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Dielectric material is used in a transformer
(shown above) to withstand high voltages
present within it as it is an insulator, and
dissipate heat generated in the
transformer windings. You will learn about
dielectrics in this unit. (Picture source: Wikimedia

Commons)
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In this unit, you will study the effect of electric field on a dielectric (or insulator). Before
studying this unit, you should refresh your knowledge about electrical conductors and
insulators from your school physics. Dielectric materials are characterised by the fact that
there are no free charges in them to move around under the influence of electric field. To
understand the mathematical treatment given in this unit, you should revise vector analysis
given in Block 1 of this course. Also, we advise you that you should work out the mathematical
derivations while you are studying this unit. Passive reading of the mathematical derivations
will not be of much help. We also advise you to try to solve SAQs and TQs yourself. This will
help you understand and be more familiar with mathematical derivations involving vector

calculus.

“Science is a way of thinking much more than it is a body of Carl Sagan

knowledge.”




Block 3

Electrostatics in Medium and Magnetism

10.1 INTRODUCTION

In Block 2, you have studied electrostatics in free space. You have learnt the
concepts of electrostatic force, electric field, electric potential and
electrostatic energy when charges are placed in vacuum. However, in real
life, we mostly have situations in which electric phenomena take place in
matter. Matter, as you know, can be in any form: solid, liquid or gas. Different
kinds of matter behave differently in the electric field. From school physics,
you know that on the basis of their electrical properties, we can broadly
classify most materials around us into two categories: conductors and
insulators. Insulators are also called dielectrics. In this unit, you will study
how dielectric materials behave in the presence of electric fields and learn
how Gauss’s law is modified in a dielectric medium.

You may like to know: Why do we need to study about macroscopic
properties of dielectrics? This is what we shall explain in the beginning of
this unit when we introduce dielectrics (Sec. 10.2). In Sec. 10.3, we shall use
a simple model of dielectric materials to explain what happens when a
dielectric is placed in an external electric field. You will learn that this
results in the phenomenon of polarisation of dielectrics. We shall define
electric polarisation P and introduce the displacement vector D to determine
the electric field in a dielectric material. In Sec. 10.4, we shall obtain the
electric field due to a polarised object and explain its physical meaning.
Finally, in Sec. 10.5, we shall deduce the electrostatic equations or Gauss’s
law in a dielectric medium in terms of D.

In Unit 11, you will study about capacitors in detail, wherein dielectric
materials find major applications.

Expected Learning Outcomes

After studying this unit, you should be able to:

+ explain the behaviour of dielectrics in an electric field;

+ define electric polarisation and explain the mechanism of polarisation in
polar and non-polar dielectrics;

+ define displacement vector D and deduce Gauss’s law in a dielectric
medium;

% relate D to the electric field E; and

« define dielectric constant.

10.2 DIELECTRICS

Dielectrics (or insulators) are an important class of materials used in a variety
of applications such as in electrical insulation, capacitors, radio frequency
transmission lines, printed circuit boards, etc. The study of dielectrics helps us
understand how a proper dielectric is chosen for a capacitor, as well as many
optical phenomena such as reflection, refraction and double refraction in
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quartz or calcite crystals. Natural rubber, cotton, wood are some examples of
good electrical insulators. Paper, mica, glass and a large number of plastics
are good dielectrics which are used in capacitors. You may have studied in
your school physics that dielectrics are used in capacitors to increase their
capacitance manifold. Why does this happen? Since the physics of
capacitors is well known to you from School, we would like to explain why you
need to learn about dielectrics by answering this question.

In fact, this effect was demonstrated in 1837 by Faraday. Faraday repeated
independently the experiments performed by Cavendish in about 1770. He
showed that when a slab of dielectric material (such as glass or mica) was
introduced between a central ball and a concentric brass shell of a spherical

Fig. 10.1: Spherical
capacitors used by

capacitor (see Fig. 10.1), its capacitance increased manifold (by a factor Faraday. Faraday showed
called the dielectric constant). The value of this factor is 1 for vacuum and  that when dielectric
greater than 1 for various dielectrics. The dielectric constants for a few material was placed

between the central brass
ball and a concentric

The dielectric constant is one of the important macroscopic electrical brass shell, the
capacitance of the

properties of a dielectric material and its value varies widely for different spherical capacitor
dielectrics. For example, for water, it is 80.4 and for different types of glass, it increased manifold. The
is around 6. So the capacitance increases according to the dielectric being factor by which it

used in it. The choice of a dielectric in a capacitor depends on the application Increased was different
for which it is to be designed. You will learn more about this aspect of I8l diTTERgIRFTectris

. : . materials. (Source:
ESpaRiors In SRS Collectionsonline.nmsi.ac.uk)

materials are given in Table 10.1.

For now, we are interested in knowing: How do we explain the increase in
the capacitance of a capacitor when a dielectric is placed between two

Table 10.1: Dielectric
conductors?

constants of some

: . ! ., common materials.
To understand this phenomenon, let us consider a parallel plate capacitor with

some free charge Q on its conducting plates (Fig. 10.2). Let us assume a Material | Dielectric
negative charge on the upper plate and a positive charge on the lower plate. If constant
A is the area of the plates and d the distance between them, you know from Air 1.0006
school physics that the capacitance of the capacitor is given by: Mica 5_9
A Glass | 45-7.00
C =¢y— (10.2)
d Paper 2-23
; ; ; ; . Water 80.4
and a charge Q on the plates results in a potential difference given by:
Q
V = = 10.2
s (10.2)

Now it is an experimental fact that if we put a dielectric slab between the
plates, we find that the capacitance increases. How is that possible?

From Eg. (10.2), you can see that an increase in capacitance means that the
potential difference between the plates decreases. How does this happen?
We can try and understand this using the concepts you have studied in
Block 2.



Block 3

Electrostatics in Medium and Magnetism

10

000000
000000
000000

Fig. 10.3: Model of a
dielectric made up of
atoms. The charges
in the dielectric are
not free to move
around; they are
bound to the atoms.
The + sign depicts
the positive nucleus
and the grey sphere
represents the
negatively charged
electron cloud.

Free charges < Conductor

WffﬁWﬁfWMﬁWﬁ

A
1 SI

+ |+ + + +1 o+ + + | T+

d _ ~ Lodlocooooo |
lE Induced [charges . .
% Dlelectrlc

A A A

\

Wﬁ%ﬁ%ﬂ{f/ A

Free charges Conductor

Fig. 10.2: A parallel plate capacitor with a dielectric material inserted between its
plates.

Study Fig. 10.2. Consider a Gaussian surface S (a rectangular box lying
partially inside the dielectric material and partially inside the conducting plate)

as shown in the figure. Recall from Unit 6 that Gauss’s law tells us that the
electric flux out of the surface is related to the enclosed charge Qen :

fEas = Jen

€0
Since the capacitance of the capacitor is found to increase, from Eq. (10.2)
this means that the potential difference or the voltage between the plates is
decreased. You know that potential difference or voltage is proportional to
the electric field. Therefore, when capacitance increases, the electric field
must decrease. From Gauss’s law, this, in turn, implies that the charge should
decrease. This can happen only if (somehow) a positive charge has
appeared on the upper surface of the dielectric. This positive charge, of
course, has to be smaller than the negative charge placed on the plate of the
capacitor.

Thus, we can explain the increase in capacitance due to a dielectric material
only if we can understand: How is a positive charge induced on one surface of
a dielectric material and a negative charge on the other surface when it is
placed in an electric field? This requires an understanding of the behaviour of
dielectric materials in an electric field, which we now discuss. In doing so, we
arrive at an understanding of polarisation of dielectrics in electric fields.

10.3 DIELECTRIC MATERIALS IN ELECTRIC
FIELDS: POLARISATION

From school physics, you know very well the behaviour of conductors which
have free electrons to conduct electricity. In Block 2, you have learnt that the
electric field inside a conductor is zero and the total charge of a conductor
resides on its surface. The electric field due to this charge is normal to the
surface of a conductor. Also the surface of a conductor is an equipotential
surface.

What can you say about dielectric materials? We use the following simple
model for describing dielectric materials that you may have learnt in school
(see Fig. 10.3):
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o Like all matter, dielectrics are made up of a large number of atoms and
molecules.

e Every atom consists of positively charged nucleus and negatively charged
electron cloud distributed around it.

e The total positive charge is equal to the total negative charge so that the
atom/molecule is electrically neutral.

e |n contrast to conductors, the charges attached to atoms and molecules
are not free to move around in dielectric materials: at most they can move
within the atom/molecule. The charges are bound in the atoms and
molecules of a dielectric.

e A molecule may be made of atoms of similar kind or of a different kind.

We will now understand the behaviour of dielectrics in electric fields with the
help of this model. Let us ask: What happens when we put a dielectric
material in an external electric field?

Since the dielectric is made up of atoms and molecules as described above, to
answer this question, we need to first understand: What happens to a neutral
atom or molecule of the dielectric when it is placed in an external electric
field? Your first reaction could be that nothing would happen since the atoms

and molecules are charge neutral. But this is not correct. The behaviour of a
dielectric in an electric field depends on whether it is made up of neutral
atoms/non-polar molecules or polar molecules.

Broadly there are two types of dielectrics: non-polar dielectrics made up of
neutral atoms or non-polar molecules and polar dielectrics made up of
polar molecules. You will learn about non-polar and polar molecules in the
next two sections.

There are two mechanisms by which an external electric field affects the
charge distribution in a dielectric:

1. By inducing dipoles in neutral atoms or non-polar molecules in a non-
polar dielectric.

2. By aligning the permanent dipoles of the polar molecules in a polar
dielectric.

We now explain both these mechanisms.

10.3.1 Induced Dipoles in Neutral Atoms and Non-polar
Molecules

Let us first ask: When a dielectric is placed in an electric field E, what
happens to a neutral atom in it? You may think that nothing will happen
because the atom is electrically neutral. But this is not true. To find out what
happens, let us consider the following crude model of an atom (Fig. 10.4a):

Positive nucleus

@

(b)

Fig. 10.4: a) An atom with
a positively charged
nucleus and a cloud of
negatively charged
electrons such that the
centres of the positive
and negative charge
coincide; b) In the
presence of an electric
field, the centres of
positive and negative
charge in the atom no
longer coincide. These
are separated and an
induced dipole appears.
The figure, of course, is
not to scale and has
been magnified by many
orders of magnitude.

11
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o the positive nucleus is present at the centre of the atom,

e the negatively charged electrons are distributed in a spherical cloud about
the centre,

¢ the centre of positive charges and the centre of negative charges coincide,
and

o the atom is electrically neutral and also has no electric dipole moment.

Now when the neutral atom is placed in an external electric field, the two
regions of positive and negative charges within the atom are influenced by the
electric field: the positive nucleus is displaced in the direction of the field and
the negatively charged electrons in the atom are displaced in the opposite
direction. But the positive and negative charges also attract each other, and
the atom is held together. If the electric field is very large, it ionizes the atom.

If the external electric field is not very large, equilibrium is soon established.
The two opposing forces, one due to the external electric field pushing the
positive nucleus and the electron cloud apart, and the other due to their
mutual electrostatic attraction pulling them closer, reach a balance. When this
happens, the centre of positive charge is shifted slightly in one direction and
the centre of negative charge is shifted in the opposite direction. This results in
a small separation of the centres of positive and negative charges and
an induced dipole appears (Fig. 10.4b). Note that the electron cloud is
distorted by the external electric field.

Thus, a dipole moment is induced in the neutral atom in the presence of an
external electric field E. The dipole moment is in the same direction as the
electric field. Let us determine the expression of the induced dipole moment.
Suppose d is the distance between the centres of positive and negative
charges in the atom. Then the dipole moment of the atom is given by:

p=qdi=qd (10.3)

where A is a unit vector in the direction of d and points in the same direction
as E. Typically, the displacement d is proportional to the external electric
field unless the fields are very large. (In that case, it could even result in the
ionization of the atom.) Since d « E (as long as E is not too large) and

5=qa, the induced dipole moment is proportional to the electric field:

pcE and p=aE (10.4)

The constant of proportionality a is called the atomic polarisability and its
unitis C2mN™L. Its value depends on the structure of the atom. Let us take

up an example to estimate the atomic polarisability of an atom using
Eq. (10.4).
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fxﬂmm 10.1: ATOMIC POLARISABILITY

Consider an atom of radius a in the presence of an external electric field E
(Fig. 10.5). Calculate the separation between the positive nucleus and the
centre of the negatively charged electron cloud and its dipole moment.
Calculate its atomic polarisability and estimate its value for the hydrogen
atom of radius ag ~10719m. Take the value of E to be 106vm-L.

SOLUTION B You have learnt that in the presence of an external electric
field, the positive nucleus is pulled opposite to the centre of negative
charge. For keeping the calculation simple, we assume that at
equilibrium, the negative charge cloud keeps its spherical shape and is
merely displaced by an amount b with respect to the positive nucleus (see
Fig. 10.5b). At equilibrium, the force on the nucleus due to the external
electric field E is balanced by the attractive force due to the negative
charge cloud. You know from Unit 5 that the force on the nucleus due to
the external electric field is +q E, where g is the charge on the nucleus.

Now, let us calculate the value of the electric field E¢ due to electron cloud

at the new location of the nucleus. To do so, recall from Unit 6 that the
electric field due to a uniformly charged non-conducting sphere at an
internal point is given as:

1 b

E =
e 4reg as

where b is the distance between the centre of the electron cloud and the
nucleus, g is the magnitude of the total charge of the electron cloud and a
is the radius of the uniformly charged spherical electron cloud.

Thus, at equilibrium, we can write the magnitude of the external electric
field as

EZEe
or E= 1 %
4meg as
3
or bzw
q

From Eq. (10.3), the dipole moment p =gb = 4ngpa3E.

Therefore, from Eq. (10.4), the atomic polarisability is given by:

@ P e

4mepa
E 0

For the hydrogen atom, a =ag ~10-10m. Let us estimate the atomic
polarisability of the hydrogen atom based on this crude model. It is:

a=41x8.85x10-12 x10-30C2mN-1 =1.11x1040C2mN-1

Positive nucleus
(@

(b)

Fig. 10.5: a) A neutral
atom of radius a; b) A
dipole is induced in
the atom in the
presence of an
electric field. We
assume that at
equilibrium, the
electron cloud is
spherical in shape.

13
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The separation b in the presence of a modest electric field
E =106 Vm-lis

_4nx8.85 x10-12 x10-30 x 106
1.6x10-19

b M= 6.9x10-15m

Although this atomic model is very crude, the estimated value of the atomic
polarisability given by Eq. (10.4) based on this model is not too bad. It is
accurate to within a factor of four for simple atoms. Compare the value of a
obtained from this crude model with its experimental value for the

o

hydrogen atom. In units of 10739 m3, the experimental value of for

4meg
the hydrogen atom is 0.667.

So far we have seen how an electric dipole moment is induced in a neutral
atom in the presence of an external electric field. What happens in the case of
a molecule? Is the situation the same or different? Let us find out.

In one type of molecules called non-polar molecules, the centres of positive
and negative charges always coincide. Such molecules have zero dipole
moment in the absence of external electric fields. The dielectrics made up of
such molecules are called non-polar dielectrics. Some examples of non-
polar molecules are air, hydrogen, oxygen (Fig. 10.6), benzene, carbon
tetrachloride, etc.

Model of an oxygen
molecule

Centres of positive charges and
negative charges coincide

Fig. 10.6: In an oxygen molecule, the centres of positive and negative
charges coincide and it has zero dipole moment in the absence of
an external electric field.

So the non-polar molecules do not possess any permanent dipole moment
(their dipole moment is zero in the absence of an external electric field).
Hence, you can immediately say that their behaviour in the presence of an
external electric field should be the same as that of a neutral atom.

Thus, when a neutral atom or non-polar molecule is placed in an external
electric field, it acquires (by induction) a tiny dipole moment in the direction of
the electric field.

10.3.2 Alignment of Polar Molecules in Electric Fields

Some molecules are so made that the centres of positive and negative
charges do not coincide. Such molecules, e.g., water and glass, are
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electrically neutral but have electric dipole moments even in the absence of
external electric fields and are called polar molecules. We say that polar
molecules have permanent dipole moments. Dielectrics made up of such
molecules are called polar dielectrics.

For example, study the simple structure of the hydrogen chloride (HCI) @
molecule shown in Fig. 10.7. It is a diatomic molecule made up of dissimilar
atoms. Originally, the H and Cl atoms are spherical. When the HCI molecule is /ﬁ

formed from these atoms, the electron of the H atom shifts partially over to the

Cl structure, leaving the positive hydrogen nucleus behind. Thus, there is an

excess of negative charge at the chlorine end and an excess of positive Fig. 10.7: The hydrogen
charge at the hydrogen end of the molecule. This separation of the centres of chloride molecule in

positive and negative charge gives rise to a permanent dipole moment in the ~ which the positive and
HCI molecule. negative charge
centres do not

You have just learnt that polar molecules have permanent electric dipoles. If  coincide and the

these molecules are placed in an external electric field, the force F, on the moleculehas a
permanent electric

positive charge will exactly cancel the force F_on the negative charge. dipole moment.
But notice from Fig. 10.8 that these forces form a couple. Therefore, each
electric dipole would experience a torque that will tend to align it along the

electric field.

F

F

Fig. 10.8: A polar molecule experiences atorque arising due to forces on the
separated positive and negative charges in the presence of external
electric field. Due to this torque, the molecule tends to orient itself in
the direction of the field.

In Secs. 10.3.1 and 10.3.2, you have learnt how neutral atoms/non-polar
molecules and polar molecules behave when they are placed in an external
electric field. We can now answer the question: What happens when a
dielectric material is placed in an external electric field?

10.3.3 Polarisation of Dielectrics and Polarisation
Vector P

You have learnt that there are two types of dielectrics, non-polar dielectrics
made up of neutral atoms/non-polar molecules and polar dielectrics made up
of polar molecules. So, we need to actually understand: How do the polar
and non-polar dielectrics behave in the presence of an external electric
field? On the basis of what you have learnt in Secs. 10.3.1 and 10.3.2, we can

summarise the answer as follows: -
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1. Non-polar dielectrics: When a non-polar dielectric, which is made up of
neutral atoms or non-polar molecules is placed in an external electric field,
the atoms/non-polar molecules of the dielectric acquire (by induction) a tiny
dipole moment in the direction of the electric field.

2. Polar dielectrics: When a polar dielectric, which is made up of polar
molecules (having permanent dipole moments) is placed in an external
electric field, the permanent dipole moments of the polar molecules
experience a torque tending to align them in the direction of the electric
field.

Thus, both mechanisms (induction of dipoles in neutral atoms/non-polar
molecules and alignment of permanent dipoles in polar molecules) produce
atomic/molecular dipoles in the dielectric pointing along the direction of
the field. We say that the dielectric material is polarised. The dielectric as a
whole remains electrically neutral and inside the dielectric slab there is no
excess charge in any volume element.

However, the atoms/molecules are constantly in random thermal motion and
collide with each other. Therefore, alignment of the electric dipoles is not
complete and increases as the electric field is increased or the temperature
decreases. The random motion of the molecules tends to destroy the
alignment of the dipoles at higher temperature, and particularly when the
electric field is removed. Thus, to sum up, qualitatively we can say that

l Recap I

In a homogeneous
dielectric, its properties
e.g., permittivity and
susceptibility, are the
same at all points in
the dielectric, i.e., they
do not vary with
position. In an isotropic
dielectric, its properties
are the same in all
directions.

The polarisation of a dielectric due to an applied external field results from

e The induction of dipole moments due to relative displacement of the
centres of negative and positive charges in neutral atoms/non-polar
molecules in a non polar dielectric

or

e The alignment of permanent dipoles (in polar molecules) in polar
dielectric material.

We now give a quantitative definition of the polarisation of a dielectric. Let us
consider a homogeneous and isotropic dielectric slab. This means that
the properties of the dielectric are the same at all points and in all
directions. Let the dielectric slab be placed in an external electric field E.

The external electric field could be applied by any means, e.g., due to
charges on the plates of a parallel plate capacitor as shown in Fig. 10.9a. If
the dielectric material is made up of neutral atoms/non-polar molecules, a
dipole moment will be induced in each atom or molecule of the dielectric.
If the dielectric material is made up of polar molecules, each permanent
dipole would experience a torque tending to align it along the electric
field. You have learnt in Secs. 10.3.1 and 10.3.2 that the direction of the
dipole moments in either case will be the same as that of the electric field.



Unit 10 Macroscopic Properties of Dielectrics
—_ ﬁ +
D ——
“E g
—_—
- +

Eo
(@) (b)

ERER00
JLELLRL
Dbl

0

o
Y 99

Fig. 10.9: a) In a dielectric slab placed in an external electric field Eo,the

centres of positive and negative charges are separated and it gets
polarised; b) the separation of charges produces surface charges on

the slab faces, which set up afield E'opposite to Eg. This is an

idealised picture. In reality, the atoms/molecules in the dielectric are
in random motion.

The separation of the centres of positive and negative charges produces
surface charges on the faces of the dielectric slab as shown in Fig. 10.9b. The
surface charges on the dielectric faces produce an electric field, say E’ in the
direction opposite to the external electric field. The resultant electric field E
inside the dielectric is given by the vector sum of the electric fields E, and

E' Itis in the same direction as E, but smaller in magnitude.

To describe this phenomenon mathematically, we define the polarisation P
as the total dipole moment per unit volume:

P = Dipole moment per unit volume

Defined in this manner, polarisation is simply the mean dipole moment
averaged over a large volume that contains a very large number of
atoms/molecules. It is thus an average macroscopic property of the
dielectric, which is a large scale manifestation of the electric dipole moments
of the atoms and molecules the dielectric is made up of. If there are N
polarised molecules per unit volume in the dielectric, we have

P =Np (10.5)

For an ideal, homogeneous and isotropic dielectric, polarisation Pis
proportional to the electric field E in the dielectric and we can write

P o E or P=y¢E (10.6)

The constant of proportionality x in Eq. (10.6) is called the electric
susceptibility. The constant g; appears in Eq. (10.6) so that y is
dimensionless. Dielectric materials that satisfy Eq. (10.6) are called linear
dielectrics.

Eq. (10.6) is found to be experimentally true for many substances, provided
that the electric field is not too strong. Eq. (10.6) tells us that the susceptibility
of a dielectric provides a measure of the extent to which it can be polarised
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when it is kept in an external electric field. The susceptibility y of a dielectric
depends on the microscopic structure of the material and also on external
factors such as temperature. Note that in Eq. (10.6), E is the net electric field
in the dielectric. It is due to both free charges and the polarisation of the
dielectric. So if we put a dielectric material in an external electric field
Eo, we cannot calculate P directly from Eq. (10.6).

This is because the external electric field will polarise the material; the
resulting polarisation will produce its own electric field. This contributes to the
net electric field, which gets modified. The modified electric field again
modifies polarisation and this process continues. Thus, in reality, the
phenomenon of polarisation of a dielectric is far more complex and we shall
not go into the details here. For the time being, we are interested in knowing:
What field does a polarised dielectric itself produce? This is what you will
learn in the next section. But you may like to work out a simple SAQ before
studying further.

SAQ 1 - unit of polarisation vector

Determine the unit of P.

10.4 ELECTRIC FIELD OF A POLARISED
OBJECT

Consider a polarised dielectric object, which contains a large number of
atomic/molecular dipoles aligned in the direction of the applied electric field.
Let the dipole moment per unit volume of this material be given by P. We now
ask: What is the electric field produced by this object at a given point?
Remember that from Unit 5 we know the electric field of an individual dipole at
a given point.

So to find the answer, we divide the material into a large number of such
infinitesimal dipoles and integrate their electric fields to get the net electric field
of the object. This is a standard method in physics about which you have
studied in Block 1 of this course. And you may know that the problem is easier
to solve for the electric potential since it is a scalar. Then we can obtain the
electric field from its expression.

So we consider a small volume element dt of this material which has a dipole
moment Pdrt. We first calculate the electric potential due to this dipole
element at the given point. The total electric potential is then obtained by

integrating over the entire material. You know from Unit 8 that for a single
dipole p, the electric potential produced at a point r from the dipole is given

by:

[Eny
=
el

(10.7)

AN
a
™
o
-
N
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Study Fig. 10.10. It shows a volume element dt’of the dielectric material. It is
situated at r’(x’,y’,z")and has dipole moment Pdt’. The electric potential dV

due to this volume element at the point P (x, y, z) is given by:

v Lt Pf_ 1 POy 5 By (10.8)
dneg r? 4neg 1P
where rn=r—r (10.9)
z
A
av B N\r-r-s
r-r'=r P(xy.2)
F/
r
>y
X Fig. 10.10: Calculating the electric field due to a dielectric.

Integrating over the entire volume T of the material, we get the total electric

potential as

V()= [P g (10.10)
4 - =2
TE0 I - T
T

Now, you can show that
%’(ij _ (10.11)

n) r?

where V'is evaluated at (x,y',Z") . In fact, you can do this calculation and
arrive at Eq. (10.11) yourself. Solve SAQ 2 before studying further.

SAQ 2 - Electric potential of a polarized dielectric

Derive Eqg. (10.11).

Using Eq. (10.11) in Eq. (10.10), we can write

V(= 1 j ﬁﬁ'(ij dr’ (10.12)
TEQ T r

We now make use of the following vector identity in Eq. (10.12):
V.(fA)=f V.A+AV'f

where fand A are scalar and vector fields, respectively. We substitute

t = L and A=P in the vector identity. Then we get
n
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From Units 8 and 9, you
know that the electric
potential due to a point
charge q at a distance r
from it is

1 g

V (F) =

47'580 r

and the electric potential
of a distribution of
charges is

ol

V(r) =
( ) 47'[80 I‘i

For a continuous
distribution of charges:

1 J' dq
47 80 r
For a charge distribution

having volume charge
density p(r):

V() =

ny I LF’) ,
V(r)_4n80J.r i

For a surface charge
distribution having
surface charge density

o(r):

das’

v - L J-G(F')

dreg r

20

ﬁ.v[lj: {vf} _ 1§ B
r 1 r

Substituting this result in Eq. (10.12), we can write the expression for the
electric potential as

vo_1t J’[%’.E]dr'—ji(ﬁ'.ﬁ)dr'

=4TCS r r
O’C 1 Tl

(10.13)

We now apply the divergence theorem to the first term in Eq. (10.13) and
rewrite the expression of the potential. Thus we get

ve_t §lpasg-—t (L5 pyar
4TESOTI’1

B 4reg S rn

(10.14)

The first term in Eq. (10.14) is equivalent to the electric potential produced by
a surface charge density oy, (see the last equation in the margin remark) if

we define o, as

(10.15)

op =P.A

where n is the unit vector normal to the surface. The second term in
Eq. (10.14) is equivalent to the electric potential produced by a volume
charge density p, (see the equation in the margin remark) if we define py,

as
pp =—V.P (10.16)
With these definitions, we can write Eq. (10.14) as
v-_1 {5 4g +ij&bdf (10.17)
4reg 5 r 4reg T r

Thus, the electric potential and hence the electric field of a polarised
object is the same as that produced by a volume charge density
Pp = —V. P and asurface charge density op = P.n of bound charges in

the dielectric. So we do not need to calculate the contributions of all
infinitesimal dipoles in a polarised object to solve Eq. (10.10). Instead, we can
determine the bound charges and then calculate the electric fields they
produce. This is the same as calculating the electric field of any volume or
surface charge density using Gauss’s law. You may now like to understand
the physical meaning of these bound charge densities in a polarised dielectric.

10.4.1 Physical Interpretation of Bound Charge
Density

So far you have learnt that the electric field of a polarised object is the same
as that produced by a certain distribution of “bound charges” having densities
op and pp. But we had just defined these quantities to recast the integral of
Eqg. (10.12) in a certain form without explaining the physical basis for these
bound charge densities. This is what we do now. We will now demonstrate
that the bound electric charge densities o, and py represent actual

accumulation of charge.
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Let us first consider surface charge density oy, . Let N be the number of
molecules per unit volume in the dielectric. In the presence of an external
electric field E, the centres of positive and negative charges are separated

by a distance d. Let us assume for simplicity that the centres of negative
charges remain fixed and the centres of positive charges move to produce a
dipole moment p per molecule. Now consider an element of surface area

dA in the dielectric (Fig. 10.11). In the presence of an external electric field
E, the centres of positive charges would cross the element of surface area
dA by moving in the direction of E.

wer o o

Fig. 10.11: dA is along the normal to the shaded surface. The circles represent
positive and negative charges in the molecule, which are separated
by a distance d in the direction of the electric field.

The number of centres of positive charges that will cross the element of
surface area dA will be the number of molecules contained in a
parallelepiped of volume

dv =dA.d (10.18)
Therefore, the charge in the volume dV is
dQ =NgdV =Nqd.dA =Np.dA =P.dA =P.A dA (10.19)

where p =qd is the dipole moment, P = Np is the polarisation and n is the

unit vector normal to the surface. From Fig. 10.11, you can see that if dAis
an element of area on the surface of the dielectric, the charge dQ will
accumulate there in a layer of thickness d.n. Since d is of the order of
molecular size, we can consider the charge to be present on the surface of
the dielectric. Therefore, the surface charge density, i.e., surface charge per
unit area, is given by
dQ - .
op=—=P.n 10.20
b="A ( )

The effect of polarisation is, therefore, to give rise to a bound charge
over the surface of the material.

Next, consider the case when the polarisation is non-uniform, that is, it is
different at different points in the dielectric. This means that the dielectric is

21
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not a linear dielectric. It is anisotropic (polarisation is not the same in all
directions) and non-homogeneous (polarisation varies with position).

In this case we get an accumulation of bound charge within the material
along with the bound charge on its surface. Let us calculate the bound
charge density in this case. Since polarisation is non-uniform, a net charge Q
flows out of the volume dV of the parallelepiped through the element of

surface areadA . We can obtain its value by integrating dQ given by
Eqg. (10.19) over the entire surface:

Q = j P.dA (10.21)

The net bound charge that remains inside a given volume is equal and
opposite to the charge that flows out of it. Therefore,

—Q = _fﬁ_d;\ (10.22a)
S

As you know, we can express this net bound charge in terms of the bound
volume charge density as follows:

Q = [ppdv = - fPdA=[ppav (10.22b)
\Y S \Y,

You know from Gauss’s divergence theorem (Unit 4) that

P.dA = |V.PdV (10.23)
-

Substituting Eq. (10.22b) in Eqg. (10.23), we get

V.PdV =—|ppdV (10.24)
Vv V

Since this result is true for all volume elements, we have
pp =—V.P (10.25)

Eqg. (10.25) tells us that if the polarisation of the dielectric is non-uniform,
its divergence results in the net pile-up of bound charges in the
material. The volume charge density is associated with this bound charge.
(The volume charge density is zero for isotropic dielectrics since V. P =0 for
them.) These are perfectly real charge densities which we have called here
(surface and volume) bound or polarisation charge density. You may now
like to calculate these charge densities for a concrete situation.

SAQ 3 - calculating bound charge densities

a) A dielectric block is polarised such that
P =25x10"7 (2xi + ] + k) Cm—2. Calculate the bound volume charge
density for the block.

b) Consider a polarised rectangular block of a dielectric (Fig. 10.12) whose
polarisation P = 2.0x10-6k Cm—2. Calculate the bound surface charge

density on the six faces of the block.
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Fig. 10.12: Diagram for SAQ 3b.

We now discuss how Gauss’s law is modified inside a dielectric.

10.5 ELECTROSTATIC EQUATIONS IN

DIELECTRICS: DISPLACEMENT VECTOR D
AND GAUSS’S LAW

You have studied the fundamental equation of electrostatics, namely,
Gauss’s law in Unit 6. Recall from Unit 6 that the differential form of Gauss’s
law is given by:

V.E=F (10.26)
€0
Here p is the volume charge density of all electric charges and E is the total
electric field of all these charges. For modifying Gauss'’s law for dielectric
materials, we find that it is convenient to separate the electric field of
Eqg. (10.26) into two parts:

1. one that results from the bound polarisation charge density (py), and

2. the other that is due to everything else (which, for want of a better term,
we call free charge).

The free charge is any other charge in the material that is not the result of
polarisation; it could be due to electrons on a conductor or ions embedded in

a dielectric material or due to any other factor. Let us not at the moment worry

about the source of the free charge. Then we can express the total volume

charge density p within the dielectric as the sum of bound polarisation
charge density p,, and the free charge density p; :

P= P+ Pp (10.27a)

EqQ. (10.26) or Gauss’s law then becomes

GE-Prteb _pt=VP oGP (10.27b)
€0 €0
or V. (E + ij =Pt (10.28a)
€0 €0
or V.(eoE +P)=ps (10.28b)

We define a new vector D called the electric displacement as follows:
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D=gogE+P (10.29)

Substituting Eq. (10.29) in Eq. (10.28b), we get Gauss’s law for a dielectric
medium in terms of D

VD = pg (10.30a)

In the integral form, Gauss’s law for a dielectric medium is given by:

J.Bdé = (Qf )enclosed (10.30b)

where (Qf )enclosed IS the total free charge in the volume. This is a very useful

way of expressing Gauss’s law for dielectric materials as it refers to only free
charges enclosed in the volume. So we can calculate D by the standard
methods using Gauss'’s law for charge distributions having some kind of
symmetry (linear, planar, spherical or cylindrical). The equation for curl of

E remains unchanged:

VxE=0 (10.31)

From Eg. (10.6) of Sec. 10.3, you know that for linear dielectrics, the
polarisation P is proportional to the electric field and is given by:

P=¢,y E (10.32)
provided E is not too strong. You have learnt that y is called the electric
susceptibility of the dielectric material/medium. It is a macroscopic
property of the material and depends on the microscopic structure of the
medium. It is a measure of the extent to which a dielectric is polarised by
an external electric field. The greater the susceptibility of the dielectric, the

greater is the polarisation of the material in response to the electric field,
thereby reducing the electric field inside the material.

Using Eq. (10.32) in Eq. (10.29), we can write D for linear dielectrics as
D=¢ggE+egyE=¢eo(d+%)E (10.33)

If we define a new parameter ¢ given by

e = g @+7y) (10.34)

Then we can write the D field inside dielectrics given by Eq. (10.33) as

D=¢E (10.35)

The constant of proportionality € defined by Eq. (10.34) is called the
permittivity of the dielectric material. Eq. (10.35) tells us that the

displacement D is proportional to the total electric field E. If we divide
Eq. (10.34) by the factor ¢y, we get a dimensionless quantity ¢, or K:

€0

The constant ¢, or K is called the relative permittivity or the dielectric

constant of the material/medium. Henceforth, we shall use the symbol K for
the dielectric constant in this block. Thus, we can write Eq. (10.35) as
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D=goKE (10.37)

The susceptibility and dielectric constant are important macroscopic properties
of dielectric materials. The dielectric constant is also a measure of the extent
to which a dielectric is polarised by an external electric field. If a material with
a large dielectric constant is placed in an electric field, the magnitude of the
electric field will be significantly reduced inside the dielectric. This property is
used for increasing the capacitance and is important in the design of
capacitors for various applications. You may like to pause and reflect over
what you have studied so far. You may also like to try an SAQ to calculate the
value of dielectric constant.

SAQ 4 - Dielectric constant of a dielectric material

Two parallel plates, which have cross-sectional area of 100 cmZ2, carry equal

and opposite charge of 1.0x10-7 C. The space between the plates is filled

with a dielectric material and the electric field within the dielectric is

3.3x105 Vm-1. What is the dielectric constant of the dielectric if the electric

field across the plates without the dielectric is given by Eg = 3, where ¢ is
€0

the surface charge density of the plates?

Thus, the laws of electrostatics in vacuum given by

V.Ey=PL and VxE=0 (10.38a)
€0

are modified as follows for linear dielectrics, (i.e., when polarisation is
proportional to the electric field):

VD=p; or V.KE)=PL and VxE=0 (10.38b)
€0

If K is same everywhere, i.e., it is a constant, then we can write
VXxE=Vx(KE)=VxD=0 (10.38c)

Note that Egs. (10.38b and c) for KE are of the same form as Eq. (10.38a) for
Eo, the electric field in vacuum. We, therefore, have the solution

KE =Eg (10.39a)

Eq. (10.39a) implies that in a dielectric medium with dielectric constant K the
electric field is everywhere reduced by a factor K.

Recall from Eg. (8.15) of Unit 8 that the potential difference between any two
points a and b is just the negative of the line integral of the electric field:
b
Vp ~Va = - [EdF (10.39b)
a
Therefore, the potential difference or voltage is reduced by the same factor K.
For a parallel plate capacitor, the charge placed on the capacitor plates is the

Q

same. Hence, its capacitance C =y is increased by a factor K. From

Eqg. (10.1), it is given by:
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S

Fig. 10.13: Two
charges q; and q»
situated in a
homogeneous
dielectric medium.

a:

_goKA
d

C

(10.39c¢)

You may like to apply these equations to a parallel plate capacitor.

SAQ 5 - Electric displacement and polarisation

Consider a parallel plate capacitor made up of two rectangular plates of area
of cross-section 6.45x10~4m?2 and separated by a distance of 2.0x10-3m.
A voltage of 100 V is applied across the plates. If a dielectric material of
dielectric constant 6.0 is introduced between the plates of the capacitor,
calculate the

a) capacitance of the capacitor;

b) charge stored on each plate of the capacitor;

¢) displacement D; and

d) polarisation P.

You may now like to know: What is the force between two point charges
placed in a dielectric?
To answer this question, consider two charges q; and g, situated in a

homogeneous dielectric like a liquid or gas. We take a Gaussian spherical
surface in this material centred around the charge g, and of radius r, the

distance between the two charges g; and g, (see Fig. 10.13).

Let us apply Gauss’s law to this surface. For a spherical surface, D is along
the radius vector. Thus, it is parallel to i, the unit vector normal to the surface

S and we have

fﬁdé = §I5ﬁ dS = §D dS ZQenclosed

S S S
For the Gaussian sphere of radius r enclosing the charge g1, applying
Gauss’s law for constant D, we get

d1

4rr2D = or D=—"=—
a Arr?2

From Eg. (10.37), we can write this result as

D=-$__¢ KE

4mr2
or E=— N and E-—N_¢ (10.40)
47‘580I’2K 471780I’2K

Here T is the unit vector along the radius pointing from g4 to q5.

The force experienced by the charge qis, therefore,

~

F=q,E-= Q182 ;

dnegKr2 (10.41)

From Eg. (10.41), you can see that the force between any two charges in a
dielectric medium is reduced by the factor K.

We now take up an example to calculate the electric field in a dielectric.
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Eﬂﬂ@ﬁﬂ 10.2: CALCULATION OF ELECTRIC FIELD IN A
DIELECTRIC

A metal sphere of radius a carries charge Q. It is surrounded by a linear
dielectric material of dielectric constant K up to distance b. Calculate the
electric field in the three regions (i) r < a, (i) a<r <b and (iii) r >b and
the electric potential at the centre of the sphere.

SOLUTION m Refer to Fig. 10.14. Since the charge in a conductor

resides on its surface, we have from Gauss’s law: Fig. 10.14: Diagram for

Example 10.2
E=0 for r<a
For calculating the electric field in the region a <r < bwhere the dielectric
medium is present we use Eq. (10.30b) given as fﬁ.dé = Qenclosed
S In solving the integrals
. Q in Eq. (10.44), we
D(4rcr2):Q = D= o r for a<r<b (10.42) have used the result
nr
1 1
I N ; Jar - -2
From Eq. (10.37), D=¢g KE or E= r §
gg K
Hence,
Thus, E= Q M= Q r for a<r<b (10.43a) a Q 0 b
Aneg Kr2  Amer? [ Sdr=—
b4ner 4mer|,
In the region r > bwhere the dielectric material is not present, the electric
field is given by: _Q (1 1
dne \ a b
== Q . r for r>b (10.43b)
Aneor Other integrals are

) ) special cases.
The electric potential at the centre of the sphere is, therefore,

0# - b Q a Q 0
V=-|Edl =- dr — dr —|0dr 10.44
»[ I4TE80I’2 I4TC£I’2 J. ( )
o ) b a
An\eggh ea ¢b

You may now like to solve a problem on your own.

SAQ 6 - Electric field in a dielectric

A large metal plate of area 1.0m2 carries a charge 4.4x10-10C. Calculate
the electric field at a point near the plate.

We now summarise what you have studied in this unit.
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10.6 SUMMARY

Concept Description
Dielectric in electric B When an insulating material called a dielectric is placed in an external
field electric field it gets polarised.

Dielectric polarisation W  Electric dipole moment per unit volume P is called polarisation.

At the atomic level, polarisation of the dielectric material or medium
takes place in two ways:

i) If the dielectric material is made up of neutral atoms/molecules in
which the centres of positive and negative charges coincide, the
neutral atom/molecule (called non-polar molecule) does not have
any electric dipole moment. The effect of external electric field on
neutral atoms/molecules is that the centres of positive and negative
charges in them are separated and the material develops a net
electric dipole moment.

ii) If the dielectric material is made up of polar molecules, then in the
absence of the electric field the permanent dipole moments move
randomly due to the thermal motion of the molecules. However, in
the presence of external electric field, the permanent dipole
moments tend to align along the direction of the electric field and the
dielectric material develops a net electric dipole moment.

Atomic polarisability B The electric dipole moment acquired by an atom/molecule is
proportional to the electric field and can be written as

p=aE
where a is called the atomic/molecular polarisability.

Bound charge B The electric field produced by a polarised dielectric is equivalent to
the electric field produced by a bound surface charge density
op =P.n and a bound volume charge density pp =-V.P.

Gauss’s law for B Gauss’s law of electrostatics gets modified in a dielectric medium
dielectric and it is convenient to introduce a displacement vector D for the
medium given by:

D=goE+P
In terms of I5, Gauss’s law states that the flux of [3 through a closed

surface is equal to the total free charge enclosed in the volume
bounded by the closed surface:

ideé = (Qf)enclosed OF V.D=ps¢
S

Electric susceptibility, B For ideal, homogeneous and isotropic dielectrics, called linear

permittivity and dielectrics
dielectric constant - —
P=¢ggyx E
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where y is called the electric susceptibility of the medium. The
displacement vector D for linear dielectrics is

6=80(1+X)E=8E

where ¢ is called the permittivity of the medium. We define a
dimensionless quantity K called the dielectric constant as
K=-"andhence D=goKE
€0
D depends only on the free charges and can be obtained without any
reference whatsoever to the bound charges in a dielectric.
Effect of dielectricson M In a dielectric, the electric field due to a distribution of free
capacitance charges is reduced by a factor K. This has the effect of increasing
the capacitance of a capacitor filled with a dielectric by a factor equal
to the dielectric constant of the material.

10.7 TERMINAL QUESTIONS

1. Two parallel conducting plates of area of cross-section 2.0 m? are
separated by a distance of 1.0 x 102 m. The potential difference (Vo)
between them in vacuum is 3000 V. When a dielectric sheet of thickness
1.0 cm is introduced between them, the voltage is found to decrease to
1000 V. Calculate

a) the dielectric constant K, the permittivity & of the dielectric and its
susceptibility y,
b) the electric field between the plates in vacuum,
c) the electric field in the dielectric, and
d) the electric field produced by the bound charges.
2. Consider two isotropic dielectric mediums A and B of permittivity ¢; and
g, respectively, separated by a charge free boundary as shown in
Fig. 10.15. The electric field El is incident at the boundary of the mediums
at an angle of incidence 6; and the electric field Ez in medium B makes an
angle of refraction 6,. Assuming that at the interface of the two dielectrics,

the normal component of D and tangential component of E are
tan 6; g

continuous, show that

tan O, €9

Fig. 10.15: Diagram for TQ 2.
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3. Show that the polarisation (bound) charge density at the interface of two

charge free dielectrics of permittivity ¢; and &, is given by
Op =ﬁ.(|51 - |52) = €0 ﬁélﬁ
€2
where n is a unit vector normal to the surface. Assume that the normal
component of D and tangential component of E are continuous at the
interface of the two dielectrics.

. A thin dielectric rod of cross-section A extends along the x-axis from x =0

to x =L. The polarisation of the rod is along its length and is given by

P= (ax2 + b)iA. Obtain the bound volume charge densities and the surface
charge densities at each end of the rod. Show explicitly that the total
bound charges vanish.

10.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

2. From the definition of the gradient, 6'[% = (i‘i +] 0 k2 J[E]

1. Pis dipole moment per unit volume. Therefore, unit of P is:

Coulomb x metre

r Cm~?
(metre)3

x oy oz

where from Eq. (10.9), r, = \f(x -x)2 +(y—-y)2 +(z-2)2. Now

1 1

8(1}2 0 1 (x — x')

ox’ rl ox' \/(X — X/)2 +(y i yr)2 +(Z | B Z/)Z r13 '
ﬁl(lj 418 1 _ —3y) -
¥ \n) ¥ Jx - xP+y -y +z-2)? i
8{1]:8 1 _(z-72)
oz’ rl oz’ \/(X _ Xr)z +(y _ y/)2 +(Z _ Zr)2 rl3
Therefore,
f0 50 p o)1) _ =)+ (y -y + (- 2K
aXr ayr azr r]_ r13
¢ r. - .
=% = = (rno=nn)
1 1

where we have used Eq. (10.9) for the expression of r;. Hence, we get

Eq. (10.11): 6'{% -4
I’l rl

3. a) From Eq. (10.25), the volume charge density py, is given by

op=-V.P=— [+ sk @2xi+j+k)x25x107 cm™3
oX oy oz

—_2x25x10'Cm>3=-50x10""Ccm™3
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b) Surface charge density is the component of P normal to the surface.
Now refer to Fig. 10.12. The faces BFEC and AGHD have normals
along jand — j, respectively. The charge densities on these surfaces

are zero since j.k =0: P.j = 0 and —P . ] =0. The faces ABCD

and GFEH have normals along iand i, respectively. The charge

densities on these surfaces too are zero because i .k =0.

Charge density on the face DCEH = ¢ = Pk=20x10°%cm™2

Charge density on the face ABFG =oc=— Pk=-20x10°%cm™
4. The surface charge density on the plates is

-7
6= 1010 C 45 105cm2

A 100x1074m?
The electric field between the plates in the absence of any dielectric is
o 1.0x10°Cm2  1.0x10’

Eg=—= -
g0 8.85x10 22N Im2 8.85

vm1

In the presence of the dielectric, the field is reduced by a factor equal to
the dielectric constant. Therefore, from Eq. (10.39a),

gy s
K
,
«_Eo __10x10" .,

E  885x3.3x10°

5. a) From Eg. (10.39c), the capacitance C of a parallel plate capacitor filled
with a dielectric material of dielectric constant K is given by

g0A 6.0 x 8.85x1071? x 6.45x107%

. - F=17x101F
2.0x10~

C=K

b) The voltage applied is 100 V. Therefore,

Charge stored on each plate = CV

—1.7x10 11 x100Cc=1.7x10°C

c) Applying Gauss’s law for the dielectric {ff).dé = (Qf )endosed} to this
S
D= Q

case,weget DA=Q or

= =17 Ccm?=26x108%Ccm™2

~ D= = 7
6.45x10"

Q  17x107°
A

d - D=¢gE+P and Ez\dl,weget

-12
P_D-gfE = |26x106_ 881077100~ -

2.0x1073

or P=(26x10°- 44x107")yCcm™ = 2.2x10°%Ccm™
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Fig. 10.16: Diagram
for SAQ 6.
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6. Let o be the charge density on the surface of the plates. Now consider a
“Gaussian pill box” which extends to equal distances above and below the
plane of the positively charged plate (Fig. 10.16). Let us apply Gauss’s law
to this surface:

jfédé _ (Qf Jenclosed 0]

€
S 0

If A is the area of the lid of the pill box, then for this case
(Qfenclosed = 0A (if)

Only the top and bottom surfaces of the pill box contribute to the integral
since for other surfaces, E and dS are perpendicular to each other and
their scalar product is zero.

For both the top and bottom surfaces of the pill box, the electric field points
away from the plane (since the vector dS is normal to the surfaces). Itis
upwards for the points above the plane and downwards for the points
below the plane.

Thus, we take the contributions of only the top and bottom surfaces of the
pill box to the electric field into account. Then using Eq. (ii), the value of
the integral of Eq. (i) is given by

ifl%.dé:ZAE:ﬁ or e o
J €0 2¢q
-10
Since A=1.0m%, 6 = Q _ w = 44x100cm2
A 1.0 m
-10 -2
E_ O _ 44x10 Cin ~24.9Vm 1t~ 25vmt

269 2x885x102cZNIm2

Terminal Questions

1. a) From Eq. (10.39a), the dielectric constant
Eo _ Vo _ 3000
E \Y 1000
From Eg. (10.36): e=Ke, =3¢, and 1+y =K = =2

K =

b) Eo z\ﬁz%Vm‘lz 3.0x10°vm™
d 1.0x10

o E-=v=-—% yml-10x10°Vm?
d 1.0x10"

d) The electric field E is the resultant of the electric field Ey and the field
E,, set up by bound charges.

. Ep=Eg-E =20x10°Vvm*

2. As given in the problem, at the interface of the two dielectrics, the normal
component of D and the tangential component of E are continuous.
Therefore,
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E;sin6; = E,sin®, ()
and D;cos0; = D, coso, (i)
But from Eq. (10.35), D = ¢E and therefore,
D, = ¢gE; and D, = &E,
Hence, Eq. (ii) becomes gE;c0s6; = e,E,cos0, (iii)
Dividing Eq. (i) by Eq. (iii), we get
1 1 m _ &

—tan; =—tano, or =
€ €2 tan0, &5

3. The surface charge density of a polarised medium is given by o, = P. n,
where n is the unit vector normal to the face on which polarisation (bound)
charges appear. Let P and P, be the polarisation vectors in the two
media.

At the interface, the net surface charge density o}, is given by:

op =N.(P—P5)
Now D=gE+P —=P=D-¢ggE
and Py —P, = (D1 - D2) — &0 (E1 —E2)
op =N.(D1 —D>) —goh.(E1 —E») (i)

As per the problem, the normal components of D are continuous at the
interface. Thus, we have

A.(D;—Dy)=0
Therefore, from Eq. (i) o, = —egn. (E —E>) = egh. (Ex —E;). But D = ¢E
and therefore,

A.(D1—D2)=0 = N.(e1F1—¢2E2)=0

or A.E, = LhH.E

€ P €& — € — ~
Oph = € (8—1 - J n. El =& []'S—zj El n
2 2

Yy
Sy Sy
A T > X
o) ax L

Fig. 10.17: Diagram for TQ 4.

The volume charge density is given by

pbz—ﬁ.ﬁz—(i—+] ].(ax2+b)f=—2ax (i)
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Since A= —i atthe face at x = 0, the surface charge density at x =0 is
given by

Gb|x:0 = Pﬁ

o = Pi=—@®+ b)‘x:0 - —b (i

Since fi=1 atthe face x = L, the surface charge density at x =L is

Opl,_, = P.fi = (al® + b) (i)

X =L

= P.i = (ax® + b)

‘X=L

Since dV = Adx, using Eq. (i), we get the total bound volume charge as

L
QY = [prav = [(-2ax) Adx = -aAL®
\Y 0

Using Eq. (ii), we get the bound surface charge on the surface S; at x =0
as

S

Qut = op|,_,A = —bA

Using Eq. (iii), we get the bound surface charge on the surface S, at
X =L as

Qy2 = opl,_ A = (a® + b)A
Thus the total bound charge on the rod is
QP - Q¥ + QX+ Q2 = —aAL? — bA + (@2 + b)A =0

as expected.
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Capacitors of different shapes and sizes

shown here are integral components of

electrical and electronic circuits. The use of CAPACITORS
dielectric materials in capacitors enhances

their capacitance and helps in miniaturisation

of electrical and electronic appliances. (Picture

source: Wikimedia Commons)
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11.4 Capacitance of Spherical and
Cylindrical Capacitors

STUDY GUIDE

In this unit, you will study about capacitor which is an electrical component used in a variety of
electrical and electronic applications. The utility of capacitors is enhanced manifold when dielectric
materials are filled between its plates. Thus, we shall refer to dielectrics and its behaviour in electric
field (Unit 10) very frequently in this unit. You should, therefore, read Unit 10 before studying this
unit.

For calculating capacitance of capacitors of different geometrical shapes, you will need to
determine electric field and electric potential. We have used Gauss’s law for calculating electric field
due to charge on the capacitors. You should refresh the applications of Gauss’s law form Units 6
and 7. Also, you should revise the concept of electric potential discussed in Unit 9.

You know the mathematics used in this unit as you have studied it in the previous units of this
course. However, you should work through the mathematical derivations yourself as you study the
unit. We also advise you to try to solve the SAQs and TQs yourself before looking up their answers
given at the end.

“No amount of experimentation can ever prove me right; Albert Einstein
a single experiment can prove me wrong.”
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11.1 INTRODUCTION

In Unit 10, you have studied the behaviour of dielectric materials in electric
fields and electric fields of polarised dielectrics. You have deduced Gauss’s
law for dielectric materials and learnt about their susceptibility and dielectric
constant. As you know, dielectric materials are used very widely in the
fabrication of capacitors for a variety of applications. Therefore, we focus on
capacitors in this unit. In school physics and in Unit 10, you have learnt that
the potential of a conductor increases as the charge placed on it is increased.
This means that the charge on a conductor is directly proportional to the
voltage across it and the constant of proportionality is called the capacitance
of the conductor. Mathematically, we write this condition as Q « V or

Q = CV,where the constant C is the capacitance. You know that any device

that has capacitance is called a capacitor. You are already familiar with this
device from your school physics.

Capacitors have many applications in our daily lives. When we turn the
‘tuning’ knob on a radio receiver to get the radio station of our choice, we
actually change the capacitance. Capacitors are used in many electrical or
electronic circuits. They are used to provide coupling between amplifier stages
and to smoothen the output of power supplies. Capacitors are commonly used
in motors and fans. In combination with inductances, they are used to produce
oscillations which when transmitted become radio signals/TV signals, etc.
Besides these, capacitors have a variety of applications in electrical power
transmission.

In Sec. 11.2 of this unit, you will learn about capacitance and the charging of
a capacitor. We also determine the energy stored in a capacitor. In

Sec. 11.3, we discuss the parallel plate capacitor and calculate its
capacitance when a dielectric material is inserted between its plates. We
also determine the energy stored in a dielectric medium. In Sec. 11.4, we
determine the capacitance of spherical capacitor and cylindrical capacitor. In
electrical circuits, capacitors are connected in parallel and/or in series.
Therefore, in Sec. 11.5, you will learn how to calculate the resultant
capacitance of these two types of combinations of capacitors in a circuit.
Finally, in the last section (Sec. 11.6) of this Unit, you will learn about the
applications of dielectrics in capacitors and some capacitors used in practical
applications. We also briefly talk about the voltage rating of a capacitor.

In the next unit we discuss the magnetic field and its relation with electric
current.

Expected Learning Outcomes

After studying this unit, you should be able to:

+ define the capacitance of a capacitor;

++ calculate the energy stored in a capacitor and in a dielectric medium;

+ calculate the capacitance of a capacitor when a dielectric material is
inserted in a capacitor;

+ determine the capacitance of parallel plate, spherical and cylindrical

capacitors;
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++ obtain the effective capacitance of a given combination of capacitors in
series and in parallel; and

+ describe practical capacitors and list their applications.

11.2 CAPACITANCE

Consider two conductors carrying charges + Q and —Q, respectively (see

Fig. 11.1). You have studied in Unit 9 that the voltage V on a conductor is
constant because a conductor is an equipotential surface.

Fig. 11.1: Two conductors carrying charges + Q and — Q, respectively.

By definition, the potential difference between the two conductors is

+
V=V, -V = —jE.dT (11.1)

where V_is the potential of the conductor carrying positive charge and V_,

the potential of the conductor carrying the negative charge. You know from
school physics that the potential on the conductor increases if the charge on it
increases. You also know that for a system of two conductors for which the
potential difference is given by V as defined by Eq. (11.1), charge Q is
proportional to V:

Q oV or Q =CV (11.2)

The constant of proportionality is called the capacitance of the system.
From Eqg. (11.2), we get

N
c=y (11.3)

You have learnt in school physics that capacitance is determined by the
shape and size of the conductors as well as the separation between
them. Notice that, by definition, V is the difference between the potential of
the positive conductor and the potential of the negative conductor and Q is
the charge of the positive conductor. Thus C is a positive quantity.

We can also talk of the capacitance of a single conductor. In this case, the
second conductor is an imaginary spherical shell of infinite radius
surrounding the conductor and it contributes nothing to the field.

For example, consider an insulated conducting spherical shell of radius R. Let
us place a charge Q on the surface of this shell which is an equipotential
surface. The potential on the outer surface of the shell (see Sec. 9.2 of Unit 9)
is given by:

V = Q (11.4)
4negR
under the assumption that a shell having (very large) infinite radius is at zero
potential. Instead of a shell of infinity radius we can regard the ground (Earth)
at zero potential. Then the capacitance of this shell (with respect to the
ground) is
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In a nutshell, a
capacitor is an
electronic device for
storing electrical
energy by allowing
charges to
accumulate on metal
conductors. The
electrical energy
stored in the
capacitor is recovered
when these charges
are allowed to move
from these
conductors to the
electrical circuit they
are a part of.

coulomb

(11.5)
volt

C=9=4TC80R
Y,

where R is in m. The unit of capacitance C in Sl system is farad (denoted by

F) and is defined as:

1 coulomb
1volt

If R =1.0m, the capacitance of the above shell is

1farad= (11.6)

4meg (1.0m) =1.1x10-10F, We notice that farad is an inconveniently large
unit. The more practical units of capacitance are microfarad (10-6 F) and
picofarad (10~12 F). The symbol of a capacitor used in electric circuits is:-—| |_.

Before studying further, you may like to answer an SAQ based on the
concepts discussed so far.

SAQ 1 - capacitance of the Earth

Consider a spherical shell of radius equal to that of the Earth (6000 km).
What is its capacitance?

11.2.1 Charging of a Capacitor and Energy Stored in It

In order to “charge up” a capacitor, we have to remove electrons from the
positive conductor and carry them to the negative conductor. In doing so, we
have to do work against the electric field which is pulling them back to the
positive conductor and pushing them away from the negative conductor.
Suppose we start putting charge on the conductor. At an intermediate stage

q

when the charge on the conductor is g, the potential difference is V = - and

to bring an additional charge dq to the conductor, we have to do an amount of

work dW given by:
dW =V dq :%dq (11.7)

The total work done in charging a capacitor from zero charge (q = 0) to some
final charge q=Q is

Q
_7(9)gq - 192
W_g(c)dq_z C

This work is stored as the electric potential energy U in a capacitor.
Since Q =CV, we have

(11.8)

U =%cv2 (11.9)

where V is the final potential of the capacitor. Egs. (11.8) and (11.9) hold no
matter what the geometry (that is, the shape or size) of the capacitor is.

The energy stored in a 1uF capacitor when charged to a potential of 10 V is
thus

U= %(1069 % (10V)2 =50x10-6J

We now discuss the parallel plate capacitor, which is a capacitor of the
simplest geometry and the most familiar to you.
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11.3 PARALLEL PLATE CAPACITOR

A parallel plate capacitor consists of two metal plates (rectangular or circular)
arranged parallel to each other and separated by a distance d (see Fig. 11.2).
The distance d is usually very small compared to the size of the plates.

If we put a charge +Q on the top plate and the charge —Q on the bottom
plate, the charges will spread uniformly over the surfaces. The surface charge

Q

density is then ¢ = A on the top plate, where A is the area of the plate.

A

f

‘i B

Fig. 11.2: Geometry of a parallel plate capacitor.

We can calculate the electric field between the plates by using Gauss’s law. It
is given by:

E=— (11.10)
€0
The electric field is normal to the surface and is uniform between the plates
provided the distance between the plates is very small compared to the size of
the plates. You may like to prove this result before studying further. Attempt
the following SAQ.

SAQ 2 - Electric field in a parallel plate capacitor

Using Gauss’s law calculate the electric field between the plates of a parallel
plate capacitor carrying a surface charge density .

From Unit 8 (solution of TQ 2), you know that the potential difference between
the plates A and B of the capacitor is given by

A - Q
V=—.|.E.dI:Ed=—d=—d (11.11)
B €0 goA

and, therefore,
- SS—A (11.12)

If, for example, the plates of the capacitor are square in shape with sides of
10 cm and are held 1.0x10~4m (= 0.1 mm) apart, then its capacitance is

c_(2.0x 10~1m)2

TR 8.85 x10712C2NIm=2 = 885 pF ~ 8.9 x 10 10F
Ox107™"m

SAQ 3 - capacitance of a parallel plate capacitor

Calculate the capacitance of a parallel plate capacitor having plates of size
1.0 cm? with a separation of 1.0x10~*m between the plates. What is the

energy stored in it when it is connected across a cell of voltage 1.5 V?
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What happens when we place a dielectric material between the plates of a
parallel plate capacitor? Let us find out.

11.3.1 Parallel Plate Capacitor with Dielectric Material
Inserted between its Plates

You have already learnt in Sec. 10.5 of Unit 10 [Eq. 10.39a)] that in a
dielectric medium, the electric field is reduced by an amount K called the
dielectric constant. We can extend this result to a parallel plate capacitor:
Whenever a dielectric material is inserted between the plates of a parallel
plate capacitor, the electric field between plates is reduced by the dielectric
constant K.

To verify this result, let us consider a parallel plate capacitor of area of cross-
section A with a dielectric material inserted between the plates (Fig. 11.3).

Gaussian
+ 4+ +1F 1'+'+'+ + + £+ surface of area S
Y =
___________ %\ Dielectric

Fig. 11.3: A parallel plate capacitor with dielectric material inserted between the
plates.

Let d be the distance between the plates and o the surface charge density on
the plates. We now apply Gauss’s law for dielectric materials [Eq. (10.30b) of
Unit 10] to a Gaussian surface of area S as shown in Fig. 11.3:

§|3d§ — (Qf )enclosed

Since electric displacement D is perpendicular to the plates of the capacitor
and only the free surface charge density contributes to it, we have
D=Q/A)=c (11.13)
Note that as you have learnt in Unit 10, the bound surface charges do not
contribute to the flux of D. Further, from Eq. (10.37), we also have

D

D=¢gKE o E-= (11.14a)
%0) K
Therefore, from Egs. (11.13) and (11.14a), we get
- P __o© (11.14b)
80 K 80 K

The potential difference V between the plates is given by V = Ed and using

Eq. (11.14b), we get the capacitance as
Q _ oA _ cAgK

V ~ Ed od
€0 KA

d
Comparing Eq. (11.15) with Eq. (11.12), we find that the value of the

capacitance of the parallel plate capacitor increases by a factor K, the
dielectric constant of the material.

C =

or C = (11.15)

Thus, the effect of introducing a dielectric between plates is to increase
the capacitance of a capacitor.
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The dielectric constant of a material can thus be determined by measuring the
ratio of the capacitance of a parallel plate capacitor with the dielectric and
without it, viz.

_ Capacitance with dielectric between plates

- Capacitance with free space between plates

Table 11.1 gives the relative permittivity €, or the dielectric constant K of

some common materials. Since we can write the capacitance given by Eq.
(11.15) as
A
c - %o (11.16)
(d/K)

we can say that a dielectric of thickness d has an equivalent free space

thickness i
K

The concept of the equivalent free space thickness allows us to answer the

question: What is the capacitance of a parallel plate capacitor when the
space between the plates is only partially filled by the dielectric? Let us
solve this problem in an Example.

Table 11.1: Relative
permittivity/dielectric
constants of some
common materials.

EMMQ’L@ 11.1: CAPACITOR PARTIALLY FILLED WITH A
DIELECTRIC

Material | Dielectric
constant
Air 1.0006
Castor oil 4.7
Mica 5-9
Glass 45-7.0
Bakelite 45-75
Paper 20-23
Porcelain 5.5
Quartz 1.5
Water 80.4

Consider a parallel plate capacitor of area A. Let a dielectric slab of
thickness t and dielectric constant K be kept between its plates as shown in
Fig. 11.4. Notice that the upper surface of the dielectric slab is at a distance
d; from the upper plate of the capacitor and the distance between the
lower surface of the dielectric and the lower plate of the capacitor isd».
Calculate the capacitance of this capacitor.

SOLUTION m

Fig. 11.4: Calculation of capacitance in terms of the equivalent free space
thickness.

To calculate the capacitance of the partially filled capacitor [Fig. 11.4], we
will use the concept of the equivalent free space thickness. From Fig. 11.4,
you can see that the free space between the plates is (d —t). From
Eqg. (11.16), the slab of dielectric constant K of thickness t has equivalent
free space of thickness (t/K). Thus, the total free space between the
platesis (d —t + t/K) and the capacitance C of this capacitor is

g A gg AK

C = = (11.17)
d-t +t/K Kd - Kt + t

A note regarding
symbols. In some
books, dielectric
constant, K is called
relative permittivity

and is denoted by g, .

We shall use the term
dielectric constant and
denote it by K.
However, for the sake
of completeness, we
have made a mention
of equivalent term
relative permittivity
and its symbol ¢, .
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We can also calculate the capacitance by calculating the potentials. From
Fig. 11.4, you can also see that

d=d +dy, +t (11.18)
Now suppose

V, is the potential difference between the upper plate of the capacitor and
the upper surface of the dielectric,

V, is the potential difference between the upper and lower surfaces of the
dielectric, and

V3 is the potential difference between the lower surface of the dielectric
and the lower plate of the capacitor.

The three potential differences are shown in Fig. 11.5.

Al |

Fig. 11.5: Calculation of capacitance from the potential differences.

The total voltage V across the capacitor is the sum of these three potential
differences.

Thus, V=V, +V,+V; (11.19)
If E is the electric field inside the capacitor, we have
Vl = dl E, V2 = E— and V3 = d2 E (1120)

V=d1E+%+d2E=(dl+d2)E+%

Using the result d; + d, = d — t from Eq. (11.18), we can write

V=(d—t)E+%=(d—t+%)E (11.21)

Comparing Eqg. (11.21) with the general expression of V in terms of E and
d (V = Ed), we note that the equivalent free space thickness of the
dielectric is

t
@-t+- ) (11.22)

Therefore, the capacitance C is,

c—_ %A (11.23)
d—t+(t/K)

as before [Eq. (11.17)].
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You may now like to solve a problem based on what you have learnt so far.

SAQ 4 - Capacitor partially filled with dielectric

A dielectric of dielectric constant 3 is filled in the gap between the plates of a
capacitor. Calculate the factor by which the capacitance is increased, if the
dielectric is only sufficient to fill up 3/4 of the gap.

You have learnt in Sec. 11.2.1 that capacitors can be used to store charge
and energy. You also know that their capacitance (and hence the capacity to
store charge and energy) increases if a dielectric material is inserted in the
space between the two conductors forming the capacitor. A logical question
that follows is: What is the energy stored in a dielectric medium? Let us
answer this question for a parallel plate capacitor.

11.3.2 Energy Stored in a Dielectric Medium

From Eqg. (11.9), you know that the energy stored in a parallel plate capacitor
is given by:
2
U = fcvz - &
2 2C
From Eqg. (11.12), you know that the capacitance of a parallel plate capacitor
with free space between its plates is given by:

c - oA
d
Also V = Ed
Putting these values in the expression of energy U given by Eq. (11.9), we get
U=18AEo2
2 d
= lao(Ad)E2
2
u 1 2
or —= ESOE where the volume 1= Ad (11.24)
T

Eqg. (11.24) gives the energy per unit volume in the capacitor.

When a dielectric of dielectric constant K fills the space between the plates of

the capacitor, then the effective capacitance is given by Eq. (11.15) as
Cdielectric = ‘C'Odﬁ

The energy stored in a capacitor with a dielectric material of dielectric constant

K inserted between its plates is given by:

1 2
Uu-=—_- Cdielectricv

2
or U = E w E2d2
2 d
1 2
= 5 (Ad)KE
Y_ Ego kE2=1ED (11.25)
T 2 2
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In solving the integral
for V we have used

the result

dr

r

2

1
r

Here D is the electric displacement in the dielectric. Thus, in the case of a
parallel plate capacitor with free space between its plates, the energy stored

per unit volume is % g9 E2 which becomes % ggKE? = % E. D when the

dielectric material is inserted between the plates of the capacitor.

Thus, the energy stored per unit volume in a dielectric medium is given by:
u 1--~

el :EE.DJm‘S (11.26)
T

We have considered here the case of a linear dielectric for which E and D
are in the same direction.

So far, we have calculated the capacitance of a parallel plate capacitor. We
now determine the capacitance of a spherical capacitor and a cylindrical
capacitor.

11.4 CAPACITANCE OF SPHERICAL AND
CYLINDRICAL CAPACITORS

Let us first consider a spherical capacitor.
a) Spherical capacitor

Total charge Total charge

Gaussian
surface

Fig. 11.6: Spherical capacitor comprising two concentric conducting spheres
of radius a and b.

Fig. 11.6 shows a spherical capacitor comprising two concentric spherical
shells of radii a and b, respectively, such that b > a. Suppose that the
inner shell carries positive charge Q. If ¢ is the surface charge density,
then Q = 4rna’ . Now consider a spherical Gaussian surface S of radius
r lying between the concentric spherical shells. Let us apply Gauss’s law
to this surface. Note that E is in the radial direction and hence it is parallel
to the normal dS to the surface and ifl?.dé = EA, where A is the area of

S
the spherical shell’s surface. Thus, we get

§E.dé=EA=E4nr2=Qﬂ=4La20
s ) €0
2
or E = aoc iz
80 r

The potential difference (V5 — V,,)is given by
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a_ b# b -
V =V4 —Vp :—IE dr :jE.dF = IEdr (since E is along dr)
b a a
PaZs 1 a2s1° a2s(1 1
or Y% =I——dr _ o= =_(___j (11.28)
EQ I €o lla €p \a b
2
4 4 b
Thus, C = \%: 4ma”c __4mep _4meod (11.29)

N D

a b
When the outer surface is at «, b — c and we have C = 4mngga.
b) Cylindrical capacitor

Fig. 11.7a shows the schematic diagram of a cylindrical capacitor. It is
made up of two hollow coaxial cylindrical conductors of radii a and b,
respectively. The space between the cylinders is filled with a dielectric of
dielectric constant K. A slightly enlarged cross-section of this capacitor is
shown in Fig. 11.7b.

\ o \
A
2a1 v
s

(a) (b)
Fig. 11.7: a) Cylindrical capacitor; b) cross-section of the cylindrical capacitor.

Dielectric

Some examples of such capacitors are:

i) A coaxial cable, in which the inner conductor is a wire and the outer
conductor is normally a mesh of conducting wire separated from the inner
conductor by an insulator (usually plastic).

i) The submarine cable, in which a copper conductor is covered by
polystyrene (the outer conductor is sea water).

These capacitors are used quite commonly around us and, therefore, it is
important to determine their capacitance. We now determine the capacitance
per unit length for a cylindrical capacitor.

Since both the inner and outer cylinders of a coaxial capacitor are conductors,
they are equipotential surfaces (see Sec. 9.3 of Unit 9). The electric field is
radial (normal to the surface of the cylinder). Let A be the charge per unit
length on the inner cylinder of the capacitor shown in Fig. 11.8. The outer
cylinder is grounded. An equal and opposite amount of charge will appear on
the inner side of the outer cylinder (not shown in the figure). This is because
the electric field inside the conductor is zero. To evaluate the electric field for
the cylindrical capacitor, we consider a coaxial closed cylindrical Gaussian
surface ABCD of length AL and radiusr.

A B
+ 4+ + + + + + o+ 4+ + +
() Lt )
+ 4+ + + + + ++ + + + +
D B C

Fig. 11.8: Calculating the capacitance of a cylindrical capacitor. ABCD is the
Gaussian surface.
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The electric field is normal to the surface of the inner cylinder. It is also
confined in the space between the inner and outer cylinders. The flux of
electric displacement vector D through the bottom and top circular surfaces of
the Gaussian cylinder ABCD is zero as D is parallel to these faces and
therefore perpendicular to dS (since by definition, dS is perpendicular to the
surface) so that D.dS is zero.

The flux of D is only through the curved part of the surface of ABCD. Since D
is in the radial direction, it is normal to this part of the surface at all points and
parallel to dS so that D.dS is non-zero. Therefore, the flux through the

curved part of the closed Gaussian surface is given by:

D.dS = D.AdS = D(2nr )AL = charge enclosed =AAL  (11.30)
A

or D =

= ¢E = goKE (11.31)

where A AL is the free charge enclosed by the Gaussian surface and K is the
dielectric constant. Hence,

A

LA (11.32)
27 reg K

To find the capacitance, we need to calculate the potential difference between
the inner and outer cylinders. In Unit 9, you have studied that the general
expression for the potential difference for a continuous charge distribution is
given by:

a b
Vy —Vp = —jé.df k jé.df (11.33)
b

[}

Since for cylindrical symmetry, E and df are in the same direction,
E.dr = Edr and, therefore,

b
V= [Edr
a
°C % A
or sz.( )—z( }[Inr]g1
" 2negK ) 2mggK
or V = A In(E) (11.34)
2megK a

Thus, the capacitance per unit length of the cylindrical capacitor is given by:

c= » _ 27meK (11.35)
\% In(b/a)
In the expression for the capacitance per unit length of a cylindrical capacitor,
Eqg. (11.35), we find that the capacitance depends only on the ratio of the
radii of the inner and outer cylinders of the capacitor and not on their
absolute values. You may like to solve a couple of problems to calculate the
capacitance of different capacitors. Try the following SAQ.
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SAQ 5 - Capacitance of cylindrical and spherical capacitors

a) Two cylindrical capacitors are of equal length and have the same
dielectric. In one of them, the radii of the inner and outer cylinders are 8
cm and 10 cm, respectively, and in the other they are 4 cm and 5 cm.
Determine the ratio of their capacitances.

b) The thickness of air layer in a spherical capacitor is 4.0 cm. The capacitor
has the same capacitance as the capacitance of an insulated conducting
sphere of diameter 30 cm. Calculate the radii of the surfaces of the
spherical capacitor.

11.5 CAPACITORS IN SERIES AND IN PARALLEL

Just like resistors, capacitors are connected in many different ways in
electrical circuits, for example, in series, in parallel or in their combinations. In
this section, we shall determine the equivalent capacitor of capacitors
connected in series and in parallel. The underlying principle is that the
equivalent capacitor holds the same charge when kept at the same
potential difference as the combination of the capacitors. The
capacitance of that capacitor is known as the effective capacitance of the
combination.

We first determine the effective capacitance of capacitors connected in
parallel.

11.5.1 Combination of Capacitors in Parallel

Fig. 11.9 shows two capacitors connected in parallel. In this combination, we -T— -T—
find that

e the potential difference between the plates remains the same; and Fig. 11.9: Two capacitors

e the total charge is the sum of the charge on each capacitor (since more ~connected in parallel.
area is available for storing charges).

We now determine the effective capacitance of the combination of three

capacitors in parallel shown in Fig. 11.10.

1 Q2 o5 f
(O pp— C,—— C3—— \%

Fig. 11.10: Three capacitors connected in parallel.
Here C;, C, and Cj are the capacitances of the individual capacitors. The
charges on them are Q, Q, and Q3 respectively and V is the potential

difference between the plates of each capacitor. Let C be the effective
capacitance of the combination.

The total charge Q of the parallel combination is

Q=0Q +Q+ Qg (11.36)

Since the potential difference V for the parallel combination of the capacitors
is the same as for individual capacitors, we have

c.Q_  a+Q+Q & Q@
v v V VvV
or
C=Cy+Cp +C3 (11.37)
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Fig. 11.11: Capacitors

in series.
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Thus, the effective capacitance of a parallel combination of capacitors is
equal to the sum of the individual capacitances.

Let us now consider the case of capacitors connected in series in a circuit.

11.5.2 Combination of Capacitors in Series

Fig. 11.11 shows the combination of capacitors connected in series. In this
combination, we find that

¢ If a voltage source is connected across the two end plates of the first and
last capacitor of the series, equal charges are induced in each capacitor;
and

¢ the potential difference across each capacitor depends upon its
capacitance.

Let us determine the effective capacitance of a combination of three
capacitors in series shown in Fig. 11.12. o

01 EQ Q1 1=Q  +Q5 =9 T _T_
A° 1 11 1 °B N

Cy Co Cs _l.

C

Fig. 11.12: Capacitors in series.

Here C;, C, and Cjare the capacitances of the individual capacitors. When a

voltage V is applied across this combination at terminals A and B, a charge
+Q is induced on one plate, which induces a charge —Q on the other plate.

The other plates acquire equal and opposite charges, because of electrostatic

induction. The potential drop across each capacitor is inversely proportional to
its capacitance (since C = Q/V,V =Q/C). Since Q is fixed, V o« 1/C.

Thus, for the potential drops across the capacitors, we have
Vl oC 1/Cl, V2 oC 1/C2 and V3 oC 1/C3
Now, we replace the three capacitors by a single capacitor of capacitance C

that holds the charge Q when subjected to the potential difference
V = V; + V, + V3. The capacitance C is known as the effective

capacitance of the combination. Thus, we have

C == or — = —
V C Q

1 Vi+VosVs ViV Vs
C Q Q Q Q

or
%:cil+é+é (11.38)

Thus, for capacitors connected in series, the reciprocals of the
capacitances add to give the reciprocal of the effective capacitance.

Before studying the last section of this unit, you may like to work out an SAQ.
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SAQ 6 - Capacitors in combinations

a) Determine the equivalent capacitance of the combination of capacitors
shown in Fig. 11.11 and the voltage drop across each capacitor given that
C,=0.05pF, C, =0.02 uF, C3=0.01 uF and V =220 V.

b) Calculate the effective capacitance of three capacitors arranged in such a
way that two of them (C; and C,) are in series and the third (C,) is in
parallel with this series combination.

11.6 APPLICATIONS OF DIELECTRICS IN
PRACTICAL CAPACITORS

You have learnt in Unit 10 and this unit that dielectrics are used very widely in
capacitors. Although the actual requirements vary depending on the
application, there are certain characteristics which are desirable for their use
in capacitors. In general, a practical capacitor should be small, have high
resistance, be capable of being used at high temperatures and have long life.
From a commercial point of view it should also be cheap.

A variety of dielectric materials such as kraft paper, thin films, ceramics, etc.
are used in different capacitors having varied functions. For example, specially
prepared thin kraft paper, free from holes and conducting particles, is used in
power capacitors where withstanding high voltages is more important than
incurring dielectric losses. In addition, the kraft paper is impregnated with a
suitable liquid such as chlorinated di phenyl. This increases the dielectric
constant. This reduces the size of the capacitor and in addition, the
breakdown voltage is increased.

Thin films of Teflon, mylar or polythene used in capacitors not only reduce
their sizes but also have high resistivity. Teflon is used at high frequencies as
it has low loss. In such capacitors, an electrolyte is deposited on the
impregnating paper. The size of such a capacitor is small as the film is very
thin. Polarity and the maximum operating voltage are important specifications
for these capacitors.

Some ceramics can be used as temperature compensators in electronic
circuits. High dielectric constant materials, where small variations in dielectric
constant with temperature can be tolerated, help in miniaturising capacitors.
Barium titanate and its modifications are the best examples of such materials.

Let us now study some of the common capacitors that use such dielectrics.

Capacitors may be broadly classified into two groups: fixed capacitors and
variable capacitors. They may be further classified according to their
construction and use as follows:

v

Fixed capacitor Variable capacitor

Types of capacitors

v v v v v v

Paper Mica Ceramic  Electrolytic Gauge capacitor  Gauge capacitor

capacitor  capacitor capacitor  capacitor of tube type of transistor
receivers receivers

Fig. 11.13: Classification of Practical Capacitors.

v

Trimmer
capacitor
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L

Fig. 11.14: Fixed

capacitors.
_+_
A E
-—M

Fig. 11.15: Wet type
electrolytic capacitor.

4’

B N

C

+
Fig. 11.16: Dry type

electrolytic capacitor.

We now briefly discuss some practical capacitors listed in Fig. 11.13.

Fixed Capacitors

As their name suggests, these capacitors have fixed capacitance. These are
essentially parallel plate capacitors, but compact enough to occupy much less
space. These capacitors consist of two very thin layers of metal coated on the
two surfaces of mica or paper having a uniform coating of paraffin. The mica
or paper forms the dielectric between the conductors. This arrangement is
rolled up so that the capacitor is in a compact form (Fig. 11.14).

Though paraffin-wax paper capacitors are cheaper, they absorb a good
amount of power. For this reason these capacitors are used in alternating
current circuits, radio-sets, etc.

Ceramic Capacitors

These are low loss capacitors at all frequencies. Ceramic materials can be
made to have very high relative permittivity. For example, for Teflon € = 8 but
when titanium is added to it, the value of ¢ becomes 100 and when barium
titanate is added to it, the value of ¢ may be increased to 5000. Each piece of
such dielectric is coated with silver on the two sides to form a capacitor of
large capacitance.

Yet another advantage with these ceramic dielectrics is that they have
negative temperature coefficient. Ceramic capacitors are widely used in
transistor circuits.

Electrolytic Capacitors

An electrolytic capacitor consists of two electrodes of aluminium, called the
positive and negative plates. The positive plate is electrolytically coated with a
thin layer of aluminium oxide. This coating serves as the dielectric. The two
electrodes are in contact through the electrolyte which is a solution of
glycerine and sodium (or a paste of borates, for example, ammonium borate).
There are two types of electrolytic capacitors — the wet type and the dry type.

In the wet type electrolytic capacitor (Fig. 11.15), the positive plate (A) is in the
form of a cylinder and presents a large surface area. This is immersed in the
electrolyte (E) contained in a metal can (M). This can act as a negative plate.

In the dry type electrolytic capacitor (Fig. 11.16), both plates are in the form of
long strips of aluminium foils. Aluminium oxide is deposited electrically on one
(A) of the foils. This is kept separated from the other (B) by cotton gauze (C)
soaked in the electrolyte. It is then rolled up into a cylindrical form. The oxide
films on aluminium offer a low resistance to current in one direction and a very
high resistance in the other direction. Hence an electrolytic capacitor must
be placed in a DC circuit such that the potential of the oxide plate is
always positive relative to the other plate.

Variable Air Capacitor/Gang Capacitor

A very common capacitor whose capacitance can be varied continuously is
used for tuning in a radio station. The capacitance of this capacitor can be
uniformly varied by rotating a knob (Fig. 11.17).
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Fig. 11.17: Variable air capacitor. (Source: freewebs.com)

The capacitor consists of two sets of semicircular aluminium plates. One set of
the plates is fixed and the other set of plates can be rotated by the knob. As it
is rotated, the moving set of plates gradually gets into (or comes out of) the
space between the fixed set of plates. The area of overlap between the two
sets of plates can thus be uniformly varied. This changes the capacitance of
the capacitor. The air between the plates acts as the dielectric. Usually it
consists of two capacitors attached to the same knob (ganged). When the
knob is rotated, the variation of capacitance in both the plates takes place
simultaneously. This type of capacitor is widely used in wireless sets and
electronic circuits.

Voltage Rating of a Capacitor

Capacitors are designed and manufactured to operate at a certain maximum
voltage which depends on the distance between the plates of the capacitor. If
the voltage is exceeded, the electrons jump across the space between the
plates and this can result in permanent damage to the capacitor. The
maximum safe voltage is called the working voltage. The capacitance and the
working voltage (WV) are marked on the capacitor in the case of bigger
capacitors. These are indicated by the colour code (similar to that of
resistance) in the case of capacitors having low values of capacitance.

In Table 11.2, we give the capacitance range, maximum rating voltage and
use of different types of capacitors.

Table 11.2: Range, ratings and uses of different types of capacitors

Type of Capacitance Maximum Remarks
Dielectric Range Rating Voltage
Paper 250 pF — 10 pF 150 kV Cheap, used in circuits where
losses are not important.
Mica 25 pF - 0.25 puF 2 kv High quality, used in low loss
circuit.
Ceramic 0.5 pF -0.01 puF 500 kV High quality used in low loss

precision circuit where
miniaturisation is important.

Electrolytic 1uF — 1000 pF 600 V at small | Used where large
(Aluminium capacitance capacitance is needed.
oxide)

51



Block 3 Electrostatics in Medium and Magnetism
We now summarise what you have studied in this unit.

11.7 SUMMARY

Concept Description
Capacitance B Any device which can store charges is a capacitor. The capacitance of
parallel plate capacitor with free space between its plates is given by:
_Q _ gA
Vv d

The capacitance of a parallel plate capacitor with a dielectric material of
dielectric constant K inserted between its plates is given by:

AK
c-%
d
Energy stored in B The energy stored in a capacitor is given by:

capacitor 2
P u-=2tcvz- &
2 2C
Effect of dielectricon B If an insulator of thickness ‘t’ is introduced between the two plates of a
capacitance parallel plate capacitor, its resultant capacitance is given by:
c—__ tA
[d-t+(t/K)]

Energy stored in B The energy stored per unit volume in a dielectric medium is given by:
dielectric medium 1ep
2
Spherical capacitor B The capacitance of a spherical capacitor is
_4neggab
(b-a)

where a and b are the radii of inner and outer spherical shells.
Cylindrical capacitor B The capacitance per unit length of a cylindrical capacitor with dielectric is
given by:
2negg K
In(b/a)
Capacitors in series B The resultant capacitance of two capacitors C; and C, connected in

series is given by:
-1
C= P N i} _ GCo
Cl C2 Cl + C2
Capacitors in parallel B The resultant capacitance of two capacitors C; and C, connected in
parallel is given by:
C=C1+Co

11.8 TERMINAL QUESTIONS

1. A parallel plate capacitor has n similar plates of cross-sectional area A at
equal spacing d, with the alternate plates connected together. If dielectric
of dielectric constant K is filled between these plates, show that its
capacitance is equal to (n —1)eg K A/d.

2. The plates of a parallel plate capacitor are separated by a distance of
52 0.5 cm. What should the potential difference between the plates be so that
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the force of gravity on a proton equals the force on it due to the electric
field? Take the mass of proton as 1.67 x 10727 kg.

A capacitor is made up of two hollow concentric metal spheres of radii a
and b such that b > a (Fig. 11.18). The space between the concentric
spheres is filled with a dielectric material of dielectric constant K and the
outer sphere is earthed. Determine the capacitance of the capacitor.

In the arrangement shown in Fig. 11.19, obtain the condition on the
capacitances such that when a voltage is applied between the terminals A
and B, the voltage between terminals C and D is zero.

Cy Cy
——
R 1 lc 2
o— —oB
iD
N K
11 11
Cq o

Fig. 11.19: Diagram for TQ 4.

Two capacitors, one charged and the other uncharged, are connected in
parallel. Show that the final energy of the combination is less than the sum
of the initial energy of the individual capacitors. Derive the formula for the
loss of energy in terms of the initial charges and the capacitances of the
two capacitors.

Consider a parallel plate capacitor of area A with distance d between the
plates. The capacitor is filled equally with two dielectric materials of
dielectric constants K; and K, as shown in Fig. 11.20. Calculate the

capacitance of the arrangement. What is its capacitance when K; = K, ?

The space of thickness d between the plates of a parallel plate capacitor is
filled with two charge-free slabs of dielectric material each of thickness d/2
and dielectric constants K; and K,, respectively (Fig. 11.21). Here d is
the distance between the capacitor’s plates. The free charge densities on
the upper and lower plates are + ¢ and — o, respectively.

. Fig. 11.21: Diagram for TQ 7
Obtain the 9 9 Q

a) electric displacement in each slab;

b) electric field in each slab;

c) potential difference between the plates; and

d) capacitance of the capacitor assuming the area of the plates to be A.

Consider two concentric metallic spherical shells of radii a and c,
respectively. The region between the shells is partially filled with a
dielectric as shown in Fig. 11.22. Calculate the surface charge densities at
r = b and r = c. Calculate the potential difference between the outer

Fig. 11.18: Diagram for
TQ 3.

\

7N

Fig. 11.20: Diagram
for TQ 6.

Fig. 11.22: Diagram for
TQ7.
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and inner shells when a charge Q is placed on the inner shell. What is the
capacitance of this arrangement?

11.9 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1.

N
DX

m
—
W)
T
(@)
I
—

Fig. 11.23: Diagram for
answer of SAQ 2.
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From Eg. (11.5), the capacitance of a spherical shell of radius R (in m) is
C = 4mggR = 41 x8.85x10712 x6000x10° F = 6.67x104 F

Let +o and —c be the surface charge densities on the upper and lower

plates of a parallel plate capacitor (Fig. 11.23). Consider a Gaussian
surface lying inside the upper plate and in the space between the plates.
To apply Gauss’s law to this surface, we first calculate the value of the
integral §I§.d§ for it.

S
Its value through the surface ABFG is zero as the electric field E inside the
conducting surface is zero.

Similarly its values through the surfaces ABCD, EFGH, BCEF and ADHG
are zero since these surfaces are parallel to the electric field.

Since E is normal to the surface DCEH, the value of the integral through
the surface DCEH is equal to EA where A is area of the surface. From

Qen

Gauss’s law this integral is equal to =, where Qg is the charge
€0
enclosed by the Gaussian surface. Thus, we have
EA = Qﬂ - ﬁ = E = Ll
€0 €0 €0
The capacitance of the capacitor is given by

gg A 8.85x10712 x (1.0x 1072)?
d 1.0x 1074

Energy stored is given by U = ; CcV?Z. Thus,

® —

F = 8.85pF

U = [% % 8.85 x 10712 x (1.5)°] J = 9.95x10 2 J~ 1.0 x 10711

Capacitance with the dielectric
Capacitance with free space

We know that K =

Here K = 3.Thus the capacitance increases by a factor of 3 when the

dielectric is introduced. From Eg. (11.15), the capacitance of the capacitor
without the dielectric is given by Ceespace = 88—. If a dielectric material
of thickness t is introduced in the parallel plate capacitor with gap d, its
capacitance is given by Eq. (11.17)/(11.23) as
C. o gA
dielectric d—t+ t/K)

Cdielectric _ d
Cfree space (d -t + t/K)
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Here t = %d and K = 3.

d-t+t/K —d-3d+-29 _d
4 4x3 2
and Cielectric _ E -2
Cfreespace 9
2
That is, the capacitance will get doubled.
5. a) From Eq. (11.35), C; = Iznl% and C, = IZ“;(/’A"(
n( ) n( ) Fig. 11.24: Diagram for
G _ In(5/4) _ o G =G, answer of SAQ 5b.
C, In(10/8)

b) Refer to Fig. 11.24 which shows two concentric spherical shells of radii

a and b. As per the problem,

(b-a)=4.0cm=0.04m 0]

From Eqg. (11.29), we know that the capacitance of spherical capacitor

is given as
_4negab  4mepab
" (b—a) (0.04m)
Also, from Eg. (11.5), we know that the capacitance of an insulated
conducting sphere having radius a can be written as

Co =4negga

(ii)

1

As per the problem, the radius a of the isolated sphere is
[(30cm)/2] =15cm=.15m

So,

Co =4negg (0.15m) (iii)
As per the problem,

Cl = C2
Thus, from Egs. (ii) and (iii), we have

ab

(0.04 m)
= ab=0.006m
And, we can write

(b+a)2 =(b-a)2 +4ab

=(0.04m)2 + 4 x(0.006 M)
b+a=0.16m (iv)

So, we have from Egs. (i) and (iv),
a=6.0cm and b=10cm

(0.15m)

6. a) When the capacitors are connected in series, the equivalent
capacitance C is given by:
1 1 1 1

= — 4+ —

C, C Cg

c
N U S T S T

+
0.05 0.02 0.01
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and Q=CV = 1 x108x220C = 1.3x10°C
170
-6
V) = Q _ 13x10° , _ 55y

C, 005x10°°

—6
Q _ 1.3x10 V- 65V
Co 0.02 x 10~

\%)

-6
vg = 2 = 23Xy - 13,107y
Cs  0.01x10

b) The arrangement is shown in Fig. 11.25. Let C, be the effective
capacitance of C; and C,. Using the result for capacitors in series, we
have

i = i + i or C4 = ﬁ

C4 Cl C2 Cl + C2
The capacitance C, then adds to Cj to give the total capacitance C of
the combination:

GG

c=¢C, +C or C=C; + —=—
= < & C1+C2

Cy Gy
| | | |
11 11

Fig. 11.25: Diagram for answer to SAQ 6b.

Terminal Questions

Ow>

Fig. 11.26: Diagram for
answer to TQ 1.
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1L

From Fig. 11.26, you can see that n plates provide (n —1) capacitors
connected in parallel. Dielectric of dielectric constant K is filled between

these plates. For example in Fig. 11.26, the first 3 plates A, B, C give two
capacitors AB and BC, and so on.

The effective capacitance C of (n—1) capacitors, of equal capacitance

connected in parallel is equal to the sum of the individual capacitance of
all capacitors:

80 A
d
Let V be the required potential. Then E = V/d = V/(5><10_3) vm

C = (n —1) x capacitance of a single capacitor = (n — 1)K

and the force on the proton due to the electric field is
qE = (200 x 1.6 x 1071° V)N

The gravitational force on the proton is
mg = (1.67 x 10727 x 9.8)N

Equating the two we get

_ (1.67x10727 x 9.8)
(200 x 1.6 x 1071°)

\%

V =5x1010 v
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3.

If a charge +Q is placed on the inner sphere of radius ‘a’, an equal and

opposite amount of charge appears on the inner side of the outer sphere.
The electric field gets confined to the space between the concentric
spheres. To determine the capacitance, we have to calculate the
displacement D. We consider a spherical Gaussian surface S of radius r
lying in the dielectric (Fig. 11.27). The displacement Dis normal to this
surface and so applying Gauss’s law, we get

2n _
4nr®D = Q Fig. 11.27: Diagram

Since D = g5 KE, we have for answer to TQ 3.

D [ Q ]( 1)
E = = Bl
SoK 4TESOK r2

The potential of the inner sphere with reference to the outer sphere is

a_ bq b Q dr
V =Va -Vp =-[EdF =[Edi :j4moK 3
b a a

because E.dr = Edr . The outer sphere is earthed and is, therefore, at
zero potential and V,, = 0.

4megK r
or V = Q (i - EJ
4neg K a b
. Yy 4 K
Therefore, the capacitance is given by C = Q = 4megabk
\Y; (b-a)

4. The potentials of the two plates of the capacitors 1 and 2 connected to the

point C are the same. Hence if a charge q, is placed on one of these
plates, the other plate will have an equal and opposite charge. Let a
voltage be applied between A and B. Suppose a charge g; accumulates
on capacitor 1 of capacitance C,; and a charge g, accumulates on
capacitor 3 of capacitance C3. Then the potential differences between the
plates of the capacitors 1, 2, 3 and 4 are, respectively, given by:

DD B gy B2

C, C, Cs Cy4

If the potential difference between C and D is equal to zero, then the
potential difference across C, = potential difference across C, and the

potential difference across C; =potential difference across Cg

= —% and Do %

c, C, C, GCs

4z Cy Cs 57
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This is the required condition for zero potential difference between C and
D.

Let the initial charge on the charged capacitor be g and its capacitance be
C;. When this capacitor is connected to the uncharged capacitor of
capacitance C,, then the charge q is distributed on both the capacitors.
Since the capacitors are connected in parallel, the charge is distributed

until the potentials of the capacitors are equal. Suppose in this process, a
charge q, flows from the charged capacitor to the uncharged one.

Suppose a charge g; remains on the initially charged capacitor after the
potentials on the capacitors are equal. Then g, = q — ¢,.Since the
potentials are equal, we have

9 _ 9-% _ 9%

G G C
Solving these two equations for g; and g,, we get
Coq .
Q2 = ———~~ (i)
(€1 +Co)
Cqq -
and f = — (ii)
(€ +Co)

The initial energy E; of the charged capacitor (before the distribution of

the charges) is

2
g - 9%
2C,
The final energy E; of the two capacitors is given by:
9, 9
2C1 2C»
Substituting for g, and g, from Egs. (ii) and (i), we get
e ©0@2 . Cqz2 g2
'T2(C1+C22  2(C1+C2)?7  2(C1+Cp)
2 2
Hence the loss in energy is q_[i_ 1 }: q=Co
21C C+Co 2C1(C1+C2)

The arrangement shown in Fig. 11.20 is equivalent to two capacitors of
area %, thickness d, which are filled with dielectric materials of dielectric

constants K; and K,,respectively. These capacitors are arranged in

parallel (because the upper and lower plates of one capacitor are joined
with the respective upper and lower plates of the other capacitor). Now
from Eq. (11.15), we get

Cl _ 80 KlA/Z and C2 _ 80 K2 Al2
d d
C=C+C _ G ASZ (Ky + Kz)ZSOA Ky + Kp)
d 2d
SoKA

When K; = K,,we get the well known result C =
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7. a) Consider the Gaussian surfaces S; and S, each of area AA in the two
slabs (Fig. 11.28).

Let the displacements in the two slabs be D; and D, respectively.

d/ZIV K{y 71777 S

d/ZI Ko S;

Fig. 11.28: Diagram for answer to TQ 7.

Applying Gauss’s law to surface S;, we get

I f)ldé = Qen |S]_

S1

or DlAA = oAA = Dl =0 (|)
Similarly for surface S,, D, =0 (i)

: — = D.

b) Since D = ¢x KE, weget E; = 1 _ © (iii)

oK1 gk
D .
and Ep=—2 = 2 (iv)

oKy oKy

¢) The potential difference between the plates is given by:

d d/2 d d/2 d
V = jE.dF - jEl.dF+ IEZ.dF - jEldr+ jEzdr
0 0 d/2 0 d/2
d/2 d d d
or V = Eqr + Eor = E1— + E>—
1 |0 2 |d/2 12 22
Using Egs. (iii) and (iv) in this expression, we get
Vi od 1.1 (V)
80 2 Kl K2
d) FromEq.(v), C=2=— A% ___2A% KiK;
\ C’d(1+1j d  (Ki+Kz)
2 (K1 Ky

8. In order to calculate the surface charge densitiesat r=b and r=c, we

need to calculate the polarisation for both cases. We do it as follows:

Due to spherical symmetry, the electric fields and the displacements are
radial for both cases. Now consider a spherical Gaussian surface of radius
r such thata <r<b (Fig. 11.29). Since Q is the charge enclosed by this
sphere, from Gauss’s law, we have

Q

4nr2

Dy4nr?=Q = D=

Fig. 11.29: Diagram
for answer to TQ 8.

Now recall from Unit 6 that the electric field

= Q

E; = p > a<r<b 0]
nsor
In the same way, we can show that for the region b <r <c,
E, = er‘ b<r<c (ii)
4ner
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Now, you know that for linear dielectrics,

P=D- SOE = (8—80)E=80(K —1)E
Therefore, at r=b, P, = gy(K-1)E;

Since the normal to the dielectric surface at r = b is along-r, we have

~

Op|_, =~ Pp.f = oK —l)El.r‘r:b
s (K- — 2 FF
Amegr b
P I
. . 41 €p b

Notice that the unit
vector normal to the . QK-1
dielectric’s surface or Gb|r=b - Arb2
points outward with
respect to the dielectric To determine o, at r = ¢, we follow the same method as above.
sphere, whichis +T at Since the normal to the dielectric surface at r = ¢ (see the margin remark)

r=cbut -7 atr =hb. ) .
is along r, we have

Obl_c = IBZ'F‘r:c =go(K —l)Ez.F‘r:C

~ (K ~)— 2
4mec
Q €
—go(K-D)—=— |wK=2
£of ‘ 4meg Kc?2 ( €0 J
or op| _. = QK-

'=C " AnKc?

To determine the potential difference between the outer and inner shells,
we begin from its definition
C

a b c
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Compass was used for navigation even in
ancient times, when there was not enough
understanding about magnetism. You will
learn about modern understanding of
magnetism in this unit. (Picture source:
Wikimedia Commons)

UNIT12

MAGNETIC FIELD |

Structure
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12.2 Electric Current and Current Density (Definition of Ampere)
12.3 Magnetic Field 12.7 Summary
Source of Magnetic Field 12.8 Terminal Questions
Definition of Magnetic Field 12.9 Solutions and Answers
12.4 Gauss’s Law for Magnetism

STUDY GUIDE

So far, in this course, you have learnt the concept of electric field and electric potential. You
have also learnt how dielectric materials respond to electric field. The focus of these
discussions has been on learning laws, concepts and techniques which enable us to
determine electrostatic force and electric field due to static electric charges and charge
distributions.

We now shift our focus to magnetic field. In the present and the next two units, you will study
about magnetic field and related concepts. To understand the contents of this unit better, you
should look for analogies between magnetic field and electric field. For example, as electric
field is produced by static electric charge(s), what produces magnetic field? Are there any
laws to determine the value of magnetic field similar to Coulomb’s law and Gauss’s law for
electric field?

You are, therefore, advised to refresh the basic laws of electrostatics such as Coulomb’s law
and Gauss’s law given in Units 5 and 6 of this course. Since you will be using the concepts of
vector calculus extensively in this unit, you must revise Units 1 to 4 of this course. Further,
while studying this unit, you should notice the differences and similarities between the electric
field and the magnetic field. You should try to solve all the SAQs and TQs yourself.

worth the humble reasoning of a single individual.”

“In questions of science, the authority of a thousand is not Galileo Galilei
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12.1 INTRODUCTION

In Unit 5 (Block 2) of this course, you have learnt the concept of electrostatic
force between stationary charges and its description in terms of static electric
field and electric potential. You have learnt how to calculate electrostatic force
and field using Coulomb’s law and Gauss’s law. You may now like to know:
What happens when charges are moving? A moving charge experiences
two types of forces: (i) electrostatic force due to the electric field of other
charges at rest; and (ii) a magnetic force when it is in the presence of steady
flow of charge (i.e., a steady current) or a permanent magnet. Like
electrostatic force, the magnetic force is described in terms of a vector field,
called magnetic field, which is the topic of this unit. However, there are some
major differences between the electric and magnetic fields, which you will
discover as you study this unit.

In the science laboratory, during your school days, you must have been
fascinated with magnets. Recall that when you tried to push two magnets
together in a way they didn’t want to go, you felt a mysterious force!

In the 19™ century, it was discovered that electric current produce magnetic
field. In view of close relation between electric current and magnetic field, we
begin this unit by first discussing the concept of electric current and current
density in Sec. 12.2. In this section, you will also learn the continuity equation
which expresses one of the basic laws of physics — conservation of charge —
in differential form. In Sec. 12.3, we discuss the sources of magnetic field and
define magnetic field in terms of the force experienced by current and charge.
You have learnt Gauss’s law for electrostatics in Unit 6 of this course. The
form that Gauss’s law takes for magnetism is discussed in Sec. 12.4. In

Sec. 12.5, you will learn Biot-Savart law which gives us a method to determine
the magnetic field produced by steady currents. You will also learn how to
determine the magnetic field due to steady currents using this law. We end
this unit by calculating the force between two parallel current carrying
conductors which enables us to arrive at the definition of Ampere — the unit of
electric current.

In the next unit, we will continue our discussion of magnetic field and you will
learn Ampere’s law and its applications for determining magnetic field due to
steady currents flowing in different geometries.

Expected Learning Outcomes

After studying this unit, you should be able to:

+ explain the concept of current density and derive continuity equation;

+ describe the conduction mechanism and explain the concept of drift
velocity;

+ deduce the relation between electric current and the magnetic field;

+ define the magnetic field at a point in terms of the force on a steady
current element and also on a moving charge particle;
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+» use the expression for the force on a steady current element or on a
charged particle due to a magnetic field to calculate the force on certain
simple current carrying circuits;

+ state and explain Gauss’s law for magnetic field;

«+ use Biot-Savart law to determine the magnetic field generated by a
simple current flow; and

+ determine the force between two parallel current-carrying conductors.

12.2 ELECTRIC CURRENT AND CURRENT
DENSITY

In Block 2 of this course, you have learnt that when a positive charge is placed

in an electric field, it experiences the electrostatic force and moves in the
direction of the field. If the ends of a conductor, say, a copper wire, are
connected to a battery, an electric field E is set up at every point within the
conductor. Due to the presence of the field, the electrons present in the wire
move in the wire. You know that electric current flows whenever charges
move. In the case of a copper wire, the flow of electrons constitutes the
electric current. It is defined as the amount of charge moving across a
given cross-section of the wire per unit time.

When the current is not constant, i.e., the current varies with time, we define
an instantaneous value of the current i(t). Refer to Fig. 12.1 which shows a
conductor wire PQ connected to a battery. If a net charge Aq crosses the
shaded area A which is perpendicular to the axis of the wire PQ (Fig. 12.1) in
time At, the instantaneous current is given by

) A d
i(t)= {'ﬂoA—?=d—‘j (12.1)

Eq. (12.1) shows that the unit of current is coulomb per second (Cs™1). In the
S| system of units, it has been given the name ampere (abbreviated as A).

An electric current may consist of either positive or negative charge in motion,
or it may involve both positive and negative charges. By convention, the
direction of current is defined as the direction in which the positive
charge flows. If the moving charge is negative, as with electrons in a metal,
then the direction of current flow is opposite to the flow of the actual charges.
When the current is due to both positive and negative charges, it is
determined by the net charge motion; that is, by the algebraic sum of the
currents associated with both kinds of charges. For example, when salt (NaCl)
is dissolved in water, it splits up into Na* ions and CI” ion. The sodium ion is
positively charged and the chlorine ion is negatively charged. Under the
influence of the electric field established between the two electrodes, these
ions move through the liquid in opposite direction. Thus the motion of both
positive and negative ions contributes to the current in the same direction.

i = dq/dt
Aq A
P Q
—
Fig. 12.1: The

instantaneous current
along a wire is defined
as the net rate at which
the charge passes
through an area
perpendicular to the axis
of the wire.

NOTE

Note that current is a
scalar quantity,
because both g and t
are scalars. It is not a
vector quantity as it
does not obey the
vector laws. Often, a
current in a wire is
represented by an
arrow. Such arrows
are not vectors; they
only show a direction
(or sense) of flow of
charges along a
conductor, not a
direction in space.
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Fig. 12.2: Calculation of
current in terms of
velocity of charge.

Current Density

As defined earlier, current is the total charge passing through the entire corss-
section of a wire per unit time. Therefore, the current is determined by the total
charge that flows through the wire. It does not matter whether or not the
charge passing through every element of the cross-section of the wire is the
same. It is for this reason that current is a macroscopic quantity. If the
charge passing through various elements of the cross-section of the wire is
not the same, it is necessary to define a quantity at every point of the
conductor. This is called the current density which is a microscopic quantity
and it is denoted by J. Itis defined as the charge flowing per unit time per
unit area-normal-to-flow and has a direction in which the positive charge
moves.

Let us consider a simple system in which particles, each of charge q, are
moving to the right as shown in Fig. 12.2. Imagine a small cylindrical surface
of cross-sectional area dS around point P. So all the particles crossing this
small cylinder may be assumed to have the same speed v. Then, the length of
the cylinder through which charges flow in time dt is vdt as shown in Fig. 12.2.
So, the volume of the cylinder is dSvdt. If n is the number of charged patrticles
per unit volume, then the number of charged particles found in the cylinder is
ndSvdt. Therefore, the average rate at which charge flows through dS, i.e. the
current through dS, is given by

i =»q(ﬂiint)::ndqu (12.2)

Since current density J, is defined as the current per unit area held normal to
the velocity of the current carriers, we have,

[
J=— =nqv 12.3
35 N (12.3)
Since the direction of J is the direction of the actual flow of charges at that
point, the above equation can be written in vector form as

J=nqv (12.4)
Thus, Jis a vector quantity. In SI system of units, J is expressed in amperes
per square meter. When the current carriers are electrons, g =—e and

Eq. (12.4) takes the form

J=-nev (12.5)

The product nq in Eq. (12.4) represents the volume charge density p of the
current carriers. Hence, in terms of p, the current density [Eq. (12.4)] is
expressed as follows:

J=pv (12.6)
If current density is uniform over the cross section S of the wire, we can
calculate the total current by multiplying the current density by the cross-
section of the wire. If the current density is not at right angles to the cross-
sectional area, we consider only that component of J which is perpendicular

to it. If we define a vector S whose magnitude is the cross-sectional area S
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and the direction is along the perpendicular to the area, then a uniform current
density J gives rise to a total current i =j.§(Fig. 12.3). When the current
density and/or surface orientation vary with position, we can follow the same
process for many small areas dS, and then sum the result to get the total
current (Fig. 12.4). The current through a small area dSis J.dS, so that the
total current, i, through the entire surface is

i =ﬂ3.d§ (12.7)
S

where the limit of the integral is chosen to cover the entire surface. Eq. (12.7)
should remind you of the definition of the electric flux you have learnt in Unit 6

of Block 2. Indeed, the electric current though a surface is the flux of the Fig. 12.3: The current
current density through that surface. Eq. (12.7) shows that electric current is a through a surface of
scalar quantity because the integral J.dS is a scalar. area S is given by

JS cos 0, or J.Swhere 6
is the angle between the

vectors S and J.

<
<

e w2 A

Fig. 12.4: When the current density and/or surface orientation vary with
position, the total current is written as i = [[J.dS.

In Fig. 12.4, we have taken the surface S to be an open surface. In such a
situation, the vector dSis taken to be positive in that direction along which the
current through S is required.

But, when S is a closed surface, as shown in Fig. 12.5, the direction of every

vector dS is taken along the outward normal to the surface. For such d
closed surfaces, the integral of J over S gives the rate at which the charge is

going out of the volume enclosed by S.

o
<l

Now one of the basic laws of physics is that an electric charge is

indestructible; it is never destroyed or created. Electric charges can move

from place to place but never appear from nowhere. We say that the charge Closed surface
is conserved. Hence, if there is a net current out of a closed surface, it must

be equal to the rate at which the total charge within the volume is depleting. ' '9- 12.5: The integral

ﬁj.dé over a closed
S
surface is the rate of

I d change of total
ﬁ J.dS = —E(Qinside) (12.8) charge inside.
S

Using Eq. (12.7), we can write the law of conservation of charge as follows:
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According to the
Divergence theorem,

ifj.dézw(ﬁj)dv

66

You know that the charge within the volume can be written as a volume
integral of the charge density p:

Uinside = J]‘ pdV (12.9)
v

where V is the volume enclosed by surface S. Using Eq. (12.9) in Eq. (12.8)
we get

ﬁj.déz—%ﬂj pdV (12.10)
S \Y

Since we are dealing with a fixed volume V, the time derivative operates only
on the function p. Since p is a function of spatial coordinates as well as time,
the time derivative of p is written as the partial derivative with respect to time
when it is moved inside the integral. Hence, Eq. (12.10) can be written as

ﬁj.déz—mgtpdv (12.11)
S V

The surface integral on the left hand side of the Eq. (12.11) can be converted
into a volume integral using the divergence theorem (see Sec. 4.7, Unit 4 of
Block 1), leading to

ﬂ (V.J)dV =— m % dv
V V

or m (6.3 + %jdv =0 (12.12)
\Y

Now, since the volume V is completely arbitrary, Eq. (12.12) will hold for an
arbitrary volume element only when the integrand is zero. Thus, we have

7.3+ o (12.13)
ot

The differential equation [Eq. (12.13)] is known as the continuity equation. It
expresses the conservation of charge in a differential form. Its meaning is
clearer in Eq. (12.12), according to which the change in the quantity of charge
in any arbitrary volume must be accompanied by a net flow of charge inwards
or outwards across its surface. For steady currents, we have

% _ 0 (12.14)

ot
This is because a steady current is one for which Jis constant in time at
every point. In other words, equal charges flow in and flow out of a section
and, hence, there cannot be any accumulation of charge at any point of the
system. Thus, for steady currents, the continuity equation [Eq. (12.13)]
becomes

<!
[
I
o

(12.15)
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Before proceeding further, solve an SAQ.

SAQ 1 - calculating electric current
The amount of charge passing through a cross section of a wire is given by
q(t)=(4.5Cs2)t2+25C

for t varying between 0 and 5.0 s. a) Write the expression for instantaneous
current i(t) in this time interval. b) Calculate the value of current att = 3.0 s.

Now let us discuss why metals conduct electricity. This will lead us to a
relation between current density and electric field causing current flow.

Current Density and Electric Field

In an electrical conductor like metal, the metal ions are fixed in a regular array,
known as lattice, making them relatively immobile. The metal ions are
positively charged because the atoms forming the metal lose one or more
electrons which become free in the sense that these electrons wander through
the ion lattice as shown in Fig. 12.6. It is the motion of these negatively
charged electrons that gives metals their conducting properties.

When a battery is connected between the ends of a metallic wire MN as
shown in Fig. 12.7, we find that current flows through it from M to N (current
flowing in the wire can be detected by putting an ammeter in series). Let us
find out why and how the current starts flowing in a particular direction by
taking a microscopic view of the situation.

When the metallic conductor is not connected to the battery, the free electrons
present in the metal are in constant motion because of their thermal energy.
Their motion is random and their velocities are oriented randomly as shown in
Fig. 12.8a.

- |
"\

(a) (b)
Fig. 12.8: Motion of some free electrons a) in the absence of an external field;
b) in the presence of an external field. Here v, represents thermal

velocity, Vg is the velocity only in the presence of electric field and
v is the net velocity (as shown by the solid lines).

In this state, the free electrons undergo frequent collisions with positive ions
and impurity atoms (if any). In each collision, the velocity changes both in
magnitude and direction. Since the motion is completely random, at any
instant, the average thermal velocity (V) along any direction in the bulk of the
conductor is zero. Hence no current flows. But remember that average speed
of these free electrons at any instant is not zero. Its value is of the order of
10°ms1,

Electron
@ ® @
ST LS
® @<lon @

g
“%ta b

Fig. 12.6: A schematic
view of the crystal
structure of a metal. The
positive metal ions exist
on arigid lattice. Each
atom, on forming an ion,
gives up one or more
electrons, which are
then free to wander
through the crystal.

Fig. 12.7: A battery
(source of emf) can
maintain an electric field
within a conducting
wire.
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You may know that a
freely falling body in
vacuum has a velocity v
= gt which increases
continuously with time.
But, if the body falls
through a viscous fluid,
its terminal motion
becomes uniform with a
constant limiting
velocity. By analogy,
the effect of the crystal
lattice can be
represented by a
viscous force, acting on
the conduction
electrons when their
natural motion is
disturbed by the applied
electric field.
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When a battery is connected between the ends of the metallic wire, it
maintains a uniform electric field E at each point in the wire. The electrons
experience a force in a direction opposite to that of the applied electric field.
Due to this force, besides having a thermal velocity v¢,an electron also
experiences a constant acceleration a =eE /mg,where me is the mass of the
electron. You may now ask: In the presence of the electric field, does the
electron velocity, Vg, increase continuously as it moves in the wire?
Experiments show that this does not happen. As an electron picks up speed
under the action of the field, it collides with the ions or the impurity atoms
within the metal. The result of these collisions is that the electron loses its
velocity acquired due to acceleration in the field. In other words, in each
collision the velocity of the electron is randomised, and it begins afresh and
accelerates in the direction of the field. If U is the velocity of an electron just
after a collision, its velocity Vg just before the next collision will be

(12.16)

where t is the time of travel between the two collisions. The average of the
velocities of all electrons before collision can be written as

(12.17)

where the sign <> denotes the average value of the parameter. Since the

effect of each collision is to reduce the velocity to zero and to restore the
random thermal motion, we can write (G) as <\7t>which is zero, as explained

earlier. If <t> is represented by T, then we can write Eq. (12.17) as

(\75>=£r (12.18)
Me
So, Vg does not increase continuously with time, but will rather have an
average value (Vg ) as given by Eq. (12.18). Here T denotes the average time
between successive collisions, i.e., the time over which the electron
accelerated freely under the action of the electric field. This is called mean
free time. The thermal motion of the free electrons is, therefore, modified as
shown in Fig. 12.8b. It is clear from the figure that at any instant, the resultant
velocity is v¢ + Vg and for each electron it is different. The average resultant

velocity of all the electrons can be expressed as

(V) =(Vi +Vg) = (Vi) +(VE) (12.19)
As explained above, (Vi )is zero, but (Vg ) is not zero because of the fact that
the vg for all the free electrons is in the same direction. Therefore,

(V) = (Vg ). Hence, the free electrons in a metallic wire have an average
velocity which is caused only by the applied electric field. This velocity is
called the drift velocity of the electrons and it is denoted by vq4. Thus, we
write Eq. (12.18) as

(12.20)
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The velocity v of electrons which appeared in Eq. (12.4) is actually the drift
velocity, vq given by Eq. (12.20). Thus, the current density in a conductor can

be written as

J=nq Vg (12.21)
In most substances and over a wide range of electric field strengths, it has
been experimentally found that the current density is proportional to the
electric field that causes it. Thus, the relation may be written as

J=cE (12.22)

where o is the proportionality constant and is known as the conductivity of
the material. Eq. (12.22) is a statement of Ohm’s law. It is an empirical law, a
generalisation derived from experiments for some materials under certain
conditions. It is not a theorem that must be universally obeyed. The value of o
is very large for metallic conductors and extremely small for good insulators. It
may also depend on the physical state of the material, for instance, on its
temperature. But for many common conductors, for given conditions, it does
not depend on the magnitude of E. Such materials are called ohmic or linear
and for such materials Eq. (12.22) implies that the direction of Jis always the
same as the direction of E. Instead of the conductivity, we can use its
reciprocal, called resistivity p, in stating the relation between current density
and electric field as follows:

E=pJ (12.23)

The units of resistivity are Om. Since both E and J are microscopic
parameters, p also defines a microscopic property of the conductor.

If we use Eq. (12.20) in Eqg. (12.21) and replace charge q by electronic charge
e, we can write

By comparing the above expression with Eq. (12.22), we can write the
expression for conductivity as follows:

2
c=NCT (12.24)
Me
Then the resistivity is given by
p=—re (12.25)
ne<t

Egs. (12.24) and (12.25) show that the conductivity or resistivity of a metal
depends on the density of the free electrons, their mass and charge, and on
mean free time. With the above background knowledge about electric current

Eq. (12.22) holds only
for isotropic materials:
materials in which the
electric properties are
the same in all
directions.

It is customary to use p
as the symbol for
resistivity and o as the
symbol for conductivity
inspite of their use in
some of our other units
for volume charge
density and surface
charge density,
respectively. Thus, you
should be careful
about these symbols
and take into
consideration the
context of their use in
an expression.
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Fig. 12.9: When a
magnet is freely
suspended, a
particular end of it
points towards north.
This end of the magnet
is defined as the north
pole.

Fig. 12.10: a) A
compass needle points
in the direction of the
magnetic field;

b) magnetic field lines
of a magnet drawn
using the fact that a
compass needle
should line up along
the field lines.

70

and current density, you are now ready to study magnetic field. You will see
later in this unit that the magnetic field is produced by electric current.

12.3 MAGNETIC FIELD

Whenever we speak of magnetic field, we normally think of bar magnets since
this is the way magnetic fields were first studied. You are already aware of the
basic features of a magnetic field from your school days. For example, you
know that the poles of a bar magnet experience force when placed in a
magnetic field. If a bar magnet is suspended by a delicate fibre as shown in
Fig. 12.9, a particular end of the magnet will always point towards north. This
end of the magnet is called its north pole. The other end is called the south
pole. Do you recall that this arrangement is a simple compass?

The north poles of two magnets repel each other. The south pole of a magnet
is always attracted by the north pole of another magnet. If one tries to break
off the north or south pole from a simple bar magnet, then this exercise proves
to be futile. The broken magnet becomes two new bar magnets each having a
north and a south pole. This shows that an isolated magnetic pole does
not exist.

In order to plot the direction of the magnetic field due to a bar magnet, we
need only a compass needle. The direction in which the compass needle
points is taken to be direction of the magnetic field. In your school physics
classes, you must have used this fact to plot the magnetic field in the vicinity
of the bar magnet as shown in Fig. 12.10a. The magnetic field lines are drawn
in such a way that a compass needle placed on the line aligns itself
tangentially to the line. Fig. 12.10b shows the typical magnetic field for the bar
magnet. Notice that the field lines emerge from the north pole and enter
the south pole.

These are some of qualitative features of magnetic field with which we are all
familiar. Let us now discuss what causes magnetic field.

12.3.1 Source of Magnetic Field

As you know, the space near a rubbed glass rod (rubbed either by rubber or
rabbit’s fur) is characterised by an electric field which is denoted by E.
Similarly, a magnetic field around a magnet may be represented by the
symbol B. In electrostatics, the electric charges set up an electric field and the
electric field, in turn, exerts an electrostatic force on another electric charge
that may be placed in that field. Now, by analogy, can we think of a similar
relation for magnetism? The answer is that we cannot. This is because a
single isolated magnetic pole or a magnetic charge is not known to exist.

Thus, the question is: If magnetic charges do not exist to give rise to
magnetic field as electric charge gives rise to electric field, then how
does the magnetic field arise? Let us try to find out the answer to this
question by considering a simple experiment.
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Fig. 12.11: a) Parallel wires carrying currents in the same direction are pulled
together; b) parallel wires carrying currents in opposite directions
are pushed apart; c) a sheet of metal between the two wires does not
affect these forces.

Let us consider two conducting wires, running parallel to one another, as
shown in Fig. 12.11a. If the current in the two wires flows in the same
direction, then the wires are found to attract each other. If the direction of one
of the currents is reversed, as shown in Fig. 12.11b, then the wires repel each
other. If a sheet of metal is put between the two wires, the force with which
wires attract or repel each other is not affected at all (Fig. 12.11c).

Now, the question is: How do we explain the above observations? Does
electrostatic force account for the attraction or repulsion of the parallel wires?
No, the force acting between the wires is not an electrostatic or Coulomb
force. This is because (i) there is no net charge on the conductor (the charge
density of conduction electrons just compensates for the positive charge on
the lattice ions); (ii) the force is reversed in sign by reversing the direction of
either current; (iii) the force ceases as soon as the circuit is broken; (iv) the
force is not affected by the presence of a simple medium; (v) the attraction
and repulsion of the electric currents is contrary to the attraction or repulsion
of the electric charges.

The observations of the experiments depicted in Fig. 12.11 can be explained if
we assume that there is an additional force associated with a moving charge,
which is different from the electrostatic force. This new force that comes

into play when charges are moving is called the magnetic force. A charge
sets up an electric field whether the charge is at rest or is moving. However, a
charge sets up a magnetic field only if it is moving.

You may now ask a simple question: A bar magnet sets up a magnetic field
in its vicinity, but where are the moving electric charges in a bar
magnet? Actually, the circulating electrons in the atoms of the bar magnet
(magnetic material) are responsible for its magnetism. You will learn more
about it in Unit 14 of this bock.

Thus, you have learnt that (i) a moving charge or a current sets up a magnetic
field and also (ii) if we place a moving charge or a wire carrying a current in a
magnetic field, a force will act on it. Now, with this qualitative understanding
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Fig. 12.12: A straight
current-carrying wire
experiences force when

it

is placed in a magnetic

field.
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Fig. 12.14: The force on
the wire is B sin 6; that

is, it is proportional to

B,.

about the origin of magnetic field, let us define it. But before learning this, try
to answer the following SAQ.

SAQ 2 - Magnetic field and electric motor

You have probably studied about an electric motor in your school, and you
may know the principle on which it works. Briefly explain how an electric motor
illustrates the relation between electric current and magnetic field.

12.3.2 Definition of Magnetic Field

In Unit 5 (Block 2), you have learnt that the electric field E ata point, in terms
of the electrostatic force Fg that acted on a test charge g at rest at that point,

is given by:

Fe =qE (12.26)

We can define the magnetic field in terms of the magnetic force exerted on a
moving electric charge. It can also be defined in terms of the magnetic force
on a current. Since current is a flow of electric charge, the two definitions are
related. First, let us state the definition in terms of force on a current-carrying
wire.

a) Force on currents

Experiments show that a current-carrying wire placed in a magnetic field,
experiences a force. Fig. 12.12 shows a wire carrying a currentiin a
magnetic field produced by a magnet. Since the field lines come out of the
north pole and enter the south pole, the field in Fig. 12.12 is directed from
right to left. It is found that the wire experiences a force, which is
proportional to both the current and the strength of the magnetic field.
When the wire is placed parallel (or anti parallel) to the field lines, it
experiences no force. But when the wire is placed perpendicular to the
field lines, the force on the wire is maximum. These two cases are shown

in Fig. 12.13.

2 B

B
_B g —
_ I, —> Ii

o
—>

— 55
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F = Maximum
(a) (b)

Fig. 12.13: The force on a current carrying wire is a) zero if the wire is parallel or
anti-parallel to the field lines; b) maximum when the wire is
perpendicular to field lines.

This shows that the force on a wire is due entirely to the component of the
field that is perpendicular to the wire. In other words, the force also
depends on the relative orientation of the wire and the field lines. In
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Fig. 12.14, suppose, the angle between the field lines (represented by
I§) and the current-carrying wire is 6. As explained above, the force Fon
the wire of length L is due entirely to the component of B that is
perpendicular to the wire. This component, represented as B, is given by
(see Fig. 12.14):

B, =Bsin0 (12.27)

Further, the force on the wire of length L depends on L itself and the
current i in the wire. We, therefore, conclude that the force F on a length L
of the wire is given by

F =iLBsin® (12.28)

Recall that the vector product CxD gives rise to a vector of magnitude
CD sin6 which is perpendicular to the plane containing Cand D. Using
this in Eq. (12.28), we can write

F=i(LxB) (12.29)

Here, L is a vector of magnitude L which is the length of the wire and its
direction is along the direction of current flow. Eq. (12.28) or (12.29)
shows that the Sl units of B are NA™m™. This unit is also given the name
weber per square meter or tesla (abbreviated as T). One tesla is a
strong magnetic field; thus, a smaller unit called the gauss (G) is often
used.

1tesla = 10% gauss

Since gauss is not an Sl unit, we should always convert it to tesla before
using it in equations. The quantity B has several names. Its correct
name is magnetic induction. It is also designated as the magnetic field
intensity. However, for historical reasons, we will call the quantity B as
magnetic field. Also, we shall define another quantity in Unit 14 which we
shall call magnetic field intensity or simply magnetic intensity and
denote it by H.

The direction of the force on the wire is always perpendicular to the plane
defined by B and i. To determine the direction of the force, we use the
right-hand rule as shown in Fig. 12.15.

According to the right-hand rule: if one’s right hand is held flat with
the fingers pointing in the direction of the magnetic field and the
thumb pointing in the direction of the current, then the palm of the
hand will push in the direction of the force.

We now apply Eq. (12.28) or (12.29) to a simple situation so that you can
understand its meaning better.

If a surface of area A is
placed perpendicular to
a uniform magnetic
field B, then the
product BA is an
important physical
guantity, which is
called magnetic flux
through the surface
area A. It is denoted by
@. Thus,

O =BA

D

or B=—
A

The unit of magnetic
flux is weber. Hence
the unit of B is also
weber per square
metre. It is also called
tesla (T).

-

o

Fig. 12.15: Right -
hand rule.

Don't forget
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EMMQ’LE 12.1: FORCE ON A CURRENT-CARRYING WIRE

A horizontal wire is carrying current from east to west. What is the direction
of the force on this current-carrying wire if we assume that at this location
the magnetic field of the Earth points due north? If the wire carries a
current of 20 A, calculate the force per unit length on it due to the Earth’s
magnetic field, which is about 1.0 G.

SOLUTION B We use the right-hand rule to determine the force
experienced by the wire for the orientation of the wire and the Earth’s
magnetic field. We find that when the thumb of the right hand points west
and the fingers point north, the palm faces down. Hence, the force on this
wire will be down (into the page).

Earth’s magnetic field lines are in a direction perpendicular to the wire.
Thus, we have 6 = 90° and we can write Eq. (12.28) as

F =iLBsin90° =iLB
So, force per unit length on the wire is

%: iB=20Ax10"4T=2.0x10"3Nm~1

Now, you should solve an SAQ to concretise the ideas discussed above.

SAQ 3 - Force on current-carrying wire in magnetic field

A current of 9.5 A is flowing in a wire which is oriented perpendicular to a
uniform magnetic field. If the magnitude of the magnetic force on a 0.70 m
length of the wire is 15 mN, what is the magnitude of the magnetic field? If
the direction of the current flow in the wire is from east to west and the
magnetic force acting on it is directed towards south, determine the
direction of the magnetic field.

The conditions given in Example 12.1 and SAQ 3 were rather simple and
straight forward. Suppose the wire carrying current is not straight so that, at
each point, its orientation relative to the field changes. Another possible
scenario is that the field changes in magnitude/direction over the length of the
current-carrying wire. How do we calculate the magnetic force in such
situations? We can still use Eq. (12.29) to calculate the force. For this purpose
we imagine the wire to be broken up into small segments so that each of
these segments can be considered straight, and the field is essentially
constant over its length (see Fig. 12.16). Under these assumptions,

Eq. (12.29) can be applied to each segment of the current-carrying wire.

If the length of a small segment of the current-carrying wire is dL then we can
write for a small magnetic force dF on the segment as

dF =i(dL xB) (12.30)
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~

(a)

Fig. 12.16: a) A curved wire L in a non-uniform magnetic field B ; b) a small
enough segment of the wire can be considered as straight wire in a
uniform field.

We can obtain the total magnetic force on this arbitrarily shaped long
current-carrying wire placed in a non-uniform magnetic field B, by summing
the expression for dFin Eq. (12.30) over the whole wire:

F :Zdﬁ =ZidEx|§

If we let the length d L approach zero, this sum becomes an integral, and we
write the above expression as

ﬁ:ijdtxé (12.31)

Do you recognise the right hand side of the Eq. (12.31)? From Unit 3 of this
course, you know that it is a line integral taken over the length of the wire.
The current i, being a constant, is taken out of the integral. In particular, if the
magnetic field is uniform, which means that B is constant both in magnitude
and direction at all points of the wire, then we can write Eq. (12.31) as

F=i([dD)xB

In this expression, d L is the vector joining the initial point of the segment of

wire to its final point and the integral is over length of the wire. Further, if the
current-carrying wire is straight and its length is L, then we have

F=i(LxB)
This expression for magnetic force is the same as Eq. (12.29).

So far, we considered the force on the current in a wire. An electric current is
simply a group of charged particle sharing a common motion, so we should
expect a moving charge to experience force in the magnetic field. This gives
another way of defining the magnetic field.

b) Force on amoving charge

The force which a magnetic field exerts on a moving positive charge can

be obtained from Eqg. (12.29). Recall from Sec. 12.2 that the velocity v
75



Block 3

Electrostatics in Medium and Magnetism

76

w!

Fig. 12.17: Diagram
for Example 12.2.

of charge g in a wire of cross-section A is related to current i by Eq. (12.2)
as follows:

i =gnAv

where n is the number of charges per unit volume. Substituting this
expression for i into Eq. (12.30) gives

dF = (dL)Anq V x B (12.32)

Here (dL) A represents the volume of the wire segment of length (dL). So
(dL) An is the number of moving charges in that portion of the wire for
which we are writing the force. Hence, the force F on a single moving
charge is given by dIE/(dL)An.Thus, we can write

F=quxB (12.33)

The magnitude of the force is given by gvB sin0. The direction of the force

on the moving charge can be obtained by right-hand rule (Fig. 12.15
with i replaced by v). Note that, if the particle is negatively charged,
the direction of Fwill be reversed.

Now, go through the following example so that you can understand how the
force on a charged particle is calculated. It also illustrates the use of the right-
hand rule for determining the direction of force.

EMM(P[,T: 12.2: FORCE ON A CHARGED PARTICLE
MOVING IN MAGNETIC FIELD

In a certain region, a magnetic field of 0.10 T points vertically upward.
Three protons enter the region, two horizontally and one vertically upward
as shown in Fig. 12.17. All the three protons are moving with the same
speed 2.0x103ms~1. Determine the force on each proton.

SOLUTION B Proton 2 is moving vertically upward, i.e., parallel to the
field and sin 6 = 0. So, from Eg. (12.33), we have ‘IE‘ =qgvB sin6 =0.
Therefore, it experiences no force. Protons 1 and 3 are moving at right
angles to the field, so sin 6 = 1 in Eq. (12.33). Thus, the forces on these
two protons have the same magnitude given by

F=qvB =(1.6x1019C)x(2.0x103ms1)x(0.10T) =3.2x10" 17N

Since the protons carry a positive charge, the direction of the force is the
direction of the vector V x B. For proton 1, moving to the right, vV x B points
out of the page. For proton 3, moving to the left, the force points into the
page. This example clearly shows that the magnetic field alone does not
determine the force. Identical charged particles moving in the same field
may experience different forces, if their velocities are not identical. If the
particles were electrons, the negative sign of the electron charge would
have indicated a force opposite to the direction of v x B.
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Now, answer an SAQ.

SAQ 4 - Force on acharged particle moving in magnetic field

Of the three vectors in the equation F = qV xB, which pairs are always at right

angles to one another? Which of these may have any angle between them?

Eq. (12.33) is equivalent to Eq. (12.29) so that either of them can be taken as

the defining equation for B. In practice, we define B from Eq. (12.29),

because it is much easier to measure the force acting on a wire than that on a

single moving charge.

In this section, you have learnt that a moving charge gives rise to a magnetic
field. You have also learnt how to define magnetic field in terms of the force

exerted by it on a current-carrying wire and a moving charge. Now, suppose
there is a current-carrying wire, and you are asked to calculate the magnetic

field produced due to it at any point of space. This is similar to the problem of

calculating electric field at a point in space due to a charge or system of
charges (in electrostatics). In electrostatics, you used Coulomb’s law and

Gauss’s law to find the solution. So, you would like to have laws for magnetic

field which are analogous to Coulomb’s law and Gauss’s law. Let us first find
out Gauss'’s law for magnetism.

12.4 GAUSS’S LAW FOR MAGNETISM

Suppose magnetic charges — monopoles — exist. Then, they would give rise to

magnetic fields like the electric fields due to electric point charges. In such a
situation, we can describe the magnetic fields due to monopoles and due to
those of magnetic charge distributions by laws analogous to Gauss’s law for
electrostatics. That is, Gauss’s law for magnetic field would require that the
flux of the magnetic field through any closed surface depend only on the
enclosed magnetic charge. Thus, under the assumption that magnetic
charges exist, we may write Gauss’s law for magnetism as

ﬁ édé = K1o9g

where the integral on the left is the flux of B over a closed surface enclosing
the magnetic charge or monopoles denoted by g and pgis some constant.

(12.34)

But, the very existence of the magnetic monopoles is uncertain. And
even if they do exist, they seem to play no significant role in our world. In the
absence of the magnetic monopoles, we must put g = 0 and then the
magnetic flux through any closed surface must be zero. We state this
mathematically as Gauss’s law for magnetism and write it as follows:

ﬁ BdS=0 (12.35)

A consequence of Gauss’s law for magnetism is that magnetic field lines can
never begin or end (Fig. 12.18). Unlike the electric field lines, the magnetic
field lines have to form closed loops. If we convert the surface integral of

Eqg. (12.35) into a volume integral using the divergence theorem, we obtain

jj V.BdV =0 (12.36)

(a)

(b)

Fig. 12.18: In the
absence of magnetic
monopoles, the
magnetic flux through a
closed surface must be
zero. a) There can be no
point where magnetic
field lines begin or end
because a closed
surface surrounding
such a point would have
non-zero net flux;

b) Instead, magnetic
field lines form closed
loops.

'
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Don't forget

The integration in Eq. (12.36) is over the volume enclosed by the closed
surface of Eq. (12.35). Since Eg. (12.36) holds for any arbitrary volume of
integration, we must have

V.B=0 (12.37)

Eq. (12.37) is true even if B varies with time. Egs. (12.35 and 12.37) are the
integral and differential forms of Gauss’s law for magnetism.

Gauss’s law for magnetism implies that the magnetic field does not
have any source similar to electric charge(s) for electric field. In other
words, magnetic monopoles do not exist. Mathematically, it means
that divergence of B is zero.

Now, let us discuss Biot-Savart law which is analogous to Coulomb’s law.

12.5 BIOT-SAVART LAW

In the previous sections, you have learnt the effect of magnetic field on a
current-carrying wire and moving charges and have calculated the magnetic
force experienced by them. Now, the question is: How do we calculate the
magnetic fields produced by a current? Can we show that a current loop
has the magnetic field of a dipole? Interest in questions like these led the
French scientists Jean-Baptiste Biot and Felix Savart to experimentally
determine the form of the magnetic field arising from a steady current.

Known as Biot-Savart law, its result gives the magnetic field at a point due to a
small element of current.

In Unit 5, you have learnt how to calculate the electric field due to a given
distribution of charges in the surrounding space. Our approach was to divide
the charge distribution into charge elements dq as in Fig. 12.19a. We then
calculated the field dE due to a given charge element at an arbitrary point P.
Finally, we calculated E at point P by integrating dE over the entire charge
distribution. Recall that the magnitude of dE is given as:
ge-_1 9
4meg r?

where r is the distance from the charge element to the point P.

Charge
element

AN

Charge
distribution

(a) (b)
Fig. 12.19: a) The electric field dE at point P due to a charge element dg; b) the
magnetic field dB at point P due to a current element idl.

In the case of magnetic field, our approach will be the same. Fig. 12.19b
shows a wire of arbitrary shape carrying a steady current i. We wish to know:
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What is the magnetic field B at an arbitrary point P near this wire? We first
break up the wire into differential current elements idl, corresponding to the
charge elements dg of Fig. 12.19a. Here the vector dl is a differential element
of length, pointing along the tangent to the wire in the direction of the current.
Note that the differential charge element dq is a scalar, but the differential
current element idl is a vector.

Under these conditions, the Biot-Savart law says that the magnitude of the
magnetic field due to a given current element idl at point P at distance r is
given as follows:

Ko idlsin®

o (12.38)
.

|d|§| -

Here pg is a constant, called the permeability of free space. Its value is
4ntx10~"TmA-1. This constant plays a role in magnetic problems, much like
the role that the permittivity g plays in electrostatic problems.

The expression for dB in vector form is

12.39
4nt 2 ( )

where [ is a unit vector pointing from dl towards P. Eq. (12.39) is the analog
of Coulomb’s law for electrostatics and is called Biot-Savart law. The
direction of dB in Fig. 12.19b is that of the vector dl xf, where f is a unit
vector that points from the current element to the point P at which we wish to
know the field.

Recall from Unit 5 that Coulomb’s law gives the electric field of a point
charge in terms of the charge and the distance from the charge to the field
point. The electric field varies as the inverse square of the distance, and its
direction lies along the line joining the charge with the field point.
Analogously, Biot-Savart law gives the magnetic field at a given point in
terms of the current element (source of the magnetic field) and the distance
to the field point from the current element. Like the electric field of a point
charge, the magnetic field of an isolated current element varies as the inverse
square of the distance. But here the analogy ends.

Unlike the electric charge in Coulomb’s law, the current element idl in
Biot-Savart law has associated with it a direction as well as a magnitude.
Hence, the magnetic field of the current element is not symmetric about the
element; it depends on the position of the field point relative to the direction of
the current element. This directional character is expressed by the cross
product in Eq. (12.39). So, in Fig. 12.19b, the magnetic field is at right angles
to both the current element and the vector from the current element to the field
point. Another significant difference between the magnetic and electric fields is
that the magnetic field lines have no sources like the electric field lines which
end or originate on electric charges; magnetic field lines are continuous and
join back on themselves.

Let us see how Eq. (12.39) and Fig. 12.19b show that the magnetic field lines
are continuous and join back on themselves. Let the point P move around the

current axis at a constant distance from the axis. From Eq. (12.39), the 29
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Fig. 12.20: Magnetic
field lines generally
encircle a current.

E

Fig. 12.22: By using
your right hand to
‘grip’ a current-
carrying conductor,
you can find out the
direction of the
magnetic field. When
your thumb points in
the direction of current
flow, your fingers curl
along the direction of
the magnetic field.
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magnitude of dB is constant along this path, and at each point it has a
direction tangent to the path. These are just the requirements for the lines to
be concentric circles around the current. Hence, the magnetic field lines
encircle the current as shown in Fig. 12.20. The direction in which the circular
field lines point depends on the direction in which the current flows. If the
direction of the current flow is reversed, the direction of the field line is also
reversed as shown in Fig. 12.21.

Current Current

® O]
into the out of the
page page

(a) (b)

Fig. 12.21: The direction in which the magnetic field lines point is determined by
the direction in which the current flows. a) When the current flows
into the page, denoted by symbol ®, the field lines form clockwise
circles; b) when the current flows out of the page, indicated by
symbol O, the field lines form anticlockwise circles.

However, there is an easy way to remember these directions. Just close the
palm of your right hand and point your thumb in the direction of the current as
shown in Fig. 12.22. In either case, you will find that your fingers will naturally
curl around in the direction of the magnetic field as illustrated in Fig. 12.22,
and is referred to as the right-hand rule.

SAQ 5 - Direction of the magnetic field
a) Write one analogy and one difference between Coulomb’s law and
Biot-Savart law.

b) A horizontal wire carries a current from east to west. What is the direction
of the magnetic field due to this current directly above and below the wire?

Refer again to Fig. 12.19b. Like the electric field, the magnetic field obeys the
superposition principle. Therefore, the net magnetic field at P due to entire
circuit, of which the wire is a part, will be the vector sum or line integral of the
magnetic fields of individual current elements:
- ¢ .= po pidl xf
B=[dB="C =

4n
c T

(12.40)

where C represents the path of integration, i.e., the path through which current
i flows. Let us now apply Biot-Savart law to calculate magnetic field for some
simple situations.

a) Bdue to along current-carrying straight wire

Refer to Fig. 12.23 which shows a long straight wire carrying current i.
Suppose we want to calculate the magnetic field at point P. Let r be the
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distance between the point P and the current element idl of the wire, and
let R be the perpendicular distance between the wire and P.

From Biot-Savart law [Eq. (12.39)], we can write the magnitude of the
differential magnetic field at point P due to the current element idl as:

dB = 2—0—'0” 32'“9 (12.41)
T r

where 0 is the angle between r and idl. The direction of dB is given by
the right-hand rule. In the instant case, it points out of page at point P.
You should convince yourself that this is true irrespective of the position
of dTalong the wire. Thus, at point P all the differential magnetic fields
due to all the current elements idl point in the same direction. So, to find
the magnitude of total magnetic field B at point P, we integrate

Eq. (12.41):

Fig. 12.23: A long straight

i wire carrying current i.
[ d S;”G (12.42)
r

i
B:jolB:‘jTOTE

In order to sum up the contributions from all current elements of the long

straight wire, we change the variables from 6 and r to ¢ (see Fig. 12.23). You know that
From Fig. 12.23, note that sin6 = sin(r - 6)
sin® = sin(x — 0) = cos¢ (12.43a) ! FioGas
. OP
Now, let us draw a line AC which is perpendicular to PB. Then we can sin(r—0) = AP
write Note that
AC rd(l) COSd) — Oi
— =—1=C0s
AB ¢ -
Hence, we get
or rdp=dlcosd (12.43b) Eq. (12.43a):
. . sin® =cos¢
Using Eq. (12.43a), we can write
disin6 dlcos¢
r2 r2
- “’—2‘1’ [fromEqg. (12.43b)] (12.44)
r
Substituting Eq. (12.44) in the expression for B [Eq. (12.42)], and since In Fig. 12.23, we can
cos¢ = (R/r)from Fig. 12.23, we can write write
o /CBA=/PAO=71—-0
icd G -
B:J.dB:uLJ.—d) _ kol ICOSd)dd) because d| is very
4 d r 47R
—{1 small. So,
. . _ . . . . AC
Note that for the given wire, the limits of integration are from — ¢, (since sin(n—0) = B
PO is the reference line) and ¢,. Thus, Thus, we have
_ uol . .
B = =y [sindgo + sind1] (12.45) 2_;: — sin0 = cos¢

From Fig. 12.23, we note that if the straight wire is infinitely long, we can
write ¢ = o = (n/2). Thus, we get
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Fig. 12.24: Diagram for
SAQ 6.
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B = :OF'Q (12.46)
T

for infinite wire. From Eq. (12.46), you may note that the magnitude of B
falls off inversely as the first power of the distance from an infinitely long
wire. Note that this expression for B is analogous to the expression for E

due to a long charged wire given as 1 (ﬁ)
47580 r

Now, you should go through an example on calculating magnetic field.

EXAM{PLE 12.3: MAGNETIC FIELD DUE TO A LONG
STRAIGHT WIRE

A long straight conducting wire carries a current of 15 A. Determine the
magnitude of the magnetic field at a perpendicular distance of 0.20 m from
the wire.

SOLUTION B The magnitude of the magnetic field due to a current-
carrying long straight wire is given by [Eq. (12.46)]:

B = Mo
2nR

As per the problem, i =15 A and R = 0.20 m. Since
(uo /4m) =10-7Tm A1, we get

_(2x107TmA1)x(15A)
- (0.20 m)

B =15%x10"°T

Before proceeding further, you may like to solve an SAQ.

SAQ 6 - Magnetic field due to two long straight wires

Two conducting long straight wires separated by a distance of 0.50 m are kept
parallel to each other as shown in Fig. 12.24. If the wires carry currents

i1 =15A and i =10 A,respectively, determine the magnetic field in the
plane of the two wires at a point P located half way between the wires.

b) Balong the axis of a current loop

Let us consider a circular loop of radius a and carrying a current i as
shown in Fig. 12.25. The x-axis has been chosen along the axis of the
loop and we choose a point P on its axis at a distance R from its centre.
The magnetic field dB at P due to a current element of length d1 is given
by Biot-Savart law:

dé:u—oldl xr
4r  r?2

(12.47)
For all current elements around the loop, r is perpendicular to idl. Hence,
the value of sin® in the cross-product in Eq. (12.47) is 1 and we can write:

4B - Mot dl
47 r2
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r dB cos ¢ b dB

¢ "
o) R P dBsind”

Fig. 12.25: Magnetic field at point P along the axis of a current loop.

From Eg. (12.47), you can see that since dB is a cross product of dl and
r, itis always perpendicular to the plane consisting r and dl. Thus dBis
perpendicular to r at point P as shown in Fig. 12.25. It can be resolved

into two components, one dB sing along the axis of the loop and the other
dB cos¢ at right angles to the axis. Here ¢is the angle between r and the

axis of the loop. You will notice that the components of dB perpendicular

to the axis will cancel, due to opposite length elements in the entire

current loop. Therefore, the resultant B is in the direction of the axis and
will be given by summing only the components dB sin ¢. Thus, B due to

entire loop is given by
£ . (uol dl_. uol smq)
B _IdBSIn¢_IEr_2 in B J.dl

Since all the length elements dl constituting the current loop lie in a circle,
both ¢ and r are constants. Therefore, they are taken outside the integral.
Further, the length element dl integrated around the loop is equal to 2ra.
Thus, we can write

g Holsing, o
4m‘2

If we write sing(=a/r) and r[= (a2 + R2)1’2] in terms of the constants a
and R, we get
2

_ ko a (12.48)
2 (a2+R2)3’2

When we choose the point P to lie far from the loop so that R >> a,
Eq. (12.48) can be written as

_ Mo 2IA

(12.49)
47 R3

Here we have written A=ra?2, the area of the loop. Notice that the
magnetic field due to the current loop at large distances on its axis is like

! [23 ﬂ (recall Sec. 5.6
r

4meg
of Unit 5.) This shows that the term (iA) is analogous to electric dipole

the electric field due to an electric dipole [E =
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(c)

Fig. 12.26: The
magnetic field due to
current- carrying loops
in (a) and (b) are very
similar to that due to
small bar magnet
shown in (c).

moment p of the electric dipole. Therefore, the term iA is called the
magnetic dipole moment of the loop and is represented by L.

On the basis of the above discussion, you may note the similarity
between a bar magnet which is magnetic dipole, and a current loop. The
similarity can also be seen by plotting the magnetic field around the
current loop. When a compass is used to plot the magnetic field due to a
current loop, we obtain magnetic field lines as shown in Figs. 12.26a and
b. You should convince yourself that this is reasonable by applying the
right-hand rule to a portion of the loop. Now, refer to Fig. 12.26¢ which
depicts the magnetic field lines due to a bar magnet. You may note that
the magnetic field lines due to a current loop are quite like those of a bar
magnet. The current loop can be considered to have north and south
poles. We shall see in a later section that this is one aspect of a very
important similarity between bar magnets and current loops.

After studying this section we hope that you can tell why the two parallel
current carrying wires, shown in Fig. 12.11, are attracted in one case
while they are repelled in another case. If not, study Sec. 12.6. It will also
help you in defining the unit of current — ampere — which we have been
using so far without defining it precisely. But before that, you should work
out the following example.

EMM(P[,E 12.4. MAGNETIC FIELD DUE TO A CURRENT
LOOP

A current of 0.75 A is flowing in a circular coil of radius 0.02 m. Calculate
the magnitude of the magnetic field due to this coil at a point 1.5 m away
from the centre of the coil along its axis.

SOLUTION B For the case when the distance of the axial point is very
large compared to the radius of the current loop (R >> a) the magnitude of
the magnetic field due to a current loop (or coil) is given by Eq. (12.49):
B — “_02'_A
4n R3
We have i = 0.75 A, A = ma” = 3.14 x (0.02 m)?>, R = 1.5 m. So,

 (1x107Tm A1) x (2x0.75 A)x (3.14)(0.02 m) 2

=5.6x10"11T
(1.5m)3

B

Now, you should solve an SAQ.

SAQ 7 - Magnetic field due to electron circulating around the
nucleus in a hydrogen atom

As per the Bohr model of hydrogen atom, an electron circulates around the
nucleus along a circular path of radius 3.1x10-11m with a frequency,

f = 6.8 x101°Hz. Calculate the value of the magnetic field set up at the
nucleus of the hydrogen atom due to the electron’s motion.
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12.6 FORCE BETWEEN TWO PARALLEL
CONDUCTORS (DEFINITION OF AMPERE)

In this section, we will determine how much force one of the wires in

Fig. 12.11 exerts on the other. We assume that the wires are linear, parallel
and very long. Here, each wire experiences a force, because it is in the
magnetic field due to current in the other wire.

Fig. 12.27 shows two long, parallel wires separated by a distance d and
carrying currents i1 and i> in the same direction. The current in wire 2
produces a magnetic field B, at all points around the wire. From Eq. (12.46)
the magnitude of B, at the site of wire 1 is given by

Hoio
=< 12.50
2="5 ( )

Fig. 12.27: Two parallel wires carrying currents in the same direction attract
each other.

The right-hand rule tells us that the direction of B, at any point on wire 1, is
out of the page, as shown in Fig. 12.27. Now, wire 1 which is carrying current
i1 is immersed in an external magnetic field B,. If L is the length of this wire, it

will experience a force given by Eq. (12.29), whose magnitude is

B 1T % (12.51)

What is the direction of this force? The right-hand rule says that ﬁl points
towards the wire 2. This means that wire 1 is attracted towards wire 2.

Similarly, for currents in the two wires flowing in the opposite direction, you
should be able to show that the wires repel each other. The rule is that
parallel currents attract and anti-parallel currents repel.

The force between current-carrying conductors forms the basis for the
definition of the ampere. One ampere is that constant current which, if
maintained in two straight parallel conductors of infinite length, of
negligible circular cross-section, and placed one metre apart in vacuum,
would produce on each of these conductors a force equal to

2x10~'N per meter.

In other words, suppose we have two straight parallel conductors of infinite
length, of negligible circular cross-section, and placed one meter apart in
vacuum. When constant current is made to flow in both the conductors, it is

observed that each of these conductors experiences a force. The constant
85
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Concept

current which produces force equal to2x10~'N per metre of length of the
conductors is known as one ampere (A).

Now, let us sum up what you have studied in this unit.

12.7 SUMMARY

Description

Electric current

Current density

Continuity
equation

Electric current is the flow of charge. The unit of electric current is the
ampere. Current is defined as the amount of charge per unit time passing a
given point.

_da
dt

Current density J is a vector specifying the current per unit area. The
direction of J at any point is the direction in which a positive charge-carrier
would move if placed at that point.

J=nqvy

The total current through a surface is the flux of the current density over that
surface.
i = [[3.as
S

where dSis an element of area and the integral is taken over the surface.

The total charge crossing a surface S in unit time is ﬂ.j.dé. If Sis a closed

surface enclosing a volume V, the rate of loss of charge through S must be
the same as the rate of depletion of charge contained in V, i.e.

j’:fj.dé = —gjy pdV

This result expresses conservation of charge and is known as the continuity
equation. The differential form of the continuity equation is:

Vj+a—p:0
ot

Conductivity o is a property of a material which is equal to the ratio of
current density to electric field in the material:

J=cE

Resistivity p is the inverse of conductivity.
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Magnetic Field

Force on current
in magnetic field

Force on moving
chargein
magnetic field

Gauss’s law for
magnetism

Biot-Savart law

Right-hand rule

A long straight wire carrying current i and placed in a uniform magnetic field
B experiences a force. The force on a section of the wire of length L is
given by

F=iLxB

where L is a vector of magnitude L, pointing in the direction in which the
current flows along the wire.

A magnetic field B is said to exist in any region in which a moving charge
experiences a force that depends on its charge, its velocity v and the
magnetic field. If B and Vv make an angle 6 with each other, the force on
the moving charge is given by:

F=qvxB or F=qvBsinod

Gauss’s law for magnetism states that the magnetic flux through any closed
surface is zero:

ffBds=o0
The differential form of Gauss’s law for magnetism is
VB =0

This shows that magnetic lines have no beginning or end; they form closed
loops.

Current gives rise to a magnetic field. The magnetic field due to a current-
carrying conductor can be determined using Biot-Savart law:

dé :uiolcu XTI
4t 2

where dB is the contribution to the magnetic field from a current i flowing
along an infinitesimal current element dl. The constant ug is called

magnetic permeability in free space. Its value is 4rx10~' NA 2. The unit

vector f points from the current element idl towards the point where the
field is being calculated.

Right-hand rule is used for (i) determining the direction of magnetic field,
and (ii) determining the direction of the magnetic force on a current-carrying
conductor kept in a magnetic field.

For determining the direction of the magnetic field due to a current-carrying
wire, if we point the thumb of right hand in the direction of current then our
fingers will curl along the direction of B.

For determining the direction of magnetic force, if the right hand is held flat
with the fingers pointing in the direction of the magnetic field and the thumb
pointing in the direction of the current, then the palm of the hand will push in

the direction of the magnetic force. 87
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Magnetic field due ®m The magnetic field at a point at a perpendicular distance R from an infinite

to an infinite straight wire carrying a current i is given by
straight wire

g _ Mol
2nR
Magnetic field due m The magnetic field at a point along the axis of a circular loop carrying
to current loop current is given by
: 2
g Mo! a

2 (a2 +R2)3/2

where a is the radius of the circular loop carrying current i and R is the
distance of the point (along the axis of the loop) from the centre of the loop.

When the point is far away from the loop such that R >> a then

g _ Ho 2IA
47 R3

where A = ra? is the area of the current loop. The current loop behaves
like a magnetic dipole.

Definition of B Two parallel wires carrying currents in the same (or opposite) direction

Ampere attract (or repel) each other. If these two wires are separated by a distance
d in a vacuum, then the force (F) of attraction (or repulsion) on a segment of
length L of either wire is given by

i1ioL
£ _ Moi1i2
2nd

where i1 andi, are the currents flowing in the two wires. The force between
two current-carrying wires is used to define the ampere — the unit of electric
current.

12.8 TERMINAL QUESTIONS

1. TV set shoots out a beam of electrons. The beam current is 10 uA. How
many electrons strike the TV screen each second? How much charge
strikes the screen in a minute?

2. In the Bohr model of the hydrogen atom, the electron follows a circular
orbit centred on the nucleus. Its speed is v and the radius of the orbitis r.
Show that the effective current in the orbit is ev / 2xrr. If the radius of the

orbit is 5.3x1011m and the electron’s speed is 2.2x105ms~1 calculate
its frequency f and the current i in the orbit.

3. What is the electric field in a copper conductor of resistivity
p =1.72x10"8Om having a current density J =2.54x10% Am=2?

4. Calculate the magnitude of the magnetic force exerted by the Earth’s
magnetic field, B =1072T, on an electron moving with speed
1.0x10° ms 1 near the Earth’s surface. Compare this force with the

weight of the electron on the Earth’s surface. Assume that the Earth’s

magnetic field is perpendicular to the direction of motion of electron.
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10.

A 0.3 m length of current-carrying wire kept perpendicular to a magnetic
field of magnitude 300 mT experiences a force of 2.5 mN. What is the
current flowing in the wire?

In Chennai, the horizontal component of the Earth’s magnetic field is
3.6x10~°> Wbm 2. If a vertical wire carries a current of 30 A upward
there, what is the magnitude and direction of the force on 1 m of the wire?
Calculate the force on each segment of the wire shown in Fig. 12.28, if

B = 0.15 T. Assume that the current in the wire is 15 A. (It is given that
sin65° = 0.9063.)

N
B (o}
—)
_— 3 10cm 35"\ 20 cm
A
i
—) _)_
A B D E
) ] Current out of
Fig. 12.28: Diagram for TQ 7. 'kt‘he plane of paper

Two long, straight parallel wires separated by a distance d carry currents

ip and io (= 2i7) along the same direction. Determine the distance from  x/
the wire carrying current i1 where the value of the magnetic field is zero
between the two wires.

x/2

For the Bohr model of the hydrogen atom, show that fi = —(e/2m)L,

where L=mr V is the angular momentum of the electron in its orbit.

. F . . Current into
Two long, straight, parallel wires carry equal current of 10 A in opposite the plane of paper

directions — one out of the plane and the other into the plane of the paper
as shown in Fig. 12.29. Determine the magnitude and direction of the TO 10.
magnetic field at a) point P and b) point Q. Take x = 0.25 m.

Fig. 12.29: Diagram for

12.9 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1.

a) The instantaneous current is given as [Eq. (12.1)]:
. dq
it)y=—
) it

We have q(t)=(4.5Cs2)t2+25C = Z—? =(9.0Cs2)t
Thus, instantaneous current, i(t) = (9.0 Cs2)t
b) The value of currentat t =3.0s is i(t=3.0s)=9x3Cs1=27A

In most electric motors, current in a wire sets up a magnetic field. The
magnetic field, in turn, exerts a force on a second current carrying wire
causing the shatft to rotate.

The magnitude of the force on a current-carrying wire due to magnetic
field is given by Eq. (12.28): F =iLBsin6

Magnetic Field
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Since the wire is oriented perpendicular to the magnetic field,
6=90°=sin6=1. So,
-3
F =iLB:B=_E= 15x107N =2.3mTl
iL (9.5A)x(0.70m)
The direction of the magnetic field is given by the right-hand rule. For
current along west and magnetic force along south, the magnetic field will

be vertically downward (that is, into the page).

The pair Fand V, Fand B are always at right angles. Vectors v and B

may have any angle between them.

a) Both are inverse square laws. In Coulomb’s law, electric field is along
r or —r depending on the sign of the charge. In Biot-Savart law,
magnetic field acts perpendicular to the plane containing the current
element and .

b) If we apply the right-hand rule to determine the direction of B for the
given direction of current, we find that directly above the wire, B points
into the page of the paper and directly below the wire, it points out of
the page.

To solve the problem, we will use the superposition principle followed by

magnetic field: the magnetic field at a point due to two or more current

elements is the vector sum of the magnetic field at that point due to each
individual current element.

The magnitude of magnetic field due to i; and i, at point P is

[Eq. (12.46)]:

_poir  (2x107'Tm A Yy x (15 A)
27R (0.25m)

_poiz _ (2x1077Tm A7) x (10 A)
2nR (0.25m)

The direction of By and B, is determined by the right-hand rule. So, B is

B; =1.20x1075T

-8.0x10°6T

and B>

directed into the page at point P and B, is directed out of the page. So,
the resultant field, B = I§1+I§2 will have the direction of I_5>1, the larger of
the two fields. So, the magnetic field at point P is into the page and the
magnitude of the resultant field is

2x10~"TmA-1

B=B;-B, = (15A-10A)=4.0x10-6T
(0.25m)

The motion of electron in a circular orbit/path around the nucleus of an
hydrogen atom constitutes a electric current. The value of current is given

by

- Charge
Time
The magnitude of the magnetic field due to current loop is given by
Eq. (12.48):
-0 &
2 (a2 + R2)3/2
Notice that for the given problem, we cannot use Eq. (12.49) because we
need to calculate B at the nucleus (that is, at the centre of the current

—ef =(1.6x10719C) x (6.8 x101°Hz) =1.1x 103 A

2
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loop) and the condition R >> a is not satisfied. Substituting the values of
i(=1.1x1073A), a(=3.1x10"11m) and R(=0), we get

_ (4nx107'Tm A1) x (1.1x1073 A)x (3.1x10711m)?

=227
2x(3.1x10"11m)3

B

Terminal Questions

1. Let n be the number of electrons incident on the screen per second. Then
nl_ M: 6.3x1012 electrons per second. So, the charge
e 1.6x1071%C
Q striking the screen is given by
Q =it =(10nCs1)x (60 s) =600 uC
Since the charges are electrons, the actual charge is: Q =—600uC

2. Since charge —e passes a point on the orbit once every revolution,
i =e/T, where T =(2nr)/v. So the effective current in the orbit is

i=(ev)/(2nr)
Further, the frequency is the reciprocal of time period T. So
6 e —1
oV __22xI07mS T _gp q015h;,

2 21x(5.3x10711m)

Each time the electron goes around the orbit, it carries a charge g around
the loop. The charge passing a point on the loop each second, i.e., current
is given as follows:

i —ef =(1.6x1071°9C) x (6.6 x101°)s™1 = 1.06 mA

Note that the current flows in the direction opposite to the electron, which
iS negatively charged.

3. By definition, E, the electric field, is related to the current density J
through the relation [Eq. (12.23)]:

E[=p[d| =@.72x1078 Qm)x(2.54x10% Am~2) =4.37x102 Vm'?
4. The magnitude of the force on a moving charge g in a magnetic field is
given as
Fg =qvB =evB = (1.6 x1071° C) x (10° ms 1) x (1x10™°T) =1.6 x10 1N
The weight of an electron near the Earth’s surface
Fg =mg = (9.1x103 kg) x (9.8 ms 2) =8.9x10~0N
So, (Fg/Fy)=1.7x1010

5. The magnetic force on a current-carrying wire kept in a magnetic field is
given as [Eq. (12.29)]: F=iL xB =iLBsin®
Since the wire is kept perpendicular to B, 0=90°. So, we have

-3
FoilBoi=" = 2.5x107°N =2.7x102A
LB (0.3 m)x(300x10-3T)

6. The vertical component of B is parallel to the current and does not
contribute to the force. Therefore, we have [using Eq. (12.29)]
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10.

F =iLBy =(30A)x(1m)x(3.6x10°>Wbm=2) =10.8 x10~4N due west.

For each straight segment, F =iLxB, whereL is the directed line
segment. From Fig. 12.28, we note that in sections AB and DE, L and B
are parallel; so sin6 =0 and F =0.In section BC,

F =iLB=(15A)x(0.10m)x(0.15T)=0.23N, into page. In section

CD, F =(15A) x(0.20m) x(0.15T)sin65° = 0.408N, out of page.

From the right-hand rule to determine the direction of magnetic field, we
note that the magnetic field at any point between the two parallel wires
carrying currents in the same direction will be oppositely directed. So, let
the two fields balance each other at a distance x from the wire carrying
current i;. Further, the value of the magnetic field due to wire having
Moi1.

271(X)

And that due to current i> (= 2i1) can be written as

current i; can be written as (Eq. (12.46)): B1 =

, = Hol2  _ 2poin  _ poig
on(d-x) 2n(d-x) =(d-x)

Since the two fields balance each other at this distance from wire having
current i3, we have

By=By, KOl __HOlL 5y (g _yx)=x=d/3

2nx  7w(d-x)
In magnitude, the magnetic dipole moment is
: ev e e e
=iA=—(mr2)=—(mw)=—L=——-1L
= 2nr ( ) 2m( ) 2m 2m

because the electron is negatively charged. In vector notation, we write
_ e -
———L
H 2m

The magnetic field due to a long, straight current carrying wire is given as

B = %. So, the magnetic field due to each of the wire at point P will be
Y

poi  _poi _ (4x107" TmA 1) x (10 A)

—% =1.6x107°T
2n(x/2) =X (0.25m)

B1=By =

Now, as per the right hand rule to determine the direction of the field at a
point, we notice that the direction of field due to both current-carrying wires
is towards the right. So, the total magnetic field at point P is

B=B1+B>=2x1.6x10°T=3.2x10"T, (towards right)
Similarly, the magnitude of the magnetic field due to each of the wires at
point Q will be same:

B _p, _ hol _(2x10"Tm A Y% (10 A)
12T o (0.25m)

-8.0x10°6T

Again, as per the right-hand rule, the direction of the magnetic field at Q
due to each wire will be towards right. So, the total field at Q is

B=B;+By =16x10"5T and it will be directed towards right.
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An MRI machine applies a very strong AM ERE’S I A ‘ \ 7 AN
magnetic field of about 0.2 to 3 tesla for P D
obtaining very high resolution images

of human body for medical diagnosis. APPLICATIONS
In this unit you will learn Ampere’s law

for calculating magnetic fields. (Picture
source: Wikimedia Commons)

Structure

13.1 Introduction 13.4 Differential Form of Ampere’s Law
Expected Learning Outcomes Magnetic Vector Potential

13.2 Ampere’s Law 13.5 Summary

13.3 Applications of Ampere’s Law 13.6 Terminal Questions
Magnetic Field due to a Long Straight Wire 13.7  Solutions and Answers

Magnetic Field due to a Solenoid
Magnetic Field inside a Toroid

STUDY GUIDE

The present unit is in continuation of the previous unit on magnetic field. You must have noted
in the previous unit that in our discussion on magnetic field, we referred to the electric field
due to static charges. We have been looking for laws and methods to calculate magnetic field
due to steady currents which are similar to the laws and methods of calculating electric fields.
So, to appreciate the concepts discussed in this unit, you should refer to the relevant
units/sections of Block 2 on electrostatics as and when mentioned. Also, you should refresh
your understanding of the concepts of divergence and curl of a vector that you have studied in
Block 1. These concepts have been used in this unit to define magnetic vector potential — a
concept very similar to electric potential. You should also focus on the physical significance of
the mathematical expressions obtained in this unit. Try to solve the SAQs and TQs as it will
give you practice in calculating the value of magnetic field and determine its direction for
various steady current configurations.

“Ampere was the Newton of Electricity.” James C.

Maxwell
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13.1 INTRODUCTION

In the previous unit, you have learnt how steady current gives rise to magnetic
field. You have learnt how to calculate the magnetic field due to a given
current distribution using Biot-Savart law. The Biot-Savart law serves the
same purpose for magnetic field as Coulomb’s law for calculation of electric
field due to static charge distribution. These laws show that both the electric
field and the magnetic field exhibit inverse square dependence. You have also
learnt that the divergence of the magnetic field is zero, i.e., it is solenoidal.
Physically, the zero divergence of the magnetic field indicates that free
magnetic charges or poles do not exist. In other words, it means that the
magnetic field does not have any sources similar to the electric charges for
the electric field.

In the present unit, we continue our discussion on magnetic field. Our attempt
here is to explain concepts and laws obeyed by a magnetic field so that we
can calculate its value for different current distributions. In doing so, we shall
always seek analogy with calculation of electric field due to various charge
distributions. So, the question we should ask now is: Do we have a law for
magnetic field that is analogous to Gauss’s law for electric field? The answer
is, yes, we do have. Ampere’s law, which we discuss in Sec. 13.2, enables us
to calculate the magnetic field due to a symmetric current distribution just as
Gauss’s law enables us to calculate electric field due to a symmetric charge
distribution. In Sec. 13.3, you will learn how to apply Ampere’s law to calculate
magnetic field due to a long, straight current-carrying wire, a solenoid, and a
toroid. In Sec. 13.4, you will learn how to establish Ampere’s law in differential
form. You will also learn that the differential form of the Ampere’s law, given
as curl of B, enables us to define a guantity called magnetic vector potential.

The magnetic vector potential simplifies the calculation of magnetic field in the
same way as the electric potential simplifies the calculation of electric field.
However, since magnetic vector potential is a vector quantity, its calculation is
not as simple as that of electric potential.

In the next unit, you will study the magnetic properties of materials and learn
that materials can be broadly classified into three categories, namely,
diamagnetic, paramagnetic and ferromagnetic materials.

Expected Learning Outcomes

After studying this unit, you should be able to:

+ state and explain Ampere’s law;

% use Ampere’s law to calculate the magnetic field due to steady current
distributions having simple geometries such as straight wire, solenoid
and toroid;

% obtain Ampere’s law in differential form;
+ define magnetic vector potential; and

+ derive an expression for the torque exerted by a magnetic field on a

current loops.
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13.2 AMPERE’S LAW

While discussing electrostatics in Unit 5 (Block 2) of this course, we have used
Coulomb’s law to calculate the electric field due to an arbitrary charge
distribution. In Units 6 and 7 of Block 2, you have learnt how to use Gauss’s
law to solve electric field problems of highly symmetric charge distributions
with ease and elegance.

The situation is similar in magnetism. In Unit 12, you have learnt how to
calculate the magnetic field due to current distributions using Biot-Savart law.
Now, the question is: Do we have a law for magnetism which is analogous to
Gauss’s law for electrostatics that would help us calculate magnetic field with
similar ease and elegance? You know that Gauss’s law for the electric field
relates the amount of charge enclosed by a surface to the flux linked with it. Is
there an analogous concept or law that would prove useful in determining the
magnetic field due to a current? Yes, there is such a law called Ampere’s law.

According to Ampere’s law, the line integral of magnetic field around any

closed loop encircling a steady straight current is proportional to the
current i encircled by that loop and is given by pngi.

Mathematically, Ampere’s law is given as
{é.dl‘:uoi (13.1)

Ampere’s law is true for any type of current and any closed loop, as long as
the encircled current is steady (never changing in time). If the current is not in
a single wire, but in a number of wires, we simply add all the currents to obtain
the net current encircled by the loop. If there are currents flowing in opposite
directions, then we give the opposite signs to opposite directions of the
current. The algebraic sum of currents encircled by the loop is the net current
that determines the line integral of B around the loop. The loop we consider
for calculating the line integral is called Amperian loop.

Let us elaborate the meaning of line integral of B around a closed loop — the
Amperian loop — and net current by considering a concrete example. Refer to
Fig. 13.1 which depicts the cross-sections of three long straight wires that

pierce the plane of the page at right angles. Suppose the wires carry currents ~ Amperian loop, C
i1,i2 and i3. The direction of current i is into the page and that of i, and i3
is out of the page. The closed curve C is an arbitrary Amperian loop which

encircles two of the currents i; and i» but it does not encircle the third current

is.

Let us now calculate the scalar product B.dl andits integral along the
counter clockwise direction along the Amperian loop. To do so, we divide the ~ Fig. 13.1: Amperian

: T T loop C, encircling two
loop into numerous vector element dl. Each vector element dl is directed : )

i ) ) i ] long straight wires but
along the tangent to the loop in the dlrectlon of integration. Now, let us excludes a third wire.
suppose that the net magnetic field B due to the three currents make an Note the directions of
angle 0 with dI as shown in Fig. 13.1. So, we have B.dI =Bdl cos6. Then, the currents.

Eqg. (13.1) can be written as
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To determine the net encircled current, igncircleg fOr the given situation, we
need to assign — a plus or a minus — to each of the currents iq,i> and i3. The
currents are assigned sign using right hand rule: curl your right hand fingers
around the Amperian loop with the fingers pointing in the direction of
integration; a current in the direction of your thumb is assigned a plus sign and
a current in opposite direction is assigned a minus sign.

So, as per the above sign convention, we find from Fig. 13.1 that iq is to be
assigned a minus sign and i, is to be assigned a plus sign. (We need not
consider the current i3 because it is not encircled by the Amperian loop we
have considered.) So, the net current encircled by the Amperian loop in
Fig. 13.1is

lencircled =12 —i1
So, Eq. (13.2) can be written as

fé.df - §Bd| c0s0 =g (i —ip) (13.3)
You may ask: Why have we not considered current i3 on the RHS of
Eq. (13.3) despite the fact that it contributes to the magnitude of B on the
LHS? The contribution of i3 to B cancels out because we take integration
over the entire loop; for any given vector element dl over the loop, the

contribution of i3 to B is cancelled by an oppositely located vector element
dl on the Amperian loop.

To fix your understanding of Ampere’s law, answer an SAQ.

SAQ 1 - Ampere’s law and Amperian loop

Apply Ampere’s law qualitatively to the three loops shown in Fig. 13.2.

From the above discussion, you must have realised that Ampere’s law
provides an easy method to determine B dueto steady currents. We need to
know the net encircled current by Amperian loop and calculate the line integral
on the LHS of Egs. (13.1) or (13.3). But, how to calculate the integral of B. Let
us find out.

In Unit 7, Block 2 of this course, you have learnt how to determine the electric
field due to different types of charge distributions using Gauss’s law. However,
we could use Gauss’s law only for certain symmetrical charge distributions by
constructing suitable closed surfaces in the electric field. Ampere’s law plays
the same role in magnetostatics as Gauss’s law plays in electrostatics. We
can use Ampere’s law to determine magnetic field by choosing appropriate
Amperian loop for steady current distributions. Let us learn it now.

13.3 APPLICATIONS OF AMPERE’S LAW

In the following discussion, you will learn how to apply Ampere’s law to
determine magnetic fields due to symmetric current distributions. For this
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purpose, as you will see, we have to construct suitable Amperian loops in the
magnetic field over which the line integralfé.df [see Eq. (13.1)] is to be

evaluated. We shall illustrate this with a few examples.

13.3.1 Magnetic Field due to a Long Straight Wire 2
I

Let us consider a long straight wire of radius R carrying current i as shown in R—> <—
Fig. 13.3. The steady current in the wire produces a magnetic field. You know
that magnetic field lines are closed circles concentric with the wire as shown in
Fig. 13.4. Further, as per the right hand rule, the direction of the magnetic field
B is counter-clockwise for the given direction of current i (Fig. 13.3)

Wl

Now let us apply Ampere’s law to determine the magnitude of B at a distance
r metres from the axis of the wire (r >> R). Here, we assume that r is much

smaller in comparison with the length of the wire. Fig. 13.3: Magnetic field
due to straight current-

To evaluate the line integral in Ampere’s law [Eg. 13.1)], we need to construct ~ carrying wire.
an Amperian loop. To do so, we note from Eq. (12.46) of Unit 12 that the

magnetic field produced by an infinitely long current-carrying wire has same

magnitude at all points which are at a distance r from the wire. This means

that B has cylindrical symmetry about the wire. We can take advantage of the

cylindrical symmetry by considering an Amperian loop in the form of a circle of

radius r. This will ensure that the magnitude of B in the line integral of Eq.

(13.1) is a constant and hence it can be taken out of the integral sign.

We further note from Fig. 13.3 that B is tangent to the Amperian loop at every
point. And, as we know, the vector element dl of the loop is also tangent to
the Amperian loop. So, B and dI are either parallel or antiparallel to each
other. If we assume B and dI to be parallel, as is the case in Fig. (13.3), then
0 = 0 and we have B.dI =Bdl cos6 = Bdl.

In view of the above, we can write the LHS of Eq. (13.1) for a long, straight Fig. 13.4: Top view of

current-carrying wire as the magnetic field lines
of along straight
current-carrying wire.
The direction of current

§|§.dT - fdel - del —B.2mr

Thus, from Eq. (13.1), we can write flow is out of the page.
B.2nr = poi
or B = kot (13.4)
2nr

At this stage, you should pause for a moment and ask yourself: What is the
advantage of using Ampere’s law for determining B due to a current carrying
wire? We can do this using Biot-Savart law discussed in Unit 12. Well, the
advantage of using Ampere’s law lies in the ease and elegance of determining
B. You just need to choose an appropriate Amperian loop. This advantage
will be further illustrated when we calculate B for a current-carrying solenoid

in the next section. But, before that, you should go through an example.
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Fig. 13.5: Diagram
for Example 13.1.
Note that it is the top
view of along,
straight current-
carrying wire and the
direction of the
current flow is out of
the page.
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Eﬂﬂ?ﬁf 13.1: MAGNETIC FIELD DUE TO STRAIGHT
WIRE

A long cylindrical wire of radius R carries a steady current i which is

uniformly distributed over its cross-sectional area. Determine the magnetic
field at a distance r(< R) from the axis of the wire.

SOLUTION ® We first notice that the point at a distancer <R lies inside
the wire (Fig. 13.5). However, even in this case, due to cylindrical
symmetry of the magnetic field around the current-carrying wire, B hasa
constant magnitude at all points on a path which is a circle of radius r with
its centre on the axis of the wire. And the direction of B at every point
along this circle is along the tangent to the circle at that point.

So, we choose the circle of radius r as the path of integration for the line
integral in Ampere’s law [EqQ. (13.1)]. Hence, we can write

§éuf=52m (i)

Now, what is the magnitude of current passing through the cross-section of
the wire enclosed by the Amperian loop — the path of integration? Note that
the current enclosed by this path is not i, the current through the wire;
rather, it is the part of the current which passes through the cross-section
of areanr 2.1t is so because r < R. Thus, we have

Current through the Amperian loop = nr 2 x

current per unit area of cross-section
; 2
2 i T i
=4 x =i— (i)
tR%2 R?

Using Egs. (i) and (ii) in Eqg. (13.1), we can write

. 2 .
Ir Kol

B2ar =pug— = B=—"2_ (13.5)
R?2 2nR?2

Now, answer the following SAQ.

SAQ 2 - variation of magnetic field with distance from wire

Plot magnetic field B as a function of distance from the axis of the wire (of
radius R) to some distance outside it.

In Unit 11, you have learnt that we can produce a uniform electric field
between two closely spaced, charged conducting plates of a capacitor. You
would like to know: Is there an analogous device that will produce a uniform
magnetic field? Yes, the device is called solenoid. Let us now discuss how a
solenoid produces a uniform magnetic field and calculate its value using
Ampere’s law.
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13.3.2 Magnetic Field due to a Solenoid

You know that the direction of the magnetic field due to current flowing in a
circular loop is given by the right hand rule (Fig. 13.6). Note that the magnetic
field lines circle the wire. A solenoid can be thought of as a cylindrical
stack of current-carrying loops.

l\\) U U Fig. 13.6: Magnetic

field line due to
currentin aloop.

Fig. 13.7: A loosely wound coil of wire having four loops. The magnetic field
arising from a current in the wire is strongest within the coil. The field
is shown only in the plane of the page.

Refer to Fig. 13.7 which shows a solenoid having four turns. Here the turns
are loosely wound compared to the common solenoids. Now, you may ask:
What is the direction of B due to current-carrying solenoid? Note that for any
part of the wire, the magnetic field at nearby point encircles the wire. We show
these field lines at the top and bottom of the coil, where the wires cross the
plane of the page. But, as we move away from wire inside the coil, the fields
from elements of wire at the top and bottom have a component to the right,
and so they tend to reinforce each other. The net magnetic field anywhere
is the vector sum of the fields of the individual parts of the loop.

What about the direction of B outside the solenoid? Above the top of the coil,
the fields arising from elements at the top all have a component to the left,
while fields from elements at the bottom have a component to the right,
thereby weakening the net field. A similar weakening of the field occurs below
the bottom of the coil.

Hence, within the solenoid the net field is strong and points to the right and it
is weaker and points to the left outside the coil, as shown in the Fig. 13.7.

(e]efe]efe]efe]e]e]e]e]e]

Suppose the coil is tightly wound and its length is longer than its diameter, as
shown in Fig. 13.8. In such situation, the field is still strong inside the coil of

the solenoid, and as the individual turns get arbitrarily close, the irregularities  [XIXXIXIXIXIXIXIXIXIXIX]
in the field disappear, giving straight field lines inside the solenoid.

Y VY VY N

Fig. 13.8: A longer
What about the field lines outside the solenoid? The exterior field lines must central section of a
connect the field lines emerging from the right of the solenoid to those going ~ '0N9. more tightly
into the left because field lines cannot begin or end. The field lines close to the wound solenoid.
solenoid axis bend very gradually, and spread far from the solenoid before

they return to the other end.

Now, to calculate the magnitude of B inside a solenoid by applying Ampere’s
law, we note that: (i) the magnetic field is directed lengthwise along the axis of 99
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a tightly wound, long solenoid i.e., the length of the solenoid is very large
compared to its diameter; and (ii) if the solenoid is long, the field lines
emerging from the end of the solenoid will fan out widely as they come back
around to enter the other end. The second point above indicates that the
magnetic field outside the solenoid is many times weaker than it is inside.
Consequently, we approximate the situation and consider the field outside the
solenoid to be negligibly small.

l¢ |
» L |

S R

N

Y N

|o|e|e|o]e[e|o|o]|o[e|e|o]|o[e|e|e]|o]e|e|e]|e|e]e]

P > Q

YYYIYY

XXX XXX XXX X XX XX XIXIXIXXIXIX]

Fig. 13.9: A long solenoid, showing a rectangular Amperian loop PQRS.

Now, what shape of Amperian loop, the path of integration in the line integral
of Eq. (13.1), will make the calculation of B easier? If we take a rectangular
Amperian loop such that its sides are either parallel or perpendicular to the
direction of B, the calculation of line integral of B in Eq. (13.1) will become
easier because, in such cases, 0 is either zero or 90°. So, let us consider a
closed regtangular path PQRS as Amperian loop (Fig. 13.9). For this path, we
can write the line integral of Eq. (13.1) as

Q R S P

§édT:jédT+]édT+]édT+]édT (13.6)

P Q R S
The integrals over the segments QR and SP are zero because for the parts
of these paths outside the solenoid, B = 0 and for the parts inside the
solenoid, B is perpendicular to dl.The integral over segment RS is zero as we
have assumed that B = 0 outsides the solenoid. Thus, the only integral in Eq.
(13.6) that is different from zero is over segment PQ. Hence, Eq. (13.6)
reduces to

§éuT:Téd"
P

Now, as explained above, for this path, B is constant and along the direction
of the path. Thus,

§éuT=TéuT=éTdT=BL (13.7)
P P
where L is the length of the path PQ. If this path encloses N turns of wire of
the solenoid each carrying a current i, then total current encircled by this path
is Ni. Thus, for the right hand side of Ampere’s law [Eq. (13.1)] we write

uo Ni. Thus, using Eg. (13.7), we can write Eq. (13.1) as

BL = poNi
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B “OLN' ~ Loni (13.8)

where n is the number of the turns per unit length of the solenoid.

Eq. (13.8), obtained for an infinitely long solenoid, holds quite well for actual
solenoids, for points well inside the solenoid away from its ends. Note that B
does not depend upon the position of the point within the solenoid as long as
we are far away from the ends of the solenoid. Therefore, we conclude that B
is uniform over the cross-section of the solenoid. This characteristic of a
solenoid makes it a very useful electrical component to set up a known
uniform magnetic field for experimental purposes.

Before proceeding further, answer an SAQ.

SAQ 3 - Field due to solenoid

How will the magnetic field inside a long solenoid vary if i) the number of turns
per meter is doubled, ii) the current is doubled, iii) the length of the solenoid is
doubled affecting the turns per meter, iv) length of the solenoid is doubled
keeping the turns per meter constant, and v) the diameter of the solenoid is
doubled.

13.3.3 Magnetic Field inside a Toroid

A toroid is a donut-shaped coil used as inductor in electronic circuits. If a
solenoid is bent into the form of a circle so as to join its two ends, one obtains
a toroid as shown in Fig. 13.10. To obtain an expression for the magnitude of
B due to a toroid, we note from the symmetry of its structure that it gives rise
to circular and concentric field lines of B inside the toroid with the centre of
these fields lines coincident with the centre of the toroid. Also, the magnitude
of field is constant along any field line.

Now, let us consider an Amperian loop in the form of a circle of radius r that
coincides with a field line (see Fig. 13.10). So, the line integral of Eq. (13.1) for
this Amperian loop can be written as

§ B.dl = 2wrB

Note that the Amperian loop coincides with a field line and the magnitude of B
is constant at every point on the loop. As a result, the line integral of

Eq. (13.1) is just the field strength times the circumference 2xr of the loop.
Now, you may ask: How much current is encircled by the loop? If the
toroid consists of N turns, and carries a current i, then an Amperian loop
inside the toroid coil encircles a total current Ni. This is because each turn
carries current in the same direction through the path (Amperian loop) we
have chosen. Thus, substituting the value of the line integral for the Amperian
loop and the total current encircled in Eq. (13.1) we get

21mrB = pgNi
so that
B = MoNI (13.9)
27r

Fig. 13.10: A toroid is
solenoid bent into
the form of a circle
SO as to join its two
end. Also shown is
an Amperian loop
(dotted lines) for
calculating the field.

101
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Eq. (13.9) holds when the Amperian loop is within the toroid itself. If the
Amperian loop is inside the inner edge of the toroidal coil, there is no current
encircled, and the magnetic field is zero. On the other hand, if the Amperian
loop is outside the outer edge of the coill, it encircles equal but opposite
currents, again giving zero field. Also, from Eq. (13.9) we note that B isa
function of r. Therefore, B is not constant over the cross-section of the toroid
unlike the straight solenoid.

To fix the ideas about toroid, solve a SAQ.

SAQ 4 - Magnetic field of a toroid

A toroid has 6000 turns upon it and carries a current of 10 A. Calculate the
value of magnetic field at a point within the toroid which is located at 20 cm
from its centre.

So, on the basis of the above discussion wherein we calculated B using
Ampere’s law for different current configurations, you must have noted that
calculation of B is lot more easier using Ampere’s law. This law for B is
somewhat similar to Gauss’s law which enables us to calculate E due to
symmetric charge distributions.

However, Ampere’s law is not always useful. It is because for calculating
B, itis necessary that the current distribution is symmetric so that B has a
constant magnitude. The constant value of B enables us to take it out of the
line integral :fé.dT. So, the Ampere’s law is useful only for the following

current distributions: infinite straight wire, infinite plane, infinite solenoid and
toroids. For other types of current distributions, we have to use Biot-Savart
law.

Further, from Unit 8, you may recall that the concept of electric potential
enables us to calculate E easily. So, the question you would like to ask is:
Can we define magnetic potential which enables us to calculate B? The
answer is, yes, we can. To do that, we first need to express Ampere’s law in
differential form. Let us learn it now.

13.4 DIFFERENTIAL FORM OF AMPERE’S LAW

The integral form of Ampere’s law is [Eq. (13.1)] :
§édT = Holencircled

To express Ampere’s law in differential form, we make use of Stokes theorem
which you studied in Unit 3 (Block 1) of this course. According to Stokes’
theorem, the line integral of a vector field F along a curve C is related to the
surface integral of F over a surface S bounded by curve C:

f Fdl = ﬁ curlF.dS (13.10)
C S

where dSis the area enclosed by the closed path. Now using Eq. (13.10) we

102 can write Eqg. (13.1) as:
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§éd_|. = Hoiencirc|ed :ﬁ6xédé (1311)
C S

Further, you may recall from Unit 12, that current i is related to current density
J by Eq. (12.7):

i=ffJads
S
We can therefore write Eq. (13.11) as

ﬁﬁxé.dé—poﬁj.dézo

or ﬁ[ﬁxé—poj].dé=0
S

Since dSis non zero, the guantity within brackets in the above expression
must be zero. Thus, we have

VxB =pgJ (13.12)

Eq. (13.12) is the differential form of Ampere’s law.

At this stage, you should pause for a moment and think what inferences we
can draw from the two vector relations involving magnetic field B. First is,
div B =0, the mathematical expression of Gauss’s law for magnetism which
you studied in Section 12.3 of Unit 12. We mentioned there that zero
divergence of B physically means that magnetlc monopoles do not exist. In
this respect, B is different from electric field E because V.E #0.

The second relation is curl B 0 [Eq. (13 12)]. The finite value of curl B again
distinguishes B from E because curl E is zero. From Block 1, you may recall
that the zero value of the curl of a vector field (such as E) implies that the
vector field is a conservative field. Thus, we can say that curl B0 implies
that B is a non-conservative field.

Yet another consequence of these vector relations involving B leads us to the
concept of magnetic vector potential. Let us learn it now.

13.4.1 Magnetic Vector Potential

In Unit 8, you have learnt that the conservative nature of E enabled us to
define the concept of electric potential. To establish a relation between vector
field E and electric potential, V — a scalar quantity — we used the vector
|dent|ty curl of gradient of a scalar field is zero. This enabled us to write

E= —gradV. This relation between E and Vis very useful in calculating E at

a point if we know V at that point due to a given charge distribution.

So, a logical question you may ask now is: Can we define a similar scalar
potential for magnetic field so that calculation of B becomes easier? No, we
can not define a scalar potential associated with B because, B isanota
conservative field. In other words, since curl B 0, we cannot express B asa

gradient of some scalar function as in the case of E.

103
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However, the relation div B =0 enables us to express B as curl of vector
field, say A because of the vector identity:

V.(VxA)=0
where A is a vector field. Thus, we can write

B=VxA (13.13)
If we compare Eq. (13.13) with the relation E = —VV for electrostatic field, we
find that we can associate a vector field A, with magnetic field B as scalar
potential V is associated with E. Thus, we call the vector field A, the
magnetic vector potential.
Note that Eqg. (13.13) is insufficient to define A uniquely. It is so because we
can always add a gradient of a scalar function, say B, to the vector A and
Eq. (13.13) will still be satisfied because curl of the gradient of a scalar

functions is zero. So, we must first define A uniquely. To do that, we obtain
another condition to be satisfied by A by using Eqg. (13.12):

VxB=pod
Substitution Eq. (13.13) in the above relation, we get

Vx(VxA)=pngd (13.14)
To proceed further, we use the vector identity

Vx(VxC)=V(V.C)-VZ2C (13.15)
So, using Eg. (13.15), we can write Eq. (13.14) as

V(V.A)=VZ2(A)=pgd (13.16)

Now, the LHS of Eq. (13.16) contains two terms: one involving divergence of
A and another term V2A. Since the condition given by Eq. (13.13) involves
curl A, we are free to choose A in such a way that its divergence is zero.
That is, out of the many choices for the function A which satisfy Eq. (13.13),
we choose only those values of A which makes it solenoidal, i.e.

V.A=0 (13.17)

So, Eqg. (13.17) gives another condition which the magnetic vector potential A
must satisfy along with the condition given by Eq. (13.13). Therefore, the
Ampere’s law given by Eq. (13.12) can be written in terms of magnetic vector
potential A by putting V.A =0in Eq. (13.16):

V2A = —1pJ (13.18)
Note that Eq. (13.18), being a vector equation, is actually three equations

2 Ay N 02y . Ay

=—upnJ 13.19a
6X2 ayz 622 HoJx ( )
%A, %A,  OZA
y Y Y
+ + =—uoJ 13.19b
2 2 2
0Py [ OThe [ OPr g, (13.19¢)

ox2  oy?  oz2

Each of Eq. (13.19) is similar to the relation between electric potential V and
volume charge density p:
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vy =P (13.20)
€0
Further, the electric potential at a point due to a volume charge is given as:
-1 J.Edr
4meg v r

where dt is the volume element and r is the distance between the volume
charge and the point where we wish to calculate V. So, by analogy, we may
write magnetic vector potential A in terms of current density of a volume
current distribution as

A=Hodg (13.21)
4ndr
The magnetic vector potentials for line and surface current distributions are
given as
A-bHorly (13.22)
4 r
A= “—Ojﬁds (13.23)
A r

where L and K are, respectively, current densities due to line and surface
current distributions. Though magnetic vector potential enables us to calculate
B, using Eq. (13.15), the calculation of A itself is not easy (as the calculation
of electric potential) because it is a vector quantity. The convenience of
calculating E using electric potential V, a scalar quantity, is not available for
B. However, by defining a magnetic vector potential, we have somewhat
established a symmetry between electric field and magnetic field.

Now, let us summarise what you have learnt in this unit.

13.5 SUMMARY

Concept Description

Ampere’s law B The line integral of magnetic field around a closed loop is equal to the
current encircled:

§édf = Hoiencircled

Magnetic field due ® The magnetic field due to a current carrying long straight wire is given as
to long straight

wire B[ = (uoi / 2nr)
where r is the distance of the field point from the wire.
Solenoid B A solenoid is a long cylindrical coil having many turns of wire. Inside the
current carrying solenoid, there is a uniform magnetic field given by
B = pgni
where n is the number of turns per unit length.
Toroid B The magnetic field inside a toroidal coil is given by
B = koI
2mr

where r is the distance from the centre of the toroid and N is the total

number of turns wound on the toroid. 105
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Differential form
of Ampere’s law

Magnetic vector
potential

Surface

Differential form of ampere’s law is

VxB =pgd

where J is the current density at a given point.

In terms of magnetic vector potential A, the magnetic field is given as

B=VxA

because diverge of a curl is zero and divergence of B is equal to zero.

In terms of magnetic vector potential A, Ampere’s law is written as

V2A = —Moj

13.6 TERMINAL QUESTIONS

1.

Fig. 13.11: Diagram for

TQ 2.

R

Fig. 13.12: Diagram for

TQ 4.
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Five very long, straight, insulated wires are closely bound together to form
a small cable. Currents carried by the wires are i1 =20 A, i = -6 A,

i3 =12A, iy =-7Aand i =18 A (negative currents are opposite in
direction to the positive). Calculate the magnitude of B at a distance of 10
cm from the cable.

Consider the surface bounded by the closed path shown in Fig. 13.11 with
the value of i equal to 15 A. What is the net current passing through the
surface? Calculate the value of the line integral of B for this closed path.

A long, straight wire of diameter 4 mm carries a uniformly distributed 10 A
current. At what distance from the axis of the wire the magnitude of B will
be maximum? Justify your answer.

A long, hollow conducting cylinder carries a current i which is uniformly
distributed over the cross-section as shown in Fig. 13.12. Determine the
value of magnetic field at at point a distance r from the axis of the cylinder
foriyr<a, ii)a<r<b,andii)b<r.

A long solenoid with 900 turns per meter has a 2.6 A current. i) What is the
magnitude of the magnetic field at the centre of the solenoid? ii) If the
length of the solenoid is 300 mm, how many turns of wire are on the
solenoid?

A toroid has 600 turns and a current of 200 mA is flowing in it. If the inner
and outer diameters of the toroid is 80 mm and 95 mm respectively,
calculate the maximum and minimum values of the magnetic field in the
toroid.

A 15 cm long solenoid having diameter 1.5 cm carrier a current 1.5 A and
the value of the magnetic field at its centre is 0.04T. If the wire used to
wind the solenoid has diameter 0.6 mm, determine the number of layers in
the winding and total length of the wire used.

13.7 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1.

The line integral fé.df in the Ampere’s law depends on the net current

encircled by the Amperian loop. The Amperian loops 1 and 3 in Fig. 13.2
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encircles current i. Thus, for these loops, ffé-dT = upi. And for the

Amperian loop 2 in Fig. 13.2, ifé.dT = 0 because net current is zero.

2. The variation of B with distance T from the axis of the wire is shown in
Fig. 13.13.

N

B

N
7

R F

Fig. 13.13: Diagram for answer to SAQ 2.

3. The magnetic field inside a solenoid is given by
B = pgni
We can answer all the questions on the basis of above relation:

i) The field will be doubled because we have made n = 2n.
i) The field will be doubled because we have made i = 2i.
iii) The field will be halved because we have made n = n/2.
iv) The field remains unchanged because we have kept n unchanged.
v) The field remains unchanged as it is independent of the diameter of
the solenoid.
B = Kot
2mr
We have, N =6000,i =10 A,r =20cm=0.2m, g = 4nx10~ ' TmA 1

4. The magnetic field within the toroid is given as

(2x10~7T mA 1) x(6000) x (10 A)
(0.2m)

=0.06T

So, B=

Terminal Questions

1. Let us consider an Amperian loop of radius 10 cm having centre at the
axis of the cable comprising five current carrying wires. Then, the
magnitude of magnetic field at a distance of 10 cm from the cable is given
by B = Holencircled

2mr
So, B=[(2x10~'/TmA1)x(37 A))/(0.1m) =7.4 x10>T
2. Note from Fig. 13.11 that the current crosses the surface thrice; thus, the

net current passing through the surface isi = 15 A. The line integral of B
for this closed path is given by Ampere’s law as

:fé.df = Loiencircled = Ho(15 A) = (4r x 10~7TmA 1) x (15 A)

=1.88x10°Tm

3. The magnitude of the magnetic field due to current carrying wire is given
by Eq. (13.4): B = (ugi)/(2nr).

Thus, as the distance r from the axis increases, B decreases. However,
from Sec. 13.3 (Example 13.1) you know that inside the wire, where

distance r < R, the radius of the wire, B is given as 107
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B = (uoir)/(2nR?)

This expression shows that inside the wire, B increases as r increases.
And, the value of B reaches its maximum value when r = R. Thus, B is
maximum at (4 mm/2) = 2mm.

i) If we take an Amperian loop of radius a around the axis of the hollow
conducting cylinder, the current encircled by the loop is zero. So,
B=0.

i) For an Amperian loop having radius r > a and < b, the situation is
similar to the one discussed in Example 13.2. So, you can show that
the magnitude of B will be

B = (uoi(r2 —a2))/(2nr (b2 —a2))
i) In this case, any Amperian loop having radius r > b will encircled the
total current i. So, B = (ugi)/(27r)

i) The magnitude of B at the centre of a solenoid is given by Eq. (13.8):
B =pgni. We have, i =2.6 A and n = 900. So,

B = poni = (4nx 107 TmA 1) x(900) x (2.6 A)=2.9 x10-3T
i) Since 1 m length has 900 turns, 300 mm will contain 270 turns.

From Eg. (13.9), we know that the magnetic field due to a toroid is given
as B =(ugNi)/(2nr) where r is the radial distance from the axis of the
toroid. We also know that the value of B is zero inside the inner edge as
well as outside the outer edge of the toroid. Further, from the above (1/r)
dependence of B, we note that the value of B will be maximum just inside
the toroid for which r = 80 mm. And, B will be minimum just inside the
outer edge for which r = 95 mm. So,

(B)max = [(2 x 107 TmA 1) x (600) x (0.2 A)]/[0.08 i = 0.3 miT

(B)min =[(2x10~7TmA ~1)x (600)x (0.2 A)]/[0.095 ] = 0.25 mT

. The magnetic field due to a solenoid is given by Eq. (13.8): B = ugni

We have, B=0.04T,i =1.5A. So,
n=B/(ugi) = (0.04 T)/[(4nx10~"TmA 1)x(1.5 A)]= 2.1x 104

So, the number of turns per meter is 2.1x10%.

The length of the solenoid is 15 cm. So, it will contain 3.15x103 turns.
Since the length of the solenoid is 15 cm and diameter of the wire is

0.6 mm, in one layer, there would be (0.15 m)/ (0.6x10-3m) =2.5x102
turns. So, number of layers is equal to (3.15x103)/(2.5x102) = 12.6 layers.

Further, the circumference of the solenoid is 2nr =2x3.14x0.0075m
=0.047 m. So, in one turn, 0.047 m length of wire is used. So, total length
of the wire used is approximately (0.047 m) x(3.15x103) =148 m. (Note
that we have neglected the gradual increase in the circumference layer
after layer).
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STUDY GUIDE

In the previous two units, you have studied the effect of magnetic field in free space. In the
present unit, you will learn what happens when a magnetic field is applied to a material
media. The discussion on magnetic properties of materials in the present unit will be on the
lines similar to our discussion on the behaviour of dielectrics in electric field (discussed in
Unit 10). So, you should go through Unit 10 once again before studying this unit. Further, to
explain the magnetic properties of materials, we have introduced many new concepts such as
magnetic moment, magnetisation, magnetic intensity and magnetic susceptibility. So, you
should focus on the physical significance of these concepts. Also, it will help you understand
the contents of this unit better if you keep looking for analogy between the concepts we
introduced in Unit 10 for discussing dielectrics in electric field and the concepts introduced in
the present unit. However, you should be mindful of the differences as well as the similarities
between the corresponding concepts.

Francis

Half of science is putting forth the right questions. Bacon
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14.1 INTRODUCTION

In the previous two units, you have studied magnetic fields produced by
steady currents. The steady currents or moving charges in conductors were
considered to be placed in vacuum. Now, consider a situation where we keep
a sample of material in a magnetic field. Does the sample have any effect on
the magnetic field? Does the magnetic field cause some changes in the
sample? Does the presence of material in magnetic field give rise to some
new phenomenon? These are some of the questions which we discuss in this
unit.

In Unit 10 (Block 3) of this course, you have learnt how a dielectric material
responds to an electric field. We characterised the behaviour of dielectrics in
terms of electric dipoles, both natural and induced, present in these materials
and their response to the electric field. The macroscopic properties of these
materials were explained using the concept of polarisation vector, P defined
as the electric dipole moment per unit volume.

The investigation of magnetic properties of materials leads us to a similar kind
of explanation. However, it is a bit complicated primarily because of the
absence of magnetic monopoles. The magnetic dipoles in these materials are
understood in terms of the so-called Amperian current loops.

In this unit, we will try to understand, in a general way, the atomic origin of the
magnetic properties of materials. Firstly, in Sec. 14.2, we give a brief
description of how various substances respond to magnetic field. These
experimental observations are then explained by the concepts we develop in
the subsequent sections of the unit. In Sec. 14.3, you will learn the concept of
magnetic dipole and how we visualise it in terms of atomic currents — currents
due to motion of electrons in an atom. The response of such atomic magnetic
dipoles to a magnetic field is understood in terms of the effect of magnetic
field on a current loop. These discussions in Section 14.3 enable us to define
magnetic moment, relate magnetic moment with the angular momentum of
electrons in an atom and define magnetisation. The concept of magnetisation
plays the same role in explaining magnetic properties of material as the
concept of polarisation vector P for electrical properties of dielectrics.

In Sec. 14.4, you will learn the concept of magnetic intensity. The relation
between magnetic field B and magnetic intensity His explained in Sec. 14.5.
You will also learn about magnetic parameters such as magnetic
susceptibility, magnetic permeability and relative permeability. These
parameters are used for classification of magnetic materials into three broad
categories, namely, diamagnetic, paramagnetic and ferromagnetic materials.
In Sec. 14.6, you will learn the basic properties of these three types of
magnetic materials. We will also discuss, qualitatively, the behaviour of
ferromagnetic materials including the phenomenon of hysteresis.

In this unit, we present a simple account of magnetism based on the notions
of classical physics. But, you must keep in mind that it is not possible to
understand the magnetic properties of materials from the point of view of
classical physics. The magnetic effects are a completely quantum mechanical



Unit 14

Magnetic Properties of Materials

phenomena. Only modern quantum physics is capable of giving a complete
explanation of the magnetic properties of matter because the study requires
the introduction and utilisation of quantum mechanical properties of atom. For
a complete explanation, one must take recourse to quantum mechanics;
however, a lot, though somewhat incomplete, information about magnetic
properties of matter can be extracted by using a semi-classical approach
which combines classical and some quantum concepts.

With Unit 14, we end our study of magnetism. In the next block of this course,
you will study about electromagnetism.

Expected Learning Outcomes
After studying this unit, you should be able to:

+« explain how a current loop can be considered as a tiny magnet having
magnetic dipole moment;

+«+ obtain an expression for torque on a magnetic dipole kept in a magnetic
field;

+ relate magnetic dipole moment to the angular momentum of electrons in
an atom;

+ explain the concept of magnetisation, magnetic susceptibility,
permeability and relative permeability of materials;

+ establish a relation between magnetic field and magnetic intensity;

+ classify materials into diamagnetic, paramagnetic and ferromagnetic
materials; and

describe the concept of domain and explain the hysteresis curve for

ferromagnetic materials.

14.2 RESPONSE OF VARIOUS SUBSTANCES TO
MAGNETIC FIELD

When we speak of magnetism in everyday conversation, we almost certainly
have in mind an image of a bar magnet or a compass needle. You may have
observed that a magnet can be used to lift nails, tacks, safety pins, and
needles (Fig. 14.1a) while, on the other hand, you cannot use a magnet to
pick up a piece of wood or paper (Fig. 14.1b).

Materials such as nails, needles etc., which are influenced by a magnet, are
called magnetic materials whereas other materials, like wood or paper, are
called non-magnetic materials. However, this does not mean that there is no
effect of magnetic field on non-magnetic materials. The difference between
the behaviour of such (non-magnetic) materials and iron like magnetic
materials is that the effect of magnetic field on the former is very weak.

To see how the magnetic materials respond to a magnetic field, consider a
strong electromagnet, which has one sharply pointed pole piece and one flat
pole piece as shown in Fig. 14.2

Bar
magnet

h ‘\\

Tacks made of
magnetic material

(@)

Bar
magnet

S

Block of wood
(b)
Fig. 14.1: a) Materials

that are attracted to a

magnet are called
magnetic materials;

b) materials that do not
react to a magnet are

called non-magnetic

materials.
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Strin
/ g

— Magnetic

lines of forces
~5. /

Poles of a strong electromagnet

Fig. 14.2: A small piece of material hanging from a string kept in the strong field
of an electromagnet; if the piece of material is a small cylinder of
bismuth, it is weakly repelled by the sharp pole (pole S) and if itis
aluminium, it is attracted towards the sharp pole.

The geometry of the electromagnet is such that the magnetic field is much
stronger in the region near the sharply pointed pole (pole S) whereas near the
flat pole (pole N), the field is weaker. When current is passed through the
electromagnet (i.e., when the magnet is turned on), the hanging piece of
material is slightly displaced due to the magnetic field. If specimens of various
materials are used in this experiment, it is observed that some materials get
displaced in the direction of increasing field, i.e., towards the pointed pole.
Such materials are called paramagnetic materials. Examples of such
materials are aluminium and liquid oxygen. On the other hand, there are
materials like bismuth, which are displaced in the direction of the decreasing
field, i.e. these gets repelled from the pointed pole. Such materials are called
diamagnetic. Finally, there is a small class of materials which experience a
considerably stronger force (102 to 10° times the force experienced by
diamagnetic and paramagnetic materials) towards the pointed pole. Such
substances are called ferromagnetic materials. Examples of such materials
are iron and magnetite.

The above experimental observations may prompt you to ask many questions:
Why does a substance kept in a magnetic field experience a force? Why does
the force act in a particular direction for some substances and in the opposite
direction for other substances? Well, you will discover answer to these and
such other questions as you study this unit and understand the mechanisms
of paramagnetism, diamagnetism and ferromagnetism.

In Unit 12 (Block 3) of this course you have already learnt that the source of
magnetic field in free space is the electric charges in motion. In the classical
picture of magnetism, this argument is extended to materials by assuming that
the motion of electrons in atoms and molecules of materials give rise to tiny
magnetic dipoles which interact with external magnetic field. The magnetic
properties of materials arise from the magnetic moment of atomic electrons. It
is this magnetic moment via which the atoms of a substance interact with the
external magnetic field, and give rise to magnetic effects. Let us now discuss
how a current loop can be treated like a tiny magnetic dipole, find out the
value of its magnetic moment and see how magnetic moment is related to the
112 angular momentum of the atom.
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14.3 MAGNETIC MOMENT AND ANGULAR
MOMENTUM OF AN ATOM

Current
loop

In Unit 12, you have learnt that steady currents in a conducting loop produce

magnetic field. Refer to Fig. 14.3 which depicts the magnetic field lines due to

a current loop and a bar magnet. The similarity of the field lines due to current

loop and a bar magnet is the basis to model current loops due to the motion of

electrons in the atoms and molecules of substances as tiny magnetic dipoles.

The interaction of these tiny magnetic dipoles with the external magnetic field @)

is the basis of understanding of the magnetic properties of materials in Bar
classical physics. Therefore, in the following section we first examine the magnet
response of a current-carrying loop kept in a uniform magnetic field.

N
14.3.1 Torque on a Current Loop in a Magnetic Field C

S
When a current loop is placed in a uniform magnetic field as shown in +
Fig. 14.4a, equal and opposite forces having the same line of action are (b)
exerted on it. Therefore, the net force on the current loop is zero. But, you _ o
have studied in the course BPHCT-131 entitled Mechanics that these Fig. 14.3: Magnetic field
antiparallel forces can result in a torque on such a coil which can make it s dusiiiacurrell
. — loop; b) a bar magnet.
rotate. You can see this in Fig. 14.4b.

Axis R B Q <l R
—
—
—> F,
P S

(b)

Fig. 14.4: a) When a current-carrying coil is placed in a uniform magnetic field,
equal and opposite forces are exerted on it; b) the torque due to these
forces causes the loop to rotate about its axis.

If you apply the right-hand rule to the wires of the loop shown in Fig. 14.4b,
you will notice the following: the forces (not shown in the figure) on the upper
and lower sides QR and PS, respectively, of the loop are parallel to the axis of
rotation and are equal and opposite. Therefore, they cannot cause any
rotation of the loop. However, the forces Fl and F2 that act on the sides PQ

and RS, respectively, of the loop can indeed cause it to turn because their
lines of action are not the same. The turning effect is zero when the coil is in
the position shown in Fig. 14.4a and a torque exists for the position shown in
Fig. 14.4b. Let us now find the expression for the torque.

Consider the rectangular loop PQRS carrying current i and placed in a uniform
magnetic field B as shown in Fig. 14.5a. Let PQ =RS =land QR =SP =h.
The vertical sides PQ and RS of the loop are perpendicular to the magnetic
field. Therefore, the magnitude of the forces F; and F» on these sides is given

by 113
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You may recall from

Unit 12 that the force
exerted by magnetic field
B on a current-carrying
wire of length | is given
as

If T and B are
perpendicular to each
other, 6 = /2 and we
have

F=ilB

You know from the
course Mechanics
(BPHCT-131) that torque
is given by

T=rxF

You have learnt about
the area vector A in
Example 1.1 of Unit 1 of
the course BPHCT-131.
By definition A is a
vector such that its
magnitude is the area of
the loop. Its direction is
perpendicular to the
plane of the loop and its
sense is given by the
right-hand rule.
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F=FR=ilB

Now, refer to Fig. 14.5b which depicts the loop when it is viewed from above.
Note that the forces F, and F, are equal, parallel and directed opposite to
each other and hence they form a couple. A finite torque is exerted on the
loop, causing it to rotate around an axis in its plane passing through midpoint

of QR.
Current
I%’( cc()mmg up)
— —
B B
e e
I l e
/
> —_—>
Q
—> —>» (Current
P going down)

(a) (b)
Fig. 14.5: Torque on a current loop placed in a magnetic field: a) side view;

b) top view.

Suppose, at any instant, NN’ — axis normal to the plane of the loop — makes
an angle 6 with the magnetic field as shown in Fig. 14.5b. Then, at that instant
the torque 1 on the loop due to forces F and F is given by

T = Fx(lzl +|32)
T = f|[F|sin® + [f[ [F2|sin®

Since ‘Izl‘ = ‘IE2| =ilB and |r| =(b/2), we can write

= (iIBb sin 9) + (iIBE sin 9)
2 2
= iIB(bsin0O)

But | xb = A (area of the loop)

=iABsin0O (14.1)

If instead of a single loop, we have a coil having N loops, then the net torque
T is given by

7L = (NiA)Bsin® (14.2)

The quantities in parentheses are grouped together because they are all
properties of the coil viz., its number of turns, its area and the current it
carries. Eq. (14.2) tells us that a current carrying coil placed in a magnetic field
will tend to rotate. We can express the toque in vector notation in terms of
area vector A and magnetic field B as

7 =NiAxB (14.3)

where ‘A‘ =1b. Do you notice any similarity between Eq. (14.3) and Eq. (8.34)

which gives the torque on an electric dipole kept in an electric field. Eq. (8.34)
is
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‘_E:ﬁxl_—i

where p is the electric dipole moment and E, the electric field. Comparison of

the above expression with Eq. (14.3) suggests that a current loop in a
magnetic field behaves analogously to an electric dipole in an electric field.
The quantity NiA is called the magnetic dipole moment g, of the current
loop. Thus

fi = NiA (14.4)

Magnetic dipole moment p is a vector quantity and for a current loop, its

direction is along the direction of A (Fig. 14.6). From Fig. 14.6, you can see
that a current-carrying coil in a magnetic field behaves like a bar magnet.
Using Eq. (14.4), the torque on a current loop can be written as

T=HxB (14.5)
The torque tends to align the magnetic moment with the magnetic field.

To check your understanding of the ideas discussed above, solve an SAQ.

SAQ 1 - calculating torque on a current loop

A circular loop of radius 5.0 cm consists of 10 turns of wire. A current of 3.0 A
flows in the wire. What is the magnitude of the loop’s magnetic moment?
Suppose, initially the magnetic moment is aligned with a uniform magnetic
field of 100 G. Now the loop is turned 90° from its original orientation. How
much toque is required to hold the loop in its new orientation?

Let us now discuss the relation between the magnetic moment and angular
momentum of an atom.

14.3.2 Electric Currents in Atoms

Eq. (14.4) gives the magnetic moment of a current-carrying coil in terms of the
parameters such as current, number of turns and area of the coil. But, to
explain the magnetic properties of materials, we need to talk about magnetic
dipoles arising due to atomic currents and define dipole moment in terms of

Nucleus A -
V- :
)
Electron .
\_j /
—
YL

(a) (b)
Fig. 14.7: a) Classical model of an atom in which an electron moves with speed

v in a circular orbit; b) the orbital angular momentum vector L and the
magnetic moment vector @ both point in opposite directions.

the angular momentum of electrons. According to the classical model of an

atom, electrons in the atom move in a circular orbit around the nucleus under
the influence of a central force, known as the electrostatic force, as shown in
Fig. 14.7a. The electrons in circular motion constitute a localised current loop

(b)

Fig. 14.6: a) Current-
carrying coil; b) bar
magnet in a horizontal
magnetic field.

Electrons in an atom
are in constant motion
around the nucleus. To
describe their motion,
one needs quantum
mechanics. However,
in this unit we shall use
only classical
arguments to obtain
our results.
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which contributes to the magnetic dipole moment of atom. Also, due to this
circular motion, the electron will have an angular momentum L about the
position of the nucleus.

The magnitude of the angular momentum of the electron moving in a circle of
radius r is given by

L =|r xp| =|r| x|p|sin® =mwr  (since 6 = 90°) (14.6)

where m is the mass of electron and v, its speed. Note that for circular motion,
the angle between r and p, momentum of electron, is 90°. The direction of
the orbital angular momentum vector L is perpendicular to the plane of the
orbit.

The orbital motion of the electron constitutes an electric current. Since the
charge e moves with speed v, it traverses a distance 2xr in time (2xr / v). So,
the period of rotation 2x=r /v. Therefore, the current due to the orbital motion

of the electron is
e ev

P .. 14.7
t 27r ( )

The magnetic moment due to this current is the product of the current and the
area of the circle in which electron moves, that is, p =i nr 2. Hence, we have

. % (14.8)

Using Eq. (14.6) in Eq. (14.8) we get:

e
=——L
H 2m

In vector notation, we write

i=-—o L (14.9)
2m

The negative sign in Eq. (14.9) indicates that . and L are in opposite

directions for the electron, as shown in Fig. 14.7b. Note that L is the orbital
angular momentum of the electron. The ratio of the magnetic moment and
the orbital angular momentum is called the gyro-magnetic ratio. It is
independent of the velocity and the radius of the orbit.

EX%[MPLE 14.1: ORBITAL MAGNETIC MOMENT

In the Bohr hydrogen atom, the orbital angular momentum of the electron
is quantized in units of h, where h = 6.626 x103*Js is Planck’s constant.
Calculate the smallest allowed magnitude of the atomic dipole moment in
JT -1, (This quantity is known as Bohr magneton.) Mass of the electron is
9.109 x1031kg.

SOLUTION W From Eq. (14.9), fi = _ZiE 0
m
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According to the Bohr model of the hydrogen atom, the angular momentum
of the orbital electrons is quantised; i.e., the angular momentum can have
discrete values only. The quantised angular momentum of electron is given
as

_nh

" 2n

where h is Planck’s constant and n is an integer.

L (i)

Therefore, the minimum allowed magnitude of dipole moment is given by
putting n =1 in the expression for L and then using it in Eq. (i):

R e h 1.602 x10-19C 6.626 x1034Js
|Hmin| = = X

2m 2n 2(9.109 x 10-31kg) 2n
or |hmin| = 9.27x10724CJs kg1 =9.27x10724J71
eh

Thus, the Bohr magneton is given by y—— 9.27 x10724JT7-1, The Bohr

Tm
magneton is a convenient unit of magnetic moment at the atomic level.

SAQ 2 - Magnetic dipole moment

What is the direction of the magnetic dipole moment of an electron relative to
the direction of its orbital angular momentum L?

On the basis of the above discussion, you now have a fairly good idea of the
magnetic field, magnetic dipole and magnetic dipole moment associated with
electrons moving in circular orbits in atoms and molecules. The atoms and
molecules of materials interact with the external magnetic field due to their
magnetic moments. In addition, there is another way in which atomic currents
and hence magnetic moments are affected by the magnetic field. In this case
the magnetic moment is induced by the external field. We shall discuss this
further in a later section of this unit.

In Unit 10, we discussed the macroscopic properties of dielectrics in an
electric field in terms of the polarisation vector P. The origin of Pis in the
dipole moments of the natural or induced electric dipoles in a dielectric
material. We shall adopt a similar procedure in the study of magnetic materials
by defining a quantity called magnetisation. Let us learn about it now.

14.3.3 Magnetisation

In the previous section, we restricted our discussion to isolated atoms or
molecules and their magnetic dipole moment. But, a real macroscopic object
comprises a large number of atoms or molecules. So, at the macroscopic
level, we deal with quantities which involve averages over many atoms or
molecules. Magnetisation, M, is one such quantity which is related to
average dipole moment for many atoms or molecules. It is defined as

magnetic moment per unit volume.
117



Block 3

Electrostatics in Medium and Magnetism

118

In view of the similarity of definitions between polarisation vector P and the
magnetisation vector M, you may be tempted to say that we should carry over
all the equations in the study of dielectrics (Unit 10) to magnetic materials.
One way of doing this would be to replace the electric field vector E by B,and
replace P by M. Further, we replace the polarization charge density p, by
magnetic ‘charge’ density p, (though, there are no magnetic charges or
mono-poles) and write V.M = pp,, just as we had V.P = py,. In fact, people
did something like this, and they believed that magnetic charges or monopoles
existed. They have built a whole theory of electromagnetism on this
assumption. However, we know that magnetic ‘charges’ or monopoles have
not yet been detected in any experiment so far, despite a long search for
them. So, this approach will not do.

Now, we know the classical picture that the magnetisation of matter is due to
circulating currents within the atoms of the materials. This was originally
suggested by Ampere. And we call these circulating currents as ‘Amperian’
current loops. These currents, obviously, do not involve large scale charge
transport of electrons in the magnetic materials as in the case of conduction
currents. These currents are also known as magnetisation currents, and we
shall relate these currents to the magnetisation vector M.

Let us consider a volume element AV in a material comprising a large number
of atoms. Let py be the magnetic moment of the k™ atom in the volume

element. Then, the total magnetic dipole moment for this volume is

Zﬁk where the vector sum is over all the atoms in the volume element.
K

So, the magnetisation M is given as
D bk
k

AV

M = (14.10)
From a macroscopic point of view, magnetisation M is an adequate
parameter to describe the magnetic properties of matter. Now, the question is:
Can we express the magnetisation M (an experimentally measurable
quantity) in terms of magnetisation current (which is not measurable
experimentally) in the specimen? The answer is, yes, we can. The magnetic
field due to the magnetisation of the specimen can be represented by the
magnetic field that would be produced by a certain distribution of atomic
currents Jp, in the specimen. The relation between this current density Jp,
due to the atomic currents in the specimen and M is

Jm =V xM (14.11)

Eq. (14.11) is general expression representing the relationship between the
magnetisation of a material medium and the associated equivalent current
represented by current density J,,. We see from Eq. (14.11) that inside a
uniformly magnetised material, M = constant and hence Jm =0.
However, inside a non-uniformly magnetised material, J,, is non-zero.

So far we have been considering that magnetisation is due to current
associated with atomic magnetic moments. Such currents are known as
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bound currents or Amperian magnetisation current. The current density
Jmin Eq. (14.11) is the bound current set up within the material. However, it is
not possible to measure J,,, experimentally. Thus, you may like to know
whether we can find an expression which relates the conduction current
density indicating the actual charge transport, which is experimentally
measurable, and magnetisation. In other words, we are looking for an
expression which relates the current density associated with the external or
applied magnetic field and magnetisation. We can do that by introducing the
concept of magnetic intensity which we discuss in the next section.

14.4 MAGNETIC INTENSITY

Suppose you have a piece of magnetised material. What field does this object
produce? The answer is that the magnetic field produced by this object is just
the magnetic field produced by the bound currents established in it. Suppose
we wind a coil around this magnetised material and pass a certain current i
through this coil. Then the magnetic field produced will be the sum of the
magnetic field due to bound currents and the magnetic field due to current i.
The current i is known as the free current. Free currents are ordinary
conduction currents flowing through a macroscopic path (coil). These currents
can be started and stopped with a switch and can be measured with an

ammeter. (In case the magnetic material happens to be conductor, the free Remember that free
current will be the current flowing through the material itself.) Therefore, we currents are the
can write the total current density J in the material as currents caused by
external voltage
J=Jf +JIm (14.12) sources, while the
internal or bound
where \_jf represents the free current density. Now let us use Ampere’s law currents arise due to

to calculate the magnetic field due to current density J. From Eq. (13.14), the | the motion of the
differential form of Ampere’s law is

V xB = pgd (14.13)
Using Eq. (14.12) for J, we can write Eq. (14.13) as
VxB=po @t +Im) (14.14)

As mentioned earlier, we have no way of measuring jm — the current density
due to bound currents — experimentally. But, we have a way of expressing it in
terms of a measurable quantity, the magnetisation vector M through

EqQ. (14.11). Thus, we can write Eq. (14.14) as

VxB =g Jt +po(V xM)

or V x (E - MJ = Js (14.15)
Ho

Eqg. (14.15) is the differential equation for the vector field (E—M] in terms of
Mo

its source jf ,the free current density. This vector is given a new symbol I:I,
ie.,

— _M=H (14.16)

electrons in the atoms.
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The electrical engineers
working with
electromagnets,
transformers, etc., call
the unit of Has ampere
turns per metre. Since
‘turns’, which is
supposed to imply the
number of turns in the
coil carrying a current, is
dimensionless, it need
not confuse you.
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The name magnetic intensity has been given to H. Using Eq. (14.16),
Eq. (14.15) becomes

V xH = Js (14.17)

In other words, His related to the free current in the way B is related to
the total current, bound plus free. This surely has made you think over the
purpose of introducing the new vector field H. For practical reasons, the field
His very useful as it can be calculated from the knowledge of free current
only, whereas B is related to the total current which is not known. Eqg. (14.17)
can also be written in the integral form as

§H.dT = if (14.18)

where i¢ is the conduction current through the surface bounded by the path of

the line integral on the left. Here, the line integral of His around the closed
path which may or may not pass through the material. This equation can be
used to calculate H, even in the presence of the magnetic material.

SﬁQ 3 - Ampere’s law for H field

Derive Eqg. (14.18).

In Sec. 14.3, we mentioned that Eq. (14.11) is not of much help if we want to
determine magnetisation M because Jp, cannot be measured. Further, you
have learnt that magnetic intensity H can be measured easily because it
depends only on the free currents. So, it will be desirable to have a relation
between M and H, so that M can be determined for a material. You will learn
it now.

Magnetic Susceptibility and Relative Permeability

It has been observed experimentally that for most magnetic materials, the
relation between M and His linear, i.e.
MocH

=xmH (14.19)

i

or

The quantity y,, is called the magnetic susceptibility of material. The value
of magnetic susceptibility for some magnetic materials is positive and for
some, negative. Magnetic materials having negative value of y, are called
diamagnetic and the materials for which ., is positive are called
paramagnetic. There is a third category of magnetic materials, called
ferromagnetic materials for which the value of y, is very, very large and the
linear relation between M and H [Eq. (14.19)] is only an approximation for
them. Further, to obtain a relation between B and H, we rewrite Eq. (14.16),
as

B=po(H+M)
Using Eqg. (14.19), we can write the above relation as

B = po(H + xmH) = po(@+ xm)H (14.20)
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The quantity (1+ym) is defined as relative permeability K,,. So, in terms of
Km, EQ. (14.20) reduces to

B = poKm H (14.21)
The quantity (ug Kmy)is called permeability, p of the medium. Thus, we have
B=pH (14.22)

n Note that we have
Also, p=poKm = Km=— (14.23) used the same symbol

u for two different
Note that p has the same dimensions as pg, permeability of free space. Thus, | quantities, namely,

Km is a dimensionless quantity. In vacuum, yy, =0 and p=pg. magnetic dipole
moment and

The magnetic properties of a material are completely specified if any one of permeability. You have

the three parameters, magnetic susceptibility y ,, relative permeability K, or | to be careful about the

permeability p is known. context of their use.

EMM@LE 14.2: CALCULATING MAGNETIC PARAMETERS

A toroid of aluminium having length 1.0 m, is closely wound by 100 turns of
wire carrying a steady current of 1.0 A. The magnetic field B in the toroid is
found to be 1.2567 x10~4Wbm —2. Calculate the value of (i) H, (i) K, and

(i) xm-
SOLUTION B i) To calculate the magnitude of H in a toroid, we will use
the integral form of Ampere’s law for H field [Eq. (14.18)]:

§ Hdl =i 0

To evaluate H produced by the current, we consider a circular path of

integration (Amperian loop) along the toroid. H is constant everywhere
along this path of length 1.0 m. The total free current, is threading this

path is equal to current in the wire multiplied by the number of turns; that is
100 x1.0 A. Since His everywhere parallel to the circular path of

integration, we have §I:I. dl =H x2nr =H x1.0m. Thus, we can write
Eq. (i) as:

~ 100x1.0A
~ 1.0m

Hx1.0m=100x1.0A = H =100Am—1

i) From Eq. (14.21), we can write the magnitude of B as

B=poKmH

B _1256.7><10_7>< 1
woH 4t x10~7 100

or Km = =1.0005

iif) Further, the relative permeability K, is defined as

Km =@+ %m) = xm = Km —1=1.0005 —1=5x 104
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Fig. 14.8: Arrangement
for investigating the
relation between B and
H in a magnetic
material.
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N

Fig. 14.9: Magnetic field,
B versus magnetic
intensity H for
diamagnetic and
paramagnetic materials;
the relationship is
linear.
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Before proceeding further, you should answer an SAQ.

SﬂQ 4 - Calculating magnetic field B and magnetic intensity H

An air-core solenoid wound with 20 turns per centimetre carries a current of
0.18 A. Calculate the values of magnetic field B and magnetic intensity H at
the centre of the solenoid. If an iron core of permeability 6 x 10-3Hm 1is
inserted in the solenoid, what will be the values of Hand B? Take

hg = 4nx10~"Hm~1

The magnetic parameters discussed in this section are generally determined
using experimentally obtained B-H curve or M-H curve. Let us discuss the
relation between B and H and how the B-H curve is obtained experimentally.

14.4.1 Relation between Band H

The relationship between M and Hor equivalently, a relationship between B
and H depends on the nature of the magnetic material, and is usually obtained
form experiment. In a typical experimental arrangement such as the
magnetometer method to obtain M-H curve, the magnetisation M of a given
specimen of magnetic material is calculated on the basis of the deflection in
the magnetometer for different values of applied magnetic field (that is,
magnetic intensity), H. You will do this experiment in the laboratory course
BPHCL-134 entitled Electricity and Magnetism: Laboratory.

In a typical experimental arrangement, such as the ring method to obtain B-H
curve, the magnetic field B within the magnetised specimen is calculated for
different values of magnetic intensity H. Refer to Fig. 14.8 which schematically
depicts the experimental arrangement for the ring method. It comprises a
toroid with a given magnetic material in its interior. Around the toroid, two coils
— primary and secondary — are wound. If we consider the radius of the cross-
section of the toroidal windings to be small in comparison with the radius of
the toroid itself, the magnetic field within the toroid can be considered to be
approximately uniform. A current passing through the primary coil establishes
H. The current in the primary coil also induces an electromotive force (emf) in
the secondary. By measuring the induced voltage in the secondary coil, we
can determine changes in magnetic flux and hence, in B inside the magnetic
material. If we take H as the independent variable, and if we keep the track of
the change in B starting from B =0, we can always determine the value of B
for a particular value of H. In this way, we can obtain a B-H curve for different
types of magnetic materials.

The experiment described above can be carried out for diamagnetic and
paramagnetic materials by commencing with i =0 (that is, H = 0) and slowly
increasing the value of i to obtain a series of values of H and B. A plot of B
against H for these substances is shown in the Fig. 14.9. We see that the
graph is a straight line as expected from Eq. (14.20):

B =po@+xm)H

where pgand y ., are constant. The slope of the graph gives (1+ ym,) from
which y , can be determined using the following relation:
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slope
tm =P _1

Ho
It is observed that, for diamagnetic materials, slope <pg so that ym <O0.For
paramagnetic materials slope > g so that y,, > 0.

We shall discuss the B-H curve for a ferromagnetic material in the next
section.

So far, we have discussed the concepts of magnetic moment, magnetisation,
magnetic intensity, magnetic susceptibility, magnetic permeability and relative
permeability. The quantities were defined on the basic premise that the
magnetic behaviour of materials is caused due to atomic currents giving rise
to atomic magnetic moments. These parameters enable us to classify various
magnetic materials into three types, namely, diamagnetic, paramagnetic and
ferromagnetic materials. Let us now briefly discuss the characteristic
properties of these magnetic materials.

14.5 PROPERTIES OF MAGNETIC MATERIALS

In the beginning of this unit, we described the response of various substances
to a magnetic field (Sec. 14.2). On the basis of the response to the magnetic
field, magnetic materials are classified into three categories, namely,
diamagnetic, paramagnetic and ferromagnetic. This classification of magnetic
materials is based on experimental observations.

Let us now discuss some salient properties of these materials in terms of
magnetic parameters explained in the previous sections.

14.5.1 Diamagnetism

In many materials, atoms have no permanent magnetic moment because the
magnetic moments of atoms of these materials tend to cancel out. Such
materials are called diamagnetic materials.

If a diamagnetic material is placed in a magnetic field, an emf and current is
induced in their atoms in accordance with Faraday’s law of electromagnetic
induction. (You will study Faraday’s law in detail in Unit 15.) The direction of =0
the induced current is such that it opposes the change in the existing @
magnetic field. Hence, in such materials, the magnetic moment due to the @
induced currents are directed opposite to that of the external magnetic field @ @ <«
(Fig. 14.10). Such materials are repelled by the external magnetic fields and
this effect is called diamagnetism. This effect is universal; i.e. every
magnetic material exhibits diamagnetism. However, it is a very weak
effect.

b
badr

Fig. 14.10: Alignment of
magnetic moment in a
diamagnet.

The above qualitative description of diamagnetism is found to be true from
experimental measurements. Refer to Fig. 14.9 which shows the B-H curves
for diamagnetic (and paramagnetic) materials. The B-H curve shows that the
magnetic field, B is directly proportional to magnetic intensity H which is in
conformity with Eq. (14.16):

B = o+ yxm)H

Further, the value of the slope in the B-H curve for diamagnets is such that the
value of susceptibility ym, for a diamagnetic material is a small negative 123
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Fig. 14.11: Alignment
of magnetic moment in
a paramagnet.
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Fig. 14.12: A domain.
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number; i.e. ym <0.Thus, it follows from the above equation that, for
diamagnetic materials

B <uoH (14.24)
Further, we know that the relative permeability, K, is given as [Eq. 14.21)]:
Km =1+ %m)

and for diamagnetic materials, ym <0. Thus, we find that the relative
permeability K, for diamagnetic materials is less than one.

Lastly, as we mentioned above, diamagnetism is a universal effect; that is, it is
a common property of all magnetic materials. However, it is a very weak effect
and gets masked very easily in materials which are either paramagnetic or
ferromagnetic.

14.5.2 Paramagnetism

In some materials, the atoms have permanent magnetic dipole moments.
When such a material is placed in a magnetic field, the atomic magnetic
dipoles tend to align along the direction of the magnetic field (Fig. 14.11).
Thus, when such materials are placed in a magnetic field, they get attracted
towards the magnet. Such materials are called paramagnetic materials. In
paramagnetic materials, diamagnetism is also present, but owing to its weak
nature, it gets masked.

Note that diamagnetism involves a change in the magnitude of the magnetic
moment of an atom whereas paramagnetism involves change in orientation of
the magnetic moment of atom.

You may note from the B-H curve (Fig. 14.9) of a paramagnetic substance
that it conforms to the relation (Eq. 14.20):

B = puo(L+ xm)H

It is found that, for paramagnetic substances, the value of susceptibility ym, is
a small positive number, i.e. xy >0.Thus, from Eq. (14.20), we find that

B > poH (14.25)

Eqg. (14.25) indicates that the external magnetic field H produces
magnetisation in its own direction. Further, we know that K, =1+ xm) and
xm > 0. Thus, we find that the relative permeability of paramagnetic materials
is greater than one.

14.5.3 Ferromagnetism

Ferromagnetic materials are those materials, which respond very strongly to
the presence of magnetic fields. This unique property of ferromagnetic
material can be explained using the concept of domains (Fig. 14.12). Domains
are small regions in ferromagnetic materials in each of which the atomic dipole
moments are aligned (that is, the atomic dipole moments are parallel to each
other). However, such an alignment does not occur over the entire material; it
occurs over a domain. The alignment of atomic dipole moments of one
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domain may be different from that of others. The domain volumes are large
compared to the atomic or molecular dimensions. Such alignment takes place
even in the absence of an external magnetic field. You must be wondering
about the nature of forces that causes the magnetic moments of various
atoms in a domain to line up parallel to each other. This can be explained only
by using quantum mechanical idea of “exchange forces”. We will not go into
the details of exchange forces. You will study about this if you pursue higher
studies in physics.

In an unmagnetised ferromagnetic material, the magnetic moments of different
domains are randomly oriented as shown in Fig. 14.13, and the net magnetic
moment of the materials, as a whole, is zero. However, in the presence of an
external magnetic field, the magnetic moments of the domains align in such a
manrler as to give a net magnetu:I moment to .the mgterlal in the direction of (__) ¥
the field. There are two mechanisms by which this happens. One

mechanism is that the domains with the magnetic moment in the favoured A PV”
direction increase in size at the expense of the other domains, as shown in * f — >
Fig. 14.14a. In the other mechanism, the magnetic moment of the entire

domain can rotate and tend to align along the direction of the applied field Fig. 14.13: The domains

direction as shown in Fig. 14.14b. ' an UagEmastiseay
ferromagnetic material.

The arrows show the

A \ | N\ A alignment direction of
the magnetic moment in
T / = T T —> T each domain.
¥ ¥ X
B=0 AB B=0 AB

(a) (b)

Fig. 14.14: Domain changes in a ferromagnetic material gives rise to a net
magnetic moment. The domain changes occur through a) domain
growth; b) domain realignment.

Due to either of the two mechanisms mentioned above, a sample of
ferromagnetic material gets magnetised. If, after this, the external magnetic
field is reduced to zero, there still remains a considerable amount of
magnetisation in the material. In other words, the material gets permanently
magnetised.

However, when a magnetised ferromagnetic sample is left to itself, the - v %%tgrr]%tt'ggﬁon

domains gradually tend to go back to unmagnetised state. The ferromagnetic =~ [---emmmmmmmmaeeaes
materials are classified as soft and hard on the basis of the time required for
their relaxation to unmagnetised state. In a soft ferromagnet, magnetisation
reduces substantially as soon as the external field is removed. On the other

hand, in a hard ferromagnet, such as many different types of steel and other

alloys, magnetisation persists for years. N
0 H
Further, magnetisation is generally very large in a ferromagnet. That is, Fig. 14.15: The
magnetisation is not proportional to the applied magnetic field. Also, magnetisation of an
magnetisation reaches a saturation value which happens when all magnetic unmagnetised
domains have the same alignment. The variation of magnetisation of an ferromagnetic material.

unmagnetised ferromagnet is shown in Fig. 14.15.
125
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The behaviour of ferromagnetic materials, under the action of changing
magnetic fields, is quite different from that of diamagnetic and paramagnetic
materials. Ferromagnetic material exhibits the phenomenon of hysteresis
(which literally means lagging behind). Let us now discuss it in some detail.

B-H Curve for a Ferromagnet

The experimentally obtained B-H curve for a ferromagnetic material is called
hysteresis curve or loop. A typical B-H curve is shown in Fig. 14.16. The
hysteresis curve contains many important information about the characteristic
parameters of the ferromagnetic material. To know about them, let us first
describe different segments of the curve.

)

ii)

N

B
b £~
lfa )/
5 c
Remanence
N
Coercive A H
force
c

Fig. 14.16: B-H curve for a ferromagnetic material.

Suppose that initially, the specimen of the ferromagnetic material is
unmagnetised and there is no current in the solenoid/toroid used in the
experiment to obtain its B-H curve. Thatis, at i =0, H =0and B is zero.
When i is increased, B and H are determined for increasing values of i. At
first, B increases with H along the curve a (see Fig. 14.16). The curve a is
the initial magnetisation curve. At some high value of H, the curve ‘a’
reaches a plateau, indicating that M ceases to increase, as the material
has reached saturation with all the domain dipole moments in the same
direction.

If, after reaching saturation, we decrease the current in the coil to bring H
back to zero, the B-H curve falls along the curve b. When H reaches zero,
there is still some B left implying that even when i = 0, there is still some
magnetisation M left in the specimen. The material is permanently
magnetised. This value of B for H = 0 is called remanence.

If the direction of current is reversed and its value is increased the B-H
curve runs along the curve b until B becomes zero at a certain value of H.
This value of H is called the coercive force. If we continue to increase the
value of the current in the negative direction, the curve continues along
path b until saturation is reached again.

The current is now decreased until it becomes zero once again (curve c in
the Fig. 14.16). This corresponds to H = 0, but B is not zero and has
magnetisation in the opposite direction. Here we reverse the current again,
so that the current in the coil is once more along the positive direction.



Unit 14 Magnetic Properties of Materials

With the increasing current in this direction, the curve continues along the
curve c to meet the curves b and a at saturation.

If we alternate the current between large positive and negative values, the B-H
curve goes back and forth along curves b and ¢ in a cycle. This curve is called
hysteresis curve. It shows that B is not a single valued function of H, but
depends on the previous treatment of the material.

The shape of the hysteresis loop varies very widely from one substance to
another. Substances like steel, alnico, etc. from which permanent magnets are
made, have a very wide hysteresis loop with a large value of coercive force
(see Fig. 14.17b). However, substances like soft iron from which
electromagnets (temporary magnets) are made, should have large remanance
but very small coercive force. These ferromagnetic materials, used in the
cores of transformers, such as iron-silicon (0.8-4.8%) alloys, have very narrow
hysteresis loop (see Fig. 14.17a).

Now, let us summarise what you have learnt in this unit.

14.6 SUMMARY

(

)

(a)

(b)
Fig. 14.17: The
hysteresis curves for

specimen of a) soft iron;
b) steel materials.

Concept Description
Types of magnetic B All materials are magnetic and respond to the presence of a magnetic
materials

field. Materials can be classified into mainly three groups: diamagnetic,

paramagnetic and ferromagnetic. Diamagnetism is displayed by those
materials in which the atoms have no permanent magnetic dipoles.
Paramagnetism and ferromagnetism occurs in those materials in
which the atoms have permanent magnetic dipoles.

Magnetic dipole B A closed current loop in a magnetic field behaves like a magnetic

dipole and its magnetic dipole moment is given as

fi = NiA

where N is the number of turns in the loop, i is the current in the loop
and A is a vector perpendicular to the plane of the loop with magnitude

equal to the loop area.

The torque experienced by such a current loop is given as

T=uxB
Magnetic momentand ®  Magnetic dipoles in magnetic materials are due to the motion of
angular momentum of electrons in atoms or molecules.
electron

Change in the magnitude of the magnetic moment of atoms is
responsible for diamagnetism whereas change in the orientation of the

magnetic moment accounts for paramagnetism.
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The magnetic moment due to motion of electron in a circular orbit
around the nucleus in an atom is given as

_ e -
=——1L
M 2m

where L is the orbital angular momentum of the electron.

The ratio of the magnetic dipole moment to the angular momentum is
called the gyromagnetic ratio.

Magnetisation B Magnetisation M, of a magnetic material is related to the average

dipole moment for many atoms or molecules. It is defined as magnetic
moment per unit volume:

i
M- K
AV

where [ is the magnetic moment of the k™ atom and AV is the volume
element containing k atoms.

Magnetisation and B For non-uniform magnetisation, magnetised matter is equivalent to a
current density current distribution J, =V xM, where M is magnetisation and Jp, is
the current density due to bound currents.

Magnetic intensity B The magnetic field produced by the magnetised material is obtained by
Ampere’s law as follows:

VxB=Jf +Jm
where 3f is the free current density which flows through the material

and J, is the bound current density which is associated with
magnetisation. This gives

vx(i_m}af
Ho

where H= -2 _M is called magnetic intensity.
Ho

Magnetic susceptibility B  Magnetisation of a material is proportional to the magnetic intensity or
magnetic field due to free currents:

M oc H oo M=ymH
where y,, is called magnetic susceptibility of the material.
Relative permeability B  Relative permeability, K, is defined as

Km =1+ %m)

128 In terms of Ky, magnetic field is expressed as
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The quantity noKmis called permeability p of the material.

B-H curve B For paramagnetic and diamagnetic materials, B or M and H are linearly

related to each other. However, the B-H curve of ferromagnetic
materials exhibit hysteresis, a non-linear behaviour.

The remanence of a ferromagnetic material is the residual
magnetisation in the sample of the material when the applied magnetic
field has been reduced to zero.

The coercive force for a ferromagnetic material is the value of the
applied magnetic field which will demagnetise the sample of the
material.

14.7 TERMINAL QUESTIONS

1.

A uniformly charged disc having charge q and radius r is rotating with
constant angular velocity of magnitude . Show that its magnetic dipole

moment has magnitude %(qmrz).

The magnetic moment per atom for cobalt and iron are 1.6 x 10723 Am?@
and 2.1x10"23Am?, respectively. Assume that there are 1x 1022 atoms
per cubic volume, and calculate the saturation magnetisation that can
exist in these materials.

Calculate the magnitudes of magnetic intensity H and the magnetic field
B at a) a point 105 mm from a long straight wire carrying a current of 15 A
and b) the centre of a 2000-turn solenoid which is 0.24 m long and carries
acurrent of 1.6 A.(ug = 4nx10~"Hm™1)

A toroid of mean circumference 0.50 m has 500 turns, each carrying a
current of 0.15 A. a) Calculate the value of H and B if the toroid has an
air core. b) Calculate the value of B and the magnetisation M if the core
is filled with iron of relative permeability 5000.

A toroid with 1500 turns is wound on an iron ring whose cross-section
area is 360 mm2, mean circumference is 0.75 m and relative permeability
is 1500. If the windings carry 0.24 A current, calculate the value of a) the
magnetic intensity H and b) the magnetic field B.

14.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1.

The magnetic dipole moment p due a current loop is given by Eq. (14.4):
i =NiA=(10)x (3.0 A)x tx (0.050 m) 2 = 0.24 Am?2

The magnitude of the torque needed to hold the loop in its new orientation
can be calculated by using Eq. (14.5):
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T =uBsind = (0.24 Am2) x (0.010 T) x(sin90°) = 2.4 x 10~3Nm.

. The direction of the magnetic dipole moment of electron is opposite to the

direction of its orbital angular momentum.

. From Eq. (14.17), we have

V xH=J
We can write it as

ﬁ(%ﬁ).dé:ﬁjf ds 0
S

S

From Stoke’s theorem, we can write the LHS of Eq. (i) as

ﬁ(%ﬁ).dé:@.df (ii)
S C

Also, from Eq. (12.7) of Unit 12, we can write the RHS of Eq. (i) as

ﬁ J; dS =i (iii)
S

So, substituting Egs. (ii) and (iii) in Eqg. (i), we get

{HuTzn
C

. You know that, for a solenoid, the magnitude of magnetic field B is given

as
B = pgni
Since, for free space, B = nugH, we can write
H =ni
where n is turns per meter. So,
H =ni = (2000 m1)x(0.18 A) =360 Am1
The magnetic field B is given by
B =poH = (4nx10~"Hm=1) x(360 Am~1) = 0.45 mT

If an iron core of absolute permeability 6 x10~3Hm1is inserted in the
solenoid, then H remains unchanged i.e.,

H =360 Am1

and B=pH=(6x10"3Hm1)x(360 Am1)=2.16T

Terminal Questions

1. The surface charge density of the disc is (q/=r2). The disc can be

thought of as made up of a number of rings. Let us consider a ring of
radius R and width dR. The charge within this ring is given by
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dg=—"(2nRdR) = 2—g(RolR)
Ttr r

The current carried by this ring is its charge divided by the rotation period:

dq qo
= =——(RdR
! Crnlow) nar? ( )

Thus, the magnetic moment contributed by this ring has magnitude

du = adi
where a is the area of the ring. Therefore,

du = nR2di = q—‘z”(RSdR)
r

Taking into account all the rings (radius varying from O to r), we get the
magnitude of the magnetic moment as follows:

R=r qo
= [dp= jr—z(RSdm

R=0
r
=—|— | =—F5x—=—xI"=—qor
rZ[J r2 4 49

2. The magnetisation is defined as magnetic moment per unit volume. So,
maximum or saturation magnetisation for any material is equal to the
magnetic moment per atom of the material multiplied by number of atoms
per cubic meter. For cobalt, therefore, we have

(M )Saturation = 16 X 10_23Am2 X 1)( 1029m_3 = 16 X lOGAm_l

For iron, we have

(M)saturation = 2.1x 10723 Am? x 1x102°m™=3 = 2.1x 108 Am™1

=22.7Am™

o w_Bo_wi 1_ i __ 154
Lo 2ar po 2ar  (2m)x(0.105m)

¢ Bzg—ol, see Unit 13)
nr

__@xU15) g 57,7
107 x0.105
b) H = ni = 2000 x1.6 A=1.3x104Am1

0.24m

B =poH = 1%’; x1.3x104AM1=1.67x102T
4. For atoroid H =ni, and we use B =(4n/107)(KyH) = pH. Thus,

a) - (500 turns

jx 0.15A =150 Am—1
0.5m
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B = (4nx10~"Hm1)x (150 Am1) =0.188 mT

b) B =5000x(0.188 miT) =0.94 T

Using (B/pg) =H +M we can write

&:1SO+M = M=7.5x105 Am1
4 =107
5. a) H=ni= 1500 x(0.24 A) = 480 Am~1
0.75m

B_ 4iKnhWH 4=

b =——x(1500)x(480)=0.90T
) T = o7 *(1500) x(480)
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