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MECHANICS : COURSE INTRODUCTION

In our everyday life we come across a wide variety of objects in motion. The branch of
physics dealing with the motion of bodies and bodies at rest in equilibrium is called
mechanics. You use the laws of mechanics when you ride a bicycle, lift heavy loads, play
football or build a house. Many fascinating developments of the space age, such as
launching of space probes and artificial satellites are direct applications of the laws of
mechanics.

—

Where do we use the laws of mechanics?

Today, mechanics is regarded as the most fundamental area of physics. In order to study
other areas of physics, such as waves, thermal physics, electromagnetism, optics, etc., you
need to have a sound knowledge of mechanics.

Therefore, Mechanics is being offered as the very first course in physics in B.Sc. In this 4
credit course, you will learn the basic concepts and laws of mechanics in detail and apply
them to objects in motion. We will discuss translational motion, angular/rotational motion and
oscillatory/vibrational motion of a variety of objects. The course consists of 4 blocks.

You have studied many of these concepts in your school physics courses. You know that the
concepts and laws in physics are expressed very efficiently in the language of mathematics.
Therefore, in Block 1 of this course entitled ‘Mathematical Preliminaries’, we explain the
preliminary concepts of mathematics needed for studying mechanics. In this block, you will
study the elementary concepts of vector algebra and learn how to differentiate vector
functions with respect to a scalar. You will also learn how to solve first and second order
ordinary differential equations.

In Block 2 entitled ‘Basic Concepts of Mechanics’, you will revise the concepts of
kinematics and dynamics that you have studied in school physics. These include Newton’s
laws of motion and the concepts of force, linear momentum, impulse, work and energy.
Here we will present them in greater detail and apply these laws and concepts to a variety of
simple physical situations involving translational motion of objects. For example, you will
study the motion of a parachutist falling under the force of gravity and air resistance, the
motion of a cart/box being pulled up or pushed down on an inclined plane or on the floor
under the force of friction, the change in the velocity of a rocket as gas is ejected from it, and
SO on.



Block 3 entitled ‘Rotational Motion and Many-particle Systems’ deals with the
concepts of angular/rotational motion, torque and angular momentum as well as the
three important conservation laws of linear momentum, energy and angular
momentum. We apply all these concepts and laws to many simple and complex physical
situations involving the motion of single particle, two-particle and many-particle systems.
For example, you will study the motion of cars on curved roads, the Moon or
geostationary satellites orbiting the Earth, the Earth and other planets in orbits around the
Sun, dumb-bells, children riding giant wheels or merry-go-rounds, collisions of particles,
etc.

The subject matter of Block 4 is Harmonic Oscillations, which is very common in
nature. Examples of oscillatory motion are an oscillating pendulum, vibrating strings of a
guitar or veena, atoms vibrating around their equilibrium position in a crystal lattice, our
heartbeat, etc. A proper understanding of oscillatory motion is important for two reasons:
Firstly, a large variety of mechanical as well as non-mechanical systems execute
oscillatory motion. Secondly, and perhaps more importantly, a thorough understanding
of oscillations is an essential background for the study of wave phenomena. We
begin the block by discussing simple harmonic motion (SHM) and the effect of damping
on a harmonic oscillator. Since oscillatory motion and the wave phenomenon are
interconnected, we end our discussion on oscillations in Block 4 with a brief introduction
to wave phenomenon.

One last word about how to study the course material.

In Block 1 of this course, you will learn the mathematics necessary to understand the
contents of Blocks 2, 3, and 4. To use mathematics effectively in applications you need
not just knowledge, but skill. Skill comes only through practice. For acquiring the
necessary skill you will need to work through the text and examples, and solve problems.
So always study with a paper and pencil in hand. This is true for the remaining blocks as
well. Physics, as you know, cannot be learnt passively. You have to not only understand
concepts but acquire the abilities of reasoning and problem solving. Work through all
steps in the derivations given in the text yourself.

This course has been designed with a large number of worked out examples along with
SAQs and TQs. Don’t just read through solved examples or answers to SAQs (Self
Assessment Questions) and TQs (Terminal Questions) given at the end of each unit. Try
to do them yourself! In the course material you will find many problems intended for drill
and a few challenging ones as well. Do not feel satisfied with your study until you can
solve a reasonable number of these problems.

Our best wishes are with you for happy problem solving and a good understanding of the
course. We wish you success.



BLOCK 1: MATHEMATICAL PRELIMINARIES

The first block of this course deals with the preliminary concepts of vector algebra (Units 1
and 2) and ordinary differential equations (Units 3 and 4) that you will be using in this
course.

In your school physics and mathematics courses, you have learnt about scalar and vector
quantities. For example, you know that length, mass, density and temperature are scalar
quantities. You also know that displacement, velocity, acceleration, force and linear
momentum are vector quantities.

In Unit 1 entitled ‘Vector Algebra-I’, you will revise the definitions of scalars and vectors
and the geometrical representation of vectors that you have learnt in school. You will also
revise the addition and subtraction of vectors, and their scalar and vector products using the
geometrical representation. Then you will study vectors and vector algebra in greater detail.
In Unit 2 entitled ‘Vector Algebra-II’, you will learn how to express vectors algebraically in
terms of their components with reference to a given coordinate system. You will also learn
how to add, subtract and multiply vectors in their component form. It is essential that you
study vector algebra in the algebraic form as you will be using these results very often in
physics courses. In Unit 2, you will also study how to determine the derivatives of vector
functions (i.e., vectors which are functions of one or more scalar in a given region) and their
products.

In Units 3 and 4, we discuss the methods of solving ordinary differential equations. In Unit 3
entitled ‘First Order Ordinary Differential Equations’, we first present the basic definitions
and classification of ordinary differential equations as well as the concepts of general
solution and particular solution. Then we discuss some methods of solving these equations
along with examples from mechanics, radioactive decay and electrical circuits. Unit 3
contains an Appendix on Partial Derivatives of a function of two or more variables. You
should study it carefully before studying Unit 3.

In Unit 4 entitled ‘Second Order Ordinary Differential Equations with Constant
Coefficients’, you will study the methods of solving such equations along with their
applications in oscillating systems. Units 3 and 4 may be entirely new for you. You should
study them carefully and work out the examples, SAQs and Terminal Questions given in
them.

We hope you enjoy studying the block and once again wish you success.
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UNIT 1

What is the velocity of the bird with VECTOR ALGEBRA —_— I

respect to ground? Solve TQ 3a to
find an answer!

Structure

1.1 Introduction 1.4 Products of Vectors
Expected Learning Outcomes Scalar Product

1.2 Scalars and Vectors Vector Product
Scalars 1.5 Summary
Vectors 1.6 Terminal Questions
Equality of Vectors, Unit Vectors and Null Vector 1.7 Solutions and Answers

1.3 Vector Algebra

Addition of Vectors
Subtraction of Vectors

STUDY GUIDE

We hope that you have studied physics and mathematics at the senior secondary (+ 2) level. We shall
take it for granted that you know the basic concepts of vector algebra presented in this unit. Therefore,
we shall quickly revise those concepts in this unit. You have to make sure that you know these concepts
about vectors very well and then study the remaining course. We have given a set of problems as
pre-test in the beginning of this unit and an SAQ in each section of the unit. Each of these should take
you at most 5 to 10 minutes to solve. If you are able to solve them, then you know these basic vector
concepts. You can skip studying these sections. Otherwise, you should study the sections thoroughly
and make sure you can solve the problems before studying the next unit. Of course, you should try to
solve the problems on your own without first looking at the solutions and answers!

“Do not worry about your difficulties in Mathematics. | can
assure you mine are still greater.”

Albert Einstein




Block 1 Mathematical Preliminaries

1.1 INTRODUCTION

In your school physics, you have studied about many physical quantities and
have learnt to classify them as scalars and vectors. For example, you know
that mass, temperature and time are scalars. You also know that velocity,
momentum, acceleration, electric field, etc. are vectors. You must understand
You may like to read the | that vectors are mathematical concepts used to describe the real

history of vectors at http: | physijcal properties of the world we live in. Vectors as we use them today
/hwrww.math.megill.ca/ were developed mainly in the 19" and 20" centuries though they have a longer

labute/courses/133f03/ . ] . .
VectorHistory.html history in a slightly different form.

At the beginning of this unit, we shall revise the elementary concepts of
vector algebra. In Sec. 1.2, you will revise how to classify physical quantities
as scalars and vectors. You will also revisit the way of representing vector
quantities geometrically without any reference to the system of coordinates.

In Sec. 1.3, you will solve problems on how to add, subtract or multiply
vectors with scalars using this representation. You will revise the concepts of
scalar and vector products of vectors in Sec. 1.4 and represent various
physical quantities as products of vectors. In each section, you will also solve
problems applying the concept presented there.

In the next unit, you will revise the algebraic representation of vectors.

Expected Learning Outcomes

After studying this unit, you should be able to:

< classify physical quantities as scalars and vectors;

< express a vector in its geometric representation;

< define unit vectors;

< determine the component of a vector in any direction;

< add and subtract vectors using the geometric representation;
< compute the scalar and vector products of two vectors; and

< solve simple physics problems based on the application of vector
algebra using the geometric representation.

IN YOUR WRITTEN WORK, ALWAYS USE AN ARROW ABOVE THE
LETTER YOU USE TO DENOTE A VECTOR, E.G,, r. USE ACAP
ABOVE THE LETTER YOU USE TO DENOTE A UNIT VECTOR, E.G.,T.

Don't forget

10



Vector Algebra - |

1.2 SCALARS AND VECTORS

Do you recall the definitions of scalars and vectors? If so, use those definitions
to classify some physical quantities as scalars and vectors in the pre-test
given below. Otherwise revise these definitions given in Secs. 1.2.1 and 1.2.2
and then try to solve these problems again.

«est Wha,

1.

Classify the physical quantities in the following statements as scalars and

3
- 2

vectors:
a) The maximum temperature today was 42° C. °¢, kn®
b) The lift's acceleration is 2 ms™ in the upward direction.
c) The monsoon clouds are moving at a speed of 2 kmh™".
d) The density of ironis 7.9 x 1073 kgm™.
e) A stone thrown into a pond sinks at a velocity of 0.5 ms~".
f) A sodium vapour lamp produces monochromatic light of wavelength
5893 A.
g) The mass of the Earth is 5.9742 x 10%* kg.
h) The displacement of a train with respect to Delhi is 270 km due

north.
The charge of an electron is 1.6 x 107'° C.

The melting point of iron is 1538° C.

Identify the vector quantities from among the following: Charge, force,
momentum, speed, distance, impulse, electric field, electric potential,
melting point, moment of inertia, velocity, energy, displacement, magnetic
field, pressure, weight. Represent each vector graphically in any direction
of your choice. Use appropriate notation to denote each vector.

If you have solved these problems correctly, you know how to classify physical
quantities as scalars and vectors and represent vectors geometrically. You can
skip Secs. 1.2.1 and 1.2.2. Otherwise, study them and try the pre-test again.

1.2.1 Scalars

In your school science courses you have studied about many physical
quantities like mass, length, charge, temperature. These quantities are
described by a number followed by an appropriate unit of measurement. You
know that such quantities are called scalars. Let us first revise the definition of
scalars and state some of their properties.

11



Block 1 Mathematical Preliminaries

SCALARS

Physical quantities that are scalars, are quantities that can be completely
described by a number followed by an appropriate unit of measurement.

We represent a scalar in a diagram or an equation, by a letter or a symbol,
which represents both the unit of measurement and the number of units for
the particular scalar quantity. For example, we can represent the mass of an
object by the letter M, where M would be a number with a unit, e.g., 60 kg.
Similarly, the temperature at the core of the Earth is T where T =300° C.

Scalar quantities are added, subtracted, multiplied and divided exactly like
ordinary numbers. In fact, all the rules of elementary arithmetic operations
apply to the values of a scalar quantity. Thus, if a, b and c are three values of
a scalar quantity, for example, the mass of an object, then these satisfy the
following properties:

a+b=b+a (1.1a)
ab = ba (1.1b)
a+0=a (1.1c)
ax1=1xa (1.1d)
a(bc) = (ab)c (1.1e)
a(b +c)=ab + ac (1.1f)

Scalar quantities have another important property:

A scalar is a quantity whose value does not depend on a coordinate
system. It remains the same in all coordinate systems. This property is
called invariance.

Scalar quantities remain invariant (unchanged) under any
transformation of coordinate systems.

Don't forget
1.2.2 Vectors

In your school physics, you have also studied about many physical quantities
that are vectors. For example, the displacement, velocity and acceleration of

objects, the force being exerted on an object and the electric field of a charge
are vector quantities.

We revisit the definition of vectors and the way we represent them

12 geometrically.



VECTORS AND THEIR REPRESENTATION

Physical quantities that are vectors, are quantities that can be completely
described by a magnitude which is a non-negative scalar quantity, that is,
a positive number along with an appropriate unit, and a direction in space.
However, if the dimension of the vector quantity is a pure number then we
do not specify a unit, e.g., in the case of unit vectors.

Geometric/Graphical Representation of Vectors

To represent a vector geometrically or graphically we need to specify both
its magnitude and a direction. So a vector is represented by a directed line
segment or an arrow, that is, a straight line with an arrowhead. The length
of the arrow represents the magnitude of the vector quantity, which is a
positive scalar quantity and the arrowhead points along the direction of
the vector. The arrowhead is placed either at the end or somewhere along
the line segment (see Fig. 1.1). In Fig. 1.1a, the point A is called the tail
(the starting point) of the vector and the point B is called the head (terminal
point) of the vector. The direction of the vector is from A to B. The line
along which the vector is directed is called the line of action of the vector.
In Fig. 1.1, this is the line AB. It is at an angle 6 with respect to the
reference line, which is the + x-axis in this case (Fig. 1.1b).

Head B
.

Tail

(a) (b)

Fig. 1.1: Geometric representation of a vector. a) A vector is a directed
line segment having both magnitude and direction; b) the angle 6
specifies the direction of the vector.

We usually denote a vector in a diagram or an equation by a letter or a
symbol with an arrow on top. In the printed text, we will denote vectors by
boldface letters, with an arrow on top, e.g., a, b, ¢, etc. In your written
work, you should denote vectors by drawing arrows above the letter
denoting them, e.g., 3, b, ¢, etc. In print, we will denote the magnitude of a
vector a by |a|, called the modulus of a or by a, a light letter in italics.

Vector Algebra - |

NOTE

To specify the direction
of a vector we need to
specify two
characteristics, namely
the orientation and the
sense of the vector
quantity. The orientation
of the vector is the
relationship between the
vector and any
reference line or plane
in space. The sense of
the vector is determined
by the order of two
points on a line parallel
to the vector. It is
represented by the
arrowhead.

You may now like to go back to the pre-test problems and work them out to
test your understanding. In the next section, we briefly revise some concepts
about vectors, which you have learnt in your school, namely, the equality of
vectors, unit vectors and null vectors. If you know these concepts well, you

should first try to solve SAQ 1. Skip the discussion in Sec. 1.2.3 if you answer

it correctly.

13
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Yy

Fig. 1.2: Equality of
vectors. All vectors
shown here are equal.

Q>

Fig. 1.3: A unit vector

a in the direction of a
vector a. Its magnitude is
1. We pronounce a as

“a cap” or “a hat”.

14

Mathematical Preliminaries

1.2.3 Equality of Vectors, Unit Vectors and Null Vector

We explain each of these concepts in boxes and give some examples. Then
you can try SAQ 1.

EQUALITY OF VECTORS

Two vectors are said to be equal if they have the same magnitude and the
same direction. We denote the equality of two vectors A and B by writing

A=B (1.2a)

For example, the four vectors shown in Fig. 1.2 are equal even though they
are drawn at different places on the page. This is because their magnitudes
are equal and they are all in the same direction. REMEMBER that the
locations and starting points of equal vectors do not matter but they
should be parallel to each other and represent the same quantity. Such
vectors are also called free vectors. By definition, a free vector remains the
same when translated parallel to itself in space.

In physics, sometimes the line of action of a vector remains fixed. For
example, the line of action of the acceleration due to gravity (g) of a falling
body is fixed. Similarly, a force exerted on a rigid body may be applied at any
point on the body on its line of action. In such cases two vectors are equal only
if they have the same magnitude and direction, and the same line of action.
Such vectors are often called sliding vectors. Unlike a free vector which can
be translated parallel to itself anywhere in space, a sliding vector can be
translated only along its line of action.

Sometimes even the initial point of a vector is fixed. For example, the initial
point of the force applied on an elastic body (or the point of application of the
force) is fixed. The deformation caused by the force F applied at some point A
on an elastic body is different from the deformation caused when the same
force is applied to a different point B on the body. Thus the effect of the force
depends on the point of application. Such a vector then has a fixed magnitude,
direction and point of application, and is called a bound vector. In this case,
two vectors are equal only if they are identical.

If a vector a has the same magnitude as any other vector b but is in the
opposite direction to b, then we have

a=-b (1.2b)
We now define a unit vector.

UNIT VECTOR

A vector of length or magnitude 1 is called a unit vector. By convention,
unit vectors are taken to be dimensionless. A unit vector is used to
denote a direction in space. Any vector a can be represented as the
product of its magnitude (a) and a unit vector along its direction denoted
by a (see Fig. 1.3). Then we write:

i=aga (1.3a)

or R a (1.3b)




Unit 1 Vector Algebra - |

A unit vector specifies a direction. Once we define the unit vector in
a given direction, we can express any vector in that direction as the
product of its magnitude with this unit vector.

A unit vector does not have a dimension or a unit. Don't forget

Let us explain why we need this concept. Suppose a person P travels 5 m 8

eastwards and another person Q travels 10 m in the same direction from the o 4 P p @

same point O (see Fig. 1.4). We can define a unit vector having magnitude

1 m pointing towards the eastern direction and denote it by i . Then, with Fig. 1.4: Using a unit

respect to O, the displacements of P (vector d) and Q (vector D) are given as  vector, we can write
d=(m)iandD = (10 m)i.

d=Gm)i and D=10m)i
Now, to represent any new vector in that direction we only need to
multiply its magnitude by .

Let us now define the null vector or the zero vector.

NULL VECTOR OR ZERO VECTOR

A null vector or zero vector is a vector which has zero magnitude and no
definite direction. It is denoted by the symbol 0.

Why do we need to define a null vector? Consider this example from physics.
Suppose a girl walks 1 km due north and then turns around and walks 1 km
due south to return to the starting point. What is her displacement? Its
magnitude is zero but since displacement is a vector, it has to be represented
as one. We say that the girl's displacement is 0.

Similarly, when two equal and opposite forces are exerted on a body, the net
force on it is the zero vector 0. When we multiply a vector by a scalar m=0,
the result is a zero or null vector 0.

You may now like to attempt an SAQ. Try SAQ 1!

. ’ y f
SﬁQ 1 - Equality of vectors, unit vector and zero vector A g !
a) In Fig. 1.5, identify the vector equal to the vector a shown there. éT f&
b) Let jand j be the unit vectors along the x and y-axes shown in K

Fig. 1.5. Draw the vectors 2.5 and 4.0j. 7 \5
V3

c) Represent each vector shown in Fig. 1.5 in the unit vector notation of i
Eq. (1.3a). O -

d) A bus starts from its depot in the morning and returns to the same
position in the evening. What is the displacement of the bus during this
time period?

Fig. 1.5: Diagram for
SAQ 1c.

So far you have revised the definition of vectors and their geometric
representation. You have also revised the concepts of equal vectors, unit

vectors and zero vector/null vector. You know that in physics while expressing 15
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Don't forget

physical quantities and laws mathematically, we need to perform mathematical
operations on vectors. These operations follow specific rules, different from
those for mathematical operations on scalars. In Sec.1.3, you will learn some
elementary mathematical operations on vectors such as vector addition,
subtraction and multiplication of a vector by a scalar.

1.3 VECTOR ALGEBRA

Vectors may be added and subtracted as well as multiplied by regular numbers
(scalars). In Secs. 1.3.1 and 1.3.2, you will revise addition and subtraction of
vectors using the geometric representation of vectors. If you can solve the
SAQs 2 and 3 in this section, then you know these concepts and you can skip
the discussion. Otherwise solve them after studying Secs. 1.3.1 and 1.3.2.

1.3.1 Addition of Vectors

Suppose two forces act on an object and we wish to find the net force on it.
We can find it by performing the operation of vector addition. In this operation,
we add two vector quantities, say, a and b which are of the same type (for
example, two displacements or two forces) to produce another vector ¢ of the
same type. We then write

¢c=a+b (1.4)

Always think of the symbols + and = in the equations showing
vector addition as ‘combined with’ and ‘equivalent to’. The
meanings of these symbols are different from their meanings in
ordinary algebra, viz., ‘added to’ and ‘equal to’.

We use special methods, namely, the triangle law of vector addition and the
parallelogram law of vector addition to determine ¢. These are equivalent
methods and you have studied them in your school physics. Let us now state
these laws (see Fig. 1.6a).

VECTOR ADDITION: TRIANGLE LAW

To add two vectors 3 and b and determine their sum ¢ = a +b:

e Draw them in such a way that the head of the first vector, say a, is
joined with the tail of the second vector, say b (Fig. 1.6b).

e Draw the arrow from the tail of the first vector (a) to the head of the

second vector (b ). This represents the resultant vector
c=a+b (1.4)

\

(a) (b)

Fig. 1.6: The triangle law of vector addition for two vectors a and b.
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It is better to use the parallelogram law of vector addition when the two NOTE
vectors we want to add have their tails at a common point. For example, this —
To find the sum a + b of

two vectors a and b
situated at different

method is useful when we want to find the resultant of two forces acting at the
same point on an object. Using this law, we can calculate algebraically, the
magnitude and direction of the resultant vector.

points:
PARALLELOGRAM LAW OF VECTOR ADDITION Shift the second vector
b parallel to itself so
The sum é = a + b of vectors a and b with their tails at a common point that its tail joins the

head of the first vector
a. Draw the vector

a and b as its sides (Fig. 1.7). c from the tail of the
first to the head of the
second.

O is represented by the diagonal OC of the parallelogram through O with

Note that the vector
sum ¢ lies in the plane
containing vectors a and
b, which is the plane of
the page you are

reading.

Fig. 1.7: The parallelogram law of vector addition.

You can think of adding

You may like to know: What are the magnitude and direction of the resultant two vectors a and bas
c¢? The expressions for the magnitude and direction of the resultant ¢ for two taking two successive
vectors a and b having the angle 6 between them are given as follows: walks: their vector sum
is the vector from the
c = \/bz + 2abcosO + 32 (1.5a) beginning point to the
end point. Note that
_ in® here we are using the
o = tan-! |__@sSin® (1.5b) J
b + acos concept of equality of
vectors.

Here a, b and ¢ are the magnitudes of the vectors a, b and ¢, respectively, and
the angle o between the vectors b and ¢ gives the direction of the vector ¢
(see Fig. 1.7).

_—

You can prove Egs. (1.5a and b) yourself. This is given as terminal question 8.

Note that vector addition is not an algebraic sum. We cannot add the
magnitudes of the vectors a and b to get the magnitude of vector ¢. The
two methods of vector addition described above are called the graphical
methods where we use the geometric representation of vectors. What
happens when you wish to add more than two vectors? Vector addition is
binary, which means that, just like numbers, you must add vectors two at a
time. Before you revise how to do that, you may like to recall two important
properties of the sum of vectors.

PROPERTIES OF THE SUM OF VECTORS

1. Commutative property of vector addition: The sum of two vectors
is the same whatever be the order in which the two vectors are
added. You can verify from Fig. 1.8 that

a+b=Db+a (1.6)
2. Associative property of vector addition: If more than two vectors
are added, it does not matter how they are grouped: Fig. 1.8: Vector addition
(5 + 5) +é=3a+ (5 + é) (1.7) is commutative. .
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You may like to verify the associative property of vector addition before
studying further. For this you will need to apply the triangle law of addition
twice. Study Fig. 1.9 and then attempt SAQ 2 for adding more than two
vectors.

Fig. 1.9: Vector addition is associative: d = (3 + b) + ¢ = a + (b + ¢).

Fig. 1.10: Adding more
than two vectors.

It may seem from

Figs. 1.8 to 1.11 that all
vectors lie in the same
plane, which is the plane
of the paper. This may not
always be true. For
example, in Fig. 1.9, the
vector ¢ may not lie in
the plane of the vector

(3@ + b). Then the
geometric representation
of vectors is not
convenient. If all the
vectors do not lie in the
same plane, you will have
to draw each step of

Eq. (1.7) separately.
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SAQ 2 - Adding more than two vectors

a) Determine the sum of the vectors shown in Fig. 1.10a.

b) Three forces F;, F, and F;, all in the same plane are exerted on an object
(Fig. 1.10b). What force should be applied to it, so that it does not move
under the action of these three forces?

While solving SAQ 2a, did you note that the resultant is the vector drawn from
the tail of the first vector in the sum to the head of the last vector in the sum?
This is the polygon law of vector addition (read the margin remark).

POLYGON LAW OF VECTOR ADDITION

If a number of vectors are represented in magnitude and direction, by the
sides of a polygon, taken in order, then the resultant vector is represented
in magnitude and direction by the closing side of the polygon taken in the
opposite order, that is, from the tail of the first vector to the head of the

last vector (see Fig. 1.11).

(a)

(b)

Fig. 1.11: Polygon law of vector addition applied for determining the resultant
(3 + b + ¢ + d) of four vectors a, b, ¢and d.




You would have noted in your answer to SAQ 2a that even if we use a
different sequence of vectors for addition, the end result is the same.

Now suppose you wish to add a vector a three times to determine (a + a + a).
From vector addition, you can see that the sum is a vector with three times the
magnitude of a and in the same direction as a. We can extend this idea to the
product of a vector with a scalar m (Fig. 1.12). Let us give a formal definition.

MULTIPLICATION OF AVECTOR BY ASCALAR

A vector a when multiplied by a scalar quantity m, is equal to the vector
m a. It has magnitude |m|fa . Also,

1. Ifa=0 and m> 0, then mais in the same direction as a.

2. If a # 0and m<O0, then ma is in the direction opposite to a.

3. Ifaz0andm=0o0r a=0then ma=0.

Vector Algebra - |

Fig. 1.12: Multiplying a
vector by a scalar.

For a scalar m, [m| is
always a positive quantity.

|m|:m if m>0 and

|m|:—m if m<0.

In physics, there are many quantities which involve the product of a vector
with a scalar. For example, the linear momentum p of a particle of mass m
moving with a velocity v is p = mv. As per Newton’s second law of motion, for
a particle of constant mass, the force F is the product of its mass and
acceleration a : F = m a. So far, you have learnt how to add vectors
geometrically. Let us now revise the concept of subtraction of vectors.

1.3.2 Subtraction of Vectors

To subtract vector b from vector a of the same type, we add the vectors
aand (-b):

a—b=2a+(-b) (1.8)
This is also called the difference of the two vectors a and b. Recall that the
vector — b is a vector of the same magnitude as b but opposite in
direction. If you interchange the head and tail of any vector a, you get the
vector — a. Note that, unlike vector addition, vector subtraction is not
commutative because

b-a=-(a-b) (1.9)

Thus, the vectors (b — a) and (a — b) are equal in magnitude but exactly
opposite in direction. We now show you how to subtract vectors.

HOW TO SUBTRACT VECTORS

Suppose you have to subtract vector B from vector A shown in

Fig. 1.13a. Since A — B is the vector A + (- B), we can reverse the
direction of vector B (as shown in Fig. 1.13b) and then add it to A to
get A — B (Fig. 1.13c).

Alternately, when A — B is added to B, it gives A. Hence, we can move
B parallel to itself so that the tails of A and B are placed together.
Then A - B is the vector from the head of B to the head of A

(Fig. 1.13d).

(d)

Fig. 1.13: a) Subtraction
gf vector B from vector
A; b) reverse the -
direction of B to get -B;
c) add Aand -B; d) the

alternative method. 19
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Note that unlike vector
addition, in the scalar
product of vectors, the
vectors need not
represent the same
physical quantity.

[an}
o

(c)

Fig. 1.14: a) Definition of
the scalar product. The
scalar product of vectors
at acute angles is
positive; b) scalar
product of perpendicular
vectors is zero; c) scalar
product of vectors at
obtuse angles is
negative.
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You may now like to solve a problem on vector addition and subtraction.

SAQ 3 - Addition and subtraction of vectors

Using Egs. (1.5a and b), obtain the vectors A+B and A-B given that
|A|:3,o ms~1 with A directed towards east and |§| —40 ms~! with B
directed 45° west of north. Choose appropriate scale and draw vector
diagrams.

1.4 PRODUCTS OF VECTORS

Vectors can be multiplied in two different ways to give either a scalar or a
vector. Depending on whether the result is a scalar or a vector, the product is
called either a scalar product or a vector product. Again, if you know these
concepts well enough, just try the SAQs given in this section. If you are not
able to solve them, go through this section carefully and then try the SAQs.

1.4.1 Scalar Product
Let us first define the scalar product and state its properties.

SCALAR PRODUCT AND ITS PROPERTIES

The scalar or dot product of any two non-zero vectors a and b is written
as a.b and is a scalar quantity defined as:

a.b = [ |I5| cos® = abcosO (1.10)

The angle 6 is the angle between a and b (or more properly, between the
directions of a and b as shown in Fig. 1.14a) when they are placed tail to
tail. There are actually two such angles: 6 and (360° — 0) or (2 — 0).
However, either of these can be used as their cosines have the same
values. The product a.b is pronounced as ‘a dot b’. We now state some
properties of the scalar product, which follow from its definition.

¢ |If the two vectors are parallel, their scalar product is maximum:

a.b = ab for 6 = 0° since cos 0° =1 (1.11a)
e If the two vectors are perpendicular to each other, we have:

a.b = 0 for 8 = 90° since cos 90° =0 (1.11b)
e The scalar product of a vector b with itself is given by:

b.b = b2 or b = +b.b (1.11c)
e The angle between the vectors a and b (when these are placed tail to

tail) is given by: a.b
cosf = —~ (1.11d)

e Commutative property: Scalar product is commutative as it is a scalar
quantity and does not depend on the order in which the vectors appear:

a.b =b.a (1.11e)

e Distributive property: Scalar product also obeys the distributive law:

a.b+c¢) =a.b+a.c (1.11f)




There are many scalar quantities in physics that are expressed as the scalar
product of vectors. For example,

e The work (W) QOne on an object by a coﬁnstantforce IE#durjng its
displacement d is the scalar product of Fandd : W=F .d (see
Fig. 1.15a).

e Power (P) is defined as the rate at which work is done by a force on an
object and is expressed as the scalar product of the force F applied on it
and its velocity v: P=F . v

e The potential energy (U) of an electric dipole having dipole moment p placed
in an electric field E depends on the angle which the dipole makes with the
field. It is expressed as the scalar product of pand E : U= p . E (Fig. 1.15b).

e The potential energy (U) of a magnetic dipole moment L in a magnetic field
B depends on the angle between the magnetic dipole and the field U =[i.B
(Fig. 1.15c).

We can use the scalar product to determine the projection of one vector on
another vector. The projection of a vector @ on another vector b is defined
as the component of a along b (Fig. 1.16). Itis | é|cos 0, where 6 is the angle
between a and b. Also the component of the vector a in the direction
perpendicular to the direction of b is |a| cos (90° - 0) or |a] sine.

a.b

= =1al cos 0 (1.11g)
d

Thus, the component of a parallel to b =

The component of a perpendicular to b = |a| sin® (1.11h)

You may now like to solve an SAQ on the concept of scalar product.

Vector Algebra - |

(c)

SAQ 4 - Scalar product of vectors

a) For each pair of vectors @ and b given below, calculate a . b:
i) a = 4 units, b = 5 units, 6 = 30°
i) a=>5units, b =5 units, 6 =150°

a = 2 units, b = 3 units, 6 = 90°

a = 2 units, b = 3 units, 6 =0°

b) The scalar product of two non-zero vectors is zero. Are the vectors
parallel or perpendicular to each other?

Let us now study the vector product.

1.4.2 Vector Product

In many cases in physics, the product of two vectors is a vector. We,
therefore, introduce another useful product of vectors called the vector
product or cross product and devise a special notation for it.

Fig. 1.15: Examples of
scalar product in
physics.

b cos 6 is the
component of
vector b along A
the direction ,
of vector a. ,/

b cos 0

K(a'cos 0

acos 0 is the
component of
vector a along
the direction
of vector b.

Fig. 1.16: Projection or
the component of a
vector along the
direction of another
vector.
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INTRODUCING THE VECTOR PRODUCT

The vector product of the vectors a and bisthe vectorc=axb given by
¢=3axb = absind é with magnitude ¢ = ab sin@ (1.12)

Here 0 is the angle between a and b (or more properly, between the
directions of a and B) when they are placed tail-to-tail. There are actually
two such angles: 6 and (360° — 0). Since the sines of these angles have
different values, we take the smaller of the two angles in the calculations.
Thus, 0 < 0 <& (Fig. 1.17a). a x b is pronounced as “a cross b”.

The direction of the vector product is given by the unit vector ¢, which is
a unit vector perpendicular to the plane containing the vectors

a and b. We determine the sense of ¢ from the right hand rule: Curl the
fingers of your right hand so that your fingertips point in the direction of
rotation of a towards b. Then the extended thumb as shown in Fig. 1.17b
gives the direction of ¢. Defined in this way, the vectors a, b and ¢ are said
to form a right-handed triad.

To understand the point about the order of vectors, can you tell: What is b x a?

Fig. 1.17: a) Definition of  Follow the definition of the vector product given above. If you curl your fingers

the vector product;

b) right-hand rule for the
direction of the vector
product.
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Don't forget

around the line so that your fingertips point in the direction of rotation of b to a,
then your thumb points in a direction opposite to that of a x b. Thus, the
direction of the vector b x a is opposite to that of the vector a x b but the
magnitudes of both vectors are equal. Thus, we have

axb=-bxa (1.13)

Therefore, the vector product is not commutative. We also say that the vector
product is anti-commutative.

The order of the vectors is important in the vector product. Vector
product is not commutative.

We can express many physical quantities as vector products. Here we give
some examples.

Torque: You may have learnt in your school courses about torque. When a net
external torque is exerted on an object, it brings about a change in its
rotational motion. The torque on an object is defined as

T=rxF (1.14a)
where F is the net force applied on the object and r is the position vector
of the point of application of the force from a point on the axis of rotation
(Fig. 1.18a).

Angular momentum: The angular momentum L of a particle with respect to
a chosen origin (Fig. 1.18b) is defined as the vector product of the position
vector of the particle with respect to the origin and its linear momentum:

L=Fxp (1.14b)



The force acting on a point charge ¢ moving with a velocity vin a
magnetic field B is given by

F-qvxB (1.14c¢)
The force acting on an element ol of a current carrying conductor in a
magnetic field B is given by

(1.14d)

where [ is the current through the conductor. We now state some properties of
the vector product.

PROPERTIES OF THE VECTOR PRODUCT

e The vector product of two parallel vectors is a null vector
(Fig. 1.19a). Thus,

axb =0 since® iszeroand sin0° =0 (1.15a)
e The vector product of a vector with itself is a null vector:

axa=20 (1.15b)
e From the definition of the vector product, it follows that

(kd)xb = k(a xb) = a x (kb) (1.15c)

¢ The vector product of two vectors perpendicular to each other is
maximum (Fig. 1.19b). Thus,

(1.15d)

Here n is a unit vector perpendicular to the plane containing both
a and b and its direction is given by the right-hand rule.

axb =abh when9 is90° since sin90° =1

o The vector product is anti-commutative:

axb=-bxa (1.15€)
o The vector product follows the distributive law, that is,

ax(b+¢)=axb + axc (1.15f)
e The vector product is not associative, that is,

ax(bx¢) = (@xb)xé (1.15g)
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SAQ 5 - Vector products

a) Calculate the vector product @ x b for the vectors a and b given in
SAQ 4(a).
b) Show that torque at a point about the centre of force O due to a force

F = Ff, where ris the distance of the point from the centre of force, is
zero.

The vector product also has a geometrical interpretation, which we now explain
through an example.

(b)

Fig. 1.18: Examples of
vector products in
physics. a) Torque on the
rotating wheel points into
the page perpendicular to
the plane of the paper; b)
angular momentum of a
particle having position
vector r and linear
momentum p.

axb=0
(a)
a
b
|5x5|:ab

(b)

Fig. 1.19: Vector products
of (a) parallel and

(b) perpendicular
vectors.
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EX]L‘M@LQ? 1.1: GEOMETRICAL INTERPRETATION OF THE
VECTOR PRODUCT AS AREA VECTOR

Block 1
A
s/ |
h=>b sind
0
a

Fig. 1.20: Geometrical
interpretation of vector
product as an area
vector.

Usually you think of area as a scalar quantity. However, in many
applications in physics (e.g., while calculating flux), we also want to know
the orientation of the surface of a given area. For example, suppose we
want to calculate the rate at which water in a stream flows through a wire
loop of a given area. The rates of flow of water will be different when we
place the loop parallel to the stream and when we place it perpendicular to
the stream. When the loop is parallel to the stream, no water flows
through it and the rate of flow is zero. So let us now see how the vector
product is used to specify the direction of an area.

Consider the area A of a parallelogram with the vectors aand b as its two
adjacent sides (Fig. 1.20). Note that the tails of the two vectors are at the
same point and the angle between the vectors is 8. The vector product

(@ x b) has a magnitude of ab sin 6. It is perpendicular to the plane
containing the vectors a and b. From Fig. 1.20, you can see that the area
of the parallelogram is given by

A=a><h=a(bsine):]5x5]

We can, therefore, define the vector representing the area of the
parallelogram of adjacent sides a and b as the vector product of these
vectors:

A=axb

By this definition, the direction of the area vector is perpendicular to the
plane of the parallelogram and its sense is given by the right-hand rule.
Thus, the area vector A is normal to the surface.

REMEMBER, the sense of the area vector is arbitrary, but once we
choose it, it is unique.

We now summarise the concepts you have studied in this unit.

1.5 SUMMARY

Concept Description

Scalars m The physical quantities that are completely specified by a number followed by
an appropriate unit of measurement are scalars.

Vectors m The physical quantities that are completely specified by a magnitude which is
a non-negative scalar quantity and a direction in space are vectors. A vector
is represented geometrically by an arrow (a directed line segment).

Equality of Vectors m Two free vectors are equal if they have the same magnitude and direction,

24

regardless of the position of the tail of the vector. If a vector b has the same
magnitude but the opposite direction as any other vector a then we can write

b=-2a
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Unit Vector m A vector of length or magnitude 1 is called a unit vector. By convention, unit

Addition and ]
Subtraction
of Vectors

Multiplication of a
vector by a scalar

Scalar product ]

vectors are taken to be dimensionless. A unit vector is used to denote a
direction in space. Any vector a can be represented as the product of its
magnitude (a) and a unit vector along its direction denoted by a. Then we
have:

[
I
Q
Q>

a
or a=—-=
a |

Triangle Law of Vector Addition: If two vectors a and b to be added are
represented in magnitude and direction by the two sides of a triangle taken
in order (which means that the tail of b is at the head of the vector a), then
their sum or resultant is given in magnitude and direction by the third side of
the triangle taken in the opposite order, that is from the tail of the first vector
to the head of the second vector (Fig. 1.6).

Parallelogram Law of Vector Addition: If the two vectors to be added are
represented in magnitude and direction by the adjacent sides of a
parallelogram, then their resultant is given in magnitude and direction by the
diagonal of the parallelogram drawn through the point of intersection of the
two given vectors.

Polygon Law of Vector Addition: If a number of vectors are represented in
magnitude and direction, by the sides of a polygon, taken in order, then the
resultant vector is represented in magnitude and direction by the closing side
of the polygon taken in the opposite order, that is from the tail of the first
vector to the head of the last vector.

Vector addition is commutative and associative:
a+b=b+a and (@a+b)+é=a+(b+¢)

Subtraction of a vector b from a vector a denoted by a — b is just the sum of

the vectors a and (-b):

a-b =a+(-b)

A vector a when multiplied by a scalar quantity m, is equal to the vector ma,
having the magnitude |m||a|. The following is true for the multiplication of a
vector by a scalar:

m(n)a = (mna = mna Associative Law
(m+n)a =ma+na and m(a +b) = ma+mb Distributive Laws

If m=0, then ma is a null or zero vector, which has zero magnitude but no
definite direction.

Ttle scalar product of two vectors a and b called “a dot b” and denoted by
a.b is a scalar quantity defined as

a.b = 3 lB\ cos® = abcos®
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Components of a ]
vector in a given
direction

Vector product ]

Fig. 1.21: Forces on an
object.
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A vector can be resolved into its component vectors along any arbitrary
direction. The components of a vector a parallel and perpendicular to any
other vector b which makes an angle 6 with the vector a are given as:

The component of a parallel to b = ab _ |a| cos®

b

The component of a perpendicular to b = |a| sin@

The vector product of two vectors a and b called "a cross b" and denoted by
a x b is a vector quantity defined as

¢ = axb = ab sin6 ¢ with magnitude c = ab sin®

The direction of the vector product is given by the unit vector ¢ which is a
unit vector perpendicular to the plane containing the vectors a and b.
We determine the sense of ¢ from the right-hand rule.

1.6 TERMINAL QUESTIONS

1. A man walks 1.0 km east, and then walks 1.5 km in the direction 60°
west of north. Determine the resultant displacement of the man using the
graphical method.

2. An object is supported by two cables, which exert forces F, and F, as
shown in Fig. 1.21. The weight of the object is W =400 N. Determine F,
and F; if the net force on the object is zero.

3. a) Abird flies directly opposite to the wind at a speed of 2.0 kmh™" with
respect to the wind. Wind flows from east to west at a speed of
1.0 kmh™" with respect to the ground. What is the velocity of the bird
with respect to the ground?

b) A man rows a boat across the river at a speed of 2.0 ms~". The river
is flowing at a speed 1.2 ms~". Determine the direction in which the
man must row his boat if he wishes to land on the other bank at a
point directly opposite to his starting point.

4. Show that for any two vectors a and b, if the sum and difference of the
vectors are perpendicular to each other, the vectors are equal in
magnitude.

5. Determine the angle between any two vectors a and b of non-zero
magnitude given that |é + Bl = lé - Bl.

6. Show that for any two vectors @ and b,

L2 2

|a.b' + (axb[ = a’b?
7. A proton having a speed of 5.0 x 10 ms™ moves vertically upward in a
uniform magnetic field under a force of 8.0 x 10~'# N towards west. When
there is no force on it, it moves horizontally in the northern direction. What

is the magnitude and direction of the magnetic field in this region? Charge
on the proton = 1.6 x 107'° C.
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10.

11.
12.

13.

14.

15.

Prove Egs. (1.5a and b).

Determine a. (b + ¢) given that a = 2 units, b = 6 units, ¢ = 1 unit and the
angles between a and b, and a and ¢ are 0° and 90°, respectively.

The magnitudes of vectors f and s are 5 units and 6 units, respectively,
and the value of r. § is 15. Calculate the angle between the two vectors.

Calculate the vector product of the vectors T and s given in TQ 10.

Determine the resultant of the forces IE1, i=2, IE3, i=4 and ?5, shown in
Fig. 1.22. (ABCDEF is a regular hexagon.)

The magnitude of a vector a is 5 units and it is directed towards east.
Vector b has magnitude 4 units and is directed 45° west of north
(Fig. 1.23). Determine the magnitude and direction of @ + b and a — b.

A box is being pulled by a rope that makes an angle of 45° with the
ground. The force on the box along the rope is 105 N (Fig. 1.24).
Determine the horizontal and vertical components of the force. What is
the work done by the force in moving the box 10 m along the ground?

Three vectors &, b and € satisfy the condition a + b + ¢ = 0. If|a|=2,/b|= 1
and |¢| = 3 determine the value of a.b + b.¢ + ¢.a.

1.7 SOLUTIONS AND ANSWERS

Pre-test

1.

a) Temperature — scalar; b) acceleration — vector; c) speed — scalar;
d) density — scalar; €) velocity — vector; f) wavelength — scalar;
g) mass — scalar; h) displacement — vector; i) charge — scalar;

j)  melting point — scalar.

Force, momentum, impulse, electric field, velocity, displacement, magnetic

field, weight. Draw arrows for each of these quantities and use a suitable
notation as shown for two examples of force and electric field below:

_—:

Self-Assessment Questions

a) The vector fis equal to the vector a. As you can see from Fig. 1.5, f
and a are equal in both magnitude and direction.

b)  Refer to the unit vectors iand jin Fig. 1.25. The vectora=2.5 i and
the vector b=4.0j .

Fig. 1.22: Diagram for
TQ12.

1
E
BXS—Ob
X
a

Fig. 1.23: Diagram for
TQ13.

é()
A

Fig. 1.24: Diagram for
TQ14.

—

Fig. 1.25: Diagram for
SAQ 1(b).



Block 1

Mathematical Preliminaries

\b Nl

e

2 X

Fig. 1.26: Diagram for
SAQ 1(c). The unit vector
along each vector is
shown by the darker
arrow.
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(b)

Refer to Fig. 1.26. The vectors in the unit vector notation are:
=dd f=rf

ee g=99

0Ol Tl

Il I 1]

O T

o o
o
Il

The displacement is 0, the null vector.

Refer to Fig. 1.27 where we have shown one way of adding up the
vectors given in Fig. 1.10(a). Remember you would get the same
resultant if you chose a different order of addition of vectors.

g d
+

q=r

=a+b+c+d i

o+

a
(c) (d)
Fig. 1.27: Addition of four vectors.

We first add a and b to get p = a + b (Fig. 1.27b) by the triangle law of
addition. Nextwe add pand ¢togetfr=p+¢=a+b+¢

(Fig. 1.27c) using the triangle law of addition for p and ¢. Finally we
add the vectors r and d to get the resultant vector
q=r+d=a+b+c+d (Fig. 1.27d), which is the sum of the four
vectors.

The resultant force on the object is the vector sum of forces F: F,
and F3 (Fig. 1.28a). Itis F4 (Fig. 1.28Db).

To ensure that the object does not move, a force equal and opposite
to the net force F, must be exerted on the body. So the force to be
applied (Fig. 1.28¢c) is F=—F,.

F3

(a) (b) (c)
Fig. 1.28: Diagram for SAQ 2b.
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Fig. 1.29: Diagram for SAQ 3.

To determine p (Fig. 1.29a), we use Egs. (1.5a and b) with b=Aand
a=Bandhence b=3.0ms™', a=4.0 ms™" and 0 = 135°, respectively. The
angle o is the angle the vector p makes with the vector A. The magnitude
and direction of p are:

p=4/(3.0) +(4.0)° +2(3.0)(4.0)cos135° ~2.8ms™",

4.0)sin 135°
(4.0)sin 135 ):tan1 (16.5) = 86.5°

o= tan™
(3.0) + (4.0)cos135°

To determine q (Fig. 1.29b), we use Egs. (1.5a and b) with b = — B and
a=Aandhence b=4.0ms™', a=3.0ms™' and 0 = 45°, respectively. The
angle o is the angle the vector g makes with the vector — B. The
magnitude and direction of q are:

q=(3.0)" +(4.0)° +2(3.0)(4.0)c0s45" ~ 6.5ms™",

o tan-! (3.0)sin45°
(4.0)+(3.0)cos 45°

]: tan™1(0.346) = 19°

4. a) We use Eq. (1.10) to determine a.b :
i) Fora=4 units, b=5 units, 6 =30°
a.b =4 x 5 x cos 30° = 10~/3 units
i) For a=>5units, b=>5 units, 6 =150°
a.b =5 x5 x cos 150° :—2—25 3 units
iii) Fora=2units, b= 3 units, 6 =90°
a.b =2 x 3 x cos 90° = 0 units
iv) For a=2units, b=3units, =0° a.b =2 x 3 x cos 0° = 6 units

b) Let 6 be the angle between the vectors. Since the magnitude of the
vectors is not zero, from Eq. (1.10) for the scalar product, we can say
that
a.b=abcos6=0 = cos6=0 or 6=90°
So the vectors are perpendicular to each other. 29
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Fig. 1.30: Diagram for
Terminal Question 1.

Fig. 1.31: Diagram for
Terminal Question 2.

Fysin120° =
V3[R + Fyoos120°)

(3o

2F, [g) =3F,

or F=F

30

a) To find the vector product we use Eq. (1.12).
i) For a=4units, b=5 units, 6 =30°
axb=4x5xsin30°¢=10 & units
i) For a=5units, b=>5 units, 6 =150°
axb=5x5xsin 150°¢ =12.5¢ units
iii) Fora=2units, b= 3 units, 6 =90°
axb=2x3xsin 90°¢ =6¢ units
iv) For a=2units, b= 3 units, 6=0°
axb=2x3xsin 0°¢=0
In each case, ¢ is the unit vector perpendicular to the plane containing
vectors a and b.
b) The torque T is given by Eq. (1.14a): T =r x Fr

Writing Fas rf we get, T = r F (f x 1) = 0, because the cross
product of a vector with itself is zero [see Eq. (1.15b)].

Terminal Questions

1.

Refer to Fig. 1.30. The final displacement is ¢. The vector a represents the
displacement 1.0 km towards east on a chosen scale. Vector b shows the
displacement of 1.5 km along 60° west of north. The final displacement ¢
is obtained by joining the tail of a to the head of b .

Here we reproduce Fig. 1.21 as Fig. 1.31. Since the net force on the
object is zero, we have

F1+|E2+W:6=>IE1+F2=—W (I)
So the vector sum F of the forces F4 and F, must be equal in magnitude
and opposite in direction to W as shoyvn in Fig. 1.31. Let us now write the

expression for the resultant F= F, + F, using Egs. (1.5a and b) with
a=F,,b=F,, 06=120°and o= 60°. Then we get:

F = JF2+F2+2FF,cos120" =\|F2 +F,2 —FF, (il
o F,sin120°
tano = tan 60° =+/3 = LOO (iii)

F, + F,cos120

Simplifying Eq. (iii) we get F;=F, (read the margin remark). This tells us
that the magnitudes of F, and F,are equal. Substituting this result in
Eq. (ii) and since F = W, we get:

F= JF?+F?—F? =F, = 400N and F,=400N

a) Let the velocity of the bird with respect to wind be v, and the wind
velocity with respect to ground be v;5. The velocity of the bird with
respect to ground (Vgg ) is given by

Ve < Vaw T Vwe
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Since the bird is flying directly opposite to the wind, we can write
VB = VBw ~ Ywe
Vg =2.0kmh™ — 1.0 kmh™" = 1.0 kmh™"

Thus, the bird flies at a speed 1.0 kmh™" with respect to the ground in
the direction opposite to the wind, that is, from west to east.

b) Refer to Fig. 1.32. The velocity of the river is vz . Let the velocity with
which the man is rowing the boat be vz . The resultant velocity vg of
the boat should lie along AB as shown in Fig. 1.32. So the angle the
resultant velocity Ve makes with vz is oo = 90°. Let 6 be the angle
between vz and V. We now use Eq. (1.5b) to determine 6 with b = vz
anda=vg. Itis given that vg=1.2 ms ' and vg=2.0 ms . Putting
these values in Eq. (1.5b), we get:

(2.0)sin6
(1.2)+(2.0)cos6
(1.2)+(2.0)cos® _

(2.0)sin®

tano =tan90° =

Fig. 1.32: Diagram for
Terminal Question 3.

or cot 90° = 0= (1.2)+(2.0)cos8=0

or  cosf= —% — 0=cos (-0.6) = 127°

4. For any two vectors a and b, the sum and difference of the two vectors are
a+banda-b. Since a+ b and a- b are perpendicular to each other,
their scalar product is zero and we have:

a
or aa-bb=a’-b*=0 since b.a=ab
or a’=b®> = a=b
Hence, the magnitudes of a and b are equal.

5. Using Eq. (1.11c), we can write the magnitudes of a+b and a—b as

|é+5| = J(@a+b)(a+b) = \/a2+b2+2ab cos 9

Since it is given that |a + b| =|a—b|, we can write
a’ + b’ +2abcosd = a° + b°— 2ab cosd
or 4ab cosd = 0 or cosO = 0 since a and b are non-zero.

Therefore, 8 = 90°. So the angle between a and b is 90° .

6. Let the angle between the vectors a and b be 0. Then using Egs. (1.10
and 1.12) for the scalar and vector products, respectively, we can write

-2 L =2 .
|a.b| + ,axb’ :a2b200826+a2b23|n26

=a’ b’ (cos2 0 + sin? 0) = ab? 31
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7. The force on the proton is given by F = qv x B. When the proton's velocity
is in the north direction in the horizontal plane, the force on it is zero. This
implies that v is parallel to B. The direction of B is then towards north in
the horizontal plane. Therefore, when the proton moves vertically upward,
v is perpendicular to B and

F = qvB sin 90° = qvb

-14
o B-F 8.0x107N

= =0.1tesla
Qv 1.6x107'9C x5.0 x 105 ms™*

8. InFig. 1.7, redrawn here as Fig. 1.33, we can see that the sides of the
parallelogram, OA and OB, represent the vectors a@ and b, respectively,
whereas the diagonal OC represents the resultant vector ¢ = @ + b. To
determine the vector sum of @ and b we need to determine the magnitude
and direction of ¢. The magnitude of the vector ¢ is just the length of the
diagonal OC of the parallelogram. To calculate OC, we extend the side OB
of the parallelogram to E and drop a perpendicular CD on OE from the

point C. In the right-angled triangle COD, we have

oc =\op? + cD? = (0B + BD)? +CD? (i)

Now, we can see from Fig. 1.33 that in the right-angled triangle CDB:

. BD = BC cosb = OA cos0 = a cosd and
Fig. 1.33: Parallelogram
law of vector addition. CD = BC sin 6 = OA sin6 = a sin®

Substituting these values in Eq. (i), we get OC, the magnitude of ¢ :

c= \/OBZ +BD? +2(OB)(BD)+CD2 =\/b2 +a°cos?0+2bacosd +a’sin’0

= \/bz +a? +2bacosd

The direction of € is defined by the angle o that the vector ¢ makes
with the vector b. We have

_1( CD 1 CD ) _1( asin® )
a=tan”'| —|=tan”'| ———[=tan™ | ——
oD OB+ BD b+ acos6

9. Using the distributive property of the scalar product we can write:
a.(b+¢)=3a.b+a.c=abcos0°+accos 90°=ab=12

15 1
or cosg = — = —
| 5x6 2

=l
wn

10. Using Eq. (1.10), we can write cos0 =

=
(71}

7]

1
Thus, the angle between the vectors is 6 = cos™ (5) =60°

11. The vector product of the vectors with magnitudes r =5 units, s=5 units
is

Fx8=5x6xsin 60°¢ =153 & units

32 where the angle between them is 6 = 60°.



12. All sides of a regular hexagon are equal. From Fig. 1.22 (repeated here as

Fig. 1.34), we can see that

E, + Fg=F,
(" AF is parallel to CD, we can place IE5 along CD and use the triangle law
of addition).
Similarly:
Ey+ Fy=Fy

F1 + IE2 + F3+ F4+ F5:(F2+ F5)+F3+(F1+F4)=3F3

13. To determine the magnitude of ¢ = a + b we use Eq. (1.5a) with a = 4,
b=5 and 0=(90° + 45°) = 135° (see Fig. 1.35a).

¢ =+/(5) +(2).(5)(4)cos135° + (4)? = 3.6 units

o A
o= tan ' 25135 ol 2| —tan'[1.3] = 52.4°
5+ 4cos135° 5v2 -4
y y
A A
e
b -
o By X
135 -
(a) (b)

Fig. 1.35: Diagram for Terminal Question 13.

To calculate @ — b we see that the angle between a and -b is 315°
(or — 45°) (Fig. 1.35b).

|6| = \/(5)2 +(4)? + (2)(5)(4)cos315° = 8.3 units

The angle that ¢ makes with a is

o= tan™ (ﬂ) =tan™ I tan™" (—0.36)~340°
5+ 4c0s315° 52 +4

14. The horizontal component of the force is

Fry =105 cos 45° = 74.3N

The vertical component of the force is
Fy =105 sin 45° = 74.3N

The work done by the force is

W= Fd cos 45° = 105 x 10 x 45° = 743J

Vector Algebra - |
E D
F C
Fs
A |”:1 B

Fig. 1.34: Diagram for
TQ12.

33



Mathematical Preliminaries

Block 1

— |4 +ab+bc=0=ab+bc=—|a =-4 (i

h =~ P 12
Similarly b(a+b+c)=0:>ba+bc=—|b| =-1 (ii)
and 5.(5+5+E)=0:>66+65:—|E|2:—9 (iii)
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UNIT2

The position of this train is a vector VECTOR AL( ;EBRA_II
function of time. What is its velocity? This

unit will help you answer such questions.

Structure
2.1 Introduction 2.4 Vector Functions
Expected Learning Outcomes Defining Vector Functions

2.2 Vector Components in the Cartesian Coordinate System Derivative of a Vector Function

Unit Vectors in the Cartesian Coordinate System 2.5 Summary
Representing a Vector in terms of its Components 2.6 Terminal Questions
2.3 Scalar and Vector Products in Component Form 2.7 Solutions and Answers

Scalar Product in Component Form
Vector Product in Component Form

STUDY GUIDE

In Unit 1, you have revised elementary concepts of vector algebra using the geometric/graphical
representation of vectors as directed line segments. In this unit, we discuss the algebraic
representation of vectors in terms of their components relative to the Cartesian coordinate system. You
may have studied about the components of vectors in your school mathematics or physics courses. If so,
you could quickly revise Secs. 2.2 and 2.3 and solve the Examples and SAQs given in them. If not, you
should study them thoroughly. The concepts discussed in Sec. 2.4 may be new for you. Recall that you
have learnt how to differentiate functions of a single variable in your class 12 mathematics course. You
may like to revise the methods. Then it would be easier for you to understand the section. Still, study it
carefully. There is a great deal of algebra in this unit. So, you should always keep a pen/pencil and
paper with you while studying it. Solve all steps in all Examples, SAQs and Terminal Questions. Of
course, you should try to solve the problems on your own without first looking at the solutions and
answers!

“The book (of universe) is written in the mathematical language ..
without whose help it is humanly impossible to comprehend a
single word of it, and without which one wanders in vain through a
dark labyrinth.”

Galileo Galilee
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Cartesian coordinates

are rectilinear,
two-dimensional or

three- dimensional
coordinates, which are also
called rectangular
coordinates. By convention,
the three axes of the
three-dimensional Cartesian
coordinates (denoted as
the x, y, and z-axes) are
chosen to be linear and
mutually perpendicular.

In three dimensions, each
of the coordinates x, y

and z may lie anywhere in
the interval (— oo, ).

NOTE

In your written work,
always use an arrow
above the letter you
use to denote a
vector, e.g., 1. Use
a cap above the
letter you use to
denote a unit vector,
e.g.,f.
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2.1 INTRODUCTION

In Unit 1, you have revised elementary concepts of vector algebra. You have
used the graphical (or geometric) representation of vectors to add and
subtract vectors without any reference to the system of coordinates. Defining
vectors and vector operations without any reference to a coordinate
system makes it possible to express the laws of physics using vectors. This is
because these do not depend on the coordinate system. For example, in the
vector notation, we write Newton’s second law of motion as F = ma. This
aspect of vectors makes them a very powerful tool in physics.

However, when vectors are represented by directed line segments, many a
time, their addition/subtraction becomes difficult to visualize in three
dimensions. Hence, the graphical/geometrical representation of vectors is of
limited use in three dimensions. We find that it is far easier to represent
vectors algebraically, in terms of their components relative to a coordinate
system. In this unit, we use the algebraic representation of vectors for
carrying out various vector operations such as addition/subtraction/scalar and
vector products. You will see that vector algebra becomes quite simple when
we represent vectors in terms of their components.

In Sec. 2.2, we explain how to represent a vector algebraically in terms of its
components in the 2D and 3D Cartesian coordinate systems. We also explain
how to add and subtract vectors in component form. In Sec. 2.3, you will learn
how to determine the scalar and vector products of vectors.

While several physical quantities are expressed as the sum and products of
constant vectors, several physical quantities also change with time or vary
from point to point in space. For example, the velocity of an object may
change with time and the electric field of a point charge varies in space. Such
physical quantities are represented by vector functions of position or time.

In Sec. 2.4, you will learn about vector functions or vector valued functions
and their examples in physics. You also know from school physics that
velocity and acceleration are the first and second time derivatives,
respectively, of displacement. Displacement itself could be a function of time.
In physics, you need to know how to determine the time derivative of vector
functions. This is what you will learn in Sec. 2.4.2.

In the next unit, you will learn about first order ordinary differential equations.

Expected Learning Outcomes

After studying this unit, you should be able to:

< express a vector in terms of its components and the basis vectors in two
and three-dimensional Cartesian coordinate systems;

< add and subtract vectors in their component form;

< calculate the scalar and vector products of vectors using their component
form;

** differentiate vector functions; and

< solve physics problems based on the applications of vector algebra.




2.2 VECTOR COMPONENTS IN THE CARTESIAN
COORDINATE SYSTEM

To define the components of a vector in a particular coordinate system, we
need to define the unit vectors directed along the coordinate axes in the
direction of increasing coordinates. To keep things simple, we first define the
unit vectors along the coordinate axes in the two-dimensional Cartesian
coordinate system.

2.2.1 Unit Vectors in the Cartesian Coordinate System

You are familiar with the two-dimensional (2D) rectangular Cartesian coordinate
system from your school physics and mathematics courses. It consists of two
mutually perpendicular axes denoted as the x and y-axes (Fig. 2.1). Note that
the x and y-axes are perpendicular to each other. The point O at the
intersection of the two axes is called the origin of the coordinate system. The
positive values of the coordinates are measured from the origin along the axes

in the direction specified by the arrows. We denote the unit vector along the +x
direction by i and the unit vector along the +y direction by ] These are

constant vectors in the Cartesian coordinate system.

The three-dimensional (3D) Cartesian coordinate system has 3 axes: the x, y and
z-axes. The unit vectors along the x, y and z-axes in this coordinate system are
denoted by i, jnand k, reépectively. We could choose the z-axis in either of the two
directions shown in Figs. 2.2a and b. This brings us to the notion of right-handed
and left-handed Cartesian coordinate systems.

[NA 4

—
N

(a) (b)

Fig.2.2: Unit vectors in the a) right-handed and b) left-handed 3-dimensional (3D)
rectangular Cartesian coordinate systems.

You may like to know: What is meant by a right-handed and a left-handed
Cartesian coordinate system? By convention, the coordinate system shown
in Fig. 2.2a is the right-handed Cartesian coordinate system. Note that for this
system, the three coordinate axes form a right-handed triad. In this system,
when you curl the fingers of your right hand around the z-axis so that your
fingertips point in the direction of rotation of the positive x-axis towards the
positive y-axis, your extended thumb points in the direction of the positive
z-axis (Fig. 2.3). To understand this further, recall the definition of the vector
product from Sec. 1.4.2 of Unit1. For a right-handed system, the vector

Vector Algebra - 1l

—

Fig. 2.1: Unit vectors in
the 2D Cartesian
coordinate system.

X y

Fig. 2.3: Right-hand
rule for the right- handed
coordinate system.
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If any one of the unit
vectors, f,j and K in the
right-handed coordinate
system is reversed, we
would get a left-handed
coordinate system.
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products of the unit vectors i, j and k along the coordlnate axes foIIow the
rlght hand rule, that is, for the right-handed system: i x j =K, j xk =i and
kxi= j

In the left-handed Cartesian coordinate system, shown in Fig. 2.2b, when you
curl the fingers of your left hand around the z-axis so that your fingertips point
in the direction of rotation of the positive x-axis towards the positive y-axis, the
direction in which your extended thumb points is taken to be the direction of
the positive z-axis. We must always specify which of the two Cartesian
coordinate systems - right-handed or left-handed — we are using. In all
our B. Sc. physics electives including this one, and in most other books in
physics, the right-handed Cartesian coordinate system is chosen for
describing vectors. Let us now see how a vector is represented in the
Cartesian coordinate system in terms of its components.

2.2.2 Representing a Vector in terms of its Components

y
Y P(x,y
a
y ’:A
i =9 o x
ol I%
X

Fig. 2.4: Vector
components in the 2D
Cartesian coordinate
system.

You can see from Fig. 2.4,

that
a.j=acos(90° - 0)
= asin0

38

We can express any vector in terms of the unit vectors directed along the
X, y and z-axes, or in terms of the x, y and z components of the vector. The
process of determining the components of a vector along the coordinate
axes is also called resolving the vector or resolution of the vector along
the coordinate axes. As before, we start by defining the components of a
vector in the two-dimensional Cartesian coordinate system.

Let i and ] be the unit vectors along the x and y-axes, respectively. Fig. 2.4
shows a vector a in the xy plane represented geometrically by the directed
line segment OP . The origin O is the tail of the vector and P, its head. Let the
coordinates of the point P be (x, y). We draw the lines PX and PY
perpendicular to the x and y-axes, respectively, from P.

The vector component of the \fector a, along the x-axis, is defined as the
vector of magnitude OX along i. Recall from Sec. 1.4.1 that it is also the
projection of a along i given by a.i. The scalar component of a along the
X-axis or f(also called the x component of a) is denoted by a,. It is a scalar

quantity given in this case by a, = x, the x coordinate of the point P.

Similarly, the vector component of a along the y-axis is the vector of
magnitude OY along j. The scalar component of a along the y-axis or ]
(also called the y component of a)is denoted by a, . It is a scalar quantity

given in this case by a,, = y, the y coordinate of the point P.

If © is the angle the vector a makes with the x-axis or with f, then from simple
trigonometry (Fig. 2.4), we can write:

a, =OX =acosf=a.i and =0Y =asind=a.j 2.1)

From Fig. 2.4, you can also see that a is the vector sum of its vector
components OX = a, = a,i and OY = a, = ay] and, therefore,

Q|

a=a,+a, =aXf+ayj=acosei+asin6j (2.2a)



where we have used the results of Eq. (2.1) as well. To complete the
description of the vector a in terms of its components, we write down the
magnitude and direction of the vector in terms of its scalar components.
From Eq. (1.11¢) of Unit 1 and Eq. (2.2a), the magnitude of ais given as

a=.a.a-= \/(axf + ay]) . (axf + ayj) = \/(a)z( +a]) (2.2b)

The direction of the vector a is specified by the angle 6, which is taken to be
positive when measured anticlockwise from the x-axis. From Fig. 2.4, you can
see that it is given by:

a
0 =tan L (2.2¢)

ax

Now a could be any vector. But if it represents the position vector of the
point P, we usually denote it by r and write Egs. (2.2a, b and c) as:

r=xi+yj r=yJ(x*+y?) and o =tan Y (2.3)
X
Further, Egs. (2.2a, b and c) hold for any vector lying in the xy plane with its

tail at the point A(x4,y4) and head at the point B(x5, y,)as shown in Fig. 2.5.

The vector and scalar components of the vector a at an angle 6 with the
x-axis, are given as follows:

a=a, +a, =a,i+aj (2.4a)

ay, = Xp—Xy=a.i=acosb, ay:yz—y1:é.j:asin9 (2.4b)

You may verify Egs. (2.4a and b) from Fig. 2.5. Further,

a = (@ +a2) = J(xa ~x)? + (y2-y1}) (2.40)
and 0 = tan_1a—y = tan_1M (2.4d)
ay (X2 =X4)

So far, you have learnt that any vector a lying in the xy plane can be
represented either geometrically by the directed line segment AB or by its
components (a,, a, ) in the two-dimensional Cartesian coordinate system.

You have also learnt that the magnitude and direction of the vector are
completely specified in terms of its components relative to the two-
dimensional Cartesian coordinate system. You may now like to determine the
components of some vectors. Try the following SAQ.

S_,‘ZlQ 1 - Cartesian components of vectors

Determine the x and y components of vector A of magnitude 3, vector B of
magnitude 4 and vector C of magnitude 5 at the angles of 60°, 135° and
210° with the x-axis, respectively.

Before proceeding further, let us put all these results at one place.

Vector Algebra - 1l

Eq. (2.4a) is obtained
when we apply the triangle
law of vector addition to
the vectors a,i and a, .
You can also see from

Fig. 2.5, that in the right-
angled triangle ACB,

(AB)? =(AC)? +(CB)?

2 2 2
=a” =ay +a
and

tanG:E:—
AC

»
»

j [907]

ol j

Fig. 2.5: Resolution of a
vector in a two-
dimensional Cartesian
coordinate system. If
the coordinates of A
and B are (x4,y4) and
(x9,y5), respectively,
then a, = x, — x; and
a, =Yz = Y1
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2D CARTESIAN COMPONENTS OF A VECTOR

You may know that a vector
of the type ma+nb, where
m and n are scalars is
called a linear
combination of a and b.
So the vector a in

Eq. (2.4a) is a linear
combination of the unit
vectors i and ] The unit
vectors i and ] along

the x and y-axes, constitute
the basis vectors for the
2D Cartesian coordinate
system. These vectors are
sometimes called the
standard basis.

Since the three unit
vectors i,]and R,are

perpendicular to each
other, we have

i.i=1.1c0s0°=1,
j.i=1.1c0s90°=0
k.i=1.1c0s90° =0
ancj

a.i=(a, |+ayj+a K).i

—al |+aj|+ak|

= aX
You can obtain
ayand a, in the same

way.
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e Any vector a in two-dimensional space with tail at the point (x4, y)
and head at the point (x5, y,)can be represented in terms of its x and y
components a, and a, along the two-dimensional rectangular

Cartesian coordinate axes (the x and y-axes) as

y ] (2.4a)

e The scalar Cartesian components of a (also called the x and y
components) in 2D are, respectively,

a, = Xp — X4 = a coso, a, =Yy, -y, =asinb (2.4b)
e The magnitude of a is
= J@2 +a2) = J(xo %)% + (v5 - y1)?) (2.4)

e The direction of the vector a is given by the angle 6 which the vector a
makes with the x-axis as

(2.4d)

The real world, however, is three-dimensional. So we now generalize what you
have learnt about the vector components in a plane, to describe a vector in
three-dimensional space. For this, we use the three-dimensional Cartesian
coordinate system. We can represent any vector in three-dimensional space,

in terms of its components along the right-handed 3D Cartesian coordinate axes.

Note that i] and k are the unit vectors along the x, y, z-axes, respectively.
Now, consider a vector a having vector components axi, ayj and a, K,
respectively, with respect to the right-handed Cartesian coordinate system. For
any vector a in three dimensions, we can write

a=a,i+a,j+ak (2.5)

Extending Egs. (2 4a, b) to the 3D case, we can write the components of the
vector a along i, j and Kk, respectively, as (read the margin remark):

a, =a.j

a, =a.i, and a, =ak (2.6)
Let us now obtain the magnitude and direction of the vector a in terms of its
components (ay, a, a,). For this, you need to study Fig. 2.6. The vector a
shown in Fig. 2.6a has its tail at the origin and its head at the point

P (x4,¥1,21) - The magnitude of a is given by:

2 2 2

a=.ay+a, +a;
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(a) (b) p

(c)

Fig. 2.6: a) Vector a in the 3D rectangular Cartesian coordinate system; b) angles between
the vector and the x, y and z-axes and (c ) vector with its tail at P and head at Q in

the 3D rectangular Cartesian coordinate system.

The direction of the vector a is given by the cosines of the angles between
the vector and the respective unit vectors in the x, y and z directions, which
are cos o, cos 3 and cos y. These are called the direction cosines. The
angles o, B and y are shown in Fig. 2.6b. Note that o is the angle between a
and i, denoted symbolically as (a, |) B is (a, j) andyis (a, k) So we can

write
a, = (a.i)=acosa (2.8a)
a, = (a. j) = acosp (2.8b)
a, = (a. k) = acosy (2.8¢c)
Squaring Egs. (2.8a, b and c), adding them, and comparing the result with
Eq. (2.7), we get
a? (cos2 o+ cos? B+0032 y) = a)z( + a}% + a§ = a2
Thus, we have cos? o + cos? B + cos? y=1 (2.9)

So the sum of the squares of the direction cosines is equal to one.

Now you have also studied in the two-dimensional case that the tail of the
vector need not necessarily lie at the origin.

Suppose the vector a (as shown in Fig. 2.6¢) has its tail at the point
P(x4,¥1,Z1) and its head at the point Q(x»,y»,2,). In that case, as before, we
can write the components of the vector as:

ay=Xp—X, a,=Yy,-y; and a,=2z -z (2.10a)
The magnitude of vector a is the length of the line segment PQ (Fig. 2.6¢). It
is given by

a=\a?+al+al = (xp - x1f +(y2 - 1 + (22 - 1) (2.10b)

In general, you could
choose any point to be
the origin of the
coordinate system.
However, for simplicity,
without any loss of
generality you may
also choose P to be the
origin of the coordinate
system. In that case
the components of the
vector would be the
coordinates of the point
Q.
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The vector a could
represent a physical
quantity like the velocity,
acceleration, force or
electric field, etc. Clearly,
the magnitude of each of
its components must have
the unit appropriate to the
physical quantity
represented by the
vector. For example

you can have a force

F = 2Ni + 3Nj - 1Nk
which, by convention,
we also write as

F =(2N, 3N, —1N).

The magnitude of the
force is given as
F=[2%+3% .+ (-1Y]"*N
Similarly, you could

have a displacement
d=(2m)i+ (1m)j
which has a magnitude
of v/5m. Note that
vectors d and F are
different because they
represent different
physical quantities.

In Eq. (2.12), iff stands
for the phrase ‘if and
only if.
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Thus, any vector a, which is represented geometrically by a directed line
segment PQ in three-dimensional space may be represented algebraically
by a set of components a, (= X, — x1), a,(=y2 — y1), a,(= z, - z), where
(X1, ¥1, 1) and (x5, y5, Z5) are the coordinates of the points P and Q,
respectively, relative to the origin in a right-handed Cartesian coordinate
system. We now revisit the concepts of the null vector, equality of vectors and
vector addition and subtraction in the algebraic representation.

Null vector: If a is a null vector, which is a vector of zero magnitude, each of
its components must be zero. In other words,

a=0 = a,=a (2.11)

Equality of two vectors: If the vectors a = a, i + a, j + a, k and

b=b,i+b,j+ b,k are equal, their respective components along the x, y

and z-axes must be equal:

ai+a, j+ak=b.i+b,j+bk iff a,=b, a, =b, a,=b, (2.12)
Addition and Subtraction of Vectors: For any two vectors
d=ayi+a,j+a,k and b=bi+b, j+b,k (2.13a)
the vectors ¢ =a + b and d = a — b are, respectively, given by
c =é+5=(ax+bx)i+(ay +by)j+(az+bz)ﬁ (2.13b)
and d=a-b=(a, —b)i+(a —by)j+(a, - b,k (2.13¢c)

Let us take an example to apply these concepts in physics.

o =
>
4

—
[

E)@M@Lﬁ 2.1: POSITION VECTOR AND DISPLACEMENT IN
THE CARTESIAN COORDINATE SYSTEM

Fig. 2.7: The position
vector r of the point Pin
the Cartesian coordinate
system.
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The position vector of a point in space gives its position relative to the
origin of any given coordinate system. The position vector of the point P
relative to the Cartesian coordinate system with its origin at O is shown in
Fig. 2.7. The point P is completely specified by its Cartesian coordinates

(x, y, ). The position vector of the point P is usually denoted by the vector

r directed along the line OP from O to P. Its magnitude is equal to the
length of the line segment OP. In terms of its components along the x, y and
z-axes, respectively, we can write,

r=xi+yj+zk (2.14a)
The magnitude of r is the length of the line segment OP given by
ro=x?+ y2 +2° (2.14b)
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Since the position vector is defined with respect to the origin of a
coordinate system, it is not unique. Can you say why it is so?

It is because the origin of the coordinate system can be chosen to be
anywhere and is not unique. For example, when you wish to locate the
base of a tree, say, in a park, you could choose to do so using either the
gate of the park or the middle of the park as the origin of the coordinate
system. The position vectors of the base of the tree in these two cases
would be different. Mathematically, these are two different ways of
specifying the same physical point in space and these two descriptions
must be related in some way. These relationships go by the name of
transformation equations and are very important in physics.

Displacement of a particle: WWhen a point particle moves from a point A,
having position vector r; = x; i+ Y1 j+ z k, to a point B having position
vector r, = Xo i+ Yo j+ Z k, the displacement of the particle from A to B

(Fig. 2.8) is defined as the vector

AF=r2—

=%

(2.15a)

Geometrically, it is the vector drawn from the initial position A to the final
position B of the particle. From Eq. (2.13c), the displacement vector, in
component form, is given by

AF = (X = )i+ (y2 = y1)i + (22 -2k (2.15b)

Note that unlike the position vector, the displacement vector does not
depend on the choice of the origin or the coordinate system since it is the
difference of two vectors.

So far, we have discussed the concept of the components of vectors in two and
three-dimensional Cartesian coordinate systems. You may now like to work out
an SAQ to check your understanding of these concepts.

SAQ 2 - Cartesian components of vectors
a) A ballis kicked 24 m at an angle 60° east of north. Write its

displacement as a sum of its components along the x and y-axes.

b) Determine the magnitudes of the vectors a = 3i — 2} +k,
b=i+ ] +kand ¢ = 2i - ] + k and determine the unit vectors &, b
and ¢ along each vector.

Let us now summarise what you have learnt about the components of vectorsin
the 3D Cartesian coordinate system.

Fig. 2.8: Displacement
vector Ar inthe
Cartesian coordinate
system.

3D CARTESIAN COMPONENTS OF A VECTOR

e Any vector a in three-dimensional space with tail at the point
(x4,¥4,24) and head at the point (x5, y,,2,)can be represented in the

three-dimensional Cartesian coordinate system as

5=axi+ayj+azﬁ (2.5)
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NOTE

The vector a in

Eqg. (2.5) is a linear
combination of the unit
vectors i, ] and k
along the x, y and
z-axes. These unit
vectors constitute the
basis vectors for the
3D Cartesian
coordinate system.
These vectors are also
called the standard
basis vectors. Note
that these vectors are
orthonormal, that is,
mutually perpendicular
and of unit magnitude.
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where a,, a,and a, are its x, y and z components along the

coordinate axes.

e The scalar Cartesian components of a in 3D (also called the x, y and
zZ components) are, respectively,

ay =Xp=X1, @ =Yy—Yi, 8, =2~ (2.6)
e The magnitude of a is
a= (a)z( +a§ +a§) (2.7)

e The direction of the vector a is given by the direction cosines
cos a, cos  and cos y where a, 3 and y are the angles that the vector
a makes with the x, y and z-axes. Also

a, = (a.i)=acosa (2.8a)
a, = (a.])=acosp (2.8b)
a,=(a. k) = acosy (2.8¢c)

We now express the scalar and vector products in component form.

2.3 SCALARAND VECTOR PRODUCTS IN
COMPONENT FORM

We first determine the scalar product of vectors.

2.3.1 Scalar Product in Component Form

Consider two vectors in 3D Cartesian coordinate system given by:

a=(ayi+a,j+ak) and b=(bi+b,j+bk) (2.16a)
We can obtain their scalar (or dot) product in terms of their components as
follows:

a.b=(a,i+ayj+ak).(bi+b,j+bk)
= ayi . (bl + byj+ bK) + a,j. (bi + byj + bK) + ak. (byi + b,j+ bk)
= axbxf.f+ axbyf g+ axbzf k

+ayby,j.i+a,b,j.j+aybj k

+ab k. i+abk.j+abk. k (2.16b)
From Egs. (1.11c and b) of Unit 1 you know that the scalar product of a vector
with itself is equal to the square of its magnitude and the scalar product of two

vectors perpendicular to each other is zero. Therefore, we have

ii=j.j=k.k=1 o1 =151 =1k =1]
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[ i, ] and k are perpendicular to each other ] (2.16¢)
Using the results of Eq. (2.16¢) in Eq. (2.16b), we get

a.b=a.b, + ayby, +a,b, (2.17a)

SCALAR PRODUCT IN COMPONENT FORM

The scalar (or dot) product of two vectors a =ayi +a,j+a,k and
b= bxf + byj + bzﬁ is the sum of the product of the corresponding

components of the two vectors a and b:

a.b=ayb, +ayb, +ab, (2.17a)

The scalar or dot product of two vectors a = axf + ayj and b = bxf + byj is

a.b=aub, +a,b, (2.17b)

You have learnt in Unit 1 that the work done by a force can be expressed as the
scalar product of force and displacement W =F . d. Let us work out an example
using Eq. (2.17a).

EX}HM‘PL@ 2.2: SCALAR PRODUCT OF VECTORS

Determine the work done in moving an object from the point (0, 1.0 m, — 1.0 m)

to the point (3.0 m, 1.0 m, — 2.0 m) when a constant force F= (2.0N)i + (3.0N)R
is exerted on it.

SOLUTION B The displacement of the object is given by Eq. (2.15b) as
AF =(3.0m - 0m)i + (1.0m - 1.0m)j + [-2.0m — (-1.0m)]k
=(3.0m)i + (-1.0m)k
Therefore, the work done by the force is:
W =F.AF =[(2.0N)i + (3.0N)K].[(3.0m)i + (~1.0m)k]

Applying Eq. (2.17a), we get W =(6.0J) — (3.0J) = 3.0J

You may now like to apply Eqg. (2.17a). Work out SAQ 3.

SﬂQ 3 - Scalar product in component form
a) Determine the scalar product of the vectors a = 3i + 2} -k and

b=i+ ] + 2k . Also calculate the angle between the vectors.

b) Obtain the projection of the vector a = 2i — 4j + 3k on the vector
b=i+2j-3k
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The determinant in
Eq. (2.21b) can be
expanded as

- . - ay aZ
axb=i
by b,
" a ~a, a
_] z + k y
bx b, b, by
Note that
a, a
y z
=a,b,—a,b
by bz y¥z zvy
a, a
bi bi = axbz - asz
a, a,
b, b, =a,b, —a b,

Let us now determine the vector product in component form.

2.3.2 Vector Product in Component Form

Let us consider the vectors given by Eq. (2.16a). We can write the vector or
cross product a x b of these two vectors a = (axi +a, ] +a, R) and

b=(bi+b,j+b,k)as

axb=(ai+a,j+ak)x(bi+b,]j+b,k)
=a,ix (byi+byj+bk)+a,jx(bi+b,]j+bk)
+aZRx(in+b j+bZI2)

=axbx(ix|)+a b, ( xj)+a b, ( xk)

+aybx(jxf)+ayby (j><j)+aybZ (]xR)

+asz(ﬁxi)+azby(ﬁxj)+azbz(ﬁxk) (2.18)
Since the vector product of a vector with itself is the null vector 0, we have
ixi=jxj=kxk=0 (2.19a)
From the definition of vector product [ Eq.(1.15d) of Unit 1], we have
ix]j=]il|]l sin 90°A (2.19b)

Here, from the right-hand rule, nis a unit vector in a direction perpendicular to
the plane containing the unit vectors i and ] But you know that the unit

vector perpendicular to both i and ] in the right-handed Cartesian coordinate
system is k (see Fig 2.2a). Thus, the vector n |SJust the vector k. Also, since

the vector product is not commutative, we have j xi=-ix j = — k. Thus,
ixj=k jxi=-k (2.19¢)
jxk=i kxj=-i (2.19d)
and kxi=J ixk=-]j (2.19¢)
Substituting Egs. (2.19a to e) in Eq. (2.18), we get
axb=a,b,0+a,b k+a,b,(-j) +a, b, (-k)+ayb,0+a,b,i
+aybyj+ayb,(-i)+a,b,0 (2.20)
On collecting the terms corresponding to each unit vector, we get
axb=(a, b, —a,b,)i+(a,b,—ayb,)j+(ayb, - a,by)k (2.21a)

If you have studied determinants in school mathematics, you can recognise that
the vector product given by Eq. (2.21a) is simply the expansion of the 3x 3
determinant given below (read the margin remark):

m S

k
a

axb= (2.21b)

ay y
by b, b,
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We now summarise what you have learnt about the vector (or cross) product.

VECTOR PRODUCT IN COMPONENT FORM | Recap

The vector (or cross) product of two vectors a = axi + ayj + aZR and

b= bxi + byj + bzﬁ, is given by:

axb=(a, b, - azby)i + (a, by —axbz)i +(ay b, — abe)R (2.21a)

It can also be written in the form of the following determinant:

[

k
axb=|a, a, a, (2.21b)
be b, b,

The cross product of two vectors a = axi + ayj and b = bxi + byj is

axb = (ayb, —a,by)k (2.21c)

We now give an example from physics showing how to apply Egs. (2.21a orb).

EﬂM‘PLE 2.3: VECTOR PRODUCT IN COMPONENT FORM

Determine the torque about the origin due to the force F = i — 4] + k acting
at the point (3, 2, — 1). The unit of force is N and that of distance, m.

SOLUTION B The torque at a point due to a force F about the origin is given
by T = F xF, where f is the position vector of the point.
The position vector of the point (3, 2, —1) is

F=@m)i+@2m)j+(-1m)k

Therefore, from Eq. (2.21b), the torque (in Nm) due to the force is

i J k| i j k
T=fxF=|x y z|=[3 2 -1=-2i-4j-14k
Fe F, Ryl |1 -4 1

SﬂQA - Vector product in component form

a) Obtain a unit vector perpendicular to the plane containing the vectors
a=4i-2j+kandb=i+2j+3k

b)  Calculate the area of the parallelogram whose adjacent sides are
represented by the vectors a = 2i — 3j + k and b = 4i + 3k.

So far in this unit, we have discussed how to resolve vectors into their components,

and have revisited elementary concepts of vector algebra with vectors expressed in

component form. For example, you have learnt the addition and subtraction of

vectors and the scalar and vector products of vectors using the algebraic

description. You will now learn about vector functions. 47
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You must have studied
scalar functions in your
school mathematics
courses.

The domain of the function
is the complete set of
possible values of the
independent variable, in
this case, x. The range of
the function is the
complete set of all possible
resulting values of the
dependent variable, here y.

Y (acosot,

asinot)

Fig. 2.10: The vector
function 1(f) of Eq. (2.23).
The head of the position
vector traces out the
path of the particle, as it
changes. In this case, we
can also say that the
path of the particle is a
circle of radius a units
with its centre at the
origin. How? Squaring
the expressions for x
and y in Egs. (2.22a and
b) we get:

x? + y? = a% cos? (wt)

+a” sin? (wt)

or

X2+y2:a2

which is the equation of
a circle of radius ‘a’.
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2.4 VECTOR FUNCTIONS

We begin this section by giving a brief introduction to scalar functions. In your
school calculus course, you have studied about a real valued function of a
single real variable, usually denoted by f(x). Recall that

For every real value of x within some domain, the function f(x) assigns a unique
real number, which is the value of the function at x. So, when the input to
the function is a real number, the output of the function is also a real number

(see Fig. 2.9). y
A
X f(x) = x*
-3 9
-2 4
-1 1
0 0
1 1
2 4
3 9 > X
(a) (b)

Fig. 2.9: Scalar function f(x) = x? of one variable x. a) Table of values of f (x) at
some points; b) plot of the function f (x). Note that it is a curve
(a parabola) in the two-dimensional plane.

Let us now define a vector function.

241 Defining Vector Functions

Let us begin by asking: How do we describe the motion of a particle moving in a
plane, say the xy plane? Let us understand this with the help of a specific example.

A particle moves in a circle of radius ‘a’ and the x and y coordinates of the particle
change with time t as follows:

(2.22a)
(2.22b)

X =a cos ot
y =a sin ot

The position vector of the particle is the vector r, at any instant of time t (Fig. 2.10).
Note that (x, y) are the coordinates of the point P and these change with t. So,

the position vector also changes with time and we denote it as r(t). Itis,

therefore, given as:

F(t)=xi + yj = (acosot)i + (asinwot)] (2.23)

Here i and ] are the unit vectors along the x and y-axes, respectively. The
vector r(t) is an example of a vector function. In this case, r(t)is a vector
function of the variable t. This means that there exists a vector r corresponding
to each value of t. The set of all real numbers that correspond to the values of the

independent variable tis called the domain of the vector function. Any function
whose range is a set of vectors is called a vector function.

In Fig. 2.10, we have drawn the vector r(t) described by Egs. (2.22a, b) and (2.23)

at three instants of time t =0, t = 2£ and t =" and denoted them by r, =r(t=0),
® ®

r, =r(t=n/2w) and r3 =r(t =t/ ®), respectively.
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For different values of t, the position of the head of the vector r(t) changes. As ¢

changes continuously, the end point of the vector function traces out a continuous
curve, which is a circle (Fig. 2.10). -

Now suppose the particle moves on a right-circular cylinder of radius R (see
Fig. 2.11). Its position vector also has a z-component, say z =t, and is given by

r(t)=R cos oti+R sin ot j+tk (2.24)

The path traced out by the particle is called a right-circular helix. For each
value of t we have a vector r(t).

: L . Fig. 2.11: Particle
In the two examples discussed so far, the vector function is the position vector. moving on a right-

However, a vector function can represent any arbitrary vector quantity which circular cylinder.
depends on a scalar variable.

In general, we can express a vector function of a single variable ¢, in two-
dimensional and three-dimensional Cartesian coordinate systems,
respectively, as:

at)=f(t)i+g(t)j (2.25a)
at)=f(t)i+g(t)j+h(t)k (2.25b)

where f(t), g(t)and h(t) are single-valued scalar functions of {. Knowing
the vector function a(t) implies knowing f(t), g(t) and h(t). The converse is
also true, i.e., if you know f(t), g(t) and h(t), you know the vector function
a(t). The name vector function arises because a(t)is a vector, and it
depends on the real independent variable £, such that at each f there is a
unique vector a(t) given by Egs. (2.25a or b). The functions f(t), g(t) and
h(t)are called component functions of a(t).

You can visualise a vector function if you know its geometrical meaning. Study
Fig. 2.12a. We have used a 3-dimensional Cartesian coordinate system to
show the vector function a(t). Note that the initial point O of the vector function
a(t) is bound to the origin of the coordinates. For different values of ¢, its end
point P changes because a(t) depends on t. Fig. 2.12b shows three positions
of P: P,, P,, P, for three values of t: t,, t,, t;. Fig. 2.12c shows that as t varies
continuously, the point P traces out a continuous curve in space. So you can
visualise a vector function a(t) in terms of a curve, as t varies continuously. A
point P on the curve is described by the position vector a(t).

V4
A

[
—_
~
~—

(a) (b) (c)

Fig. 2.12: Vector function of one variable interpreted as a curve in space. 49
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r(t)

(a)

Fig. 2.13: Some vector
functions in physics.
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In the case of the two-dimensional vector function, the curve traced out by the
tip of the vector a(t) with changing t is called a plane curve. In three
dimensions, the curve traced out by the tip of a(t) is called a space curve.

The circle in Fig. 2.10 is an example of a plane curve and the helix in Fig. 2.11
is a space curve.

Alternatively, you can think of a three-dimensional vector function as three
separate functions, x = f(t), y =g (f) and z = h (f), that describe points (x, y, z)
in space. Here the set of equations for the three component functions of the
vector function tell us the position of the tip of the vector function a(t) at each
value of . These equations are called the parametric equations describing
the plane curve or the space curve. There are many examples of such vector
functions in physics. For example, velocity, acceleration, force are all vector
functions. Wouldn’t you like to work out the following SAQ to identify some
vector functions?

SAQ, 5 - Vector functions

Which of the following functions are vector functions?
a)  The position vector of a ball falling freely with an initial horizontal velocity ug
(Fig. 2.13a), given as
F(t)=uptj+ %gtzﬁ
b)  The position vector of the bob of a simple pendulum of length L at any instant
t, relative to O (Fig. 2.13b), given by
r(t)=L cosBi+L sinBj where 0=0(t)
c) Aforce F= 3i —] +4k N applied to a particle of mass 2 kg.

d) The gravitational force on a particle of mass m at a distance r from a
particle of mass M (Fig. 2.13c), given by

GMm ..
r

F=-——

r

Let us revise what you have learnt so far about the vector function.

VECTOR FUNCTION

A vector-valued function, or a vector function, is a function whose domain

is a set of real numbers and whose range is a set of vectors. In two-dimensional
and three-dimensional Cartesian coordinate systems, a vector function of a
single variable { can be written as:

at)=rf(t)i+g(t)j in two dimensions (2.25a)

a(t)=f(t)i+g(t)j+h(t)k in three dimensions (2.25b)

f(t), h(t) and g(t) are called the component functions.

You will now learn how to obtain the derivative of a vector function. In writing down
the derivative of a vector, we must remember that a vector function has separate
scalar functions as its components.
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2.4.2 Derivative of a Vector Function

You know how to obtain the derivative of a scalar function y = f(t). Recall from
calculus that from first principles, the derivative of the function f(t) with respect to
tis defined as:

df(t)

_ F(t+At) — F(t)

(2.26)
at At—0 At

In the same way, we define the derivative of a vector function with respect to t as:

da(t) im a(t+At) —a(t)
at At—0 At

(2.27)

We can simplify the use of Eq. (2.27) if the vector function is given in its component
form. We can express a(t)in the three-dimensional Cartesian coordinate system
in terms of its component functions:

ait)y=f(t)i+g(t)j+h(t)k

This is just Eq. (2.25b) written again. Since i, ] k are constant vectors, we can
write

da(t) _ df(t); , dg(t)j L ah(t) e (2.28a)
t

dt dt d dt

So the components of % [the derivative of a(t)] are simply the derivatives

of the components f(t), g(t) and h(t) of the vector a(t). For a two-dimensional

vector a(t) = f(t)f+ g(t)j , we can write the derivative as

Ga(t) _ di(t);  dg(t);
ot ot ot

(2.28b)

Let us now apply Egs. (2.28a and b) to an example.

@m.‘MG’[,E 2.4: DIFFERENTIATING VECTOR FUNCTIONS

The position vector of a particle as a function of time is given by:
F(t) =5 cos(2t)i + 5 sin(2t)j + tk

Determine its velocity and acceleration. Show that both its speed and the
magnitude of its acceleration are constant.

SOLUTION m The velocity v(t) of the particle is the first derivative of the
position vector:

v(t) = %[F(t)] =%[5 cos(2t)i +5 sin(2t)j+tk]

=-10 sin (2f)i +10 cos(2f)j +k
To determine the acceleration a(t) of the particle we differentiate its velocity
with respect to time:

a(t) = %[V(t)] = %{—10 sin (2t)i+10 cos(2t)j+k]

=-20 cos (2t)i—20 sin(2t)]
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The speed of the particle is the magnitude of its velocity. It is given by
V()] =[(~10 sin 2t)? + (10 cos 2t)* +17]|"/2

=[100 sin2 2t +100 cos? 2t +1]"/2 = 101

Note that the particle’s speed is constant: it does not change with time, though
the velocity does. The magnitude of the particle’s acceleration is

| a(t)|=[ (- 20 cos 2t)? + (- 20 sin2t)? ]2 =20

It is also a constant.

Let us now briefly summarise the rules of vector differentiation of a vector function
of a single variable in two and three dimensions in terms of the component
functions.

DERIVATIVE OF A VECTOR FUNCTION

The derivative of a vector function of a single variable in three dimensions:
a(t) = f(t)i + g(t)j + h(t)k
with respect to the variable t is given by:

da(t) _ df (t)s . dg(t)j L dh(t) e (2.28a)
dt dt dt dt

The derivative of a vector function of a single variable in two dimensions:
a(t) = f()i + g(t)]

can be written as:

dga(t) _ df(t): . dg(t)j (2.28b)

dt dt dt

You may like to work out a simple problem on what you have learnt so far.

SﬂQ 6 - Differentiating vector functions
The position vector of a particle is given by
F(t)= (6t —t2)i+(2t)j+tk

Determine the velocity and acceleration of the particle.

When you differentiate a vector function, three types of situations may arise:
There is a change

i) only in its magnitude or

ii) onlyin its direction or

iii) in both direction and magnitude (see Fig. 2.14).
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3a+Aa a+Aa

(@) (b) (c)

Fig. 2.14: Derivative of a vector function when there is a change a) only in magnitude; b) only in
direction; c) both in magnitude and direction.

In physics, you will need to determine derivatives of product of a scalar with a

vector function, and scalar and vector products of vector functions. Note that we

can write the scalar and vector products in terms of their components in a

Cartesian coordinate system. Then the problem is reduced to determining the

derivatives of scalar functions. So you can use Eqgs. (2.28a or b) to determine

the derivatives of scalar and vector products of vector functions. We just give

the results here:

d{=\ ds-= df
Zlsf) = == F kel
p (S ) p + S p (2.29)
d(.-\ da- _ db
— =—.b + a.—
dt( ) ot dt (2.:30a)
d(. - da - - db
and E(axb) = Zxb + ax (2.30b)

Before we end this discussion, we would like to explain the meaning of the
derivative of a vector function. Let us go back to Eq. (2.27). We explain
briefly: What is the meaning of the derivative of a vector function defined
by Eq. (2.27)? You will not be examined on the matter given in the box.

DERIVATIVE OF A VECTOR FUNCTION

We can interpret the derivative of a vector function a(t)defined by Eq. (2.27)
geometrically as the tangent vector to the curve described by it. It also gives the 5(t)
rate of change of the vector with the variable t. To understand this point, let us
consider a scalar variable t and the corresponding vector function a(t). Study

Fig. 2.15. It shows the vector function a(t) in the form of a curve in space (as in

Fig. 2.12c). Now study Fig. 2.16a. Let the vector @(t) in Fig. 2.16a denote
a(t) at any value of t. We now increase the scalar t by an amount At. The Fig. 2.15: Vector

vector corresponding to the scalar t + Atis a(t + At). It is denoted by oQ. function of one
variable interpreted
as a curve in space.

F(t+ At)

(b) (c)

Fig. 2.16: a) The derivative of a vector interpreted as its rate of change; b) AF is
not in the same direction as r for circular motion; c) an exception in
which Aris alongT.
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The change in a(t) corresponding to the change At in tis
Aa=a(t +At)-a(t)

From the triangle law of addition you can see that Aa is the vector PQ. Note
that Aa is not in the direction of a. This is true generally. For example, when a
particle moves along a parabolic path, in a circle or in an ellipse, the change Ar
in its position vector is not in the direction of ¥ (Fig. 2.16b). Can you think of an
exception? Obviously, Ar is in the same direction as r for straight line motion,
when we choose the origin at the starting point (Fig. 2.16¢). Let us now go back

to Fig. 2.16a. Since At is a scalar, i—? is a vector in the same direction as PQ.

As At — 0, Q approaches Pand lim i—? becomes the vector tangent to the
At—0

curve at P, whenever it exists, and is not zero.

It is directed in the sense in which point P would move if the value of tis

increased. Thus, the derivative dZ—it) =a'(t) is the tangent to the space curve

a=a(t), whenever a’(t) exists and a’(t)# 0. Now i—? also gives the change in

a per unit value of the variable t during the interval At. So the derivative

a'(t)= lim % is the rate of change of a with respect to t.

At—0
! . dalt) .
You can see that the geometrical meaning of i is analogous to the

du(t)

one obtained for the derivative of a scalar function, say gt

However, there is one important difference between the derivatives of a
vector function and a scalar function. Since a is a vector, it can change
both in magnitude and direction, whereas a scalar function changes
only in magnitude.

Let us consider the example of uniform circular motion to apply these concepts.

EX}ZUVI‘PLE 2.5: UNIFORM CIRCULAR MOTION

Apply Eq. (2.30a) to analyse the uniform circular motion of a particle.

SOLUTION B For a particle in uniform circular motion, the magnitudes of the
position and velocity vectors are constant but their directions are changing as
the particle moves in the circle. Let the speed of the particle be v, and let it
move in a circle of radius r. Then we can write

r.r=r?=constantand v.v = v2

= constant (i)
where r and v are the position vector and velocity of the particle, respectively.

Using Eq. (2.30a), we can then write:

i(F. F) =r ar + ﬂ.?z i(r2)= 0 since ris constant
dt dt dt
or F.ﬂ=F.\7=o (since ﬂ=\7 ) (i)
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Eq. (ii) tells us that for a particle undergoing uniform circular motion, the
velocity is perpendicular to the position vector at each instant of time
(Fig. 2.17). Let us now apply the results above to the velocity of the
particle. Since it is constant, we can write

DG w) 298 _ ey
dt(v.v)_2v.dt_dt(v) 0

_av o~ . : dv
v.—=v.a=0 (since—

dt dt
where a is the acceleration of the particle. Eq. (iii) tells us that for uniform

circular motion, the acceleration of the particle is perpendicular to its
velocity. What then can we say about the direction of the acceleration?

or

a) (iii)

We already know that r is perpendicular to the velocity v and also that v is
perpendicular to the acceleration a. Since circular motion is confined to a plane,
this suggests that r and a must be parallel or anti parallel to each other.
Let us find out which of these two is actually the case. We first determine the
first derivative of (r.v). Since r . v =0, we can write:

Dir 912 G i Yoy v+F.a=0 (iv)
dt at dt
or F.a+v2=0 = r.a=—-v? (v)

Since the right hand side of Eq. (v) is negative, the angle between them has to
be180° so that cos6 =—1 [recall the definition of scalar product in Eq. (1.10)].
Thus, from Eq. (v), we get

—ar=-v?
2
v .
or a=— (vi)
r

Thus, the acceleration a of a particle in uniform circular motion is anti- parallel

or opposite in direction to the position vector. It has magnitude v2/r. ltis called
the centripetal acceleration because it points towards the centre of the circle

at all instants of time (Fig. 2.18).

Let us now summarise what you have studied in this unit.

2.5 SUMMARY

Vector Algebra - 1l
-
v
=1
Vv
-
Y
-
v
=
v
-y
v

Fig. 2.17: In uniform
circular motion, the
velocity of the particle is
perpendicular to its
position vector at all
instants of time.

y

A

Q)

Fig. 2.18: In uniform
circular motion, the
acceleration of the
particle points towards
the centre at all instants
of time.

Concept Description

2D Cartesian | Any vector a in two-dimensional space with tail at the point (x4,y4)
components of a and head at the point (x5, y,)can be represented in terms of its x
vector

and y components as
a=ai+aj

where a, = X, — X4 = a coso,

a, =y, -yy=asin@

The magnitude of the vector is givenby [d|=a = Jaz + af

and its direction is given by the angle 6 that the vector makes with

ay

a
the positive x-axis: 0 = tan ™! (_yj
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3D Cartesian
components of
a vector

Scalar product in the
component form

Vector product in the
component form

Vector function of a
scalar variable
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Any vector a in three-dimensional space with tail at the point
(x4,¥4,24) and head at the point (x5, y5,Z,)can be represented in
terms of its x, y and z components as

a=ai+aj+ak
where  a, =Xo—-Xy, @, =Yo—Yyy, a;=2r-Z

The magnitude of a is given by a = (a)z( + a}2, + ag)

The direction of the vector a is given by the direction cosines
cos o, cos  and cos y where o, § and y are the angles that the vector
a makes with the x, y and z-axes. Thus

a, = (a. i) = acosa

a, = (a.]) =acosf
a, = (a.k)=acosy

The scalar (or dot) product of the vectors a = axf + ayi + aZR and

b= bxf+ byj + bZR, is given by
a.b=ab, + ayby +ab,

The scalar or dot product of two vectors a = axf + ayj and b = bxf +by.

is given by

a.b=a,b, +ayby

The vector (or cross) product of two vectors a = axi + ayj + azﬁ and

b= bxf + byj + bzﬁ is given by:

axb=(a b, —a,b,)i+(a,b,—a,b,)j+(ayb, - a,by)k

It can also be written in the form of the determinant as

i J k
axb=|a, a, a,

by b, b,

The vector product of the vectors @ = a,i+a,j and b=b,i+b,j is
given by

axb =(ayb, —bya,)k
A vector may be a function of one or more independent scalar

variables. In the Cartesian coordinate system, a vector function a(t)
of a single variable can be expressed in its component form as

a(t)="f(t)i+g(t)j

at)=f(t)i+g(t)j+h(t)k  inthree dimensions

in two dimensions

where f, ] and k are the unit vectors along the x, y and z-axes, and
f(t), h(t) and g(t) are called the component functions.
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Derivative of the vector B The derivative of a(t) with respect to t, found by differentiating each
function of a single component of a(t) separately w.r.t. t, is given by
variable

da(t) _ df(t); | dg(t); , ah(t)p

dt dt dt dt
and
da(t) df(t)i N dg(t) -
dt dt at
Derivative of the B The derivatives of the product of a scalar s and vector function f(t),
products of vector and the scalar and vector products of vector functions a(t) and b(t)
functions are given as:
9sF) = B O
dt dt dt
9a.6) = 2p+a
dt dt dt
and i(éxﬁ): d—aXB + éx@
dt dt dt

2.6 TERMINAL QUESTIONS

1. Two velocity vectors u and v, when added together have a resultant of
V=30ms 'i+1.0ms™j fu=15ms™i+2.0 ms™' j, determine v.

2. Calculate the area of the AABC if the coordinates of the vertices A, B and
Care(2,-1,0),(3,2,1)and (1, 2, — 2), respectively.

3. Determine the projection of a +2b on a where a = 3i-2j+k and
b = —2i - 2j + 4k.

4. Determine a vector of magnitude two units, perpendicular to each of the
vectors a =2i-j+2k and b =i-2j+2k.

5.  Fortwo vectors a=2i+j+k and b = 3i +2j—k, obtain (a+b)x(a—-b).

6. Find two unit vectors perpendicular to both A= 3—23 +3k and
B=-2i+4]j.

7. Determine the torque about the point (1, 0, — 1) due to a force
F= 3f+j—l2 being exerted at the point (2, — 1, — 4).

8. Determine x and y if both vectors A=xi+ Sj and B=2i+ yjare parallel
to the vector C = 4f+9} .

9. Is it possible to have a vector A=xi+ 3] such that the relation:

(21 - 3] + 4k )x A = 41 + 3] - 4k is true? Explain.

10. The components of a force, on a particle, in the x and y directions are 5N
and 8N, respectively. If the particle moves from point (2, 6) to point (7, 9),
calculate the work done by the force on it. Take the unit of displacement to
be in m. 57
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13.

14.

15.

) e 2% .3p dr d’r
If r(t)=3ti +2t“j+t°k, calculate (i) — and (i) —
dt at?
Determine the velocity of a particle having the following position vector:
F(t) = cos? ti + sin? t j + cos 2tk
The position vector of an object of mass m moving along a curve is given by
F(t)=at?i+sinbt j+cosbtk, 0<t<1,
where a and b are constants. Calculate the force being exerted on the object.
A curve is described by the following parametric equations
x=2  y=3t°+2 z=4-t
Determine the unit tangent vector to the curve at the point t =1.
Given two vector functions a(t) = (2t + 3)i + (t> —2)j+ tk and

b(t)=(4-1t)i+(3t% +1)j+ (2t — 1)k, determine the derivative of a(t) . b(t)
at t=1.

2.7 SOLUTIONS AND ANSWERS

y N
A
E
P
d
600//
30°
> X
)

Fig. 2.19: Diagram for
SAQ 2a.
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Self-Assessment Questions

1.

We use Eq. (2.1). For a=A, a=A=3, 0=60° and we get

AX=Acose=300560°=%and A, =A sine=3sin60°=%3_
For a=B, a=B =4, 06 =135°and we get

~4 4
B, =B cos 135°=—— =-24/2 and B, =B sin 135°=—— = 2/2
e y 2
For a=C, a=C=5 6=210° and we get
cX=0cos,210°=‘2‘/g and Cy:Csin210°:—g

a) Referto Fig. 2.19; OP represents the displacement d. The angle the
displacement makes with the x-axis is 6 =90° — 60° = 30°. Using
Eq. (2.1) with a=d, a=d=24m and 0=30", the xand y
components of d are,

dy =dcosB =(24cos30°) =20.8m =21 m
d, =dsinB =(24sin30°) =12 m
d=21mi +12mj

b) We can use Eq. (2.7) to calculate the magnitudes of the vectors.

a=v3°+(-2°+1 =14
b=V +1? 412 =3
c=y22+(-12+1? =6

The unit vectors along a, b and ¢ which are 3, b, &, respectively, are
found using Eq. (1.3b).



3. a) We use Eq. (2.17a) to determine the scalar product of the two vectors and
Eqg. (1.11d) to find the angle between the vectors.

We are given
ay=3 a,=2 a,=-1and by =1 b, =1 b,=2

a.b=3x1+2x1+(-1)x2=3

The magnitudes of the vectors are:

a=432+22+(-1? =14 and b=v1?+12 + 22 =/6

The angle 6 between a and b is

0 =cos™ (ﬂ} =cos™ [;] =cos™ (ij
ab V14 .6 84

b) We use Eq. (1.11g) to write the projection of a on b as,

a.b_(2i-4j+3k).(i+2j-3k) _ 15

Ib| V1% +22 432 - 14
4. a) The vector product of two vectors a and b is a vector perpendicular to
the plane containing the vectors @ and b. Therefore, the unit vector f
perpendicular to the plane containing any two vectors a and b is

axb

n=——
|axb|

where |éx5| is the magnitude of the vector product (éxﬁ). Using
Eq. (2.21b) with a=4i-2j+k and b =i+2j+ 3k, we get:
j
-2
2

=-8i — 11j + 10k

Q)
X
T
I
_ PN =
w = X

and  |axb|=1(-8)% +(~11)2 +(10)2 = /285
1
J285

b) From Example 1.1 we know that the area of the parallelogram whose
adjacent sides are given by the vectors a and b is |ax b| and here

f= (-8i —11j + 10k)

i J kK
axb=[2 -3 1=-9i-2j+12k
4 0 3

Area = ‘éxﬁ‘ = \/(—9)2 +(2)? +(12)° =4/229 units

5. The vectors given in (a),(b) and (d) are vector functions. The function in (a)
is a function of time . The function in (b) is a function of angle 6. The
function in (d) is a function of the space coordinates (x, y, z) through the
variable r = (x2 + y2 +2° )1/2. But the force in (c) is not a vector function as
it is constant.

Vector Algebra - 1l
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6. The velocity of the particle is

You can check from

Fig. 2.20 that the vector
fromAtoB, that is, a, is
given by

Fig. 2.20

In the same way, the
vector from B to C, that
is, b, is given by

b=r—rg

60

\7(t)=%F(t)=%[(6t—t2)3+2t]+ﬂ2] =(6-2t)i+2j+k

The acceleration of the particle: a(t) = %V(t) = % [(6 - 2t)i + 2} +R] =-2i

Terminal Questions

1.

Since u+v=V, v=V-u
Given i=15ms"'i+2.0ms'j and V=3.0ms™"i+1.0ms™"j we get
v=3.0ms'i+1.0ms"j)-(1.5ms™"i+2.0ms™"j)
=1.5ms™i-1.0ms™" ]
We can write the position vectors of the three points A, Band C as
fa=2i—-j, rg=3i+2j+k and rc =i+2j-2k

Let the side AB be represented by the vector a and BC by the vector b.
Then you can see that a =rg —r4 (see Fig. 2.20) and b =r; —rg (read
the margin remark). Then

Area of the AABC :15|5><B| where

a=rg -, =Bi+2j+k)-(2i—j) =i+3j+k
and b=rs —rg =(i +2j—2k)— (3i + 2j +k) = —2i - 3k
Area of the AABC

=1|a><5|=1|(€+3j+|2)|x(—2i—3|2)=1|(—9i+j+6|2)|
2 2 2
d Area:%,/ —-9)2 +(1)? + 62 :%\/118 units

Let d=a+2b. Substituting for a and b we can write
d=3i-2j+k+2(-2i-2j+4k) =-i-6j+9k
From Eq. (1.11g), we can write the projection of don a as

a.a:(—i-6j+9|2).(3i—2j+|2): 18
N T o R

Using the method outlined in the solution for SAQ 4a, we can write down
the unit vector perpendicular to both a and b as

axb  (2i-j+2k)x(i-2j+2k)  2i-2j-3k _2i-2j-3k
b| |(2i - j+2K)x (i - 2] + 2K)| \2?-2}-3&\ J17
Now a vector, D, of magnitude 2 units, which is, perpendicular to both a

and b is given by

Bzzﬁzi(zﬁ-zj-m%)
17
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5. With a=2i+j+k and b=3i+2j—k
In TQ 5, you may

a+b=5i+3jand a-b=—i-j+2k also write
From Eg. (2.21b), the cross product is (a+b)x(a-b)
,i. j '2 =axa+bxa
(3a+b)x(@-b)=|5 3 0 =6i-10j-2k ~axb-bxb
1 -1 2 =2(bxa)
since
6. We first determine R = (Axé) because R is perpendicular to both A and -axb=bxa
B - A oA So
i j k oo
_ _ - A A (@a+b)x(a-b)
R=(AxB)=|1 -2 3[=i(-12)+ j(-6)+k(0)
-2 4 0 ) i ]k
=—-12i - 6j =23 2 -1

The unit vector along Ris
R _ -12i-6j _-12i-6j _(-2i-j)
Rl V144+36 180 J5
Another unit vector perpendicular to A and B would be
ﬁ’:—ﬁ: (2|+j)

J5

7. Thetorqueis T = rxF and r is the position vector of the point (2, -1, —4)
relative to point (1, 0, — 1) given by

R = =6i-10j -2k

r=(2i-j-4k)-(i-k) =i-j-3k

T=rxF=(i—j-3k)x(3i+j—k) =4i-8j+4k

8. If AandB are parallel to C, then A x C=B x C=0 from Eq. (1.15a)
of Unit 1, and we get
4

X 6=(9x—12)ﬁ=ﬁ:>x=§

BxC=(18-4y)k=0=y=9/2

>

9. If the given relation is true, then the vector (43 + 3}— 4R) is perpendicular
to both (2i —3j +4k) and A (property of the vector product). If
(4i + 3} - 4R) is perpendicular to (2i - 3] + 4R) , their scalar product
should be zero. But (2i -3+ 4Kk).(4i+3j—4k)=-17 # 0. Therefore, It is
not possible to have a vector A if the given relation is true.

10. The force is F = (5N)i + (8N)j. The displacement of the particle in m is
F=(Xp—Xq)i+(y2 - y1)j =(7-2)i+(9-6)j=5mi+3mj
Work done = F.r = (5Ni + 8Nj).(5mi +3mj) = (25 + 24)J = 49J

11. Using Eq. (2.28a), we get

ar d - d, .2+ d 3.~ . - 2 -
N _ 9 @i+ L) i+ L)k =37+ 4t + 3%k
at gt DG 2I (k= 3T+ 4t
2_. -

and d—;:i[ﬂj =9 3+ Lani+ L3Pk = 4+ 6tk
g2 dtldt) "t dt dt
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12. The velocity of the particle is

ar = i(cos2 t)f + i(sin2 t)j + i(cosZt)IZ
dt dt dt dt

=—2costsintf+23intcostj—23in2tﬁ
= —sin2ti+sin2tj—2sin2tk = —sin2t[—f+j—2|2]

2-
13. The force on the objectis: F= m%

Using Eq. (2.28a) with r = at2 i +sin bt} +cosbhtk , we get

%=2atf+bcosbtj—bsinbtl§
2_‘ r ~ ~ ~

and L9190 oai_ b2 sinbtj- b2 cosbtk
gt?  dt| dt

F =2mai-mb® sinbl‘j—mb2 cos btk

14. The position vector function representing the curve corresponding to the
given parametric equation is

F(t)=2i+(3t? +2)j+(4-t)k

The derivative % at any value t defines the tangent to the curve at that
value of t. So we can write the tangent vector as

= dr d .z 2 ; » T
T=—=—[2i+(3t“+2)j+(4-t)k] =6t j—k
pr dt[ i+ ( )j+(4-t)k] J

At t =1, the tangent vector is T-= Gj—ﬁ

6j—k 1

I a7 1

Tle2a2 ar 017

The unit tangent vector is T =

El| -

15. We use Eq. (2.30a) to write

d . -\ 2 2 v, L i 0 2 2 N
E(a.b)—[(2t+3)|+(t 2)j+tk].[dt[(4 1) +(3t2 +1)j+ (2t 1)k]]

92t +3)i+(t2-2)j+tk T4 3t2 +1)] ’

+| Sl@+ 3+ (° ~2)i (K] |- (4 - t)i 4 32 + )]+ 2 1K)

=[(2t +3)i + (t? —=2)]+ tK].[- 1 + 6t ] + 2K]

+ 20+ 26 +KL[(4 - 0)i + (32 + )] + (2t = VK]

We can now substitute t = 1. Then

d . - T

E(a.b)=(5|—j+k).(—|+6]+2k)
+(2i+2j+K).(3i+4j+k)=-5-6+2+6+8+1=6
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UNIT3

Wha shule velocity of a FIRST ORDER ORDINARY

spacecraft be if it is to escape

terminal aueston 2t mawe  DIFFERENTIAL EQUATIONS

answer!

Structure
3.1 Introduction 3.4 First Order Exact ODEs
Expected Learning Outcomes 3.5 First Order Non-homogeneous ODEs
3.2 Classification and Solution of ODEs 3.6  Summary
Further Classification of First Order ODEs 3.7 Terminal Questions
General Solution and Particular Solution 3.8 Solutions and Answers
3.3  Separable First Order ODEs Appendix: Partial Derivatives

Method of Separation of Variables
Method of Substitution
First Order Homogeneous ODEs

STUDY GUIDE

We hope that you have studied calculus at the senior secondary (+ 2) level. We shall take it for granted
that you know how to determine the first order derivatives, partial derivatives and integrals of various
functions. However, we have briefly explained how to calculate partial derivatives in an Appendix to this
unit. You may like to go through it to revise them. You have to make sure that you can solve integrals of
various functions very well and then study the unit. You may like to revise the methods of integration
that you have studied in + 2 mathematics course. You should study the unit thoroughly and make sure
that you can solve the problems given in this unit. You may take about 5 to 10 minutes to solve the SAQs
given in this unit. Some of the Terminal Questions are more challenging. If you are able to solve the
SAQs and Terminal Questions, then you have grasped the concepts of the unit very well. Of course, you
should try to solve the problems on your own without first looking at the solutions and answers!

“It is impossible to explain honestly the beauties of the laws
of nature in a way that people can feel, without their having
some deep understanding of mathematics. | am sorry, but this
seems to be the case.”

Richard P. Feynman
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The order of an ODE
is the order of the
highest derivative
appearing in it.
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Don't forget

3.1 INTRODUCTION

In your school physics, you have studied Newton’s laws of motion and applied
them to simple systems such as the motion of a particle falling under the force
of gravity, projectile motion and rocket motion. The laws of mechanics help us
study the motion of objects using an equation containing an unknown
variable and its first and/or second order ordinary derivatives. Such
equations are called ordinary differential equations. Henceforth, in this
block, we shall refer to them as ODEs.

ODEs have applications in all such problems of physics in which we usually
wish to know how a physical variable is changing with respect to another
variable, e.g., rate of change of velocity with time in mechanics. Other
examples are radioactive decay, rate of fluid flow, growth/decay of current in
an electric circuit and even the rate of change of oil slicks formed in
seas/oceans in environmental sciences.

We shall begin the unit by briefly explaining the classification of ODEs and the
concept of general and particular solutions (Sec. 3.2). In the remaining
sections, we shall discuss how to solve first order differential equations with
special focus on applications in physics. In Sec. 3.3, you will learn how to
solve first order ODEs in which the variables can be separated. Such
equations are very common in mechanics and may be solved using the
method of separation of variables or the method of substitution. You will
also learn how to solve homogeneous first order ODEs.

In Sec. 3.4, you will learn how to solve exact equations, which appear
frequently in thermal physics. Finally in Sec. 3.5, we explain the method of
solving first order non-homogeneous ODEs using the method of integrating
factors. This method is used in solving the ODEs for currents in LR and RC
circuits. In each section, you will solve problems applying the technique
presented there. In Unit 4, you will learn how to solve second order ODEs with
constant coefficients.

Expected Learning Outcomes

After studying this unit, you should be able to:

< state the degree of first order ordinary differential equations and classify
them as linear/non-linear, homogeneous/non-homogeneous;

< solve separable and exact first order ordinary differential equations; and

< solve first order non-homogeneous ordinary differential equations using
the method of integrating factors.

You must be able to determine the first order derivatives and integrals
of various functions. Revise the integrals given in the table at the end
of this block.




Unit 3 First Order Ordinary Differential Equations

3.2 CLASSIFICATION AND SOLUTION OF ODEs

Let us begin by considering some examples of ODEs from physics. Do you
recall Newton’s laws of mechanics from your school physics course? Let us
apply Newton’s second law of motion (F = ma) to a particle (say, a ball or a
parachute) of mass m falling near the Earth’s surface. Let the force of gravity
be the only force on the particle (Fig. 3.1). So, its equation of motion can be
written as

av av

ma=m-—-=-—-m or b 3.1a . . . .
ot g9 p g9 ( ) Fig. 3.1: A particle falling

under the force of

ravity.
where v is the particle’s speed and g, the acceleration due to gravity. In writing g Y

Eq. (3.1a), we have chosen the vertical coordinate axis in the upward

direction. Using Eq. (3.1a), we can obtain a relation between the independent = You can 30|Ve_ _

variable t and the dependent variable v. It is simply v = u — gt (read the Eq. (3.1a) by integrating
. . . both sides with respect

margin remark), an equation you know very well from your school physics. Let

to time.
us consider another example from school physics — the law of radioactive This gives
decay. It tells us that the rate at which the atoms of a radioactive substance V() =—gt+c
disintegrate is proportional to the number of atoms (N) present in it. You know = Then applying the initial
from calculus that we can represent the rate of disintegration of atoms as condition that at
INY where t ts time. Th tive si b N [=0. MO
) where t represents time. The negative sign appears because we get
decreases with time. So we can write v=u-gt
IN_ AN or INan=0 (3.1b)
dt dt

An equation similar to
Eq. (3.1b) is obtained
when we consider
collisions of gas
molecules in a
container.

where A is a constant. You may also have studied the simple harmonic
oscillations in your school physics course. The equation for one-dimensional
simple harmonic motion is given as
2
md—; + kx =0 (3.1¢)
dt
where m is the mass of the oscillator and k, the force constant. Eq. (3.1c)
contains a term involving x and another term that is its second derivative with
respect to time. Note that Egs. (3.1a, b and c) contain ordinary derivatives of
only the dependent variable. Let us consider yet another example from
physics. Suppose a current j flows through an electric circuit for an
infinitesimal duration of time, dt. Then the charge that flows during this time is

given by The abbreviation w.r.t.

. stands for ‘with respect
dg =idt (3.1d) to’.

Eq. (3.1d) involves the differentials dq and dt. Equations like (3.1a to d) are
called ordinary differential equations.

An equation that contains differentials or only ordinary derivatives of
one or more dependent variable w.r.t. a single independent variable,
is said to be an ordinary differential equation.

Don't forget 65
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You will learn about
similar classification of
second order ODEs in
Unit 4.

Don't forget

NOTE

Henceforth, you must
make it a habit to
classify an ODE the
moment you see it.
This means that you
must be able to state
its order and degree,
and whether it is
linear or non-linear.
You should also be
able to classify it as
homogeneous or non-
homogeneous after
you have learnt these
concepts in Secs. 3.3
and 3.5 of this unit,
and Unit 4.
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Now before you learn how to solve equations such as (3.1a to d), you should
know how to classify ODEs. The most basic classification of ODEs is on the
basis of their order and degree. You must always remember the following
definitions:

Order and degree of ODEs

The order of an ODE is the order of the highest derivative appearing in it.

The degree of an ODE is the power of the highest order derivative
appearing in it, after it has been recast in a form that has no negative or
fractional powers of derivatives.

Can you use these definitions to tell the order and degree of Egs. (3.1a to d)?
Answer the following SAQ.

SAQ 1 - Order and degree of ODEs
State the order and degree of Egs. (3.1a to d).

We now focus on the first order ODEs of degree one. Note that first order
ODEs of degree one contain terms involving the variables and only their first
order ordinary derivatives with respect to any other variable. Also the highest
power of the first order derivative is one. In order to solve the common first
order ODEs in physics, we need to classify them further as linear/non-linear
and homogeneous/non-homogeneous (read the margin remark).

3.2.1 Further Classification of First Order ODEs

In this section, you will learn how to classify a first order ODE as linear/non-
linear and homogeneous/non-homogeneous. You should be able to tell
whether a first order, first degree ODE is linear or non-linear, homogeneous or
non-homogeneous by just looking at it. Then you will be able to decide on
which method to use for solving it. We first define linear/non-linear first order
ODEs.

LINEAR AND NON-LINEAR FIRST ORDER ODEs

A first order ODE is linear if

i) The unknown function and its first order derivatives occur only to the
first degree;

i) There are no products involving the unknown function and its first order
derivatives or products of the first order derivatives; and

iii) There are no transcendental functions involving the unknown function or
any of its first order derivatives.

A first order ODE that does not satisfy any one or more of the above
conditions (i) to (iii) is said to be non-linear.




You can verify that the first order ODEs given by Egs. (3.1a, b and d) are
linear. We give below some more examples of first order linear ODEs
commonly used in physics:

1. L% + Ri = E for currentjin an LR circuit with constant E (3.2a)
dg . q _E : o
2. — + —— = — forcharge q in an RC circuit with constant E (3.2b)
d¢t RC R
3. v% = —G—I:I for escape velocity of a particle from an object of mass M
r r

(3.2¢)

You may like to further practice classifying linear and non-linear ODEs. Go
through the definition given in the box again and then solve SAQ 2.

SﬂQ 2 - Linear and non-linear ODEs

Classify the following first order ODEs as linear or non-linear:

a) mﬂ =mg — kv(t)

dt
b) Lﬂ + Ri = Esinwt
at
, N2 , .. dy
c) y' + (y))* = 0 where y’ stands for the derivative ==
X

A first order linear ODE is also classified as homogeneous or non-
homogeneous. You will learn the definitions of the first order homogeneous
and non-homogeneous ODEs in Secs. 3.3.3 and 3.5 of this unit, when you
learn how to solve them. Before you learn the methods of solving first order
ODEs, you need to know the concepts of general and particular solutions.

3.2.2 General Solution and Particular Solution

A differential equation may have more than one solution. Generally, in
physics, we first determine all solutions of a given differential equation. Then
we retain the solutions that are relevant for the physical problem. You have
seen for Eq. (3.1a) that depending on the value of the constant ¢ (in the
margin remark), there can be many solutions of the equation. Let us take

another example. Consider the differential equation
y’= sinx (3.3)

You can easily verify that each of the functions y = —cosx, y = —cosx + 5,
y=-c0sx —9,y=-COSX + g is a solution of Eq. (3.3). You can express
them generally as

y=-cosx +C (3.4)

First Order Ordinary Differential Equations

Generally, in text books,
you will find that the
dependent variable is
denoted by y and the
independent variable by
x and we write y = y (x)
or y=f(x). However, we
can also denote the
dependent variable by x
and the independent
variable by y and then
we write

x=x(y)orx="7f(y)

In Eq. (3.3),
,_dy
=— =sinx
Y ax

Integrating this, we get

[dy = [sinxdx

ory=-cosx + C
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Don't forget

Don't forget

Conditions of the type
Y(xq)=Cy, ¥'(X9) =Cy
are called initial
conditions and together
with the ODE constitute
the initial value problem.
Conditions of the type
y(Xo)=Cy, y(x9)=C,
are called boundary
conditions and together
with the ODE constitute
the boundary value
problem.
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where C is an arbitrary constant. Eq. (3.4) is called a general solution of
Eq. (3.3) as it can yield any number of solutions.

A solution involving arbitrary constant(s) is known as the general solution.

Note that Eq. (3.3) is a first order differential equation and its general solution
given by Eq. (3.4) has one arbitrary constant. But the general solution of a
second order differential equation has two arbitrary constants (as explained in
Unit 4). So, we can say that the number of arbitrary constants appearing
in the solution of a differential equation is equal to its order. Let us now
impose the following condition on Eq. (3.4): y = 0 when x = 0. Then we get

0=0+C or C=0 sothat y=-cosx (3.5)

So by imposing a condition on Eq. (3.4), we can assign a specific value to the
arbitrary constant C. The solution so obtained is called a particular solution.
For example, y = —cos x + 2 is a particular solution of Eq. (3.3). We have
shown one particular solution of Eq. (3.4) for C =0in Fig. 3.2.

AT
ARV

Fig. 3.2: A particular solution of the differential equation: y’ = sin x.

y = —Cos X

If a definite value can be assigned to each arbitrary constant appearing in
a general solution, then we get a particular solution.

You will learn about these concepts with much more rigour in your
Mathematics course on differential equations, if you have opted for the PCM
combination in B. Sc. In general, if the conditions specified for an ODE are
only for one value of the independent variable, we get an initial value
problem. For 2™ order and higher order ODEs, if the conditions specified for
an ODE are for two or more values of the independent variable, we get a
boundary value problem (read the margin remark). Now that you know what
an ODE is and can classify the first order ODEs as linear/non-linear, you are
ready to learn the methods for solving them. We begin with the simplest case
of first order linear ODEs in which the variables can be separated.

3.3 SEPARABLE FIRST ORDER ODEs

In several first order ODEs, the dependent and independent variables and
their functions can be separated. Such ODEs can be solved by integrating the
separated parts. Many other first order ODEs can be reduced to a separable
form by making a suitable substitution (change of variable). In this section, we
explain the methods of solving separable equations.




3.3.1 Method of Separation of Variables

Let us consider a general first order ordinary differential equation of the form

y'=f(xy) (3.6)
Suppose we can write f(x,y) as
f(x,y) = M(x)N(y) (3.7)

Note that M(x)is a function of only x and N (y) is a function of only y. Using

Eq. (3.7), we can recast Eq. (3.6) as follows:
dy
—— = M(x)dx (3.8)
N(y)

First order ODEs of the form y’ = M(x)N(y) are said to be separable.
Note that in Eq. (3.8), the variables x and y and their functions are separated.
On integrating Eq. (3.8), we get the general solution of Eq. (3.6) as

[M(x)adx - I% =C,

where C; is a constant of integration. Eq. (3.9) is the required general solution
of the ODE (3.6), provided we can solve the integrals. Note that the function
f(x,y)is given by Eq. (3.7). Let us now consider a few simple examples to

(3.9)

illustrate this method.

ﬂﬂ.‘M(PLE 3.1: METHOD OF SEPARATION OF VARIABLES

Solve the first order ODE (y+1)y’ + x = 0 giventhat y =2 at x = 0.
SOLUTION B We can write this equation in the form of Eq. (3.6) as

X
y y +1

Comparing f(x, y)of Eq. (i) with the form given in Eq. (3.7), we have

(i)

=f(xy)

M(x)=—-x and N(y) = % From Eq. (3.9), we get the solution as
y +

X2

—+
2

or C

2
[xdx + [(y +1)dy =C y2 +y

or x2+y2+2y:2C

Do you recognise what Eq. (iii) represents? Recall the coordinate
geometry you have studied in school. You can verify that Eq. (iii)
represents a family of concentric circles with their centre at (0, —1) and of
radii \/2C + 1 (see Fig. 3.3). We obtain the particular solution by
substituting y = 2 at x = 0 in (iii) so that C = 4. Thus, the particular
solution is the equation of a circle of radius 3, centred at (0, —1):

x2+y2+2y:8 (iv)

First Order Ordinary Differential Equations

The differential of y(x) is
defined as
d
dy = _de
ax
We substitute
y’ =f(x,y) in equation (i)
and rewrite it as

dy = f(x,y)dx

)

(i)
Now if
f(x,y) = M(x)N(y)
then we can write (ii) as
dy = M(x)N(y)dx
Thus, we get Eq. (3.8):

s = M(x)dx
N(y)

In Example 3.1, we could
also take

1
M(x)=x, N(y) = ———
() =x Ny) = =~
You can check that the
result would be the same.

(0, -1)

Fig. 3.3: A family of
concentric circles with

centre at (0, —-1).
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N (t)

t

Fig. 3.4: Exponential

decay.

A particle falling only

under the force of

gravity is called a freely
falling particle.

M(PLXE 3.2: RADIOACTIVE DECAY/EXPONENTIAL DECAY

Solve the first order ODE modelling radioactive decay: %;t) = — AN(t).

SOLUTION B Comparing this ODE with Eq. (3.7), we note that

M =-1and N = N(t). From Eq. (3.9), the solution is obtained as

follows:
j% =-ANdt+c or InN=-At+InC (i)

Since N > 0, |[N|=N and the solutionis N = Cexp(-At) (ii)

Can you interpret Eq. (ii)? It represents exponential decay of atoms in a
radioactive sample (see Fig. 3.4). If the initial number of atoms at time
t =0 is Ngy,then from (ii), we get: C = Ny and the particular solution is

N = Ng exp(=At)

Let us consider an example from mechanics of a particle falling under the
force of gravity. Suppose we wish to know the effect of air resistance on the
motion of the freely falling particle modelled by Eq. (3.1a). Such equations are
useful for studying the motion of parachutes or skydiving, etc. (Fig. 3.5).
Usually, air resistance is taken to be proportional to the velocity of the particle.
From Newton’s second law, the equation of motion is given by

ma =mg + kv(t)

For the particle falling vertically downwards, it takes the form (see Fig. 3.5):

—ma=—m%=—mg+kv(t) or ma=md—‘t/= mg — kv(t)

Let us solve this equation using the method of separation of variables.

EX/‘Z[M(PL@' 3.3: EFFECT OF AIR RESISTANCE ON MOTION

Fig. 3.5: A particle

falling under the force

of gravity
F

9 =mg and air

resistance F, = kv (t).
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Obtain the general solution of the following ODE to determine the effect of
air resistance on a particle falling under the force of gravity:

m% = mg - kv(t) (i)

SOLUTION B We can rewrite this equation in the form of Eq. (3.6) as

v _ g —ﬁv (ii)
at m

Comparing Eq. (ii) with the form given in Eq. (3.7), we can write M(t) =1

and N(v) = g - £v. Using Eq. (3.9), we can write the solution as
m

J'd—‘; = [dt +C (i)
- m)

m




On integration, we get the general solution (read the margin remark):

mg _ ﬂq exp| — it
k k m
Note that for large values of ¢, the second term in Eq. (iv) becomes small

and approaches zero as t tends to «. Thus, v becomes constant and is
given by:

v(t) = (iv)

_ mg

V== (v)

This constant velocity is known as terminal velocity. So the effect of air
resistance (proportional to the velocity of the particle) on a freely falling
particle is that after a large interval of time, it attains a constant velocity.

Did you note that in Example 3.3 we changed the variable to simplify the
integrals? This brings us to the method of substitution. But before studying
further, you may like to solve an SAQ based on this section.

SﬂQ 3 - Method of separation of variables
a) Obtain the general solution of the first order ODE yy’ = — x.

b) Determine the particular solution of the first order ODE y’ = — 2xy for
y(0)=3.

Before studying the method of substitution, you may like to quickly revise the
method of separation of variables.

First Order Ordinary Differential Equations

In Eq. (iii), we put
k

y = g- —v,so that
m

k
dy = — —av
m

So Eq. (iii) can be
rewritten as
d
AL P
y m

On evaluating this

integral, we get

Inly| = L C,
m

On taking antilog, we
can write the solution
as

|y| =C, exp(—ktj
m

and

=18 - 2
k k

METHOD OF SEPARATION OF VARIABLES

Step 1: Write the first order ODE in the form y" = M(x)N (y)

Then &y =
N

M(x)d.
() = Mxx

Step 2: Integrate to obtain the solution.

Always check the solution. You should always substitute the solution
back into the ODE and check whether you get an identity. Sometimes, you
get the ODE by simply differentiating the solution.

3.3.2 Method of Substitution

Some first order linear ODEs may look non-separable at first glance. But we
can make them separable by making some substitution. In some cases we
can know what substitution to make by just inspecting the equation. Let us
take up an example to illustrate this technique of substitution.

Don't forget
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fmw@m&: 3.4: THE METHOD OF SUBSTITUTION

Differentiating the
solution w.r.t. x, we have

Q+1 = Ce*

dx

or ﬂ+1=y+x+1
dx

dy
or — =(x+

I (x+y)
which is the ODE being
solved. Therefore, the
solution is correct.

Solve the first order ODE % = (X+Yy).
X

SOLUTION B The ODE seems non-separable because of the factor
(x+y). Butitis not so. We put u = x + y and get,

%:1+d—y or d_y:ﬂ_1 (i)
dx dx dx  dx
Putting % = (x+y)in Eq. (i), we get
X
au _ 1+u
dx

This is separated in u and x:

du

= dx (i)

u+1

Integrating Eq. (ii), we get
Inju+1|= x+c¢ (iii)

X

or lu+1=Ce* = |y+x+1-Ce*=0

This is the required general solution. You may like to check it.

Now how about trying an SAQ similar to Example 3.4 before studying further?

SﬁQ 4 - Method of substitution

Obtain the general solution of the first order ODE: y’ = (x + y)2.

We now discuss a very typical method of substitution suitable for ODEs of the
form y’ =f(y/x), where fis a function of y/x,e.g., (y/x)3, sin(y / x), etc.
We can solve such first order ODEs by substituting y = vx. This method is
suitable for a special category of first order ODEs: the first order
homogeneous ODEs. We now define such ODEs and then explain the
method of solving them.

NOTE 3.3.3 First Order Homogeneous ODEs

Note that second
order homogeneous
ODEs are defined in
a different manner.
You will learn about
this in Unit 4.

72

Let us begin by asking: What is a first order homogeneous ODE? A first order
ODE of the form

M(x,y)dx + N(x,y)dy =0 (3.10)

is called homogeneous if M and N are homogeneous functions of the
same degree.



Unit 3 First Order Ordinary Differential Equations

- H - ‘? - .
Now, you may ask: What is a homogeneous function? A function f(x,y) is The function

said to be homogeneous of degree nin x and y, if, for every k, we can write f(xy) = m is a

f(kx,ky) = k"f(x,y), homogeneous function of

1
degree — since
where k is a real parameter. For example, f(x,y) = x? + Xy + y2 isa 2
f(kx,ky) = \Jkx — ky

=VJkx -y

homogeneous function of degree 2 since

f(kx,ky) = (kx)* + kxky + (ky)? =k*(x* + xy +y?)=k*f(x,y) = k" f(x, y)
Some other examples of homogeneous functions are given in the margin. The function
What can you say about the function f(x,y) = X2 + y2 +27 Isit f(x,y)=y + W

homogeneous? Let us check: is a homogeneous
function of degree 1 as
f(kx,ky) =ky

So we cannot express it as the product of some power of k and the function +m

itself. Therefore, f(x,y)is not homogeneous.
=Kky + k\/x2 - y2

You may like to practice identifying homogeneous first order ODEs before = kf(x, y)
learning how to solve them. Try the following SAQ.

fkx,ky) = (kx)? + (ky)® + 2

SAQ 5 - Firstorder homogeneous ODEs
Identify the first order homogeneous ODEs from among the following:
i) (x+y)dx+(x—-y)dy =0, ii) (x2+1)dx+xydy: 0

i) (x + y)dx + (x2 + y)dy =0, iv) (x2 + y2)dx - xydy =0

An alternative way of identifying a first order homogeneous ODE is to check

whether it can be cast in the form in which y’is a function of Y.
X

y’=g[yj 3.11)

x
For example, we can rewrite the first order ODE (2x — y)y’ = (x — 3y)

")

So it is homogeneous. You can check that the first order ODE
xyy’ + 4x% + 3y? =0 can be written as

in the form

2
2 4+3(yJ
(lJy’+4+3(£J =0 or y' = - \XJ
X X
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Since M(x,y)and
N(x,y)are

homogeneous, we can
write

M(kx,ky) _ k"M(x,y)

N(kx,ky)  k"N(x,y)
M(x,y)

©N(xy)
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By now, you should be able to identify first order homogeneous ODEs using
either of the two ways explained above.

You may now like to learn how to solve such ODEs. Let us go back to

Egs. (3.10) and (3.11). Note that, in Eq. (3.10), M(x,y) and N(x,y)are
homogeneous functions of the same degree, say n. You can verify that
M(x.y)
N(x.y)
remark).

is a homogeneous function of degree zero (read the margin

From Eq. (3.10), we can write

dy _ M(xy)

dx N(x,y)

Thus, we can say that % is a homogeneous function of degree zero.
X

Equations of the form (3.10) and (3.11) are first order homogeneous ODEs
and we can solve them by making the substitution y = vx.

We now take up an example to illustrate this method of solving first order
homogeneous ODEs.

EﬂfMQ’[,ﬂ 3.5 FIRST ORDER HOMOGENEOUS ODEs

Solve the first order ODE  (x? + y?)dx — xydy = 0.

SOLUTION ®m While solving SAQ 5, you have verified that this ODE is
homogeneous and of first order. Let us now rearrange the equation as:

2 2
Q_xT+y" _x ¥ Q)
dx Xy y X
A dy 1 .
If we put y = vx, we can write (ilas — = — +v (i)
dx v
. L dy dv
Now differentiating y = vx w.r.t. x, weget —=v+ Xd_ (iii)
X X
I dy - .
Substituting dx from Eq. (ii) in Eq. (iii), we can write:
X
1 dv dv 1 .
—+V=V+X— OF X—= — (iv)
v dx dx v

Note that in Eq. (iv), the variables v and x are separated. Now you can
solve it.

SAQ, 6 - First order homogeneous ODEs

a) Solve Eq. (iv) in Example 3.5.
b) Solve the first order ODE (x+ y)dx — xdy = 0.
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Before discussing the next method, let us summarise the method of
substitution and the method of solving homogeneous first order ODEs.

THE METHOD OF SUBSTITUTION

Substitution by inspection

Step 1: Inspect the first order ODE and make an appropriate substitution
so that it can be recast in the separable form given by Eq. (3.8).

Step 2: Integrate the resulting expression on both sides to obtain the
desired solution.

The method of solving a first order homogeneous ODE

Step 1: Write the ODE in the form M(x,y)dx + N(x,y)dy =0

Step 2: Determine whether M(x,y) and N(x,y) are homogeneous
functions of the same degree or check if it can be recast in the
form of Eq. (3.11).

Step 3: If yes, separate variables by making the substitution y = vx and
solve the ODE.

So far you have learnt how to solve first order ODEs using the methods of
separation of variables and also by substitution. You have also learnt that the

first order homogeneous ODEs can be solved by making the substitution
y = VvX.

In some cases, the first order ODEs are neither separable nor can be made
separable by the method of substitution. In such cases we use other methods
for solving them. In the next section, we shall first define an exact equation
and then use it to solve first order non-homogeneous ODEs that have many
applications in physics (Sec. 3.5).

3.4 FIRST ORDER EXACT ODEs

ODEs of the form M(x,y)dx + N(x,y)dy =0 given by Eq. (3.10) can
sometimes be recast in the form

df (x,y)=0 (3.12a)
Then the solution is simply

f(x,y) = C, a constant (3.12b)

The first order ODEs that can be recast as Eq. (3.12a) are said to be exact
equations. We now explain how to identify exact equations and solve them.
Let us consider Eq. (3.10) once again: M(x,y)dx + N(x,y)dy =0

We need to determine the conditions on M(x,y) and N(x,y) that should be

satisfied so that we may recast Eq. (3.10) in the form (3.12a). For this, we use
a result from calculus for partial differentiation. Suppose a function depends 75



Block 1

NOTE

Note that [ij
ox y

denotes a partial
derivative of
f(x,y)w.rt. x. To
calculate it,
differentiate the
function f(x,y) w.r.t.
x treating the variable
y as constant.
Similarly,

(EJ denotes a
W ),

partial derivative of
f(x,y)w.rty. To
calculate it,
differentiate the
function f(x,y)w.r.ty
treating the variable x
as constant. We have
explained how to
calculate partial
derivatives of a
function in an
Appendix to the unit.
You may like to study
it before studying
Sec. 3.4 further.

0%f _ 0%f
dyox  dxdy
Now

oy _5 ox _ayax

N _ o (or)_ o
ox dx\dy ) oJxdy
Thus, we get
Eq. (3.14b).

™o (o) 7
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on two or more variables. Then we can express an infinitesimal change in the
function in terms of the total differential of the function. The total differential of
the function involves its partial derivatives w.r.t. the independent variables.
You should read the note in the margin and the Appendix to this unit to
understand how to calculate the partial derivatives of a function of two
variables.

The expression for the total differential df of a function f(x, y)is given as

df = (E) ax + [EJ dy (3.12¢)
0x y ay ),
Using Eq. (3.12c), we can rewrite Eq. (3.12a) as
df = (E] dx+(EJ dy =0 (3.12d)
0x y ay ),

Now we compare Egs. (3.10) and (3.12d). Suppose there exists a function
f(x,y) such that

M(x,y) = (Mj and

3.12
x (3.12e)

Nxy) = [ T0) )J

where M and N are continuous functions and have continuous partial
derivatives. Then we can express Eq. (3.10) in the form (3.12¢) and its
solution is given by Eq. (3.12b). This gives us the definition of a first order
exact ODE.

DEFINITION OF A FIRST ORDER EXACT ODE

The equation M(x,y)dx + N(x,y)dy = 0 is said to be a first order exact

ODE if there exists a function f of two variables x and y, which has
continuous partial derivatives such that

M(x,y) = (WJ and

N(xy) = (Mj (3.13a)
dy
so that df (x,y) = 0. The general solution of the equation is

Now, you may ask: How do we check whether or not an ODE of the form of
Eq. (3.10) is exact? We use the following result of calculus to arrive at a test
for exactness:

If f(x,y)is continuous and its first order derivatives are also continuous, then

2 2
AL (3.14a)
oy ox oxoy

Let us now take the partial derivatives of M with respect to y and N with
respect to x. Then using the result at Eq. (3.14a), we can write (read the
margin remark):
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a_M:i(gJ: 0*f _ 9% _OoN
oy ay \ dx dyox oxdy  ox

Thus, we arrive at the following test for exactness

Test for Exactness

A first order ODE of the form Mdx + Ndy =0 is exact iff (if and only if)

M N

an_ 9% 3.15
ay  ox ( )

provided M and N are continuous and have continuous partial derivatives.

If Eq. (3.15) holds, Eq. (3.10) can be written as df (x,y) = 0 and the solution
is simply f(x,y) = C[Eq. (3.12b or 3.13b)].

Now you may like to know: How is a first order exact ODE solved? Let us
illustrate this with an example.

@m?ﬁﬂ 3.6: FIRST ORDER EXACT ODE

Solve the first order ODE xy’ + ax + y = 0 where a is a constant.
SOLUTION B We can write this equation in the form of Eq. (3.10) as

(ax + y)dx + xdy =0 (i)
where M(x) =ax + y and N(y) = x.

You can verify that %—M -1 and g—N 1. SoEq. (3.15) is satisfied and
y X

the given ODE is exact. Now we integrate the first equation in Eq. (3.13a)

w.r.t. x, keeping y constant, and obtain

F(x,y)=[M(x,y)dx + z(y) = [(ax + y)dx + z(y) (ii)

2
or f(x,y) = a% + yx+2z(y) (iii)

We now need to determine z(y)in (iii). For this, we differentiate (iii) w.r.t. y
keeping x constant. We then use the second equation in Eq. (3.13a) and
equate the result to N(y)in (i). So we have

(—af(x’y)j:x+—:x or — =0 = zy)=C
9y

where C is a constant. Therefore, using Eq. (iii), we can write the general
solution of the given exact first order ODE as

2
f(x,y) = a%+yx+C

Don't forget

77
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Let us summarise the method of solving an exact equation.

[ Recap SOLVING FIRST ORDER EXACT ODEs

Step 1: Write the differential equation in the form of Eq. (3.10) as

M(x,y)dx + N(x,y)dy =0

Check to make sure that Eq. (3.15) is satisfied: %—M = %—N
y X

Step 2: Using % = M(x,y) and keeping y constant, evaluate
f(x,y)=[M(x,y)dx +z(y).

NOTE

Use either of the set
of steps (1 o 4) or (1 f(x,y)obtained in Step 2 w.r.t. y keeping x constant.
and 5 to 7) depending
upon which function,
M or N, is simpler to
integrate.

Step 3: Next use g—f = N(x,y)to evaluate z(y). For this differentiate
y

Step 4: The general solution is f(x,y) = C.

Alternatively, if it is easier to work with N(x,y), follow the steps given

below:

Step 5: Using (;)_f = N(x,y) and keeping x constant, evaluate
y

f(x.y) = [N(x,y)dy + g(x).

Step 6: Use ?: M(x,y) to evaluate g(x). For this differentiate f(x,y)
X

obtained in Step 5 w.r.t. x keeping y constant.

Step 7: The general solution is f(x,y) = C

You should now solve a first order exact ODE to quickly practice this method.

SAQ, 7 - First order exact ODE

Show that the ODE (3x%y — 6x)dx + (x> + 2y)dy = 0 is exact and
hence solve it.

So far we have explained how to solve first order homogeneous and exact
ODEs. But in physics you will come across many situations which can be
modelled using non-homogeneous ODEs. For example, growth and/or decay
of current in an LR circuit having an AC or DC voltage source is the most
common example.

Therefore, we now explain how to solve first order linear and non-linear non-
78 homogeneous ODEs.
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3.5 FIRST ORDER NON-HOMOGENEOUS ODEs

An ODE of the form

a1(x)%+ao(x)y =f(x) (3.16)
X

defined on an interval in x is called a first order non-homogeneous ODE. It
is linear if it satisfies the conditions of linearity explained in Sec. 3.2 1.
Otherwise, it is non-linear. Note that in Eq. (3.16), a;(x) # 0. You can see
that Eq. (3.16) is of the first order as it contains only the first derivative of y
w.r.t. x. It is non-homogeneous as it contains a function of only x that is not
zero: f(x) # 0. It will be linear if f(x)is not a transcendental function. On
dividing both sides of Eq. (3.16) by a1(x), we can write

dy

o TPy =a(0) (3.17a)

X

where p(x) = 2%) and  gx) = T (3.17b)
ay(x) a1(x)

This is the standard form of a first order linear non-homogeneous
differential equation provided g(x) is not a transcendental function. It could
also be a non-linear equation depending on the form of g(x). Equations of the
form of Eq. (3.17a) may or may not be exact. If not exact, these can be made
exact by obtaining an integrating factor v(x) which is only a function of x.

Let us write Eq. (3.17a) in the form
[o(x)y - q(x)ldx + dy =0
If such a function v(x) exists then the equation
v(x)lpy - qldx + v(x)dy =0 (3.18)

must be exact. For Eq. (3.18) to be exact, it should satisfy Eq. (3.13a).

v 9

i @[V(py—q)] (3.19a)

dv

or —
ax

= vp (3.19b)

Using the method of separation of variables, we get

dv d
o, T P (3.20a)

Integrating both sides, we get
In|v| = j p(x)dx (3.20b)
Thus, the integrating factor is

v(x)=exp[h(x)]  where  h(x)= f p(x)dx (3.21) 79
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We now multiply Eq. (3.17a) by v(x) given by Eq. (3.21) and get
e"(y' + py)=e"q (3.22a)
Since from Eq. (3.21), h" = p, we can write Eq. (3.22a) as
d hy_ _h
(ye')=-e"q (3.22b)
dx

You may like to verify Eq. (3.22b) by differentiating (yeh) w.r.t. x before
studying further. Now integrating Eq. (3.22b) on both sides, we get

yeh = Jehq dx+C, where h=[p(x)dx (3.22c)

Dividing both sides of Eq. (3.22c) by e we get the general solution of a
first order linear non-homogeneous ODE of the form of Eq. (3.17a):

y=e" Uehqu + C], h= Ip(x)dx (3.22d)

Let us take up a simple example of this method.

EXFL‘M@E@ 3.7: LINEAR NON-HOMOGENEOUS ODE

Solve the first order ODE Z—y + axy = bx.
X

SOLUTION B Note that this ODE is linear non-homogeneous of the form
of Eq.(3.17a) where p(x) = ax. From Eq. (3.21), the integrating factor is

v (x) =exp[jaxdx]=e"""2/2 (i)

From Eq. (3.22d), the general solution of the given ODE is
y(x) = e X" /2 [bjxealezdx+c1} (ii)

where Cy is an arbitrary constant. To evaluate the integral on the RHS of

2
Eq. (i), we put t = a%_ Then dt = axdx and we can write the integral

t
2
[xe®™"'2dx in Eq. (i) as 1jetdt =% C,. Hence, we get the general
a a

solution as

y(x) = by cemax®i2
a

where C is a constant.

Let us now apply this method to an example from physics. You may have
studied about series RC circuits in your school physics. Recall that in a series
RC circuit, a capacitor and a resistor are connected in series to an alternating
voltage source (see Fig. 3.6a). We can write the equation governing the
change in charge in an RC circuit with time as

RIY 9 _ Eu (3.23a)
T
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where E(t) denotes the alternating voltage. Usually, a sinusoidal voltage
source or a battery is connected in the circuit. A similar equation for the
change in current with time is obtained for a series LR circuit. In such a circuit,
a resistor and an inductor are connected in series to an alternating voltage
source (Fig. 3.6b) or a battery:

di

L— + Ri = E(t) (3.23b)
dt
Resistor, R Resistor, R
o Z
Alternating —_— Alternating 5
,\J Voltage — % f\j Voltage g
Source N Source =
(9]
Integrating
J = [e"'t sinowt dt
(a) (b) by parts, we get

rt/L[ cOSwt
Fig. 3.6: AC circuits in which a) a capacitor and a resistor; b) an inductor and a J = -
resistor are connected in series to an alternating voltage source. ®

These are called series RC and series LR circuits, respectively. " ije'm cos wt dt
Lw
We now solve Eq. (3.23b) for a series LR circuit. _ _ R cos ot
(O]
FEXAMPLE 3.8: NON-LINEAR NON-HOMOGENEOUS ODE . E{GRHL[MJ
Lw UJ

The current i in a series LR circuit having an alternating voltage source

di —EJ.eR”L sinmtdt}
E sinwt satisfies the equation LE + Ri = Esinot where R, L and E are Lo

_ _ _RtIL cos wt
constant. Solve this first order ODE. Orpeles 29 o
SOLUTION B We can write this equation in the form of Eq. (3.17a) as + LieR”L(Mj
o ®
ﬂ+Bi:Esinwt (i) R \2
a L L P J
(O]
Simplifying for J, t
Note that here p = % is constant. Therefore, from Eq. (3.21), the mPRving for <, we 9
LeRt/L
=—————[Rsinot
integrating factoris v (t) = exp “%dt} = eRt/L (R? + 0?L?)
— L cos wt]
Using Eq. (3.22d), we can write the general solution as Lot cos = : R _
R + oL
it) = EeRILeRL sinwtat + | (i) o
L and sinB =

[ 2 2,2
where C is an arbitrary constant. On integrating Eq. (ii) by parts, we get R+ oL

(see the margin remark for complete solution) gL ™" sin(wt - 6)
(R2 +(1)2L2 )1/2

where 6 = tan_1(mL/R).

iz E sin(wt - 0)

R? + w212

81
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You may now like to solve a first order non-homogeneous ODE. Try the
following SAQ.

S_,’ZlQ &8 - First order non-homogeneous ODE

Solve xy'+2y = X

We now summarise the procedure for solving a first order non-homogeneous
ODE using the integrating factor.

SOLVING FIRST ORDER NON-HOMOGENEOUS ODEs

Step 1: Put the equation into the standard form y’+ p(x)y = q(x).

Step 2: Identify p(x) and compute v(x) = exp[J.p(x)dx].

Step 3: Multiply the standard form of the equation by v(x).

Step 4: Integrate both sides of the modified equation and solve for y.

(Note: The coefficient of y* must be 1).

Let us now summarise what you have learnt in this unit.

3.6 SUMMARY

Concept Description
Ordinary differential B An equation that contains derivatives or differentials of one or more
equation (ODE) dependent variables with respect to one independent variable is called

Classifying first order [ ]
ODEs

General and particular 1
solutions of an ODE

Methods of solving first ®
order ODEs

82

an ordinary differential equation (ODE).

An ODE in which the highest derivative is of order 1 is called the first
order ODE. It is further classified by its degree and as linear/non-
linear, homogeneous/non-homogeneous.

A function y = ¢(x) is a solution of an ODE on some interval if ¢(x) is
defined and differentiable throughout that interval and is such that the
ODE becomes an identity when y is replaced by ¢(x) in it. A solution
involving arbitrary constant(s) is called a general solution.

If definite value(s) can be assigned to the arbitrary constant(s) in a
general solution by specifying certain conditions then it becomes a
particular solution. Depending on the way the conditions are specified
we get an initial value problem or a boundary value problem.

The methods of solving a first order ODE depend on its
classification. You have learnt the following methods.

» Separable Equations: An equation is separable if it can be put in
the form

i = M(x)dx
N(y)
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The solution is obtained by integrating both sides of the equation.
An ODE may be reduced to a separable form by an appropriate
substitution or change of variables.

Homogeneous Equations: The first order ordinary differential

equation M(x,y)dx + N(x,y)dy =0 is said to be homogeneous of
first order if M(x,y) and N(x,y) are homogeneous functions of

the same degree or if it can be put in the form y’ = f[lj, that is,
X

the derivative of y is a function of [lj Then it can be made

X
separable by making the substitution y = vx.

Exact Equations: The ordinary differential equation
M(x,y)dx+ N(x,y)dy =0 is said to be exact if

M(x,y)dx + N(x,y)dy is an exact differential [df (x,y)]. When M
and N are continuous and have continuous partial derivatives, then

oM /9y =oN/ox

is a necessary and sufficient condition for Mdx + Ndy =0 to be
exact. Then there exists some function f for which M(x,y)=of / dx
and N(x,y)=0df/dy. The method of solving an exact ODE starts by
integrating either of these expressions.

Non-homogeneous Equations: If a first order ODE can be put in
the form

d_y+ p(x)y =q(x), with the coefficient of dy

—~ being 1,
ax ax g

it can be reduced to the exact form by multiplying it by an
integrating factor

exp|[ p(x)dx]

We can solve this equation by integrating both sides of the
equation

%Hexp(fp(x)dx}y] = {exp(J p(x)dxJq(x)

Thus, the general solution of the equation is

y = e_hjehq(x)dx+C where h=[p(x)dx

3.7 TERMINAL QUESTIONS

1.

Obtain the general solutions of the following first order ODEs:

a)

b)

dN(t)
at

()
dt

= Ct, where C is a constant.

= Cyf(t), where Cis a constant and f(0) = Cy 83
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d) ywd—W+ w? =0
dy

e) (x+1N)y+y =0

2. Solve Eq. (3.2c) and obtain the expression for escape velocity of a particle
having the initial speed v = v at r = R, where R is the Earth’s radius.

3. Obtain the general solution of the following ODEs:
a) (1+ cosB)dr=rsin6dd
b) (x-2y-N)=(x-2y+7)y

) Ay (-
adx (x+y)

(o

d) xy’ +2y=x°
e) y' -2y=8e¥
4. Solve the following ODEs:
a) e¥+y-1Ndx+@Be¥ + x-T7)dy=0

b) xdy—(y—\/x2 +y2 )dx =0 when y =4 for x =3

5. a) The one-dimensional equation of motion of a simple linear harmonic
oscillator can be reduced to a first order ODE given by

vﬂ + 02X = 0,
ax

where v is its linear velocity, x, its distance from its mean position and
o, its angular frequency. Solve the first order ODE and further, use

the equation v = % to obtain the relation between x and ¢ given that

v =0 when x = a.

b) Solve Eq. (3.23a) for a series RC circuit for constant E given that the
initial charge in the circuit is qg. What happens when E =07

3.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. Eq. (3.1a) is first order, first degree ODE; Eq. (3.1b) is first order, first
degree ODE; Eq. (3.1c) is second order, first degree ODE and Eq. (3.1d)
is first order, first degree ODE.
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2. a) Thisis alinear ODE; b) this is a non-linear ODE as it contains the
transcendental function sinwt; c) this is also a non-linear ODE as it

contains the product of the first order derivative of y with itself (y’ 2).

3. a) We can write the ODE yy’=-x as ydy = - xdx

2 2

Integrating both sides yields y7 = —X? + C; where C; is the constant

of integration. Hence, the general solution of the given ODE is
x? + y? = Cwhere C = 2C;.

b) The initial value problem y’= -2xy, y(0)=3 is also a separable
first order ODE and we solve it as follows:

Id—y=—2‘|.xdx+C or InM=—x2+C
y
= y=Ce " where C1=In‘C‘

2
From the initial condition, C1 = 3 and the particular solution is y = 3e X

4. We follow Example 3.4 and put x + y = u in the ODE % = (x+y)2.
X

Then using Eq. (i) of Example 3.4, we can write the ODE as

du 2 .

—=1+u |

o (i)
du

u? 41

This is separated in u and x:

= dx (ii)

Integrating Eq. (ii), we get tan"'u = x + ¢ or tan” (x+y)=x+cC
This is the required general solution.

5. Eq. (i) is homogeneous because the functions (x + y) and (x — y) in
Eq. (i) are homogeneous:

f(kx,ky) = (kx + ky) =k(x + y) = kf(x,y) and
f(kx,ky) = (kx — ky) = k(x = y) = kf(x,y)

Egs. (ii) and (iii) are not homogeneous. Eq. (iv) is homogeneous because
the functions (x2 + y2) and xy in Eq. (iv) are homogeneous:

f(kx,ky) = (kx)? + (ky)? = K2(x® + y?) = K f(x,y)

and  f(kxky) = (kxky) = k2(xy) = k2 f(x,y)

6. a) We can write Eq. (iv) of Example 3.5 as vdv = —
X
o v y2

Its solution is givenas —— =In|x| + ¢ or Z— =In|x + ¢
2 2x2

b) You can check that the ODE is homogeneous. So following Example

3.5, we rewrite it as ay = (1 + ZJ and substitute y = vx. We

ax X 85
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substitute % =V + x% from Eq. (iii) of Example 3.5 in the above
X X
ODE and write
vV + xﬂ =1+v or xﬂ =1 which is a separable equation.
dx dx

It can be solved as follows:

[dv = *x v=Inx] + C or y=xin|x] + Cx
X
7. Here M =3x%y-6x, N=x3+2y (i)
M _3x2, N _3y2 Thys M _ N (il
oy ox oy ox

So the equation is exact.

Now, we have to solve the given ODE, which is exact. We can therefore
say that there exists a function f (x, y) for which Eq. (3.13a) is satisfied.

We can now use either Steps 2 and 3 or Steps 5 and 6 of the method of
solving first order exact ODEs. From Step 2 we get

f(x,y):jM(x,y)dx+z(y)=j(3x2y—6x)dx+z(y): x?’y—3x2 +2z(y)
(iii)

Since g_f: N(x,y), from Egs. (i) and (iii), we obtain
y

ﬂ: x3+£ = x3+2y

)% dy

dz 2 .
. —=2y or z(y)=y° +k, (iv)

dy

where k is an arbitrary constant. Thus, f(x,y)= x3y —3x% + y2 +k

So the required solution is f(x,y) = constant

or x3y ~3x% + y2 = C, where Cis a constant.

8. We can express the given ODE as

, 2 2
y+=y=x
X

The integrating factor = exp Ugde = exp [2In|x|] = exp[ln‘xzu = x?
X
So, we have

d (Xzy) 3 X4
dx
2 4 2 x°
or xy=[x"dx+C or x y—?:C, which is the required solution.
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Terminal Questions

1. a) This is afirst order, first degree ODE that is separable and we can

b)

c)

d)

solve it by integrating it as follows:

dN(t) = Ctdt or [dN = C[tdt

2
or N = C% + C4 where C; is the constant of integration. This is

the general solution of the ODE.

This is a first order, first degree ODE that is separable. We can
solve it by integrating it as follows:

dft) _ cat or izcjdt or 2Jf = Ct+ Cq

NTG) Jf
Applying the initial condition f(0)=C,, we get Cq =2,/Cy

Therefore, the particular solution is 2\/_: Ct + 2,Cy

This is a first order, first degree ODE that is separable:

d—W+dx:0
2w

We can solve it by integrating it as follows:

%jd—w + [dx =C, where Cis the constant of integration.
w

or 1In‘w‘+x=C
2

w| = Ae X where A= e2°

This is a first order, first degree ODE that is separable. We can write
it as J J
dw  dy _g

woy
Integrating, we get Injw| +Inly| = C or Inw||y| = C
In most physical situations, the parameters w and y are positive
quantities. Therefore, in solving physics problems, you will find that
this solution would be written as Inw + Iny = C and so the general

solution is
Cc
wy =e

This is a first order, first degree ODE that is separable. We can write

it as d__ (x + 1)dx . We take y to be positive and integrate the

y

87



Block 1

88

Mathematical Preliminaries

2
expression to get the general solutionas In(y) = - (X? +x) + Cy

2
or y=Cexp {— (X? + x)], where C is a constant.

2. Eq. (3.2c) is separable and we can write itas  vdv = _GM dr

2
r
. . dr
On integration, we get [vdv = - GMJ-—2 +C
r
Thus, the general solution is v2 = 2GM + C
r
Applying the initial condition that v = vy at r = R, we get
R 2GM 2GM
The particular solution is given by vi = 220 vg - R
r

For the particle to escape, v > 0 for all values of r. Now v > 0, iff

2_26M o . , » [26M
0 R 0 R

If Vg - ZC;M < 0, then a value of r will exist for which v = 0. The particle

will stop, v will become negative and the particle will return.

The minimum value of v, is called the escape velocity:

_ |26M
Ve = R

3.a) (1+cosB)dr =rsin6do

—qj d
dr+ ( sme)E):O

dr sin6dod J'
— =0 or
r 1+ cosHO

r 1+cos®
or In|r|+In[1+cos 6| =In|C| [ %(Hcosa):—sinﬂ}

Thus, the general solution is r(1+cos6)=C

b) By inspection, we can suggest the substitution x -2y =v

&y _av

Differentiating w.rt x we get 1-2
dx dx

1
ry=—(1-v
y' =50-v)

Substituting in the original ODE we get (v -1)= @[1 —%J
X
ﬂ_1_2v—2 _—v+9
dx v+7 v+7

Using the method of separation of variables we have

JV+7dv=—Idx+C or j1+ 16 dv:—jdx+C
v-9 v-9

or v+16|n‘v—9‘ =-x+C

or

Since v = x -2y, we get the general solution in the form
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x—2y+16|n‘x—2y—9‘=—x+C
or 2x—2y+16|n‘x—2y—9‘=C

c) Thisis a first order linear homogeneous ODE and we can solve it
following Example 3.5 by substituting y = vx.

1_Y
dy _ (X_Y)z X
dx (x+y) 147 Let | — (21+v)dv
X Ve +2v -1
We put y =vx so that d—y=v+xﬂ We put
dx dx 2
u=v-+2v-1
vaxd 1oV sodu = (2v + 2)dv
dx 1+v
=2(v+1)dv
dv 1-v 1-2v—v? dx  (1+v)adv
o Xax 1wy VT o —=——"3 1 du
dx 1+v 1+v X 1-2v -2 or I=—|—
u
dx 1+v)dv
o I_+I (2 ) =0 =lln|u|
X ve+2v -1 >

or In|x|+%ln|u|:ln|C|, u=v2+2v-1 or xu1/2:C1
x(v?+2v-n"2=c, = (yZ+2px-x*)2=c,
or y?+2yx-x*=C?
d) The given ODE may be expressed as  y’ +Ey = x4
X

Integrating factor =exp(jgdxj = exp[2|n|x|] = exp[ln‘xzu = x?
X

So, we have di(xzy) =x® or x2y = jx6dx +C
X

7
Thus, x2y —X7 = C s the required solution.

e) You can see that the given ODE y’— 2y = 8e*is a first order linear
non-homogeneous ODE. We note that p(x) = -2.

So the integrating factoris v(x) = exp[—jde:l = exp(-2x)

Multiplying the given ODE by e_2x, we get

- - -2 -
e 2Xy’—2ye 2x —8e X or —; (ve X):8e X
X

Integrating both sides yields ye ¥ =-8e™* + C

So the general solution is y = ~8e" + Cezx 89
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Checking the Solution

We can rewrite the
general solution

y+yyi+x2=Cc ()
as
+y’=(C-yy
or x2=c?-2cy (i)
This gives us
2xdx = -2Cdy

or dy = —%dx (i)

Substituting

\/x2+y2 =C - y from

(i), and dy from (iii) in the
ODE, we get

x(—%dx] —dx(y—-C+y)

=0
or

2
X
ax|-—-2y+C | =

(iv)
Substituting (ii) in (iv)
gives us an identity.

Thus, (i) is a solution of
the given ODE.

90
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4. a) To solve the ODE (¢* + y — 1)dx + (3¢¥ + x —7)dy =0, we

check whether it is exact. Here M =¢* +y-1 N= 3¢ +x-7
oM — =1, a—N—1 and a—Mza—N Thus, the equation is exact.
8y 0x ay  ox
of X X
" a—:e +y-1 and weget f=e" +xy—x+2z(y)
X
Hence, we have i—3ey+x 7= x+£
ay dy
ZZ—Sey 7 or z(y)=3eY -7y +C,
y

eX+xy+3ey—x—7y+C=0.

—\/xz +y2 )dx =0 as

The solution is f(x,y)=C" or

b) We can write the given ODE xdy —

| 2 2
d_y_y— X tYy

dx X
You can check that it is a first order homogeneous ODE. We put
y =vx so that d—y_v+xﬂ
dx dx

The right hand side =

/ 2
%:v—\/1+v2

So we get v+xﬂ=v— 1+ v?2
dx
dv _dx J‘ J‘dx
or = — =
\/1+v2 w[1+v X

or In

v+\/v2+1 +In‘x‘:|n‘c‘ or In x(v+1/v2+1lzln‘c‘
x{v+wlv2 +1]:C

. 2 2 . . .

i.e., y+.y +x  =C is the required general solution.

Let us now apply the initial condition: y =4 for x =3

4+1/42+32 =C or C=9
. o [ 2 2
Hence, the particular solutionis y +,y +x =9

5. a) We can write the given ODE v% +0?x=0 as vadv + wzx dx =0
X

v2 m2x2
On integrating, we get > +

=C, where C is an arbitrary
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constant, i.e., v2 + w2x2 =C’, where C'=2C

But %=V=0, when x=a = C’:(x)za2 and
v2=m2(a2—x2) or v:ﬂziw az—x2
dt
or L:mdt
* a2 —x2
dx , :
J.T =t +d where § is an arbitrary constant.
tya —-x
-1 X
sin  —
a
or =ot+9
-1 X
cos —
a
sin(wt + d)
Thus, X or
a
cos (ot + J)

Thus, the required solutions are: x = asin(wt +9) and x = acos(wt + )

b) We follow Example 3.8 to solve Eq. (3.23a) for an RC circuit given by
dq9 , 9
dt RC
initial charge or charge at time t = 0 in the circuit is gg. This equation

= % where E is constant. The initial condition is that the

is in the form of Eq. (3.17a) and note that here too p = RLC is

constant. Therefore, from Eq. (3.21), the integrating factor is

dt t/RC (i)
v(t)=exp| | =< |=¢€
® p“ RC}
Using Eq. (3.22d), we can write the general solution as
_ E /
q(t)= e V/RC {Eje”RC at + C} (ii)

where C’ is an arbitrary constant. On integrating (ii), we get
q(t)= EC + C’et/RC
Applying the initial condition g = gy at t =0, we get C’'= q9 - EC
Hence, the particular solution is given by
q(t)= EC (1 - e—t/RC)+ qoe—t/RC
When E = 0, the solution becomes q(t)= qoe'“RC

Here RC is called the time constant of the circuit. At t = RC, the

charge on the capacitor is q?o, that is, t = RC is the time at which the
charge on the capacitor is q?o or % of its initial value. 91
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APPENDIX : PARTIAL DERIVATIVES

By definition, the partial derivative of a function f (x, y, z) with respect to x is

of(x,y, z) — lim f(x+Ax,y,z)-f(x,y, Z)
ox Ax—0 Ax

(1)

The function of / dx is obtained by differentiating the function f (x, y, z) with

respect to x as in ordinary calculus, treating other variables y, z as

constants. You can similarly determine of /dy and of / dz. The partial

derivatives E g_f g_f of a function f(x, y, z) give us, respectively, the rate

X dy 0z

of change of fin the directions of x, y or z-axes. Thus, (;)_f gives the rate of
X

change of fwith respect to x at a given point in space.

Let us explain how to calculate the partial derivatives of a function f (x, y, z)
with respect to x, y and z holding other variables to be constant.

For example, let f(x,y,z) = 2x? yzs. Then

? = L)i (xz)} (2y23) = 4xyz3 since y and z are treated as constants.
X X
Similarly, for the partial derivative with respect to any other variable, we keep

the remaining variables as constant. Thus,

o

af—{a (y)}(2x223):2x223 and 5
z

Jd .3 2 -
ik _ ed | Z 2x2y)=6
o |y {az (z )}( x“y)=6x"yz

You may quickly work out a couple of exercises to learn how to calculate
partial derivatives of a function.

a) Compute Jor and T for f(x, y)= x2 y3 +exp(x2 y).
0x oy
: ou Ju ou
b) For the function u(x, y, z) = 2x + yz — xy, evaluate —, — and —.
ox 9y 0z

The solutions are as follows:

of ) ) )
a) —— =|—(x*y°)+=—exp(x?y) |=| == (x*) |y +2xexp(x* y)
0x 0x 0x 0x
:2xy3 +2xexp(x2 y)
of 0 , 2 3 0 2
—=|—(x + —exp(x
3y [ay( y7) » p( y)]
d
= [5 <y3)}x2 + exp(x’y) = 3y°x* + exp(x*y)
ou 9 :
b) o = 8_(2X +yz-xy)=2-y since y and z are treated as constants.
X  ox
Similarly, ou = i(2x+ yz—-xy)=2z-x and ou = i(2x +yz-Xxy)=y
ay oy 0z 0z
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ontengwiasuns wiets - SECOND ORDER ORDINARY

continuously? You could find the

answer after studying this unit! DIFFERENTI AL EQU ATIONS
WITH CONSTANT COEFFICIENTS

Structure
4.1 Introduction 4.4 Summary

Expected Learning Outcomes 4.5 Terminal Questions
4.2 Some Terminology 4.6 Solutions and Answers

Linearly Independent Solutions and the Wronskian
4.3 Method of Exponential Functions

Real and Distinct Roots

Real and Equal Roots

Complex Roots

STUDY GUIDE

In this unit, we will use some concepts of physics and mathematics that you have studied in your senior
secondary (+ 2) classes. We shall take it for granted that you know how to solve a system of linear
equations, and evaluate determinants, partial derivatives and integrals of various functions. You should
also know how to solve quadratic equations and determine their roots. You may like to revise these
concepts from the senior secondary (+ 2) mathematics course. You also have to revise the concepts of
Unit 3 and make sure that you can solve first order ODEs and integrals of various functions very well.
Only then you will enjoy studying this unit.

In order to meet the expected learning outcomes, try to solve all steps explained in the text and
examples. Keep a paper and pen/pencil at hand or use the margins of the unit. Make sure that you can
solve the problems given in this unit before studying the remaining course.

“The real goal of physics is to come up with an equation that
could explain the universe but still be small enough to fit on a Leon Lederman
T-shirt.”
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4.1 INTRODUCTION

In Unit 3, you have learnt several methods for solving first order differential
equations. You have learnt how to apply these methods to physical problems
such as the motion of a body falling freely and under air resistance, radioactive
decay, change in current and charge in electrical circuits.

However, for many physical and biological problems, we need to solve second
order homogeneous ODEs. For example, such ODEs are used in the study of
wave (sound and light) propagation, mechanical and electrical vibrations while
designing bridges over rivers or highways. These are also used in studying the
transmission of radio/TV signals. In some cases, these equations can be
reduced to first order ODEs. In this unit, we discuss techniques of solving
second order homogeneous ODEs with constant coefficients.

In Sec. 4.2, you will learn the basic terminology that will help you to identify
such ODEs.

You will apply such ODEs on different systems in the remaining blocks of this
course. In the laboratory, you will get an opportunity to perform experiments to
study the motion of a flywheel or determine the depression in horizontal
beams. These are governed by homogeneous second order ODEs with
constant coefficients. You also need to solve such ODEs when you study the
growth/decay of current in an LCR circuit or planetary motion in the solar
system. You will learn the basic techniques to solve such equations in

Sec. 4.3.

In the next block, you will study the concepts of mechanics and use the
mathematical techniques you have learnt in this block.

Expected Learning Outcomes

After studying this unit, you should be able to:

<« compute the Wronskian of a given ODE;

< obtain the auxiliary/characteristic equation for second order linear,
homogeneous ODEs with constant coefficients; and

< determine the general and particular solutions of second order linear,
homogeneous ODEs with constant coefficients using the method of

exponential functions.

4.2 SOME TERMINOLOGY

While studying first order ordinary differential equations in Unit 3, you have
learnt terms such as the order and degree of an ODE. You know the
conditions for an ODE to be linear or non-linear. You have also learnt about
first order homogeneous and non-homogeneous ODEs.

Let us repeat the terminology for second order ODEs.
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CLASSIFYING SECOND ORDER ODEs

» If the highest derivative appearing in an ODE is of order 2, it is called a
second order ODE. The degree of a second order ODE is the power of
the highest order derivative appearing in it.

» An ODE is termed as linear if
In general, an nth order
i) the unknown function and its derivatives occur only to the first ODE has n linearly

degree in it; independent solutions.

. . . . . Furthermore, a linear
ii) there are no products involving the unknown function and its combination of linearly

derivatives or products of two or more derivatives in it; and independent solutions is

. . . also a solution.
i) there are no transcendental functions involving the unknown

function or any of its derivatives in it.

An ODE that does not satisfy any one or more of the above conditions
will not be linear. It is called non-linear.

We now explain some more basic terms for second order ODEs as you should
know them too. A second order linear ordinary differential equation can be
written as

2
o P0G o)y =g() (4.1)

The function g(x) is termed as the forcing function, and p4(x) and p,(x)

are called coefficient functions. These are continuous over the interval

where the solution exists. Note that
A second order ODE is termed as homogeneous if g(x) = 0. y’=%
It is termed as non-homogeneous if g(x) # 0. , d%y
and y :F
X

Now consider a linear, homogeneous second order ODE of the form

Two functions
y(x)and y,(x)are
said to be linearly
independent on an

Yy +p(x)y +p2(x)y =0 (4.2)

Suppose that y4 and y, are linearly independent (read the margin remark)

solutions of Eq. (4.2). Then their linear combination interval /, where both
functions are defined, if
y =Cqy1+Coyo (4.3) and only if we can

determine constants
. . ) C and C; such that
is a general solution of Eq. (4.2). Here C, and C,, are arbitrary non-zero the relation

constants. This is the principle of superposition. Let us explain this concept Ciy1+Coyp =0

with the help of an example. Consider the ODE: is satisfied only for

) Ci=Cy, =0.

=L+ o’y =0 (4.4a)
at 95
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Fig. 4.1: A spring-mass
system is an example of
a harmonic oscillator.

and

¥1 = ocos wt

y! = -w?sinot
2

= —o’sinot+o?sinot =0

Similarly,

Y5 =-wsinot
2

Y5 =—-w* cos ot

Therefore,

96

— 0

cos ot +w? coswt =0

Don't forget
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This ODE is the equation of motion of an undamped harmonic oscillator
(Fig. 4.1). You can check that y4 =sinwt and y, =coswt are solutions of
this equation (read the margin remark). So the general solution of this
equation is

y(t)=Cqsinwt + Cy cos ot (4.4b)

You may now ask: What do we mean by linearly independent solutions? How
do we test their linear independence? Will a linear combination of linearly
independent solutions necessarily lead to a different solution? When does a
set of solutions constitute the general solution of a linear differential equation?
Let us now seek answers to these questions for ODEs of second order.

4.2.1 Linearly Independent Solutions and the Wronskian

Let us first answer the question: What do we mean by linearly independent
solutions? We say that two solutions ¥, and y, are linearly independent on

an interval if the identity given in Eq. (4.3) is satisfied only when C, =C,, =0.

To understand this point, let us suppose that the constants C1 and C2 are
non-zero. Then from Eq. (4.3), we would get

Y2 _ K, a constant (4.5)
Y1

Thus, y, and y, would be proportional on the given interval. Then, by

definition, Y4 and Yo would be linearly dependent functions on that interval.

Let us now answer the next question: How do we test the linear
independence of solutions?

You have learnt that linear dependence of Y and Y, means that the ratio
Yo /y1 is constant. This implies that the solutions Y4 and Yo would be
linearly independent if the ratio Yo /y1 is not a constant. This also means that

the differential of this ratio is not identically equal to zero:

Y2)1 —2}’1}/2 £ 0 Of yhyi—yiys # 0 (4.6)
n

We can express the LHS of Eq. (4.6) in the form of a determinant and write
the condition of linear independence of two solutions y, and y,, as follows:

Y. Y2

i Y2

W(y1,y2) = # 0 (4.7)

The determinant W (y,,y,) is called the Wronski determinant or the

Wronskian of the given differential equation. We may, therefore, conclude
that

Two solutions Y and Yy of a second order homogeneous second order
ODE with constant coefficients are linearly independent on an interval
[a, b], if and only if their Wronskian is non-zero for a< x <b.
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Let us check this for a harmonic oscillator. Substituting y4 = sinwt and
yo = cosot in Eq. (4.6), we get

W (x) = sin ot cos.wt w20 (4.8)
wcoswf —wsinwt

Thus, the Wronskian of y4=sinwt and y, = coswt is non-zero and these
are linearly independent solutions.

We can also say that Y4 and y, are linearly dependent solutions on an

interval [a, b], if and only if their Wronskian is zero for some x = x. in the

0
given interval. To grasp this concept, you may like to answer an SAQ.

SAQ 1 - Testing linear independence

The solutions of the equation y” + 4y =0 are given by y,= sin2x and

y, =cos 2x. Are these solutions linearly independent?

Before proceeding further, let us revise what you have learnt in this section.

LINEAR INDEPENDENCE OF SOLUTIONS OF 2"° ORDER

HOMOGENEOUS ODEs

e A second order homogeneous ODE has two solutions, say 2 and Yy

e The solutions Y4 and y,are said to be linearly independent on an
interval [a, b], if and only if, their Wronskian is non-zero for a< x<b:

Yo Yo
Wyyo)=| | %0
Yo Yo

We hope that you are now equipped with all the necessary basic terminology.
We now explain how to solve second order, linear, homogeneous ODEs
with constant coefficients. Many techniques of solving such equations have
been developed. Here we will discuss the method of exponential functions.

4.3 METHOD OF EXPONENTIAL FUNCTIONS

We know that a second order linear, homogeneous ODE with constant
coefficients is of the form

ay”+by’ +cy=0 (4.9)

where a,b and ¢ are real numbers. From the method of separation of

variables (Sec. 3.3.1 of Unit 3), you can verify that the solution of the first

order linear homogeneous ODE y’+ y =0 is an exponential function of the

form y = Aexp(—kx). 97
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The roots of a
quadratic equation

ax?+bx+c=0

are given by
o —b+yb*—4ac
- 2a
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Here also, we seek a solution of Eq. (4.9) of the form

y =Aexp(mx) (4.10)

where the dimensions of m are inverse of those of x. This ensures that the
power of the exponential function is dimensionless.

On differentiating Eq. (4.10) with respect to x twice, we get
y'=Amexp(mx) (4.11a)

and y” = Am” exp(mx) (4.11b)
On substituting these results in Eq. (4.9), we get

(am2 +bm+c)Aexp(mx)=0
Since Aexp(m x) is finite, this equation will be satisfied only if

am2+bm+C=0 (4.12)
This is a quadratic equation in m and is called the characteristic equation (or

auxiliary equation). Its roots are given by
—b+b° —4ac —b-.b° -4ac

m, = % and m, = 3 (4.13)

So we can write the solutions of Eq. (4.9) as
y1(x) = Aexp(myx) (4.14a)
and yo(x)=Aexp(myx) (4.14b)

Before we write the general solution, let us check the linear independence of
these solutions. For this, we calculate their Wronskian:

Aexp(m,x) Aexp(m,x)
W(x)=
m,A exp(m1x) m,A exp(mzx)

=(my —my)Bexp[(mq+my)x] (4.15)

Here B = A? is another constant. This shows that if mq#my, W(x)#0 and
the solutions will be linearly independent. That is, if the roots of the auxiliary
equation are different, the solutions of the given second order ODE with
constant coefficients will be linearly independent.

Using Eq. (4.3), i.e., the principle of superposition, the general solution of
Eq. (4.9) can be expressed as a linear combination of the two linearly
independent solutions. We can write it as

y(x) = Crexp(myx)+ Co exp(myx) (4.16)

The constants C1 and C2 are determined using initial or boundary conditions.

So solving a second order linear, homogeneous ODE with constant
coefficients with an exponential function as a solution has now become as
simple as obtaining the roots of a quadratic equation.
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Let us consider an example to illustrate this method.

Eﬂ.‘M@L@ 4.1: SECOND ORDER ODE WITH CONSTANT
COEFFICIENTS

Solve the ODE  y”"+6y' -7y =0

SOLUTION ®m The given ODE is a second order linear homogeneous
ODE with constant coefficients. Let its solution be given by

y = Aexp(m x). You can verify that the auxiliary equation for this ODE is For Eq. (i) in Example
4.1,
m?+6m-7=0 (i) m_—6i,/36—4><1><(—7)
2
The roots of Eq. ()are m=1, -7. =1,-7

So we get two solutions of the given ODE as

y1(x) = Aexp(x) (ii)
and yo(x)=Aexp(-7x) (iii)
The general solution is y(x) = Cyexp(x)+ Co exp(—7x) (iv)

Note that roots of the auxiliary equation [Eq. (4.12)] can be

1. real and distinct if b> — 4ac > 0 or b > 4ac
2. real and equal if b? — 4ac = 0 or b? = 4ac and

3. complex conjugate if b® - 4ac < 0 or b? < 4ac

Let us obtain the solutions corresponding to these three cases.

4.3.1 Real and Distinct Roots

For distinct real roots, exp (m1x) and exp(mzx) will be linearly independent

and the general solution can be written as follows:

General solution for real and distinct roots of auxiliary equation
y = Crexp(myx)+ Cy exp(myx) S
=exp|— bx [C, exp(ax)+ C, exp(—ox)] (4.17)
2a ||'1 2 ' Don't forget
b2 — 4ac
where o0=——
2a

Note that the constants C, and C, are determined using given initial and

boundary conditions. We now illustrate this method with an example.
99
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E)CzlfM(Pqu 4.2: CASE OF DISTINCT REAL ROOTS

Solve the ODE y” + 3y’ + 2y =0 subject to the initial conditions y(0) =1
and y’(0) = 2.

SOLUTION B You can verify that the auxiliary equation for this ODE is
m? +3m+2=0 (i)

and its roots are m=-1 and m =-2. So the general solution of the ODE is

-X -2x ..
y=C1e +Cze (i)

To determine C1 and C2, we first use the condition thatat x =0,y =1. This
gives

1=C1+C2 = C1=1—C2 (III)
Further, since y'=-Cie™* —2C26_2X , We can write

y'(0)=2=-C1-2C, (iv)

On solving Egs. (iii) and (iv) for C, andC,,, you will get C, =4 and
02 =-3. Hence, the desired particular solution of the given ODE can be

expressed as

y(x) = 4exp(—x)—3exp(—2x)

You may like to solve another SAQ on this method for practice.

SﬂQ 2 - Case of distinct and real roots

Solve the ODE y” — 5y” + 6y = 0 given that y(0)=2 and y’(0) = 2.

4.3.2 Real and Equal Roots

When two roots are real and equal, that is, my = m,, the Wronskian is zero:
W(x)=0

This means that ¢ " and e 2 will be linearly dependent. What does this
imply? It implies that Eq. (4.16) does not hold. It also means that our
starting assumption is not true. You may now ask: How can we obtain two
linearly independent functions when two equal roots of the auxiliary
equation are equal? (We also call this as the case of repeated real roots.)
In such a situation, we use the method of reduction of order to construct a
second linearly independent solution.

Repeated Real Roots

When the auxiliary equation of a second order ordinary differential equation
has two equal real roots, we obtain the correct form of the second solution by
100 assuming that
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where m is a root of the auxiliary equation (4.12). Let us obtain the expression
for u(x). For this, we first differentiate Eq. (4.18) twice with respect to x and
get

yo = u"exp(mx) + mu exp(mx) (4.19a)

and vy =u"e™ + 2mu'e™ + m?ue™ (4.19b)

Substituting these results in Eq. (4.9), we get

(am? + bm + ¢)u(x)e™ +(2ma + b)e™u + ae™u" =0 (4.19¢)

The first term in Eq. (4.19¢) vanishes in view of Eq. (4.12) and the coefficient
of u”in the second term is zero since in this case m=-b/2a [see Eq. (4.13)].
Hence, Eq. (4.19c¢) simplifies to

exp(mx)u” =0 (4.19d)

On multiplying Eq. (4.19d) by exp(—mx) and integrating the resultant
expression, we get

v =K (4.20a)

where K is an arbitrary constant of integration. Integrating Eq. (4.20a) again,
we get
u=Kx +C (4.20b)

Since we are seeking only a second linearly independent solution, we now
take C =0 and K =1. Then we can write the desired solution as

yp = xe™ = xe™PX/2a (4.21)

Hence, the general solution of a homogeneous second order differential
equation with constant coefficients, when the auxiliary equation has
repeated real roots, is

y(x)=Ce™ +Cyxe™ where m = - % (4.22a)

= (Cq + Cox)exp(mx) (4.22b)
where C4 and C, are arbitrary constants.

To test that the solutions e_bX/za and xe_bX/za are linearly independent, we
calculate their Wronskian:

exp(—g—;j xexp(——]
w =
. - —exp _bx —Lxexp _bx +expl ——
2a 2a 2a 2a 2a
= e /@) 50 for as<x<b (4.23)

101
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It implies that e and xe_bX/za are acceptable solutions. The arbitrary
constants C1 and C2 occurring in Eq. (4.22a or b) can be determined using

specified initial or boundary conditions. We may, therefore, conclude as
follows:

General solution for repeated roots of auxiliary equation

When the auxiliary equation for a second order ODE with constant
coefficients has repeated real roots (m, =m., = m), the general solution is

1 2

given by
Don't forgef Y(x) = (C1 + Cox)exp(mx) (4.220)

where C1 and C2 are arbitrary constants.

You may now like to solve an SAQ to be sure that you have grasped this
method.

SﬂQ 3 - Case of repeated roots

Solve the initial value problem y”+6y’+9y =0, y(0)=2 and y’(0)=1.

4.3.3 Complex Roots

Let us now consider the case for which the auxiliary equation has complex
roots of the form m = o + i, where o and B are real. From your school
mathematics, you may recall that complex roots of a real polynomial equation
always occur in conjugate pairs. That is, if

m,=a+if (4.24a)

1
is one of the roots, then

m, =o—ip (4.24p)

2

is also a root. As before, we can obtain the following general solution as a
linear combination of two linearly independent solutions:
y = Ay, + By, = Aexp(m,x)+Bexp(m,x)
= AelOFBIX o gela-iB)x  — guX(AglBX | pe=TBX) (4.25)

You will note that this solution is complex. Can you express it as a real
solution? To do so, we use Euler’s formula, which is given below:

e*® = cos0+isind (4.26)
Now we write

yi= eMX = e /P = 6% (cosBx +isinfx) (4.27a)

and yo = eM2X = e™ e BX = g™ (cosBx - isinPx) (4.27b)

Then we can write the real general solution as follows:

= CYs + C5Y- 427
102 y 1Y1 2Y2 (4.27¢)
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and Yy, = %(y1 — yo) = e sinpx (4.27¢e)

Putting C1 =Ccos¢ and C2 = Csin¢, we can rewrite Eq. (4.27c) as
y =Ce™ cos(Bx—0) (4.28)

where C and ¢ are arbitrary constants. These are related to C1 and C2 by

c
C=.[cZ+C. and tang=—2 (4.29)
C1

Thus, the general solution of a second order ODE with constant coefficients
can be written as the product of an exponential and a trigonometric function
when the roots of the auxiliary equation are complex. Therefore, we conclude
as follows:

General solution for complex roots of auxiliary equation

If the auxiliary equation of a second order ODE with constant coefficients
has complex roots of the form o.+i 3, the general solution is of the

form y =Ce™ cos(Bx - 0) 4.28) || Don't forget

Let us now apply this method to a physical system: the undamped spring-
mass system.

Eﬂﬂ?ﬁﬂ 4.3: UNDAMPED SPRING-MASS SYSTEM

An undamped spring-mass system executes simple harmonic motion along
the x-axis (see Fig. 4.1). Solve the differential equation governing its
motion:

2
d x 2 2 k
—+w,x=0, where of =—
m

0
dt
SOLUTION B Note that the auxiliary equation is: m? +(u% =0
=im

which has complex roots m and my =—i wyg.

1 0
Hence, the general solution is given by Eq. (4.28) withat =0 :

x(t) = Ccos(mgt — )

Theoretically, the oscillatory motion of the spring-mass system should
continue indefinitely. In practice, however, several factors lead to loss of
energy of the system. As a result, the amplitude of oscillations tends to
decrease. In the next example, we illustrate the method discussed in this
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section to study the motion of a damped oscillator. But before that, let us
revise what you have learnt in this section so far.

METHOD OF EXPONENTIAL FUNCTIONS TO SOLVE

2" ORDER ODEs WITH CONSTANT COEFFICIENTS

¢ Obtain the auxiliary/characteristic equation and determine its roots,
say, my andms .

e When the roots are distinct and real, there exist two linearly
independent solutions of the form exp(m1x)and exp(m2x) and the
general solution is given by

y(x)= C1 exp(m1x) + C2 exp(mzx)

e When the roots are real and equal, the two linearly independent
functions are of the form exp(mx) and x exp(mx), and the general
solution is given by

y(x) = (C1 + C2x)exp(mx)

e When the roots are complex, the two linearly independent solutions
are of the form exp(ox)sinfx and exp(cx)cospx, and the general
solution can be written as

y(x) =exp(ox)(CqcosPx + Cy sinPx) = C exp(ox)cos(Bx — )

E)CZL‘M(PL%' 4.4: DAMPED SPRING-MASS SYSTEM

Consider a spring-mass system which is damped by air resistance
(Fig. 4.2). Let the air resistance be linearly proportional to velocity. The
differential equation that describes its motion is given by
2
MIX X =0
dt

it

where M is mass, k is spring constant and v is characteristic of damping.
Obtain the roots of corresponding auxiliary equation.
SOLUTION B We can rewrite the given equation of motion as

2
X 2 L w2x=0 (i)

at2 0

where we have put 2b=y/M and cog =k/M.

Fig. 4.2: Example of a On comparing this equation with Eq. (4.9), we can write the auxiliary

damped spring-mass equation as m? +2bm + mg =0, which has roots
system in a

transmission line.

my :—b+,/b2 —03(2)
and my =—-b—+/b? — w3
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These roots depend on damping and determine the motion of the

oscillator. Depending on the value of (b2 - wé)”z, we have three

possibilities.

Case 1: If b> wg, 1/bz - w% is positive and there are two real, distinct

roots.

Case 2: If b=, b? - w% =0 the roots are real and repeated.

Case 3: If b<wg, b2 —m% is negative and ,lbz —mg is imaginary, i.e.,

there is a complex conjugate pair of roots.

So the equation of motion of a damped spring-mass system can be written as:

d—zx+2b%+m2x =0 (4.30)
Jt? dt 0
Let us now obtain its acceptable solutions. It is important to mention here that
solutions corresponding to three roots discussed in Example 4.4 will be used
in Unit 18 in Block 4 of this course. Therefore, you should study them
carefully.

You will learn about
damped oscillations in
detail in Unit 18.

Case 1: Distinct and Real Roots
When the roots are real and distinct, the general solution of Eq. (4.30) is

given by

x(t)=exp(-bt)[C, exp(pt) + C, exp(—pt)] (4.31)

where B = b2 —wg.
This represents non-oscillatory behaviour. The system is said to be heavily
damped and such a motion is called dead beat.

The actual displacement of any such system is determined by the initial
conditions. To know how this is done, we would like you to solve the following
SAQ.

S/‘ZIQ 4 - Damped oscillator

A heavily damped oscillator in its equilibrium position is suddenly kicked so

thatat t=0, x =0 and %X(O) = vp. Obtain the expression for resultant

displacement and interpret the result.

On solving SAQ 4, you would have noted that the displacement of a heavily
damped oscillator is determined by an increasing hyperbolic function and a
decaying exponential. As a result, the displacement increases initially, attains a
maximum and thereafter decays exponentially (Fig. 4.3).
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Displacement, x —»

Time, t —»

Fig. 4.3: Displacement-time graph for a heavily damped spring-mass system.

Case 2: Repeated Real Roots
When the roots of the auxiliary equation are repeated and real, the general
solution of Eq. (4.30) is given by

X(t)=(C, + C,t)exp(-bt) (4.32)

Note that here C1 has dimension of length and the dimensions of 02 are
those of velocity. As before, these constants can be determined by specifying
initial conditions. You can verify that for initial conditions given in SAQ 4,

C4 =0 and C, = v; so that the complete solution is

Xx(t) = vot exp(-bt) (4.33)

Such a system is said to be critically damped. The typical graph of a critically
damped system is shown in Fig. 4.4.

Displacement, x —»

Time, t —>
Fig. 4.4: Displacement-time graph for a critically damped spring-mass system.

Case 3: Complex Roots

When the roots are complex, let us write

Vb% —0d =v=1(wd - b%)"? =iy
where i=,/-1 and o4 = ,lmg —p? isareal positive quantity.

Following Eq. (4.28), the displacement for this case is given by
X(t) = Cexp(-bt)cos(mgt — ) (4.34)

where C and ¢ are arbitrary constants.
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Note that Eq. (4.34) represents oscillatory motion whose amplitude decreases
exponentially at a rate governed by b. Such a system is said to be weakly
damped. The displacement of a weakly damped system is depicted in

Fig. 4.5. Physically, this case is of maximum interest.

(TN
VAR

Displacement, x —»
o

Time, t &
Fig. 4.5: Oscillations of a weakly damped spring-mass system.
With this, we come to an end of this unit and summarise its contents.
4.4 SUMMARY
Concept Description
Linear independence B |f y,andy, are solutions of a second order ODE, then these are
of solutions, linearly independent, if and only if, their Wronskian is non-zero.
Wronskian Mathematically, we can write
Y1 Yo
W= #0
Y1 Y2
Solution of a second B A second order homogeneous ODE with constant coefficients can be
order homogeneous solved either by using the method of exponential functions or by
ODE with constant reduction of its order.
coefficients
Method of exponential B In the method of exponential functions, the form of the solution
functions depends on the roots of the auxiliary equation.

» For distinct real roots, there exist two linearly independent
functions of the form exp(m, x) and exp(m,x).
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Method of exponential The general solution for distinct real roots is given by

function
y(x)= C1 exp(m1x) + C2 exp(mzx)

» When roots are repeated and real (m1 =m, = m), the general

solution is given by

y(x)= (C1 + sz)exp(mx)

» For a complex conjugate pair of roots, the two linearly
independent solutions are of the form exp(a.x)sinffx and
exp(ax)cosfPx, and the general solution can be written as

y(x) =exp(ox)(CqcosPx + Co sinPx)

= C exp(ax)cos(Bx — ¢)

4.5 TERMINAL QUESTIONS

1. Determine the general solutions for the following second order ODEs:

) y'+y -12y =0
i) 2y"+3y'-y=0
i) 4y"+12y"+9y =0
iv) y'-2y'+y =0
v) y"+10y’+ 26y =0
vi) Y42y +y=0
2. Solve the following initial value problems:
) y'+16y =0, y(n/4)=-1 y'(n/4)=4

i) 4y"-4y’+y=0 y(0)=2 y'(0)=-1

3. Solve the following boundary value problems:
) 4y"+y=0; y(0)=3; y(n)=-2
iy y'-6y +9y =0, y(0)=2 y(1)=0
4. |n an LCR circuit, an inductance L, a resistance R and a capacitance C are

connected in series. The variation of charge g flowing through with time ¢ in
the circuit is given by the differential equation:

2
199,99 .9 _
at? da C

Solve this equation to determine g as a function of .
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5. The undamped back and forth (torsional) vibrations of a wheel attached to
a thin elastic wire are given by the following ODE:

2
Id—§+k6=0
dt

where [ is the moment of inertia of the wheel about an axis passing through
its centre and k is the torsional constant of the wire. The angle 6 is the
angular displacement from the equilibrium position (Fig. 4.6). Solve the
given equation to determine 6 as a function of tfor k// =16 s,

0(t =0)=30°, e(t =0)=10rad S—1 . F.ig. 4..62 Torsional
vibrations of a wheel.

4.6 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. The solutions of the given equation are sin2x and cos2x. To verify linearly
independence of these functions, we have to calculate their Wronskian:

sin2x cos2x
W(x) =
2cos2x —2sin2x

=-2 sin2 2X — 2cos2 2Xx
=-2

Since W(x) =0 for all x, the functions sin2x and cos2x are linearly
independent.

2. The auxiliary equation of the given ODE is
m2—5m+6y=0 (i)
The roots of Eq. (i) are 3 and 2. Hence, the general solution is
y(x) = Cqexp(3x)+ Co exp(2x) (i)
To determine C4 and C,, we first use the condition y(0) = 2. Hence,
C1+4Cy=2=C1=2-Cy (iii)

To use the second condition y’'(0) = 2, we differentiate y(x) of Eq. (i) with
respect to x. Then, we get

¥'(x) = 3C4 exp(3x) + 2C, exp(2x)
y'(0)=2=3C4+2C, (iv)
On substituting the value of C4 from Egq. (iii) in Eq. (iv), we note that

2=3(2-Cy)+2C,

=6-C 109
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sothat C, =4
and Ci=-2

Hence, the desired solution of the given equation can be expressed as

y(x)=-2exp(3x)+4exp(2x)
3. The auxiliary equation corresponding to the ODE is
m? +6m+9=0

The repeated root of this equation is m = -3. Hence, the desired
acceptable solution is given by

y(x) =(Cyq +Cax)exp(-3x) (i)
We can obtain the value of C4 using the condition y(0)=2:

Ci=2 (ii)
On differentiating Eq. (i) with respect to x, we get

% = Cy exp(-3x)—3(Cq + Cox)exp(-3x)
Using the condition y’(0) = 1, we get the relation

Cy,-3C1=1=Cr =7 (iii)

Hence the expression for the particular solution is

y(x)=(2+7x)exp(-3x)
4. From Eq. (4.31) we recall that for a heavily damped oscillator
x(t) = exp (-bt)[C1eP! + Cre7P!] (i)
where B = b? —mg. Itis giventhatat t =0, x =0.
0=C1+Cy, = C1=-C>

On differentiating (i), we get

% ~[ciePtbt (5-b)-Cy expPbt (B b)
% =vg = (B~ b)Cy~Ca(B+b)
t=0

=(B-0)Ci+C(B+b)

=28C; = C; =‘£—‘é and C, =—‘;—%

Hence,  x(t)=exp(-bt) ;—%[exp(ﬁt)— exp(=Bt)]

= V—Osinh Bt e Pt
110 B



Unit 4 Second Order Ordinary Differential Equations with Constant Coefficients

Terminal Questions

1. i) The auxiliary equation for the given ODE is m?+m-12=0

We rewriteitas (m+4) (m-3)=0

So the roots of the auxiliary equation are — 4 and 3 and the general
solution is:

y =Cie ™ +Cre3¥

i) The auxiliary equation is 2m? +3m-1=0

and roots are my =M, my ZM
4 4
So the solution is y = e—3x/4[c1eﬁx/4 + Cze_ﬁxm}

iiiy The auxiliary equation is 4m? +12m+9=0

and the repeated root is my =-3/2=my
Since the roots are equal, the solution of the given ODE is
y =(Cy+Cyx)e~3/2)%
iv) The auxiliary equation is m? -2m+1=0
and the roots are repeated: my =1=my

The solution of the given ODE is y = (Cq +Cox)e*

v) The auxiliary equation is m? +10m+ 26 =0
The roots of the auxiliary equation are: my=-5+i, mp=-5-i

From Eq. (4.28), the solution of the given ODE is y = Ce X cos(x — ¢)

vi) The auxiliary equation is m? +2m+1= (m+ 1)2 =0
The repeated root of this equation is m = -1
Hence the general solution is y(x) = (Cq + Cox)exp(—x)
2. i) The auxiliary equation is m?+16=0

and the roots of the equation are: mqy=4i, my=-4i

Hence, from the Eq. (4.27¢), the general solution of the given equation is
y =Cqcos4x+Cysindx (i)

where Cq and C, are constants.

To determine these, we use the initial conditions. So,
y(n/4)=-1=Cqjcosn+Cysinn=-1 = Cqy =1 (ii)

because sinmt=0 and cosm =-1. Further
y'(n/4)=4 = —-4Cysinn+4Cycosm =4 (iii)

=  —4C,=4=Cy=-1 (iv) »
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The solution is: y =cos4x —sin4dx

ii) The auxiliary equation is: 4m? —4m+1=0

3. i)

The roots are my=m, =%
So the solution of the given ODE is: y =(Cq + C2x)ex/2 (i)
Using the initial condition y(0) =2, we get C; =2 (i)

Next, we differentiate Eq. (i) to obtain

y'(x) = %(c1 +Cox)eX/? +CyeX/? (iii)
Using the initial condition y’(0) = -1 we get
’ C1 .
y0)=-1= ?+C2=—1:>C2=—2 (iv)

So the solution of given ODE is y = 2(1- x)e*/?

The auxiliary equation corresponding to the given ODE is 4m? +1=0

The roots of the equation are my = %i, and my= —%i

And from Eq. (4.27c), the general solution is y(x) = C4 cos§+C2 sing

At x=0, y(x)=3 = 3=Cqcos0+Cysin0 = C1=3
sincesin0=0 and cos0=1.

At x=m, y(x)=—-2 = -2=Cqcos(n/2)+Cysin(n/2) = Cy =-2
sincesint/2=1 and cosm/2=0.

The particular solution of the given equation is y(x)= 3COS§— 28in§

The auxiliary equation in this case is m?—-6m+9 = 0, for which the roots
are real and repeated:

my=my =3

So the general solution of the ODE is
y(x)=(Cy +Cpx)e**

At x=0, y(x)=2

= Ci=2

At x=1y(1)=0

=  0=(2+Cy)e=Cyp=-2

The particular solution of the given equation is y(x)=(2 - 2x)93X

4.The ODE can be rewritten as

112
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for which the auxiliary equation is

m2+5m+1—=0

L LC

The roots of this equation are

R, |R*_4
L 2 LC
mo = >
__£+i _ﬁ 1/2
2L 2L C

So from Eq. (4.17), the solution of the ODE is

R
AN
q(t)=e 2L [Cie™ +Cre™™]

where ocziW/R2 —ﬂ.
2L C

5. We can rewrite the ODE as

é+§e=o, §=163_1

The auxiliary equation is m?+16=0= my=4i, my=-4i

The general solution of the ODE from Eq. (4.27c) is
0(t) = Cqcos 4t +C, sin4t 0]

Using the condition that 6 = 30° = g rad att=0in Eq. (i) we get
Ci=m/6

Differentiating Eq. (i) with respect to ¢, we get
0(t) = —4Cy sin4t + 4C, cos 4t (ii)

Using 6(t) = 10rad satt=0in Eq. (ii), we get
Cr=—
272

On substituting for Cq and C, in Eq. (i), we can write

o(t) = T cos4t +§sin4t
6 2
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Mathematically, a
function is a rule or
correspondence which
associates to each
number x in asetA, a
unique number

y =f(x)inasetB.

You may understand a
function as an
equation in y and x,
such that for any value
of x the equation will
yield exactly one
value, i.e., a unique
value of y.
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APPENDIX
BASIC CONCEPTS OF CALCULUS

The study of mechanics involves calculus which is not new for you but we
would like to revise the basic concepts of the derivative and the integral in
calculus. We hope that you have studied mathematics at the + 2 level. If you
have taken the subjects Physics, Chemistry and Mathematics in B. Sc., you
would be studying the course on Calculus along with this course. So you may
not need to study this appendix.

In this appendix, we briefly revise the basic concepts of the derivative and the
integral of a function being used in this course. Do try to master these
concepts. Then, you will be able to understand the physics given in this course
better.

A1.1 THE CONCEPT OF DERIVATIVE

The concept of the derivative is very useful in physics. For example, it helps
us in describing motion in a simple way as you have learnt in school physics
courses. In mechanics, we need to describe how the distance travelled by a
body or its displacement changes with time. We also wish to describe how
the speed/velocity of a body changes with time.

Suppose a quantity y changes with respect to x. We say that y is a function of
x. Here y is termed the dependent variable and x the independent variable.
For example, the distance d travelled changes with respect to time t and we
say that d is a function of t. (Here we shall not go into the precise
mathematical definition of the function, which is stated in the margin only for
reference.)

Now suppose we want to know the rate at which a given function y changes
with respect to the change in x. For example, suppose the distance travelled
by a body changes with time. How do we find the speed of the body? We can
find the rate of change of y with respect to x by calculating the derivative of y
with respect to x. How do we find the derivative of a function?

We can approach the calculation of the derivative in two different ways: The
geometrical way (as a slope of a curve) and the physical way (as a rate of
change). Here we shall discuss both the ways. Our emphasis will be on the
use of the derivative as a tool in physics rather than on mathematical rigour.
Let us first consider the geometrical concept of the derivative.

The Geometrical Concept of the Derivative

Suppose a quantity y depends on x, and x and y are real numbers.
To begin with, let us consider a linear function y = x. You may like to draw its
graph. It is a straight line passing through the origin (OP in Fig. A1.1). We

have drawn it in a plane using a two-dimensional Cartesian coordinate
system.

Let us now ask: What is the slope of this straight line?
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To calculate the slope of a straight line, we mark any two points on the
line and divide the difference in their y-values by the difference in their
corresponding x-values.

Do this exercise for different sets of points on the straight line in Fig. A1.1.
What is the value of the slope of the line y = x? You will find that it is 1. We
now draw another straight line AB on Fig. A1.1. What is its slope?

B

Yop-------nn--

Yip----

O X1 X2 X
Fig. A1.1: Slope of a straight line.

You can calculate it by taking any 2 points (x4, y4)and (x5, y»)on the line and

determining the following ratio:

Yo-¥1 _ Ay
X9 — Xq Ax

Here Ay denotes the difference (y, — yq)and is pronounced as “delta y".

Similarly, Ax denotes the difference (x, — x4) and is pronounced as “delta x”.

The ratio % gives the slope of the straight line.
X

You have seen that ‘slope’ is a concept that can easily be applied to linear
functions. It is the change in y divided by the change in x. Any two points can
be used in determining the slope of a straight line, because its slope is
constant throughout.

Let us now try to find the slope of the curve in Fig. A1.2, which is the graph of
the function: f(x) = x2 + 4x? - 3. You can see that there is no single slope
for this figure. Instead, the curve has a different slope at each separate point.
Therefore, for non-linear functions (functions that are not represented by
straight lines), it makes sense only to talk about the slope of the curve at a
particular point.

How do we find it?

Slope of a Curve at a Point

To visualize what needs to be done, let us consider some function y of x and
choose an arbitrary point P on it (Fig. A1.3a).

Basic Concepts of Calculus

If we plot the graph of
y against x, the
derivative measures
the slope of this
graph at each point.
The functional
relationship between y
and x is often denoted
by y = f(x)where f
denotes the function.

Fig. A1.2: What is the
slope of a curve at a
given point?
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We have to find the slope of the curve at this arbitrary point P. Let its

coordinates be (x, y). You have learnt that to find the slope, you need to take

two points on the curve and calculate u. Since P is the point on the
X2 - X»]

graph where we want to find the slope, one of the points we should use is the

point (x, y). But what should we choose as the other point? You may say that

no other point would yield the right answer, since we are interested in the

slope at the single point (x, y) only.

Still, let us pick an arbitrary point Q, Ax units away from point P on the x-axis.
Thus, its x coordinate is x + Ax. Let its y coordinate be y + Ay (Fig. A1.3b).

y+Ay

X X X+ Ax

(a) (b)

Fig. A1.3: (a) An arbitrary point P (x, y) on a curve; (b) slope of the curve between points P (x, y)
and Q (x + Ax, y + Ay) of the curve.

Let us now calculate the slope of the straight line that goes through the
points P at (x, y) and Q at (x + Ax, y + Ay). It is Ay/Ax. You can see that it

does not represent the slope of the curve at the point P. Let us now bring the
point Q closer and closer to the point P. In other words, let us make Ax smaller
and smaller. What happens when we do that? Let us consider the function
shown in Fig. A1.4. Study Figs. A1.4a, b and c. As Ax gets smaller and smaller,
note that the corresponding region of the curve becomes very nearly a straight
line.

(a) (b) (c)

Fig. A1.4: As the distance separating two points on the x-axis is made smaller, the
116 corresponding region of the curve becomes very nearly a straight line.
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You can look at any region of the graph where Ax is very small. Since this
graph is a smooth curve, it is nearly straight for any sufficiently small Ax. For

example, in Fig. A1.4c, the part of the curve between the points P;and P is

very nearly straight.

In fact, as Ax gets smaller and smaller, the slope of the straight line joining the
two points (x, y) and (x + Ax, y + Ay) approaches a constant value. Moreover,
the line itself looks more and more like the tangent to the curve at the point P.
This also means that the slope of the line is getting closer and closer to the
slope of the tangent.

Thus, if we could make Ax arbitrarily small, the slope of the line given by
Ay /| Ax would get arbitrarily close to the slope of the tangent and
approach a constant value.

The definition of the derivative follows from the above process. The
geometrical concept of the derivative of a function at a given point is that
it is

e the slope of the curve representing the function at the point, and

e the slope of the tangent line to the curve at the point.

If the interval Ax is chosen sufficiently small so that it approaches zero, the
ratio Ay/Ax approaches a constant limiting value, which is called the
derivative of y with respect to x. Mathematically, we express this result as

dy lim  (Ay)

— = — A1.1

dx AX — 0 (AX) ( )

A

We say that the derivative of y with respect to x is equal to the ratiom
in the limit as Ax tends to zero. The derivative itself is also a function,
because for every x value that it is given, it gives a value that is equal to the
slope of the tangent to the function at x.

The Physical Concept of the Derivative

This approach was used by Newton in the development of his Classical
Mechanics. You have come across two kinds of quantities in mechanics:
constants having fixed values (e.g., position of a fixed object) and variables
(e.g., position or displacement of a moving object that changes with time). Let
us consider the one-dimensional motion of a particle shown in Fig. A1.5. It
shows us how the distance travelled by the particle depends on time.

X
A

v
~

@)

Fig. A1.5: The path of a moving particle showing its positions at different
instants of time. 117
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If we want to describe in greater detail how a particle moves, we need to
specify its positions at successive instants of time at regular intervals.

For example, we may choose to specify its position with respect to a
coordinate system at regular time intervals of 1s. We can show the sequence
of positions at these time intervals in a diagram by points. Each successive
point indicates the positions of the particle at these successive instants

(Fig. A1.5). Let P be the position of the particle at the instant ¢. Let its positions
at the instants t4, t, and t3 be Py, P, and P;, respectively.

We now ask the question: How fast does the particle move? For this, we
would need to determine the speed (average or instantaneous) of the particle.
How will we do it? Recall the definition of average speed of a particle from
your school physics

TOTAL DISTANCE TRAVELLED
TOTAL TIME TAKEN

AVERAGE SPEED =

What is the average speed of the particle as it moves from P; to P between
the instants ¢ and t? From Fig. A1.6a, you can see that it is

(Xx—x1)  AX

v S— A1.2a
¥ = T T A (A1.2a)

Here At is pronounced as “delta t” and Ax is pronounced as “delta x”. Now let
us reduce the time interval and ask: What is the average speed of the particle
as it moves from P, to P between the instants t, and t? From Fig. A1.6b,
you can see that it is

_ (x=x2)

Vav = 1) (A1.2b)

As we make the time interval At smaller and smaller, we notice that the
corresponding region of the curve is very nearly a straight line. For example,
in Fig. A1.6b, the part of the curve between the points P; and P is very nearly
straight. Correspondingly, the average speed (which is the ratio Ax / At ) is
constant for this straight portion of the curve.

(a) (b)

Fig. A1.6: The path of a moving particle showing its positions at different instants of time.
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If we choose the time interval At to be sufficiently small so that it approaches
zero, the average speed approaches a constant limiting value, which is

called the instantaneous speed at time . Mathematically, we express this as

. (Ax) dx
v; = lm —= — A1.3
nst At =0 (At) (A13)
. . . (Ax) .
We say that the instantaneous speed v;,;; is equal to the ratio—— in

the limit as At tends to zero. It is also called the derivative of distance
with respect to time. It gives us the rate of change of distance with time.
You have to understand this limiting process very well. It is important for you
to understand the geometrical and physical meaning of the derivative.

MEANING OF THE DERIVATIVE

Physically, the derivative gives the rate of change of one quantity (the
dependent variable, e.g., distance) in terms of the other (independent
variable, e.g., time). Geometrically, it is the slope of the curve (say x(t)),
at that point (at ¢). It is the slope of the tangent to the curve at the point.

dx
In the expression o dx and dt are not products of d and x or of d

d
and t, as in algebra. The combined expression F)t( is called a

derivative. It expresses the rate of change of x with respect to t and is

Don't forget
equal to the slope of the curve of x (f) at the point .

You should also understand the term ‘differentials’: dx and df are called the
differentials of x and {, respectively. These expressions represent
incremental changes; dx represents an incremental change in distance x,
and dt represents an incremental change in time {. The ideas of
differentials and derivatives are frequently used when we study the physics
of systems that change. These are called dynamic systems. You may like to
remember the differences in the meaning of various terms that we use in
physics. These are given in the box below:

TERMINOLOGY FOR REPRESENTING CHANGE IN A

DYNAMIC SYSTEM

e When expressions are written using deltas, they represent
changes, e.g., Ax is the change in distance.

e dx represents the differential of x, i.e., an infinitesimal (a very
small) change in distance.

° x is the fractional change in distance, and
X

° % is the rate of change of distance with respect to time.
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Fig. A1.7: The derivative
is positive to the left of
point A and to the right
of point B. It is negative
between points A and B
of the function and zero
at the points A and B.
The function shown in
the graph has a local
maximum at A and a
local minimum at B.

Flow
rate

Time t1

Fig. A1.8: Integral
as area under a
curve.
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You can also visualise the following statements from what you have studied
so far (see Fig. A1.7):

e A positive derivative (a positive slope) at a point means that the
function is increasing at that point.

e A negative derivative (a negative slope) at a point means that the
function is decreasing at that point.

Sometimes the derivative is zero. This means that the function has some
special behaviour at the given point. It may have a local maximum or a local
minimum. We now discuss the concept of integral of a function.

A1.2 THE CONCEPT OF AN INTEGRAL

You can understand the need for integration through the following example:
Suppose we want to fill a tank with water. There can be two ways of doing
this. We can pour buckets of water one after the other or open a tap into the
tank. The second method ensures a continuous supply of water until the tank
is full. If the rate of flow of water filling the tank is constant and equal to

1z ccs™ ' and it takes t; s tofill the tank, the volume V of the tank is given by

V = (vqty)cc = Flow rate x time taken (A1.4)

Suppose the flow of water is constant. Let us plot the graph of flow rate
against the time taken (Fig. A1.8). Then V can be represented as the area of a
rectangle of breadth v4 and length t;. This is actually equal to the area under
a graph of flow rate versus time. However, if the flow is non-uniform then a
simple product like this cannot be used. What do we do in that case?

We divide the time of flow into a very large number of very short intervals of

duration At each (during which the rate of flow is nearly the same). Then, we
find the volume of water flowing in each interval (flow rate v(t) x At). Next, we
sum up the volumes for all the small intervals (Fig. A1.9).

Flow A
Rate

v(t)

/

t At tr

Fig. A1.9: Integral as area under the curve. The volume of water flowing in the area

under the curve is given by lim Zv(t)At and represented byIv(t)dt.
At—0

Let us now make the time interval Af smaller and smaller so that it approaches
a very small value close to zero. The curve for each small interval At
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resembles a straight line. Then the area under the curve for each At is given
by the area of the corresponding rectangle.

We can then write the area under the curve as the sum of the areas of all
such rectangles for which At is very small or in the limit as At goes to zero:

lim v(t)At
At—0

We represent this sum as an integral of the function v(f) and denote it as

follows:
Altlmo ZV(t)At - Iv(t)dt (A15) Shri Rajsekhar

Basu, a famous

You may find it interesting to note that the symbol [ is an elongated S denoting literary figure from

the sum. West Bengal was
also a

So, you have learnt that integration is also a limiting process: We sum up mathematician. He

the areas of a very large number of rectangles with one side (given by used to call the

the independent variable) of these rectangles being extremely small and symbol of integration

tending to zero. j , the trunk of an
elephant.

Geometrically, the integral represents the area under the graph of the

function. You can appreciate this point better if you do an actual calculation.
For some function of a variable x or ¢, you should calculate the sum for several
sets of values of Ax or Atf, making the interval smaller and smaller for each set.
You will find that the sum converges to some value, which is the area under the
curve. The simplest calculation you could do is for a straight line passing
through the origin (y = x). From Fig. A1.10, you can see that the area is X?

Fig. A1.10: Integral as area under the curve for a straight line y = x:

T 1

dex = —x2.
2

0

We can also understand the concept of an integral as an anti-derivative:

If F(x) = f(x) is the derivative of a function f(x)then f(x) is termed the
anti-derivative or the integral of the function F(x).

Thus, if F(x) = di[f(x)] then f(x) is called the integral of F(x)with respect
X
to x. It is denoted by
f(x) = jF(x)dx t e (A1.6)
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where c is a constant. You should understand that if we add c in this equation,
we would still have the same derivative F(x) since the derivative of a constant
is zero. Its value is determined from certain given conditions. You will
understand these concepts further when you study their applications in
mechanics. You will need to determine the derivatives and many indefinite
and definite integrals of various functions while solving problems in physics.
We have given the values of the derivatives and integrals of some common
functions in Tables A1.1 and A1.2.

Table A1.1: Derivatives of simple functions

S. df/dx S. df/dx
No. No.
1. i(c) = 0, ¢ constant 10. da(1)_ _i, x 20
dx ax\ x X2
d d, _ n
2 9 =1 11. dny =
dX( ) dx( ) X+
d - d d d
3. = (x") = nx" 1 12. —Jg(x) + h(x)] = |—g(x)| + |—h(x
dx( ) dx[g( ) (x)] dxg( ) dx (x)
d . d of dg
4. —(sinx) = cosx 13. Zfx) g(x)] = | — + 7199
2 (5N ) 5 L) 9(x)] |9 o
df dg
S. i(cosx) = —sinx 14. d ( f(x) Yix fa
dx — = 3 ,g #0
dx | g(x) g
6. i(tanx) = sec® x 13. i(ex) = ¥
dx dx
7. i(sin_’I x) = ; 16. im X = l
ax 142852 ax X
8 i(cos'1 X) = 1 | i(CX) =cXInc,c >0
dx 1— X2 ax
d . 4 1 d
9. —(tan” ' x) = 18. —log, x = cx1c¢c >0
dx( ) 1+ x2 dx o xInc

Table A1.2: Integrals of simple functions

Integral Integral
No

a dx = ax + ¢, a and ¢ constant 5. smxdx = — cosX + ¢, ¢ constant
2 x"+1 6 Icosxdx = sinx + ¢, ¢ constant
: Ix” dx = + ¢, ¢ constant : ’
n+1
3. Il dx = In|x| + ¢, ¢ constant 7. J.tanxdx = In[sec x| + ¢, ¢ constant
X
X X ax eaX
4. Ie dx = e” + ¢, ¢ constant 8. Ie dx = g —t¢C a and c¢ constants
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TABLE OF PHYSICAL CONSTANTS

Symbol Quantity Value
c Speed of light in vacuum | 3.00 x 108 ms™!
o Permeability of free 1.26 x 107 NA™2
space
£ Permittivity of free space | 8.85x 10712 C2N~'m2
1/4meq 8.99 x 10° Nm? C™2
e Charge of the proton 1.60x1071° C
-e Charge of the electron ~160x1071° C
h Planck’s constant 6.63 x 1074 Js
7 hi2n 1.05x 107* Js
me Electron rest mass 9.11x107%! kg
—e/m, Electron charge to mass | -1.76 x 10" Ckg™
ratio
m, Proton rest mass 1.67 x 10727 kg (1 amu)
my Neutron rest mass 1.68 x 10727 kg
a Bohr radius 5.29x10" "' m
Ny Avogadro constant 6.02 x 1023 mol™"
R Universal gas constant 8.31 Jmol K1
ks Boltzmann constant 1.38x 10723 JK™*
G Universal gravitational 6.67 x 1011 Nm? kg_2
constant
Astrophysical Data
Celestial Mass (kg) Mean radius Mean distance from the centre
Body (m) of Earth (m)
Sun 1.99 x10%° | 6.96 x 108 1.50 x 10"
Moon 7.35x10%% | 1.74 x 10° 3.84x 108
Earth 5.97 x 10%* | 6.37 x 10° 0
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LIST OF BLOCKS AND UNITS: BPHCT-131

BLOCK1 : MATHEMATICAL PRELIMINARIES

Unit1 : Vector Algebra-|

Unit2 : Vector Algebra-Ii

Unit3 - First Order Ordinary Differential Equations

Unit4 - Second Order Ordinary Differential Equations with

Constant Coefficients

BLOCK?2 : BASIC CONCEPTS OF MECHANICS

Unit5 : Newton’s Laws of Motion and Force

Unit6 : Applying Newton’s Laws

Unit7 : Gravitation

Unit8 : Linear Momentum and Impulse

Unit9 - Work and Kinetic Energy

Unit 10 - Potential Energy and Conservation of Energy

BLOCK3 : ROTATIONAL MOTION AND MANY-PARTICLE

SYSTEMS
Unit 11 : Kinematics of Angular Motion
Unit12 : Dynamics of Rotational Motion
Unit 13 : Motion under Central Forces

Unit 14 : Dynamics of Many-particle Systems
Unit15 : Conservation Laws for Many-particle Systems

BLOCK4 : HARMONIC OSCILLATIONS

Unit16 - Simple Harmonic Motion

Unit 17 : Superposition of Harmonic Oscillations
Unit18 : Damped Oscillations

Unit19 @ Wave Motion




SYLLABUS: MECHANICS (BPHCT-131) 4 Credits

Vector Algebra: Geometrical and algebraic representation of vectors, Vector algebra; Scalar
and vector products; Derivatives of a vector with respect to a scalar.

First Order Ordinary Differential Equations: First order homogeneous differential equations
(separable and linear first order differential equations).

Second Order Ordinary Differential Equations: 2" order homogeneous differential
equations with constant coefficients.

Laws of Motion: Frames of reference; Newton’s Laws of motion; Straight line motion; Motion
in a plane; Uniform circular motion; 3-d motion.

Applications of Newton’s Law of Motion: Friction; Tension; Gravitation; Spring-mass system
— Hooke’s law; Satellite in circular orbit and applications; Geosynchronous orbits; Basic idea of
global positioning system (GPS); Weight and Weightlessness.

Linear Momentum and Impulse: Conservation of momentum; Impulse; impulse-momentum
Theorem; Motion of rockets.

Work and Energy: Work and energy; Conservation of energy; Head-on and 2-d collisions.

Kinematics of Angular Motion: Kinematics of angular motion: Angular displacement, velocity
and angular acceleration; General angular motion.

Dynamics of Rotational Motion: Torque; Rotational inertia; Kinetic energy of rotation;
Angular momentum; Conservation of angular momentum and its applications.

Motion under Central Force Field: Motion of a particle in a central force field (motion in a
plane, conservation of angular momentum constancy of areal velocity); Kepler's Laws
(statement only).

Dynamics of Many Particle Systems: Dynamics of a system of particles. Centre of Mass,
determination of the centre of mass of discrete mass distributions, centre of mass of a rigid
body (qualitative).

Conservation Laws: Linear momentum, angular momentum and energy conservation for
many-particle systems.

Simple Harmonic Motion: Simple Harmonic Motion; Differential equation of SHM and its
solutions; Kinetic Energy, Potential Energy, and Total Energy of SHM and their time averages.

Superposition of Harmonic Oscillations: Linearity and Superposition Principle;
Superposition of Collinear Oscillations having equal frequencies and having different
frequencies (beats); Superposition of Orthogonal Oscillations with equal and unequal
frequency; Lissajous Figures and their uses.

Damped Oscillations: Equation of Motion of Damped Oscillations and its solution (without
derivation); Qualitative description of the solution for Heavy, Critical and Weak Damping;
Characterising Damped Oscillations — Logarithmic Decrement, Relaxation Time and Quality
Factor.

Wave Motion: Qualitative Description (Wave formation and Propagation; Describing Wave
Motion, Frequency, Wavelength and Velocity of Wave; Mathematical Description of Wave
Motion).
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