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Expected Learning Outcomes  

15.2   Faraday‟s Law of Electromagnetic Induction 

Induced Currents 

Mathematical Statement of Faraday‟s Law 

15.3   Lenz‟s Law  

15.4   Inductance               

       Self-inductance               

Mutual Inductance 

Transformer 

      

STUDY GUIDE           

 

15.5   Energy Stored in a Magnetic Field 

Energy Stored in a Current-carrying Circuit 

having an Inductor 

Magnetic Field Energy 

15.6   Summary 

15.7 Terminal Questions 

15.8 Solutions and Answers 

 

We hope that you have studied the concepts of vector calculus, electrostatics in free space and 

media, and magnetism explained in Blocks 1 to 3 of this course. You should revise them and 

make sure that you know all these concepts very well before studying this block. In this unit, you 

will learn about electromagnetic induction, Lenz‟s law, inductance and the energy stored in a 

magnetic field. You may be familiar with these concepts from your +2 physics course. However, 

the presentation of these concepts may be new to you. We have given many Examples and 

SAQs within the unit and Terminal Questions at its end to help you learn these concepts and 

their application well. You should study all sections thoroughly and make sure you can solve the 

SAQs and Terminal Questions on your own before studying the next unit.  

“Nothing is too wonderful to be true, if it be consistent with    

the laws of nature.”  
 

Michael Faraday 
 

The power generation and 

distribution systems around us are 

based on the phenomenon of 

electromagnetic induction that you 

will study in this unit.                            

(Source of picture: Wikimedia/commons) 
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15.1 INTRODUCTION 
 

In Units 12 and 13, you have studied magnetism and learnt that electric 

currents (i.e., charges in motion) produce magnetic fields. In this unit, we ask: 

Is the reverse possible? Could magnetic fields create electric currents? This 

question was first asked by scientists in 1820s. For more than a decade, many 

scientists including the English physicist Michael Faraday did experiments to 

create electric currents using static magnetic fields but failed to do so. It was 

only in 1831 that Michael Faraday and the American physicist Joseph Henry 

independently discovered that electric currents were induced in circuits 

subjected to changing magnetic fields. This phenomenon, called 

electromagnetic induction, was a momentous discovery and is largely 

responsible for our way of life today. 

When you enter a dark room and turn on the electric switch, you take it for 

granted that the room will be illuminated, if electric supply is available. But did 

you ever wonder what made this possible? If you did and sought an answer, 

then you might know that it is due to the discovery of electromagnetic 

induction by Faraday and Henry. This discovery forms the cornerstone of the 

entire electrical technology today. It made the generation and transmission of 

electric power possible as early as the end of nineteenth century. Today, it 

finds practical applications in thousands of electrical devices such as electric 

motors and electric generators in huge power plants, transformers, high speed 

trains, car battery chargers, electric guitars, etc. In this unit, you will learn in 

the space of a few hours what took Faraday and Henry many years of hard 

work to discover!   

In Secs. 15.2 and 15.3, you will learn the basic physics of electromagnetic 

induction as explained by Faraday. In Sec. 15.4, we will explain the concepts 

of inductance, self-inductance and mutual inductance along with many 

applications including the generator and the transformer. You may find it 

interesting to learn that apart from numerous practical applications, the 

discovery of electromagnetic induction also had a tremendous impact on the 

basic understanding of electricity and magnetism. It showed that there was a 

deep connection between them. This was explored further by James Clerk 

Maxwell and his work led to the unification of electricity and magnetism in the 

form of four elegant equations called Maxwell‟s equations. These form the 

basis of electromagnetic theory and you will study them in the next unit.  

Expected Learning Outcomes  
After studying this unit, you should be able to: 

 state and apply Faraday‟s law of electromagnetic induction; 

 state and apply Lenz‟s law; 

 calculate the self-inductance of an inductor possessing simple geometry;  

 calculate the mutual inductance of circuits in simple configurations; and  

 determine the magnetic energy stored in any given circuit having an 

inductor and the energy stored in a magnetic field.  

B 

C 
G 

A 

One of Faraday's 1831 

experiments 

demonstrating 

induction. The battery 

(B) sends an electric 

current through the 

small coil (A). When it is 

moved in or out of the 

large coil (C), its 

magnetic field induces  

a momentary voltage in 

the coil C, which is 

detected by the 

galvanometer (G). 

 

Michael Faraday (1791                 

– 1867), an English 

physicist, is well known 

for his study of 

electromagnetic 

induction, 

electromagnetism and 

electrochemistry. He 

discovered the                

principles underlying 

electromagnetic 

induction, diamagnetism 

and electrolysis. 
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15.2 FARADAY’S LAW OF ELECTROMAGNETIC 
INDUCTION 

Let us begin the discussion by briefly describing the main experiments of 

Michael Faraday that led to the discovery of electromagnetic induction in 

1831. You may like to learn about what can be called his breakthrough 

experiment. In it, he wrapped two insulated coils of wire around an iron ring 

and observed that upon passing a current through one coil a momentary 

current was induced in the other coil (Fig. 15.1). This phenomenon is now 

known as mutual induction about which you will learn in Sec. 15.4.  

 

 

 

 

 

 

 

 

A greater breakthrough came when Faraday asked: What happens if a wire 

loop is kept stationary and a magnet is moved toward or away from it? Or if 

the magnet is kept stationary and the loop is moved toward or away from it? 

Faraday performed many experiments and their results led to the concept of 

induced current. 

15.2.1 Induced Currents  

We describe briefly three experiments similar to the ones performed by 

Faraday.  

1. In one experiment, a magnet is moved through a stationary coil of wire. It 

is observed that an electric current flows in the coil (Fig. 15.2a). The 

current stops flowing when the magnet stops moving.  

2. In another experiment, it is observed that current flows in the coil if it is 

moved over a stationary magnet (Fig. 15.2b). Again current stops flowing 

when the coil stops moving.  

 

 

 

 

 

 

 

3. Keeping both the coil and the magnet stationary, the magnetic field is 

changed. We can do this by using an electromagnet and changing the 

The iron ring-coil 

apparatus is still on 

display at the Royal 

Institution of Great 

Britain, an 

organisation devoted 

to scientific education 

and research, based 

in London. 

 

Fig. 15.2: a) When a magnet is moved through a coil of wire or b) the coil of wire is moved over a 

magnet, electric current flows in that coil. No current flows when the coil and the magnet  

are stationary or the magnetic field is constant; c) current flows when the strength of the 

magnetic field is changed as in an electromagnet. 

 

(a)  (b)  (c)  

G  G  
G  

V  

Fig. 15.1: A schematic drawing of Faraday’s iron ring-coil experiment. 
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current flowing in its coil (Fig. 15.2c). Once again, we observe that current 

flows in the coil. 

Can you say what is common in these experiments? You can see that the 

magnetic field is changing in all cases. So, these experiments show that an 

electric current is „induced‟ in the coil of wire by a changing magnetic field. 

The current flowing in the coil, when the coil and the magnet are in motion 

relative to each other or the magnetic field is changing, is called induced 

current. Faraday explained these results by giving a new fundamental 

principle in physics: 

 
 

This new principle explains the origin of the induced current: It is the electric 

field „induced‟ by the changing magnetic field that sets the charges in the wire 

of the coils into motion and induces electric current in the coil.  

Thus, through his landmark experiments, Faraday established that a changing 

magnetic field produces an induced electric current. The work done per unit 

charge to produce the induced current is called the induced emf 

(electromotive force). The phenomenon in which an electric field, emf and 

electric current are induced by a time-varying magnetic field is called 

electromagnetic induction. To sum up, Faraday observed that 

 

  

This is a qualitative explanation. We should also be able to give a quantitative 

relationship between the induced current and the changing magnetic field. Let 

us now arrive at the mathematical statement of Faraday’s law of 

electromagnetic induction. But before you study it, you may like to answer 

the following SAQ to check your understanding of how current is induced in a 

circuit. 

 

 

 

 

 

 

  

15.2.2 Mathematical Statement of Faraday’s Law  

Let us begin the discussion by asking: What is it that gives rise to a current in 

a circuit? As you may know from school physics, we need a source of 

 A changing magnetic field produces an electric field. 

SAQ  1 -  Electromagnetic induction 

An electrical circuit is placed in the magnetic field of an electromagnet. In 

which of the following cases will an ammeter in the circuit register the 

induced current?  

a) When the circuit is pulled to the right through the magnetic field. 

b) When the circuit is kept at rest in the magnetic field. 

c) When the electromagnet is pulled to left and the circuit is at rest. 

d)  

 

 

  

An induced current flowed in a circuit/coil/loop subjected to a 

changing magnetic field. 
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electromotive force (emf), i.e., a battery or power supply that supplies energy 

to the circuit. So, Faraday thought that in the same way when an induced 

current flows in a circuit, an induced emf must be present. Thus, on the basis 

of his experimental results, Faraday developed a general law that whenever 

(and for whatever reasons), the magnetic flux through a loop/coil/circuit 

changes, an emf is induced in it, and 

The emf induced in any loop/coil/circuit is proportional to the negative of 

the rate of change of magnetic flux B  through it: 

          
dt

d B
  (15.1a) 

where   is the induced emf in any loop/coil/circuit and ,B  the magnetic flux 

through it. We can rewrite Faraday‟s law given by Eq. (15.1a) so that we can 

omit any reference to circuits. By definition, the induced emf is equal to the 

work per unit charge done on a test charge that is moved around the circuit (or 

loop/coil) C. It is given by the line integral of the electric field along the closed 

path C, along the circuit/loop/coil:    

          
dt

d
d B

C


  l.E


 (15.1b) 

In Unit 12, you have already learnt the integral representation of magnetic flux:  

          

S

B dSB


.  (15.2) 

where S is a closed surface whose boundary is given by C. Using Eqs. (15.1b) 

and (15.2), we can mathematically express Faraday‟s law as 

           
SC

d
dt

d
d SBl.E


.  (15.3) 

In this form of Faraday‟s law, there is no need to have a physical circuit or wire 

loop/coil. C can just represent a closed curve in space and S a surface 

bounded by C. Eq. (15.3) describes the induced electric fields that arise 

whenever there are changing magnetic fields. If electric circuits are present, 

induced currents arise as well. Using Stokes‟ theorem [recall Eq. (4.19) of Unit 

4, Block 1 of this course], we can also express Eq. (15.3) in the differential 

form: 

  




SSSC

d
t

d
dt

d
dd S

B
SBSEl.E





...)(  (15.4) 

Since B


may depend on position as well as time, we have written 
t

B


 in               

Eq. (15.4) instead of 
dt

dB


 to account for only the time variation of .B


Since the 

surface S in Eq. (15.4) is arbitrary, we must have  

          
t




B
E




 (15.5) 

We thus have two entirely equivalent statements of Faraday‟s law in integral 

and differential forms. Let us state them together. 

Note that for constant 

magnetic field (static 

case), Eq. (15.5) 

reduces to 0E


  

as it should. 
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So far in this course you have learnt that electric fields are produced by static 

charges as well as changing magnetic fields. But is the nature of these fields 

the same? Try to find out yourself! 
 
 
 
 
 
 

Let us now consider a technological application of Faraday‟s law, namely, the 

ac generator. It is perhaps the most important application of the law in use 

today. Do you know that almost all the electrical energy used by the world 

comes from electric generators? A generator is nothing but a system of 

conductors in a magnetic field. Let us discuss the working of a simple electric 

generator.  

 

 

SAQ  2 -  Nature of induced electric field 

What is the basic difference in the nature of the electric fields produced by 

static charges and those induced by changing magnetic fields? 

 

 

 

  

FARADAY’S LAW OF ELECTROMAGNETIC INDUCTION 

 

 
The emf induced in any circuit is proportional to the negative of the 

rate of change of magnetic flux linked to the circuit:  

                 
dt

d B
       (15.1a) 

                  

SC

d
dt

d
d SBl.E


.              (Integral form) (15.3) 

                 
t




B
E




        (Differential form)  (15.5) 

 

 

 

Mechanical energy is 

supplied to rotate the 

coil. In the power 

stations, the source of 

mechanical energy is 

either falling water 

(hydroelectric power 

plants), or steam from 

burning fossil fuels 

(thermal power plants), 

or from nuclear fission 

(nuclear power plants). 

 

 

In a basic ac generator, a coil of area S is placed between the poles of a 

magnet and rotated (read the margin remark) to generate electricity                 

(Fig. 15.3). What is the current generated by the generator? 

Let B be the magnitude of the magnetic field of the magnet and  be the 

angle between the axis of the coil and the magnetic field direction. Due to 

electromagnetic induction, rotation of the coil causes a change in the 

magnetic flux through the coil. The changing magnetic flux induces an emf, 

and an induced current flows through the coil. Let us determine the 

magnitudes of the induced emf and the induced current. The magnetic flux 

through the coil is  

                    cosBS      (15.6a) 

If the coil is rotating with a uniform angular speed , then  t  and 

    )cos( tBS
dt

d

dt

d



     or    tBS  sin     (15.6b) 

 

      

 

XAMPLE 15.1 :  THE AC GENERATOR 
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Before studying further, you may like to work out a numerical problem on the 

design of an ac generator. 

 

 

 

 

 

 

 

 

So far, we have not said anything about the negative sign in Faraday‟s law of 

electromagnetic induction. The negative sign has an important purpose in the 

law: it gives us the direction of the induced current, which brings us to Lenz‟s 

law.  

SAQ  3 -  AC generator 

An electric generator like the one shown in Fig. 15.3 consists of a 10 turn 

square wire coil of side 50 cm. The coil is turned at 50 revolutions per 

second, to produce the standard 50 Hz ac produced in India. What must 

the magnitude of the magnetic field be for the peak output voltage of the 

generator to be 300V? 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we bring the wires of the coil to a point situated very far from the 

rotating coil, where the magnetic field (due to the magnet) does not vary 

with time. Then from Eq. (15.5), the curl of the electric field in this region 

will be zero. Thus, it will be conservative. Then we can define an electric 

potential associated with this field. Let the two ends of the coil be at a 

potential difference V at that far-off point. If no current is being drawn from 

the generator, the potential difference between the two wires will be equal 

to the emf in the rotating coil, i.e.,  

     tVtSBV  sinsin 0     (15.7a) 

where  BSV0  is the peak output voltage of the generator. As given by 

Eq. (15.7a), V is an alternating voltage. If we now attach a load R to these 

wires, we can generate an alternating current given by 

     t
R

V

R

V
I  sin0       (15.7b) 

 

 

 

 

 

 

 

Fig.15.3: A schematic diagram of a simple ac electric generator; as the loop 

rotates in the magnetic field, the changing magnetic flux induces an 

emf in it. Current flows through the rotating contacts and stationary 

brushes to an electrical load far away from the magnets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rotating loop 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rotating contacts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stationary 
brushes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S 
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15.3 LENZ’S LAW   

The direction of the induced current is determined by the Lenz‟s law. Let us 

state the law first. 

 

 

 

 

 

 

 

 

 

Let us consider a simple example to understand how to apply Lenz‟s law.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LENZ’S LAW  

 

 The induced current produces a magnetic field which tends to 

oppose the change in the magnetic flux that induces such currents.  

We also state Lenz‟s law as follows: 

The direction of the induced current (or induced emf) is such as to 

oppose the change giving rise to it. 

 

 

 

 

In the section on Lenz's 

law in some text books, 

you may find the 

following statement: 

Nature abhors a 

change in flux. 

 

 

Consider a bar magnet moving towards a wire loop (Fig. 15.4). Note that 

the north pole of the bar magnet is towards the loop. Determine the 

direction of the induced current in the loop.  

SOLUTION   Let us apply Lenz‟s law to the situation. 

Refer to Fig. 15.4. Note that the north pole of the bar magnet is on the left. 

As it approaches the loop, the magnetic flux through the loop increases. 

giving rise to an induced emf. Now the induced current in the loop should 

produce a magnetic field that opposes the increase in the magnetic flux 

through it due to the bar magnet. So, the magnetic field due to it should be 

directed opposite to the magnetic field of the bar magnet, i.e., to the right in 

Fig. 15.4. So, the loop should behave as if it presents a north pole towards 

the approaching bar magnet. Using the right-hand rule, you can see that 

the induced current in the loop must flow in the counter-clockwise direction. 

 

  

 

                 

 

 

 

 

 

 

Magnet moving towards loop 

 

 

 

 

 

Fig. 15.4: As the bar magnet moves towards the loop, the direction of the 

induced current is such that the magnetic field due to it is opposite 

to the magnetic field of the bar magnet. The loop presents a north 

pole to the bar magnet that opposes its motion (towards the loop). 

                 

 

 

N 

 

 

 

 

 N                       S 

XAMPLE 15.2 :  APPLYING LENZ’S LAW 

 

 

 

We can use the                   

right-hand rule to find 

the direction of current 

in a loop if we know the 

direction of the magnetic 

field. Point the thumb of 

your right-hand in the 

direction of magnetic 

field and curl your 

fingers as you would                 

for right-hand rule.    

Then the direction in 

which your fingers curl 

gives the direction of the 

flow of current in the 

loop. In this case, the 

loop presents a north 

pole towards the bar 

magnet. So, the 

magnetic field is 

directed to the right. So, 

if you follow the right-

hand rule, you can see 

that the current flows in                              

counter-clockwise 

direction in the loop.  
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In Example 15.2, you should note that the magnetic field produced by the 

induced current in the loop, ,LB


 always opposes the change in the magnetic 

field B


inducing the current. This does not mean that LB


 is always opposite to 

.B


 When B


 is increasing, the magnetic flux through the loop increases and 

the magnetic field of the loop LB


is directed to oppose this increase. So, it is 

directed opposite to .B


 When B


 is decreasing, LB


 is directed so as to 

oppose the decrease in magnetic flux through the loop. So, LB


 is in the same 

direction as B


 (see Fig. 15.6). Remember: In all cases, the direction of the 

induced current is determined by the right-hand rule. 

 

 

 

 

 

 

 

What happens when we pull the magnet away from the loop? Refer to                 

Fig. 15.5. Note that as the bar magnet moves away from the loop, the 

magnetic flux through the loop due to it decreases. In this case, the 

induced current in the loop should produce a magnetic field that opposes 

the decrease in the magnetic flux through it due to the bar magnet. So, the 

magnetic field due to the induced current in the loop should be in the same 

direction as the magnetic field of the bar magnet, i.e., to the left as shown 

in Fig. 15.5. The loop now behaves as if it presents a south pole towards 

the bar magnet moving away from it. Using the right-hand rule, you can see 

that now the induced current in the loop must flow in the clockwise 

direction. 

             

 

 

 

 

 

 
Fig. 15.5: When we pull away the bar magnet from the loop, the direction of 

the induced current is such that the magnetic field due to the loop 

is in the same direction as the magnetic field of the bar magnet. It 

opposes the withdrawal of the bar magnet.    

                 

 

 

 

 

 

 

Magnet moving away from loop 

                 

 

 

 

 

 

 

                  
S  N                       S 

Fig. 15.6: The direction of the induced current is such that the magnetic field LB


due to it opposes 

the change in the magnetic field B


that induced the current. a) LB


is always directed 

opposite to an increasing ;B


b) LB


is always in the same direction as decreasing .B


  

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

Direction of B


 

 

 

 

 

 

Direction of LB


 

 

 

 

 

 

Induced current i 

 

 

 

 

 

Decreasing magnetic field B


  

 

 

 

 

 

Increasing magnetic field B


  

 

 

 

 

 

Direction of LB


 

 

 

 

 

 

Induced current i 

 

 

 

 

 

Direction of B


 

 

 

 

 

 

Note that the increase in 

the magnetic field B


 

could be due to any 

reason: A bar magnet 

moving towards the coil 

as in Example 15.2 or 

increasing current in an 

electromagnet, etc. The 

point to remember is 

that when a loop is 

placed in an increasing 

magnetic field, the 

magnetic flux linked 

with it increases. Then 

the direction of the 

induced current is such 

as to oppose this 

increase in the magnetic 

flux. Therefore,
L

B


is 

directed opposite to B


 

when B


increases.   

The same argument 

holds for decreasing B


 

but now the magnetic 

flux through the loop will 

decrease. Therefore, 

the direction of the 

induced current is such 

that 
L

B


is in the same 

direction as .B


Note 

that the arrows in              

Fig. 15.6 are just to 

show the directions, 

their lengths do not 

represent the 

magnitudes of the 

fields. 
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You may like to check if you have understood Lenz‟s law before studying 

further. Try an SAQ. 

 

 

 

 

 

As we have said earlier, Lenz‟s law is reflected mathematically in the minus 

sign of the right-hand side of Faraday‟s law given by Eq. (15.3) or Eq. (15.5).  

Also Lenz‟s law is a consequence of conservation of energy. 

To understand how it is so, think of what would happen if the direction of the 

induced current aided the change in the magnetic flux. For instance, suppose 

that the loop presented a south pole to the magnet in Fig. 15.4, instead of 

north pole so that the bar magnet was attracted to the loop. What would 

happen then? Then you would need to push the magnet only slightly to get it 

moving and the action would carry on forever. The magnet would accelerate 

toward the loop, gaining kinetic energy in the process. At the same time 

thermal energy would appear in the loop due to its resistance. Thus, we would 

have created energy from practically nothing.  

Needless to say, this violates energy conservation and does not happen.  

While applying Lenz‟s law you should always remember that the magnetic 

field of the induced current does not per se oppose the magnetic field 

that induces it, but the change in this magnetic field. For example, if the 

magnetic flux through a loop decreases, the induced current flows in the loop 

so that its magnetic field adds to the original magnetic flux; if the magnetic flux 

is increasing, the current will flow in the opposite direction. This is a sort of an 

“inertial” phenomenon: A conducting loop „likes‟ to keep a constant magnetic 

flux through it; if we try to change the magnetic flux, the loop responds by 

sending a current in such a direction as to counter our efforts.  

You may now like to apply Lenz‟s law to a simple situation and determine the 

direction of the induced current.  

 

 

 

 

So far, you have studied Faraday‟s law of electromagnetic induction, which 

relates the changing magnetic flux through a circuit/loop/coil to the emf 

induced in it. You have also learnt Lenz‟s law that gives the direction of the 

induced current in the circuit/loop/coil. In the next section, we consider two 

SAQ  4 -  Applying Lenz’s law 

In each of Figs. 15.7a and b, what is the direction of the magnetic field 

produced by the induced current and the direction of the induced current in 

the loop? Draw them on each figure. 

 

 

  

SAQ  5 -  Applying Lenz’s law 

In Fig. 15.8, what is the direction of the induced current in the loop when 

the area of the loop is decreased by pulling on it with the forces labelled 

?F


 The magnetic field is directed into the page and perpendicular to it. 

 

  

Fig. 15.8: Diagram for 

SAQ 5.  
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Fig. 15.7: Diagram for 

SAQ 4.  

 

 

 

 

 

 

(a) 

 

 

 

 

 

Direction  

of B


 

 

 

 

 

 

Increasing 

magnetic field 

 

 

 

 

 

 Decreasing 

magnetic field 

 

 

 

 

 

 

(b) 

 

 

 

 

 

Direction  

of B


 

 

 

 

 

 



   

151  

 Unit 15                                                     Electromagnetic Induction 

situations:  when the change in magnetic flux through an electrical circuit is 

caused by a changing current (a) in the same circuit or (b) in a circuit nearby.  

We have to introduce a physical quantity called inductance of the circuit to 

describe these phenomena.  

15.4 INDUCTANCE 

You know that when a current changes in a circuit, the magnetic field around it 

also changes. If a part of this changing magnetic field passes through the 

circuit itself, then an emf is induced in it. If there is another circuit in its 

neighbourhood, then the magnetic flux through that circuit changes, resulting 

in an induced emf in that other circuit. Thus, induced emf or induced currents 

in circuits can occur in two ways: 

i) When current in a coil of wire with one or more loops changes, an emf is 

induced in the same coil. You know that the induced emf is produced as a 

result of the change in magnetic flux through the coil. This process is 

known as self-induction.  

ii) When two coils are situated near enough, so that the magnetic flux 

associated with one coil passes through the other, a changing current in 

one coil induces an emf in the other. This process is known as mutual 

induction.   

In the first case we associate a property called self-inductance of the coil; in 

the second we speak of mutual inductance of the two coils. Let us consider 

these effects separately. 

15.4.1 Self-inductance 

Consider a circular loop carrying a current I (Fig. 15.9). A magnetic field is set 

up by the current in this loop, so there is a magnetic flux through it. As long as 

the current is steady, the magnetic flux does not change and there is no 

induced current. But if we change the current in the loop, the magnetic flux 

through it changes and an emf is induced in it. An induced current flows in it 

for as long as the magnetic flux through it is changing. The more rapidly we 

change the current in the loop, the greater is the rate of change of magnetic 

flux, and the induced emf which opposes the change in current in the loop. 

 

 

Let us now deduce a mathematical expression for the self-inductance of a coil 

having a single loop. You have learnt in Unit 13 of Block 3 that the magnetic 

field is proportional to the current that produces it. Therefore, the magnetic flux 

would also be proportional to the current. Thus, we can write: 

          iB     or     iLB   (15.8) 

The constant of proportionality L is called the self-inductance of the coil also 

known as an inductor.  

Fig. 15.9: Self-inductance 

of a loop. 
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In general, a self-induced emf appears in any coil when the current 

flowing in it is changing. 
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So, self-inductance of a coil is defined as follows:  

          
i

L B
  (15.9a) 

where B  is the magnetic flux linked to the coil when a current i  flows in the 

coil. The unit of self-inductance is the henry (H), named after Joseph Henry, 

an American scientist. Since the unit of magnetic flux is tesla square metre, 

one henry is defined as:  

          ampere/mtesla1H1henry1 2
    

For a coil having N turns 

  
i

N
L B
  (15.9b) 

If the current flowing in a coil changes by an amount di in a time interval dt, 

then the magnetic flux linked to the coil changes by an amount diLd B   in 

the same time interval. From Faraday‟s law, the emf induced in the coil is  

  
dt

d B
  (15.10) 

or   
dt

di
L            (since  diLd  ) (15.11) 

where L is always positive. Thus, the emf induced in a coil due to changes in 

the coil current is directly proportional to the rate at which the current changes. 

What is the direction of the induced current? From Lenz‟s law, the direction of 

the induced emf is such that it opposes the change in the current in the coil. 

That is, the induced current flows opposite to the change in current in the coil. 

So, if the current i in the coil is increasing, the induced current flows opposite 

to it; if i is decreasing, the induced current flows in the same direction. 

The emf induced in the coil/inductor is also called the back emf because it is 

opposite to the emf in the coil/inductor. Eq. (15.11) tells us that the back emf 

in an inductor depends on the rate of change of the inductor current and 

acts to oppose the change in current.  

When 0dt  in Eq. (15.11), the induced emf is infinite. Since an infinite emf is 

impossible, therefore, from Eq. (15.11), 0dt  is not possible. This means 

that an instantaneous change in the inductor current cannot occur.  Thus, 

always remember that  

 

   

All coils/circuits whether in the form of straight wires or coiled ones, possess 

self-inductance. However, the effect of self-inductance is important only when 

the magnetic flux through the circuit is large or when current changes very 

rapidly. For example, a 1 cm length of straight wire has an inductance of about 

H105 9  and it exhibits very little opposition to current changes in the 50 Hz 

ac flowing through it. But in TV sets, high speed computers or in high 

frequency communications, such as satellite communication, current changes 

The current through an inductor cannot change instantaneously.  
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on time scales of the order of .s10 9  Then the self-inductance of the wires 

themselves must be taken into account. There are devices, called inductors 

(coils of wire), designed specifically to exhibit self-inductance. These are 

useful in circuits whenever it is required to stabilize currents.  

You have just studied that the self-inductance of an inductor is a measure of 

the opposition to the change in current through it. Now we ask: How do we 

determine the magnitude of the self-inductance of an inductor?  

The inductance of an inductor depends on its geometry. In principle, we can 

calculate the self-inductance of any inductor, but in practice it is difficult unless 

the geometry is pretty simple. A typical inductor consists of a wire that is 

coiled into a large number of turns/loops around a hollow cardboard cylinder 

or a rod. A common example of inductors is the solenoid. It is a device that 

consists of a wound helical coil and is widely used in electrical circuits. Let us, 

therefore, determine the self-inductance of a solenoid in the following 

example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15.10: A solenoid. 

 

 

 

 

 

 

 

A long solenoid of cross-sectional area A and length  consists of N turns 

of wire (see Fig. 15.10). Determine its self-inductance. 

SOLUTION   We use Eq. (15.9a) to determine the self-inductance of the 

solenoid. For this, we must relate the current in the solenoid to the 

magnetic flux through it. In Unit 13, you have used Ampere‟s law to 

determine the magnetic field of a long solenoid, which is given by  

    inB 0        (i) 

where n is the number of turns per unit length of the solenoid and i, the 

current through it. For our problem ,/ Nn   which gives 

    


Ni
B 0          (ii) 

The total flux through the N turns of the solenoid is  

    

turn

dN

1

S.B


 

Since the magnetic field of the solenoid is uniform and perpendicular to the 

cross-section of the individual turns, we have  

               BdSd SB


.     and   

turnturn

dSBd

11

S.B


    (iii) 

Therefore, the surface integral is simply equal to the area of the                           

cross-section of one turn of the solenoid, which is A. Using Eqs. (ii) and 

(iii), we get 

               


AiN
NBAdSNB

turn

2
0

1


    

      

   

               

 

XAMPLE 15.3:  SELF-INDUCTANCE OF A SOLENOID 
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You may now like to determine the self-inductance and the back emf for a 

typical solenoid to get an idea of the magnitudes.  

 

 

 

 

 

You have learnt in this section that the back emf in an inductor opposes the 

change in current in the circuit and its magnitude depends on how rapidly the 

current changes. If we try to stop current in a very short time, 
dt

di
 is very large 

and a very large back emf appears.  

This is why switching off inductive devices, such as solenoids, can 

result in the destruction of delicate electronic devices by induced 

currents. Having worked out SAQ 6, you would realize that you have to be 

extremely cautious in closing switches in circuits containing large inductors. 

Even in your day-to-day experience, you may have seen that you often draw a 

spark when you unplug an iron. Why does this happen? This is due to 

electromagnetic induction which tries to keep the current going, even if it has 

to jump the gap in the circuit.  

Let us now consider the second situation wherein two coils are placed close to 

each other. The changing current in one coil induces a current in the coil 

placed nearby. This is the phenomenon of mutual induction and the property 

associated with the circuits is called mutual inductance. It also forms the 

basis of another technological cornerstone of the power distribution systems, 

namely, the transformer.  
 

15.4.2    Mutual Inductance  
 
Consider two wire coils 1 and 2 situated close together and at rest with 

respect to each other (Fig. 15.11). Suppose when current 1i  flows through   

coil 1, it produces the magnetic field .1B Since the two loops are nearby, 

magnetic field 1B  passes through coil 2 as well. Let 2  be the magnetic flux 

of 1B  through coil 2. If we change ,1i 1B  and hence, 2  will change and an 

induced emf 2  will appear in the coil 2. This induced emf will drive an 

induced current in coil 2.  

Thus, every time the current in coil 1 changes, an induced current will flow in 

coil 2. Since the magnitude of the magnetic field 1B


 is proportional to the 

Thus, the self-inductance of the solenoid having N turns is  

  


AN

i
L

2
0


      (15.12) 

   

               

 

 

 

                 

 

 

 

 

 

 

SAQ  6 -  Self-inductance 

A solenoid of length 1m and diameter 20 cm has 10000 turns of wire. A 

current of 2.5 A flowing in it is reduced steadily to zero in 1.0 ms. What is 

the magnitude of the back emf of the solenoid while the current is being 

switched off? Take .Hm1026.1 16
0

  

 

  

Fig. 15.11: Mutual 

inductance of two coils. 
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current ,1i  the magnetic flux of 1B


 through coil 2 is also proportional to .1i  

From Biot-Savart‟s law (Unit 12), it is given by 

  







2

110
1

ˆ

4 r

di rI
B




 (15.13a) 

and   

S

d 212 . SB


 (15.13b) 

Thus, from Eqs. (15.13a and b), we can write that 

    2        1i   (15.13c) 

The constant of proportionality is called the mutual inductance of the two 

coils and denoted by M. So, we have 

  12 iM  (15.14) 

or  
dt

di
M

dt

d 12 


 (15.15) 

From Faraday‟s law, the induced emf in coil 2 is  

   
dt

di
M

dt

d 12
2 


  (15.16) 

The mutual inductance of the two coils/circuits is a purely geometrical quantity 

which depends on their sizes, shapes and relative arrangement. The unit of 

mutual inductance is also henry (H).  

Now suppose we had started with the change in the magnetic flux linked with 

coil 1 due to the changing magnetic field in coil 2 (resulting from change in the 

current flowing in it). We would have got a similar result as in Eq. (15.16) for 

the emf induced in coil 1: 

  
dt

di
M 2

1   (15.17) 

Mutual inductances found in common electronic circuits range from micro 
henries H)(  to several henries.  

An extremely important application of the phenomenon of mutual inductance 

is found in the transformer. Let us study it in some detail.  

15.4.3 Transformer  

You have just studied that a changing current in one coil induces an emf in 

another coil. And the emf induced in the second coil is given by the same law: 

that it is equal to the rate of change of the magnetic flux through the coil. 

Suppose we take two coils and connect one of them to an ac generator. The 

continuously changing current produces a changing magnetic flux in the 

second coil. This varying flux generates an alternating emf in the second coil, 

which has the same frequency as the generating current in the first coil. Now, 

the induced emf in the second coil can be made much larger than that in the 

Fig.13.11: Mutual 

inductance of coupled 

solenoids. 
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first coil if we increase the number of turns in the second coil. This is 

because in a given magnetic field, the magnetic flux through the coil is 

proportional to the number of turns. This is the basic principle of a step-up 

transformer. 

In the same way, the emf in the second coil can be made much smaller, if the 

number of turns in it is much less than the first coil, which is the underlying 

principle of a step-down transformer such as the ones used in the power 

distribution networks.   

Let us compute the magnitude of the voltage in the second coil (also known as 

the secondary coil) vis-à-vis the voltage in the first coil (known as the 

primary coil). Fig. 15.12 shows a schematic diagram of a transformer. It has 

a primary coil (P) with 1N  turns. When the switch 1S  is closed, electric current 

starts flowing in the primary coil. As the current increases, it generates an 

increasing magnetic flux in the circuit, which induces a back emf 1  in the 

primary coil. The back emf exactly balances the applied voltage E  if the 

resistance of the coil can be neglected. According to Faraday‟s law, the 

magnitude of the back emf 1  is given as  

  E
dt

d
N 


 11  (15.18a) 

Now the changing magnetic flux in the primary coil is linked to the secondary 

coil S and generates an emf 2  whose magnitude is given by 

  
dt

d
N


 22  (15.18b) 

where 2N  is the number of turns in the secondary coil. Eliminating 
dt

d
 from 

Eqs. (15.18a and b), we get  

  
2

1

2

1

N

N





 (15.19) 

Thus, the instantaneous emfs or voltages in the two coils are in the ratio of the 

number of turns on the coils. By setting the ratio of turns in the primary and 

secondary coils, we can make a step-up or step-down transformer that 

transforms a given ac voltage to any level we want. For example, if we want a 

step-down transformer to convert the high grid voltage of 22000 V to the low 

mains voltage of 220 V, we must have  

  
1

1000

V220

V22000

2

1 
N

N
 

Thus, for every turn on the secondary, there must be 1000 turns on the 

primary. In practice, the high grid voltage is reduced to the low mains voltage 

via a series of substations rather than via a single transformer. As you may 

have seen in your town or a nearby town, transformers are used in the entire 

power distribution network, to transform high voltages to low voltages. 

You may now like to pause for a while and review what you have learnt so far. 

So far, you have studied the phenomenon of electromagnetic induction and 

Fig. 15.12: Schematic 

diagrams of a 

transformer. 
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learnt about Faraday‟s law, Lenz‟s law, self-inductance, mutual inductance 

and some of their applications. We now turn our attention to another important 

aspect associated with this phenomenon, viz. the storage of energy in 

magnetic field.  

Recall from Block 2 of this course that when we move two unlike charges 

away from each other, we have to do work against the attractive Coulomb 

force between them. The resulting potential energy is stored in the electric 

field of the charges. In the same way, we can consider energy to be stored in 

the magnetic field. Let us find its expression.  

15.5   ENERGY STORED IN A MAGNETIC FIELD  

While studying self-inductance, you have learnt the concept of back emf of an 

inductor. Now work needs to be done against the back emf to get the 

current going in a circuit. This means that it takes a certain amount of 

energy to get current to flow in the circuit. This energy can be regarded as 

energy stored in the magnetic field of the current. In this section of the unit, we 

will determine the magnitude of the energy stored in a current-carrying circuit 

having an inductor, and then the energy stored in a magnetic field.  

15.5.1 Energy Stored in a Current-carrying Circuit 
having an Inductor  

In order to build a current in an electric circuit or loop of self-inductance L, 

work has to be done against the back emf of the inductor. This is equal to the 

work required to build up a current i in it. This work is stored as magnetic 

energy of the circuit in which an inductor having finite self-inductance is 

connected. This magnetic energy has a fixed value, which can be recovered. 

We get it back when the current in the circuit is turned off or reduced to zero. 

We can calculate this magnetic energy with the help of Faraday‟s law of 

electromagnetic induction. 

Suppose a source of voltage V is connected in a circuit having an inductor. 

When current builds up in a circuit, back emf is induced and it opposes the 

flow of current. Suppose the back emf at some instant is .  It is given by: 

  
dt

d
  (15.20a) 

Let us determine the work done by charge q against the back emf .  Now if i 

is the current in the circuit and R, the resistance, from Kirchoff‟s voltage law, 

we have: 

  Ri
dt

d
V 


  (15.20b) 

Now the charge dq passing through the wire in a small interval of time dt is 

.dti The work dW  done by the voltage V in moving the charge dq 

)( dti through the circuit in the time interval dt is (read the margin remark): 

  dtiRdidtiRdt
dt

d
idtiVdqVdW 22 







 
   (15.20c) 

Remember that in 

arriving at                               

Eq. (15.20c), we have 

substituted V from   

Eq. (15.20b) in it and 

used the result 











ddt

dt

d
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Do you recognise the term dtiR 2  in Eq. (15.20c)? It represents the 

irreversible Joule heating loss due to the resistance in the circuit. The term  

di  is equal to the work done against the back emf in the circuit. At this 

point, we are not concerned with the Joule loss. So we do not consider the 

term dtiR 2  in our discussion. Then the work done by V gives the increase in 

magnetic energy dU of the circuit. Thus, 

  diiLdidU   (15.21a) 

since .iL When the current is increased from zero to a final value i, the 

magnetic energy stored in the circuit becomes 

  

i

diiLU

0

 (15.21b) 

or  2

2

1
iLU   (15.22) 

This was a specific example of storage of magnetic energy in a circuit having 

an inductor.  We can generalize Eq. (15.22) to surface and volume currents. 

Then we can show how this energy can be regarded as being the energy of 

the magnetic field produced by the steady current. This is what we do now. 

15.5.2 Magnetic Field Energy      

You know that the magnetic flux through a single loop is equal to iL  where L 

is its inductance and i, the current though the loop: 

  Li  (15.23a) 

You also know that   

S

dSB


.  (15.23b) 

From Unit 13 of Block 3 of this course, you know that the divergence of B


is 

zero. So, we can use the vector identity 0)(.  A


[recall Eq. (2.10f) of 

Unit 2, Block 1 of this course]. Here, as you know, A


 is a vector field. Then 

we can express B


in terms of A


 as: 

  AB


  (15.23c) 

Here A


is termed the vector potential associated with the magnetic field B


. 

Therefore, substituting Eq. (15.23c) in Eq. (15.23b), we get 

   

S

dSA


.)(  (15.23d) 

Using Stokes‟ theorem [Eq. (4.19) of Unit 4, Block 1 of this course] in                        

Eq. (15.23d), we can write  

  

C

d lA


.  (15.23e) 

Thus, from Eqs. (15.23a and e), we get  
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  

C

diL lA


.  (15.24) 

Therefore, from Eq. (15.22), the energy of this circuit is  

  

C

diiLU lA


.
2

1

2

1 2  (15.25) 

Now, to generalize this expression, let us suppose that we do not have a 

current circuit defined by a wire. Instead, let the „circuit‟ be a closed path that 

follows a line of current density. Then U given by Eq. (15.25) can approximate 

this situation very closely if we replace 

  l


di   by  dVJ


  and   
C

  by    
V

 

where V is the volume occupied by the current. Hence, we can write                           

Eq. (15.25) as 

  dVU

V

J.A



2

1
 (15.26a) 

Using Ampere‟s law ),( 0JB


  [refer to Unit 13, Block 3 of this course], 

we get    

   




V

dVU )(.
2

1

0

BA


 (15.26b) 

We now use the vector identity given by Eq. (2.9e) of Unit 2, Block 1 of this 

course:  

  )()()( BAABBA


 ...  

and write  

  )()()( BAABBA


 ...  

                  )( BABB


 ..   ])([ AB


   

As a result we get  

  
















  

V V

dVdVU )(.
2

1

0

BAB.B


 

or   
















  

V S

ddVU SBAB.B


.)(
2

1

0

 (15.26c) 

where we have used the divergence theorem [Eq. (4.40) of Unit 4, Block 1 of 

this course] in the second term and S is the closed surface that bounds V. The 

integration is to be taken over the entire volume occupied by the current. 

However, we can even choose a larger region for integration without altering 

the result, since current density J


 corresponding to the current i will be zero 

beyond the volume occupied by it. We now extend the volume integral to 
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include all space. In such an event, the contribution from the surface integral 

will go to zero, since the farther the surface is from the current, the smaller B


 

and A


 are in those regions of the surface. Thus, we are left with  

   





VV

dVBdVU 2

00 2

1

2

1
B.B


 (15.27) 

In view of this result we say that energy of the current-carrying circuits can be 

regarded as stored in the magnetic field produced by these currents, in the 

amount  
0

2

2

B
 per unit volume. Thus, there are two ways to think about the 

energy stored in magnetic fields, which are entirely equivalent: i.e., energy 

stored per unit volume is either ).JA


(
2

1

0
  or .

2 0

2



B
 

Does it appear strange to you that it takes work to set up a magnetic field? 

After all, magnetic fields themselves do no work. The point is that setting up a 

magnetic field, where previously there was none, requires changing the 

magnetic field. And, as you know from Faraday‟s law of electromagnetic 

induction, a changing magnetic field induces an electric field. The electric field 

can do work. So, in the beginning and at the end there is no electric field. But, 

in between, when the magnetic field is building up, there is an electric field. It 

is against this electric field that the work is done. This work done appears as 

the energy stored in the magnetic field and is called the magnetic field 

energy.  

We now summarise the concepts you have studied in this unit. 

15.6   SUMMARY  

Concept Description 

Electromagnetic 

induction and 

Faraday’s law 

 

 

 Electromagnetic induction is a phenomenon in which emf and electric 

current are induced in a loop/coil/circuit subjected to a changing magnetic 

field. Its explanation requires the introduction of a new fundamental principle 

called Faraday‟s law: A changing magnetic field gives rise to an induced 

electric field. Mathematically, Faraday‟s law gives the relation between the 

emf   induced in a  loop/coil/circuit with the changing magnetic flux B  

through the loop/coil/circuit as  

 
dt

d B
  

Faraday‟s law can be expressed in equivalent integral and differential forms, 

which relate the induced electric field and the changing magnetic field: 

           

SC

d
dt

d
d SBl.E


.       and     

t




B
E




 

The induced electric field is not conservative unlike the conservative 

electrostatic field of a stationary charge. Thus, it can do work on charges as 

they move around a closed loop.  
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Lenz’s law                          

 

                     

 The direction of an induced current is specified by Lenz’s law: The induced 

current produces magnetic field which tends to oppose the change in the 

magnetic flux that induces such a current. We also state Lenz‟s law as 

follows: The direction of the induced current (or induced emf) is such as to    

       oppose the change giving rise to it. This law is reflected mathematically in  

the minus sign on the right hand side of Faraday‟s law. Lenz‟s law is a 

consequence of conservation of energy. 

Back emf 

 

 

 A changing current in a coil or circuit gives rise to a changing magnetic flux 

through the same coil or circuit, which induces a back emf in it. The back 

emf in an inductor depends on the rate of change of the inductor current 

and acts to oppose the change in current. 

Self-inductance                           

 

                     

 For a coil of wire in which current changes, the changing magnetic field                    

and magnetic flux through it induces an emf in the same coil, which               

opposes the change in the current through the coil. In such cases, we 

associate a property called self-inductance of the coil, also called an 

inductor. The self-inductance L of an inductor is the ratio of the magnetic  

flux  to the current i through it: 

                       
i

L


  

       An inductor opposes instantaneous change in current. Faraday‟s law relates 

the emf in an inductor to the rate of change of current in it as:  

           
dt

di
L  

       The self-inductance of a solenoid of length , cross-section A, and having N 

turns is given by 

                       


AN
L

2
0  

Mutual inductance  When two coils are placed close to each other so that the magnetic flux of  

one coil is linked with the other coil, a changing current in one coil induces             

an emf in the other. This property of the coils is called mutual induction.              

The mutual inductance of a pair of coils is defined as the ratio of the total 

magnetic flux in the second coil to the current in the first:  

                 
1

2

i
M


  

Faraday‟s law relates the emf in the second coil to the rate of change of 

current in the first  

          
dt

di
M 1

2   

The same mutual inductance M describes the emf induced in the first coil              

as a result of changing current in the second coil.  
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15.7   TERMINAL QUESTIONS  

1. A wire loop of radius 20 cm and resistance 0.5  is kept in a uniform 

magnetic field B


 at right angles to it (Fig. 15.13). The magnetic field points 

into the page and is increasing at the rate of 0.10 .sT 1  Determine the 

magnitude and direction of the induced current in the loop.  

2. What is the direction of the induced current in the smaller loop of                        

Fig. 15.14 when a clockwise current as seen from the left is suddenly 

established in the larger loop, by a battery not shown?  

3. A metal ring placed on top of a solenoid jumps when current through the 

solenoid is switched on (Fig. 15.15). Explain why.  

4. Two coils are arranged as shown in Fig. 15.16. If the resistance of the 

variable resistor is being increased, what is the direction of the induced 

current in the fixed resistor R?  

 

 

 

 

Transformer 
 

 The instantaneous emfs or voltages in the primary ( 1 ) and secondary ( 2 ) coils 

in a transformer are in the ratio of the number of turns in the coils: 

               
2

1

2

1

N

N





 

where 1N  and 2N are the number of turns in the primary and secondary coils, 

respectively. 

Energy stored 

in a circuit 

having an 

inductor 

 Work needs to be done to build up current in a circuit having an inductor and, 

therefore, magnetic field in it. This work ends up as stored energy in the circuit. 

The energy stored in  a circuit having an inductor is given by 

             2

2

1
iLU   

 where L is the self-inductance of the inductor carrying current i. 

Magnetic field 

energy 

 

 

 The energy stored in the magnetic field B


is given by 

        


V

dVU B.B


02

1
 

This expression is very general and applies to a single inductor, two or more 

inductors, and surface and volume distributions of currents.  

Fig.15.16: Diagram for TQ 4. 

R 

Fig.15.13: Diagram for 

TQ 1.  
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Fig.15.14: Diagram for 

TQ 2.  

i  

Fig.15.15: Diagram for 

TQ 3.  

i 

Ring 

V 
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5. A horizontal metallic ring is placed in a uniform magnetic field B


pointing 

up as seen from above the ring (see Fig. 15.17). In which direction will the 

induced current flow in the ring when the magnetic field B


 is turned off?  

6. A sheet of copper is placed in a magnetic field as shown in Fig. 15.18. If 

the sheet is pulled out of the field as shown in the figure, a resisting force 

appears. Explain its origin. 

 

 

 

 

 

 

7. What rate of change of current in a solenoid having self-inductance                      

9.7 mH produces a self-induced emf of 35 mV in it?   

8. A typical ignition coil (made up of two coils) draws a current of 3.0 A, and 

supplies an emf of 24 kV to the spark plugs. If the current in the two coils 

is interrupted every 0.10 ms, what is their mutual inductance? 

9. A solenoid is 0.90 m in diameter and 2.2 m long. The magnetic field at its 

centre is 0.40 T. Estimate the energy stored in the magnetic field of the 

solenoid.  

10. A long coaxial cable carries current i which flows down the surface of the 

inner cylinder of radius a and back along the outer cylinder of radius b 

(Fig. 15.19). Determine the energy stored in a section of length  of the 

cable. It is given that the magnitude of the magnetic field between the 

cylinders is  

      
r

i
B






2
0    and zero elsewhere. 

Hence, determine the self-inductance per unit length of the cable.  

15.8   SOLUTIONS AND ANSWERS  

Self-Assessment Questions 

1. The ammeter will register an induced current in the cases (a) and (c) 

because the magnetic flux through the circuit changes only when there is 

relative motion between the circuit and the electromagnet, not when they 

are at rest with respect to each other.  

2. From Unit 5, you may recall that the electrostatic force field due to static 

charges is conservative and therefore, the curl of the electrostatic force 

field and the electric field due to static charges is zero. However, from                

Eq. (15.5), you can see that the curl of the electric field induced by 

changing magnetic fields is not zero. Hence, the electric field given by   

Fig.15.19: Diagram for 

TQ 10. 

i 

i 

i 

Outer cylinder 

of radius b 

Inner cylinder 

of radius a 

Fig.15.17: Diagram for 

TQ 5. 

B


 

Fig.15.18: Diagram for TQ 6.  
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Eq. (15.5) is not conservative. This is the basic difference between the 

two electric fields. As a result, the force field corresponding to the electric 

field given by Eq. (15.5) can do work on charges as they move around 

closed paths. Moreover, we cannot associate a scalar potential with this 

field. 

3. The induced emf is given by Eq. (15.1a): .
dt

d B
                                   

From Example 15.1, for a uniform magnetic field, the magnetic flux through 

one turn of the coil is given by 

             tBSB  cos    

where ,2 f  f is the frequency at which the coil rotates and S, the area 

of one turn given by 2L  (L being the side of the square coil). Thus, the 

induced emf for a coil consisting of N turns is  

             ]sin[
)cos( 2 tBLN

dt

tNBSd

dt

d B 





  

                 )]2(sin2[2 ftfBLN      or    )2(sin2 2 ftfBLN   

The peak emf is then fBLNpeak
22 and it is given to be equal to 

300V. Hence, 

              BHz)50(m)50.0()10()2(V300 2  

or       T38.0
Hz)50(m)50.0()10()2(

V300
2




B  

This is the typical magnetic field strength near the poles of a strong 

permanent magnet. 

4. See Fig. 15.20. In part (a), the magnetic field is increasing and, hence, the 

magnetic flux through the loop is also increasing. Therefore, the direction of 

the induced current would be such as to produce a magnetic field LB


 in the 

direction opposite to B


 as shown in Fig. 15.20a. Therefore, from the                

right-hand rule, the induced current will flow in the counter-clockwise 

direction to produce LB


 opposite to .B


 In part (b), the magnetic field is 

decreasing and, hence, the magnetic flux through the loop is also 

decreasing. Therefore, the direction of the induced current would be such 

as to produce a magnetic field LB


 in the same direction as B


 (Fig. 15.20b). 

So, from the right-hand rule, the induced current will flow in the clockwise 

direction to produce LB


. Note that the arrows in the figure are just to show 

the directions, their lengths do not represent the magnitudes of the fields. 

5. Since the area of the loop decreases when it is pulled by the forces, the 

magnetic flux through it also decreases. The direction of the induced 

current is such as to oppose this decrease, i.e., the magnetic field due to 

the induced current in the loop should be in the direction of the existing 

magnetic field. It is given that the existing magnetic field is directed into the 

page and perpendicular to it. So, the induced current should flow in the 

(a) 
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Fig. 15.20: Diagram for 

the answer of SAQ 4.  
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clockwise direction in the loop to give rise to a magnetic field directed into 

the page as we view it from top.   

6. We use Eq. (15.11) to determine the back emf. So we will first determine 

the self-inductance of the solenoid. From Eq. (15.12), it is given by 

         H96.3
m1

m)10.0()10000()Hm1026.1( 22162
0 











AN
L  

Since the current in the solenoid changes steadily, the magnitude of its rate 

of change is given by 1As2500
ms0.1

A5.2 
dt

di
 

The magnitude of the back emf is 

             V109.9V9900)As2500(H)96.3( 31  
dt

di
L  

Terminal Questions 

1. The magnitude of the induced current in the loop is given by Ohm‟s law 

as:        
R

I


  

So, we have to determine the emf induced in the wire loop. From 

Faraday‟s law, we have 
dt

d B
  

The magnetic flux B  through the loop is  

S

B dSB


.  

Since the magnetic field B


 is uniform in space and the loop is at right 

angles to it, BdSd SB


.  and we get  

            ,2RBdSBdSB

SS

B      

where R is the radius of the loop. Since the area of the loop is constant, 

the magnitude of the emf is given by: 

            V1026.1)Ts01.0(m)20.0( 2122  



dt

dB
R

dt

d B  

 and therefore, the magnitude of the induced current through the loop is:  

            mA5.2
0.5

V1026.1 2








R

I   

Since the magnetic field, pointing into the page is increasing, the direction 

of the induced current will be such as to oppose this increase. Thus, the 

induced current‟s magnetic field will be in the opposite direction, i.e., the 

induced current will flow in the counter-clockwise direction in the loop as 

seen from top of the page.  

2. When a clockwise current is established in the bigger loop, it sets up an 

increasing magnetic field pointing to its left as shown in Fig. 15.21. The 

Fig.15.21: Diagram for 

the answer of TQ 2. 

B


is increasing in the 

direction shown.  
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direction of induced current in the smaller loop has to be such that it 

opposes the increasing magnetic field. So, the magnetic field due to the 

induced current flowing in the smaller loop has to point towards right. This 

will happen only if the induced current flows in the counter-clockwise 

direction in the smaller loop as per the right-hand rule.  

3. Before the current in the solenoid is switched on, the magnetic flux 

through the ring is zero. When the current in the solenoid is switched on, a 

magnetic flux appears in the upward direction in Fig. 15.15. Due to the 

change in magnetic flux linked with the metal ring, an emf and current are 

induced in it.  

The direction of the induced current is such that the magnetic field due to 

the induced current flowing in the ring is directed opposite to the change in 

the magnetic field due to the solenoid. Therefore, the current in the ring is 

opposite to the current in the solenoid. In Unit 12, you have learnt that the 

force between two conductors carrying currents in the opposite direction is 

repulsive. This repulsive force causes the ring to jump.     

4. The current in the coil on the left (coil 1) is flowing clockwise in it. So, the 

magnetic field due to it points away from the second coil (coil 2). As the 

resistance in coil 1 increases, the current in it decreases, causing a 

decrease in its magnetic field. This causes a decrease in the magnetic flux 

linked with coil 2. The induced current in coil 2 flows in a direction such 

that it opposes this decrease. Therefore, the magnetic field due to coil 2 

points towards its left. So, from the right-hand rule, the induced current 

flows in coil 2 in the clockwise direction. So, it flows from right to left in the 

resistor R.  

5. When the magnetic field is turned off, it changes and as a result, a current 

and emf are induced in the horizontal metallic ring. Since the magnetic 

field is decreasing, the direction of the induced current will be such as to 

oppose this decrease. So, the magnetic field due to the induced current 

flowing in the loop will be in the same direction as the uniform magnetic 

field B


pointing up. Therefore, from the right-hand rule, the induced current 

will flow in the counter-clockwise direction in the ring.   

6. As we try to pull the copper sheet out of the magnetic field, current is 

induced in it. Since the magnetic flux through the sheet is decreasing, the 

direction of the induced current in it is such that it gives rise to a magnetic 

field in the same direction as the original magnetic field, pointing into the 

page. Thus, from the right-hand rule, the direction of the current induced in 

the sheet is clockwise. The magnetic force due to the induced current is 

given by .BlF


 id From the right-hand rule, the direction of the 

magnetic force will be towards the left of the loop, i.e., the force will 

oppose the motion of the sheet.  

When we push the sheet in, the magnetic flux linked with it increases. So, 

the direction of the induced current is counter-clockwise to oppose this 

increase. The magnetic force due to the induced current and the 

associated magnetic field points towards right opposing the motion of the 

sheet.  
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The currents induced in solid conductors placed in changing magnetic 

fields are called eddy currents. As you have learnt while solving this TQ, 

eddy currents can make it difficult to move a conductor through a 

magnetic field. 

7. The rate of change of current in an inductor is related to the self-induced 

emf by Eq. (15.11): .
dt

di
L  For the magnitudes of  and L given in 

the problem, we have:  

            1As6.3
mH9.7

mV35 

Ldt

di
 

8. The rate of change of current is  

            14 As100.3
ms1.0

A03. 
dt

di
 

Therefore, from Eq. (15.16 or 15.17), the mutual inductance of the two 

coils is: 

            H8.0
As103.0

kV24

)/( 14








dtdi

M  

9. From Eq. (15.22), the energy stored in the solenoid is .
2

1 2LiU   The 

magnitude of the magnetic field of the solenoid of length  (Unit 13) is  

            


iN
B 0  

Thus, the current through the solenoid is 
N

B
i

0



 

From Eq. (15.12), the inductance of a long solenoid is  

            


AN
L

2
0  

Thus,   AB
N

BAN
LiU 2

0

2

0

2
02

2

1

2

1

2

1




 






























 
  

Substituting the numerical values in the above expression, we get 

            J109.8
Hm1026.12

m)45.0(T)40.0(m)2.2( 4
16

22








U          

10. From Eq. (15.27), the energy stored per unit volume is given by  

            
22

2
0

2
0

00

2

822

1

2 r

i

r

iB






















 

The volume V of the cylindrical shell of length , radius r, thickness dr is 

given by .2 drrV   

Therefore, the energy stored in the cylindrical shell of volume V is given by 
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r

dri
drr

r

i
V

B
U




























4
)2(

82

2
0

22

2
0

0

2 
         

Now we integrate from a to b for the given cylindrical shell of the coaxial 

cable to obtain U as follows:  

            












































  a

bi

r

dri
U

b

a

ln
44

2
0

2
0 

 

Since ,
2

1 2LiU   we get an expression for L from the above equation as 

follows:  

      





















a

b

i

U
L ln

2

2 0
2


    

     Thus, the self-inductance per unit length of the cable is given by: 

                  















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
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                    UNIT 16 

MAXWELL’S 
EQUATIONS  

Structure 
16.1   Introduction 

Expected Learning Outcomes  

16.2   Fundamental Laws of Electricity and Magnetism 

Asymmetry in the Fundamental Laws of Electricity  

and Magnetism 

16.3   Maxwell’s Generalisation of Ampere’s Law 

 Generalisation of Ampere’s Law    

      Displacement Current               

      

STUDY GUIDE   

 

16.4 Putting Maxwell’s Equations Together 

16.5 Electromagnetic Waves 

The Wave Equations for E


and B


Fields 

The Nature of Electromagnetic Waves      

16.6 Summary 

16.7 Terminal Questions 

16.8 Solutions and Answers 

 

We hope that you have studied Gauss’s laws for electric and magnetic fields, Ampere’s law and 

Faraday’s law explained in Blocks 2 and 3 and Unit 15 of this course. You should revise them 

and make sure that you know these laws and how to apply them before studying this unit. In this 

unit, you will learn about Maxwell’s equations deduced from these laws. To be able to learn the 

concepts of this unit well, you should revise Blocks 2, 3 and Unit 15 before studying it. You 

should keep at hand the Block 1 of this course for reference as you will be using vector 

differential and integral calculus, and vector identities extensively in this unit. For revising the 

concepts related to wave equation that you may have learnt in your school physics, you should 

revise Unit 19, Block 4 of the course BPHCT-131 entitled Mechanics. This unit is quite 

mathematical in its presentation. Therefore, keep a pencil/pen and paper at hand and work out all 

steps given in it. We also advise you to work out all Examples, SAQs and Terminal Questions 

given in the unit on your own. These will help you learn Maxwell’s equations thoroughly.  

Electromagnetism plays a vital role in our 

lives. From mobile phones, microwave 

ovens, computers, bullet trains to MRI 

machines, we are surrounded by devices 

around us that are based on the principles 

of electromagnetism, set out in the form  

of Maxwell’s equations. (Source of pictures: 

Wikipedia/commons)   

“Thoroughly conscious ignorance is the prelude to every     

real advance in science.”  
 

James C. Maxwell 
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16.1 INTRODUCTION 

At  this point of the course, you know the four fundamental laws that govern 

electric and magnetic phenomena, namely Gauss’ law for electric fields, 

Gauss’ law for magnetic fields, Ampere’s law and Faraday’s law. All these 

laws together explain the electric and magnetic interactions that make matter 

act as it does. In this unit, we will explain how James Clerk Maxwell put 

together these laws into a single set of equations, called Maxwell’s 

equations.  

Maxwell’s equations govern the behaviour of electric and magnetic fields 

everywhere and describe all electromagnetic phenomena. For example, they 

help us explain why a compass needle points north, why light bends when it 

enters water, why thunderstorms occur, why we see aurora in the polar 

regions, and many other natural phenomena. These equations also form the 

basis for the operation of a large number of devices in use today, e.g.,              

electric motors, television, television transmitters and receivers, microwave 

ovens, telephones and mobiles, computers of all kind, radars, cyclotrons, MRI 

scanners, etc. Understanding Maxwell’s equations is a truly rewarding 

experience.  

In Sec. 16.2 of the unit, we state four fundamental laws of electricity and 

magnetism together and point out the underlying asymmetry of these laws that 

led to the formulation of Maxwell’s equations. In Sec. 16.3, you will learn how 

the concept of displacement current proposed by Maxwell led to the removal 

of asymmetry. In Sec. 16.4, we put together Maxwell’s equations and explain 

their significance. Finally, in Sec. 16.5, you will learn about how the existence 

of electromagnetic waves was predicted theoretically by Maxwell’s equations 

and how it was established that light is an electromagnetic wave. We will 

derive the electromagnetic wave equation from Maxwell’s equations and 

explain the transverse nature of electromagnetic waves.  

Maxwell’s contribution may well be regarded as the greatest achievement of 

nineteenth century physics. Maxwell’s equations lead us into a fundamental 

insight into the nature of light and other electromagnetic radiations. This is 

what you will learn in the next unit, which is the last unit of this course.  

Expected Learning Outcomes  

After studying this unit, you should be able to: 

 discuss the symmetry considerations, which led to Maxwell’s  equations; 

 explain the concept of displacement current and how Ampere’s law was 

modified by Maxwell; 

 write Maxwell’s equations in charge-free and current-free regions, and in 

regions containing charges and currents; and 

 derive the wave equation for electromagnetic fields from Maxwell’s  

equations and explain the nature of electromagnetic waves. 

James Clerk Maxwell 

(1831 – 1879), a Scottish 

physicist, is well known 

for his electromagnetic 

theory, which is the 

classical theory of 

electromagnetic radiation 

encapsulated in 

Maxwell’s equations. His 

work unified the three 

seemingly different 

phenomena electricity, 

magnetism and light. He 

showed that these three 

were different 

manifestations of the 

same phenomenon.  

 



   

171  

 Unit 16                                                              Maxwell’s Equations 

16.2 FUNDAMENTAL LAWS OF ELECTRICITY 
AND MAGNETISM  

Recall all the laws governing electric and magnetic phenomena that you have 

studied so far in this course. Write them down in the margin of this page.  

Now think: Which ones amongst these laws can be thought of as 

fundamental? 

Do you recall Gauss’s law for electric fields that you have studied in Sec. 6.3 

of Unit 6? It is given by Eq. (6.16) as  

          
0

.



q

d

S

SE


  (16.1a) 

where q is the charge enclosed by the closed surface S. Go through the 

section again. In its differential form, it is given by Eq. (6.18) as 

          
0

.



 E


  (16.1b) 

You can recall that Gauss’s law contains all the information you can get from 

Coulomb’s law and it has wider applicability. Therefore, we write it as the first 

fundamental law of electricity.  

Next, recall Gauss’s law for magnetic fields from Unit 13 of Block 3 of this 

course. It states that magnetic field lines do not begin or end at any point. 

They close on themselves. The integral and differential forms of Gauss’s law 

for magnetic field are: 

  0. 
S

dSB


  (16.2a)  

and   0.  B


 (16.2b) 

Faraday’s law of electromagnetic induction connects changing magnetic fields 

with induced electric fields. It tells us that an electric field is induced in a 

circuit/loop/coil when the magnetic field linked to that circuit/loop/coil changes. 

In integral and differential forms, this law is given by:  

   

SC

d
dt

d
d SBl.E


.  (16.3a)  

and  
t




B
E




 (16.3b)  

Finally, we write Ampere’s law for steady currents, which states that steady 

electric currents give rise to magnetic fields (recall Unit 13) in integral and 

differential forms: 

  id

C

0 l.B


 (16.4a)  

and  JB


0  (16.4b)  
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You may be wondering: Why have we not taken the law of Biot and Savart 

as a fundamental law? This is because Biot-Savart’s law follows from 

Gauss’s law for magnetic fields and Ampere’s law.  

Thus, both Coulomb’s law and Biot-Savart’s law can be obtained from a 

combination of two of the four laws listed above. All the other equations that 

you have studied in this course so far apply to special situations and are 

incorporated in the four laws stated so far. In this sense, these laws may be 

regarded as the fundamental laws of electricity and magnetism 

Let us put them all together at one place in Table 16.1.  

Table 16.1: A tentative list of the fundamental laws governing electric and 

magnetic phenomena  

S.No. Law What the law says Mathematical statement 

1. Gauss’s law for 

electric field 

Electric flux 

through a closed 

surface is 

proportional to the 

charge enclosed by 

that surface. That 

is, charges give 

rise to electric field. 

0

.



q

d

S

SE


                    (16.1a) 

          or                               

    
0

.



 E


                      (16.1b) 

2. Gauss’s law for 

magnetic field 

The total magnetic 

flux through a 

closed surface is 

zero. This implies 

that magnetic field 

lines close on 

themselves. 

Isolated magnetic 

charge does not 

exist. 

  0. 
S

dSB


                     (16.2a) 

          or                                 

   0.  B


                           (16.2b) 

3. Faraday’s law of 

electromagnetic 

induction  

Changing magnetic 

flux gives rise to an 

electric field.  

 

SC

d
dt

d
d SBl.E


.      (16.3a) 

        or                                    

t




B
E




                    (16.3b) 

 

 

 

 

4. Ampere’s law 

(for steady 

currents only) 

Steady electric 

current gives rise 

to a magnetic field. 

id

C

0 l.B


                  (16.4a) 

          or                                  

JB


0                       (16.4b) 

Let us now examine the four laws we have put together in Table 16.1.  

Do you see some similarities in them? Notice that the left-hand sides of                   

Eqs. (16.1a, b and 16.2a, b) and Eqs. (16.3a, b and 16.4a, b), respectively, 
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are completely identical except for the interchanging of E


and .B


The LHS of  

Eqs. (16.1a and 16.2a) have surface integrals over closed surfaces. The LHS 

of Eqs. (16.3a and 16.4a) have line integrals around closed paths. All these 

pairs of equations differ only in the interchange of E


 and B


 on the left-hand 

side. This means that in all these pairs of equations, we can interchange E


 

and B


 and their left-hand sides would look the same.  

So we can say that the left-hand sides of the equations in Table 16.1 are 

symmetrical in the interchange of E


 and ,B


 in pairs.  

What about the right-hand sides of these laws? Do these exhibit a similar 

symmetry? These do not seem to be symmetrical at all in the interchange of 

E


 and .B


 You may like to know: What is the asymmetry in these laws? Let 

us explain.  

16.2.1 Asymmetry in the Fundamental Laws of 
Electricity and Magnetism  

We can identify two kinds of asymmetry in the right-hand side of these laws. 

1. The first kind of asymmetry is to be seen in the right-hand sides of                 

Eqs. (16.1a, b and 16.2a, b).  

Note that the right-hand side of Gauss’s law for electric field [Eqs. (16.1a, 

b)] has a charge q enclosed by a surface. But Gauss’s law for magnetic 

field [Eqs. (16.2a, b)] has zero on the right-hand side. There is no 

equivalent magnetic charge.  

This asymmetry arises from the following fact, which you should 

always remember:  

 

 

Therefore, the magnetic charge on the right-hand side of the second law is 

zero. If and when magnetic monopoles are discovered, the right-hand side 

of this law would be non-zero for any surface enclosing a net magnetic 

charge.  

In the same way, the terms J


000 ),/(  dtdqi  representing the flow of 

electric charges appear on the right-hand sides of Eqs. (16.4a, b). But no 

similar terms (representing a current of magnetic monopoles) appear on 

the right-hand sides of Eqs. (16.3a, b).  

This is one kind of asymmetry in these laws, which could be resolved if we 

knew for sure that magnetic monopoles existed. Current theories of 

elementary particles suggesting the existence of magnetic monopoles 

have prompted an earnest search for them.  

2. There is another asymmetry in these laws. On the right-hand side of 

Faraday’s law (Eq. 16.3b), we have the term ./dtB


  Recall that we 

interpreted this law by saying that changing magnetic field produces 

Isolated electric charges exist in nature, but there is no evidence so 

far that isolated magnetic charges exist.  
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electric field. We find no similar term (representing changing electric 

fields) in Ampere’s law given by Eq. (16.4b). Are we missing something? 

From symmetry considerations, could we suggest the following? 

 

 

This was the line of thought followed by Maxwell. Showing remarkable insight 

into the symmetry of electric and magnetic phenomena, he introduced the 

concepts of induced magnetic fields due to changing electric fields and 

displacement current. Thus, he removed the asymmetry in the fundamental 

laws of electricity and magnetism. For this, he generalized Ampere’s law to 

arrive at the symmetrical counterpart of Faraday’s law. In the next section, you 

will learn how Maxwell did this. But before studying further, you may like to fix 

the concepts of this section in your mind.  

 

  

 

 

 

 

 

 

 

 

16.3   MAXWELL’S GENERALISATION OF 
AMPERE’S LAW   

Let us reconsider Ampere’s law for steady currents. For mathematical 

convenience, we use its differential form in our discussion.  

  JB


0  (16.5) 

where J


 is the current density associated with the electric current i.  The 

relation of current with current density is given as                                     

  S.J


di

S

  (16.6) 

Let us see if we can use Eq. (16.5) for fields that vary with time. If we take the 

divergence of both sides of Eq. (16.5), we get 

  ).(. JB


 0)(  (16.7) 

The left-hand side of Eq. (16.7) is zero because for any vector field, the 

divergence of its curl is always zero: 0)(  A


.  [recall Eq. (2.10f) of    

Unit 2, Block 1 of this course). Thus, Eq. (16.7) becomes  

Changing electric field produces magnetic field.  

SAQ  1 -  Fundamental laws of electricity and magnetism 

a) Write the four fundamental laws of electricity and magnetism. Why are 

these laws called the fundamental laws and not any other equations 

that you have studied in this course? 

b) State the symmetries in these laws. 

c) What are the asymmetries in the fundamental laws of electricity and 

magnetism? 
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  0.  J


 (16.8) 

Note that Eq. (16.8) is true only for steady currents. It does not contain any 

term for time-varying fields.  

To understand this point, you need to know the equation of continuity for the 

flow of charge in a region. You have learnt this equation in Sec. 12.2 of                     

Unit 12 [recall Eq. (12.5)]. Let us state the equation of continuity in its integral 

and differential forms:  

   

VS

dV
dt

d
dS.J


 (16.9a) 

                  0





t
J


.  (16.9b) 

Eqs. (16.9a or b) tell us that the net outflow of current density J


 from 

some region in space is equal to the rate of decrease of charge 

contained in that region.  

For steady currents,  0




t
     and we get     0.  J


  

This is just Eq. (12.16) of Unit 12. So, you should note that Eq. (16.5) is true 

only for steady currents. This is how the equation of continuity has helped us 

understand that a term for time-varying fields is missing in Ampere’s law               

[Eq. (16.5)].  

How did Maxwell resolve this problem of the missing term in Ampere’s law? 

How did he generalise the law? He used the symmetry considerations. Let us 

see how he did that.  

16.3.1 Generalisation of Ampere’s Law   

In physics, symmetry is often a very powerful notion. From the discussion so 

far, you may already have formed the idea that from symmetry considerations 

Eq. (16.5) should also have a time-varying term.  

The question is: What should the form of such a term be? We can say that 

this term should be the time derivative of some vector field so that for static 

fields, the generalised equation would reduce to Eq. (16.5). Perhaps, 

Maxwell’s most important contribution was the determination of this missing 

term. He asked:  

Could a changing electric field/electric flux induce a magnetic field?  

Maxwell modified Ampere’s law [Eq. (16.5)] by adding a term  
t




E


00   to it, 

which was rewritten in the differential form as      

  
t




E
JB




000  (16.10) 

The integral form of Eq. (16.10) can be obtained by integrating both sides of 

the equation over some open surface S and applying Stokes’ theorem. Let us 
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do this before moving on for the sake of completeness. Integrating both sides 

of Eq. (16.10) over an open surface S, we get 

   




SSS

d
t

dd SESJSB


...)( 000  (16.11a) 

Applying Stokes’ theorem to the LHS of Eq. (16.11a), we get 

   




SSC

d
t

dd SESJlB


... 000  (16.11b) 

Now, note that from Eq. (16.6),  

  

S

di SJ


.   (16.11c) 

and recall the definition of electric flux from Unit 5:      

  

S

E dSE


.  (16.11d) 

Substituting these expressions for i  and E  from Eqs. (16.11c and d) in                 

Eq. (16.11b), we can write it as 

  
dt

d
id E

C


 000. lB


    (16.12) 

This is the generalization of Ampere’s law as carried out by Maxwell.  

You should note that in writing Eq. (16.12), the minus sign in Faraday’s law 

has been replaced by a plus sign. This is dictated by experiment and 

considerations of symmetry. The factor 00   is inserted to express the 

equation in SI units.  

What do Eqs. (16.10 and 16.12) tell us? These equations tell us that there are 

two ways of setting up a magnetic field: 

1) by an electric current, and 

2) by a time-varying electric field.  

Eqs. (16.10 and 16.12) express the generalised differential and integral forms 

of Ampere’s law, respectively. This generalised Ampere’s law is also called 

the Ampere-Maxwell law.  

Always remember that Maxwell did not derive this law from any 

empirical considerations. He was motivated by symmetry considerations 

and he deduced the additional term by requiring that Ampere’s law be 

consistent with the law of conservation of electric charge (or equation of 

continuity). Since Maxwell’s time many experiments including direct 

measurements of the magnetic field associated with a huge capacitor, have 

confirmed this remarkable insight of Maxwell.  

In the next section, we will study Eqs. (16.10 and 16.12) further and 

understand their meaning. In particular, we will interpret the second term on 

the RHS of Eqs. (16.10 and 16.12). But you should verify that the term 

tdd E /0   has the dimensions of current. Do so before studying further. 
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So, on solving SAQ 2b, you have learnt that the generalised Ampere-

Maxwell’s law contains a term that has the dimensions of current. Let us now 

examine the nature of this term. 

16.3.2 Displacement Current 

Note that the changing electric flux in Eq. (16.12) is not an electric current as 

no charge actually flows but it has the same effect as a current in producing 

magnetic fields. For this reason Maxwell called this term the displacement 

current. Historically, it has been treated as a fictitious current and the name 

‘displacement current’ given by Maxwell has stuck. It is given as  

  
dt

d
i E
d


 0  (16.13a) 

To understand what this term represents, let us recall the expression for 

electric flux as a surface integral of the electric field:  

  

S

E dS.E


 (16.13b) 

Using Eq. (16.13b), we can write Eq. (16.13a) as 

  







SS

E
d d

t
d

dt

d

dt

d
i S.

E
S.E





000  (16.13c) 

Notice that in moving the time derivative of E  inside the integral in                         

Eq. (16.13c), we have written it as a partial derivative with respect to time. 

This is because the electric flux/electric field is a function of both space and 

time coordinates. The displacement current density is defined as 

  
t

d





E
J




0  (16.14) 

Then, using Eq. (16.14), we can write Eq. (16.13c) as  

  

S

dd di SJ


.  (16.15) 

The word ‘displacement’ does not have any physical meaning. But the word 

‘current’ is relevant in the sense that the effect of the displacement current 

cannot be distinguished from that of a real current in producing magnetic 

fields. So, we can say that a magnetic field can be set up by a conduction 

current i or by a displacement current .
d
i     

Thus, we can express Ampere-Maxwell law [Eq. (16.12)] as:  

            )(.. 000 d

SC

iid
t

d 

















  S

E
JlB





          (16.16) 

SAQ  2 -  Generalisation of Ampere’s law 

a) Explain the symmetry consideration that led to the generalisation of 

Ampere’s law. 

b) Show that the term tdd E /0   has the dimensions of current. 
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To better understand the role of the displacement current, let us determine the 

displacement current in a circuit containing a parallel plate capacitor.  

 

 

 

 

 

 

 

Consider a parallel plate capacitor being charged by a constant current i as 

shown in Fig. 16.1. The real current i changes the electric field E


 between 

the capacitor plates. The fictitious current di  between the plates is 

associated with that changing electric field .E


 Determine the displacement 

current in the circuit.   

SOLUTION   We assume that the plates are large in comparison with 

their separation. Then, there will be an electric field E


 only between the 

plates and to a good approximation, it will be uniform over most of the area 

of the plates. Under these conditions we shall use Eq. (16.15) to determine 

di  for the parallel plate capacitor.  

We can relate the amount of excess charge Q on each of the plates at 

any given time to the magnitude E


of the electric field between the plates 

at that time. To do so, we use Gauss’s law [Eq. (6.16), Unit 6, Block 2]: 

       
0

.



encl

S

Q
dSE


      (i) 

You have learnt in Unit 6 that symmetry of the geometry allows us to 

choose the Gaussian surface in such a way that the magnitude E


of the 

electric field is uniform and E


and S


d are parallel.  

In this case, we choose the Gaussian surface that encloses the charge on 

the positive plate (see Fig. 16.2). Then E


and S


d are parallel and SE


d. is 

equal to E dS. Since E is constant, from Eq. (i), we have 

    EAdSEdSEdQ

SSS

E 00000 .   SE


 (ii) 

where A is the area of the plate. We can determine the real current i by 

differentiating Eq. (ii):  

        
dt

dE
A

dt

dQ
i 0  (iii) 

Next we determine the displacement current. To do so, we use                             

Eq. (16.13a). From Eq. (ii), we have AE
E

  and we can write  

        
dt

dE
A

dt

AdE

dt

d
i E
d 000 


  (iv) 

Comparing Eqs. (iii) and (iv), we find that the real current i charging the 

capacitor and the fictitious displacement current di  between the plates 

have the same value:           

        iid   (v) 

XAMPLE 16.1:  DISPLACEMENT CURRENT IN A CIRCUIT 

WITH A PARALLEL-PLATE CAPACITOR 

 

 

 

 Fig. 16.1: Parallel plate 

capacitor being 

charged by a constant 

current i. 
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Fig. 16.2: A charged 

parallel plate capacitor. 

The dotted Gaussian 

surface encloses the 

charge on the positive 

plate. 
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This example of a parallel plate capacitor shows concretely the necessity for 

the displacement current term in the fourth Maxwell’s equation. To get an idea 

of the importance of displacement current we would like you to work out the 

following SAQ. 

  

 

 

  

It was indeed Maxwell’s genius to recognize that Ampere’s law should be 

modified to reflect the symmetry suggested by Faraday’s law. To honour 

Maxwell, the four complete laws of  electromagnetism are given the name 

Maxwell’s equations. Maxwell’s equations belong to the category of the 

fundamental laws of nature. As you have seen, they are not derived from any 

fundamental precepts by logical reasoning and mathematical calculations. 

Fundamental laws of nature are generalizations of our knowledge and they 

are discovered, found or ascertained. In the next section, we present 

Maxwell’s equations.  

16.4 PUTTING MAXWELL’S EQUATIONS 
TOGETHER    

We first list the four equations known as Maxwell’s equations.  

Table 16.2: Maxwell’s equations 

Eq. 

No. 
Differential form Integral  form 

1. 

0

.



 E


 

0

.



q

d
S

SE


 (16.17) 

2. 

t




B
E




 
dt

d
d B

C


 l.E


  (16.18) 

3. 0.  B


 0. 
S

dSB


 (16.19) 

4. 

















t
00

E
JB




 

diid

C

00  l.B


 where 
dt

d
i E
d


 0  (16.20) 

 

 

 

How do we interpret this result? It tells us that we may consider the 

fictitious displacement current di  to be a continuation of the real current i. 

While the real current flows in the circuit, the displacement current is its 

continuation from one plate, across the gap in the capacitor, to the other 

plate (see Fig. 16.1). This displacement current is uniformly spread 

between the plates because the electric field is uniform over the plates of 

the capacitor. This is shown in Fig. 16.1 by the uniform spread of current 

arrows between the plates of the capacitor.  

 
  

 

 

 SAQ  3  -  Displacement current 

Obtain the maximum value of the displacement current in a parallel plate 

capacitor made up of plates of area .m0.1 2  It is given that the electric field 

between the plates is tEE  sin0  with V100 E and frequency 10 MHz.  
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This set of equations, first published by Maxwell in 1864, governs the 

behaviour of electric and magnetic fields everywhere. The equations in                

Table 16.2 are written for the fields in the presence of electric charges and 

electric currents. Notice that the lack of symmetry in these equations, with 

respect to E


and B


fields is entirely due to the absence of magnetic charge 

and its corresponding current.  

Maxwell’s equations are also written for the fields in vacuum, and in material 

media. We now take the special case of Maxwell’s equations in vacuum, that 

is, regions in space that are free of charges and currents. As you can see, in 

such regions, the terms containing q and i or  and J


in Eqs. (16.17) to 

(16.20)  are zero. Then Maxwell’s equations take the following form. 

Table 16.3: Maxwell’s equations in vacuum with no source charges or currents 

Differential form Integral  form 

0.  E


  0. 
S

dSE


 (16.21) 

t




B
E




  
dt

d
d B

C


 l.E


 (16.22) 

0.  B


  0. 
S

dSB


 (16.23) 

t


 

E
B




00   
dt

d
d E

C


  00l.B


 (16.24)              

 

 You can see that in charge-free and current-free regions, the symmetry in 

these equations is complete. The electric and magnetic fields appear on an 

equal footing in Maxwell’s equations in vacuum. The constants 0 and 0  

appear in Ampere-Maxwell law due to our choice of SI units.  

You could be wondering about the discrepancy in sign. The difference of signs 

in Eqs. (16.18) and (16.20) or in Eqs. (16.22) and (16.24) is actually due to 

symmetry: it reflects the complementary way in which electric and magnetic 

fields give rise to each other. 

Maxwell arrived at four compact and elegant equations that reveal the 

inherent symmetry between electric and magnetic fields. 

What do Maxwell’s equations tell us?  

In a nutshell,  

The first two Maxwell’s equations (in Table 16.2) tell us that an electric field is 

set up in two ways:  

i) by electric charges and  

ii) by a changing (variable) magnetic field. 

The last two equations tell us that  
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i) a magnetic field has no sources (there are no magnetic charges), and  

ii) a magnetic field is set up by electric currents and a variable electric field.  

Maxwell’s equations also indicate that a time-varying magnetic field cannot 

exist without a variable electric field, and a time-varying electric field, 

without a variable magnetic field.  

This is why the two fields are not regarded as separate. Thus arose the 

concept of electromagnetic field as a single entity. By combining Faraday’s 

law and the generalised Ampere’s law, Maxwell’s equations tell us how 

electricity and magnetism can be treated as complementary aspects of the 

same phenomenon  electromagnetism. We can say that electricity and 

magnetism are two sides of the same coin. In this manner, Maxwell 

succeeded in formulating mathematically a unified theory of electricity and 

magnetism.  

Maxwell’s equations are also important because of their ability to predict a 

wide range of new phenomena. The consequences of Maxwell’s formulations 

are legion – all of electrical and radio engineering is contained in these 

equations. The design of the entire range of communication systems (such as 

radio, TV, cell phones, Internet) is based on Maxwell’s equations. Further, the 

presence of the displacement current term in Eq. (16.20) alongwith                          

Eq. (16.18) implies the existence of electromagnetic waves and helps explain 

the nature of light. This forms the discussion of the next section.  

For these reasons, Maxwell’s equations are considered to be a path-breaking 

achievement of the nineteenth century physics and places Maxwell on the 

same footing as Newton and Einstein. 

You may now like to stop for a while and apply Maxwell’s equations to                  

time-varying electric and magnetic fields before studying the next section on 

electromagnetic waves. 

 

 

 

 

 

 

 

Maxwell’s equations were a culmination of more than half a century of work on 

electricity and magnetism by a galaxy of scientists like Benjamin Franklin 

(American polymath, 1706 – 1790), Charles-Augustin de Coulomb (French 

physicist, 1736 – 1806), Carl Friedrich Gauss (German mathematician and 

physicist, 1777 – 1855), Hans Christian Oersted (Danish physicist,                    

1777 – 1851), Jean-Baptiste Biot (French physicist, 1774 –1862), Felix Savart 

(French physicist, 1791 – 1841), Hendrik Antoon Lorentz (Dutch physicist 

1853 – 1928), Andre-Marie Ampere (French physicist, 1775 – 1836), Joseph 

SAQ  4  -  Maxwell’s equations 

Under what conditions do the following time-varying electric and magnetic 

fields satisfy Maxwell’s equations [Eqs. 16.21 to 16.24)]? 

)(sinˆ
0 vtzE  jE


  

)(sinˆ
0 vtzB  iB


    

)(sin0
ˆ vtyBB  i

 

where 0E and 0B are constants.  
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Henry (American scientist, 1797–1878), Michael Faraday (English physicist, 

1791 – 1867) and James Clerk Maxwell (Scottish scientist, 1831 –  1879).  

But as you have learnt in Sec. 16.4, it was Maxwell who reformulated the 

fundamental laws of electricity and magnetism and presented them as four 

compact equations given in Tables 16.2 and 16.3 that explain all 

electromagnetic phenomena. You will discover in the next section, what is 

perhaps the most exciting and profound scientific outcome of Maxwell’s 

equations. It is their ability to predict electromagnetic waves and provide the 

basis for our understanding of the nature of electromagnetic waves. 

16.5 ELECTROMAGNETIC WAVES 

One of the great successes of Maxwell’s equations was that they predicted 

the existence of electromagnetic waves in 1864 long before these were 

generated or detected in experiments. Almost 25 years later, it was Heinrich 

Hertz who first generated and detected these waves experimentally in 1887. 

Maxwell also predicted that all electromagnetic waves would travel at a speed 

that was very close to the speed of visible light in the air. And Maxwell 

correctly asserted that visible light was an electromagnetic wave. Now we 

know that radio waves, infrared, visible, ultraviolet, X-rays and gamma rays 

are all electromagnetic waves differing only in frequency.  

In this section, we will see how Maxwell’s equations led to the prediction of 

electromagnetic waves and that of visible light being an electromagnetic wave. 

From Maxwell’s equations, we will derive an equation which is just the wave 

equation and understand its physical meaning.  

16.5.1 The Wave Equations for E


 and B


 Fields  

We shall first derive the wave equation from Maxwell’s equations in vacuum, 

i.e., a region of space where there are no charges or currents using                             

Eqs. (16.21 to 16.24) given in Table 16.3. As you can see, these equations 

are coupled, first order partial differential equations. But we can uncouple 

these equations.  

For the sake of mathematical convenience, we will use their differential form 

and first derive the equation for the electric field .E


 Taking the curl of                       

Eq. (16.22), we get 

  )()( B
B

E






























tt
 (16.25a) 

We now make use of the following vector identity [see Eq. (2.10g) of Unit 2, 

Block 1 of this course] for any vector field F


:  

  FFF


2)()(  .   

Thus, using this vector identity in Eq. (16.25), we can write it as 

 )()( 2 B EE








t
.  (16.25b)                                                     

Heinrich Rudolf Hertz 

(1857 – 1894) was a 

German physicist who 

proved the existence of 

electromagnetic waves 

through his experiments. 

The unit of frequency, 

cycle per second, was 

named ‘hertz’ in his 

honour.  
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Then using 
t




E
B




0 from Eq. (16.24), we can write Eq. (16.25b) as 

 
2

2

00
2)(

t




E
 EE




.  (16.25c) 

Since 0E


.  from Eq. (16.21), Eq. (16.25c) becomes   

 
2

2

00
2

t




E
E




   (16.26) 

We can follow similar steps and show that  

 
2

2

00
2

t




B
B




 (16.27)  

In fact, you should practice the steps and deduce Eq. (16.27) in SAQ 5.  

 

 

 

You should practice the mathematical steps in the derivations of Eqs. (16.26 

and 16.27) so that you are completely comfortable with them. Thus, from 

Maxwell’s equations, we get two uncoupled second order partial differential 

equations for the time-varying E


and B


 fields in vacuum in the absence of 

charges or currents. Let us put them together. 

 

  

 

 

 

 

 

 

Let us now consider Eqs. (16.26 and 16.27) in detail. You will see in the 

following discussion that Eqs. (16.26 and 16.27) are of the form of the wave 

equation.  

Recall the classical wave equation that you have learnt in school physics (or 

revise the basic concepts of wave motion from Unit 19 of the course                 

BPHCT-131 entitled Mechanics). It is given as  

 
2

2

2
2 1

t

f

v
f




  (16.28) 

SAQ  5  -  Deriving wave equation 

Derive Eq. (16.27). 

 

 

 

 

 
Equations for Time-varying Electric and Magnetic Fields 

 

 The time-varying electric and magnetic fields in Maxwell’s equations obey 

second order partial differential equations given by: 

                             
2

2

00
2

t




E
E




                           (16.26) 

                             
2

2

00
2

t




B
B




                                                 (16.27)  
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This equation describes a wave travelling with speed v. Now compare                       

Eq. (16.28) with Eqs. (16.26 and 16.27). You can see that Eqs. (16.26 and 

16.27) are wave equations for time-varying electric and magnetic fields which 

propagate like waves in space.  

Note that Maxwell’s equations tell us that a changing electric field gives rise 

to a magnetic field, which itself may be changing with time. Also a 

changing magnetic field gives rise to an electric field, which itself may 

be changing with time.  

Taken together with Maxwell’s equations, Eqs. (16.26 and 16.27) suggest the 

following: 

Time-varying electric and magnetic fields could continuously generate 

each other and propagate in space transporting electromagnetic energy 

with them. 

In this way, these equations suggest the possibility of self-sustaining travelling 

electromagnetic fields, which travel in space like waves. This is how the 

concept of an ‘electromagnetic wave’ was born. Now we think of 

electromagnetic waves as structures consisting of electric and magnetic fields 

that travel freely through vacuum. Comparing Eqs. (16.26 and 16.27) with              

Eq. (16.28) gives us the speed of the electromagnetic waves. It is  

 
00

1


v  (16.29) 

When we substitute the values of 0  and 0  in Eq. (16.29), we get the value 

of v as 

 18 ms100.3 v  (16.30) 

Do you recognise this value? It is just the speed of light in vacuum! The 

implication of this result is extremely exciting:  

Light is an electromagnetic wave.  

In a nutshell, Maxwell discovered that the speed of the electromagnetic wave 

depended on the familiar constants 0  and 0  measured in static electric and 

magnetic experiments.  

He also discovered that a calculation of the speed of the electromagnetic 

wave in vacuum gave a value that was the same as the speed of light. This 

led him to make the additional bold hypothesis that light was an 

electromagnetic wave. 

This conclusion would not surprise you today. But imagine what a triumph it 

was in Maxwell’s times. Let us explain this point.  

Do you recall where 0  and 0  came in the theory in the first place? They 

appeared as constants in Coulomb’s law and Biot-Savart law. We can 

measure them in experiments involving charged pith balls, batteries, and wires 

 experiments which have nothing to do with light. And yet, in Maxwell’s 

theory these two are related in a beautifully simple manner to the speed of 

light!  

Maxwell predicted that 

all electromagnetic 

waves would move at 

a speed that was 

about the same as the 

measured value of the 

speed of light in air. 

That is why he 

asserted right from the 

beginning that light 

was an 

electromagnetic wave. 
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Notice also the crucial role of the displacement current term in                            

Ampere-Maxwell law. Without this term, the wave equation would not have 

emerged. Thus, according to Maxwell’s equations,  

Vacuum supports the propagation of electromagnetic waves at a speed 

given by Eq. (16.29).  

We would like you to understand clearly the nature of these waves. This is 

what you will learn in the next section.  

16.5.2 The Nature of Electromagnetic Waves 

We have suggested in Sec. 16.5.1 that an electromagnetic wave is constituted 

of time-varying electric and magnetic fields. Now we ask: How are we to 

visualize such a travelling electromagnetic wave? 

To do so, let us consider an electromagnetic wave travelling through a region 

in vacuum (i.e., charge-free and current-free region).   

As the electromagnetic wave travels through the region, the changing electric 

field in the wave produces a changing magnetic field and vice-versa. The 

induced electric field is, in fact, the electric component of the 

electromagnetic wave and the induced magnetic field is magnetic 

component of the electromagnetic wave.  

The induced electric and magnetic fields, which satisfy the respective 

wave equations, travel through space and constitute the electromagnetic 

wave. 

So we have a self-perpetuating electromagnetic wave whose E


and B


fields 

exist and change without the need for charged matter.  

In this way, Maxwell’s equations teach us that a beam of sunlight is a 

configuration of changing electric and magnetic fields travelling through space. 

The same is true for radio waves, microwaves, infrared rays, ultraviolet rays, 

X-rays and -rays. In relation to electromagnetic waves, we would like to 

stress on the following very important point: 

It is not enough that an electromagnetic field satisfies the wave                   

Eqs. (16.26 and 16.27). It must also satisfy Maxwell’s equations.  

Maxwell’s equations impose extra constraints on the electric and magnetic 

fields that satisfy them. Whereas every solution of Maxwell’s equations (in 

vacuum) must obey the wave equation, the converse is not true.  

Every solution of a wave equation need not obey Maxwell’s equations, 

i.e., it need not represent an electromagnetic wave.  

Thus, in solving wave equations for electromagnetic waves, you must take 

special care to see whether the solutions satisfy Maxwell’s equations. Only 

then would they represent an electromagnetic wave. Let us consider an 

example to determine the extra constraints imposed by Maxwell’s equations. 

That would also give us a clue about the transverse nature of electromagnetic 

waves. 

You may like to watch 

the animation of a 

travelling 

electromagnetic wave  

at the url 

https://www.youtube.co

m/watch?v=aCTRjVEm

eC0  

to visualize the nature  

of electromagnetic 

waves and their 

propagation in space.  

 

https://www.youtube.com/watch?v=aCTRjVEmeC0
https://www.youtube.com/watch?v=aCTRjVEmeC0
https://www.youtube.com/watch?v=aCTRjVEmeC0
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You have just learnt that electromagnetic waves are transverse in nature. It 

means that at any given instant of time, the direction of propagation of 

electromagnetic waves is perpendicular to the directions of the electric and 

magnetic fields that constitute it. Also, the directions of the electric field 

component and magnetic field component of the electromagnetic wave 

are perpendicular to each other. So,  

 

  

 

 

 

 

 

 

 

For keeping the mathematics simple, we suppose that the electromagnetic 

waves are travelling in the z-direction with the speed c. So the electric and 

magnetic fields in the waves will have the form (recall Unit 19 of the course 

BPHCT-131): 

           )(sin0 ctz EE


          (i) 

and     )(sin0 ctz BB


 (ii) 

where 0E


and 0B


are the respective amplitudes of the electric and 

magnetic fields associated with the electromagnetic wave. Show that the 

electromagnetic wave is a transverse wave. 

SOLUTION   From Maxwell’s equations (16.21 and 16.23) in vacuum, we 

have  

                    0 E.


   and   0 B.


 (iii) 

If we substitute Eqs. (i) and (ii) in both equations of Eq. (iii), we find that 

these will be satisfied if only if   

                  000  zzE E


   and      000  zzB B


           (iv) 

Eq. (iv) tells us that the components of the electric and magnetic fields of 

the electromagnetic wave in the direction of propagation are zero. This 

implies that the direction of propagation of an electromagnetic wave is 

perpendicular to the directions of the electric and magnetic fields that 

constitute it. You have learnt in your school physics and Unit 19 of the 

course BPHCT-131 that such waves are transverse waves. Thus, 

electromagnetic waves are transverse waves. 

 

  

 

XAMPLE 16.2:  TRANSVERSE NATURE OF AN 

ELECTROMAGNETIC WAVE 

 

 

 

 

SAQ  6 -  Conditions for an electromagnetic wave 

For the electric and magnetic fields of SAQ 4, you have verified that 

these satisfy Maxwell’s equations provided that 00 vBE   and ,
2
0

0
c

vE
B   

where c is the speed of light given by ./1 00c  Show that together 

these conditions require that cv   and .00 EcB   

 

 

 

Proof of Eq. (iv) in 

Example 16.2: 

Let us substitute Eq. (i) 

of Example 16.2 in the 

relation 0 E.


: 

Then we have 

0 E.


)(sin)( 0 ctzE
x

x 



  

)(sin)( 0 ctzE
y

y 





)](sin[ 0 ctzE
z

z 



  

Now, in order that the 

equation 0 E.


 be 

satisfied by ,E


 all partial 

derivatives in the 

above equation should 

be equal to zero. The 

partial derivative with 

respect to z will be zero 

if and only if zE0 is zero. 

This is because the 

partial derivative of the 

sine function with 

respect to z is non-zero. 

 

An electromagnetic wave comprises mutually perpendicular electric 

and magnetic fields propagating in a direction perpendicular to both 

fields. 
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So, the E


 and B


 fields of SAQ 4/SAQ 6 describe an electromagnetic wave 

under certain conditions. Let us further understand how the electromagnetic 

wave described by the E


 and B


 fields of SAQ 4/SAQ 6 travels in space. You 

have verified in SAQ 6 that the electromagnetic field of SAQ 4 satisfies 

Maxwell’s equations provided that  

         cBE 00   (16.31a) 

or         c
B

E


0

0
 (16.31b) 

where c is the speed of light given by ./1 00c   You can also verify that 

these E


and B


fields satisfy the respective wave equations [Eqs. (16.26 and 

16.27)].      

      

    

 

 

 

 

 

 

 

 

 

 

 

Study Fig. 16.3. The electromagnetic wave is shown at two different times. 

Note that as time passes, the entire pattern slides to the right because 

)( tcy   has the same value at )( yy   and tt   as it had at y and t, 

provided that .tcy   This is an example of a plane electromagnetic 

wave.  

In other words, we have a plane electromagnetic wave travelling with a 

constant speed c in the y-direction.  

Did you notice that we have introduced a new term: plane electromagnetic 

wave?   

You may well ask: What is a plane electromagnetic wave?  

Fig. 16.3: Travelling electromagnetic wave. 
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By definition, a plane electromagnetic wave is a wave for which 

the E


and B


fields are constants at a given instant of time at all points            

in a plane normal to the direction of propagation.  

You can visualise a plane electromagnetic wave by picturing the field    

vectors E


and B


at each point in space as lying in a plane. Also the planes at 

any two different points are parallel to each other (study Fig. 16.4).  

In the next unit of this block, we shall be mainly concerned with propagation of 

plane electromagnetic waves in vacuum and material media, as these are 

found to be very useful in various areas of physics, engineering and 

technology.  

As you have seen, the electromagnetic fields given in SAQ 4 describe an 

electromagnetic wave which is a specific example of a plane electromagnetic 

wave. Our interest now is to find the plane wave solutions of the wave 

equations, which also satisfy Maxwell’s equations. This is what you will learn 

in Unit 17, which is the last unit of this block. We now summarise the concepts 

you have studied in this unit. 

16.6 SUMMARY 

Concept Description 

Fundamental  laws 

of electricity and 

magnetism 

 

 

 The four fundamental laws of electricity and magnetism are: 

      Gauss’s law for electric field:   

                   
0

.



q

d

S

SE


             or           
0

.



 E


 

       Faraday’s law of electromagnetic induction:  

                      

SC

d
dt

d
d SBl.E


.      or     

t




B
E




 

Gauss’s law for magnetic field: 

             0
S

dSB


.            or           0.  B


 

Ampere’s law (for steady currents only):  

             i

C

d 0 l.B


         or           JB


0  

 Asymmetry in    

the fundamental 

laws of electricity 

and magnetism 

 

                     

 There are two kinds of asymmetry in the fundamental laws of electricity and 

magnetism: The first kind of asymmetry is in the Gauss’s laws for electric and 

magnetic fields. The RHS of Gauss’s law for electric field has a charge q 

enclosed by a surface. But Gauss’s law for magnetic field has zero on its 

RHS. There is no equivalent magnetic charge. This asymmetry arises 

because while isolated electric charges exist in nature, there is no evidence 

so far that isolated magnetic charges exist. The second kind of asymmetry in 

these laws is that on the RHS of Faraday’s law there is a term ./dtB


  But 

there is no similar term in Ampere’s law. Faraday’s law tells us that changing 

Fig. 16.4: In a plane 

electromagnetic wave, 

the planes in which the 

field vectors E


and 

B


lie at any two 

different points are 

parallel to each other.   

 

 

x 

 

y 

 

z 

 

E
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B


 

 

v

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magnetic fields produce an electric field. From symmetry considerations, it 

should follow that changing electric fields produce a magnetic field. But 

there is no such term in Ampere’s law. 

Maxwell’s 

Generalisation of 

Ampere’s Law 

 

 From symmetry considerations, Maxwell added a term containing what he 

called the displacement current  
dt

d
i E
d


 00  in Ampere’s law and 

generalized it as follows: 

t
00





E
JB




    or   )(. 000 d

SC

iid
t

d 

















   S

E
Jl.B





 

This equation is now known as Ampere-Maxwell law. This law tells us that  

there are two ways of setting up a magnetic field: by an electric current, 

and by a time-varying electric field.     

Maxwell’s 

equations 

 Maxwell’s equations constitute the fundamental set of differential equations 

describing electric and magnetic fields. These equations in their integral and 

differential forms are given in the two tables below in the presence of charges 

and currents and in vacuum, i.e., charge-free and current-free regions:  

In the presence of charges and currents  

  
0

.



 E


                                  

0

.



q

d

S

SE


   

  
t




B
E




                             
dt

d
d B

C


 l.E


 

  0.  B


                                       0
S

dSB


.    

  
t




E
JB




00                )(0 d

C

iid  l.B


  where  
dt

d
i E
d


 0  

In vacuum, i.e., charge-free and current-free regions, 

  0.  E


                                  0. 
S

dSE


 

  
t




B
E




                          
dt

d
d B

C


 l.E


 

  0.  B


                                   0
S

dSB


.  

  
t




E
B




00                     
dt

d
d E

C


 00l.B


 

Maxwell’s equations indicate that a time-varying magnetic field cannot 

exist without a variable electric field, and a time-varying electric field, 

without a variable magnetic field. So, the two fields are not to be regarded 

as separate.  

Thus arose the concept of the electromagnetic field as a single entity. 

Maxwell’s equations are a mathematical formulation of a unified theory of 

electricity and magnetism. Maxwell’s equations predicted the existence of 
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16.7 TERMINAL QUESTIONS 

1. Prove that the displacement current in a parallel plate capacitor having 

capacitance C with a potential difference of V across its plates is given by 

)./( dtdVC  (Hint: Use the definition of the capacitance of a parallel plate 

capacitor that you have learnt in Unit 11 of Block 3.) The capacitance of a 

parallel plate capacitor is 5.0 nF. If a displacement current of 1.0 A is to 

be produced across the capacitor, what should be the rate of change of 

the potential difference applied across the plates?                                                                                                                                                   

2. Show that the electromagnetic field described by 

                  tkykxE  coscoscosˆ0 zE


 

 and     tkykxkykxB  sin)cossinˆsincosˆ(0 yxB


 

will satisfy Maxwell’s equations in charge-free and current-free space if 

00 2 cBE   and .2 ck  

3. The magnitude of the maximum electric field associated with an 

electromagnetic wave travelling in vacuum is .Vm600 1  Determine the 

magnitude of the maximum magnetic field associated with the wave. 

4. Consider the following electromagnetic waves travelling in the ŷ and ŷ  

directions, respectively: 

      )(
2

sinˆ),(
2

sinˆ 0101 ctyBctyE 








 xBzE


    

      )(
2

sinˆ),(
2

sinˆ 0202 ctyBctyE 








 xBzE


 

Show that if ,00 cBE   the following resultant electric and magnetic fields 

of the two waves satisfy Maxwell’s equations in vacuum: 

electromagnetic waves and provided the basis for an understanding of the 

nature of electromagnetic waves. 

Electromagnetic 

wave equation 

 Maxwell’s equations predict the existence of electromagnetic waves in 

vacuum. The wave equations for electric field and magnetic field are: 

             
2

2

00
2

t


 

E
E




    and   
2

2

00
2

t


 

B
B




 

These two equations model transverse electromagnetic waves, as 

constituted of time-varying, self-perpetuating, electric and magnetic 

fields, which are mutually perpendicular and perpendicular to the 

direction of propagation. The speed of electromagnetic waves in vacuum is  

             
00

1


c  

Thus, electromagnetic waves are transverse waves that propagate in vacuum 

at the speed of light: 

  18 ms100.3 c  establishing that light is an electromagnetic wave.  

Note that in TQs 2 and 

4 and their answers, 

we have denoted the 

unit vectors along the 

x, y, z-axes by ,x̂ ŷ  

and ,ẑ respectively 

instead of the more 

frequently used 

symbols ,î ĵ  and 

,k̂ respectively.  
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                       2121 , BBBEEE


  

5. The electric field of an electromagnetic wave travelling in vacuum is: 

           )10(sin)Vm0.3(,0,0 81 txEEE zyx    

where t is in seconds and x, in metres. It is given that .
18 ms100.3 c  

What is the magnitude of the magnetic field associated with the wave?  

16.8 SOLUTIONS AND ANSWERS    

Self-Assessment Questions 

1. a) The four fundamental laws of electricity and magnetism are the ones  

  given in Table 16.1. You should be able to write them on your own. 

These laws are called fundamental laws because all other 

laws/equations can be deduced from them. 

 b) The symmetries in these laws are that the left hand sides of the pairs 

of equations are symmetrical in the interchange of electric and 

magnetic fields.  

 c) There are two kinds of asymmetries in the laws: One kind of 

asymmetry is in the Gauss’s law for electric and magnetic fields in 

which the electric charges are sources of electric fields but magnetic 

fields have no sources; isolated magnetic charges do not exist. The 

second asymmetry is seen in Faraday’s law and Ampere’s law for 

steady currents: whereas changing magnetic fields produce electric 

fields, there is no term in Ampere’s law representing the situation that 

changing electric fields produce magnetic fields.  

2. a) Ampere’s law is stated for only steady currents. From consideration of 

symmetry with Faraday’s law, Ampere’s law should contain a term 

representing the fact that changing electric fields produce magnetic 

fields. Maxwell modified Ampere’s law by adding the term 
t




E


00   to 

represent this fact. Adding this term led to the generalisation of 

Ampere’s law to include both steady currents and time-varying electric 

fields. 

 b) From Coulomb’s law, the dimension of the constant 0  is 

.
(force)(length)

(charge)
2

2

 From the definition of electric flux, the dimension of 

)/( tdd E  is .
(time)(charge)

ngth)(force)(le 2

Therefore, the dimension of 

)/( 0 tdd E is: 

   
time

charge

(time)(charge)

ngth)(force)(le

(force)(length)

(charge) 2

2

2

  

  This is the dimension of current.  

3. From Eq. (iv) of Example 16.1, we can write the displacement current in a 

parallel plate capacitor as 
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dt

dE
Aid 0  

Since ,sin0 tEE   tE
dt

dE
 cos0  and .cos00 tEAid   So, the 

maximum value of displacement current is  

        )2(0000 fAEAEid    )2( f  

 Substituting the numerical values, we get  

    mA6.5Hz)10(2)m0.1(V)10()mNC1085.8( 7221212  
di  

4. Substituting the expressions for E


 and B


 given in the problem in the 

differential form of Maxwell’s equations (16.21 to 16.24), we get 

 i)  )](sinˆ[).ˆˆˆ()](sinˆ[.. 00 vtzE
zyx

vtzE 













 jkjijE



           0)](sin[ 0 



 vtzE

y
 

  So, Eq. (16.21) is an identity. 

 ii) )(cosˆ)](sin[ˆ

0)(sin0

ˆˆˆ

00

0

vtzEvtzE
z

vtzE

zyx




















 ii

kj  i

E


 

            )](cosˆ)](sin[ˆ
00 vtzBvvtzB

tt










ii

B


  

  So, Eq. (16.22) gives the condition that 00 BvE    

 iii) 0)](sin[)](sinˆ[).ˆˆˆ(. 00 


















 vtzB

x
vtzB

zyx
ikjiB



    0)](sin[ 0 



 vtzE

y
 

     So, Eq. (16.23) is also an identity. 

 iv) 
t




E
B




2

1

c
 where 

00

2 1


c  and  

   

00)(sin

ˆˆˆ

0 vtzB

zyx
















kj  i

B


 

            )(cosˆ)](sin[ˆ
00 vtzBvtzB

z





 jj   

  and )(cosˆ)](sin[ˆ
t

00 vtzEvvtzE
t










jj

E


  

  So, Eq. (16.24) gives the condition that 
2
0

0
c

vE
B   
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5. We take the curl of curl B


and get  

                  )()( 0000 E
E

B






























tt
    (i) 

 We now make use of the following vector identity for a vector field F


:  

         FFF


2)()(  .   

 Using this vector identity in Eq. (i), we can write it as                       

          )()( 00
2 E BB









t
.                                        (ii)                                                     

 Then using 
t




B
E




 from Eq. (16.22), we can write Eq. (ii) as 

                   
2

2

00
2)(

t




 B
 BB




.               (iii)                           

 Since 0 B


. from Eq. (16.23), Eq. (iii) becomes         

         
2

2

00
2

t




B
B




        

6. We have obtained the conditions 00 vBE   and 
2
0

0
c

vE
B  for the electric 

 and magnetic fields of SAQ 4.  

Since both these conditions are satisfied at the same time, we substitute 

the expression 00 vBE   in the second condition and get  

             cv
c

v

c

v

c

vE
B

B
 1

2

2

2

2

2
0

0
0  

 If we substitute this result in the first condition, we get  .00 EcB    

Terminal Questions 

1. From the definition of the capacitance of a parallel plate capacitor given in 

Unit 11 of Block 3, we have 

              
V

q
C     or    CVq   

where q is the charge on the capacitor plates and V, the potential 

difference across them. Now from Example 16.1, we know that  

              
dt

dq
iid          or        

dt

dV
Cid   

Substituting the numerical values of the capacitance of the parallel plate 

capacitor and displacement current in the above expression, we get  

               18 Vs100.2
nF0.5

A0.1 
C

i

dt

dV d   

2. Substituting the expressions for E


and B


given in the problem in Maxwell’s 

equations (16.21 to 16.24), we get 



  

194  

Block 4                                                                                 Electromagnetism 

 i) 0coscoscos)coscoscosˆ(.. 00 



 tkykx

z
EtkykxE zE


    

 ii) 

tkykxE

zyx
















coscoscos00

ˆˆˆ

0

zy  x

E


 

                     )coscoscosˆcoscoscosˆ(0 tkykx
x

tkykx
y

E 








 yx  

                     )coscossinˆ)cossincosˆ(0 tkykxktkykxkE  yx  

     ]sin)cossinˆsincosˆ([ 0 tkykxkykxB
tt










yx

B


 

                  tkykxkykxB  cos)cossinˆsincosˆ(0 yx   

  From Eq. (16.22), we have 

     tkykxkykxkE  cos)cossinˆsincosˆ(0 yx  

      tkykxkykxB  cos)cossinˆsincosˆ(0 yx  

  from where we get the condition that  

            00 BEk   or         
kB

E 


0

0    (i) 

 iii) ]sin)cossinˆsincosˆ([.. 0 tkykxkykxB  yxB


 

                   tkykx
y

kykx
x

B 








 sin)cossinsincos(0  

             0sin)sinsinsinsin(0  tkykxkkykxkB  

 iv) 

0sincossinsinsincos

ˆˆˆ

00 tkykxBtkykxB

zyx
















zy  x

B


 

   or    tkykx
y

kykx
x

B 
















 sinsincoscossinˆ0 z                       

                        )coscoscos(ˆ
2
0 tkykx

c

E







t
z  

      or       tkykxkykxkB  sincoscoscoscosˆ0 z  

    )sincoscos(ˆ
2

0 tkykx
c

E



 z  

   or    
2

0
02

c

E
kB


  

   or    
2

2

2
0

2
0

0
22 kc

B

kc

E
B





        









 


kB

E

0

0  
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  So, Eq. (16.24) gives 2
2

2

2c
k




 

  or ckc
k

22 


    and   000 2 BcB
k

E 


  

3. Since the electromagnetic wave is travelling in vacuum, the maximum 

electric and magnetic fields associated with the wave satisfy the relation   

,00 BcE  where c is the speed of light. Therefore, the magnitude of the 

maximum magnetic field is  

               T100.2
sm100.3

Vm600 6
18

1
0

0










c

E
B  

4. Let us first write the expressions of the resultant electric and magnetic 

fields: 

        2121 , BBBEEE


  

   )(
2

sinˆ)(
2

sinˆ 00 ctyEctyE 








 zzE


       

       

















 )(

2
sin)(

2
sinˆ 0 ctyctyEz  

       









cty
E

2
cos

2
sinˆ2 0z   







 


2
cos

2
sin2sinsin

BABA
BA  

   )(
2

sinˆ)(
2

sinˆ 00 ctyBctyB 








 xxB












cty
B

2
sin

2
cosˆ2 0x  

    






 


2
sin

2
cos2sinsin

BABA
BA  

We have to show that the fields E


and B


satisfy Maxwell’s equations in 

vacuum: 

 i)  0)
2

cos
2

(sin2. 0 













cty

z
EE


   

 ii)  


































cty
E

cty

y
E

2
cos

2
cos

2
2ˆ

2
cos

2
sin2ˆ 00 xxE


 

     




































 ctyc
B

cty

t
B

t

2
cos

2
cos

2
ˆ2

2
sin

2
cosˆ2 00 xx

B


   

  From Eq. (16.22), we have 

      























 ctyc
B

cty
E

2
cos

2
cos

2
2ˆ

2
cos

2
cos

2
2ˆ 00 xx     

       or cBE 00          (i)       

 iii)  0)
2

sin
2

(cos2. 0 













cty

x
BB


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 iv)  


































cty
B

cty

y
B

2
sin

2
sin

2
2ˆ

2
sin

2
cosˆ2 00 zzB


 

    and 















 ctyc
E

t

2
sin

2
sin

2
ˆ2 0z

E


   

    From Eq. (16.24), we have 

    


























ctyc
E

c

cty
B

2
sin

2
sin

2
ˆ2

12
sin

2
sin

2
2ˆ 020 zz  

  or   cBE 00     

So, the fields E


and B


 satisfy Maxwell’s equations in vacuum if 

.00 cBE       

5. We can write the electric field in vector form as  

    )10(sin)Vm0.3(ˆ 81 tx  zE


 

The magnitude of the magnetic field is obtained from Eq. (16.31a): 

,00 cBE   where .Vm0.3 1
0

E  So,  

            T100.1
sm100.3

Vm0.3 8
18

1
0

0










c

E
B  

 and )10(sinT)100.1( 88 tx  B

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                    UNIT 17 

ELECTROMAGNETIC 
WAVE PROPAGATION  

Structure 

17.1   Introduction 

Expected Learning Outcomes  

17.2   Electromagnetic Wave Propagation in Vacuum 

17.3   Electromagnetic Wave Propagation in                                              

          Dielectric Media 

           Maxwell’s Equations in Dielectric Media 

           Plane Wave Propagation in Dielectrics  

                                         

  STUDY GUIDE 

 

17.4 Energy Carried by Electromagnetic Waves 

     Poynting’s Theorem      

17.5  Summary 

17.6 Terminal Questions 

17.7 Solutions and Answers 

 

“All the mathematical sciences are founded on relations                   

between physical laws and laws of numbers.”  
 

James C. Maxwell 
 

Radio  Microwave 

Electromagnetic waves of different 

frequencies have numerous 

applications in our lives, some of 

which are shown here!                         

(Source of pictures: Wikipedia/commons)   

 

Visible X-rays  

This last unit on propagation of electromagnetic waves is a culmination of what you have 

studied so far in the course. While studying Unit 16, you would have realised that you were 

using the concepts discussed in all previous units of this course. You also used the wave 

equation and the fundamental quantities that describe a wave about which you studied in 

school physics. You may like to revisit Unit 19 of the course BPHCT-131entitled Mechanics to 

revise the wave equation and its solutions. Knowledge of all these concepts is also required to 

study the propagation of electromagnetic waves and the energy carried by the waves that we 

discuss in this unit. To have a sound understanding of these concepts, you should always 

work out all steps in the text and the Examples given in the unit. You should also make sure 

you can solve the SAQs and Terminal Questions on your own.   
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17.1   INTRODUCTION 

In Unit 16, you have learnt that Maxwell’s equations govern the behaviour of 

electric and magnetic fields everywhere and describe all natural 

electromagnetic phenomena. These equations also form the basis for the 

operation of a large number of practical devices in use today. You have also 

learnt about the fundamental insight into the nature of light and other 

electromagnetic waves provided by Maxwell’s equations.  

You will now study the propagation of plane electromagnetic waves in vacuum 

(Sec. 17.2) and in dielectric media (Sec. 17.3). In Sec. 17.3, we will first write 

Maxwell’s equations in dielectric media. Then we will deduce the 

electromagnetic wave equation in an isotropic dielectric medium before 

discussing electromagnetic wave propagation in such media. In Sec. 17.4, we 

extend the idea of the energy carried by waves to electromagnetic waves. We 

also explain the Poynting theorem that gives us the energy transported per 

unit time by electromagnetic waves across a surface. Finally, we determine 

the energy density of an electromagnetic field.  

Expected Learning Outcomes  

After studying this unit, you should be able to: 

 describe mathematically the propagation of plane electromagnetic waves 

in vacuum and calculate the wave parameters for plane electromagnetic 

waves; 

 deduce Maxwell’s equations and the electromagnetic wave equations in 

dielectric media (with plane wave solutions); and 

 state Poynting’s theorem, compute the Poynting vector and the energy 

density of electromagnetic fields. 

17.2   ELECTROMAGNETIC WAVE 
PROPAGATION IN VACUUM  

In this section, we discuss the propagation of electromagnetic waves and shall 

be mainly concerned with plane electromagnetic waves. Recall from Unit 16 

the concept of a plane electromagnetic wave. You should be able to explain: 

What does the term ‘plane’ electromagnetic wave mean?  

Recall that the term ‘plane’ is meant to indicate that field vectors E


and B


at 

each point in space lie in a plane. Also the planes at any two different points 

are parallel to each other (revisit Fig. 16.4).  

Plane electromagnetic waves are found to be very useful in various areas of 

physics, engineering and technology. As you have seen, the electromagnetic 

field given in SAQ 4 of Unit 16 is a specific example of a plane 

electromagnetic wave. Our interest now is to find the general plane wave 

solutions of the wave equations in vacuum (charge-free and current-free 

regions of space), which also satisfy Maxwell’s equations. You have learnt 

about the general solutions of the wave equation in school physics. 
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You can verify that the sinusoidal scalar functions of the form  

                  )(cos),( vtzAtzu      or    )(sin),( vtzAtzu   (17.1a) 

are general solutions of the one-dimensional wave equation  

                 
2

2

22

2 1

t

u

vz

u








  (17.1b) 

for a wave travelling in the positive z-direction. Here A is the amplitude of the 

wave and v, its velocity. These solutions can also be expressed in terms of the 

angular frequency  of the wave and its wave number k as follows: 

         )(cos),( tkzAtzu       or    )(sin),( tkzAtzu   (17.1c) 

You know that we can represent waves either by the sine function or the 

cosine function or their linear combination as these are linearly independent 

solutions. For a wave travelling in the negative z-direction, the solutions 

would be: 

         )(cos),( vtzAtzu         or    )(sin),( vtzAtzu    (17.1d) 

or   )(cos),( tkzAtzu       or    )(sin),( tkzAtzu   (17.1e) 

In a similar way, we can write the plane wave solutions of the electromagnetic 

wave equations for the electric field and the magnetic field as: 

                  )(cos),( 0 tkztz  EE


 (17.2a) 

                  )(cos),( 0 tkztz  BB


 (17.2b) 

Recall from Unit 16 that for these solutions to represent electromagnetic 

waves propagating in vacuum, they should satisfy Maxwell’s equations for 

charge-free and current-free regions. Let us check if indeed it is so. From what 

you have learnt in Example 16.2 of Unit 16, you can show that the Maxwell’s 

equations (16.21 and 16.23)  

 0 E.


      and      0 B.


 (17.3a) 

are satisfied by equations (17.2a and b) if and only if    

   000  zzE E


   and      000  zzB B


 (17.3b) 

You should satisfy yourself that this is true before studying further. Try SAQ 1.  

  

 

 

Next, we verify if Eqs. (17.2a and b) satisfy the remaining Maxwell’s equations 

[Eqs. (16.22 and 16.24)] in vacuum. To do so, let us substitute them first in the 

Maxwell’s equation (16.22): 

SAQ  1 -  Solution of Maxwell’s equations 

Verify the condition given by Eq. (17.3b) under which Eqs. (17.2a and b) 

satisfy Maxwell equations (17.3a). 

 

 

  

You have learnt a 

slightly different form 

of the expressions for 

the arguments of sine 

and cosine functions 

in Unit 19 of                

BPHCT-131 from the 

ones given in Eqs. 

(17.1a, c, d and e). Do 

not worry. All these 

expressions represent 

solutions of the wave 

equation. Also recall 

from school physics 

and Unit 19 of                  

BPHCT-131 that  

,2 f  ,
1

T
f   






2
k  and 

 fv  

 

 

Note that in                        

Eqs. (17.2a and b), 

the vectors 
0

E


and 

0
B


 have constant 

magnitudes. In this 

unit, we will take the 

magnitudes of the 

electric and magnetic 

fields to be constant. 
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t




B
E




 (17.4) 

Let us first see if the solution for the electric field given by Eq. (17.2a) satisfies 

Eq. (17.4). For this, we use the definition of the curl of a vector field that you 

have learnt in Unit 2.  

Then putting 0zE from Eq. (17.3b), we can write the left-hand side of                

Eq. (17.4) as follows: 

   


































0

ˆˆˆ

yx EE

zyx

z         y       x

E


  (17.5a) 

Now you can see from Eq. (17.2a) that  

 )(cos0 tkzEE xx      and   )(cos0 tkzEE yy   (17.5b) 

Using Eq. (17.5b) in Eq. (17.5a), you can verify that 

 )](cos[ˆ)](cos[ˆ 00 tkzE
z

tkzE
z

xy 








 yxE


(17.6a) 

or )](sin[ˆ)](sin[ˆ 00 tkzEktkzEk xy  yxE


 (17.6b) 

Using Eq. (17.2b) with ,0zB the right-hand side of Eq. (17.4) becomes 

      )(cosˆ)(cosˆ 00 tkzBtkzB
tt

yx 








 yx

B


  (17.7a) 

   or   )(sinˆ)(sinˆ 00 tkzBtkzB
t

yx 



 yx

B


 (17.7b) 

Comparing Eqs. (17.6b and 17.7b), we get the following results: 

   xy BEk 00   (17.8a) 

and   yx BEk 00   (17.8b) 

You can verify that Eqs. (17.8a and b) can be expressed as  

   )ˆ( 00 EzB






k

 (17.9a) 

We can generalise Eq. (17.9a) to any arbitrary direction of propagation 

represented by the wave vector .k


Here we state, without proof, the 

generalised Eq. (17.9a) for an electromagnetic wave propagating in vacuum in 

an arbitrary direction represented by the wave vector k


: 

  )ˆ( EkB






k

   or   BEk


cˆ    )(
k

c


  (17.9b) 

where k̂  is the unit vector along the direction of propagation.  

Note that in this unit, 

we have denoted the 

unit vectors along the x, 

y,  z-axes by ,x̂ ŷ  and 

,ẑ respectively instead 

of the more frequently 

used symbols ,î ĵ  and 

,k̂ respectively so as 

not to confuse with the 

notation of the wave 

number k and the 

corresponding wave 

vector .k̂   
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You should verify Eq. (17.9a) before studying further.  

 

 

 

What do Eqs. (17.9a and b) tell us? These equations express the B


field as a 

vector product of the unit vector in the direction of propagation (z-axis or, in 

general, )k̂  and the E


field. This means that the magnetic field vector is 

perpendicular to both the electric field vector and the unit vector along the 

direction of propagation of the electromagnetic wave. Eqs. (17.9a and b) give 

us the rule for determining the directions of the electric field, magnetic field 

and the direction of wave propagation of an electromagnetic wave. So, we find 

that the requirement that the E


and B


fields of Eqs. (17.2a and b) should 

satisfy Maxwell’s equations in vacuum leads us to the following conclusion: 

The E


and B


fields of Eqs. (17.2a and b) are perpendicular to each other 

(or mutually perpendicular) and also perpendicular to the direction of 

propagation. These satisfy the wave equation and represent the electric 

and magnetic fields associated with an electromagnetic wave.  

The E


and B


fields of Eqs. (17.2a and b) represent plane wave solutions of 

the electromagnetic wave equation as explained in Unit 16. Such waves are 

also called monochromatic sinusoidal electromagnetic plane waves. 

Monochromatic means single colour. Since frequency corresponds to colour, 

especially for light, sinusoidal waves of a single frequency are called 

monochromatic. 

Note that the E


and B


fields of Eqs. (17.2a and b) are in phase. Since the 

angle between ẑ and 0E


is 90, the definition of vector product in Eq. (17.9a) 

yields the following relation between their amplitudes:  

            
c

E
E

k
B 0

00 


       or      c
B

E




 (17.10) 

The fourth Maxwell equation gives us the same result. You may like to verify 

this yourself. Solve SAQ 3. It will also give you some practice with the 

mathematical steps you have just studied. 

 

 

 

 

 

So far you have learnt that the plane wave solutions [Eqs. (17.2a and b)] of 

the wave equations for the electric and magnetic fields, satisfy Maxwell’s 

equations in vacuum (charge-free and current-free regions). Eqs. (17.9a, b) 

SAQ  2 -  Solution of Maxwell’s equations 

Verify that Eq. (17.9a) and Eqs. (17.8a and b) are equivalent. 

 

 

  

SAQ  3 -  Solution of Maxwell’s equations 

Show that the E


 and B


 fields of Eqs. (17.2a and b) satisfy the Maxwell 

equation  

            
t




E
B




00      if      
c
0

0
ˆ E

Bk




  
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tell us that the E


and B


fields of an electromagnetic wave are perpendicular to 

each other and to the direction of propagation of the electromagnetic wave 

given by ,k̂ in general. An electromagnetic wave is, thus, a transverse wave 

as you have also learnt in Unit 16 (see Fig. 17.1).  

 

 

 

 

 

 

 

In general, E


and B


can have any functional dependence on the space 

coordinates x, y, z and the time coordinate t. However, that discussion is 

beyond the scope of this course. Let us sum up what you have learnt about 

the propagation of a plane electromagnetic wave in vacuum.  

 
 
 
  
 
 
 
 
 
 
 
 
 

 

 

As you know from school physics, radio waves, microwaves, infrared, light 

waves, ultraviolet rays, X-rays and gamma rays are all electromagnetic 

waves. These constitute what is called the electromagnetic spectrum. What 

distinguishes each of these waves is their frequency or wavelength (see                  

Fig. 17.2). 

 

 

 

 

 

Propagation of a Plane Electromagnetic Wave in Vacuum 

 

1. At every point in an electromagnetic wave travelling in vacuum at any 

instant of time, the electric and magnetic fields are related by                      

Eq. (17.9b). Their magnitudes are related by Eq. (17.10): c
B

E




 

2. The electric field and the magnetic field in the electromagnetic wave 

are perpendicular to one another and also to the direction of wave 

propagation, i.e., the wave is transverse.  

3. The electromagnetic wave travels with speed c in vacuum.  

 

 

 

 

 

Fig. 17.2: The electromagnetic spectrum. 

 

Radio 

 

Microwave 

 
Infrared 

 

Visible 

 

Ultraviolet 

 

X-ray 

 
Gamma ray 

 

Fig. 17.1: Electromagnetic wave is a transverse wave. The electromagnetic wave 

shown in this figure is propagating in the y-direction. The E


and 

B


fields are in the z and x-directions, respectively.  

 

 

z 
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
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You know that the wavelength of the wave is given by 

                  
k




2
 (17.11a) 

and its frequency is given by   

                  



c

f  (17.11b) 

As you know, k is the wave number of the wave (as there are 2/k  

wavelengths per unit distance), and k


is the wave vector.  

You may now like to pause and recapitulate what you have studied so far in 

this section about electromagnetic waves as predicted by Maxwell’s 

equations, and their propagation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will now illustrate these ideas with the help of an example.  

Maxwell’s Equations and Electromagnetic Waves 

1. Maxwell’s equations predict the existence of electromagnetic waves in 

vacuum, i.e., charge-free and current-free region. Maxwell’s equations 

model a travelling electromagnetic wave as being constituted of                  

time-varying electric and magnetic fields.  

2. The electromagnetic waves are self-perpetuating, which travel 

with the speed of light c in vacuum (charge-free and current-free 

regions).  

3. The electric field and the magnetic field in an electromagnetic wave are 

perpendicular to one another and also to the direction of wave 

propagation. Thus, electromagnetic waves are transverse waves.  

Even amongst plane electromagnetic waves, sinusoidal waves of 

single frequency are used very frequently in physics. 

4. The E


and B


fields in an electromagnetic wave must satisfy the 

respective wave equations as well as Maxwell’s equations. 

5. Plane electromagnetic waves are of special interest in physics. Such 

waves have the property that their E


and B


field vectors at each point 

in space lie in a plane with the planes at two different points being 

parallel to each other.  

 

 

 

 

 

 

 

Consider an electromagnetic wave in vacuum whose electric field is given 

by  

         )10(cosˆ)Vm60( 81 kzt   xE


 

Determine the direction of propagation, the wave number, the frequency 

and the magnetic field of the wave.  

 

 

 

XAMPLE 17.1:  PLANE ELECTROMAGNETIC WAVES 
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You must now work out an SAQ to ensure that you have grasped the ideas of 

this subsection. 

 

 

 

 

 

So far in Unit 16 and in this unit, you have learnt about Maxwell’s equations 

and the propagation of plane electromagnetic waves in vacuum. We now turn 

our attention to Maxwell’s equations and propagation of electromagnetic 

waves in dielectric media. This study is important as it helps us understand 

many phenomena, e.g., propagation of light in glass and water, propagation of                  

X-rays and gamma rays in human body, and so on.  

SOLUTION   We will make use of Eqs. (17.1d, 17.2a, 17.9b, 17.11b and 

17.10) to solve this problem.  

Let us first ask: What information can we obtain from the expression of the 

given electric field? Comparing the expression with Eq. (17.2a), you can 

immediately see that for this wave 

                 18 s10          and        1
0 mV60 E  

To determine the direction of propagation of the wave, we compare the 

argument of the cosine function in the expression of the electric field of the 

wave with Eq. (17.1d). You can see that the direction of propagation is in 

the negative z-direction. We obtain the wave number k from the relation  

           



k

c    
k

18
18 s10

sm103


        or  1m
3

1 k    

From Eq. (17.11b), the frequency of the wave Hz1067.1Hz
2

10 7
8




f    

The magnetic field is of a form similar to the E


field:  

       )10(cos 8
0 kzt  BB


 

To evaluate ,B


we use Eqs. (17.9b and 17.10). So, the direction of the 

magnetic field is 

       yxzEkB ˆˆˆˆˆˆ   

From Eq. (17.10), the magnitude 0B


 of the magnetic field of the wave is 

.T)/60(/00 cc  EB


  Thus, the magnetic field associated with the 

electromagnetic wave is 

       )
3

1
10(cosˆT

60 8 zt
c









 yB


 

 

 

 

 

  

 

 

 

 
 

 

               

 

 

 

SAQ  4  -  Electromagnetic waves 

The electric field given by 


















  t

x

25
sinˆ)Vm1000( 1 yE


represents the 

E


field of a plane electromagnetic wave in a charge-free and current-free 

region (or vacuum). Calculate the wavelength and frequency of the wave, its 

direction of propagation and the associated magnetic field.  
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So, in the next section, we first deduce Maxwell’s equations in a dielectric 

medium and then derive the wave equation for it.  

17.3   ELECTROMAGNETIC WAVE 
PROPAGATION IN DIELECTRIC MEDIA                                     

We will first deduce Maxwell’s equations in a dielectric medium. To keep the 

discussion simple, we consider only linear, isotropic, homogeneous dielectric 

media about which you have studied in Unit 10 of Block 3 of this course.           

17.3.1 Maxwell’s Equations in Dielectric Media  

Recall from the discussion in Unit 10 that dielectric materials are subject to 

electric polarisation and magnetisation. In such materials there is an 

accumulation of ‘bound’ charge and current. You have learnt that in a 

dielectric, for the static case, an electric polarisation P


results in an 

accumulation of bound charge given by 

                  P


.P  (17.12a) 

You have learnt that, by definition, P


 is the electric dipole moment per unit 

volume. For the non-static case, any change in the electric polarisation 

involves a flow of charge, which yields a polarisation current. The 

corresponding polarisation current density ,PJ


which arises because P  

changes with time, is given by  .
t

P


 Therefore, 

 
t

P





P
J




 (17.12b) 

Similarly, you have learnt in Unit 14 that the magnetisation M


 in any material 

results in a bound current 

  MJ


M   (17.12c) 

As you know, magnetisation is just the magnetic dipole moment per unit 

volume. You must note, however, that the polarisation current PJ


 has nothing 

to do with the bound current .MJ


The bound current is associated with the 

magnetisation of the material (including dielectric materials) and involves the 

spin and orbital motion of electrons. By contrast, PJ


is the result of linear 

motion of charge when the electric polarisation changes. Now suppose 

P


points to the right and is increasing. Then each positive charge moves to 

the right and each negative charge to the left, resulting in the polarisation 

current. Keeping this discussion in mind, we can write the total charge density 

as  

  P


. fPf  (17.13a) 

where f is the free charge density. The total current density is  

  M
P

JJJJJ











t
fMPf  (17.13b) 

where fJ


 is the free current density.   

From now on in this 

unit, wherever we 

mention the phrase 

‘dielectric media’, you 

should take it that we 

are considering only 

linear, isotropic and 

homogeneous 

dielectric media.   
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We substitute these expressions for   and J


 from Eqs. (17.13a and b) in 

Maxwell’s equations [(Eqs. 16.17 to 16.20)] and write Maxwell’s equations for 

isotropic dielectric media in differential form as follows: 

              PE


.
1

.
0




  f  (17.14) 

                   
t




B
E




 (17.15) 

            0.  B


 (17.16) 

             























 M

P
J

E
B









tt
f00  (17.17) 

Let us recast Eqs. (17.14 to 17.17) in a form similar to Eqs. (16.17 to 16.20). 

For this we introduce the fields D


 and H


 about which you have studied in 

Units 10 and 14 of Block 3: 

                  PED


 0  (17.18) 

            MBH






0

1
 (17.19) 

Then we can rewrite Eqs. (17.14 and 17.17) as follows (read the margin 

remarks): 

             f D


.  (17.20) 

            
t

f





D
JH




 (17.21) 

You have learnt in Unit 10 that in a linear dielectric medium,  P


is parallel to 

E


),( 0 EP


e where e  is the electric susceptibility of the medium. You 

have also learnt in Unit 14 that M


 is parallel to H


),( HM


M where M  is the 

magnetic susceptibility of the medium. For such materials, we can write                  

Eqs. (17.18 and 17.19) as 

            ED


  (17.22) 

and            BH





1
 (17.23) 

Here          )1(0 e  (17.24) 

and            )1(0 M
  (17.25) 

In general,  (electric permittivity of the medium) and  (magnetic 

permeability of the medium) are frequency dependent. If the medium is 

homogeneous,  and  are constants, i.e., they do not vary from point to 

point. Given this information, we can recast the Maxwell’s equations inside a 

From Eq. (17.18), we 

have 

)( 0 PED


  

Using ,0 EP


e we 

can write  

EED


e 00  

or 

)1(0 e ED


 

Using ,)1(0 e  

we get Eq. (17.22):                       

ED


  

From Eq. (17.19), we 

have 

MBH


00   

Using ,)( HM


M we 

can write 

HBH


M 00  

or 
M



00

B
H




 

Using ,)1(0 M   

we get Eq. (17.23):  




B
H




                        

 

 

From Eq. (17.14), we 

can write 

 PE


..0  f  

or f PE


.0.  

or f )0(. PE


 

Using Eq. (17.18), we 

get Eq. (17.20):  

f D


.  
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SAQ  5  -  Maxwell’s equations in dielectric media 

Prove Eqs. (17.26 to 17.29).  

dielectric. We present Maxwell’s equations for a linear, isotropic and 

homogeneous dielectric medium in Table 17.1. 

Table 17.1: Maxwell’s equations for linear, isotropic, homogeneous dielectric media. 

Differential form Integral  form 




 fE


.  




fq
d

S

SE


.                                             (17.26) 

t




B
E




 
dt

d
d B

C


 l.E


                                     (17.27) 

0.  B


 0. 
S

dSB


                                                (17.28) 

 df JJB


 where 
t




E
J




d  

 

 

)( d

C

iid  l.B


  where 
dt

d
i E
d


     (17.29) 

 
You may like to prove Maxwell’s equations (17.26 to 17.29) yourself to get 

some practice. Solve the following SAQ. 

 

 

 

Eqs. (17.26 to 17.29) [with Eqs. (17.18 and 17.19) and Eqs. (17.22 and 

17.23)] are the fundamental laws of electromagnetism inside linear, isotropic, 

homogeneous dielectric media. We can now consider plane wave propagation 

in such dielectric media.  

17.3.2 Plane Wave Propagation in Dielectrics 

Let us first consider regions inside a linear, isotropic and homogeneous 

dielectric medium where there is no free charge or free current. Then 

Maxwell’s equations (17.26 to 17.29) for regions inside such dielectric media 

become  

 0.  E


       (17.30) 

 
t




B
E




 (17.31) 

 0.  B


 (17.32) 

 
t




E
B




 (17.33) 

You can see that these equations are similar to Maxwell’s equations in 

vacuum [Eqs. (16.21 to 16.24)]. Once again, you can follow the procedure 

adopted in Sec. 16.5 and derive the wave equation for electromagnetic waves 

propagating through charge-free and current-free isotropic dielectric media. 

You will get the results given ahead.  
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2

2
2 1

t






E
E




 (17.34a) 

and  
2

2
2 1

t






B
B




 (17.34b) 

You may like to prove these equations yourself for practice. 

 

 

 

Thus, we find that in an isotropic dielectric medium, electromagnetic waves 

propagate at a speed  

 



1

v  (17.35) 

Now a well known result from optics tells us that the speed of light in a 

transparent medium is reduced by a factor of n, the refractive index of the 

medium: 

 
n

c
v   (17.36) 

From Eqs. (17.35 and 17.36), it follows that n is related to the electric and 

magnetic properties of materials by the equation 

 
00 


n  (17.37a) 

where we have used the result 
00

1


c  in arriving at Eq. (17.37a). For a 

dielectric ,0  and therefore, 

 





0

n  (17.37b) 

 where 
0


   (17.37c) 

is called the dielectric constant of the material.  

You should realise that to be able to relate the expression of the index of 

refraction of a material with its electric and magnetic properties was 

another triumph of Maxwell’s theory of electromagnetism. Note that the index 

of refraction as measured optically could be calculated easily from the 

dielectric constant measured electrically. This was a convincing piece of 

evidence for Maxwell’s identification of light with electromagnetic waves.  

Once again, we can write plane wave solutions similar to Eqs. (i and ii) in 

Example 16.2 of the wave equations (17.34a and b) for a linear, isotropic, 

SAQ  6  -  Wave equations in dielectric media 

Prove Eqs. (17.34a and b).  
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homogeneous dielectric medium with no free charge and no free current. The 

only difference is that now the waves travel with a speed v given by                                      

Eq. (17.35):  

 )(cos0 vtz  EE


   or    )(cos0 tkz  EE


 (17.38a) 

 )(cos0 vtz  BB


  or   )(cos0 tkz  BB


 (17.38b) 

where  .
k

v


  You can verify that monochromatic sinusoidal plane waves of 

the form of Eqs. (17.38a and b) satisfy the wave equation and Maxwell’s 

equations inside charge-free and current-free isotropic dielectric media, with 

the conditions that  

   000  zzE E


   and      000  zzB B


 (17.39) 

Also     )ˆ( 00 EzB






k

  and  
v

E
E

k
B 0

00 


  (17.40) 

or in general,  

 )ˆ( EkB






k

   or  BEk


vˆ  )(
k

v


  (17.41) 

where, from Eq. (17.35),  



1

v                                                 

These equations show that the plane wave solutions of the wave equation in 

an isotropic dielectric, having no free charge and no free current, resemble the 

plane wave solutions of the wave equation in vacuum: B


is perpendicular to 

E


and the wave travels in the direction of k̂ which is perpendicular to both E


 

and .B


  

What is the difference between the two sets of equations? Note that the speed 

at which the wave travels in the dielectric is different from c, the speed of light 

in vacuum, by a constant factor, termed the index of refraction (in optics). 

Thus, if we  compare a wave in a dielectric with a wave of the same frequency 

in vacuum, the wavelength in the dielectric will be less than the vacuum 

wavelength by a factor (1/n), since (frequency  wavelength = wave speed). 

Now in the last section (Sec. 17.4) of this unit, we shall discuss another 

interesting aspect of electromagnetic waves. Consider the following situation:  

When you sit outdoors on a cold winter morning in bright sunshine, you feel 

warm after a while. Why does this happen? Obviously, it is the energy carried 

by the sunlight which gets transferred to you and gives you this pleasant 

sensation. You already know from school physics that waves transport energy 

from one region of space to another.  

In the next section, we will determine the amount of energy carried by 

electromagnetic waves across the space.  
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17.4 ENERGY CARRIED BY 
ELECTROMAGNETIC WAVES 

Recall that in Sec. 9.4 of Unit 9 in Block 2, we have expressed the work 

necessary to assemble a continuous static charge distribution (against the 

Coulomb repulsion of like charges) as  

    

V

E dVW
2

1
 (17.42) 

We can rewrite this expression in terms of the electric field. We first use 

Gauss’s law or Maxwell’s equation (16.17) to express  in terms of E


as 

   E


.0  (17.43a) 

Thus,   




V

E dVW ).(
2

0 E


    (17.43b) 

Now we use the following vector identity [refer to Eq. (2.6c), Unit 2, Block 1] 

   )(.).()(. 


EEE  

Using the above vector identity and substituting 


E  [from Eq. (9.13), 

Unit 9, Block 2], we can write Eq. (17.43b) as        

   
















 

VV

E dVdVW )(.)(.
2

0


EE  

or   
















 

VV

E dVEdVW 20 )(.
2

E


 (17.43c) 

Applying the divergence theorem to the first term in Eq. (17.43c), we obtain  

   
















 

VS

E dVEdW 20

2
S.E


  (17.43d) 

Now suppose we enlarge the volume. The extra volume will not contribute to 

the term ,EW  since 0  in that volume. But as we enlarge the volume, the 

second integral in Eq. (17.43d) can only increase, since the integrand 2E is 

positive. Therefore, the surface integral must decrease so that the sum 

remains the same so that the work done is conserved (read the margin 

remark). 

If we integrate over all space, the surface integral goes to zero, and we are   

left with  

   




V

E dVEW 20

2
 (17.44a) 

where E


is the resulting electric field. Likewise, we have shown in Unit 15   

[Eq. (15.27)] that the work required to build a current (against the back emf) is 

given by 

   


V

EB dVBW 2

02

1
 (17.44b) 

Recall the divergence 

theorem from Unit 4, 

Block 1 of this course: 

 

SV

ddV S.AA


).(  

 We substitute   

EA


 in the 

divergence theorem  

and get Eq. (17.43d). 

 

 

 

 

Note that in our 

derivation, EW  is the 

work done to assemble 

a continuous static 

charge distribution 

(against the Coulomb 

repulsion of like 

charges). Since the 

Coulomb force is 

conservative, the 

electrostatic energy of 

the system will be 

conserved. So, the  

work done by this force 

will be constant. 
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where B


 is the resulting magnetic field. So, we can express the total energy 

stored in a current and charge distribution in terms of electric and magnetic 

fields produced by this distribution as follows:  

                   
















V

EB dV
B

EW
0

2
2

0
2

1
             (17.44c) 

We would now like to derive Eq. (17.44c) more generally, keeping in view the 

law of conservation of energy. Thus, we will arrive at Poynting’s theorem, 

which expresses conservation of energy in electromagnetism. 

17.4.1 Poynting’s Theorem 

Suppose some charge and current configuration produces fields E


and B


at 

time t. Suppose the charges move around in space with velocity .v


 We would 

like to know: How much work, dW,  is done by the electromagnetic forces 

on these charges in the small time interval dt? According to the Lorentz 

force law, the work done on an element of charge dq is  

  dtdqdtdqddW v.Ev.BvElF


 )(.  ]0)(.([ baa


       (17.45a) 

Now, we can write dVdq   and Jv


  (read the margin remark). So, we 

can write 

            dtdVdtdVdW J.E
J

.E








            (17.45b) 

The power delivered on the charges in volume dV is given by 

            dV
dt

dW
J.E


            (17.45c) 

So, the total power delivered on all the charges in some volume V is obtained 

by integrating Eq. (17.45c) over the entire volume: 

            dVP

V

 )( JE


.          (17.46) 

Let us express Eq. (17.46) in terms of the fields alone. We use Eq. (17.17) to 

eliminate J


 as follows: 

            
t







E
EBEJ.E




.. 0
0

)(
1

             (17.47a) 

We use the vector identity given by Eq. (2.9e) of Unit 2, Block 1 and write  

            )()(.)(. BEEBBE


 .              (17.47b) 

Combining this result with Faraday’s law, ,
t




B
E




 we get  

  )(.)( BE
B

.BBE











t
.              (17.47c) 

We can also write (read the second margin remark): 

  )(
2

1 2B
tt 






B
.B




     and      )(
2

1 2E
tt 






E
.E




             (17.47d) 

)(
2

1
)(

2

1 2
B.B


t
B

t 








tt 









B
.BB.

B





2

1

2

1
 

t




B
.B




  

since scalar product is 
commutative. 

 

 

Let us quickly deduce 

the relation .Jv


  To 

do so, consider a small 

cylinder of area of 

cross-section A in 

which all charged 

particles, each of 

charge q, move with the 

same speed v. In time 

dt, the charged 

particles move a 

distance vdt. So, the 

volume of the cylinder 

is Avdt. Then if n is the 

number of charged 

particles per unit 

volume, the number of 

charged particles in the 

cylinder is nAvdt and 

the total charge in it is 

qnAvdt. The current 

through the cylinder is 

given by 

 qnAv
dt

qnAvdt
i   

Since current density is 

defined as current per 

unit area normal to the 

velocity of charged 

particles, we have  

qnv
A

i
J   

Since the direction of J 

is that of the actual flow 

of charges, it is parallel 

to the velocity ,v


 and 

we can write vJ


qn  

Note that the product 

nq is the volume charge 

density of the charges 

carrying the current. 

So, we have 

vJ


  
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Using Eqs. (17.47c and d) in Eq. (17.47a), we get  

  )(
2

)](.[
1 20

0

E
tt 










 BE

B
.BJ.E





 

or     )(
2

)](.)(
2

1
[

1 202

0

E
t

B
t 










 BEJ.E


 (17.48) 

Thus, we can write 

  )(.
11

2

1

0

2

0

2
0 BEJ.E























 BE

t
 (17.49) 

Putting Eq. (17.49) in Eq. (17.46), we get the expression for power as 

 
















VV

dVdVBE
dt

d
P )(.

11

2

1

0

2

0

2
0 BE


 (17.50) 

Now applying divergence theorem to the second term on the RHS of                        

Eq. (17.50), we have  

   
















SV

ddVBE
dt

d
P aBE


.)(

11

2

1

0

2

0

2
0  (17.51) 

where S is the surface bounding the volume V and a


d is the element of 

surface area. Using Eq. (17.44c) in Eq. (17.51), we can write 

   




S

EB dW
dt

d
P aBE


.)(

1

0

 (17.52) 

Eq. (17.52) is the mathematical statement of Poynting’s theorem. It 

expresses conservation of energy in electromagnetism.  

The first integral on the RHS of Eq. (17.51) represents the rate at which 

energy stored in a current/charge distribution is carried out of the volume V, 

across its boundary surface, by the electromagnetic fields. The second term 

represents the electromagnetic field energy that flows out through the surface. 

Poynting’s theorem says, then, that,  

The rate of work done on the charges by the electromagnetic force is 

equal to the decrease in energy stored in the field, minus the 

electromagnetic field energy which flows out through the surface.  

The quantity      )(
1

0

BES





  (17.53a) 

in Eq. (17.52) is called Poynting’s vector. It represents the energy flux 

density, i.e., aS


d. is the energy per unit time, transported by the 

electromagnetic field across a surface of area .a


d  Note that the direction of 

Poynting’s vector of an electromagnetic wave at any point is the same as the 

direction of wave propagation. Its magnitude is given by 

  2

0

2

00

11
B

c
E

c
BES








    since BcE   (17.53b) 

Notice that in                           

Eq. (17.50), we have 

replaced 
t


 by 

dt

d
 as 

we have taken it out of 

the integral. 
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The magnitude of the Poynting vector gives the rate of flow of energy at any 

given instant. We can state Poynting’s theorem more compactly in terms of 

the Poynting vector S


 and .EBW  Let us do so.  

Substituting S


 from Eq. (17.53a) in Eq. (17.52), we have   

  

S

EB d
dt

dW
P aS


.  (17.54) 

Of course, the work W done on the charges will increase their mechanical 

energy (kinetic, potential, or some other form of energy). Let MU  denote the 

mechanical energy density, so that  

  

V

M dVU
dt

d
P  (17.55) 

We define EBU  as the energy density of the electromagnetic field as follows: 

  














 2

0

2
0

1

2

1
BEUEB  (17.56) 

Then we can write Eq. (17.54) as 

   

VSV

EBM dVddVUU
dt

d
).(.)( SaS


   (17.57a) 

where we have used the divergence theorem. Thus, we get  

   




VV

EBM dVdVUU
t

).()( S


   (17.57b) 

or  0)]().[( 





V

EBM dVUU
t

S


   (17.57c) 

Since the volume V is arbitrary, for the volume integral in Eq. (17.57c) to be 

zero, its integrand must be zero. Thus, we get 

  )(. EBM UU
t





 S


 (17.58) 

This is the differential form of Poynting’s theorem. Compare this with the 

continuity equation that expresses the conservation of charge:  

  
t


 J


.  

Note that in Eq. (17.58), the charge density is replaced by the total energy 

density (mechanical plus electromagnetic), while the current density is 

replaced by the Poynting vector. Thus, 

The Poynting vector S


 describes the flow of energy in the same way 

that J


 describes the flow of charge.  

Let us now summarise what you have learnt in this unit. 
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17.5   SUMMARY  

Concept Description 

Plane wave 

solutions of the 

electromagnetic 

wave equations for 

the electric and 

magnetic fields 

 

 

 The wave equations for the electric fields and magnetic fields associated with 

an electromagnetic wave in vacuum are given by 

                 
2

2

00
2

t


 

E
E




    and   
2

2

00
2

t


 

B
B




 

where the speed of the electromagnetic wave in vacuum is given by  

                
00

1


c  

Here c is the speed of light. The monochromatic plane wave solutions of the 

electromagnetic wave equations for the electric field and the magnetic field 

are given by 

                )(cos),( 0 tkztz  EE


 and )(cos),( 0 tkztz  BB


  

provided these equations also satisfy Maxwell’s equations. Such 

electromagnetic waves are described by their frequency f or angular 

frequency , the speed of propagation c (in vacuum), the wave number k, the 

wavelength .  

The requirement that these solutions satisfy Maxwell’s equations for charge-

free and current-free regions in order to be able to represent electromagnetic 

waves in vacuum, yields the set of equations given below: 

                       ,00 zE


                   ,00 zB


    

                      ,0.ˆ Ek


               ,ˆ BEk


c      

                      ,0.ˆ Bk


               
c

E
Bk




ˆ  

      where k̂  is the unit vector in the direction of wave propagation. Also 

                     
k

c






00

1
    where   f 2  and 

k




2
       

The magnitudes of the electric field and magnetic field are related by  

                BE


c     

Maxwell’s 

equations for  
linear, isotropic, 

homogeneous 

dielectric media 

 

 Maxwell’s equations for linear, isotropic and homogeneous dielectric media 

are given as 

            



 fE


.                           




f

S

q
dSE


.    

             
t




B
E




                       
dt

d
d B

C


 l.E


 

             0.  B


                                 0. 
S

dSB


  

             



















t

E
JB




f      )( d

C

iid  l.B


 where 
dt

d
i E
d


   



   

215 

 

 Unit 17                                       Electromagnetic Wave Propagation 

Wave equations 

for 

electromagnetic 

waves in                 

charge-free and 

current-free linear, 
isotropic, 

homogeneous 

dielectric media 

 

 The wave equations for electromagnetic waves propagating through                

charge-free and current-free linear, isotropic, homogeneous dielectric media 

are given as  

                  
2

2
2 1

t






E
E




      and      
2

2
2 1

t






B
B




 

 where  is the electric permittivity of the medium and , its magnetic 

permeability. In such dielectric media, the solutions of the wave equations for 

electric and magnetic fields that satisfy Maxwell’s equations are 

electromagnetic waves, which propagate at a speed ,
1

n

c
v 


  where n  

is the refractive index of the medium. For a dielectric material, 

                       





0

n       where        
0


  

 is called the dielectric constant of the material. 

Plane wave 

solutions of the 

electromagnetic 

wave equations for  

linear, isotropic, 

homogeneous  

dielectric media 

 

 The plane wave solutions for the wave equations for a linear, isotropic, 

homogeneous dielectric medium with no free charge and no free current are:  

                 )(cos),( 0 vtztz  EE


    and    )(cos),( 0 vtztz  BB


 

where v is the speed at which the wave travels in the medium. These waves 

satisfy Maxwell’s equations in such dielectric media provided 

                ,0ˆ Ek


.    ,0.ˆ Bk


  ,ˆ BEk


v     v
B

E




  

where       



1

v  

Energy carried by 

electromagnetic 

waves: Poynting’s 

theorem and 

Poynting vector 

 Poynting’s theorem expresses the conservation of energy in 

electromagnetism. According to Poynting’s theorem, 

The rate of work done on the charges by the electromagnetic force is  

equal to the decrease in energy stored in the field, minus the 

electromagnetic field energy which flowed out through the surface.  

The mathematical statement of Poynting’s theorem is:  

                  



















SV

ddVBE
dt

d

dt

dW
aBE


.)(
11

2

1

0

2

0

2
0  

The Poynting vector given by 

                 )(
1

0

BES





   

represents the energy flux density, i.e.,  aS


d. is the energy per unit time, 

transported by the electromagnetic field across a surface of area .a


d  The 

Poynting vector S


 describes the flow of energy in the same way that J


 

describes the flow of charge.  

The differential form of  Poynting’s theorem is given by 
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17.6   TERMINAL QUESTIONS 

1. A plane electromagnetic sinusoidal wave is characterized by these 

parameters: the wave is travelling in the direction ,x̂  its frequency is              

100 MHz, the associated electric field is perpendicular to the direction of 

ẑ . The amplitude of the electric field is . Vm100 1  Write down the 

expressions for the E


and B


 fields that specify this wave.  

2. The electric field of an electromagnetic wave in vacuum is given by 

        0],102)3/2[(cos30,0 7  zyx EtxEE  

where E is in ,Vm 1 t in s and x in m. Determine the frequency , 

wavelength , the direction of propagation of the wave and the direction of 

the associated magnetic field.  

3. The electric field given by 

                    ty   50cosˆ)Vm1000( 1 xE


 

represents the electric field of a plane electromagnetic wave in a                         

charge-free and current-free region. Determine the wavelength and 

frequency of the wave. Calculate the associated magnetic field. 

4. When an electromagnetic wave of a given frequency travels from vacuum 

into a dielectric medium, which quantities associated with the wave 

change: wave speed, wavelength or wave frequency?  

5. The speed of light in a dielectric medium is two-thirds its value in vacuum. 

Calculate the refractive index and the dielectric constant of the medium.   

6. A plane electromagnetic wave whose electric field is given by 

             tx   6cosˆ)Vm100( 1 zE


 

is travelling in a dielectric medium for which 09 and .4 0  What is 

the speed of the wave in the medium? Determine the wavelength and 

frequency of the wave. What are the refractive index and dielectric 

constant of the medium? Write the expression for the associated magnetic 

field of the wave in the dielectric medium. 

7. The electric and magnetic fields of an electromagnetic wave are directed 

along the positive x and y-axes, respectively, at a certain instant of time. 

What is the direction of the Poynting vector? In which direction does the 

wave transport energy at that instant of time?  

8. The electric field of an electromagnetic wave is directed along the positive 

x-axis at a certain instant of time. The wave transports energy in the 

negative y-direction. Determine the direction of the magnetic field 

associated with the wave at that instant of time.  

                        )(. EBM UU
t





 S


 

where MU  is the mechanical energy density and  ,EBU  the energy density of 

the electromagnetic field given by 

                     














 2

0

2
0

1

2

1
BEUEB    



   

217 

 

 Unit 17                                       Electromagnetic Wave Propagation 

9. Determine the magnitude and direction of the Poynting vector for the plane 

electromagnetic wave having the following electric and magnetic fields at 

an instant of time:  

             zE ˆcos0 tkxE 


  and   yB ˆcos0 tkxB 


 

10. Determine the energy density of the electromagnetic field of Terminal 

Question 9. 

17.7   SOLUTIONS AND ANSWERS    

Self-Assessment Questions 

1. Substituting Eqs. (17.2a and 17.2b) in the first equation of (17.3a), we get 

       )](cos[ 0 tkz  E.E.


 

                          )(cos]ˆˆˆ[]ˆˆˆ[ 000 tkzEEE
zyx

zyx 













 kji.kji   

                       )](cos[ 0 tkzE
z

z 



  

For ,0 E.


 we must have 00 zE  because the derivative of the 

function )(cos tkz   with respect to z is non-zero. 

 Similarly, we can show that 

  )](cos[ 0 tkz  B.B.


  

                            )(cos]ˆˆˆ[]ˆˆˆ[ 000 tkzBBB
zyx

zyx 













 kji.kji             

                           )](cos[ 0 tkzB
z

z 



  

For ,0 B.


 we must have ,00 zB  since the derivative of the function 

)(cos tkz   is non-zero. 

2. We can write the equation )ˆ( 00 EzB






k

as 

  yx

zyx

zyx ˆ)(ˆ)(100

ˆˆˆ

)ˆˆˆ( 00

000

000 xy

zyx

zyx E
k

E
k

EEE

k
BBB








  

Comparing the left-hand and right-hand sides of the above equation, we 

get 

         xy BEk 00    and        yx BEk 00   

 Therefore, Eq. (17.9a) and Eqs. (17.8a and b) are equivalent. 

3. We substitute Eqs. (17.2a and b) in the equation :00
t




E
B




            

              )](cos[)](cos[ 0000 tkz
t

tkz 



 EB


     

   or     )(sin)](cos)ˆˆˆ[( 000000 tkztkzBBB zyx  Ezyx

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 Let us first solve the LHS of this equation: 

        )(cos)ˆˆˆ(ˆˆˆ 000 tkzBBB
zyx

zyx 





















zyxzyx           

                ])(cos[ˆ)](cos[ˆ 00 tkzB
z

tkzB
z

xy 








 yx   

                     )(sin)ˆˆ( 00 tkzBBk xy  yx  

 So, we have  

   )(sin)(sin)ˆˆ( 00000 tkztkzBBk xy  Eyx


 

 or        00000 )ˆˆ( Eyx


 xy BBk      (i) 

 You can verify that the LHS of Eq. (i) is just )( 0Bk


  as follows: 

 Since k


is in the z-direction, we can write zk ˆk


 so that 

            yxzyx BkBkBBBk 000000 ˆˆ)ˆˆˆ(ˆ xyzyxzBk 


 (ii) 

 Substituting Eq. (ii) in Eq. (i) and using ,k̂k k


 we get 

            

















00
020000

11
)ˆ( c

c
k 


EEBk  

 or         002020
111

)ˆ( EEEBk


c
c

ckc



  

 Thus, we get  
c
0

0
ˆ E

Bk




      

4. Comparing the electric field given by  










  t

x

25
sinˆ)Vm1000( 1 yE



 with the expression  ,sinˆ 0 tkxE  yE


 we can see that 

         m50m
2

50)2(2
m

50

2 1 









 

k
k    

 In vacuum, Hz106
m50

ms103 6
18










f
c

f    

Comparing the expression of the given electric field with Eq. (17.1c), we 

get the direction of propagation of the wave as positive x-direction. For the 

expression of the associated magnetic field, we need to find its amplitude 

and direction and  :  Hz10122 6 f   

 From Eq. (17.10), the amplitude of the associated magnetic field is 

         T103
ms103

Vm1000 6

18

1
0

0










c

E
B  

Since the direction of propagation of the wave is along the positive                    

x-direction and the electric field is along the positive y-direction, from               

Eq. (17.9b), the magnetic field is along the positive z-direction.  

         










  t

x

25
sinT)103(ˆ 6zB


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5. Let us first prove Eq. (17.26),  



 fE


.  

 From Eq. (17.14), we have  PE


.
1

.
0




  f   or  f  )(. 0 PE


 

 or    f D


.    or  f E


.   or   





 fE


.   )( ED


   

To cast the equation in its integral form, we integrate both sides over a 

volume V: 

        




V

f

V

dVdV
1

. E


 

We apply the divergence theorem to the LHS of the above equation and 

note that the volume integral in its RHS is equal to just the net charge fq  

enclosed in the volume. So,  

              ,.



fq

S

dSE


 where S is a closed surface that bounds volume V.  

 Eqs. (17.27 and 17.28) are the same as Eqs. (16.18 and 16.19). 

To prove Eq. (17.29),  df JJB


 we write it in the form of                 

Eq. (17.17) as 

            























 M

P
J

E
B









tt
f00  

 or         f
t

JPEMB


00000 )()( 



  

From Eq. (17.19), we have MBH






0

1
and using PED


 0  from 

Eq. (17.18), we can write the above equation as 

                f
t

J
D

H





000 



   or    f

t
J

D
H










  

Using Eqs. (17.22 and 17.23), we can write  f
t

J
E

B









                      

or          df JJB


  where .
t




E
J




d  This is Eq. (17.29).    

To cast the equation in its integral form, we integrate both sides on an 

open surface S:  





S

f

SS

ddd SJS
E

SB





..
t

.)(  

  Now you know that electric flux  

S

E dSE


.  and current 

S

f di SJ


.  

 So the RHS becomes  i
dt

d E 


  

 We next apply Stokes’ theorem to the LHS and get 

         






 



 dt

d
iiii

dt

d
d E

dd
E

C




)(. lB  

where the open surface S is bounded by the closed curve C. This is                     

Eq. (17.29) in integral form.  
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6. Once again we take the curl of E


 in Eq. (17.31):  

   
t




)(
)(

B
E




 

 or  
























tt

E
B

E
EE









2

2
2).(  

 or  0.[
2

2
2 




 E

E
E







t
from Eq. (17.30)] 

 Similarly, we take the curl of B


 in Eq. (17.33):  

   
t




)(
)(

E
B




 

 or  
























tt

B
E

B
BB









2

2
2).(  

 or  0.[
2

2
2 




 B

B
B







t
from Eq. (17.32)] 

Terminal Questions 

1. Since the wave is travelling in the direction ,x̂  its E


 field will be 

perpendicular to .x̂  It is given that E


 is perpendicular to the direction of .ẑ  

Then E


could be either in the direction of ŷ  or .ŷ Suppose, we take it in 

the direction of .ŷ  Then from Eq. (17.41), the magnetic field B


 is in the 

direction of .ẑ  It is given that the wave frequency is 100 MHz. Therefore,  

    Hz1022 8 f  and  1

18

8

m
3

2

ms103

Hz10222 



















c

f
k  

 Thus,  







  t

x 81 10
3

2cos)Vm100(ŷE


  

 The corresponding B


 field is given by  

     
















t
x 8

18

1

10
3

2cos
ms103

Vm100
ẑB


 

            







  t

x 87 10
3

2cosT)103(ẑ  

2. Comparing the given electric field with the expression 

 ,cosˆ 0 tkxE  yE


 we can see that the frequency of the wave is 

              Hz107 and the wavelength is m3m
)3/2(

22










k
 

Comparing the expression of the electric field with Eq. (17.1c), we get the 

direction of propagation of the wave as positive x-direction. Since E


is 

along the positive y-direction and k̂ is in the positive x-direction, from                

Eq. (17.9b), the magnetic field is along the positive z-direction. 

3. We follow the steps of SAQ 4. Comparing the electric field given by 

                    ty   50cosˆ)Vm1000( 1 xE


   (i) 
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 with the expression  ,cosˆ 0 tkyE  xE


 we can see that 

   m
25

m
50

)2(2
m50 1 







 

k
k   and  

 in vacuum, Hz104.2
m

ms25103 9
18












f
c

f   

Comparing Eq. (i) with Eq. (17.1c), we get the direction of propagation of 

the wave as positive y-direction. For the expression of the associated 

magnetic field, we need to find its amplitude and direction, and  :   

        110 rads105.12  f   

 From Eq. (17.10), the amplitude of the associated magnetic field is 

    T103
ms103

Vm1000 6
18

1
0

0










c

E
B  

Since the direction of propagation of the wave is along the positive                          

y-direction and the electric field is along the positive x-direction, from                

Eq. (17.9b), the magnetic field is along the negative z-direction. It is given 

by 

                 ty 106 105.150cosT)103(ˆ  zB


 

4. When an electromagnetic wave travels from vacuum into a dielectric 

medium, the wave speed and wavelength change.  

5. From Eq. (17.36), the refractive index is  

           5.1
)3/2(


c

c

v

c
n              

  From Eq. (17.37b), the dielectric constant of the medium is  

                 25.22  n               

6. The speed of the wave in the medium is         

   18
18

0000

ms105.0
6

ms103

66

1

36

11 















c

v  

Comparing the given electric field with the expression 

 ,cosˆ 0 tkxE  zE


 we can see that the wave number of the wave is 

          m
3

1

6

2
m6 1 




 k and the frequency 

             Hz105.1
m)3/1(

ms105.0 8
18








v

f   

 The refractive index of the medium is    6
6/


c

c

v

c
n  

From Eq. (17.37b), the dielectric constant of the medium is 362  n   

Since k̂  is along the positive x-direction and E


 is along the positive                   

z-direction, from Eq. (17.9b), B


 will be along the negative y-direction. So, 

the associated magnetic field of the wave in the dielectric medium is given 

by 
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                 )1036(cos)
Vm100

(ˆ 8
1

tx
v




yB


 

or              )1036(cosT
105.0

100
ˆ 8

8
tx 












 yB


   

                      )1036(cosT)102(ˆ 86 tx  y  

7. From Eq. (17.53a), ).(
1

0

BES





  Since the electric field of the 

electromagnetic wave is directed along the positive x-axis and its  

magnetic field along the positive y-axis at a certain instant of time, from 

Eq. (17.53a), the direction of the Poynting vector will be along the positive 

z-axis at that instant of time. The wave transports energy along the 

positive z-axis at that instant of time.  

8. We use Eq. (17.53a) again. It is given that the electric field of the 

electromagnetic wave is directed along the positive x-axis at a certain 

instant of time. The wave transports energy in the negative y-direction. So, 

the Poynting vector is directed along the negative y-axis at that instant of 

time. Hence, from Eq. (17.53a), the direction of the magnetic field at that 

instant of time is along positive z-axis.  

9. From Eq. (17.53a),  

     )ˆˆ(cos
1

)(
1 2

00
00

yzBES 





 tkxBE


 

                        tkx
BE




 2

0

00 cosx̂   

The magnitude of the Poynting vector for the given plane electromagnetic 

wave at the given instant of time is  .cos2

0

00 tkx
BE




               

 Its direction is along the negative x-axis at that instant of time.                    

10. From Eq. (17.56), the energy density of the electromagnetic field of 

Terminal Question 9 is given by 

       











 2

0

2
0

1

2

1
BEUEB  

                             











 2

0
0

2
00

2 1
cos

2

1
BEtkx   
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Symbol Quantity Value 

c Speed of light in vacuum 8 13.00 10 ms  

0 Permeability of free 

space 

6 21.26 10 NA   

0 Permittivity of free space 12 2 1 28.85 10 C N m    

1/40  9 2 28.99 10 Nm C   

e  Charge of the proton 191.60 10 C  

 e Charge of the electron 191.60 10 C   

h Planck’s constant 346.63 10 Js  

  h / 2 341.05 10 Js  

me Electron rest mass 319.11 10 kg  

 e/me Electron charge to mass 

ratio 

11 11.76 10 Ckg   

mp Proton rest mass 271.67 10 kg  (1 amu) 

mn Neutron rest  mass 271.68 10 kg  

a0 Bohr radius 115.29 10 m  

NA Avogadro constant 23 16.02 10 mol  

R Universal gas constant 1 18.31 Jmol K    

kB Boltzmann constant 23 11.38 10 J K   

G Universal gravitational 

constant 

11 2 26.67 10 Nm kg   

Astrophysical Data 
 

Celestial 

Body 

Mass (kg) Mean radius 

(m) 

Mean distance from the centre 

of Earth (m) 

Sun 301.99 10  86.96 10  111.50 10  

Moon 221035.7   61.74 10  81084.3   

Earth 241097.5   66.37 10  0 
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SYLLABUS: ELECTRICITY AND MAGNETISM (BPHCT-133)            4 Credits 

Vector Analysis: Brief review of vector algebra (scalar and vector products). Scalar 

fields and their gradient and its significance. Vector fields, divergence and curl of 

vector field and their significance. Vector integration, line and surface integrals of 

vector fields, volume integrals. Vector integral theorems, divergence theorem and 

Stoke's theorem (statement only).  

Electrostatics: Electrostatic force and electric field, electric flux, Gauss's law of 

electrostatics. Applications of Gauss’s law – electric field due to point charge, uniformly 

charged spherical shell and solid sphere, infinite line of charge, plane charged sheet, 

charged conductor. Electric potential, electric potential as line integral of electric field, 

potential due to a point charge, potential due to a system of charges, relation between 

electric field and potential, electric dipole, electric dipole in an electric field. Potential for 

continuous charge distributions, line charge, uniformly charged spherical shell and 

uniformly charged non-conducting solid sphere, equipotential surfaces, electrostatic 

potential energy.  

Electrostatics in Medium: Dielectric medium, dielectric in electric field, polarisation, 

displacement vector, Gauss's law in dielectrics. Capacitors, capacitance of an isolated 

spherical conductor, parallel plate, spherical and cylindrical capacitors, parallel plate 

capacitor completely filled with dielectric, energy per unit volume in electrostatic field. 

Magnetism: Magnetic field, Gauss’s law for magnetism, Biot-Savart's law and its  

applications – straight conductor, circular coil, current carrying solenoid. Ampere's law, 

divergence and curl of magnetic field, magnetic vector potential. Magnetic properties of 

materials – magnetic intensity, magnetic induction, permeability, magnetic 

susceptibility, brief introduction of diamagnetic, paramagnetic and ferromagnetic 

materials. 

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, 

self and mutual inductance, self-inductance of single coil, mutual inductance of two 

coils. Energy stored in magnetic field. Equation of continuity for current, displacement 

current, Maxwell's equations, electromagnetic waves, transverse nature of 

electromagnetic waves. Electromagnetic wave propagation through vacuum and 

isotropic dielectric medium, Poynting vector, energy density in electromagnetic field. 
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