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BLOCK 2: BASIC CONCEPTS OF MECHANICS

In Block 1 of this course, you have studied concepts of vector algebra and ordinary
differential equations that you will be using in this course and in your later physics
courses. In this block, you will start your study of objects in motion by revising the basic
concepts of kinematics and dynamics that you have studied in school physics. These
include Newton’s laws of motion and the concepts of force, linear momentum,
impulse, work and energy. These concepts apply to a large variety of macroscopic
objects in motion around us as well as to the motion of heavenly bodies. For example, we
use these concepts to explain how and why objects like rain drops, falling balls,
parachutes, satellites and planets, etc. move the way they do. There are numerous (direct
and indirect) practical applications of these concepts in transport (motion of bicycles, cars,
buses, trains, etc.), health (treatment of fractures, administration of 1V fluids, draining of
lungs, etc.), amusement parks (slides, swings, merry-go-rounds, giant wheels, joyrides,
etc.), and so on.

You may have studied most of these concepts in your school level physics courses.
However, you may find some concepts in this block to be new in their presentation. You
should study them carefully and thoroughly. You should spend more time in working
through the examples, SAQs and Terminal Questions given in each unit of this block.
There are 6 units in this block.

In Unit 5, we discuss Newton’s laws of motion which explain why objects move in the
way they do. You will learn the concepts of force, mass and linear momentum which are
bound together in Newton’s laws of motion. You will learn how different the concept of
force and the understanding of motion as given by Newton’s laws of motion are from our
everyday experiences and common sense notions and also how to use these concepts
correctly. We also introduce the concept of inertial frame of reference in this unit. You
will learn about some interesting applications of these laws and concepts in everyday
phenomena involving simple systems. For example, you will learn why we need to wear
seat belts in cars, why it is more difficult to move a massive object like a cupboard of
books from rest as compared to a lighter object such as a book kept on a table, why you
need to shake a ketchup bottle to make ketchup flow out from it, how we can sail a boat
with a steady speed in windy weather, etc.

In Unit 6, we apply Newton’s laws to objects moving along a straight line and in a plane.
You will learn about the various forces around us such as normal force, friction, tension
and spring force. You will also learn how to determine the net force on any object and its
motion under the force exerted on it. You will also revise the concept of equilibrium of
forces, which finds application in many mechanical systems and devices. So, in this unit,
you will find answers to questions like why we tend to fall on slippery surfaces, why the
cables of a suspension bridge are curved and not horizontal, why curves in roads are
banked, etc.

In Unit 7, you will study the law of gravitation, and understand how it applies to extended
bodies. You will also study its application to uniform circular motion in a vertical plane. You
will learn about the force of gravity on the Earth, the factors which cause variation in
acceleration due to gravity at different points on and around the Earth and the
phenomenon of weightlessness. You will learn about a variety of applications such as
geosynchronous satellites and how to calculate their height from the surface of the Earth,



minimum speeds of carts on roller coasters and giant wheels so that people taking joy
rides do not fall off them, and also learn why astronauts float in space stations.

In Unit 8, we revise the concepts of linear momentum and impulse and the principle of
conservation of linear momentum. You will learn how speeds of colliding cars can be
calculated, how the speed of rockets can be increased by attaching additional stages to
them, why it hurts more when you fall on a hard floor than when you fall on a soft
mattress, and so on.

In Units 9 and 10, we revise the concepts of work and energy. Unit 9 begins by revising
the concepts of work done by constant forces and kinetic energy. We also discuss the
concepts of work done by variable forces and the work-energy theorem, which is
another form of Newton’s second law of motion and power. You will learn why we need to
have speed limits while driving and why it is important to keep a minimum distance
between two vehicles moving on the road, what power must be applied to keep a bicycle
moving at a steady speed in the face of air resistance, and so on.

In Unit 10, we present the concept of potential energy so as to arrive at the law of
conservation of energy. These concepts are important because they make it far easier
to study complex mechanical phenomena, where the application of Newton’s laws is
difficult. For example, we can calculate the final speed of a diver as she enters the pool,
the escape velocity of an object from the Earth, how much energy is transformed as heat
when a box slides on a rough floor, etc.

In the next block, you will study the kinematics and dynamics of rotational/angular motion
and motion under central forces. You will also apply the concepts you have studied in this
block to the motion of many particle systems.

We hope you enjoy studying the basic concepts of mechanics explained in this block as
well as their applications to situations around us. We wish you success.



UNIT5

Why do we need to shake the bottle NEWTON'S LAWS OF

for ketchup to flow out? Discover

the answer in this unit! MOTION AND FORCE

Structure
5.1 Introduction 5.4 Newton's Third Law of Motion
Expected Learning Outcomes 5.5 Summary
5.2 Newton's First Law of Motion 5.6 Terminal Questions
Concept of Inertia )
5.7 Solutions and Answers
Force

Inertial Frame of Reference

5.3 Newton's Second Law of Motion
Principle of Superposition of Forces
Mass

STUDY GUIDE

In this unit, you will study Newton's laws of motion and the concepts of force and mass. In order to
understand these concepts, you should know very well the concepts of vector algebra and
differential and integral calculus you have studied in Units 1 and 2 of Block 1 and your school
mathematics courses. You should revise these concepts before studying this unit.

You have studied Newton's laws of motion in school physics. Here you will revise them. However, in this
unit, our focus is on building concepts related to Newton’s laws and force. In this unit, you will learn
how different the concept of force and the understanding of motion as given by Newton’s laws of
motion are from our everyday experiences and common sense notions. Yet the beauty of these
laws is that we can apply them to explain and predict the motion of macroscopic objects around us.

You should try to answer all conceptual questions given in all sections of this unit on your own. Each one
of these should take you between 5 and 10 minutes to solve. If you take much more time than this to
answer any question in a given section or if you find that your answer is incorrect, study that section
again. In this way you will develop a correct understanding of the concepts explained here.

“I do not know what | may appear to the world, but to myself | seem to
have been only like a boy playing on the seashore, and diverting myself
in now and then finding a smoother pebble or a prettier shell than
ordinary, whilst the great ocean of truth lay all undiscovered before me.”

Isaac Newton




Block 2

The study of what
causes change in
motion of particles
is called dynamics
of motion.

Basic Concepts of Mechanics

5.1 INTRODUCTION

In your school physics courses, you have studied the equations of kinematics
for particles moving in a straight line and in a plane. You have also learnt the
concepts of position, displacement, velocity and acceleration needed for
describing motion. These concepts help us describe how fast a particle
moves at any given time and by how much it speeds up or slows down
(kinematics). But you still have to learn why an object slows down or speeds
up as it moves. What causes change in the particle’s speed or direction of
motion? This study is called the dynamics of motion.

These questions have puzzled some of the greatest minds in the history of
physics: The answers were arrived at by Galileo (in part) and Newton (in full
measure, when he was barely 22 years old). Newton developed Galileo’s
ideas and formulated what we know today as Newtonian mechanics. The
most important feature of Galileo’s and Newton’s work is that they could think
beyond the immediate everyday experiences and use imaginative thinking to
arrive at their understanding.

For example, our experience shows that an object changes its velocity when
we push or pull it: You can pull or push a car to move it from its state of rest.
You change the speed and direction of a ball or a shuttlecock if you hit it with
a bat or a racquet. A bus slows down when the driver applies brakes to it. But
many objects change their speed and direction without any obvious push or
pull or braking. For example, a ball rolling on a concrete floor comes to a stop;
a bicycle comes to a stop if you stop pedalling it; a freely-falling ball thrown in
the air speeds up as it comes down; etc. Sometimes an obvious push or pull
cannot cause a change in the object’s position: however hard you push a wall,
it does not move!

These are our everyday experiences. All of us have spent years walking,
running and doing many more things that involve motion such as throwing
balls, pushing chairs, riding bicycles, etc. In the process, we have tended to
develop our “common sense” ideas about motion and its causes. We need to
change them while studying physics.

The genius of Galileo and Newton lies in developing a set of laws which
relate the change in the velocity of particles, i.e., their acceleration to
external interactions. These laws explain all our observations about the motion
of macroscopic objects ranging from bodies on the Earth to heavenly bodies
like stars and planets.

In order to study the dynamics of motion, we need to introduce the concepts
of force and mass. These concepts are defined by Newton’s laws of motion,
which also introduce a quantity called linear momentum. In this unit, we
revise Newton’s laws of motion and the concepts of force, mass and linear
momentum. We also introduce the concept of inertial frame of reference.
You will learn how to apply these laws to study the motion of simple systems.
In the next unit, you will learn about various forces around us. You will also
learn how to apply Newton’s laws of motion to a variety of situations in which
these forces act.



Unit 5 Newton’s Laws of Motion and Force
ﬁﬁ'IV'I'I'E'M"B"Eﬁ:"\'/'\'/'H'i'lé"éii]&yiﬁg'j"t'Hi'é"L'J'ﬁii','yéﬁ"rﬁﬁé't"éi\'/'\)é"yé"k'é'éb"i'ﬁlfn"iﬁa"iﬁléffﬁé .........................................................
concepts of Newtonian mechanics presented here are used to model the real

physical phenomena. In Newton’s world, all objects/bodies are to be treated

as point particles.

But point particles do not exist in the real world. They are conceptual objects
created by Newtonian theory. In this sense, the Newtonian world is an

idealised world constructed to describe the real physical world. NOTE
Moreover, the Newtonian mechanics as we study today was never presented
In your written

work, always use an

Also, Newton’s laws do not apply to all of nature. Newtonian mechanics arrow above the
fails in the world of atoms, molecules and nuclei (which is described by letter you use to

. . . . . denote a vector,
quantum mechanics). It also does not hold in a world in which objects move e.g., 7. Use a cap
with speeds close to the speed of light (which is described by the special above the letter you

theory of relativity). use to denote a unit
vector, e.g. T.

in this form by Newton. It has been refined and extended by many physicists.

Expected Learning Outcomes

After studying this unit, you should be able to:

< explain the concepts of force and mass on the basis of Newton's laws of
motion;

< use words, diagrams and equations to describe the motion of a particle
on which a given force is exerted; and

< apply Newton's laws of motion to simple problems.

5.2 NEWTON'’S FIRST LAW OF MOTION

Do the following activities and think about the answers to the questions posed.

WHAT CAUSES THINGS TO MOVE? [ ﬂCthty ]

a) Push an object (a ball, a marble, a can, roller skate, etc.) on the floor
and push it again in a different direction as it is moving. What happens
to it?

b) Push a ball or a marble on a rough surface such as a carpet. Push it on
a smooth surface such as a smooth cemented, marbled, tiled or a
polished floor or a mirror lying flat on the floor. What difference do you
observe in the motion of the object in these cases?

c) Attach a stone to a string and swing it rapidly in a horizontal circle. At
some instant let go of the string. What path does the stone follow
thereafter? Note it as you will use it to answer Terminal Question 3.

What did you observe from the activities you did? Did you conclude from

activity (a) that a ‘push’ or a ‘pull’ is needed to move an object? This

understanding is based on our everyday experiences and makes a lot of

sense. For example, a cart moves only when the bullock or horse starts pulling

it; and when the animal stops pulling it, the cart comes to a stop. So we tend to 9



Block 2 Basic Concepts of Mechanics
................................................... ihink: motion Teauires Torcs. This way of thinking arisss from oar """
experiences. Before Galileo’s and Newton’s work, most scientists believed

that the state of rest was the natural state for any object. Some external factor
such as a push or a pull (called “force”) was needed to keep things moving. A
moving object came to a stop because there was no force acting on it to keep

it moving.

This thinking changed with Galileo’s experiments with inclined planes. Galileo
rolled objects with different initial speeds on different planes, horizontal,
sloping up, sloping down, planes of different smoothness to arrive at his
;- : conclusions. Galileo, and later Newton, introduced another force, the force of
= friction, to explain the everyday experiences.
You may also have observed in activity (b) that as the surface grew
smoother, the distance covered by the ball or the marble increased. Galileo
said that it was the force of friction that caused objects to slow down. If we can
reduce its effect, the object does not slow down as much and comes to a stop
much later (Fig. 5.1). What would happen if friction were reduced to zero? The
ball should keep moving forever.

Fig. 5.1: The effect of

friction-compared to a) a This was the reasoning followed by Galileo who introduced the idea of friction.

rough surface like that of He reasoned that if there were no friction, the ball in his experiments with the

a carpet, a ball rolls inclined planes would keep moving at the same velocity forever! Thus, from

:Tor:::,er on b)a smoother his experiments and reasoning, Galileo concluded that uniform motion does
not require force.

You may ask: How do we decide which is the better theory/model, the earlier
one or Galileo’s? The followers of the earlier thinking (that motion requires
force) would require different explanations for different situations. Galileo’s

What is your " . . i

understanding of and Newton'’s idea that uniform motion does not require force

force? encompasses a very wide range of experience and experiments. In fact,
experiments allow us to distinguish the better theories from the not-so-good
ones.

Galileo’s out-of-the-box thinking lay in imagining a situation which was free of
all “forces, interactions, push or pulls” and then see what happened to objects
in motion. He came to the conclusion that

“Any object in motion, if not obstructed, will continue to move with a constant
speed along a horizontal line.”

This is called the law of inertia because inertia means the tendency of an
object to resist change and continue doing what it was doing! In respect of
motion, it means the tendency of a body to stay at rest or keep moving at
the same speed in the same direction, i.e., with the same constant
velocity. Newton’s genius lay in recognizing the power of Galileo’s idea of
inertia and including it in his formulation of mechanics. Today, we know it as
Newton’s first law of motion. It introduces the concept of force as we know it
today.

5.2.1 Concept of Inertia

10 You may like to do a simple activity for understanding the concept of inertia.



Newton’s Laws of Motion and Force

DEMONSTRATION OF THE LAW OF INERTIA

You will need a toy car, a small doll that can fit in the car, a brick or a block
of wood (or any other object that can stop the car suddenly), and tape for
this activity.

Put a brick or a block of wood at some place on the floor. Push the car on
the floor towards the block where it should stop suddenly. If it does not,
increase the height of the block. Now put the doll in the car and push it
towards the block. Based on this activity, answer the questions given
ahead.

What did you observe when the car stopped suddenly at the block? Did the
doll fall out? How can you prevent the doll from falling out? Tape the doll and
push the car on the floor once again. What do you observe? Does the doll still
fall?

What do you think was happening in this activity? Due to its inertia, the doll
tended to keep moving even after the car came to a stop. That is why it had a
tendency to fall. Taping the doll prevented its fall. This is why seat belts are
used in a car: to prevent injuries to passengers when it has to stop or brake
suddenly. With this experience of inertia, you can now learn Newton’s first law.

NEWTON'’S FIRST LAW OF MOTION

Consider a body on which no force is exerted. If it is at rest, the body
will remain at rest. If the body is in uniform motion, that is, it is
moving with constant velocity in a straight line, it will keep moving
forever in the same straight line with the same constant velocity (i.e.,
with the same speed and in the same direction).

Newton'’s first law of motion gives us the definition of a free body/free particle.

ALWAYS REMEMBER: A body/particle on which no force is exerted is
defined to be a free body/free particle.

So we find that Newton'’s first law introduces the concept of force by
describing what happens when it is absent. And this gives us a way of defining
force.

5.2.2 Force

What is force in physics? From Newton'’s first law of motion, we can infer that
when a force is exerted on an object (by an agent), it changes the object’s
velocity. This leads us to a formal definition of force.

Force exerted on an object (by an agent) causes its velocity to
change, that is, it causes the object to accelerate.

Inertia: Objects
tend to keep on
doing what
they are doing!

NOTE

In common usage, the
words force, power,
energy, push, actions
are used to express the
same meaning.

While watching the
above scene in a boxing
match, some people
say, “What a powerful
punch!” Others say,
“What a forceful punch!”
And some others say,
“There’s tremendous
energy in the punch!”

But while using the
concept of force in
physics, you have to
be more careful and
precise.

11



Block 2

Don't forget

You will learn about the
force of gravitation in
Unit 7.

You have learnt the laws
of vector addition in Units
1 and 2 of Block 1 and
solved many problems
using them.

Don't forget

NOTE

In Newton’s world,
all objects/bodies are
to be treated as
point particles. But
REMEMBER: point
particles do not exist
in the real world.
They are conceptual
objects created by
Newtonian theory.

12

Basic Concepts of Mechanics

Every force has an AGENT, which acts through contact or at a
distance from the object. Every force describes the act of an
agent on an object. A force cannot act independently without any

agent.

Depending on the nature of the agent, forces may be classified as contact
forces (involving direct contact) or the ones due to long or short-range
forces. Push, pull, friction, tension are examples of contact forces and the
force of gravitation is an example of a long-range force. The long-range forces
such as the force of gravitation are exerted by each object on every other
object in this universe. To be exerted upon any object, such forces do not
require a medium.

You have learnt just now that a force produces acceleration in the body on
which it is exerted. Since acceleration is a vector quantity, force should also
be a vector quantity. In fact, it has been proved in experiments that force is a
vector quantity. This means that when two or more forces act on an object we
can find their resultant or the net force acting on the object using the laws of
vector addition (read the margin remark). This net force has the same effect
on the object as all individual forces acting together have on the object. Thus,
Newton’s first law is refined as follows.

If no NET force is exerted on a body that is moving, the body’s
velocity cannot change. If it is at rest, the body will remain at rest. If
the body is moving, it will keep moving with a constant velocity
(with the same speed and in the same direction).

NEWTON'’S FIRST LAW OF MOTION

A body can accelerate only if a non-zero NET external force acts
on it.

fmtﬂ:ﬁ 5.1: NEWTON’S FIRST LAW OF MOTION

a) Four forces are exerted on an aircraft in flight: airlift, weight of the
aircraft, engine thrust and air drag. Suppose an aircraft is flying at a
constant airspeed in the horizontal direction (see Fig. 5.2), i.e., its
velocity is constant.

Since the aircraft is flying with a constant velocity, there is no net force
on it: the engine thrust is equal and opposite to the air drag, and the
airlift is equal and opposite to its weight. Now suppose the pilot
increases the thrust of the engine, the thrust and air drag are no longer
equal; the aircraft accelerates and the velocity increases in the horizontal
direction. Thus, a net external force changes the velocity of the object.
But the air drag (e V) increases with increased velocity.




Unit 5 Newton’s Laws of Motion and Force

THRUST

WEIGHT

Engine Thrust = Air drag and Airlift = Weight.
Plane flies at a constant velocity.

Fig. 5.2: Forces on the aircraft of Example 5.1a.

When the new air drag equals the thrust, the aircraft’s acceleration
becomes zero. It flies at a new constant velocity that is higher than the
initial velocity and continues at this constant velocity. 1

b) When a raindrop falls to the ground, the two forces exerted on it are
gravity and air drag (Fig. 5.3a). When its speed is zero, the air drag on
it is zero (since it depends on speed).

Gravity = air drag
Raindrop falls at a
constant velocity.
As the raindrop falls, its speed increases under free-fall acceleration. (a)
Therefore, air drag on it increases and at some point becomes equal to
the force of gravity. Then the net force on the raindrop is zero and it
falls with a constant velocity. This constant velocity is called its
terminal velocity.

c) We can tighten the head of a hammer by banging the bottom of its
handle on the floor (Fig. 5.3b). 4

Due to inertia, the handle moves but the head of the hammer stays (b)

where it was. Fig. 5.3: Some
applications of Newton’s
first law.

SﬂQ 1 - Newton’s first law of motion

a) A ketchup bottle is turned upside down, thrust hard downwards and then
halted to make ketchup flow out of it. Explain why.

b) Two cars travel on a straight road with constant speeds of 60 kmh~" and

55 kmh_1, respectively. For which car is the net force larger?

Newton’s laws do not hold in all frames of reference. They are valid in only
special frames of reference known as inertial frames of reference. You may
like to know: What is an inertial frame of reference?

5.2.3 Inertial Frame of Reference

The first law of Newton defines the inertial frame of reference.
13



Block 2 Basic Concepts of Mechanics

INERTIAL FRAME OF REFERENCE

An INERTIAL FRAME OF REFERENCE is one in which Newton’s first
law (the law of inertia) holds. Thus, a frame of reference at rest or
moving with a constant velocity is an inertial frame of reference.

Any other frame of reference at rest or in uniform translational motion
(that is, motion in which the respective coordinate axes in the two
frames always remain parallel to each other) relative to an inertial
frame is also an inertial frame.

REMEMBER: A frame in accelerated motion relative to an inertial frame
is NOT an inertial frame. It is a non-inertial frame.

Note that an inertial frame of reference is a non-accelerating frame of
reference. Thus, all frames of reference attached to bodies, which are
accelerating are NON-INERTIAL FRAMES OF REFERENCE (see Fig. 5.4).

(a) (b) (c)

Fig. 5.4: The frame of reference attached to a) the cyclist is INERTIAL if she
moves with a constant velocity with respect to ground; b) the planes
are INERTIAL if they fly with constant velocity with respect to each
other and with respect to the ground; c) a moving merry-go-round is
NON-INERTIAL since the merry-go-round has centripetal acceleration
(recall school physics for circular motion).

From this definition of an inertial frame, a frame attached to the Earth is,
strictly speaking, not an inertial frame since it has a centripetal
acceleration due to the rotation of the Earth. But since its value is very

small (0.034 ms 2 ), we can neglect its effect.

If we neglect the effect of the Earth’s rotation or its motion around the
Sun, we can take the Earth or ground as an inertial frame of reference.

The frame attached to any object at rest or moving with constant
< velocity with respect to the Earth or ground is an inertial frame
of reference. Further, all frames of reference moving at constant
velocity with respect to the Earth and each other are inertial
frames of reference.

Don't forget

14




Unit 5 Newton’s Laws of Motion and Force

Using the definition of an inertial frame of reference, we can check if a frame
of reference is inertial or not as follows:

TEST FOR INERTIAL FRAME OF REFERENCE

Take a body at rest or moving with a constant velocity with respect to
the Earth at some instant of time. If the body remains at rest or keeps
moving with a constant velocity FOREVER (at all later instants of
time) with respect to the Earth, then the frame attached to it is an
inertial frame of reference.

An observer making measurements in an inertial frame of reference
is called an INERTIAL OBSERVER.

You should now be able to distinguish between inertial and non-inertial frames
of reference. Try SAQ 2.

SﬂQ 2 - Inertial and non-inertial frames

Amongst the following frames, identify the inertial and non-inertial frames
giving reasons for your answer. Frame (s) attached to:

a) a ball being swung in a circle,

b) a cyclist moving straight north at a constant speed with respect to the
ground,

c) abus moving in a straight line at a constant speed,
d) a cyclist taking a turn at constant speed,
e) a raindrop falling with terminal speed,

f) an aircraft flying due south at a constant speed and at a constant
altitude,

g) a geostationary satellite moving about the Earth, and

h) two trains moving at constant velocity with respect to the Earth.

So far you have learnt about the concepts of inertia, force and inertial frame of
reference. Now you may like to know: Can we visualise inertia as a physical
property of an object, in the same way as we can visualise its length or
volume? The answer is no, we cannot. However, it is related to an object's
mass.

To understand how, consider a fat man and a small boy shown in Fig. 5.5a.
Whom would we find it harder to move from their positions of rest? You can
immediately say that the fat man would be harder to move. But suppose both
were fat and the difference in their masses was small, as shown in Fig. 5.5b?
Then who would be harder to move? This is related to the question: How
much force is needed to change an object’s velocity or to move it from
rest? What does it depend on?

Don't forget

(b)
Fig. 5.5: Inertia is related
to the mass of an object.

15
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This is what Newton’s second law tells us.

5.3 NEWTON’S SECOND LAW OF MOTION

In Egs. (5.1 to 5.3), the
force acting on the
object is external to the
object. These are called
external forces. In
contrast, there are
internal forces, which
one part of the object
exerts on another part of
the object or one particle
exerts on the otherin a
system of particles. For
example, in Fig. 5.43, if
we take the system to be
that of the “boy and the
bicycle”, the force
exerted on the bicycle by
the boy and the force
exerted on the boy by
the bicycle are internal
forces for this system.
However, if we consider
only the boy’s motion,
then the force on the boy
exerted by the bicycle is
an external force.
Therefore, we must
always identify the
system to which
Newton’s laws are
applied.

We present the law as stated by Newton and then explain its meaning.

NEWTON’S SECOND LAW OF MOTION

The change of motion of an object is proportional to the force
impressed on it; and it is made in the direction of the straight line in
which the force is impressed.

Newton’s second Iav>
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What did Newton mean by “change of motion”? He introduced a new quantity,
which was the product of mass (m) and velocity (v)of an object; it later came
to be known as linear momentum,p :

p=mv (5.1)
By “change in motion”, Newton meant the rate of change of momentum with
time. From school mathematics, you know that the rate of change of any
function with time is nothing but its derivative with respect to time. Thus,
Newton’s second law gives force as

Ergtil ) 7 (5.2a)
dt

o F =k L(mv) (5.2b)
dt

where F is the force exerted and k is the constant of proportionality.

We first take up only those cases in which the mass (m) of the object
remains constant. Then in Eq. (5.2b) only v changes with time and we get

= dv -

F = km? = kma and F=kma (5.3)

where ais the acceleration of the object.

Thus, an external force F exerted on a body of constant mass m produces
an acceleration a in the body. It is given by Eq. (5.3).

We define unit force as the force which produces unit acceleration when
it acts on an object of unit mass. For

F = 1unit, m = 1unitand a = 1unitin Eq. (5.3), k =1
Thus, Egs. (5.2b and 5.3) take the form

F-d°
dt

= ma and F = ma for constant mass (5.4)
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A force of magnitude 1 newton produces an acceleration of 1 ms~ in an
object of mass 1 kg:

1N = (1kg)(1ms™?) = 1 kg.ms™2

The concept of a FORCE LAW is an essential part of the concept
of force. Do not regard F=ma as a force law, which is Just an

equation of motion. Here F is the force being exerted on a body
and is given by a specific force law, e.g., the law of gravitation, Don't forget
Hooke's law, Coulomb's law for electrostatic forces, etc.

5.3.1 Principle of Superposition of Forces

Now suppose several external forces are exerted on a body. How does it
move under the influence of these forces? The answer to this question is
provided by the principle of superposition of forces. Let us explain this

principle.
PRINCIPLE OF SUPERPOSITION OF FORCES The symbol disa
Greek letter pronounced
If several external forces Fy,F,,F3, etc. are exerted on an object at the same as sigma. Z used in

. . q q . I
time, then its acceleration is the same as that produced in the body by a Eq. (5.5) denotes a sum

single force Fnet, which is the vector sum of all those forces: over the index i.

|E t = |E1 + IEZ + ES + ... = IE‘, i=1,213,--- (55)
ne 2F NOTE

In Eq. (5.6), F,g is the

net external force

For constant mass, Eq. (5.5) becomes

= dp - 3 being exerted on the
Frot = o - ma and F..: = ma for constant mass (5.6) object: it is the vector
. . sum or resultant of
Thus, a net external force acting on an object produces a non-zero ALL external forces
acceleration in it, which is given by Eq. (5.6) for constant mass. being exerted ON THE
_ , _ _ OBJECT.
We can express Eq. (5.6) in component form in two-dimensional and
three-dimensional coordinate systems as:
F, =ma, and F = ma, for constant mass Newton’s 2" law:
net, x X net: Y y (5.7a) Component form

Fnet,x = may, Fpet,y = ma, and F,e , = ma, for constant mass  (5.7b) _I
NOTE

Newton’s second law gives a quantitative definition of force. You can see ]
that if the net force on an object is zero, its velocity is constant: The acceleration of
an object is in the
Fot =0 = a =0, thatis, v = constant (5.8a) | direction of the net
external force and is
The law holds only in inertial frames of reference and tells us that equal to the net
- external force
. = ~ F, ivi
a o Foy and a = -_net (5.8b) divided b_y the mass
m of the object.

It also gives us a way of defining mass. 17



Block 2 Basic Concepts of Mechanics

5.3.2 Mass

You may like to do an activity before studying the definition of mass. You will
need three toy cars or three balls of different masses, a spring and a smooth
chart paper. Do this activity and try to answer the questions related to it.

[ ﬂCtlmty ] NEWTON’S SECOND LAW OF MOTION

Fix the chart paper on a table or on the floor. Hold the spring on a point on
the chart paper so that one of its ends is supported against your palm at a
fixed point. Label this point as P. Mark another point Q at some distance
(less than the length of the spring) on a straight line from P. Hold one of
the three cars or balls at the other end of the spring with your palm and
push it so that the spring is compressed and that end of the spring is at
point Q.

Now release the spring by removing your palm from the car/ball. What
happens to the object you were holding? It moves on the table/floor.
Practice releasing the object so that it travels in a straight line. Repeat the
activity with the other cars/balls. What do you observe? Which car/ball
speeds up more and which one less? How can you explain your
observations?

What is common in all these situations? The spring is exerting an equal
force on all objects since the distance PQ is the same. What is different in
each case? It is the mass of the objects. Now answer this question: How is
the mass of the object related to its acceleration for the same force being
exerted on it?

If possible, repeat the activity with only one car/ball but with three springs
of different stiffness (the stiffer the spring, the greater the force). Thus,
mass is constant in this activity but the forces are different. What do you
observe? How is the acceleration of the car/ball related to the force being
exerted on it? How will you explain your observations?

NOTE

The word mass is From our everyday experience and from the activity you have done, you know
commonly used around | that the same force produces different accelerations in bodies of different

us and may mean a masses. This result has been tested in countless experiments conducted in
body’s size, weight or inertial frames of reference. The idea is to

density. Although these

characteristics are e apply equal force on an object having standard mass of 1 kg and another
confused with mass, one having unknown mass, and

they do not represent

the mass of a body. e measure the acceleration of the two objects in an inertial frame of

BE CAREFUL WHEN reference.

gglhjl(l:JEslfTTgEMAss Let mg, ag be the mass and acceleration of the standard object, respectively
IN PHYSICS. and m, a be the mass and acceleration of the unknown object, respectively.

Now you know that since equal force is exerted on the standard and unknown
objects, we have
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For example, suppose mg = 1kg and we apply a force of 1.0 N on both
objects, and measure the acceleration of the object of mass m to be

0.2 ms™2.From Eq. (5.4), the acceleration of the standard mass is 1.0 ms™2.
Thus, we get
-2
m =1.0 kg 1'0"‘—52 ~ 5.0 kg
0.2ms™

What happens when we apply a different force, say, 10 N on the object? The

acceleration of the standard mass is then 10.0ms 2. The acceleration of the 2500 kg
unknown object is measured to be 2.0ms™2 and the value of the unknown - / ‘
mass is S
-2
m =1.0 kg 10'0% ~ 5.0 kg S
2.0 ms™ 10 kg

This result is consistent with our earlier result. Many such experiments have =
given the same results. This helps us arrive at a reliable way of assigning a —
mass to a given object. ———
The mass defined by Eq. (5.9b) is called the INERTIAL MASS. Fig. 5.6 shows 10°kg

the masses of various objects.
Fig. 5.6: Masses of
Let us revise the concept of mass explained in this section. different objects.

INERTIAL MASS OF AN OBJECT

Mass is an intrinsic characteristic of a body that relates the net external
force acting on the body to the resulting acceleration of the body. For the
same net external force, a body having lesser mass has greater
acceleration than a body having mass.

For the same net external force F, m; < m, = a; > a,

We now take up two examples showing you how to apply Newton’s laws.

E)quM(PLﬂ 5.2: NEWTON’S SECOND LAW OF MOTION

Determine the acceleration vector for the box of mass 5.0 kg in Fig. 5.7.

A

F, = 10.0N

F, = 20.0N

Fig. 5.7

SOLUTION B The KEY IDEA here is to obtain the resultant force and then
apply Eq. (5.7a).

19




The magnitude of a is

a= 1'3)2( + 3}2,
= J(4)P + (22 ms2

=45 ms_z, and

o =tan | (EJ =27°
4

is the angle a makes
with the x-axis. a is in
the same direction
as the net force.

Basic Concepts of Mechanics

Let us choose the coordinate system such that the x-axis is along IEZ and
the y-axis is along IE1. From the given data, the net force is:

~

F = Ri + FRj = (20.0N)i + (10.0N)j and
a = if + F13 = 20'0Nf + 10'0Nj = 40ms? i + 2.0ms2j
m m 5.0 kg 5.0 kg

EW(PLE: 5.3: NEWTON’S SECOND LAW OF MOTION

20

The mass of an aircraft is 45,000 kg. It is flying in a straight line at a
constant speed of 960.0 kmh™" (Fig. 5.8). The weight of the aircraft equals
the airlift. The pilot increases the thrust of the engine to 90,000 N. Suppose
the drag force equals the engine thrust in 20.0 s. What is the increased
constant speed of the aircraft at that instant? What is the increase in its
speed?

h

THRUST
AIR DRAG

Fig. 5.8: When engine thrust = air drag, the plane flies at a constant velocity.

SOLUTION m The KEY IDEA here is to obtain the acceleration from
Newton’s second law of motion. Then we obtain the increased constant
speed of the aircraft using the equations of kinematics for motion in a
straight line.

After the engine thrust is increased, the acceleration of the aircraft is:

Februst _ 90,000N _
m 45,000kg

-2

a-= 2.0 ms

When the thrust and drag force become equal in 20.0 s, the plane travels at
a constant velocity (Newton’s first law). The increased speed is given by the
kinematical equation v = vy + at:

v = [%j ms '+ 2.0ms 2 x20.0s ~307ms~' =1105 kmh™"

The increase in the aircraft's speed is

(1105 — 960.0) kmh™" = 145 kmh™"

You should now solve simple problems based on these two laws.
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SﬁQ 3 - Newton’s second law of motion

a) When a child pushes a carom board striker of mass 20 g, it moves on
the board in a straight line with an initial speed of 2.0 ms~'. A constant
force of friction F = 0.04N is exerted opposite to the motion of the
striker. How far will the striker move before it comes to rest?

b) A constant horizontal force is exerted on a large box. As a result, the
box moves across a horizontal floor at a constant speed v,. The
magnitude of the constant force exerted on the box is

i) the same as the weight of the box.
ii) greater than the weight of the box.
iii) the same as the total force that resists the motion of the box.

iv) greater than the total force that resists the motion of the box.
v) greater than both the weight of the box and the total force that
resists its motion.

c) If the constant horizontal force exerted on the box in part (b) is doubled
to push it on the same horizontal floor, the box then moves

i) with a constant speed that is double the speed Vo in part (b).

iy Wwith a constant speed that is greater than the speed
Vo in part (b), but not necessarily as great.

iii) for a while with a speed that is constant and greater than the speed
Vo in part (b), then with a speed that increases thereafter.

iv) for a while with an increasing speed, then with a constant speed
thereafter.

V) with a continuously increasing speed.

5.4 NEWTON’S THIRD LAW OF MOTION

Imagine that you are moving quickly on the road and bump into someone
coming from the opposite direction. No doubt, you feel a force due to this
impact. What about the other person? The other person too feels some force.
Thus, while you are applying force at that person, that person too is applying
force on you. In other words, there is not just one force but a pair of forces
involved though both forces are acting on different objects. Newton was
the first to recognize that all forces occur in pairs. There is no such force
as an isolated or single force, existing all by itself. However, the forces in
the pair are not exerted on the same object. Each force in the pair is
exerted on a different object.

This is evident when we ask: How does one apply force on an object?
From our everyday experience, we see that some agent makes this possible.
For example, you move a bag by pushing or pulling it: Your hand is the agent

Newton's third law is also
called the “action-
reaction” law because it is
also stated as follows:

“For every action
(force), there is an
equal and opposite
reaction.”

21
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I—:BAI I =

A B

Fea = = Fag

Fig. 5.9: Newton’s third
law. Note the order of
subscripts to the force.
F4g is the force ON A

BY B.

Don't forget
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interacting with the bag. We say that pairs of forces arise from
interactions between bodies. This is what Newton’s third law tells us.

NEWTON’S THIRD LAW OF MOTION

When two bodies A and B interact, the force that body A exerts on
the body B is equal in magnitude and opposite in direction to the
force that body B exerts on body A.

If Fg, is the force exerted on body B by body A and F,g is the force
exerted on body A by body B (Fig. 5.9), then

IEBA = - IEAB and |IEBA| = |FAB| (510)

The pair of forces or interactions also called action-reaction forces may be
due to actual contact of the bodies or due to long-range forces.

Newton's third law deals with two forces, action and
reaction:

e The action-reaction pair of forces can never be on the
same body. THESE FORCES ACT ON DIFFERENT BODIES.
Therefore, these do not cancel each other out.

e Since each force is applied on a different body, they do
not produce the same acceleration if the bodies have
different masses.

e Both forces in the pair must be the same kind of forces
(gravitational, electrostatic, frictional, normal, etc.).

e Both forces are instantaneously equal and opposite, never
one after the other. Therefore, it does not matter
which one of the two forces is called action and which
one reaction.

For example, if a person pushes a large stationary box, the box pushes back
the person with exactly the same force. Whether or not the box starts moving
has nothing to do with the force the box exerts on the person. The box
moves only if there is a net non-zero force being exerted on it.

REMEMBER: Each of the forces in the pair of interaction forces in Eq. (5.10)
obeys both Newton’s first and second laws of motion.

Fig. 5.10 shows some pairs of interaction forces or action-reaction pairs. Let
us identify the pair of forces in the first picture in column 1 of Fig. 5.10.
These are: the force F,; exerted on animal 2 by animal 1 and F;, on animal
1 by animal 2. You may like to label the other action-reaction pairs shown in
Fig. 5.10.
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Magnetic force

(b) (d)

Fig. 5.10: The pair of action-reaction forces in the case of contact forces (column 1)

and long-range forces (column 2).

SﬂQ 4 - Newton’s third law of motion

Identify and suitably label the pair of forces shown for each situation in
Figs. 5.10b to d. Express them in the form of Eq. (5.10).

Let us now consider some applications of Newton’s third law.

EX}I:M‘P[EI 5.4: NEWTON’S THIRD LAW OF MOTION

The Earth attracts an apple with a force of magnitude F (Fig. 5.11). What is
the magnitude of the force with which the apple attracts the Earth? We see
the apple moving towards the Earth. Why do we not see the Earth moving
towards the apple?

SOLUTION ® The KEY IDEA here is to apply Newton’s third law of motion
along with the second law.

The apple also attracts the Earth with a force of magnitude F. The
acceleration of the apple and the Earth are:
F F

8apple = and 8Earth =
mapp/e MEearth

Since Myppe =~0.2kg and meg, = 6% 1024 kg, Mga4, is much larger
than mg,ye. Therefore, the acceleration of the Earth is much smaller

(z10_24 times that of the apple). Therefore, we cannot see the movement
of the Earth towards the apple.

Newton’s Laws of Motion and Force

Fig. 5.11: Diagram for
Example 5.4.

23
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You may like to try an SAQ to check your understanding of Newton’s third law.

Don't forget

Concept

SﬂQ 5 - Newton’s third law of motion

A large truck collides head-on with a small compact car. During the

collision:
i)  the truck exerts a greater amount of force on the car than the car

exerts on the truck.

ii)  the car exerts a greater amount of force on the truck than the truck
exerts on the car.

iii)  neither exerts a force on the other, the car gets smashed simply
because it gets in the way of the truck.

iv)  the truck exerts a force on the car but the car does not exert a force
on the truck.

v)  the truck exerts the same amount of force on the car as the car exerts

on the truck.

We end this section by repeating the concept of force as understood by
considering all Newton’s laws together. According to these laws:

1.

A particle on which the net resultant force is zero remains at rest
or moves with a uniform velocity. Such a particle is defined to be a
FREE PARTICLE.

A non-zero resultant force governed by a specific force law acting
on a particle produces accelerated motion, i.e., it must give rise to
a change in its velocity. The force applied on the particle is equal
to its rate of change of linear momentum and the change in linear
momentum has the same direction as the applied force. Suppose
a non-zero force is exerted on a particle and still the body is either
at rest or is moving with uniform velocity. This means that some
other equal and opposite force is also being exerted on it so that
the resultant force on it is zero.

All forces occur in pairs. There is no such force as an isolated or
single force, existing all by itself.

We now sum up what you have learnt in this unit.

5.5 SUMMARY

Description

Newton’s laws of motion M FIRST LAW: An object will remain at rest or keep moving with a constant

24

velocity (same speed and direction)unless a net external force is exerted
on it by some agent:

Vo = constant unless F,,;on O # 0
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Newton’s laws of motion m SECOND LAW: The net external force exerted on an object by some agent

Inertial frame of
reference

Force

Inertial mass

Principle of
superposition

is proportional to the rate of change of its linear momentum (p = mv):

E dp

net — dt

This is the equation of motion for the object. For an object or a system
of constant mass, it becomes:

F,et = ma and Fhet = ma

THIRD LAW: The forces that two interacting objects exert on each other
are always equal in magnitude and opposite in direction:

FonAbyB = “TonBbyA

An INERTIAL FRAME OF REFERENCE is one in which the law of inertia
holds. Thus, a frame of reference at rest or moving with a constant
velocity is an inertial frame of reference.

The FORCE exerted on an object (by an agent) causes its velocity to
change, that is, it causes the object to accelerate. Every force has an
AGENT, which acts through contact or through long or short range
interactions with the object. The concept of a force law is an essential
part of the concept of a force.

INERTIAL MASS is an intrinsic characteristic of an object that relates the
net external force acting on the body to the resulting acceleration of
the body. For the same net external force, a body having lesser mass
has greater acceleration than a body having greater mass. Inertial
mass is the measure of an object's inertia.

m If several external forces F,,F,,F;, etc. are exerted on an object at the

same time, then its acceleration is the same as that produced in the body
by a single force F,;, which is the vector sum of all those forces:

r:net = I#:1 + 'Ez + |E3 + .= ZIE,-, i=123,...
i

5.6 TERMINAL QUESTIONS

1. While riding a bicycle, a child falls forward and off the bike if the bike stops
suddenly on hitting a curb or rock or some other object. Explain why.

2. State, giving reason, whether each of the following statements is true or

false or partially true:

a) In the absence of forces, every object remains at rest.

b) An external force is always a push or a pull exerted by an agent in
direct contact with the object.

c) A constant force produces a constant velocity.

25
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Fig. 5.12: Diagram for
Terminal Question 3.
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d) A Jong-range force must be transmitted by a medium, such as a rope
connecting the object and the agent. Therefore, long-range forces
cannot act on an object in a vacuum.

e) The engine of a spacecraft moving in outer space fails. It slows down
and stops.

A steel ball is attached to a string and is swung in a circular path in a
horizontal plane as shown in Fig. 5.12. At point P, the string suddenly
breaks near the ball. If you observe these events directly from above,
which of the paths 1 to 5 would the ball most closely follow after the
string breaks?

In which of the following situations is the net force on the body zero?
a) atruck driving in a straight line at a constant speed;
b) a car moving in a circular path at a constant speed.

Consider a car at rest. Select the correct option from (a) and (b) to
complete the following sentence: We can conclude that the downward
gravitational pull of Earth on the car and the upward normal force of
Earth on it are equal and opposite because

a) the two forces form an interaction pair,
b) the net force on the car is zero,

Is a net force being exerted on an object moving with (a) a constant
acceleration of 2.0ms™2 or (b) a constant velocity of 2.0 ms~1? Explain.

Newton’s second law tells us that an object accelerates when a net
force is exerted on it. Must the object accelerate when two or more
forces are exerted on it at the same time? Explain.

A stone is thrown from the top of a building. As the stone falls, is the net
force acting on it zero if we neglect air resistance? Explain.

A sail boat moves due to a force of 900 N exerted eastwards by the
wind but faces resistance of 400 N due to water flowing due west. What
is the acceleration of the boat given that its mass is 500 kg?

A car of mass 1500 kg is travelling due west at a speed of 55.0 kmh™".
It comes to a stop in 10.0 s when the driver applies brakes. Determine
the magnitude of the average force exerted on the car by using
Newton’s second law and the equations of kinematics.

SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. a)
b)
2. a)

When the bottle comes to rest, the ketchup in the bottle continues to
move due to inertia and flows out of the bottle.

There is no net force on either car because both are moving with
constant speeds.

Non-inertial since the ball has finite acceleration in circular motion.
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Inertial since the cyclist moves with constant velocity with respect to
the ground.

Inertial since the bus moves with constant velocity with respect to the
ground.

Non-inertial since the cyclist accelerates while turning.

Inertial since the raindrop moves with constant velocity with respect
to the ground.

Inertial since the aircraft flies with constant velocity with respect to
the ground.

Non-inertial since the satellite has a centripetal acceleration.
Inertial since the trains move with constant velocity with respect to
the Earth.

Let us take the x-axis to be along the direction of motion of the

striker. The force on the strikeris F = —0.04Ni. The acceleration

of the strikeris a = F = — 004N i = —2.0ms2i
m 0.02 kg

To determine the distance the striker moves before it comes to rest,

we use the following equation of kinematics: v? — u? = 2as with
u=20 ms_1, v=0a=-20 ms™2.
-1)2
2x(20ms™)

b) (iii). Since the box is moving with constant speed, the net force on it is

zero. Hence, the magnitude of the constant force exerted on the box is
the same as the total force that resists its motion.

c) (v). Since the applied force is doubled, it is greater than the resisting

4. See Fig. 5.13.

force in part (b). Hence, a net force acts on the box. Therefore, the box
accelerates and moves with a continuously increasing speed.

Electrostatic

Fig. 5.13: The labelled pair of action-reaction forces in the case of a) and b) contact forces;

c) and d) long-range forces.

5. (v) since these are action-reaction forces.
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1.

10.

The bicycle comes to rest when it stops, but due to inertia the child
continues to move forward and falls off.

a) Partially true. If the object is at rest in the absence of force, it will
continue to stay at rest. If the object is moving with a uniform velocity,
it will keep moving forever in a straight line with the same velocity.

b) False. The agent may be at a distance from the object, for example,
the gravitational force, which is a long-range force.

c) False. A constant force produces constant acceleration.
d) False. Long-range forces do not require a medium.

e) False. Since the net force on the spacecraft becomes zero, it
continues to move with a constant speed since friction is negligible in
outer space.

The ball follows path 2 at a tangent to the circular path.

The net force is zero in (a) because the truck is moving in a straight line
with constant speed, i.e., its velocity is constant.

(b) The force of gravity exerted by the Earth on the car is equal and
opposite to the normal force exerted by the Earth on the car. So the
net force on the car is zero.

The net force is being exerted on the object moving with a constant

acceleration of 2.0 ms 2.

The object may or may not accelerate for the following reasons:

The object will accelerate whenever the net force given by the resultant
of the forces is non-zero.

If the resultant of the forces on the object is zero, it will not accelerate.
The net force on the stone is not zero since gravity is acting on it.

The net force on the sail boat is (900 — 400) N or 500 N eastwards. The

acceleration of the boat is a = S00N = 1ms~? eastwards.
500 kg
Using the equation v =u — at,

where v =0, u = 55.0kmh ' = 153ms™! and t=10.0s,

15.3 ms_1
a=———
10.0s

we get = 1.53 ms™

The average force exerted on the car is
F =1500 kg x 1.53ms 2 = 2295N = 2.30 x 103N

We have retained the answer up to 3 significant digits.
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Why are the cables of a suspension APPLYING NEWTOst

bridge curved and not horizontal?

You will find the answer in this unit! L. AWS

Structure

6.1 Introduction 6.3 Applying Newton's Laws of Motion
Expected Learning Outcomes Drawing Free-body Diagrams

6.2 Forces around Us Objects in Equilibrium
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ggtion 6.4 Uniform Circular Motion
Tension
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STUDY GUIDE

In this unit, you will learn how to apply Newton's laws of motion to a variety of situations around us in
which forces are present. In order to study this unit well, you should know very well the concepts of
vector algebra from Units 1 and 2, the calculus learnt in school mathematics as well as the
concepts explained in Unit 5. You may like to review these concepts before studying this unit.

You should study the methods of solving problems discussed in this unit carefully. You have also to learn
how to draw the free-body diagram for an object whose motion is being analysed. Try to do all solved
examples on your own and solve all problems. This will help you apply Newton's laws without making
mistakes.

“Imagination is more important than knowledge. For knowledge is
limited to all we now know and understand, while imagination
embraces the entire world, and all there will ever be to know and
understand.”

Albert Einstein
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NOTE

In your written work,
always use an arrow
above the letter you
use to denote a
vector, e.g., I. Use a
cap above the letter
you use to denote a
unit vector, e.g. .

The explanation for the
forces of deformation
such as stress and shear
comes from the physics
of solids.
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6.1 INTRODUCTION

In Unit 5, you have studied Newton’s laws of motion and the concepts of force
and mass. You have learnt that in the equation F,,; = ma, F,y is the force

being exerted on an object by some agent and has to be given by a force
law. You may now like to learn: What are the different types of forces and
force laws for which you can apply Newton’s laws to predict motion of
particles?

You are familiar with the forces of friction and tension, and the spring force
that we discuss in this unit. These forces result from the contact between two
interacting objects and are sometimes classified as “contact” forces. We shall
describe them briefly in Sec. 6.2. In Sec 6.3 of this unit, you will learn how to
solve the equation of motion given by Newton’s second law for a variety of
objects in motion. We shall consider motion in a straight line and in a plane,
which you have also studied in school physics. Finally, in Sec. 6.4 we apply
Newton’s laws to uniform circular motion.

In the next unit, you will study about the force of gravitation, which acts on all
macroscopic objects in the universe and gravity which acts on all macroscopic
objects on the Earth. We shall also discuss the concept of weight.

Expected Learning Outcomes

After studying this unit, you should be able to:
< classify forces as fundamental and non-fundamental forces;
< draw free-body diagram for studying the motion of an object;

< apply Newton's laws of motion to simple problems; and

% solve problems related to uniform circular motion.

6.2 FORCES AROUND US

We classify forces in nature into two categories: fundamental and
non-fundamental. The fundamental forces, which we discuss in Sec. 6.2.5,
are truly unique in the sense that all other forces around us (the non-
fundamental forces) can be explained in terms of them. For describing the
motion of macroscopic particles, it helps to classify the forces as contact
forces and long-range forces (see Table 6.1).

Examples of forces acting on extended bodies are gravitation, fluid pressure
and viscous force, solid pressure and friction, localized contact, stress
and shear. You will learn about the force of gravitation in Unit 7.

We now consider the following contact forces around us: Normal force, force
of friction (static and kinetic), tension, forces exerted in pushing and
pulling objects, and the spring force.



Table 6.1: Forces around us.

Contact forces Long range forces

e  Contact with solids ° Gravitational (Newtonian),

— fixed contact with strings, °
springs and rigid things,

Electrostatic (Coulomb), and

° Magnetic (dipole).
— sliding contact, and

— contact on impact.
e  Contact with fluids

—  buoyant, and

drag.

6.2.1 Normal Force

You may like to do a simple activity for understanding the concept of normal
force. Press a mattress or any soft surface (that of a soft toy) with your palm.
What happens? The soft surface deforms and pushes back on your palm.

According to Newton’s third law, the force your palm exerts on the surface is
equal and opposite to the force exerted by the soft surface on your palm. You
can feel this force: Try pushing a hard surface such as a table or a wall with
your finger. If you push very hard, you feel pain in your finger because the
table/wall exerts equal and opposite force on your finger.

The force exerted by the surface is called the normal force. It is called so
because it is directed perpendicular to the surface (here normal means
perpendicular and not ordinary). If you press the surface at an angle, you can
resolve the force you exert into two components: one parallel and another
perpendicular to the surface. We call the component of the force
perpendicular to the surfaces in contact as the normal force.

NORMAL FORCE

When an object presses against another object with a force having a
component perpendicular to the surface of the other object, the other
object (even a rigid one) deforms. It exerts an equal and opposite
NORMAL FORCE on the first object. The normal force is
PERPENDICULAR TO THE SURFACES IN CONTACT.

Fig. 6.1 shows three example:c, of normal force. The tyre exerts a force on the
ground (force due to gravity, Fy) and the ground exerts an equal and opposite
normal force (say, FN)on the tyre (Fig. 6.1a). The block on the horizontal
surface exerts a force due to gravity (IEg )on the surface and the surface exerts
an equal and opposite normal force (IEN)on the block (Fig. 6.1b). In both these

cases,

Fy = Fy (6.1)

Applying Newton’s Laws

Fig. 6.1: Examples of the
normal force.
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You have studied about
the force of gravity in
your school physics. Itis
the force exerted by the
Earth on every object on
it.

Friction arises due to the
inter-atomic and inter-
molecular interactions on
the surface of materials
in contact.

32

Basic Concepts of Mechanics

In Fig. 6.1c, the block is placed on an incline, and the normal force is equal
and opposite to the perpendicular component of F,,ie. Fg Ccos0:

Fn = Fg coso (6.2)
6.2.2 Friction

In Sec. 6.2.1, you have learnt that when an object is in contact with a surface
or another object, the normal force acts PERPENDICULAR to the surfaces of
contact. When the object moves or attempts to move along the surface,
another force is exerted on the object that is PARALLEL to the surfaces in
contact. This force is called the frictional force, the force of friction or
simply friction (Fig. 6.2).

When an object moves or attempts to move along the surface of another
object, the FORCE OF FRICTION is exerted on the object. It is directed
along the surfaces in contact, opposite to the direction in which an
object moves or attempts to move.

Forces of friction are all around us (Fig. 6.2). In most situations, we need to
reduce friction; otherwise, they can cause objects in motion to stop. In fact, a
great deal of human effort goes into minimising friction. For example, oil
between the piston and cylinder walls of a vehicle’s engine or grease between
parts of any machine reduces friction between them and also their wear and
tear.

There are situations in which friction is essential. For example, we would not
be able to walk if there were no friction between our feet and the ground. That
is why we tend to slip on wet or icy surfaces (because friction is much less on
them). Water running between the surface of a tyre and the road reduces
friction between them and increases the chances of skidding. That is why the
raised treads on a tyre are designed to maintain friction; the spaces in the
treads provide channels for water to move out of the way as the tyre rolls over
a wet road (Fig. 6.2c). This maintains friction between the tyres and the road
and reduces the risk of skidding.

(b) (c)

Fig. 6.2: Friction is everywhere around us — a) It helps us in walking and we slip
if there is no friction; b) we overcome it while swimming; c) it helps us
drive on a wet road. As the treaded tyre rolls over a wet road, water
flows more easily to the tread's outer edge diverting water away from
the regions where the tyre is in contact with the road.



There are two types of forces of friction: static friction and kinetic friction.
Static friction is exerted between surfaces at rest with respect to each
other. For example, suppose you push a heavy box and it does not move.
This means that there is some force on the box which is equal and opposite to
the force with which you push it. This is static friction. Now suppose you
push harder and the box still does not move. This means that the static friction
also increases in magnitude. As you increase the force with which you push
the box, a stage comes when the box just starts to move. This would be the
maximum force of static friction on the box.

The magnitude of the force of static friction can have any value from
zero up to a maximum value, depending on the force exerted on any
object. The maximum force of static friction is equal to the smallest force
needed to move an object and is given by

max
FS

= s Fy (6.3)

where L4 is called the coefficient of static friction and Fy is the magnitude
of the normal force given by Eq. (6.1) or (6.2).
Once two surfaces start sliding over one another, a type of force of

friction known as the force of kinetic friction is exerted between them. It
opposes the relative sliding motion between the two surfaces.

While pushing objects across the floor, you may have noticed that it takes less
force to keep them moving. Therefore, we can infer that the force of kinetic
friction is less than the force of static friction. It is given by

Fi = g Fy (6.4)

where L, is called the coefficient of kinetic friction and F is the magnitude
of the normal force.

Maximum force of
kinetic friction

When one body is in contact with another, always look for
. normal forces perpendicular to the surface of contact, and

o forces of friction along the surfaces in contact.

6.2.3 Tension

Forces are often exerted by means of ropes, cables or strings attached to an
object to pull them (Fig. 6.3). The force with which the rope, string or cable
pulls on the object, is called the tension force or simply tension.

TENSION :

TENSION is the force exerted on an object by the pull of a rope, cable,
string or any other cord attached to it. It is directed away from the object
and along the cord. It is called the tension force because the cord is
pulled taut and is said to be under tension. The tension in the cord is the
magnitude of the force on the object. It is non-zero if the rope, cable,
string is taut and zero if it is slack.

Applying Newton’s Laws

NOTE

The maximum force of
static friction would be
the same, no matter
which side of the object
is in contact with the
surface

=

Maximum force of
static friction

NOTE

The coefficients of static
and kinetic friction are
dimensionless as these
are ratios of forces. So
they have no units. Their
values depend on the
type of material of which
the surfaces in contact
are made.

Don't forget

Fig. 6.3: Tension force. In
this case, it is the dog
pulling the boy!
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Hooke’s law is valid as
long as the elastic
material of the spring
stays within its elastic
fimit. As long as a
spring stays within its
elastic limit, we can
write F = —kx.
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A rope or a string is often said to be mass-less, i.e., its mass is assumed to be
negligible. In such cases, no net force is required to accelerate the string.
Thus, the entire tension force applied to one end of a MASS-LESS string,
is exerted on the object at its other end. If, however, the string had some
mass, part of the tension force would be used to accelerate it and the force
exerted on the object would be less than the tension force exerted on the
object.

6.2.4 Spring Force

Springs are used in many things around us such as toys, cars, spring balance.
From school physics, you know that when a spring is compressed or stretched
by an object attached to it, the spring exerts a force upon the object. This is
called the spring force. The spring force tries to restore the object to its rest
or equilibrium position. That is why it is also called the restoring force. For
most springs, the magnitude of the spring force is proportional to the distance
by which the spring is compressed or stretched.

Consider the spring-mass system shown in Fig. 6.4. One end of the spring is
attached to a fixed wall and the other end to a block that can freely slide on a
horizontal surface. A spring force due to the spring is exerted on the block. If
we stretch the spring by pulling the block to the right, the spring force F is
exerted on the block in the left direction (Fig. 6.4b). If we compress the spring
by pushing the block to the left, the spring force is exerted on the block in the
right direction (Fig. 6.4c).

,,,,,

(c)

Fig. 6.4: The spring force in a spring-mass system — a) The origin of the x-axis is
at the point at which the spring is connected to the block; b) the block
is stretched from x=x,; to x=x, ; c) the block is compressed from
X=X, to x=xy.

Experimentally, the magnitude of the spring force has been found to be
proportional to the distance by which the spring is stretched or compressed.
So, if x is the displacement of the spring, then the spring force is given by

F=—kx (6.5a)

The negative sign indicates that the spring force always points opposite to the
direction of displacement of the free end of the spring. This is also known as
Hooke’s law for an ideal 1-D spring. For the choice of axis shown in Fig. 6.4a,
we can write

F=—kxi or F = —kx (6.5b)
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The constant k is called the spring constant (or force constant). It is always
positive and is a measure of the stiffness of the spring: the larger k is, the
stiffer the spring and the greater the spring force. Let us review the concept of
spring force.

SPRING FORCE

When a spring is compressed or stretched by an object attached to it, the
spring exerts a force upon the object. This is called the spring force. The
spring force tries to restore the object to its rest or equilibrium position. The
magnitude of the spring force is proportional to the distance by which the
spring is stretched or compressed. So, if x is the displacement of an ideal
spring, the spring force is given by

F=—kx (6.5a)

The constant k is called the spring constant (or force constant).

Finally, we briefly discuss the fundamental forces in nature. But before that,
you may like to identify the forces for a few concrete situations.

SﬁQ 1 - Forces around us

In Fig. 6.5, draw the forces being exerted on the cart, the boat and the sled.

Fig. 6.5

6.2.5 Fundamental Forces in Nature

The three fundamental forces known to us are:

e gravitational force,

e electroweak force (which includes the forces of electromagnetism and the
weak nuclear force), and

e strong force.

Strictly speaking, we do not refer to non-contact forces in nature as
action-at-a-distance forces any more. These are all force fields, a concept
you will learn about in the higher level physics electives. In this course, we
shall be concerned mainly with the force of gravitation. You will learn about it
along with the concepts of gravity and weight in Unit 7. We present the
characteristics of the fundamental forces in Table 6.2.
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Table 6.2: Some Characteristics of the Three Fundamental Forces

I I

Gravitational 10739 Infinite Exerted between all
macroscopic bodies in the
universe.

Electroweak: Controls everyday

Electromagnetic 1072 Infinite pl_'ler.lomena ?UCh as
friction, tension, normal
force, etc.

_ _ Nuclear t tati ,

Weak nuclear 107° 107" cm uclear transmutations
beta decay, etc.

Strong nuclear 1 10" cm Holds nucleons together

The word macroscopic
literally means “visible to
the naked eye”. However,
even though we cannot
see static charges, we
can use Newton's laws to
determine the paths of
charges, for example, the
paths of electrons in a
cathode ray oscilloscope.

@
Y ®
1., e
X
®
y

Fig. 6.6: The coordinate
axes can be chosen in
different ways depending
on the problem.
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REMEMBER: Newton’s laws of motion are the fundamental laws of mechanics
which apply to the motion of any macroscopic particle. These laws establish a
relation between the motion of the particle and the forces exerted on it. The
net force in the equation of motion (?net = ma)can be any of the forces such
as friction, tension, spring force, etc. about which you have learnt in this
section. We now take examples of each of these forces and show you how to
apply Newton’s laws of motion to solve a variety of problems.

6.3 APPLYING NEWTON’S LAWS OF MOTION

We begin by explaining the general problem solving strategy for applying
Newton’s laws to objects in motion. You should follow the steps given in the
box to solve such problems.

PROBLEM SOLVING STRATEGY

For each problem:

1. Identify all objects and forces (interactions or agents and their types) being
exerted on the objects. If possible, draw a simple diagram showing all key
features stated in the problem.

2. Draw the free-body diagram for the object(s) to which you will apply Newton’s
laws of motion.

3. Select the inertial frame of reference and write down the laws of motion
applicable to the problem.

4. Draw the coordinate axes on the free-body diagram. If the direction of the
acceleration is known, choose x-axis along that direction. You can choose
different frames of reference for each problem (see Fig. 6.6). However, all of
them should be inertial frames.

5. Write down Newton’s second law in component form for each body and
solve for unknown quantities.

6. Compare your results with what you expect from reasoning and see whether
they make sense. You can also check the results by studying special cases for
which the answers may be known to you.




Before you start using the problem-solving strategy explained here and apply
Newton’s laws to motion of objects, you must understand the following
points:

¢ Newtonian mechanics as we study today was never presented completely
by Newton. It was initiated by Galileo and has been refined and extended
by many physicists. Newtonian mechanics holds in a conceptual
Newtonian world constructed to describe the real physical world. There
is a sharp distinction between the real world and the Newtonian world.

¢ In the Newtonian world, all objects are treated as (point) particles
(see the Note in the margin). The motion of these particles is analysed in
inertial frames of reference. The concepts of velocity, acceleration,
force, force law as discussed in Unit 5 and so far in this unit apply to
particles in this world. Newton’s laws hold for all inertial observers, that
is, observers at rest or moving with a constant velocity with respect to
each other.

¢ Newtonian mechanics is used to model real life phenomena in the
physical world in terms of motion of particles being acted upon by certain
forces.

With this general understanding, you can now solve problems using Newton’s
laws. Before we consider applications of Newton’s laws, you should learn how
to draw free-body diagrams for any problem.

6.3.1 Drawing Free-body Diagrams

The procedure for drawing a free-body diagram is as follows:

DRAWING A FREE-BODY DIAGRAM

For each problem:

1. Take each body separately in the problem to which you want to apply
Newton’s laws. Represent the body as a point particle in the diagram.

2. ldentify all forces being exerted on the body.

3. Draw a force vector for each force being exerted ON the body: Place
the tail of the vector on the point particle or on the point on which it is
being exerted on the body. Draw the vector in the direction of the
force. Try to keep the length of the arrow proportional to the magnitude
of the force. Label each force vector.

4. Draw all contact forces being exerted on the object as well as the
non-contact (e.g., long-range gravitational force) forces on it.

While drawing the free-body diagram, include all forces exerted
ON the object. Do not include any internal forces present in the
system. DO NOT INCLUDE any forces exerted BY the object on
any other body.

Applying Newton’s Laws

The Newtonian world is
populated by (point)
particles. Extended
bodies in this world are
reducible to the
particles that compose
them. But remember,
point particles do not
exist in the physical
world; they are
conceptual objects
created by Newtonian
theory. A rigorous
formulation begins with
forces on and by
particles and later
defines the force on a
body as the sum of
forces on its particles.

Newton’s second law
as given here cannot
be applied directly to
an extended body
unless the body is
modelled as a
particle.

Don't forget
37
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The free-body diagram is a very useful technique for keeping track of the
forces acting on a body. It is also called a force-diagram. We now illustrate
how to draw a free-body diagram.

fm@Lﬂ 6.1: DRAWING FREE-BODY DIGRAMS

A box of mass m is pulled on a rough floor by a mass-less string, which
makes an angle of 30° with the horizontal (Fig. 6.7a). Draw the free-body

diagram for the box. The coefficient of kinetic friction between the box and
the floor is L.

SOLUTION B The KEY IDEA here is to treat the box as a particle, identify
all forces exerted on the box and show them in the free-body diagram. The
forces exerted on the box are:

tension (T)in the string,

weight (W = mg) of the box,

normal force IEN and

the force of kinetic friction (IEk)between the box and the floor. It acts

opposite to the direction of motion of the box.

Let m be the mass of the box. You know from school physics that g is the
acceleration due to gravity and acts vertically downward.

(a) (b)

Fig. 6.7: a) A box being pulled by a string on a rough floor; b) the free-body
diagram for the box.

In Fig. 6.7b, we have drawn the free-body diagram for the box. Note that
the small circle represents the box as a point particle. Note also that we
have identified all forces ON the box. Then we have drawn vectors
representing them.

You may now like to draw free-body diagrams for some objects.

SAQ 2 - Drawing free-body diagrams

Draw free-body diagrams for the cart, the boat and the sled shown in
Fig. 6.5 of SAQ 1.

We now apply Newton’s laws of motion to a variety of systems in which
different types of contact forces are being exerted for two basic situations:
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when an object on which forces are being exerted is in equilibrium and when
it is not in equilibrium.

6.3.2 Objects in Equilibrium

We first define equilibrium and then take a few examples of stationary and
moving objects in equilibrium.

OBJECT IN EQUILIBRIUM

An object on which forces are being exerted is in equilibrium when the
vector sum of all forces (i.e., the net force) being exerted on it is zero.
Its acceleration is zero.

E)CZIM(P[,@ 6.2: BALANCING LOADS ON HEAD

A common sight around us is people carrying loads on their heads, for
example, women in villages carrying water in vessels, porters on railway
stations carrying luggage, construction workers carrying materials on their
heads, etc. Consider a situation in which a construction worker is standing
with a total mass (of the vessel and cement) of 15 kg on her head

(Fig. 6.8a). All the weight above our shoulders is primarily supported by the
seventh cervical vertebra in our spine (Fig. 6.8b). Let the weight of the
woman’s neck and head be 50 N. What is the normal force exerted by the

vertebra on the head and neck of the woman (b) SON
a) before she puts the load on her head, and E
N
b) after she puts it on her head? Take g=10ms_2. 4
SOLUTION B The KEY IDEA here is that the woman is standing still and
therefore, her neck and head are at rest. Thus, the net force acting on
them is zero.
®
Figs. 6.8b and ¢ show the forces stated in the problem. Let us identify the
forces on the neck and head of the woman for both situations. These
are:
a) the weight of neck and head of 50 N directed downwards and the Y
normal force directed upwards;
50N + 15g

b) the weight of the vessel and cement given by 15g directed downwards _ o
plus the weight of 50 N (of the neck and head) directed downwards, Fig. 6.8: Object in
and the normal force directed upwards. equilibrium.

Figs. 6.8b and c also show the free-body diagrams for all forces on the
neck and head of the woman. Since the net force on the neck and head of
the woman is zero, the normal force must be equal and opposite to the net
weight in each case. Hence, we have

a) Fy = 50N and

b) Fy = (50N +15gN) = (50N + 150N) = 200N
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Let us now consider another example of an object in equilibrium.

EX}‘L‘M@’L@ 6.3: PICTURE IN EQUILIBRIUM

A framed picture of mass m is hung on the wall by a mass-less string as
shown in Fig. 6.9a. The two parts of the string make an angle 6 with the
) vertical. Determine the tension in the two parts of the string in terms of m
4 and 6.

—0 3 SOLUTION B The KEY IDEA here is that the picture is at rest. Thus, the
L net force acting on it is zero.

Fig. 6.9b shows the forces stated in the problem. Since the string is mass-
less, the tension in it is exerted on the picture. Let us identify the forces on
the picture. These are: its weight mg directed downwards and the tension

in the two parts of the string: Tand T

(a)

We now draw the free-body diagram with labels and choose the coordinate
axes x and y as shown in Fig. 6.9b. Since the net force on the picture is
zero, the x and y-components of the net force must be zero. Thus, the sum
of the x-components of all forces acting on the picture must be zero and
also the sum of the y-components of those forces must be zero:

Fretx = D Fx = 0 and  Fpey = D F, = 0

Since mg is directed vertically downwards along the negative y-axis, on
resolvingT and T’ along the x and y-axes, we get:

Tcos(90° —0) + T'cos(90°+08) =0 = T=T and
(b)
Tsin(90° — 0) + T’'sin(90°+ 6) — mg =0
Fig. 6.9: a) Picture in

equilibrium; b) free-body , mg
diagram for the picture. or Tcos6 + T'cos® —mg=0 = T=

T =T
2cos0 ( )

This result tells us that if 0 is increased, cos 0 will decrease and the tension
will increase. This may cause the string to break.

Example 6.3 also explains why the cables supporting a suspension bridge are
so curved instead of being horizontal. This is to keep the angle 6 that the cable
makes with the vertical as small as possible (Fig. 6.10).

40 Fig. 6.10: Suspension bridge.
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Always remember the following:

An object can be moving and still be in equilibrium provided its
velocity is constant, that is, it moves in a straight line with
constant speed.

We now consider the equilibrium of a moving object.

Eﬂﬂ?ﬁﬂ 6.4: EQUILIBRIUM AT CONSTANT VELOCITY

A plane is flying with constant speed along a straight line at an angle of 30°
with the horizontal (Fig. 6.11). The weight W of the plane is 80,000 N and
its engine provides a thrust T of 100,000 N in the direction of flight. Two
additional forces are exerted on the plane:

o the lift force ?1 perpendicular to the plane’s wings, and

e the force IEZ due to air resistance opposite to the direction of motion.

Determine F; and F,.

SOLUTION B The KEY IDEA here is that the plane is moving at a
constant velocity. Thus, the net force exerted on it is zero.

Fig. 6.11a shows the forces stated in the problem. Let us draw the free-
body diagram for the plane along with the coordinate axes (Fig. 6.11b). Let
us choose the x-axis to be along the direction of motion. Since the net
force on the plane is zero, we can put the sum of the x and y components
of the forces to be equal to zero:

D Fe=-Wsin30"+ T-F, = 0 and » F, = -Wcos30" + F = 0 (b)
1

Hence, F, = T — Wsin30° = 100,000N — 80,000 N'(E) = 60,000 N Fig. 6.11: Equilibrium of
\/, a moving object.
and F; = Wcos30° = 80,000 N.(73) =69,282 N

Eﬂ%@ﬁf 6.5: FRICTION, TENSION AND EQUILIBRIUM

A box of mass 20 kg is pulled up by a rope at a constant velocity on a
rough inclined plane, which makes an angle of 30° with the horizontal (a)
(Fig. 6.12a). Determine the coefficient of kinetic friction between the box
and the plane’s surface given that the box moves at a constant velocity
and the tension in the rope is 200 N. Assume the rope to be mass-less.

Take g = 10ms™2.

SOLUTION ® The KEY IDEA here is that the box is moving at a constant

velocity. Thus, the net force being exerted on it is zero. * N

Fig. 6.12b shows the free-body diagram for the box along with the bW
coordinate axes. Let us choose the x-axis to be along the direction of (b)

motion. Since the net force on the box is zero, we can put the respective Fig. 6.12: Motion on an
sums of the x and y-components of the forces to be equal to zero. inclined plane.
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DFe =T+ (F -W,) =0 (i)
and YF, =Fy -W, =0 (ii)
where  F = Wy Fy, Wy = mgsin30° and W, = mg cos30° (iii)

We now have to solve Egs. (i) and (ii) to obtain .
For this, we substitute Fy, from Eq. (ii) in Eq. (iii) to get
Fik = Wk Fn = g Wy = 1y mg cos30° (iv)

Then substituting F, from Eq. (iv) in Eq. (i), we get

T — w,mgcos30° — mgsin30° = 0 (v)
From Eq. (v)
1
T — mgsin30° 200 - 20><10><§ 1
“‘k = 300 = \/5 = ﬁ = 058
mg cos 20 x 10 x * >

You may now like to solve problems to check whether you have understood
these concepts.

SﬂQ 3 - Applying Newton’s laws

a) A table of mass 45.0 kg rests on the floor. A child of mass 30.0 kg stands
on the table to reach the top of an almirah. Determine the magnitudes
of the normal force that (i) the floor exerts on the table and (ii) the table

exerts on the child. Take g = 9.80 ms 2.

b) A child is sliding down with constant velocity, on an icy hill having slope 6
(Fig. 6.13). Determine the coefficient of kinetic friction given that the
combined mass of the child and the sled is m.

v

Fig. 6.13

Let us now consider the case when the objects in motion are accelerating, that
is, the net force on them is non-zero and they are not in equilibrium.
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6.3.3 Objects not in Equilibrium

From the definition of an object in equilibrium, it follows that an object will not
be in equilibrium if the net force on it is not zero, that is, if it is
accelerating. Let us illustrate this situation with the help of a simple example.

Eﬂﬂ?ﬁﬁ 6.6: ACCELERATED MOTION UNDER GRAVITY

A crate of mass M slides down a rough ramp, which has a slope of 6 )
(Fig. 6.14a). Obtain an expression for its acceleration.

SOLUTION B The KEY IDEA here is to identify all forces being exerted on
the crate and then apply Newton’s laws of motion.

Fig. 6.14b shows the forces on the crate. These are the force of gravity (or
the weight of the crate, W ), the normal force IEN and the force of kinetic
friction IEk (since the ramp has a rough surface and the crate is moving).
Let us draw the free-body diagram for the crate along with the coordinate

axes. We choose the positive x-axis to be opposite to the direction of
motion (Fig. 6.14b).

Let us now resolve the forces along the x and y-axes and apply Newton’s
second law. Since the crate is not moving along the y-axis, the net force in
that direction is zero. Since the crate is sliding in the opposite direction, we Fig. 6.14: a) A crate

equate the net force in the positive x-direction to (— Ma). Thus, we get: moving down on a rough
ramp; b) free-body

] ) diagram for the crate.
ZFX = - Ma = F, — Mgsin® (i)

and ZFy =Fy —Mgcos6 =0 (i)
From Eq. (ii), Fn = Mgcos6

Fy = ux Fy = pnyx Mg cos6
From Eq. (i), —Ma =y, Mgcos6 - Mgsino

a=g(sin® — pycoso)

Some more situations of the kind we have described so far are shown in
Fig. 6.15.

Fig. 6.15: Some more situations in which Newton's laws apply. 43
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In the box below, we summarise what you have studied so far. You have
learnt about four external contact forces. You have learnt how to solve
problems for motion of objects in equilibrium and accelerated motion under
these contact forces except for the spring force. You will learn about the
spring force in Block 4 of this course.

External Contact Forces Newton’s Laws

1. Normal Force Zf: - ma

2. Friction -

3. Tension Equilibrium: 3 = 0 ms™2

4. Spring Force Non-equilibrium: a # 0 ms™2

SAQ 4 - Applying Newton’s laws

A box of mass 15 kg is being pulled on the floor by a mass-less rope with a
force of 80 N at an angle of 60° to the horizontal. What is the acceleration of
the box if the coefficient of kinetic friction between the floor and the box is
ux =0.207? Take g =10 ms 2.

So far you have learnt how to apply the equations of motion to objects moving
along a straight line. However, in school physics, you have studied about the
motion of a projectile. It is a particle launched with an initial velocity, which
then falls under gravity. Its path is a parabola. This is an example of motion in
a plane along a curved path. Circular motion is another important example of
motion in a plane. In the following section, you will learn about objects in
uniform circular motion and analyse it using Newton’s laws.

6.4 UNIFORM CIRCULAR MOTION

Motion in a circle is quite common around us. You can yourself experience it
by doing the following activity.

Tie a stone to a string and whirl it around in a horizontal circle. How would
you describe its motion? Is the stone undergoing acceleration?

Observe vehicles moving around turns in the road or go to a park and
observe children moving on a merry-go-round. What kind of motion is this?

What path does the Moon follow as it revolves around the Earth? What is
the path of the Earth and the other planets as they revolve around the
Sun?

Suppose you fix a bright arrow on the edge of a fan blade. What path does
that arrow follow when you turn on the fan?

Open or shut the door and observe the path followed by its handle. What
is the shape of the path?
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Did you notice while doing the activity that all these objects move in a circle or
in the arc of a circle? Other such examples are: Artificial satellites moving in
circular orbits around the Earth, electrons moving near the centre of an
electromagnet. In the shot-put throw in any athletic competition, the thrower
swings the shot-put in a circle many times to give it increased speed. These
are all examples of circular motion (which always takes place in a plane). In
this section, we focus on uniform circular motion (Fig. 6.16). Let us define it.

UNIFORM CIRCULAR MOTION

A particle that moves around a circle or a circular arc at a constant
(uniform) speed is said to undergo UNIFORM CIRCULAR MOTION.

Let us first determine the velocity and acceleration of a particle in uniform
circular motion.

Consider an object moving in a circle with uniform speed (Fig. 6.17). Note that
even though its speed is constant, the direction of its velocity changes
continuously. This means that its velocity changes continuously and the
object has non-zero acceleration. We shall now model the object as a
particle and determine the acceleration of a particle undergoing uniform
circular motion.

Note that the particle is moving in a circle. Therefore, we use the two-
dimensional Cartesian coordinate system to describe its motion.

Let the centre of the circle be at the origin O of the coordinate system. In

Fig. 6.17a, we show the position vector of the particle with respect to O at two
different instants of time. Note that the position vector's magnitude will be the
same at all instants of time and equal to the radius r of the circle. Do you
notice that its direction changes with time?

Fig. 6.16: Examples of
circular motion.

y
-
v, |=v
- -
|r|=r - AV
2 - r,at t, )
-
|V1|=V Ar N - t t
< 0 X A Vzatt2v1a 1
< 5 =
- r, at
r|=r
- - - -
|r1|=r and|r2|=r |V1|=V and |V2|=V

(a) (b) (c)

Fig. 6.17: a) The magnitude of the position vector of a particle in uniform circular
motion is constant and equal to the radius of the circle. Its velocity
vector at any point is directed along the tangent to the circle at that
point and is always perpendicular to the position vector; b) position
vectors of the particle at two instants of time; c) velocity vectors of the
particle at those instants of time. Note that the magnitude of its velocity
(that is, its speed) is constant.

Let r be the position vector of the particle at any instant of time t (see
Fig. 6.18a). In component form, it is given by

F = r(cos0i + sin@j) (6.6a) 45
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where 6 is the angle by which the particle moves in the circle in time ¢. It is
also the angle its position vector makes with the positive x-axis at the instant ¢.

From the definition of the unit vector you have learnt in Unit 1, you know that
r=rr (6.6b)
where the unit vector r is given by
F= (cosOi + sindj) (6.6¢)

We define the angular speed of the particle as

o = g (6.6d)
Thus, we can write
r = r(coswmti + sinot j) (6.6e)

Recall from Example 2.4 of Unit 2 that the velocity of the particle is given by

- dr
pm (6.7a)
- d 2 . 2 . 2 2
or V= Fr(coswtl + sinwt j) = or (-sinwti + coswt j) (6.7b)
and its magnitude is given by
V| = v=or (6.7¢)

Recall from Sec. 2.4.2 of Unit 2 that the direction of the velocity at any
point on the circle is along the tangent at that point (Fig. 6.18b). You also
know that for a circle, the tangent at any point is perpendicular to the radius.
Therefore, the velocity vector of a particle at any given point on the circle
is perpendicular to its position vector at that point (see Fig. 6.18a). You
can indeed verify (read the margin remark) that for circular motion

F.v=0 (6.8)

-y
V' s V A}:
0
P (x, y)
= 1
r :y
0 H > X
[®) X

(a)

(b) (c)

Fig. 6.18: a) The position and velocity vectors of a particle in uniform circular motion in the anticlockwise
direction having coordinates (x, y) at an instant {; b) the x and y components of the particle's
velocity vector at t; c) the acceleration vector of the particle at { along with its x and y

46
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The acceleration of the particle in uniform circular motion is given by

~av d
a=— = —

dt  dt

[cor(—sin oti + cosmtj)] = —@°r (cosmtf + sin mt]) (6.9a)

or a=-orf (6.9b)

Since v = or [see Eq. (6.7¢)], we can write

- V2A
a=-—r
r

(6.9¢) <3entripetal acceleration

2

r

The magnitude of ais a = (6.9d)

When we express ain the form of Egs. (6.9b or c), the direction of the vector
abecomes clear immediately. It is opposite to r as shown by the negative sign
in Eq. (6.9b or c). Thus, the acceleration vector for uniform circular
motion is directed opposite to the position vector of the object and
towards the centre of the circle (Fig. 6.18c). That is why it is called
centripetal acceleration. (The word centripetal means centre-seeking.)

Now study Fig. 6.19. It shows that ais perpendicular to v for uniform circular
motion. Note also that the directions of r, vand a change continuously as
the particle moves in the circle. Egs. (6.6a to 6.9d) for the position vector,
velocity and acceleration derived for uniform circular motion also apply to
particles in uniform motion along a circular arc or a curved path. When a
particle moves in a circular arc or a curved path, then ris the radius of the
circle which can be drawn through the arc or the curved path. It is called the
radius of curvature of the arc or of the curved path (read the note in the
margin).

Fig. 6.19: Velocity and
acceleration vectors in
uniform circular motion.

NOTE

The radius of
curvature (r) of the
arc or the curved path
is the radius of the
circle which can be
drawn through that arc
or the curved path.

You also know that a finite acceleration in an object means that a net force is
being exerted on it. This force is called the centripetal force. It is defined as
follows:

CENTRIPETAL FORCE

The net force required to keep a particle of mass m moving at a
constant speed v in a circular path of radius r with centripetal

acceleration (v2 /r) is called the CENTRIPETAL force. Its magnitude is:

(6.10a)

The centripetal force is always directed towards the centre of the circle and
its direction changes continuously as the particle moves in a circle. In the
unit vector notation, we can express the vector IEC as follows:

— V2

F = ——F =
¢ r

— mo’r f (6.10b)

The centre of this
circle (C) is called the
centre of curvature.

<Centripetal force
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Time period )

Let us now revise the concepts of uniform circular motion, centripetal
acceleration and centripetal force.

UNIFORM CIRCULAR MOTION, CENTRIPETAL

ACCELERATION AND CENTRIPETAL FORCE

A particle moving with a constant speed in a circle of radius r or a circular
arc at a constant (uniform) speed is said to undergo UNIFORM
CIRCULAR MOTION.

The particle experiences centripetal acceleration. It is given by

2

~ VAN
°rf = - —F
r

a=—-o

The magnitude and direction of the centripetal acceleration are given
as follows:

2 V2
Magnitude: a= or = —
P

Direction: Centripetal acceleration vector always points towards the
centre of the circle or the centre of curvature of the path

of motion. It changes continuously as the particle moves.

The net force required to keep the particle (of mass m) executing
uniform circular motion in a circular path of radius r with centripetal

acceleration (v2 /r) is called the centripetal force and is given by

= V2 n
FC = - —r =
r

— moPr

The magnitude and direction of the centripetal force are given as
follows:

2
Magnitude: F; = me’r = %
Direction: It is in the direction of the centripetal acceleration, directed

always towards the centre of the circle or the centre of
curvature of the path of motion.

An important parameter used for describing uniform circular motion is the time
period of motion. The time period T is the time taken by the particle to
travel once around the circle, that is, to make one complete revolution.
Since the distance travelled by the particle in one complete revolution is just
the circumference (2nr) of the circle, we can write

2nr 72 _ 2n
T T v o

(6.11)



You should study the concept of centripetal force carefully. It says that a net
force is required to keep a particle in uniform circular motion and that force is
called a centripetal force. Always remember the following about the
centripetal force:

e The phrase “centripetal force” does not denote a new and
separate force existing in nature.

e The word centripetal is an adjective that describes any force
directed towards the centre of curvature of the path of
motion.

e The centripetal force is not another force that must be added
to the free-body diagram for any object.

e Just as we have explained in Sec. 5.3 for the force in the
equation of motion F = ma, Egs. (6.10a and b) are just the
equations of motion for circular motion.

o Just like F, the centripetal force F, must also be given by

some force law representing the net force on the particle.

e Egs. (6.10a and b) have to be used along with the force law
applicable in a given problem.

The net force, which keeps a particle moving in uniform circular motion, could

be any one of many forces such as the following:

e the tension in a string, such as the one attached to a ball moving in a
horizontal circle;

o friction between two surfaces, such as the friction between the tyres of a
car and the road when the car moves around a curve in the road;

e some component of the normal force such as in the motion of vehicles on
banked curves as discussed in Example 6.9;

e the gravitational force, such as the force between the Earth and the Sun
which keeps it in a nearly circular orbit, as we will discuss in the next unit.

A centre-seeking force such as the gravitational force, the
radial component of the tension force or the normal force,
etc. is required to maintain the motion of an object in a
circular path. The force is directed towards the centre of
the circle.

Without this force, we cannot maintain circular motion.

In the following example we apply Newton’s laws to uniform circular motion.

Applying Newton’s Laws

Don't forget

Don't forget
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Fig. 6.20: Force on a

motorcyclist in uniform

circular motion.

(b)

Fig. 6.21: a) Caron a
circular path; b) free-
body diagram for the
car.
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@ﬂﬂ?ﬁf 6.7: UNIFORM CIRCULAR MOTION

A motorcyclist in a circus stunt rides a motorcycle inside a 10.0 m wide
steel sphere (Fig. 6.20) at a constant speed of 64.0 kmh™'. What is the
force being exerted on the motorcyclist given that his mass is 50.0 kg?

SOLUTION ® The KEY IDEA here is to obtain the centripetal acceleration

since the motorcyclist is moving in a circle of radius 5.0 m and then the

force.

The centripetal acceleration and the force on the motorcyclist are given by
vZ  (17.8ms™1)?

a=  —=
r 5.0m

F = ma = 50.0kg x 63.4 ms ™ = 3.17 x 10° N

- 63.4 ms 2

directed along the acceleration, that is, towards the centre of the sphere.

Let us consider another example of circular motion.

EXAMQ’[.E 6.8: UNIFORM CIRCULAR MOTION IN A PLANE

The maximum speed with which a 900 kg car can make a turn in a circular
path is 10.0 ms~ (Fig. 6.21a). The radius of the circle in which the car is
turning is 30.0 m. Determine the force of friction being exerted upon the car
and the coefficient of friction between the car and the road. Take

g=10.0 ms™.

SOLUTION H The KEY IDEA here is to determine the net force on the car
that provides the centripetal force to keep it moving in a circle.

The forces being exerted on the car are: Weight of the car W acting
downwards, the normal force IEN acting upwards and the force of friction
acting towards the centre of the circle. The free-body diagram is given in
Fig. 6.21b. Since the normal force and the weight are equal and opposite,
only the force of friction provides the centripetal force required for the car
to move in the circle. The force of friction must be equal to the centripetal
force.

mv?

From Eq. (6.10a), F, =
P

(i)
Substituting v =10.0 ms_1, m=900kg, r=30.0m in Eq. (i), we get

_ 900kg x(10.0ms™")?

F
k 30.0

= 3000N

From Eq. (6.3), F, =umg = wg =F Img (i)
Substituting F, =3000N and m =900kg in Eq. (ii), we get

uy =0.33
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We now take up an important application of uniform circular motion from real
life.

f)@ﬂ@ﬁﬂ 6.9: BANKING OF ROADS

Curves on roads are banked, that is, the road is designed so that it makes
a finite angle (called the banking angle) with the horizontal at the turns
(Fig. 6.22a). This is done because friction alone cannot help vehicles go
around bends especially on slippery roads (due to rains or snow). Suppose
a vehicle of mass M has to move around a turn in the road at a constant
speed v. The radius of curvature of the turn is r. What should the banking (@)
angle of the road be so that friction is not required to negotiate the turn? y

SOLUTION B The KEY IDEA here is that the vehicle undergoes
2

centripetal acceleration (= V—) as it moves around the turn in the road.
r

The road is banked so that the normal force on the vehicle has a
component pointing towards the centre of the turn. We now identify all

forces being exerted on the vehicle and then apply Newton’s laws of Mg
motion. The forces on the vehicle are: gravity (or its weight), and the (b) v
contact forces: normal force and kinetic friction., which should b.e zero Fig. 6.22: a) Banking of
as per the problem. Let us draw the free-body diagram for the vehicle roads; b) free-body
along with the coordinate axes. We choose the positive x-axis to be along diagram.

the horizontal (Fig. 6.22b).

You can see from the free-body diagram that the angle that the normal force

makes with the vertical is equal to 6. The x-component of the normal force
points towards the centre and, therefore, it provides the centripetal force. Let
us now resolve the forces along the x and y-axes and apply Newton’s
second law. Since the vehicle is not moving along the y-axis, the net force in
that direction is zero. Equating the centripetal force to Fy sin 0, we get:

»2
M— = Fy sin6 and
r

>'F, = Fycos® — Mg = 0 or Fycosé = Mg

Dividing the first equation by the second, we get

2

2
tano = v or 0 = tan ~1 {V—J
rg rg

Thus, if you want to go around a turn of radius 100 m travelling at a speed
of 15ms'1, the banking angle should be

1
6 = tan " (15ms )2 | =129 = 13°
(100m)(9.8ms~2)

51



Block 2 Basic Concepts of Mechanics

SﬁQ 5 - Uniform circular motion

A fighter pilot flies her aircraft at the speed of 2520 kmh~" in a circular arc

having the radius of curvature 6000 m. What is the force experienced by
her given that her mass is 60 kg?

Let us now summarise what you have learnt in this unit.

6.5 SUMMARY

Concept Description

Contact forces B CONTACT FORCES:
around us . . _
Normal force: Direction perpendicular to the surfaces of contact and

opposite to deformation. Magnitude non-zero only if
surfaces in contact, otherwise zero.

Friction: Direction along the surfaces of contact and opposite to
direction of motion. Magnitude non-zero only if
surfaces in contact, otherwise zero.

F"® = u¢ Fy for static friction and

Fy = ny Fy for kinetic friction

Tension force: Direction along the string, rope or cable away from the
object. Magnitude non-zero if string, rope or cable taut;
zero otherwise.

Spring force: Direction opposite to the displacement of the spring
from equilibrium. From Hooke’s law: F = — kx

Objects in equilibrium B An object is in equilibrium when the net force on it is zero. Hence, its
acceleration is zero and it is at rest or moves with constant velocity.

For motion in a plane:

Fretx = >, Fx =0 and  Fpery = D.F, =0

For motion in space:
Fret,x = ZFX =0, Fpet,y = ZFy =0 and Fpet,; = ZFZ =0

B We have discussed a variety of applications of Newton’s laws. Some of
these are shown in Fig. 6.23 below:

b
!
-

[ [

52 Fig. 6.23: Some applications of Newton's laws.
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6.6 TERMINAL QUESTIONS

1. Use the statement given ahead and Fig. 6.24 to answer parts (a) and (b).
Fig. 6.24 shows a frictionless channel in the shape of a part of a circle with
its centre at O. The channel is fixed to the top of a frictionless horizontal
table. Suppose that you are looking down at the table. Neglect the force
exerted by the air. A ball is shot at high speed into the channel at P and
exits at Q. Consider the following distinct forces:

A downward force of gravity.

A force exerted by the channel pointing from Q to O.
A force in the direction of motion.

A force pointing from O to Q.

oCow>»

L

Which of the above forces is (are) acting on the ball when it is within
the frictionless channel at position Q?

i) Aonly

i) AandB
i) AandC
iv) A,Band C
v) A,CandD

op

b) Which of the paths 1 to 5 shown in Fig. 6.24 would the ball most
closely follow after it exits the channel at Q and moves across the
frictionless table top?

2. Fig. 6.25 shows a boy swinging, starting at a point higher than P. Consider

the following distinct forces:

A. Adownward force of gravity.
B. Aforce exerted by the rope pointing from P to O.

C. Aforce in the direction of the boy's motion.

D. Aforce pointing from O to P.

Fig. 6.25

Which of the above forces is (are) acting on the boy when he is at position
P?

i) Aonly
i) AandB
i) AandC
iv) A,B,andC
v) A, C,and D
3. A book is kept at rest on a table. Identify all the forces being exerted on

the book and the table. Draw the free-body diagram for both objects.
53
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4. A lamp hangs from two cables. One cable has a tension of 12.6 N and is
at an angle of 15° with respect to the ceiling. What is the tension in the
other cable if it makes an angle of 65° with respect to the ceiling?

5. Abox of mass 0.70 kg sits on a ramp. If the normal force on the box due
to the ramp is 5.4 N, what is the angle the ramp makes with the
(horizontal) ground?

6. A train of mass 8.00 x 10° kg is moving in a straight line at a constant
speed of 80.0 kmh™'. The brakes, which produce a net backward force of
2.40 x 10° N, are applied for 25.0 s. What is the new speed of the train?
How far has the train travelled in this time?

7. Determine the mass of a box which requires a minimum pushing force of
64.4 N to start moving across a rough floor. The coefficient of static friction
between the box and the floor is 0.350. Take g = 9.80 ms 2.

8. A ship of mass 2.00 x 108 kg is moving at a constant velocity. Its engines
generate a forward thrust of 5.00 x 10° N. Determine (i) the upward

bouyant force on the ship due to water and (ii) the resistive force exerted
by water on the ship. Take g = 9.80 ms™2.

9. Arock of mass 0.20 kg is tied to a string that moves in a circular path over
a horizontal frictionless surface. If the speed of the rock is 8.0 ms™’
the radius of the path is 2.0 m, calculate the tension in the string.

and

10. A circular curve on a highway is designed for traffic moving at 20.0 ms™.

The radius of the curve is 120 m. What is the minimum coefficient of kinetic
friction between the tyres and the highway necessary to keep the cars from
sliding off the curve. Take g = 10.0 ms™2.

6.7 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. See Fig. 6.26.
E E,
Fy
N
I:k v k I_:
F, F, I
(a) (b) (c)
Fig. 6.26
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a) F,=mg isthe weight of the cart, Fy is the normal force, Fisthe
force of kinetic friction and F» is the force with which the man is

pushing the cart.

b) f=g

due to water, IEk is the resistive force exerted by water on the boat

= mg is the weight of the boat, IEB is the upward buoyant force

and F» is the force with which the wind pushes on the sails.

c) F, =mg is the weight of the sled, Fy is the normal force, Fyis the
force of kinetic friction and F» is the force with which the sled is
being pulled.

2. The free-body diagrams in each case are given in Fig. 6.27. Note that each
body has been modeled as a particle.

Ey Es v
Fi

B} . ) } Fo
Fr < » Fp Fy Fp

F F .

g 9 F

(a) (b) (c)

Fig. 6.27

3.a) i) Normal force of the floor on the table is equal and opposite
to the weight of the table and the child. Its magnitude is

Fy = 75.0kg x 9.8ms 2 = 735N

i) The magnitude of the normal force exerted by the table on the child is

F{ = 30.0 kg x 9.8ms™2 = 294N

b) Since the velocity of the child is constant, the net force mg
on her is zero. From the free-body diagram (Fig. 6.28),
we can write Fig. 6.28
mgcos® = Fy (i)
and mgsin® = W, Fy (if)
y
Dividing Eq. (ii) by Eq. (i), we get the coefficient of kinetic friction: A ~
Wy = tan6 £ F
_ N
4. The free-body diagram with the choice of axes is shown in Fig. 6.29. F is )
the applied force which has a magnitude of 80 N, Fy is the normal force, Fy 0 .
W = mg is the weight of the box and F; =,Fy is the force of kinetic g
friction. The box is moving along the x-axis with acceleration a,. On Vi
resolving the forces along the x-axis, we get y
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I—:/\/3 = —Fy,

(b)

Fig. 6.30
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or ay =(Fcos60°—u,Fn)/m (i)
On resolving the forces along the y-axis, we get

Fsin60° + Fy — W= Fpery = 0

or Fny = W — Fsin60° (i)
Substituting W = mg = 150N, F=80N, sin6 = > in Eq. (ii), we get
Fn = [150 - %J N = 81N (iii)

Substituting the value of Fy from Eq. (iii) and p, =0.20 in Eq. (i), we get

_ 80 Nxcos60°-0.20 x 81N
15kg

2

X =16 ms"

5. The centripetal force on the pilot is

2 -1
Fo =™ - 60k XM = 4900N = 4.9x10°N

p 9% " 6000m

Terminal Questions

1. a) i

b) Path 2, which is tangent to the channel at point Q since now there will
be no force on the ball.

2. i) Both the force of gravity and the force exerted by the rope are
exerted on the boy.

3. Since the book and the table are at rest, the forces on the book are:

mg = weight of the book
Fy, = normal force on the book due to the table
The forces on the table are:

Mg = weight of the table

'ENz normal force on the table due to the ground

Fy, = — Fy, = normal force on the table due to the book
The free-body diagrams for both objects are shown in Fig. 6.30.
4. See Fig. 6.31. Since the lamp is at rest we must have

T, sin65° + T4sin15°= mg

and T1cos15° = T, cos65°
T, = (12.6N)x C°S15o = 28.8N

cos 65
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5. See Fig. 6.32. Since the box is at rest on the ramp, we must have

mgcoso = Fy

where Fy, is the normal force. Therefore,

0 = cos_1 [F—Nj
mg

= cos_{ 54N ] = cos™" (0.79) = 38° 0 L

0.70kg x 9.8 ms 2 !
mg
6. Let us take the train to be moving in the positive x-direction. The
acceleration of the train (a, ) after the brakes are applied is Fig. 6.32
6
ay = - 220N _ _ 0.300 ms2
8.00x10% kg

The speed u of train before the brakes are applied is
u = 80.0kmh™" = 222ms™

The speed of the train after 25.0 s and the distance travelled are
calculated by using the equations of kinematics. The speed v of the train
after t = 25.0s is

v = 222ms ' - 0.300 ms 2 x 25.0s =14.7 ms

In this time the train would have travelled,

s=222ms 'x250s - % x 0.300 ms 2 x (25.0s)? = 461m

7. The box will start moving when the pushing force exceeds the static
frictional force opposing the motion. Therefore,

F'®* = 644N = ugmg = 64.4N

where m is the mass of the box and pg = 0.35.Thus,

Fi
m = o 5, = 18.8kg Fig. 6.33
0.350 x (9.80 ms ™) g. .
8. Since the ship is moving with constant velocity, the net force on it is zero.
The forces on the ship (Fig. 6.33) are
1) F, = weight of the ship, F3
a
2) IEZ = resistive force exerted by the water,
. E
3) F3 = upward buoyant force, and ,2\\
4) ?4 =forward thrust of the engines. F
4
Fig. 6.34 shows the free-body diagram for this problem. Since the net force
on the ship is zero, we have v
Fi
F1 = IE3 and r:z = 'E4 Fig. 6.34
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i) The upward buoyant force exerted by water is equal to the
weight of the ship:

F; =(2.00 x108kg) x9.80ms™2 = 19.6 x 108N

i) The resistive force exerted by water is equal to the forward thrust of
the engines which is 5.00 x 10° N.

9. The centripetal force is provided by the tension T in the string. So using
Eq. (6.10a) with m = 0.20 kg, v = 8.0 ms' and r = 2.0 m,we can write

mv?  0.20kgx(8.0ms™")?
r 2.0m

10. The car will remain in the curve only if the force of friction provides the
necessary centripetal force. Thus using Egs. (6.4 and 6.10a), we can
write,

my2 2
- wemg = Wy =—

Substituting v =20.0ms™~!, r=120mand g =10.0 ms ™2, we get

-1,2
L= (20.0ms™ ") 5 033
(120m)x(10ms™ <)

58



UNIT7

Wydo astronauts float in a space GRAVITATION |

station? You can find the answer in

this unit!
Structure
7.1 Introduction 7.4  Weight
Expected Learning Outcomes Weightlessness
7.2 The Force of Gravitation 7.5 Summary
Principle of Superposition 7.6  Terminal Questions
Gravitational Field i
7.7  Solutions and Answers
7.3 Gravity

Variation of g with Altitude, Depth and Latitude
Vertical Circular Motion under Gravity

STUDY GUIDE

In Unit 6, you have learnt how to apply Newton's laws of motion to a variety of situations around us in
which contact forces are exerted on particles. In this unit, you will learn about the long-range force of
gravitation and its applications. You will also learn the concepts of force of gravity and weight and apply
Newton's laws of motion to situations in which these forces are present.

In order to study this unit well, you should know very well the concepts of vector algebra from Units
1 and 2 as well as the concepts explained in Units 5 and 6. You should revise all these concepts
before studying this unit.

You should know the methods of solving problems discussed in Unit 6. Try to work out all solved
examples, SAQs and Terminal Questions by yourself. This will help you understand the concepts better.

“When you make the finding yourself — even if you're the last
person on Earth to see the light — you never forget it.”

Carl Sagan
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Motion of objects is also
explained using the work-
energy theorem which
you will study in Unit 9.

NOTE

In your written
work, always use an
arrow above the
letter you use to
denote a vector,
e.g., r- Use acap
above the letter you
use to denote a unit

vector, e.g. f.
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7.1 INTRODUCTION

In Unit 6, you have learnt about different types of contact forces and force
laws for which you can apply Newton's laws to predict motion of
particles. You have applied these to study the motion of particles on which
these forces are exerted. In this unit, you will learn about one of the long-range
forces, namely, the force of gravitation.

As you have learnt in your school physics, the force of gravitation is a
universal force. It is exerted on each and every pair of macroscopic objects in
the universe. This is the force which is responsible for keeping the Moon in its
orbit around the Earth. This is also the force which is exerted between the
planets and the Sun and all other celestial bodies, and helps us explain many
astronomical phenomena.

Therefore, in Sec. 7.2, you will study the law of gravitation, and understand
how it applies to extended bodies. We also explain the principle of
superposition, which helps us determine the net force of gravitation on a
particle when it is subjected to gravitational force by many particles around it.
We also explain the concept of gravitational field.

The force of gravity is used to analyse motion of objects on the Earth, e.g., the
trajectory of projectiles and the weight of objects. In Sec. 7.3, you will learn
about the force of gravity on Earth, and the factors which cause a variation in
gravity at different points on and around the Earth.

In Unit 6, you have learnt about uniform circular motion in a horizontal plane. In
Sec. 7.3, you will also study about uniform circular motion in a vertical plane
where the centripetal force is provided by the force of gravity, and some of its
applications.

While travelling in a lift you may have felt lighter or heavier than you normally
do. In Sec. 7.4, you will learn why that is so when you study the concepts of
weight and weightlessness.

In the next unit, we discuss the concepts of linear momentum and impulse. We
also introduce the law of conservation of linear momentum.

Expected Learning Outcomes

After studying this unit, you should be able to:

< apply Newton’s laws of motion to particles moving under the
force of gravitation;

< use the principle of superposition and determine the net force of
gravitation on a particle;

< solve problems related to motion of particles under the force of
gravity; and

< explain the concepts of weight, weightlessness and solve
related problems.




7.2 THE FORCE OF GRAVITATION

In your school physics, you have learnt about the force of gravitation. You
know that it is exerted between all macroscopic objects in the universe,
whatever the distance between them may be. We say that it is a universal
force. Let us relate it to our day to day experiences. You know that objects fall

towards the Earth with an acceleration due to gravity given by g = 9.8 ms 2.

Would you like to know: Why is g = 9.8 ms~2? From Newton’s second law,
you know that there must be some force due to which an object falls towards

the Earth with this acceleration. What is that force? What is the force law? The
answers were given by Newton who put forth the law of universal
gravitation and arrived at its mathematical form. Together with his three laws
of motion, this law can be used to explain the motion of all macroscopic
objects in nature. So let us learn Newton’s law of universal gravitation, and
write down the mathematical form of the force of gravitation.

NEWTON’S LAW OF UNIVERSAL GRAVITATION

Every particle in the universe exerts an attractive force on every other
particle. Consider two particles having masses my and m,, respectively and
separated by a distance r (Fig. 7.1).

The force of gravitation exerted by particle m; on particle m, acts
along the line joining the particles and is directed from m, to my. Itis
given by

mmy .
5 2
Fr2]

Fio = -G (7.1a)
where ry5 is the unit vector along the line joining the particles and is
directed from my to m,. Note that |F12| = r. The negative sign in

Eq. (7.1a) tells us that the gravitational force on m, due to my is attractive:
It is directed opposite to F;,. G is a constant called the universal

gravitational constant. Its value has been found experimentally to be

G =6.673x10""" N.m?. kg2

In the same way, we can write the force of gravitation exerted on m; by

m, as
= mqmeo A
Fyy = -G — 22 Foq (7.1b)
r21|
m1 _ _ m2
(2 Fo . ) Fio g )
M2 o1

< r >

Fig. 7.1: The gravitational force between two particles.

Gravitation

<=orce of gravitation

'NOTE

Forces which act
along the line joining
the particles or a
particle and the origin
(which remains fixed
in space) are called
central forces. They
are of the form:

F=Fr
where F is the
magnitude of the force
and F is the unit
vector along the line.

You will learn about
them in Unit 13.
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NOTE

In the notation we are
using here:

F,,: Force on 1 by 2.

and

F,, : Force on2 by 1.

NOTE

The inertial and
gravitational masses
of an object are the
same in the
Newtonian world.

Fig.7.2: A
geosynchronous
satellite orbiting the
Earth.
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joining the particles, directed from m, to my. Also note that ryqy = — ry, and

hence

F21 = —F12 (710)
Note that Egs. (7.1a, b and c) hold for point masses. The mass appearing in
Egs. (7.1a and b) is called the gravitational mass. It is the property of
matter, which causes objects to exert the force of gravitation on each
other. You may now like to work out the following SAQ to calculate the

force of gravitation between two particles.

SﬂQ 1 - Force of gravitation

Calculate the force of gravitation between two particles of mass 50 kg each
when the distance between them is 1.5 m.

We now consider a very important application of the force of gravitation in the
dynamics of uniform circular motion, namely, in satellite technology. We see
the impact of this technology all around us, whether in TV and telephone
communications, internet or mapping the Earth (for example, through the
search engines Google Earth and Bhuvan launched by our own ISRO). Many
of these satellites (for example, the satellites used in communication) are
geosynchronous.

A geosynchronous satellite takes the same amount of time to orbit the Earth
once, as the Earth takes to rotate once about its axis. This means that it
moves with the same angular speed as a point directly below it on the surface
of the Earth. And so to an observer at that point on the Earth, the satellite
appears to be stationary in the sky. Since such a satellite remains in the same
place in the sky relative to an observer on the Earth, it is called a
geosynchronous satellite. Geosynchronous satellites are useful in
communication technology because they can provide continuous coverage of
the same area. A geosynchronous satellite orbiting the Earth is shown in

Fig. 7.2. The force of gravitation between the satellite and the Earth provides
the necessary centripetal acceleration to keep it moving in its orbit. Let us use
this concept to determine the height of a geosynchronous satellite above the
Earth’s surface.

E)@M@Lﬁ 7.1 GEOSYNCHRONOUS SATELLITES

What is the height of a geosynchronous satellite above the surface of the
Earth?

SOLUTION B The KEY IDEA is that the force of gravitation between the
satellite and the Earth (that points towards the centre of the Earth) provides
the necessary centripetal force to keep it moving in its orbit. Thus, we shall
apply Egs. (6.10a and b) and equate the expression for the force of
gravitation on the satellite due to the Earth to that of the centripetal force.




Let the masses of the satellite and the Earth be m and M,, respectively.
Then if the satellite is orbiting the Earth in a circle of radius r, we have from
Egs. (7.1a, 6.10a and b) that

mo*r (i)

( o0 = 27_—nj (ii)

24 hours = (24 x 60 x 60) s = 86400s,
G = 6.67 x10" T Nm?kg? and M, = 5.97 x 10%*kg in Eq. (i), we get:

1 1
(GMe js GM,T? |3
or ro= 2 = 5
) 4

Substituting T =

Gravitation

Global Positioning
System

The global positioning
system (GPS) is a
system of satellites, and
computers and receivers
on ground stations,
which can help us
determine the latitude
and longitude of a
receiver on Earth. This is
done by calculating the
time difference for

signals from different
satellites to reach the
receiver.

r =422 x10"m

Since the radius of the Earthis R, = 6.37 x 108 m, the height of the
satellite above the Earth’s surface is

h = (42.2 - 6.37) x10°m = 3.58 x 10’ m = 35,800km

From Eq. (i) in Example 7.1, we get the expression of the speed of the satellite
in its orbit, called the orbital speed, as

L [eM,
"

e For a given value of r, the orbital speed of a satellite does not depend on
its mass, that is, for a given orbit, a satellite with large mass has the
same orbital speed as a satellite with small mass.

(7.2)

Eq. (7.2) tells us that

e The smaller the radius r of the orbit, that is, the closer the satellite is to the
Earth, the greater is its orbital speed.

Eq. (7.2) applies to all satellites (artificial and natural like the

Moon) orbiting the Earth. It also applies to any object orbiting

another object of mass M, for example, satellites of Jupiter or
other planets as well as to planets orbiting stars. In that case,
M, should be replaced by M in Eq. (7.2).

Don't forget

You may now like to solve a problem based on the concepts discussed so far.

SAQ 2 - Satellites

Eq. (7.2) can be used to determine the mass of any object located in the
universe if we know the speed of a satellite orbiting that object. An object

located at a distance of 7.50 x 10! m from the centre of the galaxy orbits
it in a nearly circular orbit with a speed of 5.70 x 10° ms~". Determine the
mass of the object located at the centre of the galaxy (see Fig. 7.3).

Fig. 7.3: A black hole is
thought to exist at the
centre of this galaxy
shown by the white
circle.
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Fig. 7.4: Principle of
superposition.

Basic Concepts of Mechanics

Newton’s law of gravitation describes the interaction between two point
particles. REMEMBER: Objects that are very small in comparison with the
distance between them may be regarded as point particles. Now suppose
we have a system of many particles such as the solar system. How do we
calculate the force of gravitation on one particular planet (say, the Earth) due
to the Sun and all other objects in the solar system?

We use the principle of superposition that is obeyed by the gravitational
force. Let us now discuss this principle, which helps us determine the force of
gravitation on each particle due to all other particles in a system of particles.

7.2.1 Principle of Superposition

Recall the principle of superposition of forces from Sec. 5.3.1 of Unit 5. It tells
us that the force on a particle in a system of particles is just the resultant
(vector sum) of the forces exerted by all other individual particles in the system
on that particle. To understand this principle for the force of gravitation, let us
consider a system of three particles, with masses m4, m, and ms (see

Fig. 7.4). What is the force of gravitation on one of them, say m4? If only mj,
my were present, the force on my due to m, would be

MM g, (7.3a)

Fo1= -G
21

Similarly, if only my and m3 were present, the force on my due to m3 would
be

= mqimaq A
F31 =-G 12 3 r3q (73b)
I31

Now, what is the force on my due to both m, and m3 ? According to the
principle of superposition, in the three-particle system of Fig. 7.4, the total
force Fy on my is the vector sum of Fy4 and F34, i.e.,

'31 = 'E21 + '331 (7.4a)
= myms myms .
or F1 =-G 12 2 rpq — G 12 3 31 (74b)
24 31

For an N-particle system of masses m4, my ...,my,the gravitational force on
particle 1 of mass m4 due to all other particles in the system is given by

N

= mim; -

Fi= - GZ 12 L (7.4c)
i=2 i1

PRINCIPLE OF SUPERPOSITION
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According to the principle of superposition, in a system of N
particles, the resultant force of gravitation on any particle is the
vector sum of the forces of gravitation exerted by all other particles
on it [as given by Eq. (7.4c)].
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You may like to work through an example to apply the principle of
superposition.

E)CZLM(P[,E: 7.2. PRINCIPLE OF SUPERPOSITION

Determine the location of the point on the line joining two fixed particles of

masses m4 and my, at which a particle of mass m does not feel any Llanx

resultant gravitational force due to them. Show that it is independent of the .—0—‘

mass m. Take the point to be situated between the particles. my M m,
Fig. 7.5: Applying the

SOLUTION B The KEY IDEA here is to use the principle of superposition principle of
to determine the net force on the particle of mass m due to the other two superposition.

particles and equate it to the null vector.
We can also solve Eq. (ii) by

Refer to Fig. 7.5. Let the distance between the masses m4 and m, be a. treating it as a quadratic
Let m be at a distance x from m4 when the resultant gravitational force on equation as shown below.
m due to my and m;, is zero. Now from the principle of superposition, the You can see that the roots of

. . the quadratic equation
net force on the particle of mass m due to the particles of masses m4 and

. my(a-x)* = myx*
ms is given by

i.e.

2 2
N m,—m,)x°—2am,x +a“m
E__ Gm21m)A( ~ Gm2m2 (%) () (my—my) 1 i 1
X (a—x) a a
G G are b and 1 b
Putting F = 0 in Eq. (i), we get LU Bl (ii) * B
% (a—x) of which only is
1+ b

Solving Eq. (ii) as shown in the margin remark, we get possible. This is because x

has to be positive and less

x= 2 whtre S JEE2 than a. This does not hold
1+ b m -
for the solution
Read the margin remark. Note that x is a constant independent of the because for
mass m. Note also that the location of the particle of mass m does depend my < my, x > a, which is
on the ratio of the two fixed masses. not possible as per the

given problem and for
m, > my, x <0, which is
again not possible as per
the given problem.

You should now work out an SAQ on the principle of superposition.

SﬁQ 3 - Principle of superposition

Two particles of mass 2m and 4m, respectively, are separated by a
distance 2r. An object of mass m is kept at the midpoint of the line joining
the two particles. Determine the net force of gravitation on the particle of
mass m. At what point on the line should the mass m be kept so that the net
gravitational force on it is zero?

Strictly speaking, we do not refer to non-contact forces in nature as action-at-
a-distance forces any more. These are all force fields, a concept that is
beyond the scope of this course. Thus, the gravitational force is described as a
gravitational force field. We now introduce the concept of gravitational field

associated with the gravitational force, which might be new for you. 65
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Fig. 7.6: Intensity of the
gravitational field at P
due to M at O.
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7.2.2 Gravitational Field

Let us consider two particles of masses my and m, placed at distance r from
each other. As you know, each particle experiences gravitational force of
attraction due to the other, which depends on the inverse square of the
distance between them. However large the value of ris, the particles will
experience gravitational force. We say that m4 sets up a field, called the
gravitational field, in the space around it. Any other particle situated in the
gravitational field of my experiences the gravitational force given by

Eq. (7.1a).

The strength of a gravitational field is given by its intensity.

By definition, the intensity of the gravitational field due to a mass M at a
point at distance r from it is given by the force experienced by a unit mass
placed at that point. Mathematically, the gravitational field intensity at point P
due to mass M situated at point O (see Fig. 7.6) is given by

E=-—r (7.5a)

where f is the unit vector along OP, and OP = r. The force F experienced
by a mass m kept at P due to the mass M at point O is given by

GMm .

B=T1.20 (7.5b)

From Eq. (7.5b), we can write Eq. (7.5a) as

F=mE (7.5¢)

7.3 GRAVITY

In your school physics, you have learnt about the force of gravity. As you
know, the gravitational force of attraction between the Earth and any
other object on or near it is called gravity. Let us discuss it in detail here
and try to understand why the acceleration due to gravity g has the value
9.8ms 2 on Earth. Since g is the acceleration due to gravity, from Newton’s

second law, the force of gravity exerted by the Earth on any object of mass m
situated on its surface is given by

F =mg (7.6a)

It is directed towards the centre of the Earth. Now what is the gravitational

force exerted by the Earth on the object, if the radius and mass of the Earth
are R, and M., respectively? Its magnitude is given by

mMe
F =G 5 (7.6b)
Re

and it is also directed towards the centre of the Earth. This should be equal to
F given by Eq. (7.6a).
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F =G >~ = mg (7.6c)
Re
GM,

or 5 (7.6d)
Re

Eq. (7.6d) gives the value of g at the Earth’s surface. If we substitute the
values of the universal constant G, and R, and M,, it equals 9.81 ms~2 . This,
however, is the value of g at the equator. It changes as we move away from
the Earth’s surface and also as we go deep inside the Earth. It also changes
with the latitude of the object since Earth is not a perfect sphere. Let us see
how g varies with altitude, depth and latitude.

7.3.1 Variation of g with Altitude, Depth and Latitude

Refer to Fig. 7.7. We consider the positions of a particle of mass m at A and
B, respectively, where A

SA =h = the altitude of A and
SB =d = the depth at which B is situated

Here S is a point on the surface of the Earth and

OS = R, = the radius of Earth

We denote the forces of attraction experienced by m at A and S by IEA and

IES, respectively. Then from Eq. (7.6b), we can write their magnitudes as:

GM_m
Fs = —2, (7.7a)
R
e Fig. 7.7: Acceleration
GM.-m due to gravity at different
and Fy = —62 (7.7b)  points from the surface
(Re + h) of the Earth.

where M, is the mass of Earth.

Let us denote the magnitudes of acceleration due to gravity on the surface of
the Earth, and at point A by gg and g,. Then

Fs GM,

= 2 = = 7.8a

9s = — R2 90 (7.8a)

and ga = Fa = % (7.8b)
m  (Re +h)

From Egs. (7.8a and b), we get

2
g, - — 9oRe (7.92) g at altitude h
(Re + h)?
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g at depth d

g at latitude 1
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We can expand Eq. (7.9a) in a binomial expansion by rewriting it as follows:

-2
R2 h
ga = 9o 7~ = 9|1+ =
2 h e
Rg |1+ —
Re
2h
or gda = 9o |1 - R for h << Rg (7.9b)
e

Eq. (7.9a) gives the value of g for an altitude h (above the Earth’s surface) and
Eq. (7.9b) holds for altitudes much smaller than the Earth’s radius.

Since the Earth is a solid body, the acceleration due to gravity also varies with

depth. We are stating the formulas for the variation of g at a point B situated at
depth d under the surface of the Earth and g (1) at latitude A:

g5 = N (R, - d), (7.10)

and g() = g + ©®Rg sin?A, (7.11)

where g (L) = Value of g on the surface of Earth at a place having latitude A,

Value of g on equator = 9.81 ms~2 and

90

w

Angular speed of rotation of Earth.

Let us now calculate the value of g at a point in the Earth’s interior.

EM.‘MQ’LE 7.3. VARIATION OF g WITH DEPTH

Calculate the percentage decrease in the value of g from its value on the
Earth’s surface, if it is measured at the end of a tunnel 30 km below the
surface of the Earth. Assume the radius of the Earth to be 6400 km.

SOLUTION B The KEY IDEA here is to use Eq. (7.10) to calculate the
value of g at the depth of 30 km.

Substituting R, = 6400 km and d = 30 km in Eq. (7.10), we get.

90 30 ,
=20 (R, -30km)=gg|1-———
g Re( e m) 90{ 6400} ()

The percentage decrease from the value at the surface of the Earth is:

Ag:[ij100=(1—in1OO (ii)
90 90
Replacing ifrom Eq. (i) in Eq. (ii) we get,

90

Ag =|1- 1—i x100 =0.47%
6400
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SAQ 4 - Gravitational acceleration

Determine the gravitational acceleration of an object on the planet Jupiter
given that its mass is 1.90 x 102/ kg and radius is 7.14 x 10" m.

7.3.2 Vertical Circular Motion under Gravity

In Sec. 6.4 of Unit 6, you have studied uniform circular motion in a horizontal
plane. You have studied examples in which the force required for keeping an
object in uniform circular motion was provided by tension in a string or friction.
In all those situations, the force of gravity did not play a role as it was
balanced by the normal force or its component. We now take up circular
motion in a vertical plane in which the force of gravity plays an important role.

You may have seen vertical circular motion in giant wheels in fairs, ancient
water wheels, toy Ferris wheels, amusement park rides and motorcycle stunts
in circuses (Fig. 7.8).

(a) (b) (c)
Fig. 7.8: Examples of vertical circular motion around us: (a) the Delhi eye is a giant wheel in Kalindi

Kunj, Delhi; (b) a vertical loop in a roller coaster; (c) a water wheel used in ancient times for
irrigating fields. Source: Images are courtesy upload. Wikimedia.org

We now work out a few examples to understand the dynamics of vertical
circular motion in which the force of gravity also has to be accounted for.

EXA‘M(PL%’ 7.4: VERTICAL CIRCULAR MOTION

A bucket of water of mass 2.0 kg is tied by a mass-less rope and whirled in
a vertical circle with a radius of 1.0 m. At the top of the circular loop, the

speed of the bucket is 4.0 ms™". Determine the tension in the string when

the bucket is at the top of the circular loop. Take g = 10 ms 2.

SOLUTION B The KEY IDEA here is to identify all forces acting on the
bucket at the top of the circle, determine the net force on it and equate it to
the centripetal force.

69




Block 2

Fig. 7.9: Free-body
diagram for a bucket of
water moving in a
vertical circle.

%

p o
. /

(@)

(b)
Fig. 7.10: a) Motorcyclist

in a vertical circle;
b) free-body diagram.
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The forces exerted on the bucket at the top of the circle are the force of
gravity on the bucket mg and the tension in the string T . Both forces are

directed vertically downwards as shown in the free-body diagram (see
Fig. 7.9). The net force in the downward direction is

Fret = mg + T (i)

This force, as you have learnt in Sec. 6.4, is equal to the centripetal force
IEC required for circular motion. Therefore, we can write

Fret = Fc (if)
Since all the forces are directed vertically downwards, we can write:
2
o mg+T (i)

Hence, the tension in the string is given by

2 1,2
mv —mg = (2.0kg)x(4.0ms™ ")

~ 2.0kgx10ms~2 =12N
r 1.0m

Let us take up another example of vertical circular motion.

fmﬂ?ﬁﬂ 7.5 . VERTICAL CIRCULAR MOTION

Motorcycle drivers perform a stunt in which they drive their motorcycles
around a vertical circular track (Fig. 7.10a). Assume them to be in uniform
circular motion. What should the minimum speed of the motorcycle be so
that it does not fall even at the top of the vertical circle of radius r?

SOLUTION ® The KEY IDEA here is to identify all forces acting on the
motorcycle at the top of the circle, determine the net force on it and equate
it to the centripetal force needed to keep it moving in the circle.

The net force, which provides the centripetal force at the topmost point of
the track (Fig. 7.10b), is equal to the sum of all the force components
directed towards the centre of the circle in the radial direction. We do not
consider the engine thrust of the motorcycle and the braking forces
because they do not act in the radial direction. Thus, there are two forces
being exerted at each point as you can see in Fig. 7.10b: the force of
gravity (mg) of the motorcycle plus rider and the normal force IEN on the
motorcycle. Thus, the equation of motionis mg + Fy = F, where F,

is the centripetal force. At the topmost point, since all the forces are
pointing vertically downwards, we get

fTIV2

mg + Fy =
P

The minimum value of the speed is obtained when Fy, = 0. Hence,

Vmin = \/g—r

For a vertical circle of radius 6.0 m, the minimum speed of the motorcycle

should be vy, = 9.8 ms 2 x6.0m = 7.7ms ' = 28 kmh™!




S_,‘ZIQ 5 = Vertical circular motion

Suppose the speed of the bucket of Example 7.4 at the bottom of the
circular loop is 4.0 ms~". Calculate the tension in the string.

A force related to the force of gravity is that of weight. We now give the formal

definition of weight which follows from the law of gravitation.

7.4 WEIGHT

Let us begin by defining weight.

WEIGHT

The weight of an object of mass m on or above the Earth at a distance r
from its centre is the gravitational force exerted on it by the Earth. It is
directed towards the centre of the Earth:

GMgm -

W-=-—
2

(7.12a)
where r denotes the unit vector directed away from the centre of the Earth
towards the point where the object is situated. The magnitude of weight is

given by

~ GMgm

I'2

w = mg (7.12b)

The unit of weight is newton (N).

The weight of an object of mass m on or above any other astronomical
body of mass M, at a distance r from its centre is the gravitational force
exerted on it by that body. It is directed towards the centre of that body with
magnitude

me

r2

F=G (7.12c)

From Egs. (7.12a and b), you can see that the weight of an object due to
Earth’s gravitational force decreases as the distance of that object increases
from the centre of the Earth. The weight of any spaceship decreases as it
moves away from the Earth.

Therefore, always remember that the mass of an object is not the same
as its weight.

Mass and weight are NOT the same quantity. Weight is the
gravitational force on the body, which changes with the body's
location. Mass is an intrinsic property of the body, which does not
change from place to place.

Gravitation

Weight

% R.=6.37 x 10°'m

O 5
r(x 10°m)

10 15 20

Fig. 7.11: Weight of an
object decreases with its
distance from the centre
of the Earth.

NOTE

Weight is also defined
as the contact force
that is exerted on an
object by whatever is
supporting it.

Don't forget
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We end this discussion on the concept of weight with an example.

ﬁmmmz 7.6: WEIGHT

The weight of an object on the surface of a planet of mass 4.8 x 1024 kgis

60 N. Determine the radius of the planet given that the mass of the object
is 30 kg.

SOLUTION B The KEY IDEA here is to use Eq. (7.12c) for the weight of
the object on the planet.

1/2
Then the radius of the planetis: r = {%}

Using the values F =60 N, M, =4.8x10%*kg and m = 30kg, we get

1/2
.| (6:67 x 107" Nm2kg2)x (30 kg) x 4.8 x 10%* kg
(60N)

r=13x10"m

You may like to check your understanding of the concept of weight by solving
the following SAQ.

SﬂQ 6 - Weight

A spaceship lifts off vertically from the Moon, where the free-fall
acceleration is 1.60ms ™. What is the astronaut’s weight on the Moon if
her weight on the Earth is 500 N? As it lifts off, the spaceship has an
upward acceleration of 0.900 ms 2. Determine the magnitude of the force

exerted by the spaceship on the astronaut. Take the free-fall acceleration
on the Earth to be 10.0ms ™.

We now discuss the phenomenon of weightlessness.

7.4.1 Weightlessness

You may have seen images of astronauts floating around in the space station
and space shuttles. Astronauts orbiting the Earth are known to experience
sensations of weightlessness. You may yourself have experienced the
sensation of being lighter in a lift just as it starts accelerating downwards. Or if
you have enjoyed a ride in a huge giant wheel or a roller coaster, you must
have felt a sensation of being weightless as it came down from top. What
causes this feeling of weightlessness? To understand it, let us first study what
actually causes the sensation of weight as we feel it.

Suppose that you are sitting at rest on a chair. There are two forces acting
upon you — one is the weight due to the Earth’s gravitational force (or the force
of gravity due to Earth) pulling you downwards, towards the centre of the Earth



and the other is the normal force pointing upward, exerted on you by the chair.
As you know from Unit 6, the normal force is a contact force. Note that the
force of gravity acting upon your body is not a contact force; it is an action-at-
a-distance force (strictly speaking a force field), which exists even if you are
not in contact with the Earth. (You cannot ever feel the force of gravity acting
on your body — because it is a not a contact force). When you sit on the chair,
what you feel is the normal force exerted by the chair on you and it is this
force that provides you with a sensation of weight. \When you are at rest,
the upward normal force is equal to your weight and this gives a measure of
the gravitational force on you or your weight.

This means that if the upward normal force being exerted upon you were zero,
you would not have any sensation of your weight.

Thus, it follows that weightlessness is a sensation experienced by

an object when the net contact force on it is zero. Such a sensation is
observed in situations in which objects are in a state of free fall. In free
fall, the only force acting upon an object is the force of gravity and the net
contact force is zero. Therefore, you will have no sensation of weight in a
state of free fall. You would of course continue to have the same mass as you
always do!

In the following example, we calculate the apparent weight of a person
travelling in an accelerating lift using Newton’s laws. When you go through it,
you will also learn what happens in the state of free fall!

Gravitation

Contact forces can only
result from the actual
touching of the two
interacting objects — in
this case, the chair and
you. The forces that result
from contact can actually
be felt. For example,
when you are pushed by
a friend, you feel the
applied force (a contact
force). When you ride on
the swings, you feel the
tension force (a contact
force).

E)CZLWIQ’LE: 7.7. APPARENT WEIGHT

We normally use a spring balance to determine our weight. Let us see
what reading the scale gives when it is accelerating. You may have been
inside a lift in a multi-storied building. How do you feel when the lift just
starts accelerating upwards? You feel heavier. What happens when the lift
just starts accelerating downwards? You feel lighter. How do we explain
these sensations?

To find the answer, consider a spring balance kept in a lift with a person
standing on it (Fig. 7.12a). Suppose that the lift is at rest initially with
respect to an inertial observer standing outside the lift. What is the
magnitude of the weight of the person in the lift as measured by the inertial
observer? You know from Eq. (7.6a) that itis F = mg, where mis the
mass of the person. This is the “true” weight of the person.

Now suppose that the lift (and hence, the balance and the person) moves
upwards with acceleration a with respect to the inertial observer. The
free-body diagram of the person is shown in Fig. 7.12b. Note the choice of
y-axis. Two forces are exerted on the person: The “true” weight of the
person given by mg and the normal force exerted by the balance on the
person. Applying Newton’s second law to the person, we get

ZFy=+FN—mg=+ma (i)

where a is the acceleration of the lift, the balance and the person.

passenger

—
1
(b)
Fig. 7.12: Apparent and

“true” weight of a
person.
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Now Fy is the normal force on the person by the balance. But according

to Newton’s third law, this is also equal to the magnitude of the downward
force exerted by the person on the balance: This is the weight of the
person as measured by the balance in a lift accelerating upwards. It is
called the apparent weight of the person. It is greater than the person’s
true weight. That is why you feel heavier when the lift accelerates vertically
upwards.

If the lift is not accelerating, the apparent weight equals the true weight.
Thus, if the lift is at rest or moving with a constant velocity, the balance
measures the true weight of the person.

If the lift accelerates downwards, the acceleration a is directed opposite
and we have

ZFy =+Fy -mg=-ma (iii)
Hence, Fy =mg — ma (iv)

Thus, the apparent weight is less than the true weight of the person in
a lift accelerating vertically downwards. That is why you feel lighter
when the lift just starts moving downwards. Now, what would happen if the
lift were to fall freely with acceleration g? In such a situation, a = gin

Eq. (iv), which gives

FN =0 (V)

Thus, the apparent weight is zero and you would feel weightless in a
freely-falling lift!

This explains why astronauts in spaceships feel weightless — for the same
reason that a person in a freely falling lift feels weightless. Note that both the
astronaut and the spaceship are in a state of uniform circular motion around
the Earth. The centripetal force for the circular motion is provided by the force
of gravity and is directed towards the centre of the Earth. Thus, gravity is the
only force acting upon the astronaut and their surroundings(spacecraft). So,
their acceleration is the same as the acceleration due to gravity i.e. these are
freely falling bodies. Therefore, as you have learnt in Example 7.7, their
apparent weight is zero and they feel a sensation of weightlessness.

In this unit, we have discussed the long-range force of gravitation, which is
exerted by every object in this universe upon every other object in the
macroscopic world. You have learnt the concept of gravitational field. You
have also learnt the concepts of the force of gravity and the variation of the
acceleration due to gravity with altitude, depth and latitude. We have
discussed the concepts of weight and weightlessness. We hope that you have
found the applications of these concepts in satellites, vertical motion of giant
wheels and spaceships interesting.

Let us now summarise what you have learnt in this unit.



7.5 SUMMARY

Gravitation

Concept

Description

Force of Gravitation

The Principle of
Superposition

Gravity

The force of gravitation is a long-range force of attraction exerted by

every object in this universe upon every other object. The gravitational
force exerted by a particle of mass my on a particle of mass

m, separated by a distance r from it is directed along the line joining
the particles from m, to m,.ltis given by

mqymy F

Fiz = -G ——
2]

where G is the universal constant of gravitation, ry, is the unit vector
along the line joining the particles and is directed from my to m,. Its

magnitude is given by

mymy

I‘2

F=0G

where [Fjp| = r

According to the principle of superposition, in a system of N particles,
the resultant force of gravitation on any particle is the vector sum of the

forces of gravitation exerted by all other particles on it. For an N-particle
system of masses m4, m, ...,my;, the gravitational force on particle 1 of
mass m4 due to all other particles in the system is given by

N

— m1m -

F1 =-G E > ! Fi4
i=2 Ti1

The gravitational force between the Earth and any other object on or
near it is called gravity. It is given by

Fy = mg,

where g is the acceleration due to gravity directed towards the centre of
the Earth. Its values are given by

M
9 = G 29 at the equator at the surface of the Earth
Re
go RS ,
9ga = — 5 at height h from the surface of the Earth
(Re + h)
g8 = g—o (Re — d), at depth d from the surface of the Earth
e
g(A) = go + @2 Re sin® 2, at latitude A

75



Block 2

76

Basic Concepts of Mechanics

B The WEIGHT of an object of mass m on or above the Earth at a distance
r from its centre is the gravitational force exerted on it by the Earth
directed towards the centre of the Earth. Its magnitude is given by

W - GMem m
2

A freely-falling object feels the sensation of weightlessness.

7.6 TERMINAL QUESTIONS

1. Determine the force of gravitation exerted by the Earth on an object of
mass 70 kg situated at an altitude of 6.4 x 10% m above the surface of the
Earth. Take the mass and radius of the Earth to be My = 6.0 x 1024 kg
and Ry = 6.4 x 108 m, respectively.

2. A small satellite is in circular orbit around a planet at a distance of
3.0 x 108 m from the centre of the planet. The orbital speed of the satellite
is 200 ms™". What is the mass of the planet?

3. Three objects A(my =10 kg),B (mg =10 kg) and C (m¢c =15 kg) are
placed 1.0 m apart in a straight line. Calculate the net gravitational force
on object B due to objects A and C.

4. The mass of the Earth is about 80 times that of the Moon. Determine the
ratio of the radius of the Earth to that of the Moon, if the value of the
acceleration due to gravity on the surface of the Moon is 1.67 ms 2. Use

g = 9.80 ms 2,

5. Calculate the value of the acceleration due to the Earth’s gravity at an
altitude of 2.5 x 10° km and at the depth of 3.0 km given that
go = 9.80 ms™2.

6. A stone of mass 0.50 kg is swinging in a vertical circle of radius 1.0 m.
The speed of the stone is constant and equals 6.0 ms ~'Determine the
tension in the string at the bottom of the circle and at the top of the circle.
Take g =10 ms 2.

7. An object of mass 20.0 kg is orbiting the Mars at an altitude of 200 km. What
is the weight of the object, if Mars has a radius of 3430 km and a mass of
6.34 x 1023 kg?

8. One of the vertical circular rides in an amusement park has a radius of
35.0 m. You are sitting in a car that is just at the top of the ride. How fast
must the car be moving in order that you momentarily lift off your seat and

feel weightless? Take g =10.0 ms 2.

9. ltis possible to simulate "weightless" conditions by flying a plane in an arc
such that the centripetal acceleration exactly cancels the acceleration due



to gravity. Such a plane was used by NASA when training astronauts.
What would its required speed be at the top of an arc of radius 1000 m?

10. A girl of mass 40 kg stands in an elevator. Obtain the force which the floor
of the lift exerts on the girl

a) when the lift has an upward acceleration of 2.0 ms~2;
b) when the lift is rising at constant speed and
c) when the lift has a downward acceleration of 2.0 ms 2.

Take g =10 ms 2.

7.7 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. Using my=my =50kg and r =1.5m in Egq. (7.1a), we get the magnitude
of the force of gravitation as

_ (6.67x107""Nm2kg~2) x (50 kg) x (50 kg)

S —7.4x10°8N
(1.5m)

F

The force is directed along the line joining the two particles, as in Fig. 7.1.

2. We use Eq.(7.2) with v = 5.70 x 10° ms ™ and
R =750x10"m:

v2r  (5.70x10°ms™")? x(7.50x10"7 m)

M =
G (6.67x107 " TNm? kg2)

- 3.65 x 10%%kg

3. Since the mass m is at the midpoint of the line joining the two masses 2m
and 4m, the gravitational force on m due to the mass 4m is

- 2
F -6 ;
r2

where r is the unit vector along IE1. The gravitational force on m due to the

~ 2
mass 2mis F, = —G2m r
2
o R 2m? .
The net gravitational force on mis F = F1 + F = G—2r
r

It is directed towards the greater mass 4m. Let x be the distance of the
mass m from the mass 4m. Then the distance of m from the mass 2m is
(2r — x). For the net force on m to be zero we must have, ‘IE{ ‘ = ‘ IEz", where

2Gm?

4Gm* _26m*
2r - x)?

Fi|=
X2

and ?zr‘z

2 2
4627 _ _26Gm > = 2(2r-xy? = x?
X (2r — x)

Gravitation

7
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We can also solve SAQ 3 Solving for x we get 2 values for x: x; = & - 6.83rand
using Eq. (i) of Example (\/5 -1)
7.2 with m; = 4m, 242 r
=2 - 2r. Xo = — = 117r
m, m and a=2r 2 (\/§+1)
Hence, we get
_ 2r Of these, only the second is acceptable because m lies between the two
2m masses for only that value of x. Hence, the mass m must be placed at a
4am distance 1.17 r from the mass 4m so that the net force on it is zero. Read
B 22r 17 the margin remark as well.
V2 +1 4. The gravitational acceleration g, on Jupiter is given by Eq. (7.6d), on
J
replacing Mg and R, by the mass and radius of Jupiter, respectively:
-1 2,2 27
g, = (6.67 x 107" '"Nm~“ kg )7>< (12.90 x 10°" kg) _ 249 ms2
(7.14 x 10" m)
5. Refer to Fig. 7.13. At the bottom of the circle, the tension in the string
T and the force of gravity are exerted in the opposite directions.
Therefore,
> F, =T-mg
For uniform circular motion: Fo = F, = T - mg
2
mg or v y_ g mg
r
. mv? 2.0kg x (4.0ms "2 2
Fig. 7.13: Free-body T = +mg == - +2.0kg x10ms™
diagram for solution of r 1.0m
SAER- ~ 32N+ 20N =52N
6. The mass of the astronaut = LNZ = 50.0 kg
10.0ms™

The astronaut’s weight on the Moon = 50.0 kg x 1.60 ms™ = 80.0 N

The force exerted by the spaceship on the astronaut is
80.0 N + (50.0 kg x 0.900 ms™2) = 125 N

Terminal Questions

1. Using Eq. (7.1a), we can write the magnitude of the force of gravitation as:
mMg

F=G >
(Re +r)

where r =6.4x10°m. Using R, =6.4x10%m, M, =6.0x10%* kg and
m=70kg we get:

_ (6.67x107""Nm?kg2) x (70 kg) x (6.0 x 10%*kg)

-1.7x102N
(6.4x10%m + 6.4 x10%m)?

F

2. For circular motion, the centripetal force is provided by the gravitational
78 force on the satellite and, therefore, we have:
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where Mp is the mass of the planet, r =3.0 x108m and v =200ms™".

2 (3.0x10% m)x (200 ms )2

=1.8x10%3kg
G 6.67 x10~ 1" Nm?kg 2

Mp =

3. Let B be located at the origin of the coordinate system. Let the
gravitational forces exerted by A and C on B be F; and F,, respectively.
From Egs. (7.4a and b), the resultant gravitational force on B is

IEZ |E1 +|32 =—GmAmB €+GmBmC ;
2 2
"AB 'BC
where m, =mass of A=10kg, mg =mass of B=10kgand
mc =mass of C =15 kg and rug =rgc =1.0m. Thus,

_10kgx10kg _ 10kgx15kg |;

F=6.67x10"""Nm? kg ?x : >
(1.0m) (1.0m)

~33x1072Ni

4. We use Eq. (7.6d) for the value of g on Earth. For the gravitational
acceleration on the Moon (g,,,), we replace M, by M,, (the mass of the

Moon) and R, by R,, (the radius of the Moon) in Eq. (7.6d). It is given that
Mg =80M,,. Let a be the ratio of the radii of the Earth and the Moon. So,

M My/80 a?|GM
Im="Re R2 80[R§ }
o
2 2
SN 167ms2=%_g=2 (9.80ms?)
80~ 80

wo [T _ e L6

5. We calculate the acceleration due to the Earth’s gravity at an altitude of
2.5 x 103km (g1) using Eq. (7.9a). Note that we use Eq. (7.9a) instead of
Eq. (7.9b) because h (2500 km) is comparable to R, (6371 km). Thus,

2500

-2
_— ms_2 =5.07 ms_2
6371

91 =90 (1 +
We calculate the acceleration at a depth of 3.0 km (g, ) using Eq. (7.10):

3.0
6371.0

g, = 9.80ms™ x (1 - j =9.795ms ™ ~ 9.8ms2,

up to 2 significant digits.

6. Asin Example 7.4, we can write the tension at the top of the circle as 79



Block 2 Basic Concepts of Mechanics

2 -1\2
MVZ g = 0-90kgx(60ms )" 4 510 10ms 2 13N
r (1.0m)

For the tension at the bottom of the circle we write (as in SAQ 5),

2
7=V mg-18N+5N=23N

r

7. We use Eq. (7.12c) with M}, replaced by the mass of Mars and
r =(3430 + 200) km. Then the weight of the object is

(6.67 10~ "Nm?kg2)x (20.0 kg) x (6.34 x 10%3kg)

F = > =64.2N
(3.63x10°m)
8. To feel weightless at the top of the ride, we must have IEN =0 (see
mv?
Fig. 7.10). Therefore, =Fy+mg and
2
for Fn =0, mv_ _ mg
r

v2=gr = V=,/gr or v=\/(10.0ms‘2)x35.0m =18.7ms™"

9. In this case, the centripetal force is provided by the force of gravity when
the astronaut feels weightless, i.e., Fy =0. Thus, we have

2

M _mg = v=ygR =1(10ms2)x1000m = 100ms"
;

10. The free-body diagram for the problem is shown in Fig. 7.14. Note that the

following two forces are exerted on the girl:
A lEg = The force of gravity exerted by the Earth on the girl = mg
g ? 5 IEf = The force exerted by the floor on the girl
g Since.motion is .onIy in the y dirgction, according to Newton’s second law, the
equation of motion to be solved in the problem is:

Fret = ma  or Fpy, = ma,
Fig. 7.14: Diagram for

the solution of TQ 10. The solution for each situation is as follows:

a) When a, > 0, ZFy =F —mg=ma, = F=m(g+ ay)N or
Fr = 40(10 + 2) = 480N

b) When a, =0, (equilibrium), ZFy =F - mg=0= F = mgN or
Fr = 40(10) = 400N

c) When ay <0, sz =F - mg =-may, = Fr=m(g —ay)N or
Fr = 4010 — 2) = 320N
80
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;Z:Lizssg;ebsyp::gi:;an::rc:l;esttages in LIN EAR MOMEN TUM
it? This unit will help you answer

this question! AND IMPULSE

Structure
8.1  Introduction 8.3 Impulse
Expected Learning Outcomes 8.4 Summary
8.2  Linear Momentum 8.5 Terminal Questions

Conservation of Linear Momentum .
8.6  Solutions and Answers
Linear Momentum and the Flow of Mass

Rocket Motion

STUDY GUIDE

In this unit, you will study the law of conservation of linear momentum for two-particle systems and
the concept of impulse. In order to learn these concepts well, you should know the concepts of
vector algebra and integral calculus. You may like to review these concepts before studying this unit.

Try to work out all solved examples, SAQs and Terminal Questions by yourself. This will help you
understand the concepts better.

IN YOUR WRITTEN WORK, ALWAYS USE AN ARROW ABOVE THE
LETTER YOU USE TO DENOTE A VECTOR, E.G., T. USE A CAP
Don't forget || ABOVE THE LETTER YOU USE TO DENOTE A UNIT VECTOR, E.6., T.

“The entire preoccupation of the physicist is with things that
contain within themselves a principle of movement and rest.”

Aristotle
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8.1 INTRODUCTION

In Units 5, 6 and 7, you have studied Newton’s laws of motion and their
applications. You have solved a variety of problems involving objects in
motion. While introducing Newton’s second law, we had defined the linear
momentum of an object and derived the equation of motion (IE = ma)for

objects of constant mass. In this unit, we discuss this concept in some detail.
More importantly, we introduce the law of conservation of linear
momentum in Sec. 8.2.1 for two-particle systems. This is a fundamental law
of nature, which allows us to determine the velocities of particles without
going into the detailed description of their motion. We also use the concept of
linear momentum to study the motion of systems in which there is a flow of
mass, for example, the motion of rockets.

So far we have dealt with forces that do not depend on time. There are many
situations in which the forces exerted on an object vary with time, for example,
the ball hit by a bat or a tennis racket. These are exerted for a very small time
(the time of contact) but are quite large. In Sec. 8.3, we introduce the concept
of impulse to study the motion of an object under time-varying forces. We
also discuss the impulse-momentum theorem, which is useful for solving
problems of motion of such objects.

In the next unit, we discuss the concepts of work and kinetic energy, which
came from further refinement of Newton’s mechanics.

Expected Learning Outcomes

After studying this unit, you should be able to:
% determine the linear momentum and impulse of a particle;

% apply the law of conservation of linear momentum to simple
two-particle systems;

<« calculate the linear momentum for two-particle systems with
constant mass and variable mass; and

« apply the impulse-momentum theorem to solve simple
problems.

8.2 LINEAR MOMENTUM

You have learnt in Sec. 5.3 of Unit 5 that the linear momentum of an object is
the product of its mass m and velocity v. You have also learnt that the net
external force on an object is equal to the rate of change of its linear
momentum with time:

|

dp

= where p = mv 8.1a
net . P ( )



Unit 8 Linear Momentum and Impulse

This equation tells us that the net external force exerted on the object
changes its linear momentum. It also implies that the linear momentum of
an object can be changed only by a net external force. If there is no net
external force on a system, p remains constant. This is actually a
fundamental law of nature and gives us an extremely powerful tool for solving
problems on motion. So we now explain this law for a two-particle system.

8.2.1 Conservation of Linear Momentum

If the net external force on a particle or a system of particles is zero, Eq. (8.1a)
gives us

dp & Conservation of

o = p = constant (8.1b) linear momentum

This means that the linear momentum of the object, on which the net external
force is zero, does not change. This result is called the law of conservation
of linear momentum. It is extremely useful when we are considering a
system of more than one particle/object.

Let us consider two-particle systems on which the net external force is zero.
We call such systems as isolated systems. We have shown a few examples
of such systems in Fig. 8.1: A book at rest on a table, passenger standing in a
boat in still water, a billiards ball moving at a constant velocity. In all these
systems, the net external force is zero as these are either at rest or moving
with a constant velocity. Moreover, these systems are closed, that is, no
particles leave or enter the system. The total linear momentum p of such a
system of two particles having linear momentum p4 and p,, respectively, is

P = P1 + P2 (8.1c)

The law of conservation of linear momentum is then stated as follows:

LAW OF CONSERVATION OF LINEAR MOMENTUM

If no net external force is exerted on an isolated and closed system of
particles, the total linear momentum of the system cannot change. We
say that the total linear momentum of the system is conserved:

p = constant (for a closed, isolated system) (8.2a)
Fig. 8.1: Some examples
We also say that for a closed and isolated system of particles of isolated systems.
The total linear momentum |} (The total linear momentum
at some initial instant ¢; ~ | at some final instant ¢

We can also write this result as: p; = py (8.2b)
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This law is valid for a system of many particles and you will learn about it in
Block 3. Here we will take up systems of two particles and apply it to some
simple cases.

EWG’LE 8.1: CONSERVATION OF LINEAR MOMENTUM

A car (1) is standing at a red traffic light on a slippery straight road. The
driver of another car (2) is unable to apply brakes in time and hits the car at
rest (see Fig. 8.2). With what speeds do the two cars move forward
together if the speed of the moving car at the time of hitting the stationary
car is constant and equals 2.0 ms~'? The mass of car 1 and its driver is

1000 kg and the mass of car 2 and its passengers is 1500 kg.

SOLUTION ® The KEY IDEA here is that the net external force on the
system of the two cars is zero when they collide. This is because the
speed of car 2 is constant and it is moving in a straight line, and car 1 is at
rest. Hence, we can treat the system of the two cars as a closed, isolated
system and apply the law of conservation of linear momentum to it.

Car 2 Car 1

Fig. 8.2

We use Eq. (8.2b) and write the initial momentum of the system as

Pi = MeariVeart + MearoVear2 = 0 + (1500 kg x 2'0ms_1)i

= 3.0 x10° kg.ms™ i

where the direction of motion of the moving car (2) is along the positive
x-axis (see Fig. 8.2). After the moving car hits the stationary car (1) , the two
travel together in the same direction. Let their velocity be v. Then we have:

Pr = (mcar1 + mcarZ)\7 = Pj

(2.5 x10%kg)Vv = 3.0 x103kg.ms™'i

o
=
T
<

|

v = 1.2ms i

Now you should apply this law to a simple system by solving SAQ 1.

SAQ 1 - Conservation of linear momentum

Two identical cars have the same speed; one travels due east and another due
west. Do the cars have the same linear momentum? What is the total linear
momentum of the system of the cars? Explain your answers.
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So far in this section, you have learnt that when no net external force is
exerted on a system of particles, we can apply the law of conservation of
linear momentum to study its motion. The advantage is that we need not know
the details of the forces acting on each part of the system. You will study more
examples of this law in Block 3.

So far, we have taken up examples of simple systems in which the mass
remains constant. There are many examples around us where there is a flow
of mass in the system and the mass of the object in the system changes.
Rocket motion, ketchup coming out of a bottle, water sprayed from a pipe,
coal falling onto rail wagons for transport are some such examples

(Fig. 8.3).

Fig. 8.3: Examples of systems having variable mass.

For studying the motion of such systems, we determine Ap and then find the

£ i AP
net force from (Fnet = A!‘IT) 0 A_It)J

8.2.2 Linear Momentum and the Flow of Mass

The concept of linear momentum is very useful when we study a system in
which there is flow of mass with time. For such systems, we write Newton’s
second law as follows:

F_@_d(mv):mvarqdm

— V PR
dt dt dt dt

(8.3)

We shall solve Eq. (8.3) for rocket motion, which is a very important example
of mass flow and linear momentum problem. But you may like to attempt an
SAQ based on Eq. (8.3).

SAQ 2 - Variable mass system

Sand falls on a conveyor belt at a constant rate of 50 kgs_1 from a hopper
(Fig. 8.4). Determine the force required to maintain a constant velocity of
2.0 ms~" of the belt.

Fig. 8.4: Sand falling on a conveyor belt.
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8.2.3 Rocket Motion

Underlying principle: In a rocket, a stream of gas produced at very high
temperature and pressure is ejected at very high velocity through an exhaust
nozzle (Fig. 8.5). The rocket moves with an increased velocity in a direction
opposite to that of the ejected gas.

We now solve Eq. (8.3) to answer the question: What is the velocity of a
rocket of mass M which ejects gas of mass AM in time interval Af?

Let us first apply Newton’s second law of motion for a variable mass system
[(Eq. (8.3)] to the rocket alone. So we just analyse the motion of the rocket
and do not worry about the motion of ejected gas. So the system boundary is
as shown by the dotted line in Fig. 8.6a.

We observe the rocket’'s motion from an inertial frame attached to the

Fig. 8.5: Lift-off of the Earth.
PSLYV rocket that

launched Chandrayaan-1 Let the mass of the rocket be M at some instant of time ¢. Let the mass of the

on October 22, 2008. gas ejected by the rocket during the time interval At be AM. During this time
. interval, the rocket’s mass decreases by AM and at the instant (¢ + At)it
.7 ‘ \\ I is(M — AM).
’
" \\ v Let u be the velocity of the ejected gas of mass AM and (v + Av) be the
I ‘IM rocket’s velocity relative to the inertial frame at the end of the time interval At
“ | (see Fig. 8.6b).
\ J |
\ / ) - dp
3 ’ Newton'’s second law tells us that F,g = ot
~ -’

Now p; = Mv

‘ i and Py = (M- AM)(V + AV) + (AM)i

(@) The change in linear momentum of the rocket is:
a

AP = Pr — PB; = [(M-AM)(V + AV) + (AM)i]| — MV

or
T AP = MV + MAV — AMV — AMAV + (AM)4 — MV
= MAV + AM@E - V — AV)

Note that [4 — (V + AV)] is the velocity of the gas stream relative to the
rocket. We denote it by v, so that we have

AM ) ) )
‘ i l Ap = MAv + AM Vrel (848)
(b) u We now divide Eq. (8.4a) by At and take the limitas At — 0 to obtain%. In

this process, we assume that v, is constant. Thus,

dp l AM ) . l AV
86 a At”io(?)vre’ - M (_J

Fig. 8.6: Analysing rocket
motion.
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Since M decreases withtime, A!"ri 0 (%) __9M and we have
dp aM _ dv
— = ——V + M— 8.4b
dt at "¢ dt (5.4b)

Substituting Eq. (8.4b) in Newton’s second law, we get

= av M .
F = — - —V 8.4c
net at dt rel ( )
We now consider two cases:
Case 1. Rocket in Earth’s gravity, and
Case 2. Rocket in free space when the net external force on it is zero.
Case 1: Rocket in Earth’s gravity
When the rocket moves in the Earth’s gravity, IEnet = — Mg and we have
~ av aMm .
-Mg = M— - —v
g ot at e
or —q = d_\_i il iﬂ\?
o M dt

For determining the velocity of the rocket, we integrate this equation.
Suppose the mass of the rocket is M and its velocity v at the instant

t = 0. Then we have, Note that we have
changed the limits for

t M v M the integral over variable
J'ﬂ dt = vre,jd— - gt (d—jdt: dM M.
dt M dt
0 Mo
or \7(t)|gg = Vpg In Mmo - gt (where v; is the velocity at time t)

Thus, the rocket velocity at any instant t is given by

- - M _ Rocket motion
Vi = Vo = Vrgl InM_O - gt (8.5a) under gravity

The symbol “In” in this equation means natural logarithm.

Case 2: Rocket in free space when the net external force on it is zero

In free space, when no net external force acts on the system, the equation for
rocket motion simply becomes:

- - . M Rocket motion
Vi — Vg = Vg ln Vg (8.5b) in free space
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Let us put some numbers in these equations so that you may appreciate the
results. Study Example 8.2.

EX}‘IMQ’LE 8.2. ROCKET MOTION

The mass of a two-stage rocket launched in free space is 1000 kg at some
instant of time. When 800 kg of fuel of the first stage burns in it, the rocket
ejects a stream of gas at a relative velocity of 1500 ms~'. What is the
rocket’s velocity after the first stage is ejected? Then another 180 kg of fuel
is burnt in the second stage ejecting gas at the same relative speed of
1500ms™". What is the rocket's velocity after the second stage is ejected?

SOLUTION B The KEY IDEA here is to apply Eq. (8.5b) in both instances
since the rocket is travelling in free space.

Let us choose the coordinate system as shown in Fig. 8.7 (Fig. 8.6b
repeated here) so that v; is along the positive y-axis. Then, v, is
opposite to the positive y-axis. Hence, with vy = 0, we have

200
1000

)

Vi = = M — (1500 ms ") in (
Mo
= —(1500 ms ") (In 2 - In 10)

= —(1500 ms™ ") x (- 1.6) = 2400 ms™"

When another 180 kg of fuel is burnt, then we have My = 200kg, M = 20kg
and v, = 2400 ms~'. Thus,

M 1 1 20
Vi = Vo — Vo IN — 2400 ms™  —=(1500 ms™ ') In (——
t 0 rel MO ( ) (200)

2400 ms~' - (1500 ms™") x (- 2.3) = 5850 ms™’

Thus, using this principle, rocket speed can be increased manifold by
attaching many stages in the rocket that drop off along with the fuel.

NOTE that when we apply Eqs. (8.5a and b) in numerical problems

on rocket motion, we just replace (L—Atﬂ by its magnitude because

we have accounted for the decrease of M with ¢t in the derivation
itself.

So far, the forces that you have learnt about do not change with time. But
there are many situations around us where the force varies with time: for
example, when a cricket ball is hit by a bat, a tennis ball is hit by a racquet or a
child falls on a hard floor, etc. In all such cases, the force just before the
impact and just after the impact is zero. But it is very large during the brief time
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interval of impact. The motion in such cases is analysed in terms of the
impulse. But before studying about impulse, you may like to try an SAQ on
rocket motion.

SAQ 3 - Rocket motion

A rocket having initial mass of 1000 kg is fired from rest in free space with a
payload of 100 kg. What is the velocity of the rocket when 900 kg of its fuel
is burnt, if the speed of the exhaust gas relative to the rocket is 1000 ms~1?

8.3 IMPULSE

Fig. 8.8 shows some situations in which a large force is exerted on an object
during a short time interval and the force itself changes with time. The change
in the force with time for a typical situation is also shown in the figure. If the net
force on the object is IEnet (t), the change in its linear momentum during the

short time of impact is given by

dp = Ry (t) dt (8.6)

Force
Force (N)

0 Time (s)

Time

Fig. 8.8: Situations in which a large time-varying force acts for a short time interval.

Suppose the force is exerted between the instants t; and t,. Let

p; = linear momentum of the object at t = t;, that is, just before the force
is exerted, and

p> = linear momentum of the object at t = t,, that is, immediately after the
impact.

Since the force changes continuously with time during that time inteval, we
need to integrate it from t; to t, to determine the change in linear momentum
in that time interval. Thus, we have

)
Py — Br = [ Foer () (8.72)
t

The right hand side of this equation is a measure of both the strength and

duration of the force of impact exerted on the object. It is called impulse and

denoted by J. Note that it is a vector quantity and has the dimensions of linear

momentum. Thus, we define 89
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Impulse J= j Fo (1) dt (8.7b)

Comparing this expression with Eq. (8.7a), we can write

Impulse J=p,—- P =Ap (8.8)

The result in Eq. (8.8) is called the impulse-momentum theorem.

The impulse-momentum theorem tells us that the impulse experienced by an
object on which a time-varying force is exerted for a short duration is given by
the change in its momentum in that duration. Let us put these concepts
together and revise them.

IMPULSE AND THE IMPULSE-MOMENTUM THEOREM

When a time-varying net external force is exerted on an object for a short
time interval, the impulse experienced by the object during this time
NOTE interval due to the force is defined as
ty
The impulse- i J‘lz £) ot 7
momentum theorem J net (1) d (8.7b)
is not a new law. It is b
an alternate form of ) ] ) ) )
Neton’s seehddsiy Comparing this expression with Eq. (8.7a), we can write
of motion. 5 B . B
J=p2 - p1=4p (8.8)
The result in Eq. (8.8) is called the IMPULSE-MOMENTUM THEOREM: It
tells us that the impulse experienced by an object on which a time-
varying force is exerted for a short duration is given by the change in
its momentum in that duration.
In order to determine the impulse experienced by an object during impact, we
need to know how the net force changes with time. However, in many cases,
we do not know the change in force with time but we do know the magnitude
of the average force and the duration of time for which it is exerted. Now,
by definition, the average force over a time interval At is given as:
_ 1%
Average force F, = m I Fret () dt, (8.9)
t
where At =t, — t;. Comparing Eq. (8.9) with Eq. (8.7b), we can write
Average force J = r:av At (8.10)

and impulse

The results given in Egs. (8.8) and (8.10) are very useful since it is far easier
to measure the change in linear momentum and the average force. Let us now
consider some common applications of these results.
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EX,@WPL@ 8.3. IMPULSE

Why do you get hurt more when you fall on a hard floor compared to when
you fall on a soft mattress?

SOLUTION B The KEY IDEA here is to use Eq. (8.10) to determine the
average force being exerted on you in both cases.

In both cases, you come to rest finally and your velocity can be assumed to
be the same at the instant when you hit the floor or the mattress.
Therefore, the change in momentum or the impulse experienced by
you due to the floor or the mattress is the same in both cases.

But the time taken to come to a stop is different in the two situations: since
the mattress is soft, you take longer time to come to a stop on it
compared to the hard floor.

Note that J is the same in both cases and IEaV = i

Since the duration of impact is longer for the mattress compared to
the floor, we have

(A)mattress  >> (At)pard floor

(Fav )mattress << (Fav )hard floor

Thus, the average force exerted by you on the floor and hence the
equal and opposite reaction force exerted by the floor on you is

much larger compared to the force exerted by the mattress on you. That
is why you get hurt more when you fall on a hard floor compared to when
you fall on a mattress.

EXAMQPL@ 8.4 IMPULSE-MOMENTUM THEOREM

A ball of mass 0.25 kg coming straight at the bat with speed 20.0 ms™ is
hit so that it travels with the same speed but in the opposite direction after
leaving the bat. What impulse is experienced by the ball while it is in
contact with the bat? What average force is exerted on the ball if the
duration of contact is 1ms?

SOLUTION B The KEY IDEA here is to use Egs. (8.8) and (8.10) keeping
in mind that momentum is a vector quantity and the change in its direction
has to be taken into account while using the equations.

Let us assume that the ball moves along the positive x-direction after being
hit by the bat. Then, the ball initially moves in the negative x-direction.
Therefore, from Eq. (8.8), we have

Jx = Pax — P1x = MVoy — M(=Vyy)

=0.25kg (20.0ms™" + 20.0ms™") =10 kgms™
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The impulse is directed along the positive x-axis, i.e., the direction in which
the bat hits the ball. The average force on the ball in the same direction

during the time interval 1ms (= 1073 s)is

—1
» =J_X= 10kgr?1)13 —10* N
At 10™°s
Note that this is the average net force on the ball. The maximum net force
is larger than the average force.

We end this section with an SAQ for you.

SﬂQ 4 - Linear momentum and impulse

An average force has magnitude two times as large as another average force.
Both forces produce the same impulse. The larger average force is exerted for
a time interval of 2.0 ms. For what time interval does the smaller average
force act?

In this unit, we have discussed the concepts of linear momentum and impulse.
You have learnt how these concepts help us solve many problems on motion
of particles without having to apply Newton’s laws of motion. You have studied
the law of conservation of linear momentum and the impulse-momentum
theorem and their simple applications. You have also learnt about time-
varying forces exerted for a brief interval of time and how the average force in
such situations can be calculated if we know the impulse. We now sum up
what you have learnt in this unit.

8.4 SUMMARY

Description

Law of conservation of
linear momentum

Impulse
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B The TOTAL LINEAR MOMENTUM of an isolated and closed system is
CONSERVED if no net external force is exerted on it:

p = constant for an isolated and closed system

B When a time-varying net external force is exerted on an object for a short
time interval, the IMPULSE experienced by the object during this time
interval due to the force is defined as

It is related to the average force as follows:

J = F,, At
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................................................................................................... L
where F = Ait I Fret (t) dt
t

Impulse-momentum B The IMPULSE-MOMENTUM THEOREM states that the impulse experienced
theorem by an object on which a time-varying force is exerted for a short duration
is given by the change in its linear momentum in that duration:

J=py - p=4p

8.5 TERMINAL QUESTIONS

1. A child of mass 32.0 kg jumps on to a stationary skateboard while running
at a speed of 4.0 ms~". If the mass of the skateboard is 8.0 kg, the speed
of the child and skateboard is

a) 16.0 ms™

b) 5.0 ms™

c) 8.1 ms™’

d) 3.2ms™"

2. How long must a force of 200 N be exerted to produce a change in linear
momentum of 500 kgms_1?
a) 04s
b) 25s
c) 10.0s
d) 50s

3. In trying to catch a ball, a cricketer extends the hand forward before the
impact with the ball. After the impact, he moves his hand backward in the
direction of the ball’s direction of motion. This is because

a) the force of impact on the hand is reduced.

O

)
) the relative velocity is reduced.
)

O

the time of impact increases.

d) the time of impact decreases.

4. Atrailer truck and a car coming down a hill at the same speed are forced to
stop in the same amount of time. Compared to the force required to stop
the car, the force needed to stop the truck is

a) greater.
b) smaller.

c) the same.
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5. A car of mass 1500 kg is travelling due west at a speed of 55 kmh~=. 1t
comes to a stop in 10 s when the driver applies brakes. Using the impulse-
momentum theorem, determine the average force exerted on the car.

6. Using the concept of impulse, explain why a safety net is used in circuses
when circus artists perform on the trapeze.

7 . A rocket of mass 6000 kg moving at speed 5.0 x 103 ms™" fires its engine
ejecting 1000 kg of exhaust gas at a speed of 2.0 x 10% ms™ relative to
the rocket. What is the final velocity of the rocket?

8. In a movie, the Superman is shown hanging still in midair without any
support when a villain approaches him. In the next scene he is shown to
grab the villain and throw him away while he himself remains stationary.
Explain what is wrong with this scene.

9. Determine the impulse for a ball of mass 50 g, which strikes a wall straight
with a velocity of magnitude 5.0 ms~"and rebounds at the same velocity.

10. A woman of mass 60 kg and her car are suddenly accelerated from rest to
a speed of 5.0 ms~" as a result of a rear-end collision. Assuming that the
duration of the collision is 0.50 s, obtain the

a) impulse on the woman, and

b) the average force exerted by her on the seat of her car.

8.6 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. Linear momentum is a vector quantity. It depends on the velocity of the
cars and not just the speed. Since the velocities of the two cars are
directed opposite to each other, the cars will not have the same
linear momentum. However, since the cars are identical, their masses
are the same. Since their velocities are equal and opposite, the total
linear momentum of the system would be zero.

2. We use Eq.(8.3). The velocity of the conveyor belt is constant.

N _p
dt
Let v=20ms" i, where i is the direction of motion of the conveyor

belt. It is given that ‘L—’:’ - 50.0kgs 1. Then from Eq. (8.3):

F =50.0kgs ™' x2.0ms™" i = 1.0 x 10°N i
3. We use Eq. (8.5b) with My = 1000 kg, M =100 kg, vy =0 and
Vser = 1000 ms~". So the final velocity of the rocket is

Ve = -1000ms~ x In—199 _ 2305103 ms™!
1000
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The negative sign in the above equation appears because the final
velocity is directed opposite to the exhaust velocity.

4. We use Eq. (8.10). If the smaller average force is F,/,the larger average
force is 2F,,,. The impulse of both these forces is the same, so we can

write
Fay x At = 2F4, x (2.0 x 1073 5)
where At is the time for which the smaller average force is exerted. Then

At = 40x103s=4.0ms

Terminal Questions

1. The correct option is (d). We use Eq. (8.2b). The initial linear momentum
of the system is
p; = 32.0kg x 4.0ms™" =128.0 kgms™"

The final linear momentumis  ps = (32.0kg + 8.0kg) x v

where v is the speed of the child and the skateboard. From conservation
of linear momentum, we get

, _ 128.0kgms
40.0kg

=32ms™
2.  The correct option is (b). We use Egs. (8.8) and (8.10) with F,, = 200N
and p, — pq =500 kgms‘1 so that

_ 500 kgms ™"
200N

At =2.5s

3.  The correct option is (c). The time of impact increases and so the
average force on the hand reduces.

4.  The correct option is (a). The change in linear momentum is greater for
the truck because it has a larger mass. Hence the force required to stop
the truck will be greater [Egs. (8.8) and (8.10)].

5.  Let us assume that the car is moving in the negative x-direction. The

average force as given by Eq. (8.10) is IEAV = Ait
The initial velocity of the caris v =—-55kmh™" i =-15.3ms™"i
The impulse  J =0-[1500kg x(-15.3ms™"i)] = 2.3 x 10% kgms ™" i

23 x10% kgms™" -

The average force  F,, 0% i = 2.3 x103Ni

6. Refer to Example 8.3. The presence of the safety net increases the
duration of impact and the average force exerted by the circus artist on
the net is less. Hence, the force of reaction on the circus artist is also
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less. If the safety net were not there, they would fall on the hard floor
and hurt themselves since the duration of impact would be much less.

We use Eq. (8.5b) with
vo =5.0x103ms™", M, = 6000 kg,
M = (6000 kg — 1000 kg) = 5000 kg, Ve = 2.0 x 103 ms™"

So the final velocity of the rocket is

vy =5.0x103ms™! - 2.0 x 103 ms~"in [ 2200
6000

=50x10°ms™ —2.0x10°ms™"(~0.18) = 5.4 x 10> ms™"

The scene does not agree with the principle of conservation of linear
momentum. Since there is no net external force on the system, the
Superman should move backwards after throwing the villain so that the
linear momentum of the system is conserved.

Let us assume that the ball moves along the positive x-axis.

The linear momentum of the ball when it hits the wall is
P1=(50x10"3kg)x5.0ms i =0.25kgms™i
The linear momentum of the ball after it rebounds is
Py = —(50x103kg)x5.0ms™'i = —0.25kgms ™" i
J=py—pqg= ~0.25kgms~'i - 0.25kgms~'i = —-0.50kgms~ i

We use Eq. (8.8) with the initial linear momentum to be zero, since the
car starts from rest. The final linear momentum is

P, = 60kgx5.0ms™"i = 300kgms ™" i
where i is in the direction of motion of the car.
a) Theimpulse  J=p,—p;=3.0 x 10%kgms~"i
b) To find the average force Fav,we use Eq. (8.10) with

J=3.0x 102 kgms_1i and At = 0.50s.Hence,

£ _30x10*kgms™

- 6.0 x 10°Ni
av 0.50s )

—
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How do we calculate the speed of a

skier as she skis downhill on a

curved path with a changing slope? \' V ORK AND
This unit will help you answer this

question! KINETIC ENERGY

Structure

9.1 Introduction 9.4 Work done by a Variable Force
Expected Learning Outcomes 9.5 Power

9.2 Work 9.6 Summary
No-work Force 9.7  Terminal Questions

Positi d Negative Work
SiitalabnCialbddiel 9.8 Solutions and Answers
9.3 The Work-energy Theorem and

Kinetic Energy

STUDY GUIDE

In this unit, you will learn about some more fundamental concepts of mechanics, namely, work, kinetic
energy and the work-energy theorem. These concepts help us analyse motion without having to solve
the equations of motion. You have studied these concepts in your school physics. We also use the
concept of the scalar product, which you have studied in Units 1 and 2 of Block 1, to define work done by
a force. We also use the concepts of integral calculus in this unit, which you have studied in school
mathematics particularly that of integral of a function of a single variable as area under the curve.

Do revise the concepts of vectors and vector components before studying this unit. The work-
energy theorem discussed in Sec. 9.3 may be altogether new for you. In Sec. 9.4, we derive the
equations for work done by a variable force. You may take more time to understand these sections.
Finally, we advise you to solve all examples, SAQs and Terminal Questions on your own to understand
the unit well.

“Energy is eternal delight.” William Blake




Fig. 9.1: The force on
the bus moving on a
hilly road changes with
time. Can we determine
the velocity and
position of the bus
without applying
Newton's laws?

NOTE

The concepts we
discuss in this unit
apply to objects that
can be treated as
point particles.
However, the law of
conservation of
energy is universal
and applies to all
particles and
extended bodies. We
shall need added
information when we
apply these concepts
to extended objects
and systems of
particles. You will
study about this in the
next block.
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9.1 INTRODUCTION

In Unit 5, you have studied Newton’s laws of motion and in Unit 6, you have
learnt how to apply these laws to determine the velocity and acceleration of an
object at any instant of time, if you know the net force being exerted on it. But
in many situations applying Newton’s laws to determine the object’s position
and velocity is not very easy.

For example, consider the motion of a bus on a hilly road with a continuously
changing slope (Fig. 9.1). Suppose you want to find its speed at any given
time by applying Newton’s laws. You will need to know the force on it at every
instant of time. Since the slope of the road is changing continuously with time,
the force on the bus (mg sin 6 in this case) also keeps changing with it and so
does the acceleration of the bus.

Unless we know exactly how the angle 6 and hence the force on the bus
changes with time, we cannot apply Newton'’s laws to the bus and determine
its velocity and position at any given instant of time. And even if we know the
force as a function of time, it is a complex problem to solve.

In such cases we would like to know: Is there any simple way of analysing
motions like that of this bus? How can we determine the changes in a
particle’s velocity and position without applying Newton’s laws?

The answer is that we can do so by applying the work-energy theorem,
which you will study in Sec. 9.3 and Sec. 9.4 of this unit. However, in order to
study the theorem, you will need to master certain related concepts, which we
discuss in Sec. 9.2 and Sec. 9.4. These concepts are work done by a
constant force (Sec. 9.2), kinetic energy (Sec. 9.3) and work done by
variable forces (Sec. 9.4). We also introduce the concept of power in

Sec. 9.5.

In Unit 8, you have studied the law of conservation of linear momentum, which
is a fundamental law of nature. In the next unit, we develop the concept of
energy further and introduce yet another fundamental law of nature, namely,
the law of conservation of energy. We also discuss the related concepts,
namely, conservative forces, potential energy and conservation of
mechanical energy.

Expected Learning Outcomes

After studying this unit, you should be able to:
% define and calculate work done by constant and variable forces;
% calculate the kinetic energy of a particle;

%» apply the work-energy theorem for constant and variable forces; and

% calculate power in mechanical systems.



Unit 9 Work and Kinetic Energy

9.2 WORK

You have studied the concept of work in your school physics courses and so
you should know it very well. For example, let a net force F be exerted on a
box resulting in its displacement by d (Fig. 9.2). What is the work done on the
box by the force? You may recall the answer from school physics: For a net
constant force F exerted on an object which undergoes a displacement of
magnitude d in the direction of the force, the work done by the force on the

object is defined as: Fig. 9.2: What is the work
done on the box by the
W=Fd (©-1) force F exerted onyit if
Notice that in Eq. (9.1), F and d are the magnitudes of the force and the box undergoes
displacement, respectively. Thus, as long as the distance travelled by the box  displacement d in the
is the same and the displacement is along the direction of the force applied, direction of the force?
the work done on the box is the same. This is true whether the box (of
Fig. 9.2) moves from north to south or from east to west or along any
other straight line. Work done is a scalar quantity since it does not depend
upon direction. The unit of work done is joule (J) in Sl units, named so in
honour of the English physicist James Joule (1818 — 1889).

Eq. (9.1) also tells us that the work done is zero if the displacement of an
object is zero even if a force is applied on the object. So even if you apply a
large force to move any object such as a heavy bookshelf and it does not

move, you will not be doing any work as per this definition (Fig. 9.3). Fig. 9.3: The work done

on an object is zero if its
Let us now consider a situation in which the constant force and displacement displacement is zero.

are not in the same direction. In Fig. 9.4, a box is being pulled by a string. The
force being exerted on the box makes an angle 6 with its displacement. In
such cases, the component of force along the displacement is used in
defining the work done. You can see from Fig. 9.4 that it is given by F cos®6.
Note that in the situations we have taken up so far, the force is constant. Thus,
we can define work done by constant force as follows:

Fig. 9.4: The work done
on an object by a force
applied at a finite angle

WORK DONE BY CONSTANT FORCE

The work done by a constant force F on an object that undergoes to the displacement.
displacement d is defined as
W = Fd when F is along d (9.2a)
W = (Fcos6)d when F makes an angle 0 with d (9.2b)
Using the definition of the scalar product from Unit 1, we can also express * F
the work done as the scalar product of force and displacement: e 6-90°
W -F.d (9.3) w N
d

When the force and displacement are in the same direction, the angle Fig. 9.5: The work done

between F and a_ is zero (6 = 0°). Then the work done is maximum on an object by a force
(Fig. 9.2). When F and d are not in the same direction and the angle between  applied perpendicular to
them increases, the work done for the same force and displacement the displacement is
decreases (Fig. 9.4). When F is perpendicular tod, the work done is zero zero.

(Fig. 9.5). Also REMEMBER: Work done is a scalar quantity and does not 99



Note that in Egs. (9.2a
and b), Fis the
magnitude of the net
force. Thus, if many
forces act on the object,
the work done is due to
the resultant force.
Since work is a scalar
quantity, it can be
obtained by simply
adding the work done
by individual forces. Of
course, we have to take
into account the angle
for each force.
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EX/‘{WKPL@ 9.1: WORK DONE BY CONSTANT FORCE

Fig. 9.6: Parachutist
falling under the force of
gravity.

(b)

Fig. 9.7: Examples of
no-work force: a) Fyy and
mg are no-work forces;
b) the work done by
tension in the string on
the ball is zero for
circular motion.

100

Suppose the box in Fig. 9.4 is being pulled by a force of magnitude
20 N and the angle made by the string with the horizontal is 6 = 45°.

Determine the work done on the box if it is displaced by 10 m in the
horizontal direction.

SOLUTION ® The KEY IDEA here is to obtain the work done by the
component of the force along the displacement since it makes an angle of
45° with the displacement. We, therefore, use Eq. (9.2b).

The work done by the force is:

W = (Fcos0) x d = 20N x cos45° x 10m = 1.4x 102 J

You may now like to determine the work done yourself. Try SAQ 1.

SAQ 1 - Work Done

A parachutist of mass 60 kg falls vertically downwards from the plane by a
distance of 500 m (Fig. 9.6). What is the work done by the force of gravity

during the fall? Take g =10 ms 2.

You have seen that work done by a force perpendicular to the displacement is
zero. This brings us to the concept of no-work force.

9.2.1 No-work Force

Eq. (9.2b) tells us that work is done only by the component of the force along
the direction of displacement.

The component of force perpendicular to the direction of displacement
does no work. And if the force itself is applied perpendicular (that is, at an
angle of 90°) to the direction of displacement, it does no work. Such a force is
called no-work force.

Fig. 9.7 shows some examples of no-work forces. In Fig. 9.7a, a box is being
pulled horizontally on the floor by a rope. The work done by the force of gravity
(= mg) and the normal force (FN) is zero as the displacement of the box is
perpendicular to both these forces. Work is done on the box by only the force

exerted by the tension (T) in the rope and the force of kinetic friction
(Fx ) opposing the box’s motion.

When a ball on a string moves in uniform circular motion (as in Fig. 9.7b), the
work done by the tension in the string on the ball is zero because the force
has no component in the direction of motion.



You may like to check whether you have learnt these concepts well enough.

Work and Kinetic Energy

SAQ 2 - Work Done

State giving reason whether work is being done in each of the following
situations:

a) A bus moves with constant velocity on the road.

b) A student carries a pile of books from one place to another. Is work
being done on the books by the student?

c) Aboxis pulled on the floor with a finite acceleration. Is work being
done on the box? Is work being done on the floor?

d) A child pushes a heavy cupboard but cannot shift it by even an inch. Is
work being done on the cupboard?

e) Adeskis pulled a distance of 1.0 m by a rope with a force of 100 N.
What is the work done on the desk if the force makes an angle of 0°,
90° and 60° with the displacement?

Solving SAQ 2 should have made it clear to you that

Work is done on an object only when
(i)  the force exerted on it is non-zero,
(ii) it undergoes finite displacement, and

(iii) the force and displacement are not perpendicular to each
other.

Now, in some situations, work done may be positive and in others, it may be
negative. Let us find out about negative and positive work.

9.2.2 Positive and Negative Work

When the component of force points in the same direction as the
displacement, work done is positive (Fig. 9.8). You can see that this result
follows from Eq. (9.2b). In Example 9.1 based on Fig. 9.4, the force applied is
not along the direction of the displacement and 6 is an acute angle, i.e.,

0°< 0 < 90°. From Eq. (9.2b), the work done by F is positive. We say that
work is done by the force on the object.

Now suppose the force has a finite component in a direction opposite to the
displacement of the particle. This is the case when you throw an object up
against the force of gravity or in the case of projectile motion until the moment
it starts falling down. In all such cases, the work done by the force is
negative. In such cases the angle 0 is an obtuse angle, i.e.,90°< 6 < 180°.

Don't forge!

NOTE

When one body does
negative work on a
second body, the
second body does an
equal amount of
positive work on the
first body.
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From Eq. (9.2b), the work done by the force on the object is negative. We say
that work is done by the object.

-

- F - =g
— F F
= Lw>0 7@‘/0 %Iwm T weo
6=0° 7 g 6=90° d  0=180
Fig. 9.8: Positive, zero and negative work.
We summarise this information as follows:
e W> 0 or POSITIVE if the force (or a component of the force)
5 points along the direction of displacement (6 is acute:
0°< 6 < 90°). W=0 when 6=0"
e W<O, i.e., NEGATIVE if the force (or a component of the
Don't forget force) points opposite to the direction of displacement (6 is

O G:3)) ))
|

Fig. 9.9: Work done by a
weight lifter in lifting the
weights is positive. In
lowering the weights, the
work done by the weight
lifter is negative.

Please note that in all
numerical problems, we
use the rules for
significant digits
explained in the course
BPHCL-132 entitled
‘Mechanics : Laboratory’.

obtuse: 90°< 6 < 180°).
e W< 0 also represents work done BY the object.

The following example will help you understand this concept.

E)C‘IMQ’[,E 9.2: POSITIVE AND NEGATIVE WORK

102

A weight lifter lifts weights of mass 70 kg by a distance of 0.50 m above his
shoulders (Fig. 9.9) and lowers them by the same distance with a constant
velocity. Calculate the work done by the weight lifter while raising them and
lowering them. Take g = 10ms 2.
SOLUTION B The KEY IDEA here is to determine the force exerted on the
weights by the weight lifter and then use Eq. (9.2b). The directions of the
force and the displacement must be taken into account.

Since the weights move with a constant velocity, they are in equilibrium.
Therefore, the force exerted by the weight lifter is equal and opposite to the
weight of the weights. Therefore, F = mg = 700 N. When the weights are
being raised, the force is exerted in the same direction as the
displacement. Therefore, the work done is positive:

W = (F cos®)d = 700N x (cos0°) x 0.50m = 3.5 x 102 J

When the weights are lowered, force is still being exerted upwards by the
weight lifter but now it is directed opposite to the displacement of the
weights. Therefore, the work done is:

W = (F cos 0)d = 700N x (cos 180°) x 0.50m = — 3.5 x 102

since cos 180° = —1. Thus, the work done by the weight lifter is negative,
that is the weights do positive work on the weight lifter.




three-dimensional motion:

Work and Kinetic Energy

In general, in terms of the components of force F and displacement r, the
work done is given as follows for one-dimensional, two-dimensional and

WORK DONE IN COMPONENT FORM

Force Displacement Work done
IEzin r=xi W =Fy x (9.4a)
IE:FXE+Fy] F:xf+yj W:FXX+Fyy (9.4b)
?:in+ij+FZI2 F=xi+yj+zk W=Fx+ Fy+Fz (9.4¢)

All other cases (e.g., 1-d displacement and 2-d force or 2-d displacement and
3-d force, etc.) can be worked out using Egs. (9.4a to c) for work done. We
would like to present some special cases of work done in Table 9.1.

Table 9.1: Special Cases of the General Definition of Work Done.

m“

® If the displacement is along the W= Fdcos0° = Fd Pulling a cart horizontally (F along d )
direction of force, then 6 = 0" and
cos 6 = 1. Note that in this case the ——>» F L » F
work done is maximum, as the cosine B ONO®) — d
of the angle is 1. —*>d
o [f the displacement is perpendicular W =Fdcos90° =0 When we walk, the force of reaction
(normal) to the direction of force, then exerted by the ground on our feet is
0 =90° and cos® = 0. In this case, Tl-: perpendicular to our displacement. Hence,
the work done is zero because the E the force of reaction is a no-work force.
component of the force along the Tension in the string of a pendulum is a
direction of motion is zero. We also T’ d no-work force.
refer to such a force as
‘no-work force’. Thus, no work is B
done when T
U,
i) the force is zero, - 3 & a
ii) the displacement is zero, d
i) the displacement and force are <T F V'en‘/cal forces do r7ot produce horizontal
perpendicular to each other. displacement. Horizontal forces do not
produce vertical displacement.
A force does not produce displacement
in a perpendicular direction.
e |f the displacement is in a direction W = Fdcos180° = —Fd Work done against the force of friction or
opposite to the direction of force, then viscous force.
6 =180° and cos® = —1. Thus, the — — o
work done is negative. F d &etion @—VH
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You may quickly like to check your understanding before studying further.

SﬁQ 3 - Work done by constant force

The box of mass 2.0 kg shown in Fig. 9.10 is displaced by 5.0 m towards
right. Calculate the work done on the box by each individual force. What is
the total work done on the box?

T, T=50N
45
d
d=50m

Fig. 9.10

Identify which one of these forces does negative work and which one,
positive work. Which amongst these is/are no-work forces? Explain, giving
reason.

Let us now go back to our aim stated in the introduction: To look for an
alternative way to find the positions and velocities of an object without having
to apply Newton’s laws. In fact, we can arrive at a relation between the
position and velocity of a particle starting from Newton’s second law itself. This
relationship is known as the work-energy theorem. In the next section, we
derive this theorem for constant forces. However, to do so, we need to define
the kinetic energy of a particle.

9.3 THE WORK-ENERGY THEOREM AND
KINETIC ENERGY

All around us we see examples of work being done on objects. A football
player (for example, Ronaldo) kicks the ball from rest and lands it in the goal.
A car starts from rest and moves under the action of force. The switch is
turned on and the fan blades start moving. You can think of many more such
examples of force being exerted on objects to make them move and change
their speeds. To begin with, we consider motion in a straight line (e.g., a bus
on a straight road) to keep the mathematics simple.

Suppose a body of constant mass m moves a distance d when a constant net
force F,q is exerted on it. You know that the work done is W = F, d. If the
acceleration of the body is a, then from Newton’s second law, we have

Fhet = ma (9.5)

Let the body be at rest initially (u = 0). What is its speed for constant

2

. . %
acceleration a? It is v2 = 2ad or ad = 7.



Therefore, work done
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This is a discovery! What is this new quantity ;mv on the right hand side?

We call it the kinetic energy of the body:

K.E. = ;mvz (9.6a)
The word energy, coming from the Greek energos or active (from en, at +
ergos, work), is best translated as the ability to do work. We define energy as
follows:

Work and Kinetic Energy

Energy is the capacity of a body to do work and is always measured
by the work the body is capable of doing.

REMEMBER: Energy is not work. It is the capacity of a body to do work.
You have learnt from the above derivation that when work is done, there is a
change in the energy of a body. The converse is also true. When there is a
change in energy, work is done. “Kinetic” identifies the unique condition of
motion. We define kinetic energy as follows:

KINETIC ENERGY

The kinetic energy of a particle of mass m travelling with speed v is given
by

Kinetic Energy (K.E.) = ; mv? (9.6a)

The kinetic energy of a particle represents its capacity to do work by
virtue of its velocity. The Sl unit of kinetic energy is joule (J).

<Kinetic energy

If the body is not at rest initially but moves at a speed u, then vZ =u® + 2ad

and hencead = ;(v2 - u2). Therefore, the work done is
1T 2 1 9
W = Emv - Emu :AKE (96b)

where AK.E. is the change in the kinetic energy of a body. By doing some
simple mathematics, we have discovered that the work done by a force brings
about a change in the speed of the object from u to v. Moreover, it depends
only on its initial and final speeds.

Thus, we have arrived at a very important result, which is called the
work-energy theorem. The work done on the left hand side of Eq. (9.6b) is
the difference between two terms: both these terms are of the form

;(mass).(speed)2 .

Work-energy
Theorem
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If the force F acts along
the direction of motion,
the work done is
positive and kinetic
energy of the object
increases; if force acts
opposite to motion,
work done is negative
and kinetic energy
decreases. And, if the
force acts
perpendicular to motion
(as in uniform circular
motion), work done is
zero and there is no
change in kinetic
energy. Conversely, if
there is no change in
the kinetic energy of
an object, the work
done on the object by
the net external force
is zero.

Don't forge?
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As you have just learnt, the quantity %(mass).(speed)2 is called the kinetic

energy of the particle of mass m moving with speed v. The form of this
quantity remains the same for all types of motion, whether in a plane or in
space. Did you note that the unit of kinetic energy is the same as that of work?
It is a scalar quantity like work. This is not surprising as these two are related
through the work-energy theorem. Let us state this theorem now.

THE WORK-ENERGY THEOREM

The work done by the net external force on a particle of mass m is equal
to the change in the kinetic energy of that object:

1 1
W =(KE) - (KE) = Emvf2 - Emv,-z (9.7)

Here W is the work done by the net external force on a particle of mass m,
(K.E.)f is the final kinetic energy of the particle,
(K.E.); is the initial kinetic energy of the particle,
v is the final speed of the particle, and

v; is the initial speed of the particle.

What does the work-energy theorem tell us? It tells us that when a net
external force acts on a particle that moves from one position to another, its
kinetic energy changes from some initial value to some final value. The work
done on the particle by the force is always equal to the change in its
kinetic energy.

Here, you should also understand what the work-energy theorem is NOT.
Eqg. (9.7) follows from Newton’s second law and hence is not a new law in
itself. That is why, it is known as a theorem.

The work-energy theorem simply gives us a relation between work and kinetic
energy derived from Newton’s second law of motion. You must also
understand the limitations of the work-energy theorem. It involves work and
energy that are SCALAR quantities, not vectors. The work-energy theorem will
never explain why a physical system moves the way it does when a force is
exerted on it. That explanation lies in the analysis of force applied and
resultant motion that involve vector quantities.

The work-energy theorem is only an accounting concept. Can an
accountant explain why a business makes or loses money? No, s/he can
only tell how much money was spent and on what; only the business
owner can explain why. Similarly, work-energy theorem only tells us
how much work is done when an object's speed changes or how much
change in speed takes place when work is done.




The work-energy theorem provides an extremely powerful method that

connects a particle’s speed with its position no matter how complicated

its motion is. Thus, it is useful in solving many problems on motion.

As you shall learn in the next few sections, the work-energy theorem given by

Eq. (9.7) remains the same for all types of motion — one, two or
three-dimensional. It also holds for all types of forces, whether constant or

varying from point to point. It is also true for constant mass as well as variable
mass systems such as rockets. You may now like to study some applications

of the work-energy theorem and learn how to determine the positions and

velocities of particles in motion without having to apply Newton’s second law.

fm%ﬂ’ﬁf 9.3: WORK-ENERGY THEOREM

A spacecraft of mass 200 kg is travelling in deep space at a speed of

300 ms~'. The only force that is exerted on it is due to a weak thrust of
the engine of magnitude 0.60 N, which displaces the craft along a straight
line in its direction by the distance of 3000 km (see Fig. 9.11). What is the
final speed of the probe, assuming that its mass remains constant?

SOLUTION B The KEY IDEA here is to determine the final speed using
the work-energy theorem.

We know m =200 kg, v; =300 ms~', F =0.60 N, s = 3000 km

We have to find | Vs =7

It is given that the direction of the force and the displacement are the
same. Therefore, W = F d and applying the work-energy theorem
(Eq. 9.7) we get

1 1
Emvf2 = Emv,-2 + (F) (s)

mv? = % (200kg)x(300ms~")? + (0.60N) x (3.0x10° m)=10.8x10°J

N =

vy =3286ms” ~3.3x102ms™" up to 2 significant digits.

In Example 9.3, we knew the object’s position, and the force was directed
along the displacement. We now take up an example in which force is not
along the displacement.

E)O"UVI‘PL@ 9.4: WORK-ENERGY THEOREM

A child of mass 30 kg skates down from the top of a ramp having a
constant slope of 15° (Fig. 9.12a). The child’s speed increases from
1.5ms ' to 3.0 ms™" as she reaches the bottom of the ramp. Assuming
that a force of kinetic friction of magnitude 50 N opposes her motion,

determine the length of the ramp. Take g = 10ms™2.

Work and Kinetic Energy

Fig. 9.11: Work-energy
theorem can be applied
to determine the speed
of a space probe
travelling in deep space.
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Fig. 9.12: a) Application
of work-energy theorem
to determine distance if
speed is given; b) the
free-body diagram for
the problem.

Fig. 9.13: Applying work-
energy theorem to
determine the stopping
distance.
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SOLUTION B The KEY IDEA here is to determine the distance travelled
by the child (which is the same as the length of the ramp) using the
work-energy theorem.

We know m=30kg,v;=15ms ", v;=3.0ms, F,=50N, 6 =15°

We have to d="7
find

In this case W = F,; d, where F,; is the component of the net external
force along the displacement of the child. F,g; is given by (Fig. 9.12b):

F..t = mg sin15° — F, = (300 x 0.259 — 50) N = 27.7N
From the work-energy theorem:

m
W = Fod = 07 P

m 2

d= (vg — v,-2) = 3.67m =~ 3.7mup to 2 significant digits.
2Fnet

We now use the work-energy theorem to answer a very interesting question
from our daily lives. As per traffic rules, a motor driver is supposed to maintain
a speed limit and a minimum distance from the vehicle right in front. Why is it
s0? You can intuitively give the reason that this is because the driver should
not bump into the vehicle in front if that vehicle stops suddenly. But is there a
way to determine how much minimum distance should be maintained for a
given speed limit? The work-energy theorem gives us the answer in a very
simple way as you can find from the following example!

f){ﬁlﬂ@ﬁﬂ 9.5: WORK-ENERGY THEOREM

A truck of mass m is travelling with speed v and the driver spots a deer in
front of him. He applies a braking force F and the truck stops after
travelling a distance d (Fig. 9.13). What is this distance, called the
stopping distance?

SOLUTION B The KEY IDEA here is to determine the stopping distance
using the work-energy theorem.

We know m,v and F

We have to find d=7?

Note that the direction of the force and the displacement are opposite in
this case and the final speed is zero. Therefore, applying the work-energy
theorem we get

—Fd:—lmv2 whence d=1 m v2
2 2\ F




Notice that for equal braking force (generated by applying equal force on
the brakes) and mass, d is proportional to V2. Thus, if the speed is
doubled (say, the driver is travelling at 80 kmh™! instead of the mandated
40 kmh on any road), the stopping distance becomes 4 times as much. If
the speed is tripled, the stopping distance is 9 times as much, i.e., the
truck stops only after travelling 9 times the original distance d. That is why
while driving, we have speed limits and it is emphasised that a certain
minimum distance must always be kept between two vehicles on road. Do
you follow this rule while driving on the roads? REMEMBER: We could
prevent many accidents from happening if all of us understood just this
little bit of physics.

You should now apply the work-energy theorem to a simple situation.

SﬂQ 4 - Applying the work-energy theorem

A block of mass 1.0 kg slides along a rough floor with an initial velocity of

12 ms~'. The coefficient of kinetic friction between the box and the floor is
0.50. Determine the work done by the force of kinetic friction when the box
travels a distance of 10 m from its initial position. Obtain the initial and final

kinetic energies of the box. Take g = 9.8 ms 2.

You may now like to pause and think over what you have learnt so far. So far
in this unit, you have learnt how to determine work done by constant force.

You have also learnt how to apply the work-energy theorem to solve problems

on motion under constant forces. But you know that there are many forces
around us which change as the position of the object changes. The most
common examples of such forces are the force due to a spring, the
gravitational force and the electrostatic force. How do we determine the work
done by such variable forces (that is, forces which are not constant)? Can we
apply the work-energy theorem to variable forces? This is what you will learn
in the next section.

9.4 WORK DONE BY A VARIABLE FORCE

Let us first take up the simplest case of one-dimensional motion: The force
exerted on an object depends on its position along the x-direction. Consider a
very simple situation as shown in Fig. 9.14. A constant force F; displaces the
object from x = 0 to x = d4 by a distance d;: The work done by F; is

W, = F;d4. Then another constant force F, displaces it fromx = dq to x = d,
by the distance (d, — dy). The work done is W, = F, (dy — d4).

The total work done is
W=W1 +W2 =F1d1 + F2(d2 —d1)

Note that this is just the sum of areas of the grey and black rectangles in
the force vs. displacement graph. Let us now extend this to a more general

Work and Kinetic Energy

Even a small difference in
vehicle speed can make a
large difference to the
probability of serious
injury. Put simply, if a car
hits a pedestrian at

50 kmh_,1 the car driver is
more likely to kill the
pedestrian than if the car
hits a pedestrian at

40 kmh '

Fig. 9.14: Work done by
two constant forces
acting one after the
other.
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case, but we still let the force depend only on the variable x (the particle’s
position along the x-direction). In school mathematics, you have studied the
concept of integral of a function as an area under the curve.

F

A AVVI-=Area = FX(XI)AX/ f(

(a) (b)
Fig. 9.15: Work done by a variable force.

Let us take a force F, thatis changing continuously with x, the displacement
of an object (see Fig. 9.15a). We now ask: What is the work done in moving
the object from position A (x = dy) to position B(x = d,)? To answer this
question, we use the basic concept of integral as area under a curve.

We divide the region under the curve from point A to point B in Fig. 9.15a into
a very large number of narrow rectangular strips such that the width of the
i strip is Ax;.Let us take the width of each rectangle ( Ax;) to be very small so
that the force exerted on the object over the displacement Ax; is constant. Let
us label the constant force for the i such rectangular strip of width Ax; as

F, (x;). Then the work done by F, (x;) for the displacement Ax; is just the
area of the /" strip, that is, the area of the rectangle of height F, (x;) and width
AX,':

AVV, = FX (X,' )AX,' (988)

The area under the curve is divided into many such strips, say n in number.
Therefore, the total work done from x = dq to x = d is the sum of the areas
of all the n rectangles.

n
W= W +W, + W +--+ W, = ZW,
i=1

= Fy(Xx1)Axq + Fy (X2)Axo + Fy (X3)Axg +--+ Fy (X)) AXp,

n
or W = ) Fy(x)Ax (9.8b)
i=1
This gives us only the approximate area under the curve. We obtain the exact
value of the area by making the width Ax; infinitesimally small (tending to
zero) or making the number of strips infinitely large (tending to infinity).
In this limiting case, we have

Ax; >0 and n — o

and the sum given in Eq. (9.8b) becomes equal to the exact area under the
curve:



W = lim F, (x;)Ax
iy 2P (i)
n—oo

This sum is represented by the following definite integral:
da
w o= j F, dx
dq

(9.9)

Thus, the work done by a variable force F, in displacing an object along the
x-axis from position A ( x = dy) to position B (x = d,) is given by (Eq. 9.9),
which is a definite integral of force with respect to displacement. It is the
area of the shaded region ABCD under the curve F, (x)(Fig. 9.15b). Let us
apply Eq. (9.9) to determine work done by a variable force in one-dimension.

Work and Kinetic Energy

Work done by a
variable force

E)CZL‘MQ’LE 9.6: WORK DONE BY SPRING FORCE

One end of a spring is attached to a fixed wall and the other end to a block
that is free to slide on a horizontal surface (see Fig. 9.16). Determine the
work done by the spring force as the block is moved from some initial
position x=x4 to a final position x=Xx, along the x-axis. What is the work

done by the spring force on the block as it moves back from
X=Xy to x=x47

SOLUTION B The KEY IDEA here is that the force is one-dimensional. It
is a variable force as it depends on the position of the spring along the
x-axis and we can apply Eq. (9.9) to determine the work done by the spring
force in moving the spring from x = x4 to x = x,. However, in applying
Eq. (9.9), we shall make two simplifying assumptions: (1) the spring is
mass-less and (2) the spring is ideal, that is, it obeys Hooke’s law.

We substitute the expression for spring force (Eq. 6.5b) in Eq. (9.9) and
integrate the resulting expression for work (read the margin remark):

X2 X2 4 ) X5 kK o )
szdex=—Ikxdx=—§kx =—§(x2—x1)
Xq X9 X4
Note that since x, > x4, the block is farther away from its relaxed
position than it was initially. In this case, W < 0 and work is done on
the spring by the block. The work done when the spring is compressed
so that the block moves back from x = x, to x = x4 is

X4
k 2 2 k 2 2
W=—-|kxdx = ——(xf — x5) = — (x5 — x
I 2(1 2) 2(2 1)

X2
In this case, the block is closer to its relaxed position than it was

initially. Since x, > x4, W > 0, and work is done by the spring on the
block.

-
i
m

{0

(a)

T'nl
3

...........

(c) x %

Fig. 9.16: The work done
by spring force on a) a
spring-mass system;

b) the block is stretched
from x = x1to X=Xy,

c) the block is
compressed from x = x2

tox=x1

In determining the work
done, we have used this

result :
2

_ X
J-de— 2

NOTE

The work done by the
spring force on the block
is positive if the block
moves closer to the
relaxed position (x = 0).
The work done by the
spring force on the block
is negative if it moves
farther away from the
relaxed position (x = 0). It
is zero if the block ends
up at the same distance
from (x = 0).
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Fig. 9.17: Work done by
a variable force on an
object moving in space.

Work done by a
variable force

Work done by a
variable force
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V4 P2 (X27 }/2, 22)

Py[(x1, Y4, 24)
y

X

Basic Concepts of Mechanics

Let us now extend Eq. (9.9) to motion in a plane and motion in space. We
consider the general case of work done by a three-dimensional variable force
given by

F=Fdi+Fj+Fk (9.10a)

The components of the force depend on the position of the particle but again
to simplify the calculations, we assume that

e F,depends on x but not on y and z,
o Fy depends on y but not on x and z, and
e [, depends on z but not on x and y.
For motion in space (Fig. 9.17), for a small displacement
dr =dx i + dyj + dzk (9.10b)

the work done by the variable force of Eq. (9.10a) is given by

dW =F . dr = Fydx + F, dy + F,dz (9.10c)
The work done by F when the particle moves in space, from the point

Py (X4, y4, Z1) to the point P, (x5, yo, Z) is given by

N X2 Y2 Z4)
F.df = jdex+ ijdy+ szdz (9.11)

X1 Vi z

W =

Je—7

If the force is two-dimensional with F = in + ij and the displacement
dr =dx i + dyj, is in the xy plane, the work done by F when the particle
moves in the x-y plane, from the point P, (x4, y4) to P, (x5, y») is given by

P, X2 Y2
W = IdW - Idex + ijdy (9.12)
P Xq Y1

If F has only one component, say, the x-component, then the y term in
Eq. (9.12) becomes zero and it reduces to Eq. (9.9). We now take up an
example to show how to apply Eq. (9.11).

EﬂfM(Pﬁﬂ 9.7 WORK DONE BY FORCE OF GRAVITY

Fig. 9.18: Work done by
force of gravity on an
object moving in space.
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A particle of mass m undergoes displacement from a point P (x4, y4, Z1) to
another point P, (x5, y2, Zo) close to Earth under the influence of the force
of gravity given by F= mg (see Fig. 9.18). What is the work done by this
force on the particle?




SOLUTION B The KEY IDEA here is that displacement is taking place in
space but the force is one-dimensional and constant near the surface of
the Earth.

Let us apply Eq. (9.11) to determine the work done by the force of gravity
on the particle. Notice that the choice of the coordinate system is such that
the force of gravity is directed along the negative z-axis. So we have

Fy=0, F, =0 and F, =-mg. Substituting this in Eq. (9.11),
the work done is given by

X2 Y2 Z Z
W= = Idex+ IFydy+ Jdez=0+0+ —Imgdz

X1 n A z

or W = -mg(z, - zq) = — mgAz, where Az is the change in height.

Let us calculate the work done by the force of gravitation as a last example.
You have learnt in Unit 7 that the force of gravitation between two objects
depends inversely on the distance between them. So this is also a variable
force, which changes with the position of objects.

EW(PL:@ 9.8: WORK DONE BY GRAVITATIONAL FORCE

A satellite of mass m is displaced from a point A near the Earth’s surface to
a point B at a distance of 3R, from the Earth’s surface (Fig. 9.19). What is
the work done by the force of gravitation on the satellite?

SOLUTION B The KEY IDEA here is that the force of gravitation is a
variable force and we use Eq. (9.11) since motion is in space.

In Unit 7, you have learnt about the gravitational force between any two
objects separated by a distance r: In this case, it is given by

E__ GMemF
r2

The work done by the force of gravitation in moving the satellite from the
point r = R, to the point r = 3R, is given by Eq. (9.11). The diagram for
the problem is shown in Fig. 9.19 and you can see that r is a unit vector
along dr, thatis,r || dr . Therefore,
r.dr =1 x |dr| = ar
= _ GMgm GMgm

and F.dr = (r.dr) = -
2 ;2

ar

Thus, the work done by the force of gravitation on the satellite is given by

8 "B GM..m
W:F.df:-j e dr
r
A I’A

Work and Kinetic Energy

NOTE

Work done by the force
of gravity depends
only on the vertical
separation of the initial
and final positions of
the particle. The path
followed by the particle
does not matter. Thus,
the details of motion
do not count.

Remember that we take
the force of gravitation to
be equal to mg near the
surface of the earth,
where it is constant at a
given place. We then
term it the force of
gravity.

Fig. 9.19: The work done
by gravitational force
(not to scale).
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Putting

G=6.67x10""Nm? kg2,
M, = 5.97 x 10%* kg,

R, = 6.37 x 10° m,
and m =100 kg, in

W - _EGMem,
4 Rg

we get:

W = —470x10%J

Basic Concepts of Mechanics

Notice that we have replaced the limits by the actual distance of the points
A and B from the centre of the Earth. We now use the following result from

integral calculus: J.iz dr = 1 and obtain
r r
B
w = GMem® _ GMem[i—iJ
r ra rB rA

In this case ry = R, and rg = 4R,. Therefore, the work done on the

satellite is given by

W oum[ 1 1) 3GCMem
4R, Re 4 Rg

The work done is negative as the force is directed towards the Earth and
displacement is away from the Earth. The work done on a satellite of mass

100 kg by the force of gravitation = — 4.70 x 109 J (see margin remark).

SﬁQ 5 - Work done by variable force

A suitcase moves on a straight conveyor belt when a force of magnitude
F =(2.0x - 5.0x2)N is exerted on it. Calculate the work done on the
suitcase as it moves from the position x; = 1.0m to the position x, = 3.0m.

In this section, so far you have learnt how to determine work done by variable
forces in one, two and three dimensions. In the previous section, you have
learnt how to apply the work-energy theorem for constant forces.
Remember that the work-energy theorem (Eq. 9.7) can also be applied to
variable forces. The proof of the work-energy theorem for variable forces,
however, is beyond the scope of this syllabus. Before we end this unit, we
would like to discuss the concept of power, which is related to work done.

9.5 POWER

Why is this concept important? It is important in situations where we are
interested in doing work in the smallest possible time, for example, lifting a
load of bricks or other materials in buildings, lifting water to upper floors,
pumping petrol, using machines to transport goods or people, e.g., trains,
buses, trucks, conveyor belts, etc. (Fig. 9.20). Then we need to talk of the rate
at which work is done and the concept of power.

Fig. 9.20: Some examples in which the concept of power is used: conveyor belt,
pumping of petrol and water.
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Power is defined as the rate at which work is done by force. If an
amount of work AW is done in the duration of time At by a force, we
define the average power due to the work done by the force in that time

interval as
<p> = AW (9.13) Power
At : ::

We define the instantaneous power P as the rate of doing work:

p_ lim AW dW

M50 A T ot (9.14)

The Sl unit of power is watt (W).

We can also find the relationship between power and constant or average
force as follows:

Let force F be exerted on a system, which gets displaced by Ar in time At.
The work done in this time is F.Ar and the instantaneous power, that is, the
rate at which the force does work is

lim E AF _ Jr
p gl "  F-aN L di
dt At dt
or P=F.v (9.15)

Let us now take up an example to determine power.

E.Xﬂ.‘MG’[,‘E 9.9: AVERAGE AND INSTANTANEOUS POWER

A suitcase is carried by a conveyor belt and the amount of work done by
the belt’s force on the suitcase is given by W (t) = ct?. Suppose the
average power due to the belt’s force during the time interval from ¢ = 0s
to t, = 30s is 300 W. What is the instantaneous power due to the belt at
t =10s? Assume the belt to be frictionless.

SOLUTION B The KEY IDEA here is to apply Eq. (9.13) to determine the
constant ¢ and then apply Eq. (9.14) to determine the instantaneous
power.

Atty=0s, Wy = 0O andatt, =30s, W, =900c. From Eq. (9.13),

Py = AW _[909¢) \y _ (30c)w = 300w = ¢ = 10 Js2
At 30

From Eq. (9.14), the instantaneous power is

p-IW _ ot - (20t)W
dt

At t =10s, P = 200W = 2.0x102W
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A lift of mass 4000 kg moves 200 m upwards at a constant speed in
25.0 s. At what average rate does the force due to the cable do work on the
lift? Take g = 9.8ms™2.

We now present the summary of this unit.

9.6 SUMMARY

Concept Description

Work done by constant B Work done by a constant force on an object that undergoes
force displacement d is defined as:

W = (F cos0)d = F.d

Work done does not depend on the observer’s frame of reference.
The component of force perpendicular to the direction of
displacement does no work. If the force itself is applied perpendicular
(that is, at an angle of 90°) to the direction of displacement, it does no
work. Such a force is called no-work force.

When the force or the component of force points in the same direction
as the displacement, work done is positive. When the force or the
component of force points in the opposite direction as the displacement,
work done is negative, that is, work is done by the object. In
component form, the work done is

W=F x (One-dimension)
W=Fx+ Fy (Two-dimensions)
W=Fx+ Fy+Fz (Three-dimensions)
Energy B Energy is the capacity of a body to do work and is always measured by

the work the body is capable of doing.

Kinetic energy B The kinetic energy of a particle of mass m travelling with speed v is
given by
Kinetic Energy (K.E.) = % mv?
Work done by variable B The work done by variable force in displacing an object is given by
force
X2
w = j F, dx (One-dimension)
X1
X2 Y2
W = IFX ax + _[Fy dy (Two-dimensions)
X1 4|
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X2 Y2 Zy
W = IFX dx + IFy dy + IFZ dz  (Three-dimensions)

X1 Y1 2

B Work done by the force of gravity F = mg on an object that undergoes

a finite displacement from the position r; (= xﬁ + y1j + 2z R) to the
position T, (= Xy 1 + Yo J + Z, K):

r
W = jﬁd? = - mg(zz—z1)
2

B Work done by the spring force (IE =— kxi) in stretching a spring from
X1 to xo:

X2 X2 k
_ _ _ __ K 2 2
W-Idex Ikxdx 5 (5 )
X1 X1

B Work done by the force of gravitation due to an object of mass M on
another object of mass m that undergoes displacement from position

FA to FBZ
B s
W = J‘ﬁ.df - —J'GA’z’m dr = GMm(i—ij
“ . B Ta
Work-energy theorem B Work done by the net force on an object of mass m is equal to the

change in the kinetic energy of that object:
W=(KE) - (KE) = %mvf2 - %mv,-z

The work-energy theorem follows from Newton’s second law and
hence is not a new law in itself.

Power B Power is defined as the rate at which work is done by a force.
(P) = % (average power)
P = % (instantaneous power)
Also P = F.v

9.7 TERMINAL QUESTIONS

1. A person travels in a lift with a bag hanging from his hand. Work is done
on the bag by the force exerted by his hand. Which of the following is the
correct statement about the work done?

a) The work done is always positive whether the lift goes up or down.
b) The work done is always negative whether the lift goes up or down.

c) The work done is positive when the lift goes up and negative when it
comes down.
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d) The work done is negative when the lift goes up and positive when it
comes down.

2. A particle undergoes displacement d = (4.0m)i - (5.0m)j when a force

F = (aN)i + (2.0N)j is exerted on it. Determine the value of the
constant a if the work done is (a) zero, (b) 20 J and (c) — 16 J.

What is the work done by the force of gravity on an object which takes the
five paths shown in Fig. 9.21 to reach from point 1 to point 2 in each case?
Explain.

4. Which of the two forces of equal magnitude F acting on the sled shown in

Fig. 9.22 does more work on it as it moves a distance d?

. The one-dimensional restoring force exerted by an anharmonic spring is

givenby F = —ax — bx?,where a and b are constants. Calculate the work
done by the spring force in moving a mass m from the pointx = x4 to
X = Xo.

. A spaceship of mass 5000 kg is travelling in deep space at a speed of

10000 ms™ . Its speed is reduced by firing rockets in the opposite
direction. The rockets generate a thrust of 45000 N over a distance of
2000 km. Calculate the final speed of the spaceship.

A stationary ball of mass 450 g travels at a speed of 40.0 ms ™ when it is

hit by a stick. What is the work done on the ball by the stick? Suppose that
the force exerted by the stick is parallel to the displacement of the ball and
the stick is in contact with the ball for a distance of 5.00 x 10~ m. What is

the average force exerted by the stick on the ball, if its weight is
neglected?

. From what height would an object need to be dropped from rest so that it

acquires kinetic energy equal to that it has when travelling at a speed of
36.0ms~'? Take g = 9.80ms 2.

What power is required to pull a 5.0 kg block at a steady speed of
1.5 ms~"? The coefficient of friction is 0.30. Take g =9.80 ms 2.
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10. A child of mass 30.0 kg rides a bicycle of mass 15.0 kg. If the force of
friction in each case is 30.0 N, what power must she supply to maintain a
steady speed of 1.50 ms~! on

i) level ground, and

ii) while going up an incline of slope 5°? Take g =10.0 ms~2.

9.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. We use Eq. (9.2a) to obtain work done since force and displacement are in
the same direction. The magnitude of the force of gravity is mg and the
displacement is d.

W = mgd
Substituting the numerical values of m (in kg) and d (in m), we get
W = 60kg x 10ms ™2 x 500m = 3.0 x 10° J

2. a) Since the bus moves with constant velocity, the net force on it is zero.
Therefore, no work is done.

b) No work is done by the student on the books since the displacement
of the books with respect to the student is zero.

c) Work is being done on the box, since both the force on the box and its
displacement are finite. No work is done on the floor (since the
displacement of the floor is zero.)

d) No, because displacement of the cupboard is zero.

e) We use Eq. (9.2b) to calculate the work done. Here F = 100N and
d=1.0m.

For 6 = 0°, W = (100N) x cos0° x (1.0m) =100J =1.0 x 102 J

For 6 = 90°, W=0

For 6 =60°, W = (100N) x cos60° x (1.0m) = 50

3. No work is done by IEg and IEN because these forces are perpendicular to
the displacement. These are no-work forces. The total work done on the
box is the sum of the work done by F;. and T:

W = (T cos45°)x5.0m + (Fg cos180°)x5.0m

 50Nx——x5.0m+10Nx(-1)x5.0m =126.8 J~1.3x102 J

2

The tension does positive work and the force of friction negative work on
the box.

4. Let us assume that the box is sliding along the positive x-direction. The
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force of kinetic friction is F = — 0.50x1.0 kg><(9.8ms_2)f =— (4.9N)i

The displacement d = (10m) i

The work done by the force of friction is negative: W = — 49J

Let the final velocity be v. Using Eq. (9.7) with v; =12 ms_1, m =1.0kg
and W = -49J, we have

%x('I.Okg)xvz -%xm.o kg)x (12 ms™ 1?2 = — 494

v =6.8ms""

Using Eq. (9.9) with F = (2.0x — 5.0 x2) N, we can write

3.0
W= [(2.0x-5.0x?)dx J=- 35.3J~—35J
1.0

Let us assume that the lift is moving in the positive y-direction. The force
exerted by the cable on the lift is equal and opposite to the force of gravity
on the lift. Thus, we use Eq. (9.15) with

F= (4000kg)x(9.8ms2)j = (3.92 x 10*N)j and

- 200m ) - 1
=|———|j=(8.00ms
\ [25.03} J= 2

Py, = (3.92x10*N)j.(8.00ms™)j=31.36 x 10*W ~3.1x10°W

Terminal Questions

1.

The correct choice is (c). The force exerted by the hand is equal and
opposite to the weight of the bag. On the upward journey of the lift, the
work done is positive because the force is directed along the
displacement. On the downward journey the work done is negative
because the force is opposite to the direction of the displacement.

a) Since work done is zero, from Eq. (9.2b), we have
[(@N)i + (2.0N)j].[(4.0m)i - (5.0m)j1=0
or (4.0a)J-10J=0 = a=25
b) In this case (4.0a)J-10J = 20J = a=7.5
c) Inthiscase (4.0a)J-10J=-16J = a=-15

Let m be the mass of the object. The work done in each case is the same
and equal to — mgh, since the displacement (opposite to the direction of
the force Fy = mg) is the same in each case.

The work done by F; is Wy = Fd cos6 and the work done by IEQ is
W, = Fd, since the magnitudes of the two forces are equal. Since

F cos 0 < F for non-zero 0, IEZ does more work on the sled.
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5. We use Eq. (9.9) for the work done by a variable force because here we
have a force which depends only on x:

X2
W= j(—ax—bxz)dx = _g(xg _xf)_g(xg -x3)

X1

6. We use the work-energy theorem, Eq. (9.7), to solve this problem. The
work done by the thrust force is

W = (~45000N)i.(2000x10°m)i = -9 x10'0y

where i is in the direction of motion of the spaceship. The work done is
negative because the thrust is opposite to the direction of motion of the
spaceship. The change in kinetic energy of the spaceship is,

(K.E.)s — (K.E.), :%x (5000kg)x v? —%x (5000kg) x (10000ms~")?

= (2500 v# —2500x108)J

where v¢ is the final velocity of the spaceship. Using Eq. (9.7) we get,
(2500 v? — 2500 x108)J = — 900108 J and hence v; = 8000 ms™"

7. From Eq. (9.7) the work done is

w :%x(450x10_3 kg) x (40.0ms™ "2 - 0 = 360J

The average force is obtained from the definition of work done. The work
doneis W = Fd since F and d are parallel.

w  360J

_ V. —72000N=7.20x10*N
d 0.005m

8. The kinetic energy of an object of mass m moving with a speed of
36.0ms ™" is

K= %mx(36.0 ms~')? = (648 m)J

Suppose the object were to be dropped from a height h to attain this
kinetic energy. The work done by the force of gravity on the object is:

(= mgj). (=hj) = mgh
From the work-energy theorem: mgh = (648 m)J

648

=——m = 66.1m
9.80

= h

9. The force of friction on the block is IEK = pKﬁN =—u,mg i. In order to
move the block at a constant speed, the net force on the block must be
zero. Since the only force on the block is that of friction, an equal and
opposite force must be exerted on it, which is given by



Block 2 Basic Concepts of Mechanics

The power required is P =F.V = (usmgi.vi)
= (0.30)(5.0kg) (9.8ms™2) (1.5ms™ 1) = 22W

10. Let the child ride the bicycle in the positive x-direction. The velocity is

v=150ms i

i) The power supplied on level ground is

y P =F.v=(30.0Ni).(1.50ms™" i) = 45.0W
— (30.0N)j \/X i) Here we take the x and y-axes to be along and perpendicular to the
- inclined plane, respectively (Fig. 9.23). Thus, the velocity is
TV G150 ms~i
/ 0 v=1.50ms™i.
C ot The fi the child shoul in thi i
—(450N) sin© 'l mg e force the child should overcome in this case is

F=—(450N)sin5° i — (30.0N)i
Fig. 9.23: Angle 6 is not

) . Since the child has to apply a force equal to (—F), the power to be
to scale in the figure.

supplied by her is
P = —F.V = (450Nxsin5° i + 30.0N i). (1.50 ms™" i)

= (39.2Ni + 30.0Ni). (1.50 ms™" i) =103.8 W~ 104 W
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How much energy is transferred as POTENTI AL ENERGY AND

thermal energy if we take air

will help you angwer such. CONSERVATION OF
questions! (Image of space shuttle

making a landing on the Earth; ENERGY
picture source: www.nasa.gov)
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10.3  Potential Energy 10.7 Terminal Questions

Potential Energy and Stability 10.8 Solutions and Answers

STUDY GUIDE

In this unit, you will learn the law of conservation of energy. In order to arrive at this law, you need to
know some fundamental concepts of mechanics in addition to what you have learnt in Unit 9, namely,
conservative forces, potential energy, and non-conservative forces. The way we explain these
concepts may be new for you. Therefore, study them carefully.

Do revise the concepts of vector algebra, scalar product and integral calculus before studying this
unit if you have not mastered them so far. Finally, you should solve all examples, SAQs and Terminal
Questions on your own to understand it well.

IN YOUR WRITTEN WORK, ALWAYS USE AN ARROW ABOVE THE
LETTER YOU USE TO DENOTE A VECTOR, E.G., T. USE A CAP
Don't forge! || ABOVE THE LETTER YOU USE TO DENOTE A UNIT VECTOR, E.G., T.

“There is inherent in nature a hidden harmony that reflects itself
in our minds under the image of simple mathematical laws.”

Hermann Weyl
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(b)

Fig. 10.1: What form of
energy is involved in
these cases?
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10.1 INTRODUCTION

In Unit 9, you have learnt how to determine work done by constant and
variable forces. You have also studied the work-energy theorem, which
relates work done by a force on an object to the change in its kinetic energy.
In this unit, we shall discuss a fundamental law of nature: the law of
conservation of energy. However, in order to arrive at the law, we need to
introduce the concept of potential energy. Potential energy is a quantity
associated with a special class of forces known as conservative forces.
Therefore, we begin our study with a discussion of these two concepts in
Sec. 10.2 and Sec. 10.3.

In school physics courses, you may have studied about potential energy as
the energy that an object possesses by virtue of its position, shape and
configuration. In fact, in real life, we come across many situations where a
force acts on an object, which is displaced but its speed does not change;
instead, the position, shape or size of the object changes.

For example, suppose a worker lifts a box from the ground and puts it on his
shoulder (Fig. 10.1a). The box undergoes displacement along the direction of
force, but its initial and final speeds are zero. Work is being done and energy is
involved as we have defined it as the capacity to do work. It is certainly not the
kinetic energy. What is it? Similarly, when we stretch an elastic band or a
spring, we are doing work, though no change in speed is involved (Fig. 10.1b).
So, what is the energy associated with this work? In this way, you have been
introduced to the concept of potential energy.

However, in Sec. 10.3, we introduce the concept of potential energy in a
different way that helps us describe mathematically, the law of conservation of
mechanical energy (Sec. 10.4). Finally, we introduce non-conservative forces
to present the law of conservation of energy in Sec. 10.5. We advise you to
study these concepts and the law carefully so that you understand them well.

In the next block, we develop the concepts needed for describing and
analysing angular motion and the motion of many-particle systems. You
will also learn the third conservation law: The law of conservation of angular
momentum.

Expected Learning Outcomes
After studying this unit, you should be able to:

< define conservative forces and distinguish between conservative and
non-conservative forces;

% calculate the potential energy of simple systems;

< apply the law of conservation of mechanical energy to simple
problems;

< determine whether an object is in stable, unstable or neutral
equilibrium; and

< explain the law of conservation of energy and apply it to simple
problems.
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10.2 CONSERVATIVE FORCES

Let us go back to Examples 9.6, 9.7 and 9.8 of Unit 9 in which we have
determined the work done by the spring force, the force of gravity and the
force of gravitation. Let us write down the general expressions for work done
for each case:

a) Work done by the spring force (IE = —kX)in stretching a spring by
displacement x from x4 to x5 : In Example 9.6, we have determined the
work done to be

X2 X2 K
W = Idex = - Ikxdx =—2(x§ —x12)
X4 X4
b) Work done by the force of gravity (F = mg)on an object that undergoes

a finite displacement from the position ry to r, : From Example 9.7, we
have found the work done to be

W= (F.df=-mg (zp — zq)

Sl

c) Work done by the force of gravitation on an object that undergoes
displacement from position ry4 to rg : In Example 9.8, we have determined
the work done to be

This exercise leads us to the concept of conservative force. Let us see how.

Do you observe anything common between the above three results for work
done? In all examples, the work done depends only on the initial and final
positions of the object. It does not depend on the path taken by the

object to reach the final position from its initial position. Fig. 10.2: Path
independence of work
For example, the work done by the spring force in Example 9.6 will remain the done by a conservative

same whatever be the path of the particle. This also holds true for work done  force. Work done by the
by the force of gravity on the particle in Example 9.7 and the force of force of gravity is the
gravitation in Example 9.8. You can verify this statement for all examples same for the same initial
given above. All these forces are examples of a special class of forces called and final positions,

. ' . whatever the path of the
the conservative forces. We define a conservative force as follows (see . P
particle may be — AE or

Fig.10.2). ABCDE.

DEFINITION OF CONSERVATIVE FORCE

A force is CONSERVATIVE when the work done by this force on a moving

particle is independent of the path of the particle between the particle’s

initial and final positions: it is the same for any path connecting the

same two points. 125
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Fig. 10.3: Work done by a
conservative force over
a closed path APBQA is
zero.

Py (X5, ¥, Z5)

ﬁ) E = mgh
Path 2

Path 1

E=0 Py (X4, Y1, Z4)

Fig. 10.4: The work done
by the force of gravity
around a closed path is
zero. Hence, itis a
conservative force.
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ANOTHER DEFINITION OF CONSERVATIVE FORCE

A force is conservative when the total work done by this force along
any closed path (which starts and finishes at the same point) is zero
(Fig. 10.3).

Let us apply these definitions to the force of gravity to test whether itis a
conservative force.

Emﬂ?ﬁﬁ 10.1: THE CONSERVATIVE FORCE TEST

Is the force of gravity a conservative force?

SOLUTION B The KEY IDEA here is to verify whether either of the
definitions of the conservative force holds for this force.

In Example 9.7, you have learnt that the work done by the force of gravity
depends only on the vertical separation between the initial and final
positions, whatever may be the path followed by the object (see

Fig. 10.4). Hence, the force of gravity is conservative. You can also test
whether the second definition holds for the force of gravity.

Suppose the object in Example 9.7 returns via another path from the
finishing point P, (x5, ¥y, Z») to the starting point Py (x4, ¥4, Z1)
(see Fig. 10.4). What is the work done by the force of gravity in this case?

Following the method of Example 9.7, we get

X1 Y1 2
We, ,p = | Fedx+ Fydy+Lzedz=0+0+ L

Zq j
mgdz
X2 Y2

2
=-mg (z1 —2p)=mg (zy —z1)=mg Az

Since work done is a scalar quantity, we simply add up the work done
along the individual path segments making up the closed path. Thus, the

work done by the force of gravity around the closed path starting from
Py (x4, y4, 1) and ending at it is

We,>prsp = Wosp + Wh, p
=-mg(zy -z1)+mg (z; —z1)=0

Thus, the force of gravity also satisfies the second definition of the
conservative force.

You may now like to check for yourself whether the spring force is
conservative.
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SﬂQ 1 - Test of conservative force

Using the definition of a conservative force given in Sec. 10.2, show that the
spring force is conservative.

The definition of non-conservative force follows from these definitions of
conservative force. A force is non-conservative if the work done by it
depends on the path of the particle or is non-zero for a closed path.

So far in this section you have learnt about the definition of conservative force
and how to check whether a force is conservative or not. Based on this, you
can identify non-conservative forces as well. Let us work out an example to
check whether the force of friction is a non-conservative force.

fﬂﬂ(l’ﬁﬁ 10.2:° NON-CONSERVATIVE FORCE

Consider the motion of a box being pushed on a rough floor with a
constant velocity, which means that the net force on it is zero. Suppose the
box is moved from point A to point B along two different paths: 1 along AB
and 2 along ACDB as shown in Fig. 10.5. Determine the work done by the
force of friction along these two paths. Hence, determine whether the force
of friction is conservative or not.

Path 1

A - C
Fig. 10.5: Calculating work done by the force of friction along two paths.

SOLUTION B The KEY IDEA here is to verify whether either of the
definitions of the conservative force holds for this force.

The force of friction is always directed opposite to the direction of motion.
Therefore, the work done along path 1is W; = — F dag, where Fj is the
force of friction on the box and d4gis the distance from A to B. The work
done along path 2 is

Wy =- Fs (dac +dcp +dpg)

where dy¢, dop and dpg are the distances from A to C, from C to D and
from D to B, respectively. W; is not the same as W, and so the work done

by the force of friction depends on the path followed. Hence, the force of
friction is not conservative. It is a non-conservative force.

The definition of a conservative force allows us to introduce the concept of a
very useful function called the potential energy.
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Potential energy>
NOTE

If we redefine the
potential energy at A
(Uy =a) tobe

Uy=a+c

and the potential energy
at B (Ug =b) to be

Ug=b+c

where c is a constant
that must be the same
for all points, then the
work done in going from
AtoBis
—AU=-[(b+c)—(a+c)]
=a-b
which is the same as
before. This means that
you can set the zero of U
anywhere you like. You
might set it to be zero at
the surface of the Earth
or you might find it more
convenient to set the
zero at infinity.
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10.3 POTENTIAL ENERGY

You have learnt that the work done by a conservative force on a particle as
it moves from one point to another depends only on the starting and
finishing positions, and not on the path between them. Therefore, for a
conservative force, we can write

B
I?.df -

7

B

IIE Ldr = function of (rg) — function of (ry)
A

We denote this function of the position of the particle by U (r) and write this
equation as follows:

B
[Fodf = - U(fs) + U(Ra) (10.1a)
A
B
or U(fg) - U(fa) = - [F.aF (10.1b)
A

We call the function U (r) of the position of the particle as the potential
energy function or simply the potential energy of the particle. The reason
for the sign convention (the negative sign) in Egs. (10.1a and b) will become
clear to you in a little while. Note that we have not given any proof that this
function U(r) exists.

However, we have seen at least three cases where the work done by a force
does not depend on the path of the object. So we can say that U (r) exists for
at least these forces. Note also that Eq. (10.1b) defines only the difference in
potential energy of an object at any two positions r, and rg.We could add a
constant to U (rg) and the same constant to U(r,)and Eq. (10.1b) would still
be satisfied (read the note in the margin). So because of the way we define
potential energy, only the differences in potential energy are meaningful.

POTENTIAL ENERGY

The change in potential energy AU of a particle between any two
positions rg and r, is defined as the negative of the work done by a
conservative force in moving the particle from r, to rg:

AU = Up - Uy = U(ig) -~ U(fa) = - [F.dF (10.1b)

Let us now determine the potential energies (strictly speaking the difference
between potential energies) associated with some conservative forces.
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fmﬂvzﬂ:ﬁ 10.3: POTENTIAL ENERGY

Determine the potential energy function associated with the force of gravity
and the force of gravitation.

SOLUTION ® The KEY IDEA here is to apply Eq. (10.1b).
a) Potential energy for the force of gravity
In Example 9.7, we have calculated the work done by the force of
gravity on a particle which moves from a point P; (x4, ¥4, z;) to another
)
point P, (X5, ¥yo, zp)as W = I(— mg)dz| = -mg (z, — z)
1

Using Eq. (10.1b), we can write

Z
Up=Us == | [(-mg)dz| = mg(z, - 2)

4

Let us adopt the convention that U; = 0 at the ground level where
z4 = 0. Let the height of the particle above the ground be h. Then

Uy (h) = U = mgh

The potential energy U = mgh due to work done by or against the force

of gravity, with reference to ground, is called the gravitational potential
energy.

b) Potential energy for the force of gravitation

In Example 9.8, we have determined the work done by the force of
gravitation on an object that undergoes displacement from position r, to
rg as

1

w=amm (-]

Using Eq. (10.1b), we can write
1 1
UB _UA =—W:—Gm1m2 _— = —
B Ta

By convention, we choose the reference or starting position for this
potential energy to be at infinity, i. e., in the above expression we take
ra = and put rg =r. Then we have

Ug = U(r) = - SMM2
E
The potential energy U(r) = — Gmymy due to work done by or against
r

the force of gravitation in bringing an object from infinity to a position ris
called the gravitational potential energy.
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Don't forget

You may like to identify the potential energy function associated with the
spring force yourself. Try SAQ 2.

SﬁQ 2 - Potential energy function for spring force

Identify the potential energy function for the spring force.

Potential energy is defined only for conservative forces and only
the DIFFERENCES in potential energy are meaningful.

Fig. 10.6: Potential
energy due to the

configuration of a

system.
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Let us now establish a connection between what you have learnt in school
about potential energy and the mathematical concept you have studied so far.
We shall use the example of the force of gravity.

Note that the factors that affect an object's potential energy due to gravity are
its mass and its position relative to some reference position. Thus, with
respect to ground, a book lying on a table has less gravitational potential
energy than the same book lying on a higher table. It also has less
gravitational potential energy than a heavier book lying on the same table.

Let us now consider a group of marbles, each of mass m at various heights on
a rack. What is the total potential energy of the marbles if we pick them up
from the floor and place them on the rack as shown in Fig. 10.6a? Let us take
the distance of each shelf from the other and the lowest shelf from the floor to
be h. Then the gravitational potential energy of these marbles with reference
to the floor is

U=U; + U, + Uz + Uy = mgh + mgh + mg (3h) + mg (4h) = 9mgh

Let us now pick up the marbles from the floor and place them on the rack as
shown in Fig. 10.6b. What is the total potential energy of the marbles in this
case? With reference to the floor, it is

U=Uq + Uy + Uz + Uy = mgh + mg(2h) + mg(2h) + mg(3h) = 8mgh

This is different from the earlier result. Why? It is so because the relative
positions of the marbles in both cases are different. We say that the system
of marbles has a different CONFIGURATION (different arrangement or
distribution) in each case. You can arrange these marbles differently to get
different configurations. For each different configuration, you might find that
the gravitational potential energy is different. You may also find that some
configurations have the same energy even if they are different! But you will
need to calculate the energy for each different configuration.

Thus, the potential energy of a system depends both on the position of the
particle(s) in it and on its configuration (that is, the distribution or relative
positions of the particles in it). We can thus define the potential energy of a
system as follows:
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POTENTIAL ENERGY

The potential enerqy of a particle or a system of particles is defined as the
negative of the work done when it undergoes a change in its position,
shape or configuration.

Potential energy represents the capacity (of a particle or a system of
particles) to do work by virtue of the change in position, shape or its
configuration in space.

We can also say that the energy which a particle or a system possesses
solely because of its position or configuration with respect to a
reference level is called its potential energy.

You may wonder: What exactly is this potential energy?

You can understand this as follows:

Consider an object such as a brick kept at some height above the ground that
has some potential energy by virtue of its height. This is the negative of the
work done on the brick while lifting it against the force of gravity. Now, if the
brick falls on a pile of crockery, the brick can break it into pieces. That is, the
brick can do work. Thus, when we change the position or configuration of a
body, it acquires potential energy, i.e., the potential to do work. Hence, this
kind of energy is given the name potential energy. So, the potential energy
may be thought of as energy acquired by an object due to a change in its
shape, position or configuration, which has the potential of doing work.

You may also have noted that we have called both U = mgh and

! Gm1 my A
r

the gravitational potential energy of a body of mass m, at any point at a

distance r from the centre of a body of mass m,. You have learnt in

Example 10.2b that it is equal to the negative of the work done in bringing

the body (of mass my ) from infinity («) to that point. There might be some
Gm1 my

uir)= - M as gravitational potential energy. U(r) =
r

confusion in your mind about calling both U = mgh and U(r) = —

gravitational potential energy. These two are not different quantities; it is
a misconception if you think so.

You must understand that in calculating U = mgh, we assume constant

(gravitational) force of attraction due to the Earth. This is a good approximation

as long as h << radius of the Earth. If we were to take a body to a height of
5000 km, we would not be able to use the expression U = mgh for the

gravitational potential energy. The expression U(r) = — m is for the
r
general case of any distance between any two masses and follows from the
G m1 m2

inverse square law. U = mgh is a special case of U(r) =

NOTE

The gravitational

potential energy

uir) = - Gmymy
r

is mutual to the
masses mqand m, :
If we bring m5 from
infinity to a distance r
from mass my, the
gravitational potential
energy acquired by
m, is the same.

NOTE

The zero of energy in
the two situations is
different.

For U =mgh, itis
taken to be the
ground, that is, the
surface of the Earth.

But for arriving at the
expression
Gmim

u(r) :_#,

r
we take the zero or
the reference level to
be at infinity.

The difference (final
potential energy minus
initial potential energy)
is independent of the
choice of origin.
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So far, we have defined conservative forces and introduced the concept of
potential energy associated with such forces. Together these concepts lead us
to the concept of conservation of mechanical energy. But you may like to
first check whether you have understood the concept of potential energy.

SﬂQ 3 - Potential energy

A child (of mass M) climbs ten steps to the first floor situated at a height of
4.0 m from the ground. What is the gravitational potential energy of the child
if we choose the reference point to be (i) the ground, (ii) the second step
and (iii) the fifth step? What is the potential energy of the child with
reference to the second floor, which is another 4.0 m from the first floor?

Take g = 9.8ms2.

We can also use the concept of potential energy and its relationship with force
to help us determine the stability of an object or a system.

10.3.1 Potential Energy and Stability

You have learnt in Unit 5 that an object is in equilibrium if the net force exerted
on it is zero. So let us begin by using Eqg. (10.1b) to obtain the force on a
particle moving in a straight line from the position x4 to x» (in terms of its
potential energy). Its potential energy is given as

X2
AU = - jFX dx (10.2)
X1

From calculus, it follows that F, is just the derivative of U(x):

~ dU(x)

E =
X ax

(one-dimension) (10.3)

You can check this result by taking a concrete example. Recall the elastic
potential energy of a spring moving along the x-axis given by U(x) = % k x.

Then from Eq. (10.3), we get

dx dx

This is the spring force given by Hooke’s law. Eq. (10.3) is useful for
computing the force from the potential energy function. It also helps us
determine the stability of a system. For an object or system moving under
conservative force, the condition for equilibrium using Eq. (10.3) becomes

FX = — du(x) =0 or M =

dx dx

0 (10.4)

Suppose that Eq. (10.4) is satisfied at some point xp. We now state the
conditions for stable, unstable and neutral equilibrium of an object/system:
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2
e Ifat x = xq, % > 0 (the second derivative of U is positive), the
dx
object/system is in stable equilibrium at that point;
ad2u _— , :
e Ifat x = xp, — < 0 (the second derivative of U is negative), the
dx

object/system is in unstable equilibrium at that point.

2
o Ifat x = xq, % = 0, we must look at higher derivatives. If all
dax
derivatives vanish so that U is constant in a region about xq, the
object/system is said to be in a condition of neutral stability or
neutral equilibrium. No force results from a displacement; the

object/system is effectively free.

We show all three types of equilibria in Fig. 10.7: Fig. 10.7a shows stable
equilibrium. A marble placed at the bottom of a bowl is an example of stable
equilibrium. Fig. 10.7b shows unstable equilibrium. A marble balanced on top
of a bowl is an example of unstable equilibrium. Fig. 10.7c shows neutral
equilibrium. A marble placed on a horizontal tabletop is in the state of neutral
equilibrium.

\&/ 7N 2

(c)
Fig. 10.7: Examples of a) stable; b) unstable; c) neutral equilibria.

So far you have learnt about two kinds of energy: kinetic energy and potential
energy associated with conservative forces. We now combine these two
concepts with the work-energy theorem discussed in Unit 7 to arrive at a very
interesting result: the conservation of mechanical energy.

10.4 CONSERVATION OF MECHANICAL ENERGY

Recall the work-energy theorem given by Eq. (9.6b) or Eq. (9.7) as
W=AKE.= (KE.) - (KEE); = Kf — K; (10.5a)
Using Eq. (10.1b), we can also write
-W=AU=Uf - U (10.5b)
Combining Egs. (10.5a) and (10.5b), we get
K — Ki =— (Up — U))
Upon rearranging the terms, we can write

Ki + U/ = Kf + Uf (106)
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NOTE

Eqg. (10.8) also
explains the
nomenclature
conservative force:
When this kind of
force acts on a
system, the total
mechanical energy of
the system is
conserved, i.e., it
does not change with
time.

Conservation of
mechanical energy
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The left hand side of this equation depends on the initial speed of the particle
and its potential energy at some initial positionr;; it does not depend on ;.
Similarly, the right hand side of the equation depends on the final speed and
the potential energy at some final position r¢; it does not depend on r;. Under
such a situation, Eq. (10.6) can be satisfied only if each side of the equation is
equal to a constant, since r; and r; can be any positions; these are not fixed.
We denote this constant by E and write

Ki+ U =K + U =E (10.7a)
E is called the total mechanical energy of the particle. It is the sum of the
kinetic energy and potential energy of the particle:

K+U-=E (10.7b)

Thus, you have learnt that

If the force exerted on a particle is conservative, the total mechanical
energy of the particle is independent of the position of the particle: It
remains constant.

In the language of physics, we say that
The total mechanical energy of the particle is conserved.

What this means is that the kinetic energy and potential energy of the particle
(which moves under the action of a conservative force) may change but their
sum remains constant at all times. Thus, as the kinetic energy of the particle
increases, its potential energy will decrease and vice-versa. Its initial
mechanical energy and final mechanical energy would always be equal:

E; = Ef (10.8)
Note that conservation of mechanical energy is a property of
conservative forces. In fact the phrase conservative is attached to such
forces only because of this reason. While arriving at the law of conservation of
mechanical energy the reason for the particular sign convention we chose in
defining potential energy would also have become clear to you. We are trying
to express a fundamental law of nature in terms of mathematical and physical
concepts. Let us now state this law formally.

CONSERVATION OF MECHANICAL ENERGY

If ONLY conservative forces do work on a particle or a system, the
total mechanical energy (sum of kinetic energy and potential energy)
of the particle or the system is conserved:

Ef = E (10.8)

where Ef = Kfr + Ufr and E; = K; + U;

You can observe this law in action to a reasonably good approximation and
the connection between potential and kinetic energy by doing the simple
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ety described beiow. This will sise Feln you tnderstand the reiationaiip
between kinetic energy and potential energy in mechanical systems. You will
need a few balls or marbles of different masses (or any other object that can

roll smoothly) and a smooth flat board for this activity.

KINETIC AND POTENTIAL ENERGY IN MECHANICAL SYSTEMS [ﬂCtlmt)’]

Take table tennis balls or marbles of the same kind. Take a smooth
(almost frictionless) flat board or a book having smooth hard cover. You
could also use the playground slide for this activity.

Hold the board/book at an angle to make an inclined plane and roll a ball
(or a marble) down its surface from some height. Note the horizontal

distance travelled by the ball after it leaves the plane (see Fig. 10.8). Next %

hold the inclined plane at a different height but at the same angle with the @)
horizontal as before. Thus, the ball has a different potential energy due to @)
gravity. Again roll it down the plane from the same point and measure the o)

horizontal distance travelled by it. Repeat the measurement for different 0
heights of the plane.

Now answer the following questions based on this activity. Fig. 10.8: The connection

between kinetic and

What do you infer when you compare the measurements of distance in
potential energy.

each case? What horizontal distance does a ball rolling from a greater
height travel? Is it more or less if the ball is rolled from a lesser height?
What is the potential energy of the ball in each case?

What happens when you keep the inclined plane at the same height but
use balls of different masses? Is the distance travelled by the balls same
or different this time?

Do you now understand that greater initial height of the inclined plane means
that the ball has more potential energy and hence greater capacity to do work?
This is reflected in the greater change of the speed of the ball (since AK.E. is
greater from work-energy theorem). Therefore, a ball with more potential
energy travels farther.

But the distance travelled is the same if you keep the inclined plane at the
same height. The result is independent of the mass of the object. It depends
only on the height from which the mass is moved. Remember that friction
should be minimised (by making sure that the plane is as smooth as possible)
in this activity.

You can do a similar activity with a toy gun or a bow and arrow. When we
insert a dart (small arrow) in the gun, we compress the spring which acquires
elastic potential energy. If now we pull the trigger, the spring uncoils. The
elastic potential energy of the spring gets converted into the K.E. of the dart.
The dart rushes out to hit the target!

The same thing is happening in the case of a bow and arrow: the P.E. of the
stretched string gets converted into the K.E. of the arrow.
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NOTE

Suppose, we were to
attempt this question
using Newton’s laws of
motion by assuming
that only the force of
gravity is acting on the
object. We would need
to integrate the
equation of motion

F=m— for F=mg
dt

along the path of the
object and solve it by
applying the initial
conditions. Imagine
how complicated using
Newton’s laws would
be for complicated
paths such as a spiral
path or a curved path,
etc.
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Thus for systems acted upon by conservative forces,

potential energy decreases

and
When potential energy increases kinetic energy decreases

such that the total mechanical energy of the system remains constant.

When kinetic energy increases

Let us now take up an example and apply the law of conservation of
mechanical energy to solve problems on motion.

E)’ﬂfM@PLﬂ 10.4: THE ENERGY APPROACH TO MOTION
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A stuntman wants to leap from one cliff to another on his motorcycle
(Fig. 10.9). He drives horizontally off the cliff of height 100 m at a speed of
36.0ms~'. Determine the speed with which he lands on the other cliff of

height 65.0 m. Neglect air resistance. Take g=10.0 ms 2.

=
(S vy = 36.0 ms
By
y, -&%
%~ b
100-m N
| 65.0 m

Fig. 10.9: The energy approach to motion.

SOLUTION H The KEY IDEA here is to apply the law of conservation of
mechanical energy to determine the speed.

The potential energy is only due to the force of gravity.

We have K; + U; = K + Us or %mv,-2 + mgh; = %mvf + mghs

Hence, vf = \/V,2 + 2g(h; — hy)

v = {(36.0ms "2 + 2x (10.0ms2) (100 m — 65.0m) = 44.7ms""

SﬂQ 4 - Conservation of mechanical energy

A diver jumps with an initial speed of 1.5 ms~! and enters water at the

speed of 4.5 ms~'. What height did she jump from? Take g = 10ms 2.
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Vou have siudicd in Unit 7 that at any finite distanes from the Barth. g i mons
zero. So whatever be the distance of an object from the centre of the Earth, it

would still feel the effect of gravity. However, an object can escape from the

bounds of the gravitational attraction of the Earth if it is provided with a certain

minimum velocity. This is called the velocity of escape. We now obtain its

expression in Example 10.5.

ﬁmmm 10.5: VELOCITY OF ESCAPE

Determine the velocity of escape of a particle of mass m from a huge body
of mass M.

SOLUTION m The KEY IDEA here is that the total energy of the object
must be greater than or equal to zero: E > 0.

Let the particle be at a distance r from the huge body. The gravitational
GMm

potential energy of the particle is given by U = ————.

r
If the particle is to escape from the bounds of the gravitational attraction of
the huge body then its total energy E > 0. If at a distance r, the particle
has velocity v, then the total mechanical energy of the particle is

2+U=1mv2—GMm
2 r

E:lmv
2

So the condition for the particle’s escape becomes

1mv2 _GMm >0 = v2 ZZGM or v > JZGM
2 r r r

2GM
Hence, Ve = ; (10.9)

is the required minimum velocity for the particle to escape the gravitational
field of the huge object. It is called the velocity of escape. Note that it is
independent of m, the mass of the particle.

If the particle were originally on the surface of Earth, then r =Ry, M =M,

and
ve = [28Me _ [3gR. (10.10)
Re
Now, taking g =9.8ms™2, we get v, =1.1x10*ms" =11 kms™ - a

velocity that will take you from Srinagar to Kanyakumari in about five
minutes!

SﬁQ 5 - Velocity of escape on the Moon

Calculate the velocity of escape on the surface of Moon. The mass and the
radius of the Moon are 7.35 x 1022 kg and 1.74 x 108 m, respectively.
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With this, we end the discussion on conservative forces, potential energy and
conservation of mechanical energy as a tool for describing motion under
conservative forces. In the next section, we arrive at the general law of
conservation of energy by including the non-conservative forces in the
discussion.

10.5 LAW OF CONSERVATION OF ENERGY

= Direction
N of motion
~

o

21

-y
I:fr

-
FQ

Fig. 10.10: Forces of dry
friction.

Fig. 10.11: Forces of fluid
friction.
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In Example 10.2, you have determined the work done by the force of friction
along two different paths. What result did you arrive at? The work done was
different for both the paths. Hence, as per the definition of conservative
force, the force of friction is not conservative and we cannot associate a
potential energy with it. Such forces (friction, air resistance, resistance due to
water, etc.) for which the work done depends on the path being followed
by the particle are called non-conservative forces.

When non-conservative forces are exerted on a particle, its mechanical
energy decreases and the energy loss generally gets dissipated as heat.
Non-conservative forces are, therefore, also referred to as dissipative forces.

We now briefly describe some important non-conservative forces.

e Force of dry friction

You have already learnt about the forces of friction between two solid
surfaces in contact when the surfaces are at rest relative to each other
(force of static friction) and when they are in relative motion (force of
kinetic friction). These forces always act opposite to the direction of
motion of a given body (Fig. 10.10).

e Force of fluid friction

The force of friction which is exerted when a solid object moves in a
medium of gas or liquid is called the force of fluid friction. It acts
between the surface of the solid and fluid in contact and depends on the
relative velocity v of the object in the fluid medium. Examples are the
drag force exerted by the air (also called air resistance) when an object
moves in air or the viscous force when an object moves in water or any
other liquid (Fig. 10.11). For a wide range of values of v, the force of

fluid friction is given by

Fir(v) = Cqv + Cyv?

where C; and C, are constants for a given object in a given fluid. The

force of fluid friction also always acts opposite to v.

e Forces of inelastic deformations

Forces of inelastic deformation exerted on an object deform its surface
beyond elastic limits (Fig. 10.12). In such cases, the mechanical energy
is transformed into the internal energy of inelastic deformations.
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.......... Rnctier weil known sxameia of inaiastic deformation is that of 3 spring Tl
which is stretched or compressed beyond elastic limit. It does not restore
to its original length when the external force of deformation is withdrawn.
We say that the spring has undergone inelastic deformation. The forces
causing such deformations are non-conservative and are not precisely
defined. The work done by these forces can be estimated only indirectly,
i.e., by finding the deficit in total mechanical energy. Fig. 10.12: Force of

inelastic deformation.

In order to arrive at the general law of conservation of energy, we determine
how the work-energy theorem gets modified for systems on which both
conservative and non-conservative forces are exerted.

We write the total force on the system as the sum of the conservative forces
(F;)and the non-conservative forces (F,.):

F=F + (F) (10.11)

From the work-energy theorem, which applies to all kinds of forces, we get the
work done in moving a particle from point A to point B as:

B B B
Wiotas = JF.dF = jﬁc.df + jﬁnc.df = AK.E. (10.12)
A A A

You have learnt that the work done by a conservative force can also be
expressed in terms of the potential energy function (recall Eq. 10.1b).
Hence, we can write

B
Wigtas = — Ug + Uy + W,., where W, = jﬁnc.df (10.13)
A

Substituting Eq. (10.13) in Eq. (10.12), we get

Wiotat = — Ug + Up + Wpe = Kg — Ky (10.14)

Rearranging the terms in Eq. (10.14), we can write

KB + UB = (KA A UA) = WI‘IC (1015)

Work-energy theorem for
non-conservative forces

or Eg - Ea = AEmechanical = Whe (10.16)

where E, and Epg are the total mechanical energies of the particle at point A
and point B, respectively. Eq. (10.12) and Egs. (10.13) to (10.16) represent the
work-energy theorem for forces which have a non-conservative
component. If the work done by non-conservative forces is zero, these
equations give us the law of conservation of mechanical energy: Eg = Ej4.
Thus, we have enlarged the scope of the law of conservation of mechanical
energy:

Mechanical energy is conserved for a particle on which non-conservative

forces are exerted provided the work done by the non-conservative 139



James Prescott Joule

(4 December 1818 —

11 October 1889) and the
apparatus he used to
study the nature of heat,
and discover its
relationship with
mechanical work. His
work led to the theory of
conservation of energy
and the development of
the first law of
thermodynamics. He
also worked with Lord
Kelvin to develop the
absolute scale of
temperature and found
the relationship between
the current through a
resistance and the heat
dissipated, now called
Joule’s law.
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forces is zero. This point is reflected in the word ONLY in the statement of
the law of conservation of mechanical energy.

Let us now use the general work-energy theorem to arrive at the law of
conservation of energy.

The law of conservation of energy is an extension of Eq. (10.16) and the
work-energy theorem given by Egs. (9.7 and 9.16b). It is a very general law,
which applies to all forms of energy in an isolated system. Let us explain what
we mean by this statement.

You have studied so far that the work done by a given force can be
expressed as a change in some form of energy. For example,

o Work done by the force of gravity or the force of gravitation is expressed
as the change in the gravitational potential energy.

e Work done by the spring force in the elastic stretching of a spring is
expressed as the change in its elastic energy.

What about the work done by a non-conservative force such as friction?
What form of energy is it associated with? Let us find out.

What do we observe when the force of friction is exerted between two
surfaces? For example, what happens when a block slides across a rough
table? We observe that the block and the table get warmer. Or when we rub
two rough surfaces against each other, both of them get warm.

We say that mechanical energy gets converted into heat due to the force of
friction. How do we arrive at this conclusion?

We owe this understanding to the British physicist James Prescott Joule who
first demonstrated this and was the first to appreciate that heat itself
represents a form of energy.

Joule conducted a series of carefully done experiments on the heating of
water by a paddle wheel driven by a falling weight. He showed that the loss
of mechanical energy by friction is accompanied by the appearance of
an equivalent amount of heat. Thus, he concluded that heat must be a
form of energy and that the sum of the mechanical energy and the heat
energy of a system is conserved.

We can say that work done by the force of friction is expressed as energy
lost (or dissipated) as heat into environment.

If both spring force and friction are exerted on an object/system, the net work
done by the spring force and friction is expressed as the change in elastic
energy as well as heat.

It has been known for more than one hundred years that there are many
different forms of energy: mechanical energy, heat, gravitational energy,
elastic energy, electrical energy, sound energy, chemical energy, radiant
energy (due to light and other electromagnetic radiations), the energy of
nuclear forces, and the energy associated with mass. And we have a formula
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or an expression for each one of them. It is clear now that the concept of
energy is much wider than the simple idea of kinetic and potential energy of a
mechanical system. And therefore, the scope of the law of conservation of
energy extends to all forms of energy in the universe and applies to an
isolated system.

You may ask: What do we mean by an isolated system?

In an isolated system, neither energy nor matter can be transferred to or
from the system. This is the type of system for which the law of conservation
of energy holds.

We define the total energy of an object to be the sum of its mechanical
energy and all other forms of energy including thermal energy, chemical
energy, radiant energy (due to light and other forms of electromagnetic
waves), sound energy, etc. Then the change in the total energy is given by

AEtotar = AE mechanical + AE other (10.17)

LAW OF CONSERVATION OF ENERGY

1. The CHANGE in the total energy of an ISOLATED SYSTEM is zero if
all forms of energy are taken into account:

AEtotar = AE mechanical + AEother = 0 (10.18)

2. This means that

E = constant (10.19) Conservation of
energy

The TOTAL ENERGY of an ISOLATED SYSTEM is CONSERVED if all
forms of energy are taken into account.

The law of conservation of energy applies to isolated systems,
which means that we are neither taking out any energy or matter
nor putting in any energy in any form in the system. So when we
calculate the energy of an isolated system (to which we do not add
any energy or matter nor do we take away any energy or matter Don't forget
from it), the total energy of the system always remains constant.

In isolated systems, the loss in one form of energy will show up as a gain in
another form of energy. For example, a loss in kinetic energy due to the
decrease in speed because of friction will show up as an increase in heat
energy. Thus, the total change in energy (which is just the total of the
change in various forms of energy) of such a system will always be zero.
This is also expressed by saying that

Energy can neither be created nor destroyed. It changes or gets

transformed from one form to another. 141
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Fig. 10.13: Diagram for
Example 10.6.
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The law of conservation of energy is an extremely general law that
applies to all possible situations and processes: those involving
motion as well as thermal, chemical, electrical, nuclear, radiant
energy, etc. Motion is just one of the processes. The law of
conservation of energy is more meaningful in the context of a
system of particles rather than a single particle and applies to an
“isolated” system.

Let us now apply the law of conservation of energy to a physical situation.

EW‘PLE 10.6: LAW OF CONSERVATION OF ENERGY

A block attached to a spring slides horizontally on a surface, which has
some friction. The block is stretched by the spring from rest by the distance

d = 0.02m and then released. What is the speed of the block at the point
of equilibrium? The mass of the block is 1.0 kg and the spring constant is
500 Nm ™. The coefficient of kinetic friction Ly, =0.12 and g =10 ms 2.

SOLUTION H The KEY IDEA here is to choose the boundary of the
system so that it is isolated and then apply the law of conservation of
energy. We have to include the mechanical energy, elastic energy and
thermal energy due to the non-conservative force of friction while
determining the change in energy.

Refer to Fig. 10.13, which shows the spring-mass system. Applying
Eq. (10.18), we have AEiots) = AEmechanical + AEother = 0-

Since the block is attached to the spring, its total mechanical energy is the
sum of its kinetic energy, the gravitational potential energy and the elastic
potential energy. Also since the block is moving horizontally, it remains at
the same height and its gravitational potential energy does not change.

Therefore, (AP.E.)g,aV = 0and hence, the change in its mechanical
energy from its initial to final position is given by

m( o 2 k(.2 2
AE mechanical = AK.E. + (AP.E.)gpastic = E(Vf - Vi) + E(Xf - Xi)

Since the block is released from rest, v; = 0 and the block’s position at
equilibrium is x5 = 0. Therefore,

AE mechanical = % (mez) - %(k X,2)

Now since the force of friction is the only non-conservative force, we have

AEthermal = — Wy, where Wg = — (umg)d (v Fp = py Fy = nemg)

AEiota = %(mvfz) - %(kx,z) + p mgd =0

k x?
vF = [ mlj - 2u9d

Substituting the values given in the problem, we get v¢ = 0.39 ms ™"
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We end this unit by highlighting the problem solving strategy using the energy
approach. Fig. 10.14 tells you how to select proper energy equations.

Problem solving strategy using the energy approach

Conservation of mechanical energy:

REMEMBER: The law applies to particles or systems on which ONLY
conservative forces do work.

1. Identify the initial and final states of the system characterized by
positions and velocities. Use the subscript j or 1 for the initial state and
for 2 for the final state.

2. Choose the coordinate system for the problem and the reference level
for the potential energy depending on the type of conservative force
(gravity, spring force or gravitation, etc.).

3. List the initial and final kinetic and potential energies and identify which
ones are known and can be calculated and which ones are unknown.

4. Substitute the known and unknown kinetic energies and potential
energies (using Eq. 10.1b) in the law of conservation of mechanical
energy (Eqg. 10.8) and solve for the unknown quantities.

Conservation of energy:

REMEMBER: The law applies ONLY to isolated systems, that is,
systems on which the net external force is zero and no energy and matter
is transferred to or from the system.

1. ldentify the system that you wish to consider, and determine what is
internal to the system and what is external.

2. ldentify the initial and final states of the system characterized by
positions and velocities. Use the subscript j or 1 for the initial state and
for 2 for the final state.

3. Identify the non-conservative forces being exerted on the system and
determine the energy associated with them.

4. ldentify the known and unknown variables and use Eq. (10.18) to solve
for the unknown variable.

Are non-conservative forces involved?

No Yes

Use Eq. (10.8). Use Eq. (10.18).

Fig. 10.14: How to select the energy equation suitable for a given problem?

We now summarise the contents of this unit. 143
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10.6 SUMMARY

Concept Description

Conservative force B A force is conservative when the work done by this force on a moving
particle is independent of the path of the particle between the particle’s
initial and final positions: it depends only on the initial and final
positions and is the same whatever be the path connecting the two

points.
B_» FB_
IF .dr = -[F .dr = function of (rg) — function of (rg)
A I

A force is conservative when the total work done by this force along
any closed path (which starts and finishes at the same point) is zero.

Potential energy B The change in potential energy AU of a particle between any two
positions rg and ry is defined as the negative of the work done by a

conservative force in moving the particle from ry to rg:
AU = Ug - Up = U(Fg) - U(fa) = - [F.dF

Potential energy is defined only for conservative forces and only the
difference in potential energy is important. The potential energy of a
particle or a system of particles is also defined as the negative of the
work done when it undergoes a change in its position, shape or
configuration. It represents the capacity (of a particle or a system of
particles) to do work by virtue of the position, shape or the
configuration in space.

Conservation of m If work on a particle or a system is done only by conservative forces,
mechanical energy the total mechanical energy (sum of kinetic energy and potential
energy) of the particle or the system is conserved:

Ef = E,', where Ef = Kf +Uf and E,' = K,’ + U,'
Force from potential B The force corresponding to the potential energy function U(x) is given by
energy
du
F,o— - (x)
ax

Non-conservative force B A force that is not conservative is called a non-conservative force. For
such forces (friction, air resistance, resistance due to water, etc.), the
work done depends on the path being followed by the particle.
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Work-energy theorem for M |f the force being exerted on a particle has a non-conservative

conservative component _ ~ .
F=F + Fy¢

then the work-energy theorem for the force can be expressed as:

Wnc = AEmechanical
B
where Woe = anC.dF
A

and AEmechanicai = (K + Ur) — (K; + Uj)

Law of conservation of B The change in the total energy of an isolated system is zero if all
energy forms of energy are taken into account.

AEtota) = AEmechanical + AEthermai + AEother = 0
that is,

E = constant

The total energy of an isolated system is conserved if all forms of
energy are taken into account.

10.7 TERMINAL QUESTIONS

1. ldentify the conservative and non-conservative forces being exerted in
each of the following cases:

a) A block attached to a spring executes vertical oscillations and air
resistance is negligible.

b) A bird dives vertically downwards in a lake to catch fish. Resistance
due to water is finite.

¢) A motorcyclist travels uphill on a rough track against the direction of the
wind.

d) A box slides on a smooth slope with constant acceleration.

2. Suppose the total mechanical energy of an object is conserved. (a) If the
kinetic energy decreases, what must be true about its potential energy?
(b) If the potential energy decreases, what must be true about the kinetic
energy? (c) If the kinetic energy does not change, what must be true
about the potential energy?

3. Select the correct option from among the following and give reason for
your choice. The sum of potential and kinetic energies of a freely falling
body when air resistance is neglected

a) decreases.
b) increases.
c) remains constant.

d) approaches zero.
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Fig. 10.15
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e

Select the correct option. A diver is diving from rest from the diving board,
which is at a height of 15.0 m above the water. When she is 7.50 m above
the surface of the water, her

a) velocity is half of the velocity she will have when she touches water.

b) kinetic energy and her potential energy with respect to the surface of
the water are equal.

c) kinetic energy and linear momentum are equal.

d) linear momentum and potential energy are equal.

A ball of mass 100 g is thrown vertically downwards from rest from a
height of 10 m. Determine its kinetic energy, gravitational potential energy
and total mechanical energy at 10 m, 5.0 m and 0 m. Neglect air

resistance and take g =10 ms~2.

A block of mass m slides up without friction to the top of a ramp of height h
(see Fig. 10.15). What must be its initial minimum speed?

A labourer throws a brick (of weight 5.0 N) that leaves his hand at a
distance of 4.0 m above the ground. (a) Determine the work done by the
force of gravity when the brick has risen to a height of 4.5 m above the

ground. Include the correct sign for the work. (b) Determine the change in
the gravitational potential energy (AU = Ur — U;) of the brick.

A box of mass 100 kg is moved down an inclined plane from rest at a

height of 6.0 m and has a speed of 10 ms~" when it reaches the bottom.
2

Calculate the amount of heat energy produced. Use g =10ms™“.
A child of mass 25 kg slides from rest down a tree, a distance of 12 m. Her

speedis 6.0 ms™" just before she hits the ground. What is the average

force of friction acting on the child? Use g =10 ms~2.

A wooden cube is pushed across a rough floor at constant speed by a
horizontal force of 9.0 N. It moves a distance of 5.0 m. The temperature
of the cube is monitored as it moves and it is found that its thermal energy
increases by 25 J. What is the increase in the thermal energy of the floor
along which the cube slides?

10.8 SOLUTIONS AND ANSWERS

Self- Assessment Questions

1.

In Example 9.6, we have determined the work done by the spring force
(F = —kX)in stretching a spring by displacement X from x4 to x, to be

k(.2 2)
W =WwW_, =—E(x2—x1

Now suppose we stretch the spring by displacement x from x4 to x,
along a different path: we first compress the spring from x; to some
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position x3 and then stretch it to another position x4 before returning it to
the final position x,. The work done by the spring in this case would be

W=W ,3+Ws g+ Wi+ W 4+ Ws_»

X3 Xq X2 X4 X2
= [PRedx + [TReax v [ PRedx + [ Rodx v [ R
X1 X3 X1 X2 X4

Following the calculations of Example 9.6, you can see that

Wy ,3=-Wz ,qand W, 4, =- W, _,, sothat
k(2 2
W =W._, =—§(X2 —X1)

Since the work done by the spring force does not depend on the path, we
can say that the ideal spring force is conservative. You can also see that
the spring force satisfies the alternative definition of the conservative force
since

Wi 1= W0+ Wy 4

2. Since the work done by the spring force (IE = —kXx)in stretching a spring
by displacement x from x4 to x5 is

X
W = —I “kxdx = —E(xg = x12)
X, 2
from Eq. (10.1b), we can write U, — Uy = - W = g(xg —x12)
Once again if we choose the starting position to be x; = 0 and the
finishing position to be at x, = x, we can write U = %kxz. The potential

energy U = % k x? due to work done by or against the spring force with

reference to the equilibrium position at x = O is called the elastic potential
energy.

3. Let ] be along the upward direction. The height of 10 steps is 4.0 m. So
the height of each step is 0.4 m.

i) The height of the child from the ground is 4.0 m. So the child’s
gravitational potential energy with reference to the ground is

U=Mkgx 9.8ms2x4.0m =(39.2M)J ~ (39M)J

i) The height of the second step from the ground is (0.4m) x 2 = 0.8 m.
So the child’s potential energy with reference to the second step is

U=Mkgx 9.8ms2x(4.0m-0.8m) = (31.36M)J ~ (31M)J
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iii) The height of the fifth step from the ground is
(0.4m) x 5 = 2.0m. The child’s potential energy with reference to the

fifth step is
U=Mkgx 9.8ms 2 x(4.0m-2.0m) =(19.6M)J ~ (20M)J
iv) The potential energy of the child with reference to the second floor

which is at a height of 4.0 m from the child, when he is on the first
floor is,

U=Mkg x 9.8ms?x(0-4.0m) = — (39.2M)J ~ — (39M)J

The total mechanical energy of the diver when she jumps from a height of
h mis given by Eq. (10.4b),

E =K +U = %m x (1.5ms™M2 + m x 10ms™ x h (i)

which is the sum of her kinetic energy and the potential energy. Here m is
the mass of the diver. The final energy of the diver is just the kinetic
energy, since the potential energy is zero.

K: + Us = %m x (4.5ms 1y (ii)
Since total mechanical energy is conserved, we equate Egs. (i) and (ii).
%m x (1.5ms 2+ m x 10ms™ x h = %m x (4.5ms™1y?

[(4.5ms™'? — (1.5ms Y]

= 0.90m
2 x 10 ms*2

h =

2GM,,
——

m

where M,, = mass of the Moon and R,, = radius of the Moon.

Putting the values of G, M,, and R, we get

Vem =2.37x103ms™

Terminal Questions

1. a) The forces in this case are gravity and the restoring force of the spring,

both of which are conservatives forces.

b) The force of gravitation on the bird is conservative. The resistive force
due to water is non-conservative.

c) The force of gravitation on the motorcyclist is conservative. The force
of friction due to the rough track is non-conservative. Resistive force
due to wind is also non-conservative.

d) Since the slope is smooth, friction is absent. The only forces are the
forces of gravitation and the normal force, which are conservative.

2. The total mechanical energy is the sum of the kinetic energy and the

potential energy of the object. Therefore, if the total mechanical energy is
conserved then,
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b) If the potential energy decreases, the kinetic energy must increase.
c) If the kinetic energy does not change then the potential energy must

remain constant as well.

3. The correct option is (c) because the only force acting on a freely falling
body is the force of gravitation which is a conservative force. Therefore,
the total mechanical energy which is a sum of the kinetic and potential
energies is a constant.

4. The correct option is (b). Let m be the mass of the diver. At a height of
15.0 m above the water, her kinetic energy is zero since her speed is zero
and the total energy is just the potential energy: mgh = (147mJ). The
potential energy at a height of 7.50 m is (73.5 m) J. Since the gravitational
force is a conservative force, the total mechanical energy of the diver is
constant. So at every stage of the motion of the diver, the total
mechanical energy is (147 m) J. Since the potential energy at 7.50 m is
(73.5 m) J, the kinetic energy is [(147 — 73.5) m] J = (73.5 m) J, which is
equal to the potential energy.

5. At a height of 10 m, the gravitational potential energy of the ball with
respect to the ground is

U=0.10 kg x 10ms™ x 10m = 10J

Since the ball is initially at rest, its initial kinetic energy is zero. From
Eq. (10.7b), its total mechanical energy is E =10J + 0 =10J. Atthe
height of 5.0 m, the gravitational potential energy is

U=0.10kg x 10ms 2 x 5.0m = 5.0J

Since the force of gravitation is a conservative force, the total mechanical
energy of the ball, which is 10 J, is conserved. Hence, the kinetic energy
at5.0mis K = 10J - 5.0J = 5.0J. At the height of 0 m, the potential
energy is zero, and the kinetic energy is equal to the total mechanical
energy. Itis 10 J.

6. At the start of its motion the mass has only a kinetic energy: K; = %mu2

where u is the initial speed of the mass. The initial potential energy
U; = 0. At the maximum height, the kinetic energy is zero and the
potential energy is mgh. Using Eq. (10.8), we can write:

%mu2+0=0+mgh = u=,/2gh

4.5m
7. a) The work done by the laboureris W = IIE . df where F =-5.0Nj
4.0m
is the weight of the brick and dr = dyi is the displacement. Herej is the
unit vector in the direction of the displacement.
4.5m
W= j 50Ndy = — 5.0N x (4.5m — 4.0m)=—2.5J
4.0m 149
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10.

b) The change in the gravitational potential energy is the negative of the
work done and is therefore 2.5 J.

We calculate the change in the total mechanical energy of the system
using Eq. (10.16):

AE pmechanical =%>< (100kg)x (10ms™)? — (100 kg)x (10 ms 2)x 6.0 m

= 5000 J — 6000 J=-1000J =—1.0 x 10%J
. From Eq. (10.18), the amount of heat energy produced is 1.0 x 103 J.

Once again we calculate the change in total mechanical energy
AE ook =% 25 (6.0ms )2 — -2
meCh_Ex x(6.0ms™ ") 25kgx10ms ™ x12m

=450J - 3000J = -2550J

The work done against the average force of friction Fs. is 2550 J.
So F;.d=2550J where F;, =F; j and d=(12m)j

and Ff,=%N=2.1x102N

Let the system comprise the cube and the floor and let the force be

~

included in it. Then it is an isolated system. Let i be along the direction of
the force with which the cube is pushed. The work done by the force is

50m
W = J’9.0Ni. dxi = 45J
0

Since the cube moves with constant velocity, the change in its kinetic
energy is zero. The change in its mechanical energy equals the change in
its potential energy, which is the negative of the work done by the force.
Therefore, AE,,..y, = —45J. The change in the thermal energy of the
cube is 25 J. Since the total energy of an isolated system is conserved,
using Eq. (10.18), we can write,

~45J + 250 + AEJOOT . =0 = AERST . = 20J

where AEJSO . is the increase in the thermal energy of the

floor.

FURTHER READINGS
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Mechanics (Berkeley Physics Course, Volume I); C. Kittel, W. D.
Knight, M. A. Ruderman, A. C. Helmholz and B. J. Moyer; McGraw Hill
International Book Company (2017).

Fundamentals of Physics; D. Halliday, R. Resnick and J. Walker, Eighth
Edition; Wiley India Ltd. (2008).



Potential Energy and Conservation of Energy

TABLE OF PHYSICAL CONSTANTS

Symbol Quantity Value
c Speed of light in vacuum | 3.00 x 108 ms™’
1o Permeability of free 1.26 x 1078 NA2
space
€0 Permittivity of free space | 8.85 x 10712 C2NTm=2
1/4neq 8.99 x 10° Nm? C2
e Charge of the proton 1.60x 10719 C
-e Charge of the electron ~1.60x10"1° C
h Planck’s constant 6.63 x 107% Js
h hi2n 1.05 x 10734 Js
me Electron rest mass 9.11x 1073 kg
—e/mg Electron charge tomass | —1.76 x 10"’ Ckg_1
ratio
mp Proton rest mass 1.67 x 10727 kg (1 amu)
my, Neutron rest mass 1.68 x 10727 kg
aop Bohr radius 529x10 "' m
Ny Avogadro constant 6.02 x 1023 mol™"
R Universal gas constant 8.31 Jmol K1
kg Boltzmann constant 1.38x 10723 JK™!
G Universal gravitational 6.67 x 10~ Nm? kg_2
constant
Astrophysical Data
Celestial Mass (kg) Mean radius Mean distance from the centre
Body (m) of Earth (m)
Sun 1.99 x 10%0 | 6.96 x 10® 1.50 x 10"
Moon 7.35 x10%% | 1.74 x 106 3.84 x 108
Earth 5.97 x 10%* | 6.37 x 10° 0
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Unit 13 Motion under Central Forces

Unit 14 Dynamics of Many-particle Systems

Unit 15 Conservation Laws for Many-particle Systems

BLOCK 4: HARMONIC OSCILLATIONS

Unit 16 Simple Harmonic Motion

Unit 17 Superposition of Harmonic Oscillations
Unit 18 Damped Oscillations
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SYLLABUS: MECHANICS (BPHCT-131) 4 Credits

Vector Algebra: Geometrical and algebraic representation of vectors, Vector algebra; Scalar
and vector products; Derivatives of a vector with respect to a scalar.

First Order Ordinary Differential Equations: First order homogeneous differential equations
(separable and linear first order differential equations).

Second Order Ordinary Differential Equations: 2™ order homogeneous differential equations
with constant coefficients.

Laws of Motion: Frames of reference; Newton's Laws of motion; Straight line motion; Motion in
a plane; Uniform circular motion; 3-d motion.

Applications of Newton's Laws of Motion: Friction; Tension; Gravitation; Spring-mass system
— Hooke's law; Satellite in circular orbit and applications; Geosynchronous orbits; Basic idea of
global positioning system (GPS); Weight and Weightlessness.

Linear Momentum and Impulse: Conservation of momentum; Impulse; impulse-momentum
Theorem; Motion of rockets.

Work and Energy: Work and energy; Conservation of energy; Head-on and 2-d collisions.

Kinematics of Angular Motion: Kinematics of angular motion: Angular displacement, angular
velocity and angular acceleration; General angular motion.

Dynamics of Rotational Motion: Torque; Rotational inertia; Kinetic energy of rotation; Angular
momentum; Conservation of angular momentum and its applications.

Motion under Central Force Field: Motion of a particle in a central force field (motion in a
plane, conservation of angular momentum; constancy of areal velocity); Kepler's Laws
(statement only).

Dynamics of Many Particle Systems: Dynamics of a system of particles; Centre of Mass,
determination of the centre of mass of discrete mass distributions, centre of mass of a rigid body
(qualitative).

Conservation Laws: Linear momentum, angular momentum and energy conservation for
many-particle systems.

Simple Harmonic Motion: Simple Harmonic Motion; Differential equation of SHM and its
solutions; Kinetic Energy, Potential Energy, and Total Energy of SHM and their time averages.

Superposition of Harmonic Oscillations: Linearity and Superposition Principle; Superposition
of Collinear Oscillations having equal frequencies and having different frequencies (beats);
Superposition of Orthogonal Oscillations with equal and unequal frequency; Lissajous Figures
and their uses.

Damped Oscillations: Equation of Motion of Damped Oscillations and its solution (without
derivation); Qualitative description of the solution for Heavy, Critical and Weak Damping;
Characterising Damped Oscillations — Logarithmic Decrement, Relaxation Time and Quality
Factor.

Wave Motion: Qualitative Description (Wave formation and Propagation; Describing Wave
Motion, Frequency, Wavelength and Velocity of Wave; Mathematical Description of Wave
Motion).
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