eq. (12.39). So, in Fig. 12.19b, the magnetic field is at right angles 

to both the current element and the vector from the current element to the field 

point. Another significant difference between the magnetic and electric fields is 

that the magnetic field lines have no sources like the electric field lines which 

end or originate on electric charges; magnetic field lines are continuous and 

join back on themselves.  

Let us see how Eq. (12.39) and Fig. 12.19b show that the magnetic field lines 

are continuous and join back on themselves. Let the point P move around the 

current axis at a constant distance from the axis. From Eq. (12.39), the 
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magnitude of B


d is constant along this path, and at each point it has a 

direction tangent to the path. These are just the requirements for the lines to 

be concentric circles around the current. Hence, the magnetic field lines 

encircle the current as shown in Fig. 12.20. The direction in which the circular 

field lines point depends on the direction in which the current flows. If the 

direction of the current flow is reversed, the direction of the field line is also 

reversed as shown in Fig. 12.21. 

 

 
 

Fig. 12.21: The direction in which the magnetic field lines point is determined by 

the direction in which the current flows. a) When the current flows 

into the page, denoted by symbol , the field lines form clockwise 

circles; b) when the current flows out of the page, indicated by 

symbol ʘ, the field lines form anticlockwise circles.  

However, there is an easy way to remember these directions. Just close the 

palm of your right hand and point your thumb in the direction of the current as 

shown in Fig. 12.22. In either case, you will find that your fingers will naturally 

curl around in the direction of the magnetic field as illustrated in Fig. 12.22, 

and is referred to as the right-hand rule. 

SAQ  5 -  Direction of the magnetic field 

a) Write one analogy and one difference between Coulomb’s law and       

Biot-Savart law. 

b) A horizontal wire carries a current from east to west. What is the direction 

of the magnetic field due to this current directly above and below the wire? 

Refer again to Fig. 12.19b. Like the electric field, the magnetic field obeys the 

superposition principle. Therefore, the net magnetic field at P due to entire 

circuit, of which the wire is a part, will be the vector sum or line integral of the 

magnetic fields of individual current elements:  

   







C
r

id
d

2

0 ˆ

4

rl
BB




   (12.40) 

where C represents the path of integration, i.e., the path through which current 

i flows. Let us now apply Biot-Savart law to calculate magnetic field for some 

simple situations.  

a)  B


due to a long current-carrying straight wire 

Refer to Fig. 12.23 which shows a long straight wire carrying current i. 

Suppose we want to calculate the magnetic field at point P. Let r be the 

Fig. 12.22: By using 

your right hand to 

‘grip’ a current-

carrying conductor, 

you can find out the 

direction of the 

magnetic field. When 

your thumb points in 

the direction of current 

flow, your fingers curl 

along the direction of 

the magnetic field. 

Fig. 12.20: Magnetic 

field lines generally 

encircle a current.  
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distance between the point P and the current element idl of the wire, and 

let R be the perpendicular distance between the wire and P.  

From Biot-Savart law [Eq. (12.39)], we can write the magnitude of the 

differential magnetic field at point P due to the current element idl as: 

  
2

0 sin

4 r

idl
dB






    (12.41) 

where  is the angle between r̂ and .l


id The direction of B


d is given by 

the right-hand rule. In the instant case, it points out of page at point P. 

You should convince yourself that this is true irrespective of the position 

of l


d along the wire. Thus, at point P all the differential magnetic fields 

due to all the current elements l


id point in the same direction. So, to find 

the magnitude of total magnetic field B at point P, we integrate  

Eq. (12.41): 

   







2

0 sin

4 r

dli
dBB    (12.42) 

In order to sum up the contributions from all current elements of the long 

straight wire, we change the variables from  and r to  (see Fig. 12.23). 

From Fig. 12.23, note that  

   cos)sin(sin  (12.43a) 

Now, let us draw a line AC which is perpendicular to PB. Then we can 

write 

    


 cos
dl

rd

AB

AC
 

 or  cosdldr  (12.43b) 

Using Eq. (12.43a), we can write 

   
22

cossin

r

dl

r

dl 



 

                       (12.43b)]Eq.from[
2r

rd
   (12.44) 

Substituting Eq. (12.44) in the expression for B [Eq. (12.42)], and since 

)/(cos rR from Fig. 12.23, we can write 

   







r

di
dBB

4

0
 











2

1

cos
4

0 d
R

i
 

 Note that for the given wire, the limits of integration are from 1  (since 

PO is the reference line) and .2  Thus,  

   ]sinsin[
4

12
0 





R

i
B  (12.45) 

From Fig. 12.23, we note that if the straight wire is infinitely long, we can 

write  ).2/(21   Thus, we get 

You know that  

 )sin(sin   

In Fig. 12.23,  

 
AP

OP
 )sin(  

Note that 

 
AP

OP
cos  

Hence, we get  

Eq. (12.43a): 

  cossin  

 

In Fig. 12.23, we can 

write  

 PAOCBA  

because l


d  is very 

small. So, 

    
AB

AC
 )sin(  

Thus, we have 

      cossin
AB

AC
 

Fig. 12.23: A long straight 

wire carrying current i.  
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R

i
B






2

0  (12.46) 

for infinite wire. From Eq. (12.46), you may note that the magnitude of B 

falls off inversely as the first power of the distance from an infinitely long 

wire. Note that this expression for B is analogous to the expression for E 

due to a long charged wire given as .
2

4

1

0







 

 r
  

Now, you should go through an example on calculating magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

Before proceeding further, you may like to solve an SAQ. 

SAQ  6 -  Magnetic field due to two long straight wires 

Two conducting long straight wires separated by a distance of 0.50 m are kept 

parallel to each other as shown in Fig. 12.24. If the wires carry currents 

 A151 i  and  A,102 i respectively, determine the magnetic field in the 

plane of the two wires at a point P located half way between the wires. 

 

b) B


along the axis of a current loop  

Let us consider a circular loop of radius a and carrying a current i as 

shown in Fig. 12.25. The x-axis has been chosen along the axis of the 

loop and we choose a point P on its axis at a distance R from its centre. 

The magnetic field B


d at P due to a current element of length l


d  is given 

by Biot-Savart law: 

  
2

0 ˆ

4 r

id
d

rl
B











   (12.47) 

For all current elements around the loop, r


is perpendicular to .l


id Hence, 

the value of sin  in the cross-product in Eq. (12.47) is 1 and we can write: 

  
2

0

4 r

dli
d




B


   

 

 

 

A long straight conducting wire carries a current of 15 A. Determine the 

magnitude of the magnetic field at a perpendicular distance of 0.20 m from 

the wire.  

SOLUTION   The magnitude of the magnetic field due to a current- 

carrying long straight wire is given by [Eq. (12.46)]: 

  
R

i
B






2

0  

As per the problem, i = 15 A and R = 0.20 m. Since 

, ATm10)4/( 17
0

  we get 

  T105.1
m) (0.20

A)15()ATm102( 5
17







B  

 

XAMPLE 12.3:  MAGNETIC FIELD DUE TO A LONG 

STRAIGHT WIRE 

 

 

Fig. 12.24: Diagram for 

SAQ 6.  



   

83  

 Unit 12                                                                          Magnetic Field 

 

 

 

 

Fig. 12.25: Magnetic field at point P along the axis of a current loop. 

From Eq. (12.47), you can see that since B


d is a cross product of l


d  and 

,r


 it is always perpendicular to the plane consisting r


and .l


d  Thus B


d is 

perpendicular to r


at point P as shown in Fig. 12.25. It can be resolved 

into two components, one dB sin along the axis of the loop and the other 

dB cos at right angles to the axis. Here  is the angle between r


and the 

axis of the loop. You will notice that the components of B


d  perpendicular 

to the axis will cancel, due to opposite length elements in the entire 

current loop. Therefore, the resultant B


is in the direction of the axis and 
will be given by summing only the components .sindB  Thus, B due to 

entire loop is given by  

    










 dl

r

i

r

dli
dBB

2
0

2
0 sin

4
sin

4
sin    

Since all the length elements dl constituting the current loop lie in a circle, 

both and r are constants. Therefore, they are taken outside the integral. 

Further, the length element dl integrated around the loop is equal to .2 a  

Thus, we can write 

   a
r

i
B 




 2

4

sin
2

0   

If we write )/(sin ra  and  2/122 )( Rar   in terms of the constants a 

and R, we get  

   
2/322

2
0

)(2 Ra

ai
B




  (12.48)  

When we choose the point P to lie far from the loop so that R >> a,             

Eq. (12.48) can be written as  

   
3

0 2

4 R

iA
B




  (12.49) 

Here we have written ,2aA   the area of the loop. Notice that the 

magnetic field due to the current loop at large distances on its axis is like 

the electric field due to an electric dipole 



















3

2

4

1

0 r

p
E (recall Sec. 5.6 

of Unit 5.) This shows that the term (iA) is analogous to electric dipole 

 
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moment p


of the electric dipole. Therefore, the term iA is called the 

magnetic dipole moment of the loop and is represented by . 

On the basis of the above discussion, you may note the similarity 

between a bar magnet which is magnetic dipole, and a current loop. The 

similarity can also be seen by plotting the magnetic field around the 

current loop. When a compass is used to plot the magnetic field due to a 

current loop, we obtain magnetic field lines as shown in Figs. 12.26a and 

b. You should convince yourself that this is reasonable by applying the 

right-hand rule to a portion of the loop. Now, refer to Fig. 12.26c which 

depicts the magnetic field lines due to a bar magnet. You may note that 

the magnetic field lines due to a current loop are quite like those of a bar 

magnet. The current loop can be considered to have north and south 

poles. We shall see in a later section that this is one aspect of a very 

important similarity between bar magnets and current loops.  

After studying this section we hope that you can tell why the two parallel 

current carrying wires, shown in Fig. 12.11, are attracted in one case 

while they are repelled in another case. If not, study Sec. 12.6. It will also 

help you in defining the unit of current – ampere – which we have been 

using so far without defining it precisely. But before that, you should work 

out the following example. 

 

 

 

 

 

 

 

 

 

 

Now, you should solve an SAQ.  

SAQ  7 -  Magnetic field due to electron circulating around the

         nucleus in a hydrogen atom 

As per the Bohr model of hydrogen atom, an electron circulates around the 

nucleus along a circular path of radius m101.3 11  with a frequency, 

Hz.108.6 15f Calculate the value of the magnetic field set up at the 

nucleus of the hydrogen atom due to the electron’s motion. 

 

 

 

A current of 0.75 A is flowing in a circular coil of radius 0.02 m. Calculate 

the magnitude of the magnetic field due to this coil at a point 1.5 m away 

from the centre of the coil along its axis. 

SOLUTION   For the case when the distance of the axial point is very 

large compared to the radius of the current loop (R >> a) the magnitude of 

the magnetic field due to a current loop (or coil) is given by Eq. (12.49): 

  
3

0 2
.

4 R

iA
B




  

We have i = 0.75 A, A = a2 = 3.14  (0.02 m)2, R = 1.5 m. So, 

 T106.5
m) (1.5

m) 02.0()14.3(A)75.02()ATm101( 11
3

217






B  

 

XAMPLE 12.4:  MAGNETIC FIELD DUE TO A CURRENT 

LOOP 

 

 

Fig. 12.26: The 

magnetic field due to 

current- carrying loops 

in (a) and (b) are very 

similar to that due to 

small bar magnet 

shown in (c).  
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12.6 FORCE BETWEEN TWO PARALLEL 
CONDUCTORS (DEFINITION OF AMPERE)  

In this section, we will determine how much force one of the wires in  

Fig. 12.11 exerts on the other. We assume that the wires are linear, parallel 

and very long. Here, each wire experiences a force, because it is in the 

magnetic field due to current in the other wire.  

Fig. 12.27 shows two long, parallel wires separated by a distance d and 

carrying currents 1i  and 2i  in the same direction. The current in wire 2 

produces a magnetic field 2B at all points around the wire. From Eq. (12.46) 

the magnitude of 2B at the site of wire 1 is given by 

  
d

i
B






2

20
2  (12.50) 

 

Fig. 12.27: Two parallel wires carrying currents in the same direction attract 

each other.  

The right-hand rule tells us that the direction of 2B at any point on wire 1, is 

out of the page, as shown in Fig. 12.27. Now, wire 1 which is carrying current 

1i  is immersed in an external magnetic field .2B  If L is the length of this wire, it 

will experience a force given by Eq. (12.29), whose magnitude is  

  
d

Lii
LBiF






2

210
211        (12.51) 

What is the direction of this force? The right-hand rule says that 1F


 points 

towards the wire 2. This means that wire 1 is attracted towards wire 2. 

Similarly, for currents in the two wires flowing in the opposite direction, you 

should be able to show that the wires repel each other. The rule is that 

parallel currents attract and anti-parallel currents repel. 

The force between current-carrying conductors forms the basis for the 

definition of the ampere. One ampere is that constant current which, if 

maintained in two straight parallel conductors of infinite length, of 

negligible circular cross-section, and placed one metre apart in vacuum, 

would produce on each of these conductors a force equal to                 

N102 7  per meter.  

In other words, suppose we have two straight parallel conductors of infinite 

length, of negligible circular cross-section, and placed one meter apart in 

vacuum. When constant current is made to flow in both the conductors, it is 

observed that each of these conductors experiences a force. The constant 
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current which produces force equal to N102 7  per metre of length of the 

conductors is known as one ampere (A).  

Now, let us sum up what you have studied in this unit. 

12.7   SUMMARY 

Concept Description 

Electric current  

 

 

 Electric current is the flow of charge. The unit of electric current is the 

ampere. Current is defined as the amount of charge per unit time passing a 

given point. 

 
dt

dq
i    

Current density                          

 

                     

 Current density J


 is a vector specifying the current per unit area. The 

direction of J


at any point is the direction in which a positive charge-carrier 

would move if placed at that point. 

                        dnq vJ


        

The total current through a surface is the flux of the current density over that 

surface. 

        

S

S.J


di    

 where S


d is an element of area and the integral is taken over the surface.                           

Continuity  

equation 

 

 The total charge crossing a surface S in unit time is . S.J


d  If S is a closed 

surface enclosing a volume V, the rate of loss of charge through S must be 

the same as the rate of depletion of charge contained in V, i.e. 

   





V

dV
t

dS.J


  

 This result expresses conservation of charge and is known as the continuity 

equation. The differential form of the continuity equation is: 

  0. 





t
J


  

Conductivity σ is a property of a material which is equal to the ratio of  

current density to electric field in the material: 

  EJ


  

Resistivity  is the inverse of conductivity.  
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Force on current 

in magnetic field 

 

 A long straight wire carrying current i and placed in a uniform magnetic field 

B


 experiences a force. The force on a section of the wire of length L is 

given by 

            BLF


 i  

     where L


is a vector of magnitude L,  pointing in the direction in which the 

current flows along the wire. 

Force on moving 

charge in 

magnetic field 

 A magnetic field B


 is said to exist in any region in which a moving charge 

experiences a force that depends on its charge, its velocity v


 and the 

magnetic field. If B


 and v


 make an angle θ with each other, the force on 

the moving charge is given by: 

            BvF


 q    or       sinqvBF  

Gauss’s law for 

magnetism 
 Gauss’s law for magnetism states that the magnetic flux through any closed 

surface is zero: 

 0 S.B


d  

The differential form of Gauss’s law for magnetism is  

 0. B


 

This shows that magnetic lines have no beginning or end; they form closed 

loops. 

Biot-Savart law  Current gives rise to a magnetic field. The magnetic field due to a current- 

carrying conductor can be determined using Biot-Savart law: 

 
2

0 ˆ

4 r

id
d

rl
B











 

where B


d  is the contribution to the magnetic field from a current i flowing 

along an infinitesimal current element .l


d  The constant 0  is called 

magnetic permeability in free space. Its value is .NA104 27   The unit 

vector r̂  points from the current element I


id  towards the point where the 

field is being calculated. 

Right-hand rule  Right-hand rule is used for (i) determining the direction of magnetic field, 

and (ii) determining the direction of the magnetic force on a current-carrying 

conductor kept in a magnetic field. 

For determining the direction of the magnetic field due to a current-carrying 

wire, if we point the thumb of right hand in the direction of current then our 

fingers will curl along the direction of .B


 

For determining the direction of magnetic force, if  the right hand is held flat 

with the fingers pointing in the direction of the magnetic field and the thumb 

pointing in the direction of the current, then the palm of the hand will push in 

the direction of the magnetic force. 
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12.8 TERMINAL QUESTIONS 

1. TV set shoots out a beam of electrons. The beam current is 10 A. How 

many electrons strike the TV screen each second?  How much charge 

strikes the screen in a minute? 

2. In the Bohr model of the hydrogen atom, the electron follows a circular 

orbit centred on the nucleus. Its speed is v and the radius of the orbit is r. 

Show that the effective current in the orbit is .2/ rev   If the radius of the 

orbit is m103.5 11  and the electron’s speed is 16 sm102.2   calculate 

its frequency f and the current i in the orbit. 

3. What is the electric field in a copper conductor of resistivity 

m1072.1 8   having a current density ?Am1054.2 26 J  

4. Calculate the magnitude of the magnetic force exerted by the Earth’s 

magnetic field,  T,10 5B  on an electron moving with speed 

15 ms100.1   near the Earth’s surface. Compare this force with the 

weight of the electron on the Earth’s surface. Assume that the Earth’s 

magnetic field is perpendicular to the direction of motion of electron. 

Magnetic field due 

to an infinite 

straight wire 

 The  magnetic field at a point at a perpendicular distance R from an infinite 

straight wire carrying a current i is given by 

 
R

i
B






2

0  

Magnetic field due 

to current loop 
 The magnetic field at a point along the axis of a circular loop carrying  

current is given by 

 
2/322

2
0

)(2 Ra

ai
B




  

where a is the radius of the  circular loop carrying current i and R is the  

distance of the point (along the axis of the loop) from the centre of the loop. 

When the point is far away from the loop such that R >> a then 

 
3

0 2

4 R

iA
B




  

where 2aA   is the area of the current loop. The current loop behaves 

like a magnetic dipole. 

Definition of 

Ampere 
 Two parallel wires carrying currents in the same (or opposite) direction 

attract (or repel) each other. If these two wires are separated by a distance 

d in a vacuum, then the force (F) of attraction (or repulsion) on a segment of 

length L of either wire is given by 

 
d

Lii
F






2

210
 

where 21 and ii are the currents flowing in the two wires. The force between 

two current-carrying wires is used to define the ampere – the unit of electric 

current. 
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5. A 0.3 m length of current-carrying wire kept perpendicular to a magnetic 

field of magnitude 300 mT experiences a force of 2.5 mN. What is the 

current flowing in the wire? 

6. In Chennai, the horizontal component of the Earth’s magnetic field is 

.Wbm106.3 25   If a vertical wire carries a current of 30 A upward 

there, what is the magnitude and direction of the force on 1 m of the wire? 

7. Calculate the force on each segment of the wire shown in Fig. 12.28, if            

B = 0.15 T. Assume that the current in the wire is 15 A. (It is given that 

.)9063.065sin   

 

Fig. 12.28: Diagram for TQ 7. 

8. Two long, straight parallel wires separated by a distance d carry currents 

1i  and  )2( 12 ii   along the same direction. Determine the distance from 

the wire carrying current 1i  where the value of the magnetic field is zero 

between the two wires. 

9. For the Bohr model of the hydrogen atom, show that ,)2/( L


me  

where vL


mr   is the angular momentum of the electron in its orbit. 

10. Two long, straight, parallel wires carry equal current of 10 A in opposite 

directions – one out of the plane and the other into the plane of the paper 

as shown in Fig. 12.29. Determine the magnitude and direction of the 

magnetic field at a) point P and b) point Q. Take x = 0.25 m. 

12.9 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. a) The instantaneous current is given as [Eq. (12.1)]: 

   
dt

dq
ti )(  

 We have  C 5.2)sC 5.4()( 22   ttq    t
dt

dq
)sC 0.9( 2  

 Thus, instantaneous current, tti )sC 0.9()( 2  

b) The value of current at s 0.3t  is  A27sC 39s) 0.3( 1  ti  

2. In most electric motors, current in a wire sets up a magnetic field. The 

magnetic field, in turn, exerts a force on a second current carrying wire 

causing the shaft to rotate. 

3. The magnitude of the force on a current-carrying wire due to magnetic 

field is given by Eq. (12.28):  siniLBF  

Fig. 12.29: Diagram for 

TQ 10.  
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Since the wire is oriented perpendicular to the magnetic field, 

.1sin90   So, 

 mT 3.2
m) (0.70 A)5.9(

N1015 3









iL

F
BiLBF  

The direction of the magnetic field is given by the right-hand rule. For 

current along west and magnetic force along south, the magnetic field will 

be vertically downward (that is, into the page). 

4. The pair F


and ,v


 F


and B


are always at right angles. Vectors v


and B


 

may have any angle between them. 

5. a) Both are inverse square laws. In Coulomb’s law, electric field is along 

r̂  or r̂  depending on the sign of the charge. In Biot-Savart law, 

magnetic field acts perpendicular to the plane containing the current 

element and .r̂  

 b) If we apply the right-hand rule to determine the direction of B


 for the 

given direction of current, we find that directly above the wire, B


 points 

into the page of the paper and directly below the wire, it points out of 

the page. 

6. To solve the problem, we will use the superposition principle followed by 

magnetic field: the magnetic field at a point due to two or more current 

elements is the vector sum of the magnetic field at that point due to each 

individual current element. 

The magnitude of magnetic field due to 1i  and 2i  at point P is                       

[Eq. (12.46)]: 

  T1020.1
m) 25.0(

 A)15()ATm102(

2
5

17
10

1













R

i
B   

and T100.8
m) 25.0(

 A)10()ATm102(

2
6

17
20

2













R

i
B  

The direction of 1B


 and 2B


 is determined by the right-hand rule. So, 1B


 is 

directed into the page at point P and 2B


 is directed out of the page. So, 

the resultant field, 21 BBB


  will have the direction of ,1B


the larger of 

the two fields. So, the magnetic field at point P is into the page and the 

magnitude of the resultant field is 

  T104.0A)10  A 15(
m) 25.0(

ATm102 6
17

21






 BBB  

7. The motion of electron in a circular orbit/path around the nucleus of an 

hydrogen atom constitutes a electric current. The value of current is given 

by 

 A101.1)Hz10(6.8 )C10(1.6  
Time

Charge 31519   efi  

The magnitude of the magnetic field due to current loop is given by          

Eq. (12.48): 

      
2/322

2
0

)(
.

2 Ra

ia
B




                                                                          

Notice that for the given problem, we cannot use Eq. (12.49) because we 

need to calculate B at the nucleus (that is, at the centre of the current 
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loop) and the condition R >> a is not satisfied. Substituting the values of 

m)101.3(A),101.1( 113   ai  and ),0(R  we get 

 T 22
m)101.3(2

m)101.3(A)101.1() ATm104(
311

211317











B  

Terminal Questions 

1. Let n be the number of electrons incident on the screen per second. Then 

13
19

16

103.6
C106.1

Cs1010











e

i
n  electrons per second. So, the charge 

Q striking the screen is given by 

   C600s) 60()Cs10( 1  itQ  

 Since the charges are electrons, the actual charge is: C600Q  

2.   Since charge e passes a point on the orbit once every revolution, 
,/Tei   where ./)2( vrT   So the effective current in the orbit is 

   )2(/)( revi   

 Further, the frequency is the reciprocal of time period T. So 

   z
r

v
f H106.6

)m103.5(2

ms102.2

2
15

11

16














 

Each time the electron goes around the orbit, it carries a charge q around 

the loop. The charge passing a point on the loop each second, i.e., current 

is given as follows:  

   11519 s)106.6(C)106.1(   efi  = 1.06 mA 

Note that the current flows in the direction opposite to the electron, which 

is negatively charged. 

3. By definition, ,E


 the electric field, is related to the current density J


 

through the relation [Eq. (12.23)]: 

 JE


   )mA1054.2()m1072.1( 268    12 Vm1037.4   

4. The magnitude of the force on a moving charge q in a magnetic field is 

given as 

   N101.6T)101()ms(10C)106.1( 1951519   evBqvBFB  

 The weight of an electron near the Earth’s surface 

    N109.8)ms (9.8kg)101.9( 30231  mgFg  

 So,  10107.1)/( gB FF  

5. The magnetic force on a current-carrying wire kept in a magnetic field is 

given as [Eq. (12.29)]:  siniLBi BLF


 

  Since the wire is kept perpendicular to .90, B


 So, we have 

    A107.2
T)10 (300m) 3.0(

N105.2 2
3

3












LB

F
iiLBF  

6. The vertical component of B


 is parallel to the current and does not 

contribute to the force. Therefore, we have [using Eq. (12.29)] 
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  N108.10)mWb106.3()m1()A30( 425   HiLBF due west. 

7. For each straight segment, ,BLF


 i  L


w here  is the directed line 

segment. From Fig. 12.28, we note that in sections AB and ,DE  L


 and B


 

are parallel; so 0sin   and .0F In section BC, 

N,23.0)T15.0()m10.0()A15(  iLBF  into page. In section 

,N408.065sin)T15.0()m20.0()A15(, FCD  out of page.  

8. From the right-hand rule to determine the direction of magnetic field, we 

note that the magnetic field at any point between the two parallel wires 

carrying currents in the same direction will be oppositely directed. So, let 

the two fields balance each other at a distance x from the wire carrying 

current .1i  Further, the value of the magnetic field due to wire having 

current 1i  can be written as (Eq. (12.46)): 
)(2

10
1

x

i
B




   

And that due to current )2( 12 ii   can be written as 

 
)()(2

2

)(2

101020
2

xd

i

xd

i

xd

i
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









  

Since the two fields balance each other at this distance from wire having 

current ,1i   we have 
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i
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
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
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9.  In magnitude, the magnetic dipole moment is 

    L
m

e
L

m

e
mvr

m

e
r

r

ev
iA

22
)(

2
)(

2
2 


   

 because the electron is negatively charged. In vector notation, we write  

    L


m

e

2
  

10. The magnetic field due to a long, straight current carrying wire is given as 

 .
2

0

R

i
B




  So, the magnetic field due to each of the wire at point P will be  

 T106.1
m) 25.0(

 A)10()ATm104(
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Now, as per the right hand rule to determine the direction of the field at a 

point, we notice that the direction of field due to both current-carrying wires 

is towards the right. So, the total magnetic field at point P is 

 T,103.2T106.12 55
21

  BBB  (towards right) 

Similarly, the magnitude of the magnetic field due to each of the wires at 

point Q will be same: 

 T100.8
m) 25.0(

 A)10()ATm102(

2
6

17
0

21





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





x

i
BB  

Again, as per the right-hand rule, the direction of the magnetic field at Q 

due to each wire will be towards right. So, the total field at Q is 

 T1016 6
21

 BBB  and it will be directed towards right. 
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               UNIT 13 

AMPERE’S LAW AND 
APPLICATIONS 

Structure 
 

13.1 Introduction 

Expected Learning Outcomes  

13.2 Ampere’s Law 

13.3 Applications of Ampere’s Law 

Magnetic Field due to a Long Straight Wire 

Magnetic Field due to a Solenoid 

Magnetic Field inside a Toroid  

 

 

 

STUDY GUIDE           

 

13.4 Differential Form of Ampere’s Law 

 Magnetic Vector Potential 

13.5  Summary 

13.6 Terminal Questions 

13.7 Solutions and Answers 

 

The present unit is in continuation of the previous unit on magnetic field. You must have noted 

in the previous unit that in our discussion on magnetic field, we referred to the electric field 

due to static charges. We have been looking for laws and methods to calculate magnetic field 

due to steady currents which are similar to the laws and methods of calculating electric fields. 

So, to appreciate the concepts discussed in this unit, you should refer to the relevant 

units/sections of Block 2 on electrostatics as and when mentioned. Also, you should refresh 

your understanding of the concepts of divergence and curl of a vector that you have studied in 

Block 1. These concepts have been used in this unit to define magnetic vector potential – a 

concept very similar to electric potential. You should also focus on the physical significance of 

the mathematical expressions obtained in this unit. Try to solve the SAQs and TQs as it will 

give you practice in calculating the value of magnetic field and determine its direction for 

various steady current configurations. 

“Ampere was the Newton of Electricity.”  James C. 
Maxwell  

 

 

An MRI machine applies a very strong 

magnetic field of about 0.2 to 3 tesla for 

obtaining very high resolution images 

of human body for medical diagnosis. 

In this unit you will learn Ampere’s law 

for calculating magnetic fields. (Picture 

source: Wikimedia Commons) 
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13.1   INTRODUCTION 

In the previous unit, you have learnt how steady current gives rise to magnetic 

field. You have learnt how to calculate the magnetic field due to a given 

current distribution using Biot-Savart law. The Biot-Savart law serves the 

same purpose for magnetic field as Coulomb’s law for calculation of electric 

field due to static charge distribution. These laws show that both the electric 

field and the magnetic field exhibit inverse square dependence. You have also 

learnt that the divergence of the magnetic field is zero, i.e., it is solenoidal. 

Physically, the zero divergence of the magnetic field indicates that free 

magnetic charges or poles do not exist. In other words, it means that the 

magnetic field does not have any sources similar to the electric charges for 

the electric field.  

In the present unit, we continue our discussion on magnetic field. Our attempt 

here is to explain concepts and laws obeyed by a magnetic field so that we 

can calculate its value for different current distributions. In doing so, we shall 

always seek analogy with calculation of electric field due to various charge 

distributions. So, the question we should ask now is: Do we have a law for 

magnetic field that is analogous to Gauss’s law for electric field? The answer 

is, yes, we do have. Ampere’s law, which we discuss in Sec. 13.2, enables us 

to calculate the magnetic field due to a symmetric current distribution just as 

Gauss’s law enables us to calculate electric field due to a symmetric charge 

distribution. In Sec. 13.3, you will learn how to apply Ampere’s law to calculate 

magnetic field due to a long, straight current-carrying wire, a solenoid, and a 

toroid. In Sec. 13.4, you will learn how to establish Ampere’s law in differential 

form. You will also learn that the differential form of the Ampere’s law, given 

as curl of ,B


enables us to define a quantity called magnetic vector potential. 

The magnetic vector potential simplifies the calculation of magnetic field in the 

same way as the electric potential simplifies the calculation of electric field. 

However, since magnetic vector potential is a vector quantity, its calculation is 

not as simple as that of electric potential. 

In the next unit, you will study the magnetic properties of materials and learn 

that materials can be broadly classified into three categories, namely, 

diamagnetic, paramagnetic and ferromagnetic materials. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 state and explain Ampere’s law; 

 use Ampere’s law to calculate the magnetic field due to steady current 

distributions having simple geometries such as straight wire, solenoid 

and toroid;  

 obtain Ampere’s law in differential form; 

 define magnetic vector potential; and 

 derive an expression for the torque exerted by a magnetic field on a 

current loops. 
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13.2   AMPERE’S LAW 

While discussing electrostatics in Unit 5 (Block 2) of this course, we have used 

Coulomb’s law to calculate the electric field due to an arbitrary charge 

distribution. In Units 6 and 7 of Block 2, you have learnt how to use Gauss’s 

law to solve electric field problems of highly symmetric charge distributions 

with ease and elegance.  

The situation is similar in magnetism. In Unit 12, you have learnt how to 

calculate the magnetic field due to current distributions using Biot-Savart law. 

Now, the question is: Do we have a law for magnetism which is analogous to 

Gauss’s law for electrostatics that would help us calculate magnetic field with 

similar ease and elegance? You know that Gauss’s law for the electric field 

relates the amount of charge enclosed by a surface to the flux linked with it. Is 

there an analogous concept or law that would prove useful in determining the 

magnetic field due to a current? Yes, there is such a law called Ampere’s law. 

According to Ampere’s law, the line integral of magnetic field around any 

closed loop encircling a steady straight current is proportional to the 

current i encircled by that loop and is given by .0i  

Mathematically, Ampere’s law is given as 

  id 0 l.B


 (13.1) 

Ampere’s law is true for any type of current and any closed loop, as long as 

the encircled current is steady (never changing in time). If the current is not in 

a single wire, but in a number of wires, we simply add all the currents to obtain 

the net current encircled by the loop. If there are currents flowing in opposite 

directions, then we give the opposite signs to opposite directions of the 

current. The algebraic sum of currents encircled by the loop is the net current 

that determines the line integral of B


 around the loop. The loop we consider 

for calculating the line integral is called Amperian loop. 

Let us elaborate the meaning of line integral of B


 around a closed loop – the 

Amperian loop – and net current by considering a concrete example. Refer to 

Fig. 13.1 which depicts the cross-sections of three long straight wires that 

pierce the plane of the page at right angles. Suppose the wires carry currents 

21, ii  and .3i  The direction of current 1i  is into the page and that of 2i  and 3i  

is out of the page. The closed curve C is an arbitrary Amperian loop which 

encircles two of the currents 1i  and 2i  but it does not encircle the third current 

.3i   

Let us now calculate the scalar product l.B


d  and its integral along the 

counter clockwise direction along the Amperian loop. To do so, we divide the 

loop into numerous vector element .l


d  Each vector element l


d  is directed 

along the tangent to the loop in the direction of integration. Now, let us 

suppose that the net magnetic field B


 due to the three currents make an 

angle  with l


d  as shown in Fig. 13.1. So, we have .cos Bdld l.B


 Then, 

Eq. (13.1) can be written as 

Fig. 13.1: Amperian 

loop C, encircling two 

long straight wires but 

excludes a third wire. 

Note the directions of 

the currents. 
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  encirclediBdld 0cos   l.B


 (13.2) 

To determine the net encircled current, encircledi  for the given situation, we 

need to assign – a plus or a minus – to each of the currents 21, ii  and .3i  The 

currents are assigned sign using right hand rule: curl your right hand fingers 

around the Amperian loop with the fingers pointing in the direction of 

integration; a current in the direction of your thumb is assigned a plus sign and 

a current in opposite direction is assigned a minus sign. 

So, as per the above sign convention, we find from Fig. 13.1 that 1i  is to be 

assigned a minus sign and 2i  is to be assigned a plus sign. (We need not 

consider the current 3i  because it is not encircled by the Amperian loop we 

have considered.) So, the net current encircled by the Amperian loop in           

Fig. 13.1 is  

  12 iiiencircled   

So, Eq. (13.2) can be written as 

  )(cos 120 iiBdld   l.B


 (13.3) 

You may ask: Why have we not considered current 3i  on the RHS of               

Eq. (13.3) despite the fact that it contributes to the magnitude of B on the 

LHS? The contribution of 3i  to B cancels out because we take integration 

over the entire loop; for any given vector element l


d  over the loop, the 

contribution of 3i  to B is cancelled by an oppositely located vector element 

l


d  on the Amperian loop. 

To fix your understanding of Ampere’s law, answer an SAQ.  

SAQ  1 -  Ampere’s law and Amperian loop  

Apply Ampere’s law qualitatively to the three loops shown in Fig. 13.2. 

 

From the above discussion, you must have realised that Ampere’s law 

provides an easy method to determine B


 due to steady currents. We need to 

know the net encircled current by Amperian loop and calculate the line integral 

on the LHS of Eqs. (13.1) or (13.3). But, how to calculate the integral of .B


 Let 

us find out. 

In Unit 7, Block 2 of this course, you have learnt how to determine the electric 

field due to different types of charge distributions using Gauss’s law. However, 

we could use Gauss’s law only for certain symmetrical charge distributions by 

constructing suitable closed surfaces in the electric field. Ampere’s law plays 

the same role in magnetostatics as Gauss’s law plays in electrostatics. We 

can use Ampere’s law to determine magnetic field by choosing appropriate 

Amperian loop for steady current distributions. Let us learn it now. 

13.3   APPLICATIONS OF AMPERE’S LAW  

In the following discussion, you will learn how to apply Ampere’s law to 

determine magnetic fields due to symmetric current distributions. For this 

Fig. 13.2: Diagram 

for SAQ 1 
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purpose, as you will see, we have to construct suitable Amperian loops in the 

magnetic field over which the line integral  l.B


d [see Eq. (13.1)] is to be 

evaluated. We shall illustrate this with a few examples. 

13.3.1 Magnetic Field due to a Long Straight Wire 

Let us consider a long straight wire of radius R carrying current i as shown in 

Fig. 13.3. The steady current in the wire produces a magnetic field. You know 

that magnetic field lines are closed circles concentric with the wire as shown in 

Fig. 13.4. Further, as per the right hand rule, the direction of the magnetic field 

B


is counter-clockwise for the given direction of current i (Fig. 13.3) 

Now let us apply Ampere’s law to determine the magnitude of B


 at a distance 

r metres from the axis of the wire (r >> R). Here, we assume that r is much 

smaller in comparison with the length of the wire.  

To evaluate the line integral in Ampere’s law [Eq. 13.1)], we need to construct 

an Amperian loop. To do so, we note from Eq. (12.46) of Unit 12 that the 

magnetic field produced by an infinitely long current-carrying wire has same 

magnitude at all points which are at a distance r from the wire. This means 

that B


 has cylindrical symmetry about the wire. We can take advantage of the 

cylindrical symmetry by considering an Amperian loop in the form of a circle of 

radius r. This will ensure that the magnitude of B


 in the line integral of Eq. 

(13.1) is a constant and hence it can be taken out of the integral sign. 

We further note from Fig. 13.3 that B


 is tangent to the Amperian loop at every 

point. And, as we know, the vector element l


d  of the loop is also tangent to 

the Amperian loop. So, B


 and l


d  are either parallel or antiparallel to each 

other. If we assume B


 and l


d  to be parallel, as is the case in Fig. (13.3), then 

 = 0 and we have .cos BdlBdld l.B


 

In view of the above, we can write the LHS of Eq. (13.1) for a long, straight 

current-carrying wire as 

    rBdlBBdld 2.l.B


 

Thus, from Eq. (13.1), we can write 

  irB 02.   

 or  
r

i
B






2

0  (13.4) 

At this stage, you should pause for a moment and ask yourself: What is the 

advantage of using Ampere’s law for determining B


 due to a current carrying 

wire? We can do this using Biot-Savart law discussed in Unit 12. Well, the 

advantage of using Ampere’s law lies in the ease and elegance of determining 

.B


 You just need to choose an appropriate Amperian loop. This advantage 

will be further illustrated when we calculate B


 for a current-carrying solenoid 

in the next section. But, before that, you should go through an example. 

Fig. 13.4: Top view of 

the magnetic field lines 

of a long straight 

current-carrying wire. 

The direction of current 

flow is out of the page. 

Fig. 13.3: Magnetic field 

due to straight current-

carrying wire. 
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Now, answer the following SAQ. 

SAQ  2 -  Variation of magnetic field with distance from wire  

Plot magnetic field B as a function of distance from the axis of the wire (of 

radius R) to some distance outside it. 

 

In Unit 11, you have learnt that we can produce a uniform electric field 

between two closely spaced, charged conducting plates of a capacitor. You 

would like to know: Is there an analogous device that will produce a uniform 

magnetic field? Yes, the device is called solenoid. Let us now discuss how a 

solenoid produces a uniform magnetic field and calculate its value using 

Ampere’s law. 

 

 

 

A long cylindrical wire of radius R carries a steady current i which is 

uniformly distributed over its cross-sectional area. Determine the magnetic 
field at a distance )( Rr   from the axis of the wire. 

SOLUTION   We first notice that the point at a distance Rr  lies inside 

the wire (Fig. 13.5). However, even in this case, due to cylindrical 

symmetry of the magnetic field around the current-carrying wire, B


 has a 

constant magnitude at all points on a path which is a circle of radius r with 

its centre on the axis of the wire. And the direction of B


 at every point 

along this circle is along the tangent to the circle at that point.  

So, we choose the circle of radius r as the path of integration for the line 

integral in Ampere’s law [Eq. (13.1)]. Hence, we can write 

  rBd  2.l.B


 (i) 

Now, what is the magnitude of current passing through the cross-section of 

the wire enclosed by the Amperian loop – the path of integration? Note that 

the current enclosed by this path is not i, the current through the wire; 

rather, it is the part of the current which passes through the cross-section 

of area .2r It is so because r < R. Thus, we have 

    Current through the Amperian loop =  2r  

                                                             current per unit area of cross-section 

  
2

2

2
2

R

r
i

R

i
r 


  (ii) 

Using Eqs. (i) and (ii) in Eq. (13.1), we can write 

  
2

2

02
R

ir
rB    r

R

i
B

2

0

2


  (13.5) 

 

XAMPLE 13.1:  MAGNETIC FIELD DUE TO STRAIGHT 

WIRE  

 

Fig. 13.5: Diagram 

for Example 13.1. 

Note that it is the top 

view of a long, 

straight current-

carrying wire and the 

direction of the 

current flow is out of 

the page. 
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13.3.2 Magnetic Field due to a Solenoid 

You know that the direction of the magnetic field due to current flowing in a 

circular loop is given by the right hand rule (Fig. 13.6). Note that the magnetic 

field lines circle the wire. A solenoid can be thought of as a cylindrical 

stack of current-carrying loops.  

 

Fig. 13.7: A loosely wound coil of wire having four loops. The magnetic field 

arising from a current in the wire is strongest within the coil. The field 

is shown only in the plane of the page. 

Refer to Fig. 13.7 which shows a solenoid having four turns. Here the turns 

are loosely wound compared to the common solenoids. Now, you may ask: 

What is the direction of B


 due to current-carrying solenoid? Note that for any 

part of the wire, the magnetic field at nearby point encircles the wire. We show 

these field lines at the top and bottom of the coil, where the wires cross the 

plane of the page. But, as we move away from wire inside the coil, the fields 

from elements of wire at the top and bottom have a component to the right, 

and so they tend to reinforce each other. The net magnetic field anywhere 

is the vector sum of the fields of the individual parts of the loop.  

What about the direction of B


 outside the solenoid? Above the top of the coil, 

the fields arising from elements at the top all have a component to the left, 

while fields from elements at the bottom have a component to the right, 

thereby weakening the net field. A similar weakening of the field occurs below 

the bottom of the coil.  

Hence, within the solenoid the net field is strong and points to the right and it 

is weaker and points to the left outside the coil, as shown in the Fig. 13.7. 

Suppose the coil is tightly wound and its length is longer than its diameter, as 

shown in Fig. 13.8. In such situation, the field is still strong inside the coil of 

the solenoid, and as the individual turns get arbitrarily close, the irregularities 

in the field disappear, giving straight field lines inside the solenoid.  

What about the field lines outside the solenoid? The exterior field lines must 

connect the field lines emerging from the right of the solenoid to those going 

into the left because field lines cannot begin or end. The field lines close to the 

solenoid axis bend very gradually, and spread far from the solenoid before 

they return to the other end.  

Now, to calculate the magnitude of B


 inside a solenoid by applying Ampere’s 

law, we note that: (i) the magnetic field is directed lengthwise along the axis of 

Fig. 13.6: Magnetic 

field line due to 

current in a loop. 

Fig. 13.8: A longer 

central section of a 

long, more tightly 

wound solenoid. 
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a tightly wound, long solenoid i.e., the length of the solenoid is very large 

compared to its diameter; and (ii) if the solenoid is long, the field lines 

emerging from the end of the solenoid will fan out widely as they come back 

around to enter the other end. The second point above indicates that the 

magnetic field outside the solenoid is many times weaker than it is inside. 

Consequently, we approximate the situation and consider the field outside the 

solenoid to be negligibly small.  

 

Fig. 13.9: A long solenoid, showing a rectangular Amperian loop PQRS. 

Now, what shape of Amperian loop, the path of integration in the line integral 

of Eq. (13.1), will make the calculation of B easier? If we take a rectangular 

Amperian loop such that its sides are either parallel or perpendicular to the 

direction of ,B


 the calculation of line integral of B


 in Eq. (13.1) will become 

easier because, in such cases,  is either zero or 90. So, let us consider a 

closed regtangular path PQRS as Amperian loop (Fig. 13.9). For this path, we 

can write the line integral of Eq. (13.1) as 

   

P

S

S

R

R

Q

Q

P

ddddd l.Bl.Bl.Bl.Bl.B


 (13.6) 

The integrals over the segments QR and SP  are zero because for the parts 

of these paths outside the solenoid, 0B


and for the parts inside the 

solenoid, B


 is perpendicular to .l


d The integral over segment RS is zero as we 

have assumed that 0B


outsides the solenoid. Thus, the only integral in Eq. 

(13.6) that is different from zero is over segment .PQ  Hence, Eq. (13.6) 

reduces to 

   

Q

P

dd l.Bl.B


 

Now, as explained above, for this path, B


is constant and along the direction 

of the path. Thus,  

  BLddd

Q

P

Q

P

  lBl.Bl.B


 (13.7) 

where L is the length of the path PQ. If this path encloses N turns of wire of 

the solenoid each carrying a current i, then total current encircled by this path 

is Ni. Thus, for the right hand side of Ampere’s law [Eq. (13.1)] we write 

.0 Ni Thus, using Eq. (13.7), we can write Eq. (13.1) as 

  NiBL 0  



   

101  

 Unit 13                                            Ampere’s Law and Applications 

  ni
L

Ni
B 0

0 


  (13.8) 

where n is the number of the turns per unit length of the solenoid.  

Eq. (13.8), obtained for an infinitely long solenoid, holds quite well for actual 

solenoids, for points well inside the solenoid away from its ends. Note that B


 

does not depend upon the position of the point within the solenoid as long as 

we are far away from the ends of the solenoid. Therefore, we conclude that B


 

is uniform over the cross-section of the solenoid. This characteristic of a 

solenoid makes it a very useful electrical component to set up a known 

uniform magnetic field for experimental purposes.  

Before proceeding further, answer an SAQ. 

SAQ  3 -  Field due to solenoid  

How will the magnetic field inside a long solenoid vary if i) the number of turns 

per meter is doubled, ii) the current is doubled, iii) the length of the solenoid is 

doubled affecting the turns per meter, iv) length of the solenoid is doubled 

keeping the turns per meter constant, and v) the diameter of the solenoid is 

doubled. 

 

13.3.3 Magnetic Field inside a Toroid 

A toroid is a donut-shaped coil used as inductor in electronic circuits. If a 

solenoid is bent into the form of a circle so as to join its two ends, one obtains 

a toroid as shown in Fig. 13.10. To obtain an expression for the magnitude of 

B


 due to a toroid, we note from the symmetry of its structure that it gives rise 

to circular and concentric field lines of B


 inside the toroid with the centre of 

these fields lines coincident with the centre of the toroid. Also, the magnitude 

of field is constant along any field line.  

Now, let us consider an Amperian loop in the form of a circle of radius r that 

coincides with a field line (see Fig. 13.10). So, the line integral of Eq. (13.1) for 

this Amperian loop can be written as  

  rBd  2l.B


 

Note that the Amperian loop coincides with a field line and the magnitude of B


 

is constant at every point on the loop. As a result, the line integral of            

Eq. (13.1) is just the field strength times the circumference r2  of the loop. 

Now, you may ask: How much current is encircled by the loop? If the 

toroid consists of N turns, and carries a current i, then an Amperian loop 

inside the toroid coil encircles a total current .iN This is because each turn 

carries current in the same direction through the path (Amperian loop) we 

have chosen. Thus, substituting the value of the line integral for the Amperian 

loop and the total current encircled in Eq. (13.1) we get  

  NirB 02   

so that  

  
r

Ni
B






2

0  (13.9) 

Fig. 13.10: A toroid is 

solenoid bent into 

the form of a circle 

so as to join its two 

end. Also shown is 

an Amperian loop 

(dotted lines) for 

calculating the field. 
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Eq. (13.9) holds when the Amperian loop is within the toroid itself. If the 

Amperian loop is inside the inner edge of the toroidal coil, there is no current 

encircled, and the magnetic field is zero. On the other hand, if the Amperian 

loop is outside the outer edge of the coil, it encircles equal but opposite 

currents, again giving zero field. Also, from Eq. (13.9) we note that B


 is a 

function of r. Therefore, B


 is not constant over the cross-section of the toroid 

unlike the straight solenoid.  

To fix the ideas about toroid, solve a SAQ. 

SAQ  4 -  Magnetic field of a toroid  

A toroid has 6000 turns upon it and carries a current of 10 A. Calculate the 

value of magnetic field at a point within the toroid which is located at 20 cm 

from its centre.  

So, on the basis of the above discussion wherein we calculated B


 using 

Ampere’s law for different current configurations, you must have noted that 

calculation of B


 is lot more easier using Ampere’s law. This law for B


is 

somewhat similar to Gauss’s law which enables us to calculate E


due to 

symmetric charge distributions.  

However, Ampere’s law is not always useful. It is because for calculating 

,B


 it is necessary that the current distribution is symmetric so that B has a 

constant magnitude. The constant value of B


 enables us to take it out of the 

line integral  .l.B


d  So, the Ampere’s law is useful only for the following 

current distributions: infinite straight wire, infinite plane, infinite solenoid and 

toroids. For other types of current distributions, we have to use Biot-Savart 

law.  

Further, from Unit 8, you may recall that the concept of electric potential 

enables us to calculate E


 easily. So, the question you would like to ask is: 

Can we define magnetic potential which enables us to calculate ?B


The 

answer is, yes, we can. To do that, we first need to express Ampere’s law in 

differential form. Let us learn it now. 

13.4   DIFFERENTIAL FORM OF AMPERE’S LAW  

The integral form of Ampere’s law is [Eq. (13.1)] : 

  encircledid 0 l.B


 

To express Ampere’s law in differential form, we make use of Stokes theorem 

which you studied in Unit 3 (Block 1) of this course. According to Stokes’ 

theorem, the line integral of a vector field F


along a curve C is related to the 

surface integral of F


over a surface S bounded by curve C:  

   

C S

dd S.Fl.F


 curl  (13.10) 

where S


d is the area enclosed by the closed path. Now using Eq. (13.10) we 

can write Eq. (13.1) as: 
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    

C S

encircledo did S.Bl.B


  (13.11) 

Further, you may recall from Unit 12, that current i is related to current density 

J


 by Eq. (12.7):  

  

S

di S.J


  

We can therefore write Eq. (13.11) as 

  0 0  
SS

dd S.JS.B


 

or    

S

d 0. 0 SJB


 

Since S


d is non zero, the quantity within brackets in the above expression 

must be zero. Thus, we have 

  JB


0   (13.12) 

Eq. (13.12) is the differential form of Ampere’s law.  

At this stage, you should pause for a moment and think what inferences we 

can draw from the two vector relations involving magnetic field .B


 First is,    

div 0,B


 the mathematical expression of Gauss’s law for magnetism which 

you studied in Section 12.3 of Unit 12. We mentioned there that zero 

divergence of B


 physically means that magnetic monopoles do not exist. In 

this respect, B


 is different from electric field E


because 0.E

     

The second relation is curl 0B


[Eq. (13.12)]. The finite value of curl B


 again 

distinguishes B


 from E


 because curl E


 is zero. From Block 1, you may recall 

that the zero value of the curl of a vector field (such as )E


 implies that the 

vector field is a conservative field. Thus, we can say that curl 0B


 implies 

that B


 is a non-conservative field.  

Yet another consequence of these vector relations involving B


 leads us to the 

concept of magnetic vector potential. Let us learn it now. 

13.4.1 Magnetic Vector Potential 

In Unit 8, you have learnt that the conservative nature of E


 enabled us to 

define the concept of electric potential. To establish a relation between vector 

field E


 and electric potential, V – a scalar quantity – we used the vector 

identity: curl of gradient of a scalar field is zero. This enabled us to write 

. grad VE


 This relation between E


 and V is very useful in calculating E


 at 

a point if we know V at that point due to a given charge distribution. 

So, a logical question you may ask now is: Can we define a similar scalar 

potential for magnetic field so that calculation of B


 becomes easier? No, we 

can not define a scalar potential associated with B


 because, B


 is a not a 

conservative field. In other words, since curl 0,B


 we cannot express B


 as a 

gradient of some scalar function as in the case of .E

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However, the relation div 0B


 enables us to express B


 as curl of vector 

field, say A


 because of the vector identity: 

  0) .(  A


 

where A


is a vector field. Thus, we can write 

  AB


     (13.13) 

If we compare Eq. (13.13) with the relation V


E for electrostatic field, we 

find that we can associate a vector field ,A


 with magnetic field B


 as scalar 

potential V is associated with .E


 Thus, we call the vector field ,A


 the 

magnetic vector potential. 

Note that Eq. (13.13) is insufficient to define A


 uniquely. It is so because we 

can always add a gradient of a scalar function, say , to the vector A


 and       

Eq. (13.13) will still be satisfied because curl of the gradient of a scalar 

functions is zero. So, we must first define A


 uniquely. To do that, we obtain 

another condition to be satisfied by A


 by using Eq. (13.12): 

  JB


0   

Substitution Eq. (13.13) in the above relation, we get 

  JA


0 )(   (13.14) 

To proceed further, we use the vector identity 

  CCC


2).( )(   (13.15) 

So, using Eq. (13.15), we can write Eq. (13.14) as 

  JAA


0
2  )().(   (13.16) 

Now, the LHS of Eq. (13.16) contains two terms: one involving divergence of 

A


 and another term .2A


  Since the condition given by Eq. (13.13) involves 

curl ,A


 we are free to choose A


 in such a way that its divergence is zero. 

That is, out of the many choices for the function A


 which satisfy Eq. (13.13), 

we choose only those values of A


 which makes it solenoidal, i.e. 

  0 .  A


 (13.17) 

So, Eq. (13.17) gives another condition which the magnetic vector potential A


 

must satisfy along with the condition given by Eq. (13.13). Therefore, the 

Ampere’s law given by Eq. (13.12) can be written in terms of magnetic vector 

potential A


 by putting 0 . A


in Eq. (13.16): 

  JA


0
2    (13.18) 

Note that Eq. (13.18), being a vector equation, is actually three equations 

  x
xxx J

z

A

y

A

x

A
02

2

2

2

2

2















 (13.19a) 

  y
yyy

J
z

A

y

A

x

A
02

2

2

2

2

2















 (13.19b) 

  z
zzz J

z

A

y

A

x

A
02

2

2

2

2

2















 (13.19c) 

Each of Eq. (13.19) is similar to the relation between electric potential V and 

volume charge density : 
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0

2




 V  (13.20) 

Further, the electric potential at a point due to a volume charge is given as: 

   



 d

r
V

04

1
 

where d is the volume element and r is the distance between the volume 

charge and the point where we wish to calculate V. So, by analogy, we may 

write magnetic vector potential A


in terms of current density of a volume 

current distribution as  

   



 d

r

J
A




4

0  (13.21) 

The magnetic vector potentials for line and surface current distributions are 

given as 

  


 dl
r

L
A




4

0  (13.22) 

  


 dS
r

K
A




4

0  (13.23) 

where L


 and K


 are, respectively, current densities due to line and surface 

current distributions. Though magnetic vector potential enables us to calculate 

,B


 using Eq. (13.15), the calculation of A


 itself is not easy (as the calculation 

of electric potential) because it is a vector quantity. The convenience of 

calculating E


 using electric potential V, a scalar quantity, is not available for 

.B


 However, by defining a magnetic vector potential, we have somewhat 

established a symmetry between electric field and magnetic field.  

Now, let us summarise what you have learnt in this unit. 

13.5 SUMMARY 

Concept Description 

Ampere’s law                         

                     

 The line integral of magnetic field around a closed loop is equal to the 

current encircled: 

                        encircledid 0 l.B


       

Magnetic field due 

to long straight 

wire 

 The magnetic field due to a current carrying long straight wire is given as 

  )2/( 0 ri B


 

where r is the distance of the field point from the wire.    

Solenoid  

 

 A solenoid is a long cylindrical coil having many turns of wire. Inside the 

current carrying solenoid, there is a uniform magnetic field given by 

  niB 0  

where n is the number of turns per unit length. 

Toroid  The magnetic field inside a toroidal coil is given by 

  
r

Ni
B






2

0  

where r is the distance from the centre of the toroid and N is the total 

number of turns wound on the toroid. 
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13.6 TERMINAL QUESTIONS 

1. Five very long, straight, insulated wires are closely bound together to form 

a small cable. Currents carried by the wires are  A,201 i  A,62 i  

 A,123 i   A74 i and  A185 i (negative currents are opposite in 

direction to the positive). Calculate the magnitude of B


 at a distance of 10 

cm from the cable.  

2. Consider the surface bounded by the closed path shown in Fig. 13.11 with 

the value of i equal to 15 A. What is the net current passing through the 

surface? Calculate the value of the line integral of B


 for this closed path. 

3. A long, straight wire of diameter 4 mm carries a uniformly distributed 10 A 

current. At what distance from the axis of the wire the magnitude of B


 will 

be maximum? Justify your answer. 

4. A long, hollow conducting cylinder carries a current i which is uniformly 

distributed over the cross-section as shown in Fig. 13.12. Determine the 

value of magnetic field at at point a distance r from the axis of the cylinder 

for i) r  a,  ii) a < r  b, and iii) b  r. 

5. A long solenoid with 900 turns per meter has a 2.6 A current. i) What is the 

magnitude of the magnetic field at the centre of the solenoid? ii) If the 

length of the solenoid is 300 mm, how many turns of wire are on the 

solenoid? 

6. A toroid has 600 turns and a current of 200 mA is flowing in it. If the inner 

and outer diameters of the toroid is 80 mm and 95 mm respectively, 

calculate the maximum and minimum values of the magnetic field in the 

toroid. 

7. A 15 cm long solenoid having diameter 1.5 cm carrier a current 1.5 A and 

the value of the magnetic field at its centre is 0.04T. If the wire used to 

wind the solenoid has diameter 0.6 mm, determine the number of layers in 

the winding and total length of the wire used. 

13.7 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. The line integral l.B


 d in the Ampere’s law depends on the net current 

encircled by the Amperian loop. The Amperian loops 1 and 3 in Fig. 13.2 

Differential form 

of Ampere’s law 
 Differential form of ampere’s law is 

            JB


0  

 where J

 is the current density at a given point.  

Magnetic vector 

potential 
 In terms of magnetic vector potential ,A


 the magnetic field is given as 

   AB


  

because diverge of a curl is zero and divergence of B


 is equal to zero. 

 In terms of magnetic vector potential ,A


 Ampere’s law is written as 

         JA2


0  

Fig. 13.11: Diagram for 

TQ 2. 

Fig. 13.12: Diagram for 

TQ 4. 
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encircles current i. Thus, for these loops, .id 0l.B 


 And for the 

Amperian loop 2 in Fig. 13.2, 0 l.B


d because net current is zero. 

2. The variation of B with distance T from the axis of the wire is shown in  

Fig. 13.13. 

 

Fig. 13.13: Diagram for answer to SAQ 2. 

3. The magnetic field inside a solenoid is given by 

 niB 0  

We can answer all the questions on the basis of above relation: 

i) The field will be doubled because we have made n = 2n. 

ii) The field will be doubled because we have made i = 2i. 

iii) The field will be halved because we have made n = n/2. 

iv) The field remains unchanged because we have kept n unchanged. 

v) The field remains unchanged as it is independent of the diameter of 

the solenoid. 

4. The magnetic field within the toroid is given as 
r

ni
B






2

0   

We have, 17
0 mAT104m, 0.2cm 20 A,106000,  riN  

So,  T 06.0
m) 2.0(

A)10()6000()mA T102( 17







B   

Terminal Questions 

1. Let us consider an Amperian loop of radius 10 cm having centre at the 

axis of the cable comprising five current carrying wires. Then, the 

magnitude of magnetic field at a distance of 10 cm from the cable is given 

by 
r

i
B encircled






2

0  

 A37 A18 A7 A12 A6 A2054321  iiiiiiencircled  

So,  T107.4m) (0.1]/ A)37()mAT102[( 517  B  

2. Note from Fig. 13.11 that the current crosses the surface thrice; thus, the 

net current passing through the surface is i  = 15 A. The line integral of B


 

for this closed path is given by Ampere’s law as 

  A)15()mAT10(4 A)15( 17
0   encircledid 0l.B


 

                                                  Tm1088.1 5  

3. The magnitude of the magnetic field due to current carrying wire is given 

by Eq. (13.4): ).2/()( riB  0  

Thus, as the distance r from the axis increases, B decreases. However, 

from Sec. 13.3 (Example 13.1) you know that inside the wire, where 

distance r < R, the radius of the wire, B is given as 
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 )2/()( 2RirB  0  

This expression shows that inside the wire, B increases as r increases. 

And, the value of B reaches its maximum value when r = R. Thus, B is 

maximum at (4 mm/2) = 2mm. 

4. i) If we take an Amperian loop of radius a around the axis of the hollow 

 conducting cylinder, the current encircled by the loop is zero. So,        

 B = 0. 

 ii) For an Amperian loop having radius r > a and  b, the situation is 

similar to the one discussed in Example 13.2. So, you can show that 

the magnitude of B will be 

    )(2/)( 2222
0 abrariB   

iii) In this case, any Amperian loop having radius r  b will encircled the 

total current i. So, )2/()( riB  0  

5. i) The magnitude of B


at the centre of a solenoid is given by Eq. (13.8):

 .0niB   We have, i = 2.6 A and n = 900. So, 

 T102.9 A)(2.6)900()mAT104( 317
0

  niB  

ii) Since 1 m length has 900 turns, 300 mm will contain 270 turns. 

6. From Eq. (13.9), we know that the magnetic field due to a toroid is given 

as )2/()( 0 rNiB   where r is the radial distance from the axis of the 

toroid. We also know that the value of B is zero inside the inner edge as 

well as outside the outer edge of the toroid. Further, from the above (1/r) 

dependence of B, we note that the value of B will be maximum just inside 

the toroid for which r = 80 mm. And, B will be minimum just inside the 

outer edge for which r = 95 mm. So, 

 mT 0.3m]  A)]/[0.08(0.2)600()mAT102[()( 17
max  B  

 mT 0.25m] 5 A)]/[0.09(0.2)600()mAT102[()( 17
min  B  

7. The magnetic field due to a solenoid is given by Eq. (13.8): niB 0  

We have, A.5.1T, 0.04  iB  So, 

 417
0 101.2 A)](1.5)mAT104[(T)/0.04()/(  iBn  

So, the number of turns per meter is .102.1 4  

The length of the solenoid is 15 cm. So, it will contain 3103.15   turns. 

Since the length of the solenoid is 15 cm and diameter of the wire is         

0.6 mm, in one layer, there would be (0.15 m)/ 23 102.5m)10(0.6    

turns. So, number of layers is equal to layers. 12.6)10)/(2.510(3.15 23   

Further, the circumference of the solenoid is m 0075.014.322 r  

m. 0.047 So, in one turn, 0.047 m length of wire is used. So, total length 

of the wire used is approximately m. 148)10(3.15m) 0.047( 3   (Note 

that we have neglected the gradual increase in the circumference layer 

after layer). 
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14.6  Summary 
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In the previous two units, you have studied the effect of magnetic field in free space. In the 

present unit, you will learn what happens when a magnetic field is applied to a material 

media. The discussion on magnetic properties of materials in the present unit will be on the 

lines similar to our discussion on the behaviour of dielectrics in electric field (discussed in  

Unit 10). So, you should go through Unit 10 once again before studying this unit. Further, to 

explain the magnetic properties of materials, we have introduced many new concepts such as 

magnetic moment, magnetisation, magnetic intensity and magnetic susceptibility. So, you 

should focus on the physical significance of these concepts. Also, it will help you understand 

the contents of this unit better if you keep looking for analogy between the concepts we 

introduced in Unit 10 for discussing dielectrics in electric field and the concepts introduced in 

the present unit. However, you should be mindful of the differences as well as the similarities 

between the corresponding concepts. 

“Half of science is putting forth the right questions.”  

 

Francis 
Bacon 

Magnetic levitation or Maglev trains work 

on the principle of magnetic repulsion 

between the cars and the track, which 

depend on the materials used to create 

high magnetic fields. You will learn about 

magnetic materials in this unit. (Picture 

source: Wikimedia Commons) 
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14.1   INTRODUCTION 

In the previous two units, you have studied magnetic fields produced by 

steady currents. The steady currents or moving charges in conductors were 

considered to be placed in vacuum. Now, consider a situation where we keep 

a sample of material in a magnetic field. Does the sample have any effect on 

the magnetic field? Does the magnetic field cause some changes in the 

sample? Does the presence of material in magnetic field give rise to some 

new phenomenon? These are some of the questions which we discuss in this 

unit. 

In Unit 10 (Block 3) of this course, you have learnt how a dielectric material 

responds to an electric field. We characterised the behaviour of dielectrics in 

terms of electric dipoles, both natural and induced, present in these materials 

and their response to the electric field. The macroscopic properties of these 

materials were explained using the concept of polarisation vector, P


 defined 

as the electric dipole moment per unit volume. 

The investigation of magnetic properties of materials leads us to a similar kind 

of explanation. However, it is a bit complicated primarily because of the 

absence of magnetic monopoles. The magnetic dipoles in these materials are 

understood in terms of the so-called Amperian current loops. 

In this unit, we will try to understand, in a general way, the atomic origin of the 

magnetic properties of materials. Firstly, in Sec. 14.2, we give a brief 

description of how various substances respond to magnetic field. These 

experimental observations are then explained by the concepts we develop in 

the subsequent sections of the unit. In Sec. 14.3, you will learn the concept of 

magnetic dipole and how we visualise it in terms of atomic currents – currents 

due to motion of electrons in an atom. The response of such atomic magnetic 

dipoles to a magnetic field is understood in terms of the effect of magnetic 

field on a current loop. These discussions in Section 14.3 enable us to define 

magnetic moment, relate magnetic moment with the angular momentum of 

electrons in an atom and define magnetisation. The concept of magnetisation 

plays the same role in explaining magnetic properties of material as the 

concept of polarisation vector P


 for electrical properties of dielectrics.  

In Sec. 14.4, you will learn the concept of magnetic intensity. The relation 

between magnetic field B


and magnetic intensity H


is explained in Sec. 14.5. 

You will also learn about magnetic parameters such as magnetic 

susceptibility, magnetic permeability and relative permeability. These 

parameters are used for classification of magnetic materials into three broad 

categories, namely, diamagnetic, paramagnetic and ferromagnetic materials. 

In Sec. 14.6, you will learn the basic properties of these three types of 

magnetic materials. We will also discuss, qualitatively, the behaviour of 

ferromagnetic materials including the phenomenon of hysteresis. 

In this unit, we present a simple account of magnetism based on the notions 

of classical physics. But, you must keep in mind that it is not possible to 

understand the magnetic properties of materials from the point of view of 

classical physics. The magnetic effects are a completely quantum mechanical 
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phenomena. Only modern quantum physics is capable of giving a complete 

explanation of the magnetic properties of matter because the study requires 

the introduction and utilisation of quantum mechanical properties of atom. For 

a complete explanation, one must take recourse to quantum mechanics; 

however, a lot, though somewhat incomplete, information about magnetic 

properties of matter can be extracted by using a semi-classical approach 

which combines classical and some quantum concepts. 

With Unit 14, we end our study of magnetism. In the next block of this course, 

you will study about electromagnetism. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain how a current loop can be considered as a tiny magnet having 

magnetic dipole moment;  

 obtain an expression for torque on a magnetic dipole kept in a magnetic 

field; 

 relate magnetic dipole moment to the angular momentum of electrons in 

an atom; 

 explain the concept of magnetisation, magnetic susceptibility, 

permeability and relative permeability of materials; 

 establish a relation between magnetic field and magnetic intensity;  

 classify materials into diamagnetic, paramagnetic and ferromagnetic 

materials; and 

 describe the concept of domain and explain the hysteresis curve for 

ferromagnetic materials. 

14.2   RESPONSE OF VARIOUS SUBSTANCES TO 
MAGNETIC FIELD 

When we speak of magnetism in everyday conversation, we almost certainly 

have in mind an image of a bar magnet or a compass needle. You may have 

observed that a magnet can be used to lift nails, tacks, safety pins, and 

needles (Fig. 14.1a) while, on the other hand, you cannot use a magnet to 

pick up a piece of wood or paper (Fig. 14.1b). 

Materials such as nails, needles etc., which are influenced by a magnet, are 

called magnetic materials whereas other materials, like wood or paper, are 

called non-magnetic materials. However, this does not mean that there is no 

effect of magnetic field on non-magnetic materials. The difference between 

the behaviour of such (non-magnetic) materials and iron like magnetic 

materials is that the effect of magnetic field on the former is very weak.  

To see how the magnetic materials respond to a magnetic field, consider a 

strong electromagnet, which has one sharply pointed pole piece and one flat 

pole piece as shown in Fig. 14.2 

Fig. 14.1: a) Materials 

that are attracted to a 

magnet are called 

magnetic materials;  

b) materials that do not 

react to a magnet are 

called non-magnetic 

materials. 
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Fig. 14.2: A small piece of material hanging from a string kept in the strong field 

of an electromagnet; if the piece of material is a small cylinder of 

bismuth, it is weakly repelled by the sharp pole (pole S) and if it is 

aluminium, it is attracted towards the sharp pole.  

The geometry of the electromagnet is such that the magnetic field is much 

stronger in the region near the sharply pointed pole (pole S) whereas near the 

flat pole (pole N), the field is weaker. When current is passed through the 

electromagnet (i.e., when the magnet is turned on), the hanging piece of 

material is slightly displaced due to the magnetic field. If specimens of various 

materials are used in this experiment, it is observed that some materials get 

displaced in the direction of increasing field, i.e., towards the pointed pole. 

Such materials are called paramagnetic materials. Examples of such 

materials are aluminium and liquid oxygen. On the other hand, there are 

materials like bismuth, which are displaced in the direction of the decreasing 

field, i.e. these gets repelled from the pointed pole. Such materials are called 

diamagnetic. Finally, there is a small class of materials which experience a 

considerably stronger force  10( 3 to 510  times the force experienced by 

diamagnetic and paramagnetic materials) towards the pointed pole. Such 

substances are called ferromagnetic materials. Examples of such materials 

are iron and magnetite.  

The above experimental observations may prompt you to ask many questions: 

Why does a substance kept in a magnetic field experience a force? Why does 

the force act in a particular direction for some substances and in the opposite 

direction for other substances? Well, you will discover answer to these and 

such other questions as you study this unit and understand the mechanisms 

of paramagnetism, diamagnetism and ferromagnetism.  

In Unit 12 (Block 3) of this course you have already learnt that the source of 

magnetic field in free space is the electric charges in motion. In the classical 

picture of magnetism, this argument is extended to materials by assuming that 

the motion of electrons in atoms and molecules of materials give rise to tiny 

magnetic dipoles which interact with external magnetic field. The magnetic 

properties of materials arise from the magnetic moment of atomic electrons. It 

is this magnetic moment via which the atoms of a substance interact with the 

external magnetic field, and give rise to magnetic effects. Let us now discuss 

how a current loop can be treated like a tiny magnetic dipole, find out the 

value of its magnetic moment and see how magnetic moment is related to the 

angular momentum of the atom. 
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14.3   MAGNETIC MOMENT AND ANGULAR 
MOMENTUM OF AN ATOM  

In Unit 12, you have learnt that steady currents in a conducting loop produce 

magnetic field. Refer to Fig. 14.3 which depicts the magnetic field lines due to 

a current loop and a bar magnet. The similarity of the field lines due to current 

loop and a bar magnet is the basis to model current loops due to the motion of 

electrons in the atoms and molecules of substances as tiny magnetic dipoles. 

The interaction of these tiny magnetic dipoles with the external magnetic field 

is the basis of understanding of the magnetic properties of materials in 

classical physics. Therefore, in the following section we first examine the 

response of a current-carrying loop kept in a uniform magnetic field. 

14.3.1 Torque on a Current Loop in a Magnetic Field 

When a current loop is placed in a uniform magnetic field as shown in         

Fig. 14.4a, equal and opposite forces having the same line of action are 

exerted on it. Therefore, the net force on the current loop is zero.  But, you 

have studied in the course BPHCT-131 entitled Mechanics that these 

antiparallel forces can result in a torque on such a coil which can make it 

rotate. You can see this in Fig. 14.4b. 

 

Fig. 14.4: a) When a current-carrying coil is placed in a uniform magnetic field, 

equal and opposite forces are exerted on it; b) the torque due to these 

forces causes the loop to rotate about its axis.  

If you apply the right-hand rule to the wires of the loop shown in Fig. 14.4b, 

you will notice the following: the forces (not shown in the figure) on the upper 

and lower sides QR and PS, respectively, of the loop are parallel to the axis of 

rotation and are equal and opposite. Therefore, they cannot cause any 

rotation of the loop. However, the forces 1F


 and  2F


 that act on the sides PQ 

and RS, respectively, of the loop can indeed cause it to turn because their 

lines of action are not the same. The turning effect is zero when the coil is in 

the position shown in Fig. 14.4a and a torque exists for the position shown in 

Fig. 14.4b. Let us now find the expression for the torque. 

Consider the rectangular loop PQRS carrying current i and placed in a uniform 

magnetic field B


as shown in Fig. 14.5a. Let PQ = RS = l and QR = SP = b. 

The vertical sides PQ and RS of the loop are perpendicular to the magnetic 

field. Therefore, the magnitude of the forces 21 and FF


 on these sides is given 

by  

Fig. 14.3: Magnetic field 

lines due to a) a current 

loop; b) a bar magnet. 
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 BliFF  21  

Now, refer to Fig. 14.5b which depicts the loop when it is viewed from above. 

Note that the forces 21 and FF


 are equal, parallel and directed opposite to 

each other and hence they form a couple. A finite torque is exerted on the 

loop, causing it to rotate around an axis in its plane passing through midpoint 

of QR.  

 

Fig. 14.5: Torque on a current loop placed in a magnetic field: a) side view;       

b) top view. 

Suppose, at any instant, NN‟ – axis normal to the plane of the loop – makes 

an angle  with the magnetic field as shown in Fig. 14.5b. Then, at that instant 

the torque  on the loop due to forces 21 and FF


 is given by 

 )( 21 FFr


L   

  sinsin 21 FrFr


L  

Since ilB 21 FF


 and ),2/(br


 we can write 

 
















 sin

2
sin

2

b
ilB

b
ilBL


 

       )sin(  bilB  

But  Abl   (area of the loop) 

  siniABL


 (14.1) 

If instead of a single loop, we have a coil having N loops, then the net torque 

L


 is given by 

   sin)( BNiAL


 (14.2) 

The quantities in parentheses are grouped together because they are all 

properties of the coil viz., its number of turns, its area and the current it 

carries. Eq. (14.2) tells us that a current carrying coil placed in a magnetic field 

will tend to rotate. We can express the toque in vector notation in terms of 

area vector A


and magnetic field B


 as  

  BA


 Ni  (14.3) 

where .lbA


 Do you notice any similarity between Eq. (14.3) and Eq. (8.34) 

which gives the torque on an electric dipole kept in an electric field. Eq. (8.34) 

is 

You know from the 

course Mechanics 

(BPHCT-131) that torque 

is given by 

Fr


  

You have learnt about 

the area vector A


 in 

Example 1.1 of Unit 1 of 

the course BPHCT-131. 

By definition A


 is a 

vector such that its 

magnitude is the area of 

the loop. Its direction is 

perpendicular to the 

plane of the loop and its 

sense is given by the 

right-hand rule.  

You may recall from  

Unit 12 that the force 

exerted by magnetic field 

B


on a current-carrying 

wire of length l is given 

as 

 BlF


 i  

     sinlBi  

If l


and B


are 

perpendicular to each 

other, 2/  and we 

have 

 ilBF   
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  Ep


  

where p


 is the electric dipole moment and ,E


 the electric field. Comparison of 

the above expression with Eq. (14.3) suggests that a current loop in a 

magnetic field behaves analogously to an electric dipole in an electric field. 

The quantity NiA is called the magnetic dipole moment ,


of the current 

loop. Thus  

  A


Ni  (14.4) 

Magnetic dipole moment 


 is a vector quantity and for a current loop, its 

direction is along the direction of A


(Fig. 14.6). From Fig. 14.6, you can see 

that a current-carrying coil in a magnetic field behaves like a bar magnet. 

Using Eq. (14.4), the torque on a current loop can be written as  

  B


   (14.5) 

The torque tends to align the magnetic moment with the magnetic field.  

To check your understanding of the ideas discussed above, solve an SAQ. 

SAQ  1 -  Calculating torque on a current loop  

A circular loop of radius 5.0 cm consists of 10 turns of wire. A current of 3.0 A 

flows in the wire. What is the magnitude of the loop‟s magnetic moment?  

Suppose, initially the magnetic moment is aligned with a uniform magnetic 

field of 100 G. Now the loop is turned 90 from its original orientation. How 

much toque is required to hold the loop in its new orientation? 

 

Let us now discuss the relation between the magnetic moment and angular 

momentum of an atom. 

14.3.2 Electric Currents in Atoms 

Eq. (14.4) gives the magnetic moment of a current-carrying coil in terms of the 

parameters such as current, number of turns and area of the coil. But, to 

explain the magnetic properties of materials, we need to talk about magnetic 

dipoles arising due to atomic currents and define dipole moment in terms of  

 

Fig. 14.7: a) Classical model of an atom in which an electron moves with speed 

v in a circular orbit; b) the orbital angular momentum vector L


and the 

magnetic moment vector 


 both point in opposite directions.   

the angular momentum of electrons. According to the classical model of an 

atom, electrons in the atom move in a circular orbit around the nucleus under 

the influence of a central force, known as the electrostatic force, as shown in 

Fig. 14.7a. The electrons in circular motion constitute a localised current loop 

Electrons in an atom 

are in constant motion 

around the nucleus. To 

describe their motion, 

one needs quantum 

mechanics. However, 

in this unit we shall use 

only classical 

arguments to obtain 

our results. 

Fig. 14.6: a) Current- 

carrying coil; b) bar 

magnet in a horizontal 

magnetic field. 
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which contributes to the magnetic dipole moment of atom. Also, due to this 

circular motion, the electron will have an angular momentum L


about the 

position of the nucleus.  

The magnitude of the angular momentum of the electron moving in a circle of 

radius r is given by 

  )90 since(sin  mvrL prpr


 (14.6) 

where m is the mass of electron and v, its speed. Note that for circular motion, 

the angle between r


 and ,p


 momentum of electron, is 90. The direction of 

the orbital angular momentum vector L


is perpendicular to the plane of the 

orbit.  

The orbital motion of the electron constitutes an electric current. Since the 

charge e moves with speed v, it traverses a distance 2r in time (2r / v). So, 

the period of rotation ./2 vr  Therefore, the current due to the orbital motion 

of the electron is  

  
r

ev

t

e
i




2
  (14.7) 

The magnetic moment due to this current is the product of the current and the 

area of the circle in which electron moves, that is, .2ri   Hence, we have  

  
2

evr
  (14.8) 

Using Eq. (14.6) in Eq. (14.8) we get: 

  L
m

e

2
  

In vector notation, we write 

  L


m

e

2
  (14.9) 

The negative sign in Eq. (14.9) indicates that 


 and L


 are in opposite 

directions for the electron, as shown in Fig. 14.7b. Note that L


 is the orbital 

angular momentum of the electron. The ratio of the magnetic moment and 

the orbital angular momentum is called the gyro-magnetic ratio. It is 

independent of the velocity and the radius of the orbit.  

 

 

 

 

 

 

 

 

 

 

In the Bohr hydrogen atom, the orbital angular momentum of the electron 

is quantized in units of h, where 3410626.6 h Js is Planck‟s constant.  

Calculate the smallest allowed magnitude of the atomic dipole moment in 

.JT 1  (This quantity is known as Bohr magneton.) Mass of the electron is 

kg.10109.9 31  

SOLUTION   From Eq. (14.9),  L


m

e

2
  (i) 

XAMPLE 14.1:  ORBITAL MAGNETIC MOMENT  
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SAQ  2 -  Magnetic dipole moment 

What is the direction of the magnetic dipole moment of an electron relative to 

the direction of its orbital angular momentum ?L


 

 

On the basis of the above discussion, you now have a fairly good idea of the 

magnetic field, magnetic dipole and magnetic dipole moment associated with 

electrons moving in circular orbits in atoms and molecules. The atoms and 

molecules of materials interact with the external magnetic field due to their 

magnetic moments. In addition, there is another way in which atomic currents 

and hence magnetic moments are affected by the magnetic field. In this case 

the magnetic moment is induced by the external field. We shall discuss this 

further in a later section of this unit. 

In Unit 10, we discussed the macroscopic properties of dielectrics in an 

electric field in terms of the polarisation vector .P


 The origin of P


is in the 

dipole moments of the natural or induced electric dipoles in a dielectric 

material. We shall adopt a similar procedure in the study of magnetic materials 

by defining a quantity called magnetisation. Let us learn about it now. 

14.3.3 Magnetisation 

In the previous section, we restricted our discussion to isolated atoms or 

molecules and their magnetic dipole moment. But, a real macroscopic object 

comprises a large number of atoms or molecules. So, at the macroscopic 

level, we deal with quantities which involve averages over many atoms or 

molecules. Magnetisation, M, is one such quantity which is related to 

average dipole moment for many atoms or molecules. It is defined as 

magnetic moment per unit volume.  

According to the Bohr model of the hydrogen atom, the angular momentum 

of the orbital electrons is quantised; i.e., the angular momentum can have 

discrete values only. The quantised angular momentum of electron is given 

as 

  



2

nh
L  (ii) 

where h is Planck‟s constant and n is an integer. 

Therefore, the minimum allowed magnitude of dipole moment is given by 

putting 1n  in the expression for L and then using it in Eq. (i):  

  



















2

Js10626.6

)kg10109.9(2

10602.1

22

34

31

19

min
Ch

m

e



 

or     124
min kgCJs1027.9 


 124 JT1027.9     

Thus, the Bohr magneton is given by .JT1027.9
4

124 
m

eh
 The Bohr 

magneton is a convenient unit of magnetic moment at the atomic level. 
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In view of the similarity of definitions between polarisation vector P


and the 

magnetisation vector ,M


 you may be tempted to say that we should carry over 

all the equations in the study of dielectrics (Unit 10) to magnetic materials. 

One way of doing this would be to replace the electric field vector E


by ,B


and 

replace P


by .M


 Further, we replace the polarization charge density p by 

magnetic „charge‟ density m (though, there are no magnetic charges or 

mono-poles) and write mM.


   just as we had .pP.


  In fact, people 

did something like this, and they believed that magnetic charges or monopoles 

existed. They have built a whole theory of electromagnetism on this 

assumption. However, we know that magnetic „charges‟ or monopoles have 

not yet been detected in any experiment so far, despite a long search for 

them. So, this approach will not do. 

Now, we know the classical picture that the magnetisation of matter is due to 

circulating currents within the atoms of the materials. This was originally 

suggested by Ampere. And we call these circulating currents as „Amperian‟ 

current loops. These currents, obviously, do not involve large scale charge 

transport of electrons in the magnetic materials as in the case of conduction 

currents. These currents are also known as magnetisation currents, and we 

shall relate these currents to the magnetisation vector M


.  

Let us consider a volume element V in a material comprising a large number 

of atoms. Let k


be the magnetic moment of the kth atom in the volume 

element. Then, the total magnetic dipole moment for this volume is 


κ

k


where the vector sum is over all the atoms in the volume element.  

So, the magnetisation M


 is given as 

  
V

k

k








M  (14.10) 

From a macroscopic point of view, magnetisation M


 is an adequate 

parameter to describe the magnetic properties of matter. Now, the question is: 

Can we express the magnetisation M


 (an experimentally measurable 

quantity) in terms of magnetisation current (which is not measurable 

experimentally) in the specimen? The answer is, yes, we can. The magnetic 

field due to the magnetisation of the specimen can be represented by the 

magnetic field that would be produced by a certain distribution of atomic 

currents mJ


 in the specimen. The relation between this current density mJ


 

due to the atomic currents in the specimen and M


 is 

  MJ


 m  (14.11) 

Eq. (14.11) is general expression representing the relationship between the 

magnetisation of a material medium and the associated equivalent current 

represented by current density .mJ


 We see from Eq. (14.11) that inside a 

uniformly magnetised material, M


 = constant and hence .0mJ


 

However, inside a non-uniformly magnetised material, mJ


 is non-zero.  

So far we have been considering that magnetisation is due to current 

associated with atomic magnetic moments. Such currents are known as 
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bound currents or Amperian magnetisation current. The current density 

mJ


in Eq. (14.11) is the bound current set up within the material. However, it is 

not possible to measure mJ


experimentally. Thus, you may like to know 

whether we can find an expression which relates the conduction current 

density indicating the actual charge transport, which is experimentally 

measurable, and magnetisation. In other words, we are looking for an 

expression which relates the current density associated with the external or 

applied magnetic field and magnetisation. We can do that by introducing the 

concept of magnetic intensity which we discuss in the next section. 

14.4 MAGNETIC INTENSITY 

Suppose you have a piece of magnetised material. What field does this object 

produce? The answer is that the magnetic field produced by this object is just 

the magnetic field produced by the bound currents established in it. Suppose 

we wind a coil around this magnetised material and pass a certain current i 

through this coil. Then the magnetic field produced will be the sum of the 

magnetic field due to bound currents and the magnetic field due to current i. 

The current i is known as the free current. Free currents are ordinary 

conduction currents flowing through a macroscopic path (coil). These currents 

can be started and stopped with a switch and can be measured with an 

ammeter. (In case the magnetic material happens to be conductor, the free 

current will be the current flowing through the material itself.) Therefore, we 

can write the total current density J


in the material as  

  mf JJJ


  (14.12)  

where fJ


represents the free current density. Now let us use Ampere‟s law 

to calculate the magnetic field due to current density .J


 From Eq. (13.14), the 

differential form of Ampere‟s law is 

  JB


0μ  (14.13)  

Using Eq. (14.12) for ,J


 we can write Eq. (14.13) as 

  )(μ0 mf JJB


  (14.14)  

As mentioned earlier, we have no way of measuring mJ


 the current density 

due to bound currents  experimentally. But, we have a way of expressing it in 

terms of a measurable quantity, the magnetisation vector M


 through                

Eq. (14.11). Thus, we can write Eq. (14.14) as  

  )(μ 00 MJB


  f   

or  fJM
B 
















0μ
  (14.15)  

Eq. (14.15) is the differential equation for the vector field 









M

B 


0μ
 in terms of 

its source ,fJ


the free current density. This vector is given a new symbol ,H


 

i.e., 

  HM
B 



0μ

 (14.16) 

Remember that free 

currents are the 

currents caused by 

external voltage 

sources, while the 

internal or bound 

currents arise due to 

the motion of the 

electrons in the atoms. 
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The name magnetic intensity has been given to .H


Using Eq. (14.16),            

Eq. (14.15) becomes 

  fJH


  (14.17) 

In other words, H


is related to the free current in the way B


is related to 

the total current, bound plus free. This surely has made you think over the 

purpose of introducing the new vector field .H


For practical reasons, the field 

H


is very useful as it can be calculated from the knowledge of free current 

only, whereas B


is related to the total current which is not known. Eq. (14.17) 

can also be written in the integral form as  

    fid   l.H


 (14.18) 

where fi  is the conduction current through the surface bounded by the path of 

the line integral on the left. Here, the line integral of H


is around the closed 

path which may or may not pass through the material. This equation can be 

used to calculate ,H


even in the presence of the magnetic material. 

SAQ  3 -  Ampere’s law for H


 field  

Derive Eq. (14.18). 

 

In Sec. 14.3, we mentioned that Eq. (14.11) is not of much help if we want to 

determine magnetisation M


 because mJ


cannot be measured. Further, you 

have learnt that magnetic intensity H


can be measured easily because it 

depends only on the free currents. So, it will be desirable to have a relation 

between M


 and ,H


so that M


 can be determined for a material. You will learn 

it now. 

Magnetic Susceptibility and Relative Permeability 

It has been observed experimentally that for most magnetic materials, the 

relation between M


 and H


is linear, i.e. 

  HM


   

or   HM


m  (14.19) 

The quantity m  is called the magnetic susceptibility of material. The value 

of magnetic susceptibility for some magnetic materials is positive and for 

some, negative. Magnetic materials having negative value of m  are called 

diamagnetic and the materials for which m  is positive are called 

paramagnetic. There is a third category of magnetic materials, called 

ferromagnetic materials for which the value of m  is very, very large and the 

linear relation between M


 and H


[Eq. (14.19)] is only an approximation for 

them. Further, to obtain a relation between B


 and ,H


 we rewrite Eq. (14.16), 

as 

  )(0 MHB


   

Using Eq. (14.19), we can write the above relation as 

  HHHB


)1()( 00 mm    (14.20) 

The electrical engineers 

working with 

electromagnets, 

transformers, etc., call 

the unit of H


as ampere 

turns per metre. Since 

„turns‟, which is 

supposed to imply the 

number of turns in the 

coil carrying a current, is 

dimensionless, it need 

not confuse you. 
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The quantity )1( m  is defined as relative permeability .mK  So, in terms of 

,mK  Eq. (14.20) reduces to 

  HB


mK0   (14.21) 

The quantity )( 0 mK is called permeability,  of the medium. Thus, we have  

  HB


  (14.22) 

Also,  
0

0



 mm KK  (14.23) 

Note that  has the same dimensions as ,0  permeability of free space. Thus, 

mK  is a dimensionless quantity. In vacuum, 0m  and .0  

The magnetic properties of a material are completely specified if any one of 

the three parameters, magnetic susceptibility ,m  relative permeability mK  or 

permeability  is known.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that we have 

used the same symbol 

 for two different 

quantities, namely, 

magnetic dipole 

moment and 

permeability. You have 

to be careful about the 

context of their use. 

 

 

A toroid of aluminium having length 1.0 m, is closely wound by 100 turns of 

wire carrying a steady current of 1.0 A. The magnetic field B in the toroid is 

found to be .Wbm102567.1 24  Calculate the value of (i) ,H


(ii) mK  and 

(iii) .m   

SOLUTION   i) To calculate the magnitude of H


 in a toroid, we will use 

the integral form of Ampere‟s law for H


 field [Eq. (14.18)]: 

  fid   l.H


 (i) 

To evaluate H


 produced by the current, we consider a circular path of 

integration (Amperian loop) along the toroid. H


 is constant everywhere 

along this path of length 1.0 m. The total free current, fi  threading this 

path is equal to current in the wire multiplied by the number of turns; that is 

.A0.1100   Since H


is everywhere parallel to the circular path of 

integration, we have m.0.12   HrHd l.H


 Thus, we can write     

Eq. (i) as: 

 A0.1100m0.1 H    1mA100
m0.1

A0.1100 


H  

ii) From Eq. (14.21), we can write the magnitude of B


 as  

  HKB m0  

 or 0005.1
100

1

104

107.1256
7

7

0














H

B
Km  

iii) Further, the relative permeability mK  is defined as 

  410510005.11)1(  mmmm KK  

XAMPLE 14.2:  CALCULATING MAGNETIC PARAMETERS 
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Before proceeding further, you should answer an SAQ. 

SAQ  4 -  Calculating magnetic field B


 and magnetic intensity H


 

An air-core solenoid wound with 20 turns per centimetre carries a current of 

0.18 A. Calculate the values of magnetic field B


 and magnetic intensity H


 at 

the centre of the solenoid. If an iron core of permeability 13Hm106  is 

inserted in the solenoid, what will be the values of H


and ?B


 Take 

.Hm104μ 17
0

  

 

The magnetic parameters discussed in this section are generally determined 

using experimentally obtained B-H curve or M-H curve. Let us discuss the 

relation between B


 and H


 and how the B-H curve is obtained experimentally.  

14.4.1 Relation between B


and H


 

The relationship between M


 and H


or equivalently, a relationship between B


 

and H


depends on the nature of the magnetic material, and is usually obtained 

form experiment. In a typical experimental arrangement such as the 

magnetometer method to obtain M-H curve, the magnetisation M of a given 

specimen of magnetic material is calculated on the basis of the deflection in 

the magnetometer for different values of applied magnetic field (that is, 

magnetic intensity), H. You will do this experiment in the laboratory course 

BPHCL-134 entitled Electricity and Magnetism: Laboratory. 

In a typical experimental arrangement, such as the ring method to obtain B-H 

curve, the magnetic field B within the magnetised specimen is calculated for 

different values of magnetic intensity H. Refer to Fig. 14.8 which schematically 

depicts the experimental arrangement for the ring method. It comprises a 

toroid with a given magnetic material in its interior. Around the toroid, two coils 

– primary and secondary – are wound. If we consider the radius of the cross-

section of the toroidal windings to be small in comparison with the radius of 

the toroid itself, the magnetic field within the toroid can be considered to be 

approximately uniform. A current passing through the primary coil establishes 

.H


The current in the primary coil also induces an electromotive force (emf) in 

the secondary. By measuring the induced voltage in the secondary coil, we 

can determine changes in magnetic flux and hence, in B


 inside the magnetic 

material. If we take H


 as the independent variable, and if we keep the track of 

the change in B


 starting from ,0B  we can always determine the value of B


 

for a particular value of .H


In this way, we can obtain a B-H curve for different 

types of magnetic materials.  

The experiment described above can be carried out for diamagnetic and 

paramagnetic materials by commencing with 0i (that is, H = 0) and slowly 

increasing the value of i to obtain a series of values of H and B. A plot of B 

against H for these substances is shown in the Fig. 14.9. We see that the 

graph is a straight line as expected from Eq. (14.20):  

  HB m)1(0    

where 0 and m are constant. The slope of the graph gives )1( m  from 

which m can be determined using the following relation: 

Fig. 14.8: Arrangement 

for investigating the 

relation between B and 

H in a magnetic 

material. 

Fig. 14.9: Magnetic field, 

B versus magnetic 

intensity H for 

diamagnetic and 

paramagnetic materials; 

the relationship is 

linear. 
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  1
slope

0




m  

It is observed that, for diamagnetic materials, slope 0  so that .0m For 

paramagnetic materials slope 0μ  so that  .0m  

We shall discuss the B-H curve for a ferromagnetic material in the next 

section. 

So far, we have discussed the concepts of magnetic moment, magnetisation, 

magnetic intensity, magnetic susceptibility, magnetic permeability and relative 

permeability. The quantities were defined on the basic premise that the 

magnetic behaviour of materials is caused due to atomic currents giving rise 

to atomic magnetic moments. These parameters enable us to classify various 

magnetic materials into three types, namely, diamagnetic, paramagnetic and 

ferromagnetic materials. Let us now briefly discuss the characteristic 

properties of these magnetic materials. 

14.5 PROPERTIES OF MAGNETIC MATERIALS 

In the beginning of this unit, we described the response of various substances 

to a magnetic field (Sec. 14.2). On the basis of the response to the magnetic 

field, magnetic materials are classified into three categories, namely, 

diamagnetic, paramagnetic and ferromagnetic. This classification of magnetic 

materials is based on experimental observations. 

Let us now discuss some salient properties of these materials in terms of 

magnetic parameters explained in the previous sections. 

14.5.1 Diamagnetism 

In many materials, atoms have no permanent magnetic moment because the 

magnetic moments of atoms of these materials tend to cancel out. Such 

materials are called diamagnetic materials. 

If a diamagnetic material is placed in a magnetic field, an emf and current is 

induced in their atoms in accordance with Faraday‟s law of electromagnetic 

induction. (You will study Faraday‟s law in detail in Unit 15.) The direction of 

the induced current is such that it opposes the change in the existing 

magnetic field. Hence, in such materials, the magnetic moment due to the 

induced currents are directed opposite to that of the external magnetic field 

(Fig. 14.10). Such materials are repelled by the external magnetic fields and 

this effect is called diamagnetism. This effect is universal; i.e. every 

magnetic material exhibits diamagnetism. However, it is a very weak 

effect. 

The above qualitative description of diamagnetism is found to be true from 

experimental measurements. Refer to Fig. 14.9 which shows the B-H curves 

for diamagnetic (and paramagnetic) materials. The B-H curve shows that the 

magnetic field, B is directly proportional to magnetic intensity H which is in 

conformity with Eq. (14.16): 

  HB


)1(0 m   

Further, the value of the slope in the B-H curve for diamagnets is such that the 

value of susceptibility m for a diamagnetic material is a small negative 

Fig. 14.10: Alignment of 

magnetic moment in a 

diamagnet. 
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number; i.e. .0m Thus, it follows from the above equation that, for 

diamagnetic materials 

  HB 0   (14.24) 

Further, we know that the relative permeability, mK  is given as [Eq. 14.21)]:   

  )1( mmK   

and for diamagnetic materials, .0m  Thus, we find that the relative 

permeability mK  for diamagnetic materials is less than one. 

Lastly, as we mentioned above, diamagnetism is a universal effect; that is, it is 

a common property of all magnetic materials. However, it is a very weak effect 

and gets masked very easily in materials which are either paramagnetic or 

ferromagnetic.  

14.5.2 Paramagnetism 

In some materials, the atoms have permanent magnetic dipole moments. 

When such a material is placed in a magnetic field, the atomic magnetic 

dipoles tend to align along the direction of the magnetic field (Fig. 14.11). 

Thus, when such materials are placed in a magnetic field, they get attracted 

towards the magnet. Such materials are called paramagnetic materials. In 

paramagnetic materials, diamagnetism is also present, but owing to its weak 

nature, it gets masked. 

Note that diamagnetism involves a change in the magnitude of the magnetic 

moment of an atom whereas paramagnetism involves change in orientation of 

the magnetic moment of atom. 

You may note from the B-H curve (Fig. 14.9) of a paramagnetic substance 

that it conforms to the relation (Eq. 14.20): 

  HB


)1(0 m   

It is found that, for paramagnetic substances, the value of susceptibility m is 

a small positive number, i.e. .0m Thus, from Eq. (14.20), we find that 

  HB 0   (14.25) 

Eq. (14.25) indicates that the external magnetic field H produces 

magnetisation in its own direction. Further, we know that )1( mmK   and 

.0m Thus, we find that the relative permeability of paramagnetic materials 

is greater than one. 

14.5.3 Ferromagnetism 

Ferromagnetic materials are those materials, which respond very strongly to 

the presence of magnetic fields. This unique property of ferromagnetic 

material can be explained using the concept of domains (Fig. 14.12). Domains 

are small regions in ferromagnetic materials in each of which the atomic dipole 

moments are aligned (that is, the atomic dipole moments are parallel to each 

other). However, such an alignment does not occur over the entire material; it 

occurs over a domain. The alignment of atomic dipole moments of one 

Fig. 14.12: A domain. 

Fig. 14.11: Alignment 

of magnetic moment in 

a paramagnet. 
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domain may be different from that of others. The domain volumes are large 

compared to the atomic or molecular dimensions. Such alignment takes place 

even in the absence of an external magnetic field. You must be wondering 

about the nature of forces that causes the magnetic moments of various 

atoms in a domain to line up parallel to each other. This can be explained only 

by using quantum mechanical idea of “exchange forces”. We will not go into 

the details of exchange forces. You will study about this if you pursue higher 

studies in physics. 

In an unmagnetised ferromagnetic material, the magnetic moments of different 

domains are randomly oriented as shown in Fig. 14.13, and the net magnetic 

moment of the materials, as a whole, is zero. However, in the presence of an 

external magnetic field, the magnetic moments of the domains align in such a 

manner as to give a net magnetic moment to the material in the direction of 

the field. There are two mechanisms by which this happens. One 

mechanism is that the domains with the magnetic moment in the favoured 

direction increase in size at the expense of the other domains, as shown in 

Fig. 14.14a. In the other mechanism, the magnetic moment of the entire 

domain can rotate and tend to align along the direction of the applied field 

direction as shown in Fig. 14.14b. 

 

Fig. 14.14: Domain changes in a ferromagnetic material gives rise to a net 

magnetic moment. The domain changes occur through a) domain 

growth; b) domain realignment.  

Due to either of the two mechanisms mentioned above, a sample of 

ferromagnetic material gets magnetised. If, after this, the external magnetic 

field is reduced to zero, there still remains a considerable amount of 

magnetisation in the material. In other words, the material gets permanently 

magnetised.  

However, when a magnetised ferromagnetic sample is left to itself, the 

domains gradually tend to go back to unmagnetised state. The ferromagnetic 

materials are classified as soft and hard on the basis of the time required for 

their relaxation to unmagnetised state. In a soft ferromagnet, magnetisation 

reduces substantially as soon as the external field is removed. On the other 

hand, in a hard ferromagnet, such as many different types of steel and other 

alloys, magnetisation persists for years. 

Further, magnetisation is generally very large in a ferromagnet. That is, 

magnetisation is not proportional to the applied magnetic field. Also, 

magnetisation reaches a saturation value which happens when all magnetic 

domains have the same alignment. The variation of magnetisation of an 

unmagnetised ferromagnet is shown in Fig. 14.15. 

Fig. 14.13: The domains 

in an unmagnetised 

ferromagnetic material. 

The arrows show the 

alignment direction of 

the magnetic moment in 

each domain. 

Fig. 14.15: The 

magnetisation of an 

unmagnetised 

ferromagnetic material. 
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The behaviour of ferromagnetic materials, under the action of changing 

magnetic fields, is quite different from that of diamagnetic and paramagnetic 

materials. Ferromagnetic material exhibits the phenomenon of hysteresis 

(which literally means lagging behind). Let us now discuss it in some detail. 

B-H Curve for a Ferromagnet 

The experimentally obtained B-H curve for a ferromagnetic material is called 

hysteresis curve or loop. A typical B-H curve is shown in Fig. 14.16. The 

hysteresis curve contains many important information about the characteristic 

parameters of the ferromagnetic material. To know about them, let us first 

describe different segments of the curve. 

 

Fig. 14.16: B-H curve for a ferromagnetic material. 

i) Suppose that initially, the specimen of the ferromagnetic material is 

unmagnetised and there is no current in the solenoid/toroid used in the 

experiment to obtain its B-H curve. That is, at ,0i 0H and B is zero. 

When i is increased, B and H are determined for increasing values of i. At 

first, B increases with H along the curve a (see Fig. 14.16). The curve a is 

the initial magnetisation curve. At some high value of H, the curve „a‟ 

reaches a plateau, indicating that M ceases to increase, as the material 

has reached saturation with all the domain dipole moments in the same 

direction.  

ii) If, after reaching saturation, we decrease the current in the coil to bring H 

back to zero, the B-H curve falls along the curve b. When H reaches zero, 

there is still some B left implying that even when i = 0, there is still some 

magnetisation M left in the specimen. The material is permanently 

magnetised. This value of B for H = 0 is called remanence. 

iii) If the direction of current is reversed and its value is increased the B-H 

curve runs along the curve b until B becomes zero at a certain value of H. 

This value of H is called the coercive force. If we continue to increase the 

value of the current in the negative direction, the curve continues along 

path b until saturation is reached again.  

iv) The current is now decreased until it becomes zero once again (curve c in 

the Fig. 14.16). This corresponds to H = 0, but B is not zero and has 

magnetisation in the opposite direction. Here we reverse the current again, 

so that the current in the coil is once more along the positive direction. 
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With the increasing current in this direction, the curve continues along the 

curve c to meet the curves b and a at saturation.  

If we alternate the current between large positive and negative values, the B-H 

curve goes back and forth along curves b and c in a cycle. This curve is called 

hysteresis curve. It shows that B is not a single valued function of H, but 

depends on the previous treatment of the material.  

The shape of the hysteresis loop varies very widely from one substance to 

another. Substances like steel, alnico, etc. from which permanent magnets are 

made, have a very wide hysteresis loop with a large value of coercive force 

(see Fig. 14.17b). However, substances like soft iron from which 

electromagnets (temporary magnets) are made, should have large remanance 

but very small coercive force. These ferromagnetic materials, used in the 

cores of transformers, such as iron-silicon (0.8-4.8%) alloys, have very narrow 

hysteresis loop (see Fig. 14.17a).  

Now, let us summarise what you have learnt in this unit. 

14.6 SUMMARY  

Concept Description 

Types of magnetic 

materials  

 

 

 All materials are magnetic and respond to the presence of a magnetic 

field. Materials can be classified into mainly three groups: diamagnetic, 

paramagnetic and ferromagnetic. Diamagnetism is displayed by those 

materials in which the atoms have no permanent magnetic dipoles. 

Paramagnetism and ferromagnetism occurs in those materials in 

which the atoms have permanent magnetic dipoles.  

Magnetic dipole  A closed current loop in a magnetic field behaves like a magnetic 

dipole and its magnetic dipole moment is given as 

 A


Ni  

where N is the number of turns in the loop, i is the current in the loop 

and A


 is a vector perpendicular to the plane of the loop with magnitude 

equal to the loop area. 

The torque experienced by such a current loop is given as 

 B


   

Magnetic moment and 

angular momentum of 

electron 

 Magnetic dipoles in magnetic materials are due to the motion of 

electrons in atoms or molecules. 

Change in the magnitude of the magnetic moment of atoms is 

responsible for diamagnetism whereas change in the orientation of the 

magnetic moment accounts for paramagnetism. 

Fig. 14.17: The 

hysteresis curves for 

specimen of a) soft iron; 

b) steel materials. 
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The magnetic moment due to motion of electron in a circular orbit 

around the nucleus in an atom is given as  

 L


m

e

2
  

where  L


 is the orbital angular momentum of the electron. 

The ratio of the magnetic dipole moment to the angular momentum is 

called the gyromagnetic ratio. 

Magnetisation  Magnetisation ,M


 of a magnetic material is related to the average 

dipole moment for many atoms or molecules. It is defined as magnetic 

moment per unit volume: 

 
V

k

κ








M  

where k


 is the magnetic moment of the kth atom and V is the volume 

element containing k atoms. 

Magnetisation and 

current density 

 For non-uniform magnetisation, magnetised matter is equivalent to a 

current distribution ,MJ


m  where M


 is magnetisation and mJ


 is 

the current density due to bound currents. 

Magnetic intensity  The magnetic field produced by the magnetised material is obtained by 

Ampere‟s law as follows: 

 mf JJB


  

where fJ


 is the free current density which flows through the material 

and mJ


 is the bound current density which is associated with 

magnetisation. This gives 

 fJM
B 
















0

  

where M
B

H






0

 is called magnetic intensity.  

Magnetic susceptibility  Magnetisation of a material is proportional to the magnetic intensity or 

magnetic field due to free currents: 

 HMHM


m  or          

where m  is called magnetic susceptibility of the material.  

Relative permeability  Relative permeability, mK  is defined as 

 )1( mmK   

In terms of ,mK  magnetic field is expressed as 
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14.7 TERMINAL QUESTIONS 

1. A uniformly charged disc having charge q and radius r is rotating with 

constant angular velocity of magnitude . Show that its magnetic dipole 

moment has magnitude ).(
4

1 2rq  

2. The magnetic moment per atom for cobalt and iron are 223Am106.1   

and 223Am101.2  , respectively. Assume that there are 29101  atoms 

per cubic volume, and calculate the saturation magnetisation that can 

exist in these materials. 

3. Calculate the magnitudes of magnetic intensity H


 and the magnetic field 

B


at a) a point 105 mm from a long straight wire carrying a current of 15 A 

and b) the centre of a 2000-turn solenoid which is 0.24 m long and carries 

a current of .)m H104(  A.6.1 17
0

  

4. A toroid of mean circumference 0.50 m has 500 turns, each carrying a 

current of 0.15 A. a) Calculate the value of H


 and B


if the toroid has an 

air core. b) Calculate the value of B


and the magnetisation M


 if the core 

is filled with iron of relative permeability 5000. 

5. A toroid with 1500 turns is wound on an iron ring whose cross-section 

area is ,mm 360 2  mean circumference is 0.75 m and relative permeability 

is 1500. If the windings carry 0.24 A current, calculate the value of a) the 

magnetic intensity H


and b) the magnetic field .B


  

14.8 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. The magnetic dipole moment  due a current loop is given by Eq. (14.4): 

 22 m A24.0m) (0.050 A)0.3()10(  NiA  

The magnitude of the torque needed to hold the loop in its new orientation 

can be calculated by using Eq. (14.5): 

 HB


mK0  

The quantity mK0 is called permeability  of the material. 

B-H curve  For paramagnetic and diamagnetic materials, B or M and H are linearly 

related to each other. However, the B-H curve of ferromagnetic 

materials exhibit hysteresis, a non-linear behaviour. 

The remanence of a ferromagnetic material is the residual 

magnetisation in the sample of the material when the applied magnetic 

field has been reduced to zero. 

The coercive force for a ferromagnetic material is the value of the 

applied magnetic field which will demagnetise the sample of the 

material. 
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 m.N104.2)(sin90T) (0.010) Am24.0(sin 32   B  

2. The direction of the magnetic dipole moment of electron is opposite to the 

direction of its orbital angular momentum. 

3. From Eq. (14.17), we have 

   fJH


  

 We can write it as 

    

S S

f dd SJSH


..)(  (i) 

 From Stoke‟s theorem, we can write the LHS of Eq. (i) as 

    

S C

dd l.HSH


.)(  (ii) 

 Also, from Eq. (12.7) of Unit 12, we can write the RHS of Eq. (i) as 

   f

S

f id  SJ


.  (iii) 

 So, substituting Eqs. (ii) and (iii) in Eq. (i), we get 

   f

C

id  l.H


 

4. You know that, for a solenoid, the magnitude of magnetic field B is given 

as 

   niB 0  

 Since, for free space, ,0HB   we can write  

  niH   

 where n is turns per meter. So,  

  11  Am360 A)18.0()m 2000(   niH  

The magnetic field B is given by 

 mT 45.0)m A360()mH104( 117
0   HB  

If an iron core of absolute permeability 13Hm106  is inserted in the 

solenoid, then H remains unchanged i.e., 

 1Am360 H  

and T16.2) Am360()Hm106( 113  HB  

Terminal Questions 

1. The surface charge density of the disc is )./( 2rq   The disc can be 

thought of as made up of a number of rings. Let us consider a ring of 

radius R and width .dR  The charge within this ring is given by 
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 )(
2

)2(
22

RdR
r

q
RdR

r

q
dq 


  

The current carried by this ring is its charge divided by the rotation period: 

 )(
)/2( 2

RdR
r

qdq
di







  

Thus, the magnetic moment contributed by this ring has magnitude 

 adid   

where a is the area of the ring. Therefore, 

 )( 3
2

2 dRR
r

q
diRd


  

Taking into account all the rings (radius varying from 0 to r), we get the 

magnitude of the magnetic moment as follows: 

  





 

rR

R

dRR
r

q
d

0

3
2

)(  

     

r
R

r

q

0

4

2 4








 24

2 4

1

4

1
rqr

r

q



  

2. The magnetisation is defined as magnetic moment per unit volume. So, 

maximum or saturation magnetisation for any material is equal to the 

magnetic moment per atom of the material multiplied by number of atoms 

per cubic meter. For cobalt, therefore, we have 

 329223 m101Am106.1)(  saturationM 16Am106.1   

For iron, we have 

 329223 m101Am101.2)(  saturationM 16Am101.2   

3. a) 1

0

0

0

 Am7.22
m) (0.105)(2

 A15

2

1

2



















r

i

r

iB
H  

                          13) Unit see   ,
2

( 0

r

i
B




  

 T 57.28
0.10510

)15()2(
7





B  

b) 14Am101.3 A6.1
m 24.0

2000  niH  

 T1067.1Am103.1
10

4 214
70

 


 HB  

4. For a toroid ,niH   and we use .)()10/4( 7 HHKB m   Thus, 

a) 1 Am150 A15.0
m 5.0

turns500 







H    
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 mT 188.0) Am150()Hm104( 117  B  

b) T 0.94mT) 188.0(5000 B  

 Using MHB  )/( 0 we can write 

  M
 

150
104

94.0
7

    15  Am105.7 M  

5. a) 1 Am480 A)24.0(
m 75.0

1500  niH  

b) T 90.0)480()1500(
10

4

10

4
77








HK

B m  
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