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BLOCK 3:  ROTATIONAL MOTION AND MANY-PARTICLE SYSTEMS 
In Block 2 of this course, you have studied the basic concepts of kinematics and dynamics 
that include Newton’s laws of motion and the concepts of force, linear momentum, 
impulse, gravitation, work and energy. You have studied the laws of conservation of linear 
momentum and energy, which makes it easier for us to study complex mechanical 
phenomena. The discussion in Block 2 is about the translational motion of objects, in which 
the velocity of all points on an object remains the same. In this block, you will study 
angular/rotational motion of objects in which the motion is about some axis. There are 
many examples of such motion around us. The motion of wheels, ceiling fans and clock 
hands, as also the motion of planets around the Sun are all examples of angular/ rotational 
motion. In this block, you will study the related concepts of torque and angular momentum, 
the law of conservation of angular momentum and applications of this law.   

In your studies so far, you have represented each object, be it a ball, a car or even the Moon 
as a single particle. However, there are many situations in which we study the motion of 
systems of many particles. For example, the solar system comprising the Sun, the planets 
and their satellites, comets and asteroids is an example of many-particle system. So is a 
cylinder containing gas or a rigid body. In this block, we will discuss how the concepts of 
motion that you have studied so far and the laws of conservation of linear momentum, 
energy and angular momentum can be applied to many simple and complex physical 
situations involving the motion of two-particle and many-particle systems. An important 
application of these laws in two particle systems is in collisions, which scientists study to 
understand the properties of atomic and sub-atomic particles. This block has 5 units. 

Unit 11 deals with the kinematics of angular motion with a special focus on circular motion. 
You will learn about angular displacement, angular velocity and angular acceleration and 
how they relate to the corresponding variables in translational motion. Angular kinematic 
variables are convenient for the description of different types of angular motion, for example, 
the motion of planets around the Sun which you will study in Unit 13. In Unit 12, we discuss 
the concepts related to the dynamics of rotational motion. We focus on the dynamics of 
uniform and non-uniform circular motion. You will study the concept of torque, which 
explains why a particle moves the way it does in angular/rotational motion. We also 
discuss angular momentum and the law of conservation of angular momentum. This law 
can be used to explain, for example, why ice skaters can increase their speed while skating 
by drawing in their arms or why a collapsing star acquires a very high rotational speed. 

In Unit 13, you will study about the motion of objects under special kind of forces called 
central forces, in particular central conservative forces with a special focus on the inverse 
square force of gravitation. Motion under central conservative forces has some special 
properties, which will help you to understand qualitatively the motion of planets, their 
satellites and comets in the solar system. You will also see how Kepler’s laws of planetary 
motion, which you have also studied in school physics, are a simple consequence of 
Newton’s laws of motion and gravitation. 

In Unit 14, we consider the dynamics of two-particle and many-particle systems. When 
we apply Newton’s second law of motion to each particle in this system, it becomes a 
complex mathematical problem. However, the dynamics of these systems are simplified  
by introducing the concept of centre of mass. In this unit, you will learn how to describe the 
motion of two-particle systems in terms of the centre of mass and relative coordinates and 
extend the concept to many-particle systems.  



  
In Unit 15, you will learn how to express the linear momentum, angular momentum and 
energy of two-particle and many-particle systems. Then we present the conservation laws 
of energy, linear momentum and angular momentum for these systems. In particular, you 
will apply the laws of conservation of linear momentum and energy to study collisions of 
two particles.  

The concepts presented in this block may be new to you and the discussion at some 
places may be rather mathematical in nature. You may need to study them more than 
once to master them. Once again, please do work through all the examples and problems 
given in each unit on your own. 

We hope you enjoy studying the block and once again wish you success. 
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Structure 
11.1     Introduction 

Expected Learning Outcomes 

11.2 Kinematical Variables 
Angular Position 
Angular Displacement 
Angular Velocity and Angular Acceleration 

11.3 Direction of Angular Velocity and  
 Angular Acceleration 

STUDY GUIDE 

In this unit, you will study about the kinematics of angular motion and we mainly discuss uniform 
and non-uniform circular motion. You will revise the concepts of angular position, angular 
displacement, angular velocity and angular acceleration, which you have learnt in school 
physics. You will notice that these concepts are similar to the kinematical concepts used for 
describing translational motion. That is why we shall be using the terms “analogy” or “analogous to” 
when we discuss them in the unit. 

You may wonder: Why do we need to study these concepts? This is because just as every particle 
on an object in pure translation has the same velocity, every particle (with the exception of the 
particles on the axis of rotation) on an object in pure rotation has the same angular velocity. 
Therefore, describing rotational motion in terms of these angular variables is far easier. You will 
understand this point when you relate the two sets of kinematical variables. Secs. 11.3 and 11.4 may 
be new for you and you may need more time to study them. We shall be using the concepts related 
to vectors and suggest that you revise them before studying this unit.                                                     

11.4 Relating Variables for Angular and Translational 
Motion  

     Relating  and v 
Relating    and a for Non-uniform Circular Motion 

11.5 Summary 

11.6 Terminal Questions 

11.7 Solutions and Answers 

What is the acceleration of astronauts in 
the centrifuge used for training them?  You 
will find the answer to this question in this 
unit! 

“It is wrong to think that the task of physics is to find out how 
Nature is. Physics  concerns what we say about nature.”   Neils Bohr  

UNIT11

KINEMATICS OF
ANGULAR MOTION
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11.1   INTRODUCTION 

So far in this course, we have discussed translational motion of objects,  
that is, motion in which the velocity of all points on the object remains  
the same. We now consider angular or rotational motion of an object or a 
particle, in which it moves about some axis. The motion of the Moon in its 
orbit around the Earth, the motion of planets orbiting the Sun, the motion of  
the Earth about its axis are examples of angular/rotational motion. Circular 
motion is the simplest example of angular motion and is very common in the 
world around us. Any particle on an object rotating about its axis executes 
circular motion. Fig. 11.1 shows many objects, which rotate (turn) about some 
axis as they move. We come across such rotating objects everywhere  
around us.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 11.1: Objects around us that rotate about an axis. Any particle situated on them executes circular 
motion as they rotate about the axis. 



   Unit 11                                                               Kinematics of Angular Motion

You can see that some of the commonest rotating objects around us include 
wheels (of bicycles, buses, cars and trains, and potter’s wheel), ceiling fans, 
and clock hands. You are opening and shutting doors and books all the time 
and this involves rotating the doors or books about their axes. And of course 
we live on the Earth, which rotates around its axis and orbits the Sun. Rotation 
of objects is involved in many games and fun activities. For example, you may 
have taken joyrides on giant wheels, merry-go-rounds or the see-saw, ridden 
bicycles, or played with marbles and spinning tops. It is also involved in many 
other daily activities such as opening nuts, bolts or juice cartons by pulling the 
tabs. Why don’t you list some more such rotating objects around you?  

If you consider the motion of just one particle on any of these rotating objects, 
for example, on the tread of a tyre, the spinning top or the rotating Earth, what 
do you find? You can see that it follows a circular path (see Fig. 11.2). You 
have studied about uniform circular motion in Unit 6 and 7. In this unit, we 
further explore the kinematics of angular motion in Sec. 11.2. You will revisit 
the concepts of angular position, angular displacement, angular speed 
and angular acceleration, the kinematical variables used to describe angular 
motion. In Sec. 11.3, we briefly explain the vector nature of the angular 
quantities. Then in Sec. 11.4, we relate the kinematical variables for 
translational motion, namely, displacement, velocity and acceleration, to those 
for angular motion, viz. angular displacement, angular velocity and angular 
acceleration. We mainly apply these concepts to describe uniform and  
non-uniform circular motion, the simplest examples of angular motion, in 
terms of angular kinematical variables.  

In the next unit, we discuss the dynamics of angular/rotational motion and 
introduce the concepts of torque, rotational inertia and angular momentum, 
which play the same role in angular motion as force, mass and linear 
momentum in translational motion.  

Expected Learning Outcomes 

After studying this unit, you should be able to: 

 determine the angular position, angular velocity and angular acceleration 
of a particle executing uniform and non-uniform circular motion;  

 relate the angular displacement, angular velocity and angular 
acceleration of a particle in angular motion to its displacement, velocity 
and acceleration; and 

 solve problems related to the kinematics of uniform and non-uniform 
circular motion. 

11.2   KINEMATICAL VARIABLES   
As is usual in physics, we begin by considering the simplest form of angular 
motion, namely, circular motion. Suppose a particle moves in a circle of 
radius r about a fixed axis passing through the centre of the circle and 
perpendicular to the plane of the circle (Fig. 11.3).  

Fig. 11.3: A particle P 
moving in a circle in 
the counter-clockwise 
direction about a fixed 
axis. This axis is 
known as the axis of 
rotation. 

P  

   Axis of rotation  

Fig. 11.2: When an object 
rotates about an axis 
passing through it, all 
points on the object 
move in a circle. The 
centres of the circles lie 
on a straight line that is 
called the axis of 
rotation. 
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The fixed axis about which the particle moves in the circle is called the axis of 
rotation. You have learnt in Unit 6 that we need only a two-dimensional 
coordinate system to describe the motion of such a particle.  

Let us begin by defining the kinematical variables for describing angular 
motion, namely, angular position, angular displacement, angular speed 
and angular acceleration just as we define displacement, speed and 
acceleration for translational motion. 

11.2.1    Angular Position 

Let us choose the xy coordinate system to describe the motion of the particle 
of Fig. 11.3 and attach it to the plane of the circle in which the particle moves. 
Let the particle move counter-clockwise in the circle. Fig. 11.4 shows the 
motion of the particle when we observe it from some point above the plane of 
the circle. Let the particle start moving counter-clockwise at the instant 0t  
from a point A on the positive x-axis, which we take as the reference axis. 
Suppose it is at point P at any instant t (Fig. 11.5). Let r  be the position 
vector of the particle with respect to the centre of the circle O.  

Let us now define its angular position (Fig. 11.5). We measure the angular 
position of the particle with respect to the reference x-axis. We take the 
position of the particle at point A on the reference axis to be the zero angular 
position. Then the angle  defines the angular position of the particle at any 
instant t with respect to the reference axis (the positive direction of the x-axis). 
Note that  is the angle between the position vector of the particle and the 
reference axis. In the time interval t, the particle travels along the circular arc 
AP. The arc extends from the zero angular position to the angular position of 
the particle at the instant t. Let us denote the arc’s length AP by s.  

Then we define the angular position for circular motion as follows:  

                              

 

 

 

 
 
 
 
 
 The angle  defined by Eq. (11.1) is measured only in radians and 

not in degrees or revolutions. Radian is written in short as rad. 
Always convert  into radians. 

Angular position 

x 

y 

A 

P 

O 

s r

Fig. 11.5: The  angular 
position  at an instant t 
of the particle of  
Fig. 11.4. ANGULAR POSITION FOR CIRCULAR MOTION 

The angular position of a particle in circular motion at any instant of time t 
with respect to the positive x-axis passing through the centre of the circle 
(Fig. 11.5) is given by the angle . It is the angle that its position vector 
(with respect to the centre of the circle) makes at that instant with the axis. 
It is given by 

                     ( is measured in radians)s
r

                (11.1)  

where s is the length of the circular arc travelled by the particle in time t 
and r, the radius of the circle.  

Fig. 11.4: Particle in 
circular motion as 
seen from a point 
above the plane of the 
circle. 

x 

y 

A 
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The radian is a ratio of two lengths and hence, it is a pure number (that is, it is 
dimensionless). Since the circumference of a circle of radius r is 2 r, for one 
revolution in the circle, Eq. (11.1) gives us:  

           21 revolution 2 rad 360r
r

      (11.2a)                                                  

So, there are 2  radians in one complete revolution of a circle.  

           360 11 rad revolution
2 2

3601 rad
2

rev
22

 (11.2b) 

Moreover, if the particle moves more than once in the circle, we do not reset 
the value of  to zero every time it crosses the reference axis. It takes the 
increased value every time.  

For example, if the particle completes 2 revolutions from the zero reference 
position, its angular position is given by 2 2 rad 4 rad.  If it completes 
3 revolutions from the zero reference position, its angular position is given by 
3 2 rad 6 rad,and so on. If it is at an angle  with the reference line 

after completing 2 revolutions, its angular position is given by 
2 2 rad 4 rad.What is its angular position if it is at an 

angle  after completing 4 revolutions around the circle? It is 
4 2 rad 8 rad. Thus, the angular position of a particle at 

an angle  after completing n revolutions around the circle is given by 
2 rad.n

Just as the position x of a particle can take positive and negative values, its 
angular position  can also be positive or negative (Fig. 11.6). Since the 
particle can move in a circle in only two ways: clockwise or counter-
clockwise, we adopt the following sign convention for : 

 

 

 

 

 

 

 

 

Recall from school physics that if you know x(t), that is, the particle’s position 
as a function of time, you can determine its velocity, acceleration and know all 
there is to know about its motion. 

You can memorise the 
phrase “clocks are 
negative” to 
remember this sign 
convention.  

Relation between 
degrees and radians 

By convention,  is positive for counter-clockwise circular motion 
and negative for clockwise motion.  

Fig. 11.6: The angular position  is a) positive for the particle moving  
counter-clockwise in the circle; b) negative for the particle moving 
clockwise in the circle.

(a) (b) 

x 

y 

A 

P 

O 

P 

x 

y 

A O 
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In the same way, if we know (t), that is, the particle’s angular position as a 
function of time, we can know all there is to know about its angular motion.  

We can determine its angular displacement, and hence angular velocity 
and angular acceleration.  

11.2.2    Angular Displacement 
Consider the particle shown in Fig. 11.5 or Fig. 11.6a. Note that it is 
moving counter-clockwise in the circle. Its angular positions at the 
instants 1t  and 2t  are given by 1  and 2  as shown in Fig. 11.7.  

Then its angular displacement is given by 

            (11.3)              

The sign convention for angular displacement is the same as that for angular 
position. 

              

 

Let us now consider an example for determining angular displacement.  

 

 
 

2 1 ( is measured in radians)Angular displacement 

Angular displacement is positive for counter-clockwise circular 
motion, and negative for clockwise circular motion. It is measured 
in radians.   

     XAMPLE  11.1:  ANGULAR DISPLACEMENT  

A point at the edge of a rotating compact disc (CD) of radius 6.05 cm 
moves from position A to position B in the time interval t (Fig. 11.8a). 
What is its angular displacement in this time interval? It is given that the 
arc lengths of these two positions with respect to the horizontal reference 
line are 2.00 cm and 6.00 cm, respectively. 

SOLUTION  The KEY IDEA here is to use Eq. (11.1) to determine the 
angular positions in radians and then use Eq. (11.3) to determine the 
angular displacement.  

Let us look at the rotating CD from above and draw the coordinate axes as 
shown in Fig. 11.8b. From Eq. (11.1), we get 

1
2.00 cm 0.331 rad,
6.05 cm

s AP
r OP

    

2
6.00 cm 0.992 rad
6.05 cm

BP
OP

Hence, 2 1 0.992 0.331 rad 0.661 rad. It is positive 
because the point is moving in the counter-clockwise direction. 

At 2t  

1 2  

y 

At 1t  

O 
x 

Fig. 11.7: The angular 
displacement of a particle 
moving counter-clockwise  
in a circle. Here we show  
only the arc of the circle. 

Fig. 11.8: Angular 
displacement of a 
point on a rotating 
CD. 

(a) 

(b) 

A 

B 

y 

P 
x O 

A 

B 
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Consider a point on any of the rotating objects in Fig. 11.1. Determine the 
angular displacement for the following angular positions of the point: 

1  rad + 5 + 7  5  3  5 

2 rad + 12  2 + 2  4  1 

At 2t  

1 2  

y 

At 1t  

O 
x 

Fig. 11.9: The angular 
displacement of a  
particle moving  
counter-clockwise  in a 
circle. Here we show only 
the arc of the circle. 

 

SAQ  1 –  Angular displacement 
 
 
 
 
 
 
 
Let us now define the angular velocity and angular acceleration of a particle in 
circular motion. 

11.2.3    Angular Velocity and Angular Acceleration 
Consider the particle motion shown in Fig. 11.7 repeated here as Fig. 11.9 for 
ready reference. Its angular positions at the instants 1t  and 2t  are given by 1  
and 2, respectively. We first define the average angular speed avg  of the 
particle in the time interval t  from 1t to 2t  as follows: 
 

  (11.4) 
 

The SI unit of angular speed is radian per second and is written as 1rads .  
The other units used for angular speed are revolutions per second ( 1rev s ) 
and revolutions per minute (rev/min or rpm). You may have seen the angular 
speed of old musical records given in units of rpm, for example, 45 rpm,                  
78 rpm, etc. We now define the instantaneous angular speed, which is 
termed angular speed. We denote it by the Greek symbol . Note that it is the 
magnitude of the instantaneous angular velocity. We shall define the 
direction of the angular velocity in the next section. 

 

 

 

 

 

 

Thus, if we know ( ),t  that is the angular position  as a function of time, we 
can obtain the angular speed by differentiating it with respect to t. Henceforth, 
we shall refer to the instantaneous angular velocity as angular velocity. The 
angular velocity of an object can be positive or negative: 

 

 

2 1

2 1
Average angular speed avg t t t

 

is a Greek symbol, 
which is pronounced 
as omega.  

 Particle moves counter-clockwise: Angular velocity is positive. 

 Particle moves clockwise:  Angular velocity is negative. 

    Angular speed 

1 revolution 2 rad,2 rad  

(2 )rad
1 rpm

60 s
)rad(2

1 rpm
6

1 60
1 rads rpm

2
 

ANGULAR SPEED 

The magnitude of the instantaneous angular velocity  (called the 
angular speed) is the limit of the ratio in Eq. (11.4) as t tends to zero: 

                          0lim t
d

t dt
       (11.5) 

It is the rate of change of with time.  

Average angular speed 
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If the angular velocity of a particle changes with time, then the particle has a 
non-zero angular acceleration (just like an object that has a changing 
velocity has non-zero acceleration). Suppose the angular speeds of the 
particle in Fig. 11.9 at the instants 1t  and 2t  are given by 1 and 2,  
respectively.  We define the magnitude of the average angular acceleration 
of the particle in the time interval t  from 1t to 2t as follows: 

 
       (11.6) 
 

The SI unit of angular acceleration is 2rads .   

 

 

 
 

Thus, if we know ( ),t  that is,  as a function of time, we can obtain the 
angular acceleration by differentiating it with respect to t. Recall the equations 
of kinematics for particles moving with constant acceleration from school 
physics. In the same way, we can write the equations of kinematics for 
angular motion with constant angular acceleration as follows: 

  

 

 

 
 

Let us now apply Eqs. (11.8a to c) to determine the angular position, angular 
speed and angular acceleration of particles.  

 

2 1

2 1
Average angular acceleration avg t t tavg t 1t t1t

2 11     

EQUATIONS OF KINEMATICS  

Angular motion constant  Linear motion constanta

0

2
0 0

2 2
0 0

1
2

2 ( )

t

t t

(11.8a) 

(11.8b) 

(11.8c) 

0

2
0 0

2 2
0 0

1
2

2 ( )

v v at

x x v t at

v v a x x

is a Greek symbol, 
which is pronounced 
as alpha.  

Angular acceleration

     XAMPLE  11.2:  AVERAGE ANGULAR SPEED  

a) A grinding stone completes 50 clockwise revolutions in 10 s.       
Determine the average angular speed of a particle on it.  

SOLUTION  The KEY IDEA here is to use Eq. (11.4) to determine the 
angular speed along with Eq. (11.2a) since is to be in radians.  

ANGULAR ACCELERATION 

The magnitude of instantaneous angular acceleration (called the 
angular acceleration) is the limit of the ratio in Eq. (11.6) as t tends to 
zero: 

                          0lim t
d

t dt
lim

d0t tt
dd        (11.7) 

It is the rate of change of with time.  

Notice from Eqs. 
(11.8a to c) and the 
corresponding 
equations for straight 
line motion that the 
angular position  is 
analogous to position 
x, the angular velocity 

 is analogous to 
velocity v and the 
angular acceleration 

 is analogous to 
acceleration a. Thus, 
angular motion with 
constant angular 
acceleration is 
completely analogous 
to straight-line motion 
with constant 
acceleration. 
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For a particle on the grinding stone  

               2s)revolution50(  rad  2101.3rad314  rad 

The minus sign here indicates that the grindstone and the particle on it 
is rotating clockwise. The average angular speed of the particle is:  

1 1314rad 31.4 rads 31 rads
10savg tavg

13144rad 31.4 rads 31
10s

314
tt

111

b) The blades of a helicopter rotate clockwise with an average angular 
speed of  1rads50  (Fig. 11.10). Consider a particle on the tip of a 
blade. What is its angular position after 10 s if its initial angular position 
is  rad?12   

SOLUTION  The KEY IDEA here is to use Eq. (11.8b) to determine 
the angular displacement. 0,  since 0 is constant and :s10t     

0 0
112rad (50 rads 10s)1

0 12rad (50 rads 1011
0t  

2512 rad 5.1 10 rad2512 rad 5.1 102  

Note that the angular 
speed will be the 
same for all particles 
situated on a rotating 
object (except for 
those on the axis of 
rotation). This is the 
advantage of using 
angular variables to 
describe angular 
motion. 

     XAMPLE  11.3:  CONSTANT ANGULAR ACCELERATION  

A bicycle wheel is rotating counter-clockwise with a constant angular 
acceleration of .rads0.2 2  The angular speed of a particle on the wheel 

at the instant 0t  is .rads0.5 1   

a) What will its angular speed be at s?0.5t   

b) Suppose a spoke of the wheel is horizontal at the instant 0.t  What 
is the angular position of a particle on the spoke at s?0.5t  How 
many revolutions has it completed during this time interval?  

c) What is the angle that the spoke makes with the horizontal at s?0.5t  

SOLUTION  The KEY IDEA here is that angular acceleration is constant 
and we can use the equations of kinematics (Eqs. 11.8 a to c) for angular 
motion. We also make use of the fact that all particles on the rotating 
wheel move with the same angular speed. 

a) The angular speed of the particle on the wheel at s0.5t  is given by 
Eq. (11.8a): 0 t     

1 2 15.0rads (2.0 rads ) (5.0s) 15 rads1 2 15 rads5.0rads (2.0 rads ) (5.0s) 151 2(2 0 rads ) (5 0s) 151 225   

b) The angular position of the particle on the spoke of the wheel at  
5.0st 5.0 is given by Eq. (11.8b). Here 0 0.  

1 2 21(5.0rads ) (5.0s) (2.0 rads ) (5.0s) 50 rad
2

1 21 2(5.0rads ) (5.0s) (2.0 rads ) (5.0s) 502
2

1 21) (5 0s) (2 0 rads )1 21  

      The number of revolutions can be determined from Eq. (11.2b): 

                          150 rev 7.95rev
2

rev0.8

Fig. 11.10: Average 
angular speed of a 
particle on the tip of a 
rotating helicopter 
blade. 
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a) A disc of radius 1.0 m rotates by 50  about an axis passing through its 
centre and perpendicular to its plane. What is the distance travelled by 
its centre?

b) The average angular acceleration of a stone lodged in a rotating car 
wheel is 2150 rads .  What will the stone’s final angular speed be after 
2.0 s, if it starts from rest? 

 

 

 
 
 

 

 

You may like to practice using the equations of kinematics for angular motion 
before studying further. Try the following SAQ.  

SAQ  2 –  Angular speed and angular acceleration 
 
 
 
 

 

 

In our discussion so far, you must have noted that we have referred to angular 
displacement, angular velocity and angular acceleration. You would also 
have noted that we took angular displacement as positive if the particle moved 
counter-clockwise in circular motion and negative if it moved clockwise. In this 
sense, we have defined the direction of angular displacement.  

You may like to know: Can we also define a direction for angular velocity 
and angular acceleration?  This is what you will learn in the next section.  

. DIRECTION OF ANGULAR VELOCITY AND 
ANGULAR ACCELERATION 

You must have noted that we have associated angular quantities with 
particles or objects rotating about some axis. Therefore, we define their 
directions in a different way from those of displacement, velocity and 
acceleration.  

You have seen that rotations about a fixed axis seen along the axis are 
either clockwise or counter-clockwise.  

We follow the right-hand rule to determine which of these is associated  
with positive direction of angular velocity and which one with the negative 
direction.  

Let us define the direction of angular velocity using the right-hand rule. 

c) The particle as well as the spoke turns through 7 complete revolutions 
in 5.0s plus an additional 0.95 rev, which in radians is equal to 

              10.95 rev (0.95 rev) (2 rad.rev ) 5.97rad  

and in degrees is equal to  

0.95 rev (0.95 rev) (360 ) 342

The spoke turns by an angle of 342 in the last revolution. Hence, the
angle that the spoke makes with the horizontal is 342  or also 18 . You 

can understand this point from Fig. 11.11. 

18

horizontal

Fig. 11.11: Angle made 
by the spoke of the 
wheel with the 
horizontal is 342   
or   18 . 

In this course, we shall 
mainly consider 
angular or rotational 
motion about a fixed 
axis. For such cases, 
we do not need to 
take into account the 
vector nature of 
angular quantities.  
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How do we determine the direction of angular acceleration? Since angular 
acceleration is directed along the change in angular velocity, this is how we do 
it.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Unit 6, you have studied uniform circular motion and learnt about the 
centripetal acceleration that a particle experiences when it travels with a 
constant speed v in a circle of radius r. In this unit, you have learnt about 
angular variables for a particle moving in a circle of radius r. You may like to 
know: What is the relation between the variables v, a for translational 
motion and angular variables , ? 

DIRECTION OF ANGULAR VELOCITY 

The right-hand rule for determining the direction of angular velocity: Curl 
the fingers of your right-hand around the axis of rotation so that the 
fingers point in the direction of rotation. Your extended thumb points 
along the axis in the direction of the angular velocity vector  
(Fig. 11.12). Angular velocity is positive for counter-clockwise angular 
motion and negative for clockwise angular motion. 

DIRECTION OF ANGULAR ACCELERATION 

For rotation about a fixed axis, the direction of angular acceleration is 
along the axis of rotation and the same as that of the change in the 
angular velocity (Fig. 11.13).  

Thus, if the magnitude of the angular velocity is increasing, the 
angular acceleration vector points along the angular velocity vector.  

If the magnitude of the angular velocity is decreasing, the angular 
acceleration vector points opposite to the direction of the angular 
velocity vector.  

No part of the rotating object moves in the direction of the 
angular velocity vector. In translational motion, this is not the 
case as we expect motion to be along the direction of a vector. 

  

    

  

Fig. 11.13: The direction of the angular acceleration vector  of a rotating 
object is a) along the angular velocity vector if the angular speed 
increases; b) opposite to the angular velocity vector if angular 
speed decreases. 

(a) (b) 
Fig. 11.12: The direction of 
the angular velocity vector 

 of a rotating object is 
given by the right-hand 
rule. 

g

 

Direction of rotation  
of the wheel 

Direction of rotation 
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VARIABLES IN ANGULAR AND TRANSLATIONAL MOTION  

Spread out your arms and spin around like a dancer about a vertical axis 
passing through your body. Or else, you could put a bicycle on its stand as 
shown in Fig. 11.14 and rotate the bicycle wheel. Can you find out which 
point on your body or the bicycle wheel moves the fastest? Is it a point 
nearer the axis of rotation (for example, a point on your shoulder or a point 
near the wheel’s axis)? Or is it a point farther away from the axis of rotation 
(for example, a point on your fingertip or a point on the wheel’s rim)? 

11.4 RELATING VARIABLES FOR ANGULAR 
AND TRANSLATIONAL MOTION  

You may get an intuitive feel for the relation by trying the following activity or 
have someone do it for you:  

 

 

    

 

 

 

 
You can get the answer by determining v for the two particles as follows:  

Let us consider two particles 1 2andP P  on the rotating wheel at distances 

1 2and ,r r respectively such that 1P  is closer to the axis of rotation ( 1r 2r ) 
as shown in Fig. 11.15. Note that the farther away a point is from the axis of 
rotation, the larger is the radius of the circle in which it is moving and hence 
the larger is the circumference (2 )r of the circle. Since both particles 
( 1 2andP P ) are moving in the circle with the same angular speed, the time 
taken by them to complete one revolution is the same. This means that 
both particles travel different distances 1 2(2 and 2 )r r in the same time. Now 
you can answer the question: Which particle 1 2( or )P P will have the greater 
speed? The answer is that particle 2P will have greater speed 2.v  This is 
because it travels greater distance than 1P  in the same amount of time T (the 
time taken to complete one revolution around the circle). Hence, 

                 2
2

2 r
v

T
1

1
2 r

v
T

(for 2r 1r )

Thus, the farther a particle is from the axis of rotation, the greater is its 
speed/velocity although its angular speed or angular velocity is equal to that of 
other particles.  

How do we express this result in general terms? 

11.4.1    Relating  and v 

Consider a particle moving in a circle of radius r. Recall Eq. (11.1), which 
relates the angle of rotation ( ) of a particle with respect to a reference axis 
with the length of the corresponding circular arc (s) and the radius r:  Using 
Eq. (11.1), we can write:      

          s r  (11.9a) 

Fig. 11.14: In a rotating            
body, the velocity of points       
farther away from the axis         
of rotation is greater than  
the points nearer the axis. 

Fig. 11.15: The velocity 
of point P2 at a distance 
r2 from the axis of 
rotation is greater than 
that at the point P1 at a 
distance r1 since r2  r1. 

1P  

2P  

Activity 
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Since s is the distance travelled by the particle along the arc, Eq. (11.9a) 
gives the relation between angular displacement and distance travelled. 
Remember that the angle  is measured in radians. If we differentiate                  
Eq. (11.9a) with respect to time and note that r is constant for a circle, we get 

                   ds dv r r
dt dt

 (11.9b) 

Here  is measured in 1rads .  For motion in a circle, the velocity of the 
particle is directed along the tangent to the circle. Hence, we also refer to v 
for circular motion as tangential speed and denote it by .tv  At this stage, we 
would like you to recall Eq. (6.11) from Unit 6, which relates the speed v of the 
particle with its time period T. We repeat it here.  

                               2 2orr rv T
T v

           (11.9c) 

Substituting v from Eq. (11.9b) in Eq. (11.9c), we get an important result 
relating the time period and angular speed: 
 

                                                  (11.10) 
 

Now that we have related  and s, and  and v, you may like to know: What 
is the relation between and a for non-uniform circular motion? 
 
11.4.2    Relating  and a for Non-uniform Circular 

Motion 

You might say that we can use Eq. (6.9c) for a  and substitute for v from             
Eq. (11.9b) in it to obtain the relation that we want. What do we get? We get 

a r r
2 2

2 2ˆ ˆ andr r
v vr a r
r r

(11.11) 

Note that the direction of ar  is towards the centre of the circle at  

all instants of time, which is why it is called the centripetal acceleration.  

But as you can see, this equation does not contain  in it. We, therefore, go 
back to the first principles and see what result we get. There is a finer point in 
relating the two accelerations, which you will understand by the end of this 
section.  

Note that we are considering non-uniform circular motion (that is, the 
angular speed of the particle is changing with time and it has a finite 
angular acceleration).  

Since  changes with time, the speed v  given by Eq. (11.9b) also changes 
with time. Let the particle’s speed be 1v  at the instant of time 1t  and 2v at a 
later instant of time 2.t   

2T      Time period 

    Centripetal acceleration 
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Then the average acceleration of the particle in the time interval 2 1t t t  
is given by 

              2 1 2 1
av

v v r r ra
t t t

  (11.12) 

Note that both 2v and 1v  are speeds, that is, the magnitudes of the velocity 
and ava  above represents the average acceleration or average change in 
speeds at the respective instants of time. In the limit as 0,t  Eq. (11.12) 
gives the instantaneous acceleration directed along the tangent. Denoting 
its magnitude by ,ta  we can write 

                       2 1
0 0lim limt t t

v v ra
t t

 

or (11.13)

 

Note that the acceleration with magnitude ta  given by Eq. (11.13) is different 
from the centripetal acceleration given by Eq. (11.11), because it is directed 
along the tangent to the circle towards the change in the magnitude of 
velocity (v).  

We call this as tangential acceleration or the tangential component of 
acceleration. This arises due to change in the magnitude of the velocity  
and it is therefore zero for uniform circular motion. We denote it by at  and 
the centripetal acceleration by a .r We can summarise this result as follows: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let us put all the results relating the angular and translational variables 
together for non-uniform circular motion.  

t
dv da r r
dt dt

 Tangential acceleration

Fig. 11.16: Acceleration  
of a particle P in               
non-uniform circular 
motion has two 
components: radial 
component arand 
tangential component 

.at 

ra  

P 
ta  

The acceleration of a particle in non-uniform circular motion has two 
components: radial and tangential (see Fig. 11.16).  

The radial component arises due to the change in the direction of 
velocity. It is directed along the radius towards the centre of the circle 
and its magnitude is given by 

                                   
2

2
r

va r
r

           (11.14a) 

The tangential component arises due to the change in the magnitude 
of velocity. It is directed along the tangent to the circle and points 
towards the change (increasing or decreasing) in speed. Its magnitude is 
given by  

ta r (11.14b)

ACCELERATION IN NON-UNIFORM CIRCULAR MOTION 
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In this case r is constant but w is changing, that is, a is non-zero:  

                                    s r      (11.15a) 

                                   v r      (11.15b)

The velocity vector is along the tangent to the circle pointing towards the 
direction in which the particle moves in the circle (Fig. 11.17a). The 
acceleration of the particle has two components (Fig. 11.17b): 

i) The radial or centripetal acceleration component directed along 
the radius towards the centre of the circle with magnitude given by   

2
2

r
va r
r

(11.15c)

ii) The tangential acceleration component directed along the tangent 
to the circle pointing towards the change (increasing or decreasing) 
in speed with magnitude given by 

ta r (11.15d) 

The resultant acceleration of a particle in circular motion will be the 
vector sum of the radial and tangential accelerations and we express the 
acceleration for non-uniform circular motion as follows: 
 

          2 ˆˆ2 ˆˆa a a rr t r r   (11.16a) 

where           2 ˆ2 ˆa rr r (11.16b)

and               ˆ̂at r (11.16c) 

Here  

r̂ :  the unit vector in the radial direction pointing away from the centre 
of the circle (see Fig. 11.18a).  

ˆ :  the unit vector perpendicular to r̂ along the tangent in the direction 
shown in Fig. 11.18a in the direction of increasing . 

Also    2 2 2 2 2( ) ( )2 2 2 2 2( ) ( )2 2
r ta a a r r            (11.16d) 

  2tan 222
t

r

a
a

             (11.16e) 

Here  is the angle that the acceleration vector a makes with the radial 
direction.  

NON-UNIFORM CIRCULAR MOTION 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 

  
 

 
 
 
 
 
 
 

Fig. 11.17: a) The direction  
of the velocity vector; b)  
the radial and tangential 
components of the 
acceleration in non-uniform 
circular motion. 

(a) 

(b) 

The negative signs in   
Eqs. (11.16a and 
11.16b) indicate that 
the radial (or 
centripetal) 
component of the 
acceleration is 
directed opposite to 
the unit vector r̂.  
This is because of the 
way we have defined 
the direction of this 
unit vector.  
The tangential 
component is also 
called the transverse 
component. 

ra  

P 
ta  

P 
v  
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 ˆ :  the unit vector perpendicular to r̂  in the tangential direction 
pointing towards the direction of increasing angle .  

Also    2 2 2 2 2( ) ( )r ta a a r r             

       2tan
r

t
a
a               

Here  is the angle that the acceleration vector a  makes with the radial 
direction. 

Time period The time period or the time taken by the particle to move once in the 
circle is given by  

                        2 2rT
v

    

11.6  TERMINAL QUESTIONS 
 

1. A bicycle travels 141 m along a circular track of radius 15 m. What is  
the angular displacement in radians of the bicycle from its starting 
position? 

2. A merry-go-round makes 2 complete revolutions every 6 minutes. What is 
its angular speed in radian per second? 

3. The initial angular speed of a fan is .srad12 1  The power to the fan is 
increased so that it acquires a constant angular acceleration of 

.srad0.2 2 What is the angular displacement of a point on it after 3.0 s? 

4. A girl is sitting on a giant wheel that makes 1 revolution every 5 seconds. 
To bring the giant wheel to a stop, the operator puts on a brake that 
produces a constant acceleration of .srad0.1 2

a) If the girl is sitting at a distance of 4.0 m from the centre, what is  
her speed when the wheel is turning at the rate of 1 revolution  
every 5 s?  

b) How long does it take before the giant wheel comes to a stop?  

c) How many revolutions does the giant wheel make by the time it comes 
to a stop?  

d) How far does she travel in the time that the wheel takes to stop?  

5.  A bicycle wheel of radius m0.2r starts from rest and a particle on its 
rim moves a distance of 20 m in 20 s. Calculate  

a) the angular displacement of the particle, and 

b) its average angular velocity in the time interval of 20 s. 

6. A merry-go-round starts from rest and attains an angular speed of 0.5 rpm 
in 2 minutes. What is its angular acceleration in 2rads ?              
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7. A ball attached to a string starts from rest and undergoes a constant 
angular acceleration as it travels in a horizontal circle of radius 0.30 m. 
After 0.65 s, the angular speed of the ball is 9.7 1rads .What is the 
tangential acceleration of the ball?  

8.   The Earth rotates about its axis once in approximately 24 hours and orbits 

the Sun once a year (or 1365
4

days) in a nearly circular orbit. What is the 

average angular speed of a particle on the Earth’s surface as it (a) rotates 
on its axis and (b) orbits the Sun? In each case take the direction of the 
Earth’s rotation to be the positive direction of angular displacement.  

9. A ball has an angular velocity of 1srad0.5 counterclockwise. After the 
ball rotates by an angle of 4.5 rad, it has an angular velocity of 1srad5.1  
clockwise. Determine the angular acceleration of the ball and the time it 
takes to attain this angular velocity.  

10. A grinding wheel starts from rest and attains a constant angular 
acceleration of  .srad0.2 2  What is the magnitude of the acceleration of 
a particle situated 1.0 m from the axis at 2.0s?t 2.0   

11.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions

1. We use Eq. (11.3) to find the angular displacement . 
 

1  rad + 5 + 7  5  3  5 

2  rad + 12  2 + 2  4  1 

2 1 rad 7  9 7  1 4 

2. a) The centre does not move. Distance travelled by it is zero. 

 b)  We use Eq. (11.8a) with 1 2
0 0rad s , 2.0s and 150 rad st  

  The final angular speed is 2 2 1150 rad s 2.0s 3.0 10 rad s   

3. In the answer to SAQ 2b, we have found the angular speed at s0.2t  to 

be .rads100.3 12  Therefore, its speed after 2.0 s is 

 2 1 10.10m 3.0 10 rads 30 msv r 1 10 ms20.10m 3.0 10 rads 302 1 301r  

The acceleration has both radial and tangential component and from    
Eqs. (11.15c, 11.15d and 11.16a), these are: 

2 2 1 2 3 2(3.0 10 rads ) 0.10m 9.0 10 msra r 1 2 3 2ms32(3.0 10 rads ) 0.10m 9.0 102 1 2 3) 0 10m 9 0 101 2 322 r2  

 2 2150 rads 0.10m 15msta r 2 25ms150 rads 0.10m 152 0 10m 152r  
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The acceleration is 

a a a r2 ˆˆr t r r

ˆ)ms15(ˆ)ms100.9( 223 r

Terminal Questions 

1. From Eq. (11.1) the angle is 141m 9.4rad
15m

s
r

 

2. From Eq. (11.4), the angular speed is       
                                   

                          12 (2 )rad rads
6 60s 90t

12 (2 )rad rad
s 90

2 (2 )rad
6 60t 6 60t

 

3. We use Eq. (11.8b) with 1 1
0 12  rads , 2.0 rads  and  3.0st1 1
0 12  rads , 2.0 rads  and  3.01 12 0 rads1 1  to 

get the angular displacement in 3.0 s as 

 221
0 s) 0.3()srad0.2(

2
1 s) 0.3()srad12(  rad 45  

4. The initial angular speed of the girl is 11
0 srad26.1srad

5
2  

a) Using Eq. (11.9b) with 1
0 srad26.1  and m,0.4  r  the speed of 

the girl is 

   )srad26.1(m)0.4( 1 v   1ms0.5   

b) Using Eq. (11.8a) with 21
0 srad0.1,srad26.1   and 0  

we get, 
                  s26.1t  

c) We calculate the angular displacement using Eq. (11.8c) with 
 1

0 srad 62.1 and 2srad0.1   

   rad90.7
)srads (1.02

)srad6(1.2
2

21
0  

 The number of revolutions in this time interval is 0.79 0.13
2

n 0.79 0.1
2

 

d) The distance travelled by the girl can be determined using Eq. (11.15a)  
with rad0.79  and m0.4r  to get 

   rad)9(0.7m)0.4(s m2.3

5. a) Using Eq. (11.1) with m20s  and m,0.2  r the angular 
displacement of the particle is   

                            rad 10
m 2.0
m 20  
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b) The particle’s average angular velocity in 20 s is   

          1srad 0.50
s 20

rad 10  

6.  The angular speed of the merry-go-round is  

            10.5 20.5 rpm rads
60

1srad
60

 

 From Eq. (11.8a), its angular acceleration is  

  2 21 rads rads
60 2 60 7200t

2rads2 ra1 s
72

s 221 d
t

radrad1 rad
606060 2 602

rad
2 606060

 

7. From Eq. (11.8a), the angular acceleration of the ball is    

                        
1

20 9.7rads 14.9rads
0.65st

1
29.7rads 14.

0 65st
0

 From Eq. (11.16c), its tangential acceleration is    

                       2 2(14.9rad s ) (0.30m) 4.5 msta

8.  a) For the Earth’s rotation on its axis,  for the particle in one rotation of  
  the Earth is 2  rad, and the time taken is 24 hours.        

     5 1 5 12 2 7.28 10  rad s 7.3 10  rad s
(24 60 60)s 86400s

   

  b) For the Earth orbiting around the Sun, its angular displacement is  
2  rad in 365¼ days.   

        

             7 1 7 12 1.99 10  rad s 2.0 10  rad s1(365 24 60 60)s4
  

9. The initial angular speed of the ball is .s rad 0.5 1
0  

 The final angular speed of the ball is .s rad5.1 1  Using Eq. (11.8c) 
with the angular displacement  ,rad 5.40  we get 

  
rad (4.5)2

)s rad (5.0)s rad 1.5(
)(2

2121

0

2
0

2
  2s rad 5.2

The time taken for the ball to attain this angular velocity is calculated 
using Eq. (11.8a): 

   s6.2
s rad 2.5

)s rad (5.0)s rad 1.5(
2

11
0t                    

10. We use Eq. 11.8a to calculate the angular speed  at 2.0st 2.0 when 

0

0
0

0  

   
2 10 (2.0 rad s ) (2.0 s) 4.0 rad s 10 rad s0 (2.0 rad s ) (2.0 s) 4.0) (2 0 s) 4 02  
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 From Eqs. (11.15c and d), we have 

    m 0.1)s rad 0.4( 212rar  2ms 16  

      m0.1)s rad0.2( 2rat
2ms 0.2  

 From Eq. (11.16d), the magnitude of the acceleration a is 

   2222 )ms 2()ms 16(a   2ms16  
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          UNIT 12 
 

 
DYNAMICS OF 

ROTATIONAL MOTION 

 Structure 
12.1     Introduction 

Expected Learning Outcomes 

12.2 Dynamics of Angular Motion 
Dynamics of Uniform Circular Motion  
Dynamics of Non-uniform Circular Motion  

12.3 Torque 
Some Features of Torque 
Torque for Non-uniform Circular Motion  
Physical Meaning of Rotational Inertia 

 

STUDY GUIDE 
In this unit, you will study the dynamics of rotational motion with a special focus on non-uniform 
circular motion. You will also study about torque and angular momentum. These concepts are 
involved in many of our common daily experiences, right from opening taps and the caps of 
toothpastes in the morning to turning of clock-hands and pages in books while studying, and turning in 
our beds while sleeping! There are many technological applications of these concepts around us, the 
most common being that of the wheels. These concepts are analogous to force and linear momentum 
and so you need not think of these concepts as difficult. In order to understand these concepts, you 
need to know the concept of the cross product or the vector product which you should revise from 
Units 1 and 2. You will also study the work-energy theorem for rotational motion and so you must 
know the concepts of integral calculus which you have studied in school. You will also study the law 
of conservation of angular momentum. Solve all examples, SAQs and Terminal Questions on your 
own! 

12.4 Work-Energy Theorem and Kinetic 
Energy of Rotation 

12.5 Angular Momentum 
Angular Momentum for Circular Motion 
Relation between Torque and Angular 
Momentum 

12.6 Conservation of Angular Momentum 

12.7 Summary 

12.8 Terminal Questions 

12.9 Solutions and Answers 

“Everything should be made as simple as possible, but no 
simpler.”   

Albert Einstein

Why do we attach a long handle 
to the car jack to lift the jack and 
the car with it?  This unit will help 
you answer this question! 

      



  Block 3                                    Rotational Motion and Many-particle Systems

Fig. 12.1: The effect of 
torque is seen all 
around us. 

12.1   INTRODUCTION 
In Block 2 and Unit 11, you have studied uniform and non-uniform circular 
motion and learnt how to describe those using kinematical angular 
variables. You have solved problems related to circular motion in the 
horizontal and vertical plane. In this unit, you will begin your study with the 
dynamics of angular motion (Sec. 12.2). In this section, we shall focus on 
dynamics of uniform and non-uniform circular motion, establish the 
equations of motion and apply them to examples around us. In Sec. 12.3, we 
introduce the concept of torque, which plays the same role for angular and 
rotational motion as force does for translational motion. You must 
understand that torque is as fundamental a concept as force. The concept 
of torque is useful in analysing rotational motion.  

The world around us is full of objects rotating or turning about some axis. 
Torque is involved when we drive bicycles, buses or cars, turn taps, open 
bottle caps, use a pair of scissors, move swings, play cricket or even turn our 
knee caps when we jump or squat on the floor (Fig. 12.1). Merry-go-rounds 
and see-saws are excellent examples of the importance of torque. Whenever 
you see an object in angular motion or rotating about an axis with some 
angular acceleration or with a changing angular speed, you must 
immediately understand that torque is being exerted on it.  

The problems on the dynamics of angular or rotational motion are simpler 
to solve if we use the concept of torque. You will learn how to solve the 
equation of motion for various objects in circular motion. In the process, you 
will learn about rotational inertia, which is analogous to mass. 

We apply the work-energy theorem to angular motion (Sec. 12.4) and 
determine the rotational kinetic energy of particles. In Sec. 12.5, you will learn 
the concept of angular momentum and its relation with torque. We discuss the 
law of conservation of angular momentum in Sec. 12.6 and apply it to a 
variety of simple situations. With this we have discussed all concepts related to 
the mechanics of a single particle. In the next three units, you will learn how to 
apply the laws you have studied so far to many-particle systems.    

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 solve problems on dynamics of uniform and non-uniform circular 
motion; 

 determine torque being exerted on a particle in angular/rotational 
motion and explain the concept of rotational inertia; 

 apply the rotational analogue of Newton’s second law to solve 
problems on rotational motion; 

 apply the work-energy theorem to rotational motion and calculate the 
rotational kinetic energy of a particle;  

 determine the angular momentum of a particle undergoing 
angular/rotational motion; and 

 apply the law of conservation of angular momentum to simple 
situations. 
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CHANGING THE ANGULAR SPEED IN CIRCULAR MOTION 

Do any of the following: 

 Try to open a book by applying a force F1 in the plane of the book 

cover in a direction towards its bound edge (see Fig. 12.2a); 

12.2   DYNAMICS OF ANGULAR MOTION 

To start with, let us take up circular motion, which is quite common around us. 
We begin by revising what you have already studied about the dynamics of 
uniform circular motion in Unit 6. 

12.2.1   Dynamics of Uniform Circular Motion 

In Unit 6, you have learnt that a particle in uniform circular motion (motion in a 
circle with constant angular speed) has centripetal acceleration. You also 
know that a finite acceleration in an object means that a net force is being 
exerted on it. This force is called the centripetal force. Let us recall its 
definition for uniform circular motion. 

 

 

 

 

 

 

 

 

 

 

 
So far you have studied that it is the centripetal force, which keeps an object 
moving uniformly in a circle. The centripetal force is provided by any of the 
forces in nature about which you have studied in Unit 6. This force is always 
directed towards the centre of the circle in which the object is moving. 
However, you have also studied in Unit 11 that objects moving in a circle need 
not always move with the same angular speed. They may speed up or slow 
down while still on the circular path. So let us now ask: Can an object at rest 
start moving in a circle or can its angular speed be changed, if we apply 
a force directed towards the circle’s centre?  

You can find the answer if you do any of the following activities. 

 

 

 

 

 

Centripetal force

CENTRIPETAL FORCE 

The net force required to keep a particle of mass m in uniform circular 
motion with constant angular speed   is called the centripetal force. 
Its magnitude is:  

                                  
2

2
c

mvF m r
r

2mv m r2
r

    (12.1a) 

where r is the radius of the circle in which the particle moves and v, its 
linear speed. The centripetal force is always directed towards the centre of 
the circle and its direction changes continuously as the particle moves. In 
the unit vector notation, we can express the vector Fc as follows: 

                         
2

2ˆ ˆc
mv m r

r
2ˆ 2mv m r2

r
F r r    (12.1b) 

Activity 
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 Try opening a door by pushing it by a force 1F  in a direction in the 
door’s plane towards its hinges (see Fig. 12.2b); 

 Try to set a merry-go-round in motion by pushing it in a direction 
towards its centre (see Fig. 12.2c). 

What do you find? Now try the following: 

 Try to open the book or the door by applying the force F2 in a direction 
perpendicular to their plane. 

 Try to set the merry-go-round in motion or stopping it by applying the 
force along the tangential direction. 

 

 

 

 

 

What do you find? Is it easier to do all these things in this case? What is 
the difference between each set of activities? Did you note that the 
difference is in the direction of the force being applied? The force in the 
radial direction (the centripetal force) does not bring about a change in the 
angular speed of the object but the force in the tangential direction does.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

You may like to know: What is the force law for this force? This brings us to 
the dynamics of non-uniform circular motion. 

12.2.2   Dynamics of Non-uniform Circular Motion 

You have studied in Sec. 11.4.2 about uniform circular motion (in which the 
angular speed of the object remains constant) and non-uniform circular motion 
(in which its angular speed changes). You have learnt in Sec. 12.2.1 that the 
acceleration of an object in uniform circular motion is centripetal (i.e., it is 
directed towards the centre of the circle) and a centripetal force acts upon it 
to keep it moving in a circle. 

However, while doing the activity above, you have discovered that you could 
not change the angular speed of any object (from zero to some value) by 
applying a centripetal force (in the radial direction). You needed to apply force 
in a tangential direction. Thus, you have found that a force must act in the 
tangential direction on an object for it to execute non-uniform circular motion. 

In general, we say that the force being exerted on an object in circular 
motion must have a component in the tangential direction to bring about 
a change in its angular speed. Once again, we get the force law for non-
uniform circular motion by using Newton’s second law.  

Fig. 12.2: How can we change the angular speed in circular motion? 

(c) (a) 

F2
 

F1

(b) 

F1

F2
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Let us take up an example to apply the force law for non-uniform circular 
motion. 

(a) 

(b) 

r̂  

F
96  

Fig. 12.3: Non-uniform 
circular motion. 

Radial and tangential 
components of force for 

non-uniform circular 
motion

FORCE LAW FOR NON-UNIFORM CIRCULAR MOTION

The net force on a particle of mass m moving with changing angular speed 
and angular acceleration  in a circular path of radius r is given by  

                     F a a a F Fr t r tm m    (12.2a) 

where Fr  and Ft  are the radial (or centripetal) and tangential 
components of the force given by 

            F r r
2

2ˆ ˆr
mv m r

r
      (radial component)  (12.2b) 

and  F ˆ
t m r        (tangential component)       (12.2c) 

The magnitude of the net force is given by 

F 2 2 2 2 2( ) ( )r tF F m r r                          (12.2d) 

and the angle which it makes with the radial direction is , given by 

  2tan t

r

ma
ma

               (12.2e) 

     XAMPLE  12.1:  NON-UNIFORM CIRCULAR MOTION  

A person applies force on a merry-go-round to set it rotating from rest with 
a constant angular acceleration of 20.10rads 2  (Fig. 12.3a). 

a) What is the net force on a child of mass 30 kg standing at a distance of 
1.0 m from the centre of the merry-go-round after 1.0 s?  

b) At 5.0s,t the person pushing the merry-go-round steps back and the 
merry-go-round keeps rotating with a constant angular speed for the 
next 2.0 s. What is the net force on the child during this time interval?  

SOLUTION  The KEY IDEA is that when the merry-go-round is set 
rotating from rest, its angular speed changes and, hence, it possesses a 
finite angular acceleration. Therefore, the net force on the child has both 
radial and tangential components. But when it rotates with constant 
angular speed, the net force on the child has only a centripetal 
component. We need to use Eqs. (12.2b to e) to solve this problem The 
kinematical equation (11.8a) can be used to determine the angular speed 
at any instant. 
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A particle starts from rest and moves in a circle with a constant angular 
acceleration. After it has moved through a certain angle, the magnitude of 
the centripetal force on it is twice the magnitude of the tangential force. 
Determine the angle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Let us summarise what you have learnt from Example 12.1. 

 

 

 

 

 

 

 

 

a) At 1.0s,t  the angular speed of the child is given by Eq. (11.8a) as 

       2 1
00.10 rads 1.0 s 0.10 rads ( 0)t 2 1
00.10 rads 1.0 s 0.10 rads ( 0)0

2 11 0 s 0 10 rads2 1t  

     The net force has both radial and tangential components at 1.0s :t  

2 1 2ˆ ˆ ˆ(30kg) (0.10rads ) (1.0m) 0.30Nr m r 1 2ˆ ˆ(30kg) (0.10rads ) (1.0m) 0.3ˆ1 2)1 2m 22 ˆm r2F r r r

      and 2ˆ ˆ ˆ(30kg) (0.10rads ) (1.0m) 3.0Nt m r 2 ˆ(30kg) (0.10rads ) (1.0m) 3.02)2m ˆrF

  The magnitude of the net force is given by 

F 2 2 2 2(0.30) (3.0) N 3.01 N 3.0 Nr tF F  

        And its direction is given by 3.0tan 10.0
0.30

t

r

F
F

   

        or                 (180 84.3 ) 95.7 96  

       Note that  is the angle between F  and the radial direction (Fig. 12.2b). 

b)  At 5.0s,t  2 10.10rads 5.0 s 0.50radst  

Since the angular speed is constant for the next 2.0 s, 0, and  only 
the centripetal force is exerted on the child in this time interval. It is 
given by: 

F r r r2 1 2ˆ ˆ ˆ(30kg) (0.50rads ) (1.0m) 7.5Nr m r  

 

 

 

Note: In deciding which 
value of  to take, you 
have to account for the  
 

directions of tF and rF  
and remember that the 
angle  is the angle 
between their resultant F
and the radial direction 
r̂. Also remember that the 
direction of r̂ is changing 
continuously in circular 
motion. 

SAQ  1  –  Dynamics of non-uniform circular motion 
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DOES THE POINT, AT WHICH FORCE IS APPLIED, MATTER?  

a) Take a metre stick and pivot it at its centre so that it is free to rotate in 
the vertical plane (Fig. 12.4a). Hang a weight on one side, at some 
distance from its centre so that the stick turns about its axis. Then hang 
another weight at a suitable distance on the other side to bring the stick 
back to its original horizontal position. 

You could also vary the weights you hang. Try to guess what would 
happen if you hung a particular weight at some distance on the other 
side to balance the first weight: Would the scale return to its original 
position or not? See what actually happens. Try to correlate the weights 
and their distances from the centre of the stick while rotating and 
balancing it.  

b) You could do the same activity on a see-saw in a much more 
enjoyable way! You must have played on a see-saw in your childhood. 
How did you balance it? Go to the park with your friends and have a 
game of balancing the see-saw with a thin friend on one side of the 
see-saw and a not so thin friend on the other side (Figs. 12.4b and c). 
Where would the two persons need to sit on the see-saw to balance it 
in a horizontal position? 

In the next section we discuss the concept of torque which is very important in 
the analysis of any kind of rotational motion. 

12.3   TORQUE 

In Sec. 12.2.2, you have learnt that in order to change the angular speed of an 
object or to rotate it from rest, we need to apply a force on it having a 
tangential component. We now introduce some other factors in the dynamics 
of angular motion: the distance of the point, at which the force is applied, from 
the axis of rotation and the angle at which force is applied to the object. Let us 
begin the discussion by asking: Why is the distance of the point at which 
the force is applied important in angular motion? To find an answer, you 
may like to think about the following questions and then do an activity as 
suggested.  

 Why is a door knob located as far as possible from the door hinge? Can 
we open a door if we push it at its hinges even in a direction perpendicular 
to the plane of the door?  

 Why do we find it easier to open a bolt with a spanner that has a long 
handle than with one that has a short handle? 

 Why is the rod connecting the pedal of a bicycle perpendicular to the 
wheel’s plane? 

 Why is the handle of the grinding stone perpendicular to the grinding 
stone’s plane and far from the centre of the stone? 

(b) 

(c) 

Fig. 12.4: The point at 
which force is applied 
matters when we wish 
to turn an object. 

(a) 

Activity 
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c) Try to open a rusted bolt with a short-handled spanner and then with a 
long-handled spanner. In which case is it easier to turn it? 

  

 
 
 

  
 
 
 
 

While doing any of the activities above, did you note that the point at which the 
force was applied was equally important if you wanted to turn an object? Is 
there any other factor which is important?  

You may like to follow the steps listed below to answer this question. Refer to 
Fig. 12.5. 

 Open a door in the usual way. Now try to open it by applying some force at 
its hinges. Can you open it?  

 Next apply force at the midpoint of the door and finally at the door 
knob. Make sure that all pushes are about equally hard and last for the 
same time. Also, in all cases, you should apply the force in a direction 
perpendicular to the plane of the door.  

Now try to answer the following questions: 

a) Is there any difference in the door’s motion in the three  
cases? 

b) In which case does the door turn by a greater angle? 

 Next, apply the same force twice at the same point, say, at the door 
knob but at two different angles. For example, 

 force 1 perpendicular to the door, and 

 force 2 at some angle to the plane of the door (say, less than 45 ). 

Which force turns the door by a greater angle? Is there an angle at which 
you can push the door so that it does not turn at all?

Do you recognise that the application of force with a tangential component is 
only one of the factors when we set an object rotating?  (In many cases, 
there may be more than one force being exerted on the object. Then we take 
the net force.) You may have noted that 

Three factors are involved if we wish to rotate or turn an object: 

i) the net force applied on the object, 

ii) the distance of the point of application of the force from the axis of 
rotation. The larger the distance, the easier it is to set an object rotating 
with the same force. 

iii)  the angle at which the force is applied.  

Fig. 12.5: Understanding 
torque. 

Close  
to hinge 

At the 
midpoint 

At the 
door knob 
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Thus, we need to define a new physical quantity other than force which 
includes all these factors. This new quantity is termed torque. A finite torque is 
exerted on every rotating object which has a finite angular acceleration. 
Torque can be thought of as representing the ‘turning effect of force’. You 
may like to know: What is the difference between force and torque?  
 
 

 

 

 

Now that you have understood that the concept of force alone is not enough to 
analyse rotational motion, let us ask another question: How do we define 
torque mathematically? Study Fig. 12.6a, which shows a bolt being opened 
by a spanner by applying a force F

r
 at point P. The distance of P from the bolt 

at O is r.   

Let us take the origin O to be at the bolt. Let r
r

 denote the position vector of 
the point P with respect to O. Then we define torque at point P as the vector 
product of r

r
 and F

r
: 

            r F
rrr

 (12.3a) 

 

 

 

 

 

 

 
Torque is a vector and its magnitude is given by 

sinr F   (12.3b) 

where  is the angle between r
r

and F
r

 when these vectors are placed tail to 
tail as shown in Fig. 12.6b. The direction of torque is given by the right-hand 
rule and is perpendicular to the plane containing r

r
 and F.

r
 Thus, 

r
 is always 

perpendicular to both r
r

and F.
r

 In Fig. 12.6b, it points into the page, 
perpendicular to both r

r
and F.

r
 For circular or rotational motion about a fixed 

axis of rotation passing through the object, the vector 
r

 is directed along the 
axis of rotation (Fig. 12.7). Using the right-hand rule, you can see that it points 
upwards for counter-clockwise rotation and downwards for clockwise rotation.  

 

 

An object is said to be 
in translational 
motion when all points 
on it have the same 
velocity. If you slide a 
coin on your desk, it is 
in translational motion. 
If you spin it at one 
place, it executes 
rotational motion. 

 Torque 

Torque is not the same as work done by a force even though the 
dimensions of both quantities are the same. Torque is a force-like 
quantity in rotational motion and its units are Nm in the SI system.

Force is involved when an object is accelerated in translational 
motion. Torque is involved when an object rotates with finite angular 
acceleration or turns faster or slower. Torque is the tendency of a 
force to change the state of rotational motion of an object about 
some axis. It is also called the turning effect of force.  

 
 
Fig. 12.7: The direction 
of torque is given by 
the right-hand rule for 
a vector product. 

Fig. 12.6: Defining torque mathematically.

 
(a)             (b) 
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To check whether this mathematical definition of torque includes the three 
factors involved in turning or rotating an object, recall your activity with the 
door. You can see that when the force is applied parallel to the plane of the 
door, that is, r   ,F  0 and from Eq. (12.3b), 0.0.  Thus, no matter how 
hard you push or pull in this direction, you cannot rotate the door because the 
torque is zero.  

When the force is perpendicular to the plane of the door, 90 .  From  
Eq. (12.3b), you can see that the torque is maximum, and it is easier to rotate 
the door. The magnitude of torque depends both on the force applied and the 
distance of the point at which it is applied from the origin.  

To sum up, there can be three ways of changing torque in a rotating system:  

 By changing the applied force F , 

 By changing the length of r , 

 By changing the angle between r and F.  

Let us now sum up the discussion so far and present the formal concept of 
torque. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The word torque 
comes from the Latin 
word meaning “twist” 
and may be identified 
as the turning action 
of force. 

Torque

TORQUE 
If a net force F  is exerted on a particle situated at a point P, which has 
position vector r  with respect to an origin O, the torque exerted on the 
particle with respect to O is defined as                                     

     r F      (12.3a) 

Its magnitude is given by 

   sinr F       (12.3b) 

where  is the angle between r and F  when these vectors are placed tail 
to tail. The direction of torque is given by the right-hand rule and is 
perpendicular to the plane containing r and F.  The SI unit of torque  
is Nm.  

Just as the net external force brings about change in the state of 
translational motion, the net external torque brings about change in the 
state of rotational motion.  

The net torque on a particle at rest or in a state of uniform rotational 
motion is zero. The particle will continue to remain in this state until and 
unless a net external torque is exerted on it. The particle’s state of 
rotation changes only when a net external torque is exerted on it.  
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A child swings on a rope attached to a tree at point P and can go up to a 
maximum angle of 30  with the vertical (Fig. 12.9). What is the torque exerted 
by the child about P given that the weight of the child is 40 N and the length of 
the rope from the point P to the child is 5.0 m? 

You may now like to determine the torque acting on some objects. We take up 
an example to apply Eqs. (12.3a and b) and then you can solve an SAQ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Would you like to calculate torque using Eq. (12.3b)? Answer SAQ 2! 

     XAMPLE  12.2:  TORQUE  

Fig. 12.8a shows a common exercise for strengthening the muscles of the 
arm. A dumb-bell of mass 1.0 kg is lifted from the horizontal position and 
rotated about the elbow joint by an angle of 60 . What is the torque exerted 
by the fore-arm muscles about the elbow joint 

a) when the arm is horizontal, and 

b) when it makes an angle of 60  with the horizontal?  

Take the distance between the palm holding the dumb-bell and the elbow 
joint to be 30 cm and 29.8 ms .229.8g  

SOLUTION  The KEY IDEA is that the elbow joint (J in Fig. 12.8b) is the 
point about which the torque has to be exerted by the muscles of the fore-
arm to rotate the dumb-bell. The fore-arm muscles have to exert a force 

F( )  at least equal and opposite to the weight of the dumb-bell to 
produce this torque. The torque is given by Eqs. (12.3a and b). It is 
given that 20.30m and (1.0 kg)(9.8ms ) 9.8N.

y q
20.30m and (1.0 kg)(9.8ms ) 9.82)2r F  

a) When the dumb-bell is held in a horizontal position (Fig. 12.8b), the 
angle between vectors r  and F( )  (with their tails at a common point) 
is 90  (see Fig. 12.8c). Therefore, the torque in this case is given by 

          sin (0.30m) (9.8N) (sin90 ) 2.9Nmsin (0.30m) (9.8N) (sin90 ) 2.9r F  

The direction of torque is given by the right-hand rule and is 
perpendicular to the plane containing r  and F( )  and pointing out of 
the page. 

b) In this case the dumb-bell is rotated about the elbow joint by an angle 
of 60  (Fig. 12.8d). When the tails of vectors r  and F  are placed at 
a common point, the angle between them is 30 (see Fig. 12.8e). 
Therefore, the torque in this case is given by 

  (0.30m) (9.8N) (sin30 ) (0.30m) (9.8N) 0.50 1.5Nm0.30m) (9.8N) (sin30 ) (0.30m) (9.8N) 0.50 1.5(0  

up to two significant figures. The direction of torque is given by the 
right-hand rule and is perpendicular to the plane containing r  and 

F( )  and pointing out of the page. 

r  

F  

30  

r

F

(a) 

(c) 

(d) 

(e) 

Fig. 12.8: Torque exerted 
by fore-arm muscles. 

r

F gm  
(b) 

J 

r  

F gm  
60

Fig. 12.9: Diagram for 
SAQ 2; not to scale. 

P 

SAQ  2  –  Determining torque 
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12.3.1   Some Features of Torque 

Eqs. (12.3a and b) that define torque give us some interesting information 
about torque, which we now describe.  

1. We can express the force exerted on a particle executing angular motion in 
a plane in terms of its components as  

F F Fr t (12.4) 

where Fr is the component of F  in the radial direction (that is, along r̂  or 
r ) and F ,t the component of F  in a direction perpendicular to the radial 
direction. Substituting F  from Eq. (12.4) in Eq. (12.3a), we get 

                      r F r F r Fr t  (12.5a) 

Since Fr is parallel to r,  the angle between them is zero and r F 0.r  
Hence, 

           (12.5b) 

Thus, a net torque acts on a particle only if the force has a finite 
component perpendicular to the radial direction. We call this 
component, the tangential component or the transverse component. 
As you know from Eq. (12.2c), it is given by F a ,t tm  where a ˆ.t r  

2. However, in an interesting case, the torque can be non-zero, even if the 
net force on an object is zero as you can see from Fig. 12.10a. The net 
force on the scale is zero since the two forces are of equal magnitude but 
directed opposite to each other. But the torque due to each force is 
directed out of the page towards you and is non-zero. The scale will rotate 
counter-clockwise due to the net non-zero torque.  

Forces that are parallel to each other (but do not act along the same line), 
equal in magnitude but opposite in direction, constitute a couple. A 
couple does not produce translation; it only produces rotation. For 
example, the forces that two hands apply to turn a steering wheel should 
be a couple (Fig. 12.10b). Each hand grips the wheel at points on 
opposite sides of the shaft. When the hands apply such a couple on the 
steering wheel, it rotates.  

3. Torque on an object will be zero if the tangential (transverse) component 
of the force is zero and there is no couple acting on it. However, it is 
possible that the torque on a particle is zero even if the net force on it is 
non-zero.  

 
 
 
 
 
 
 

Ft  is also called the 
transverse component 
of force.   

Torque is zero if 

 F  is parallel to r,  

 r  is zero, and 

 F  is zero and no couple is acting on the object. 

  r Ft  

F  

F  
r1 r2

O 

Fig. 12.10: Torque can be 
non-zero, even if the net 
force on an object is 
zero. 

(b) 

(a) 
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4. Torques obey the principle of superposition. 

 

 

 

 

 
 
Let us apply Eqs. (12.5b and 12.6) to determine torque for simple cases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

PRINCIPLE OF SUPERPOSITION FOR TORQUE 

When several torques are exerted on a particle, the net torque or 
resultant torque is the vector sum of individual torques: 

inet
i

inet                                           (12.6)

Fig. 12.11 

Earth 

Sun 

     XAMPLE  12.3:  TORQUE  

a) What is the torque on the Earth due to the force of gravitation exerted 
by the Sun on it as it goes around the Sun in a nearly circular orbit            
(Fig. 12.11)? 

b) Forces of equal magnitudes are being exerted on two discs, each of 
radius r in the directions shown in Fig. 12.12. Which of the disc(s) 
would rotate about an axis passing through its centre and 
perpendicular to its plane? What is the magnitude of the net torque on 
each disc? 

SOLUTION  The KEY IDEA is to use the definition of torque.  

a) The force of gravitation on the Earth due to the Sun points towards the 
Sun along the radial direction (see Fig. 12.11) and is given by   

                   2
ˆF rSun EarthGM M

r
 

where r is the distance between the Earth and the Sun and r̂ is the unit 
vector pointing from the Sun to the Earth. By definition, r F
and using the expression for F  above, we get 

              2
ˆ̂̂

22r F r r 0Sun EarthGM M
r

 

The vector product is a null vector since r̂ is a unit vector in the 
direction of vector r.   

b) In Fig. 12.12a, the forces are being exerted in the same direction and 
at the same distance from the axis of rotation. The torques due to these 
forces about the centre of the disc, are equal and opposite. Hence, the 
net torque is zero: ( ) 0( ) 0net rF rF  

Since the net torque on the disc is zero, it will not rotate. In Fig. 12.12b, 
the forces being exerted are in the opposite directions and at the same 
distance from the axis of rotation. The torques due to these forces 
about the centre of the disc, are equal and point in the same direction.
Hence, the magnitude of the net torque is: ( ) ( ) 2( ) ( ) 2net rF rF rF

The disc will rotate in the counter-clockwise direction.

(a) 

Fig. 12.12: Diagram  
for Example 12.3b. 

F F 

(b) 
F F 
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Suppose you exert a force of 50 N on a frictionless door as you rush out of 
a building. What is the torque on the door if you apply the force at the edge 
of the door in a direction perpendicular to the plane of the door? It is given 
that the door is 1.0 m wide.  

You may like to try an SAQ before studying further. 
 
 
 
 
 
 
 
 
 
You have just studied that when an object is executing angular motion and its 
angular speed is changing, a torque is being exerted on it. Let us take up the 
special case of non-uniform circular motion and determine the torque.  

12.3.2   Torque for Non-uniform Circular Motion 

Consider a particle of mass m moving in a circle of radius r with angular 
acceleration  (Fig.12.13). Eq. (12.2c) gives the tangential component of force 
on a particle in non-uniform circular motion as  

                                ˆ̂Ft mr          (12.7a) 

Substituting this expression in Eq. (12.5b), we get 

           2ˆ ˆˆ( )r F rt mr mr ˆ)2ˆ 2 ˆ(F r 2 ˆ( ˆFtFF mr (12.7b) 

Using the definition of cross product as given in Eq. (1.12) of Unit 1, we can 
determine the direction of ˆˆ( ).r ˆ)  It is a unit vector perpendicular to the plane 
of the circle (containing both these vectors). In this case, it is a unit vector 
along the axis of rotation.  

As per the right-hand rule, the directions of this unit vector for  
counter-clockwise and clockwise rotations are as shown in Figs. 12.13a and b. 
Note that in each case, it is along the direction of the angular acceleration 
vector. Then we can write 

ˆˆ ˆr ˆ ˆ   (12.7c) 

where ˆ is a unit vector in the direction of the angular acceleration vector.  
Thus,                                    

                            2 ˆmr 2mr ˆ        (12.8) 

Since  is the magnitude of angular acceleration, we can write the angular 
acceleration vector as 
 
                                  ˆ̂ (12.9) 

Substituting Eq. (12.9) in Eq. (12.8), we get the expression for torque exerted 
on a particle in non-uniform circular motion in terms of the angular acceleration 
vector:  

(12.10)  2mrmr  

SAQ  3  – Torque 

Fig. 12.13: Torque on a 
particle in non-uniform 
circular motion:                    
a) counter-clockwise     
motion; b) clockwise 
motion. 

(a) 

(b) 
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Let us compare Eq. (12.10) with Newton’s second law of motion for constant 
mass: F a.m  From Eq. (12.10), you can see that torque on a particle in         
non-uniform circular motion is the product of the angular acceleration and a 
quantity 2,mr  which is analogous to mass m. We call this quantity the 
rotational inertia or the moment of inertia and denote it by I:  

 
                                (12.11) 

 
The SI unit of rotational inertia is 2kgm .  From Eq. (12.11), you can see that 
rotational inertia depends on both the mass of the particle and its 
location with respect to the axis of rotation. Note that for a particle having 
constant mass, I would change if we changed the axis of rotation or its 
distance r from the axis of rotation (Fig. 12.14).  
 
 
 
 
 
 
 
 
 
 
 
Substituting I from Eq. (12.11) in Eq. (12.10), we can write 
                            

          (12.12) 
 
Eq. (12.12) is the equation of motion for a particle possessing angular 
acceleration and rotational inertia I about a fixed axis of rotation. It is also 
called the rotational analogue of Newton’s second law of motion. For a 
particle of mass m moving in a circle of radius r, rotational inertia I is given 
by Eq. (12.11).  

Notice that Eq. (12.12) is of the form F a.m  It tells us that torque on an 
object is proportional to its angular acceleration and is a product of its 
rotational inertia and angular acceleration. Although we have derived this 
equation for a special case of circular motion, it is quite general and applies to 
a variety of rotational motion.  

Of course, rotational inertia is different for different objects (Fig. 12.15). 

 

 

 

 

Let us further understand these ideas with the help of an example. 

II  

 2I mr  

You can see that             
Eq. (12.12) is the 
analogue of Newton’s 
second law of motion. 
In some textbooks it is 
also called Newton’s 
second law for 
rotational motion. 

Fig. 12.14: The rotational inertia or the moment of inertia changes if we 
change the axis of rotation or r. 

(a) (b) 

Fig. 12.15: The rotational inertia of each of these objects is different. 

Torque for non-uniform 
circular motion 
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Old record players had turn tables which could rotate at 16, 33-1/3, 45 or      
78 rpm. Will the torque required to get a record rotating from rest to each of 
these angular speeds in the same time interval, increase or decrease with 
angular speed? Assume that the rotational inertia of all records is the 
same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following SAQ will help you check whether you have understood the 
concept of torque for circular motion. 

 
  
 

  
 
 
 

 
 

Let us now understand the physical meaning of rotational inertia. 

12.3.3   Physical Meaning of Rotational Inertia 

Eq. (12.12) tells us the physical meaning of rotational inertia or moment of 
inertia. Compare it with the equation F a.m

r r
 You can see that rotational 

inertia plays the same role in rotational motion that mass plays in 
translational motion. We say that rotational inertia I is the rotational 
analogue of mass m. In Unit 5, you have learnt that inertial mass is a 
measure of a particle’s resistance to change in its state of translational motion.  

Direction         
of rotation 

Axis of rotation 

Direction         
of torque 

Fig. 12.16: Torque on a 
child in circular motion. 
The merry-go-round 
rotates about an axis 
passing through its   
centre. Since rotation             
is clockwise, the torque 
points downward along  
the axis of rotation.  

     XAMPLE  12.4:  TORQUE IN CIRCULAR MOTION  

A merry-go-round carries children around in a horizontal circle of radius  
5.0m (Fig. 12.16). It is set rotating from rest in a clockwise direction and 
attains an angular speed of 10.30 rads  in 60 s. (a) What is the torque 
experienced by a child of mass 25 kg (about the centre of the circle) if she 
is sitting at a distance of 2.0 m from the centre? (b) What would the torque 
be if the child were sitting at the edge of the merry-go-round?    

SOLUTION  The KEY IDEA is that since the motion is non-uniform and 
circular, we determine the torque using Eq. (12.8). 

From Eq. (12.8), 22 ˆmr
r

 and  can be obtained from the 
kinematical equation Eq. (11.8a). It is given by 

    
1

3 20
0

0.30rads 5.0 10 rads ( 0)
60st

Q  

Therefore, the torque on the child in both cases is given as follows: 

(i) 2 3 2 ˆ ˆ(25kg) (2.0m) (5.0 10 rads ) 0.50Nm
r  

(ii) 2 3 2 ˆ ˆ(25kg) (5.0m) (5.0 10 rads ) 3.1Nm
r  

The direction of the torque is shown in Fig. 12.16. 

SAQ  4  –  Torque for circular motion  
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What is the rotational inertia of a bead of mass 0.50 kg situated at the edge 
of a rotating wheel of radius 1.0 m? What is the angular acceleration of the 
bead if the torque exerted on it is (i) 2.5 Nm and (ii) 5.0 Nm? 

In the same way, rotational inertia is a measure of the particle’s 
resistance to change in its rotational motion (see Figs. 12.17 and 12.18). 
Thus,  

 For constant I, the angular acceleration of a particle is proportional to the 
torque applied on it: 

                                for constant Ifo  

 The same torque would produce smaller angular acceleration in a particle 
possessing greater rotational inertia (Fig. 12.17) : 

           Same torque:  1 1 2 211I I 21 2I1  (12.13a) 

                    1I 2 11I 22         (12.13b) 

 A particle possessing greater rotational inertia would require larger torque 
to produce the same angular acceleration as that of a particle possessing 
smaller rotational inertia (Fig. 12.18): 

      Same angular acceleration: 1 2 21 andI I2I1 1I1 22anddd       (12.14a) 

                    1I      2 1I 2         (12.14b) 

 When the torque on a particle is zero, it moves with a constant angular 
speed: 

                         0 0 constant               (12.15) 

You may like to determine the rotational inertia of a particle in circular motion 
to understand its analogy with mass. 

 

 

 

 

Now that you have studied about torque, we can extend the concepts of work 
and work-energy theorem to rotational motion. When we do this, we arrive at 
an expression for the kinetic energy of rotation.   

12.4   WORK-ENERGY THEOREM AND KINETIC 
ENERGY OF ROTATION 

Consider a particle of mass m moving from point A to point B under the 
influence of force F  (Fig. 12.19). Recall the work-energy theorem, which 
relates work done by the force on the particle to the change in its kinetic 
energy: 

                 2 21 1
2 2f iW K mv mv  (12.16) 

Fig. 12.17: Torque is 
same but moment of 
inertia of the two objects 
is different.  

A  

B 

Same : A B 

since     IA IB 

Fig. 12.18: Angular 
acceleration is same but 
moment of inertia of the 
two objects is different.  

A  

B 

Same : B  A  

since     IB  IA 

SAQ  5  –  Rotational inertia of a particle 
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We can extend this theorem to angular motion. When a net torque acts on a 
particle in angular motion about a fixed axis, it does work on the particle. We 
now show that the work done by the torque results in a change in the 
rotational kinetic energy of the particle. We consider circular motion to keep 
the mathematics simple.  

Consider a particle of mass m moving counter-clockwise in a circle of radius r 
under the influence of a net torque  which is responsible for the angular 
acceleration of the particle. You have learnt in Sec. 12.3.2 (Eq. 12.7b) that 
only the tangential component tF of the force gives rise to torque. Therefore, 
only tF does work on the particle.  

What is the work dW done on the particle as it moves along an arc of length ds 
by an angled in the circle (Fig. 12.20)? We use the definition of work done 
and the relation s r  (Eq. 11.1) and get: 

( )t tdW F ds F r d ds r d                (12.17a)  

Now for circular motion, we have 

                  sin 90sin 90r Ft t tr F r F (12.17b)

Using Eq. (12.17b), we can write Eq. (12.17a) as: 

dW d (12.17c) 

We can now determine the work done on a particle moving from an angular 
position 1  to 2  by  integrating  Eq. (12.17c). 

 

 

 

 

 

 
 

The work done by a torque in turning an object by some angle brings about a 
change in its kinetic energy. This is called the object’s rotational kinetic 
energy. Let us determine its expression for circular motion. What should we 

Fig. 12.19: Work done on a particle results in a change in its kinetic energy. 

Fig. 12.20: Work done 
in circular motion. 

ds 
d  

m 

m A 

B 
iv  

fv  

Work done by torque 

Always express  in 
radians.   

WORK DONE BY TORQUE 

The work done by the net torque in turning an object from an angle 
1 2to  is given by 

2

1

2

1

2

W d         (12.18) 

The work done by constant torque , which turns an object by an 
angle , is given by 

    W                 (12.19) 
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a) What is the kinetic energy of rotation of a particle of mass 1 kg moving in a 
circle of radius 1 m with an angular speed of 1 1rads ?1?1  

b) The rotational kinetic energy of a particle in circular motion is 50.0 J. It 
moves once in the circle in 22.0 s. What is the rotational inertia of the 
particle?  

do to arrive at a general result for kinetic energy which holds for rotational 
motion of particles? We should make use of the fact that the angular speed of 
particles on a rotating object remains the same. Therefore, for angular motion, 
we express the kinetic energy in terms of the angular speed of a particle. So 
let us express the kinetic energy of an object in terms of the rotational 
variables I and . You know that the speed v of a particle in circular motion 
depends on its distance from the axis of rotation: .v r Therefore, 

2 2 2 21 1 1K.E.
2 2 2

2 2 2 21 2 2 22
2 2 2

mv mr I   (12.20) 

Although we have derived this result for circular motion of a particle, it applies 
to all objects in rotational motion. We now state the general definition of 
rotational kinetic energy. 

We can also express the work-energy theorem for angular motion in terms of 
rotational kinetic energy. Suppose the angular speed of the particle as it 
moves in the circle from 1  to 2  changes from 1 to 2. Its kinetic energy 
changes as its speed changes from 1 2to .r r  The change in the rotational 
kinetic energy of the particle is given by 

(12.21)  
   

Thus, the work-energy theorem for angular motion takes the form: 

                               (12.22)                                                

You may now like to determine the rotational kinetic energy of a particle.  

2
2 2

1
1 1K.E.
2 2

I I  

2

2

1

2 2
1

1 1
2 2

W d I I

    Rotational kinetic energy 

ROTATIONAL KINETIC ENERGY

The rotational kinetic energy of an object rotating with an angular speed 
of  about a fixed axis and having rotational inertia I is given by 

21K.E.
2

I                        (12.20) 

The SI unit of rotational kinetic energy is joule (J). 

Work-energy theorem for 
angular motion

SAQ  6  –  Rotational kinetic energy 



  Block 3                                    Rotational Motion and Many-particle Systems

In Unit 11 and so far in Unit 12, you have studied the kinematics and dynamics 
of angular motion with a special focus on circular motion. You have learnt 
many new concepts such as angular position, angular displacement, angular 
velocity, angular acceleration, torque, rotational inertia and kinetic energy of 
rotation that have analogues in translational motion.  

You may like to know: Is there an analogue of linear momentum for 
rotational motion?  

The answer is that there is, indeed, a quantity defined as angular 
momentum. It plays the same role in angular motion as linear momentum 
plays in translational motion.  

The concept of angular momentum is also important because the law of 
conservation of angular momentum is a fundamental law of nature and as 
important as the other two laws, namely, the laws of conservation of linear 
momentum and energy that you have studied so far. 

Many phenomena in the universe, which involve angular motion, are governed 
by this law. For example, the fact that almost all planets in the solar system 
and the Sun lie in a plane is explained using the conservation of angular 
momentum. The principle of conservation of angular momentum is used to 
keep the artificial satellites stable in their orbits. There are many other practical 
applications of conservation of angular momentum as you will now study. 

12.5   ANGULAR MOMENTUM 
 
Let us begin by defining angular momentum. Consider a particle P of mass m 
having position vector r  with respect to the origin O (Fig. 12.21). Let it move 
with a velocity v  along some path. You know that its linear momentum is 
p v.m  Then, we define the angular momentum L  of the particle as follows: 

                              
 (12.23a) 

The magnitude of the angular momentum is given by 
                                              

     (12.23b) 

where  is the angle between r and p.  

The direction of L  is given by the right-hand rule for the vector product and is 
perpendicular to the plane containing the vectors r and p.   

L  is zero if r and p are in the same direction since sin0 0.   

Note that L  is defined with respect to some reference point, which we take as 
the origin. Its value changes if we choose a different point as the reference 
point or the origin.  

Let us explain this point with the help of an example. 

L r p  

sinL r p  

Angular momentum 

Fig. 12.21: Angular 
momentum of a particle. 

x 

z 

y 

O 

 

r

v
p
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A particle of mass 5.0 kg is moving in a straight line with a velocity of 
12.0 ms  as shown in Fig. 12.23. What is the angular momentum of the 

particle with respect to the point O if the perpendicular distance between O 
and the line is 2.0 m? 

 

 

 

     XAMPLE  12.5:  ANGULAR MOMENTUM  

A particle of mass m moves in the x-direction with velocity v îv                  
(Fig. 12.22a). a) What is its angular momentum with respect to the origin O? 
b) What is its angular momentum with respect to a point P on the y-axis? 

SOLUTION  The KEY IDEA is to determine the position vector of the 
particle with respect to both the points O and P (Figs. 12.22a and b) and 
then apply Eq. (12.23a) to determine the angular momentum. 

a) Since the particle moves in the x-direction, its position vector with 
respect to O is given by r îOxr  (Fig. 12.22a). From Eq. (12.23a), 

       L r p i i 0 i i 0ˆ ˆ ˆ ˆ( or 0)Oxr mv  

b) In this case, the position vector rP  of the particle with P as the origin is 
shown in Fig. 12.22b. Let us resolve this vector in terms of its 
components Pxr  and ,Pyr respectively along the x and y-axes.  

                    r i jˆ ˆ
P Px Pyr r  

You can see that the x-component of the position vector rP  is parallel 
to the velocity v  and so its vector product with velocity will be zero: 

             i i 0 i i 0ˆ ˆ ˆ ˆ( or 0)Pxr mv  

The y-component of the position vector is perpendicular to the velocity 
v  and hence, we get 

           L j i j iˆ ˆ ˆ ˆ( )P Py Pyr mv mv r  

The vector product j iˆ ˆ( ) is a vector unit magnitude and its 
direction is given by the right-hand rule to be perpendicular to both 
ĵ and î pointing into the page. Hence, the angular momentum vector 
is directed perpendicular to the xy plane, pointing outside the page 
towards us. The magnitude of the angular momentum vector LP is 

LP Pymv r   

NOTE that only the component of the vector r perpendicular to 
the velocity contributes to the angular momentum. This is also the 
perpendicular distance from the origin (P) to the direction of the 
velocity or the straight line along which the particle moves. 

Fig. 12.22: Angular 
momentum of a particle 
is different with respect 
to different points. 

(a) 

(b) 

x 
O 

y 

v îv  

r îOxr  

Pxr  x 

y 

P 

v îv  

rP  Pyr  

r i jˆ ˆ
P Px Pyr r  

Fig. 12.23 

2.0 m 
O 

kg0.5m  1ms0.2v  

SAQ  7  –  Angular momentum 
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12.5.1   Angular Momentum for Circular Motion 

We can express L  in terms of the rotational inertia and the angular velocity of 
an object. To do so, we consider the simple case of a particle of mass m 
moving in a circle of radius r. By definition, its angular momentum is given by 

                            L r p r vm  (12.24a)

Now, let  r̂  be the unit vector in the direction of the vector r.  Noting that the 
vector v  is along the tangent to the circle, we can write vectors r and v  as 

                           r r v ˆ ˆˆ andr v r  (12.24b) 

Substituting Eq. (12.24b) in Eq. (12.24a), we get 

                         ˆ ˆˆ ˆ( )r mv mvr (12.24c) 

Note once again that r ˆˆ( ) is a unit vector perpendicular to the plane of the 
circle (containing both these vectors). In this case, it is a unit vector along the 
axis of rotation. The directions of this unit vector for counter-clockwise and 
clockwise rotations are given by the right-hand rule. In each case, it is along 
the direction of the angular velocity vector  (see Fig. 12.24). Substituting 
v r  in Eq. (12.24c), we get  

2 2ˆˆ( )2 ( )mr mr  (12.24d) 

where  is the angular velocity vector. You can recognize the quantity 2mr
as the rotational inertia I for this particle. Hence, Eq. (12.24d) becomes  

                      L I (12.24e) 

Notice that this equation is an analogue of the relation p v.m  Further, 
although we have derived Eq. (12.24e) for a particle in circular motion, it  
holds for any object rotating with an angular velocity  and having rotational 
inertia I.  

 

 

 

 

 

You have learnt that the angular momentum is an analogue of linear 
momentum. You may wonder: Is there a relationship between torque  
and angular momentum which is an analogue of Newton’s second 

ANGULAR MOMENTUM FOR CIRCULAR MOTION 

The angular momentum of an object rotating with an angular velocity 
 about a fixed axis and having rotational inertia I is given by 

L I                    (12.25a)   

and   L I                                   (12.25b) 

The SI unit of angular momentum is 2 1kgm s . 

Fig. 12.24: Angular 
momentum of a particle 
in circular motion is 
directed along the 
angular velocity for both 
a) counter-clockwise and 
b) clockwise rotation. 

L

(a) 

(b) 

L

Angular momentum for      
circular motion
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 law: pF ?d
dt

 Let us see what it is. 

12.5.2   Relation between Torque and Angular Momentum 

Let us begin from the definition of torque as given by Eq. (12.3a) and 

substitute pF d
dt

 in it. We get 

                             pr F r d
dt

 (12.26)      

Since F  is the net external force, the torque in Eq. (12.26) is the net external 
torque. Let us now differentiate the angular momentum [defined by                      
Eq. (12.23a)] with respect to time and see what we get. 

              L r pr p p rd d d d
dt dt dt dt

 (12.27a)     

Since p v,m  Eq. (12.27a) becomes  

L r vv r ( )d d d mm
dt dt dt

                    (12.27b)    

For an object of constant mass, we can write Eq. (12.27b) as 

L vv v r( )d dm m
dt dt

(12.27c)     

Since the velocity vector is parallel to itself, the term v v( ) is a null vector 
and we get  

L v pr rd d dm
dt dt dt

(12.27d)  

On comparing Eqs. (12.27d) and (12.26), we get the relation between torque 
and angular momentum. 

 

 

 

 

 

 
                                    
You have learnt that a net external torque exerted on an object brings about a 
change in its angular momentum. We now ask: What happens to the angular 
momentum of an object if the net torque on it is zero? We get the law of 
conservation of angular momentum. This is what you will study in the last 

TORQUE AND ANGULAR MOMENTUM  
The net external torque exerted on an object is related to its angular 
momentum by the following equation: 

                  Ld
dt

(12.28) 

Thus, the net external torque exerted on an object is equal to the rate 
of change of its angular momentum. 

Torque and angular 
momentum
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A child of mass 25 kg is sitting on the edge of a merry-go-round of radius  
2.5 m. The merry-go-round is rotating clockwise. What is the angular 
momentum of the child at the instant at which the angular speed of the 
merry-go-round is 4.0 rpm? What is the magnitude of the torque exerted on 
the child if the angular speed of the merry-go-round changes with time as 

10.80 rads ?t 1?10.8   

section of this unit. But before studying it you may like to attempt an SAQ on 
determining angular momentum for different cases. 

 

 

 

 

 
12.6   CONSERVATION OF ANGULAR 

MOMENTUM 
 

When the net external torque on the object becomes zero, Eq. (12.28) 
becomes 

                               L 0d
dt

or                        (12.29) 

Thus, we get the law of conservation of angular momentum. 
     

 

 

 

 

 

We now take up some examples of conservation of angular momentum. 

 L constant  

Fig. 12.25 

SAQ  8  –  Angular momentum 

     XAMPLE  12.6:  ANGULAR MOMENTUM CONSERVATION 

Our solar system was formed from a huge rotating cloud of gas. It is known 
that the planets (with the exception of Pluto) and the Sun lie in a plane  
(Fig. 12.25). How can we explain the solar system’s shape on the basis of 
the conservation of angular momentum? 

SOLUTION  The KEY IDEA is to determine the force and the torque on 
the gas cloud and see whether angular momentum is conserved. If it is so, 
what does it imply for the shape of the solar system?  

Since the force of gravitation is the only force between the particles of the 
cloud and it would be in the radial direction, the net torque on the system 
would be zero. Hence, the angular momentum of the cloud would be 
constant. This means that both the magnitude and the direction of the 
angular momentum are constant.  

CONSERVATION OF ANGULAR MOMENTUM

The total angular momentum of a system remains constant (is 
conserved), if the net external torque exerted on the system is zero: 
                   

L     constant   if        0 (12.29) Angular momentum 
conservation 
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In Example 12.7, we present an interesting application of the conservation of 
angular momentum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By definition,  L r p r vm  
that is, L  is a vector product of r and v  and L  is perpendicular to the 
plane containing r and v.  Since the direction of L  is constant, this means 
that r and v  would always lie in a fixed plane perpendicular to the 
constant vector L  (see Fig. 12.25). Thus, the particles in the cloud of gas 
would rotate in a fixed plane. Therefore, when the planets and the Sun 
were formed from this cloud of gas, they also moved in the same plane 
giving rise to the flat shape of the solar system. 

     XAMPLE  12.7:  ANGULAR MOMENTUM CONSERVATION 

In an entertainment show on ice, two performers of equal mass hold two 
ends of a long pole of negligible mass and skate in a circle centred at the 
pole (Fig. 12.26). During the act, each of the skaters pulls along the pole 
so that their separation is reduced to half its initial value. Determine their 
final tangential speed if the length of the pole is 2.0 m, the mass of each 
skater is 45.0 kg and they have initial opposite tangential velocities of 

11.5ms . Neglect friction.

 

 

 
 
SOLUTION  The KEY IDEA here is that there is no torque due to friction 
and the torques due to the force of gravity on both skaters are equal and 
opposite, since they are on opposite ends of the pole ( r  for the respective 
skater is equal and opposite). Therefore, their net external torque about the 
centre of the pole is zero and hence, angular momentum is conserved. 
Since the skaters are in circular motion, we apply Eqs. (12.25b and 12.29) 
treating both skaters as particles.  

Since both skaters are moving in the same direction in the circle, the 
angular momentum of each skater will be in the same direction. Since their 
masses, tangential speed and the distance from the centre of the circle are 
the same, the total initial angular momentum will be 

1 2 12 2(45.0kg)(1.5ms )(1.0m) 135kgm siL mvr mvr mvr   

Fig. 12.26  
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In Example 12.7, speeds of the objects increased when their rotational inertia 
was reduced. This happened because angular momentum was conserved. 
This application of conservation of angular momentum is seen in many 
instances, which we describe below. 

1. Dancers or skaters on ice can increase their angular speed by pulling in 
their extended arms as shown in Fig. 12.27. They can also slow down 
when they extend their arms. Thus, they control their angular speed by 
changing their rotational inertia.  

 

 

 

 

 

 

 

 

2. A swimmer diving in the swimming pool executes somersaults before 
entering the swimming pool by changing her rotational inertia. She leaves 
the springboard with a definite angular momentum L,  represented by a 
vector pointing into the plane of Fig. 12.28, perpendicular to the page. 
When she is in the air, no net external torque is exerted on her (assuming 
air drag is negligible). So, her angular momentum is conserved.  

By pulling her arms and legs into the closed position, she reduces her 
rotational inertia and thus, increases her angular speed. Pulling out of the 

Let the final tangential speed be V. Then their final angular momentum is  

                          
2 2f

mVr mVrL mVr  

Since ,i fL L  we have, 

                        2 1135kgm smVr    

or               
2 1

1135kgm s 3.0 ms
45.0 kg 1.0m

V

Thus, the speed of the skaters is doubled when they reduce the distance 
between them to half the initial distance. Their kinetic energy would 
increase four times.  

Fig. 12.27: A skater on ice starts to spin slowly with both her arms and legs 
outstretched. As she pulls in her arms and legs, her rotational 
inertia decreases and her angular speed increases.  

(a) (b) 

Fig. 12.28: The angular 
momentum of the 
swimmer is conserved as 
she dives into the pool. 
When she pulls in her 
arms and legs, her angular 
speed increases. When 
she extends them again, 
her angular speed 
decreases.  
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A star having rotational inertia of 48 28.6 10 kgm  is rotating at an angular 
speed of 1 revolution per month about its axis. The only force on it is the 
force of gravitation. When its nuclear fuel is exhausted, it shrinks to a 
neutron star having rotational inertia of 37 24.5 10 kgm . Determine the 
angular speed of the neutron star in revolutions per month. 

closed position (and back into the open layout position) at the end of the 
dive increases her rotational inertia. This slows her rotation rate so that 
she can enter the water with little splash. Even in a more complicated dive 
involving both twisting and somersaulting, the rotational momentum of the 
diver must be conserved, in both magnitude and direction, throughout the 
dive.  

3. Stars that have exhausted their nuclear fuel begin to collapse depending 
on their mass. A star can shrink so much that its radius is reduced from 
something like that of the Sun (695 500 km) to a few kilometres. The star 
then becomes a neutron star (its material has been compressed to an 
extremely dense gas of neutrons). During the shrinking process, the star 
is an isolated system and its angular momentum L  is conserved. Since 
the rotational inertia of the shrinking star is greatly reduced, its angular 
speed is greatly increased.  

You may like to do a calculation yourself to see what is the angular speed of a 
shrinking star about an axis passing through it and compare it with the angular 
speed of the Sun, which is about one revolution per month. You may like to 
calculate the change in angular speed of the neutron star. 

 

 

 

 

 

 

So far, you have seen some applications of conservation of angular 
momentum in which the rotational inertia of an object can be changed to alter 
its angular speed.  

Conservation of angular momentum is also useful for objects which need to be 
kept stable while rotating about an axis. This happens because when angular 
momentum is conserved, the direction of the angular momentum vector is 
constant. Therefore, 

The axis about which the object spins remains fixed and the rotating 
object does not topple over: it remains stable while rotating.  

In Units 11 and 12, we have introduced many new physical quantities related 
to angular motion such as angular position, angular displacement, angular 
velocity, angular acceleration, rotational inertia, torque, rotational kinetic 
energy, work-energy theorem for rotational motion, rotational analogue of 
Newton’s second law of motion and angular momentum. 

While introducing them, we have pointed out that each of these physical 
quantities has an analogue in translational motion. We list the corresponding 
quantities and relations for both types of motion in Table 12.1 for ready 
reference. 

The satellites in 
space which rotate 
about an axis are 
also kept stable using 
the same law. You 
use conservation of 
angular momentum 
while riding a bicycle 
or motorcycle to keep 
their direction steady. 
A spinning top and a 
spinning Frisbee 
remain stable as long 
as their angular 
momentum is 
conserved.  

SAQ  9  –  Conservation of angular momentum 
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With this, we end the discussion on dynamics of angular/rotational motion and 
summarise what you have studied in the unit.  

12.7  SUMMARY 

 

Concept Description 

Dynamics of Uniform 
Circular Motion  

 

 The net force required to keep a particle of mass m in uniform circular 
motion with constant angular speed  is called the centripetal force. Its 
magnitude is:  

                                     

2

c
mvF

r   

where r is the radius of the circle in which the particle moves and v, its 
speed. The centripetal force is always directed towards the centre of the 
circle and its direction changes continuously as the particle moves. In the 
unit vector notation, we can express the centripetal force  as follows: 

                         
F r r

2
2ˆ ˆc

mv m r
r

r

  

Pure translational motion             
(fixed direction) 

Pure rotational motion (fixed axis) 

Position                                  x 

Displacement                         x 

Velocity                               
dxv
dt

     

Acceleration                       
dva
dt

 

Mass                                      m 

Force                                      F
r

 

Newton’s second law:    F anet m
r r

 

Work done                  W F dx  

Kinetic energy       21K.E.
2

mv  

Linear momentum         p vm
r r

 

      

Angular position                                             

Angular displacement                  

Angular velocity                        
d
dt

 

Angular acceleration               
d
dt

 

Rotational inertia                          I 

Torque                                         
r

                   

Newton’s second law:         net I
r

     

Work done                    W d  

Rotational kinetic energy  21K.E.
2

I  

Angular momentum              L r p
r r r

 

Table 12.1: Analogues for translational and rotational motion. 

r



   Unit 12                                                                       Dynamics of Rotational Motion 

Dynamics of Non-uniform 
Circular Motion  

 

 The net force on a particle of mass m moving with changing angular 
speed and angular acceleration  in a circular path of radius r is given 
by  

                     F a a a F Fr t r tm m    

where Fr  and Ft  are the radial (or centripetal) and tangential 
components of the force given by 

                        F r r
2

2ˆ ˆr
mv m r

r
      (radial component)  

 and F ˆ
t m r              (tangential component)        

 The magnitude of the net force is given by 

F 2 2 2 2 2( ) ( )r tF F m r r   

 and the angle which it makes with the radial direction is , given by 

  2tan t

r

ma
ma

                

Torque         If a net force F is exerted on a particle situated at a point P, which has a  
position vector r  with respect to an origin O, the torque exerted on the 
particle with respect to O is defined as  

                                  r F    

Its magnitude is given by  sin ,r F where  is the angle between r  
and F  when these vectors are placed tail to tail. The direction of torque 
is given by the right-hand rule and is perpendicular to the plane 
containing r  and F.  Torque is the tendency of a force to change the 
state of rotational motion of an object about some axis. It is also called 
the turning effect of force. When several torques act on a particle, the 
net torque or resultant torque is the vector sum of individual torques: 

                          inet
i

net i  

 Rotational analogue of 
Newton’s second law of 
motion                           

 The rotational analogue of Newton’s second law of motion is   

                            net Inet  

where netnet  is the net external torque on the particle, I is the rotational 

inertia and  is the angular acceleration of the particle. 

Rotational inertia  Rotational inertia I is the rotational analogue of mass m. It plays the 
same role in rotational motion that mass plays in translational motion. 
Just as inertial mass is a measure of a particle’s resistance to change in 
its state of translational motion, the rotational inertia of the particle is a 
measure of its resistance to change in its rotational motion. The 
rotational inertia of a particle of mass m situated at a distance r from the 
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axis of rotation is given by 

                                    2I mr  

Work done by torque  The work done by the net torque in turning an object from an angle 
1 2to  is given by 

                               
2

1

W d      

    The work done by a constant torque  which turns an object by an 
angle , is given by      

W         

Work-energy theorem and 
rotational kinetic energy     

 The work-energy theorem for angular motion takes the form 

                          
2

2

1

2 2
1

1 1K.E.
2 2

2

1

2
2 2

1
1 2K.E.
2 22

2

W d I I   

    where    21K.E.
2

21
2

I  is the rotational kinetic energy of an object 

rotating with an angular speed of  about a fixed axis and having a 
rotational inertia I.     

Angular momentum of         
a particle 

 The angular momentum L  of a particle of mass m having position 
vector r  with respect to some origin O and linear momentum p v,m  is 
defined as 

                               L r p                 

The magnitude of the angular momentum is given by sinL r p             
where  is the angle between r and p.  The direction of L  is given by the 
right-hand rule and is perpendicular to the plane containing the vectors 
r and p.  L  is defined with respect to some reference point and its value 
changes if a different point is chosen as the reference point. The angular 
momentum of an object rotating with an angular velocity  about a fixed 
axis and having a rotational inertia I is given by 

L I and L I  

Torque and                            
angular momentum 

 The net torque  on a particle is equal to the rate of change of 
angular momentum of the particle: 

                                 L d
dt

                             

Conservation of angular 
momentum                           

 The total angular momentum of a system is conserved or  
remains constant, if the net external torque acting on the system is  
zero: 

L     constant if 0
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12.8  TERMINAL QUESTIONS 

1. A stone of mass kg100.5 3  is lodged in a bus tyre. The coefficient of 
static friction between the stone and the tyre treads is 0.65. The stone flies 
out of the tyre when the speed of the tyre surface is .ms5.1 1  Assuming 
that only the force of static friction provides the centripetal force, calculate 
the radius of the tyre. Take .ms8.9 2g   

2. A cyclist starts from rest and reaches a speed of 1ms0.5 in 2.5 s. The 
radius of the bicycle wheel is 30 cm. Determine the centripetal and  
tangential components of the net force on a particle of mass 10 g situated 
at the edge of the tyre. Hence, calculate the net force on the particle. 

3. A wheel starts from rest and rotates through 360 radians in 4.0 s under the 
action of a constant torque. If the rotational inertia of the wheel is 210kgm ,  
what is the torque acting on the wheel? 

4. At a given instant of time, the position vector of an object of mass 5.0 kg is 
defined (in m) by the coordinates 2(2 , 3 , 4).t t  Determine the velocity and 
acceleration of the object, the angular momentum of the object about the 
origin and the torque about the origin being exerted on the object.  

5.  Fig. 12.29 shows a meter stick that is pivoted at the point O. The torque for 
which of the following five forces (of equal magnitude F) has the largest 
magnitude with respect to O? 

 

 

 

 

 

 

6. A boat of mass 200 kg turns in a circle of radius 30.0 m on a lake. While it 
is turning, a tangential force of magnitude 500 N is applied on the boat due 
to the engine thrust. The initial tangential speed of the boat as it starts 
turning is 15.00 ms .11  

a) Determine the tangential acceleration of the boat. What is its 
centripetal acceleration 2.00 s later?  

b) Write the expression of the net force in terms of the unit vectors r̂ and ˆ.   
c) Calculate the magnitude of the net force and the angle the force makes 

with the radial direction.  

7. The moment of inertia of a wheel about its axis of rotation is 23.0 kgm . It 
is initially at rest and then connected to a motor which delivers a constant 
torque of 30 Nm about its axis. How much work has been done by the 
motor on the wheel after the wheel has gone through 8.0 revolutions? 
What is the angular speed of the wheel at that time? 

Fig. 12.29 

O 0.2 m 0.5 m 1.0 m 

F1  F2 F3

F4  

F5  
60 45
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8. A light rod of length 1.0 m rotates in the xy plane about a pivot through the 
rod's centre. Two particles of mass 2.0 kg and 3.0 kg are connected to its 
ends. Determine the angular momentum of the system at the instant the 
speed of each particle is 

110 ms .   

9.  A girl of mass 20 kg stands at the edge of a merry-go-round having a 
moment of inertia of ,mkg500 2  and a radius of m.0.5 The merry-go-round 
is initially at rest. The girl then starts walking clockwise around the edge of 
the merry-go-round at a constant speed of 11.5 ms .  

a) In what direction and with what angular speed does the                        
merry-go-round rotate? 

b) How much work does the girl do to set herself and the merry-go-round 
in motion?  

10. A merry-go-round possessing rotational inertia of 24500 kgm  is mounted 
on a frictionless vertical axle and is initially rotating at an angular speed of  

 1 revolution per minute. A girl jumps onto the platform in the radial 
direction. If the rotational speed of the merry-go-round reduces to                    
0.9 rpm, calculate the girl’s rotational inertia.  

12.9   SOLUTIONS AND ANSWERS 
Self-Assessment Questions 
1. When the magnitude of the centripetal force is twice the magnitude of the 

tangential force, using Eqs. (12.2b) and (12.2c) we can write, 

     2 22 2r r     (i)                             

We now use Eq. (11.8c) with 0 00 and 0  to find the angle  through 

which the particle has moved. 

             
2

2 2
2

   (ii) 

Substituting the value of 2 from Eq. (i) in Eq. (ii), we get  2 1 rad
2

 

2.  We use Eqs. (12.3a and b) with 30m,0.5r  and :N40F  
2(5.0m) (40 N) sin30 1.0 10 Nm25.0m) (40 N) sin30 1.0 102(5  

The direction of torque is perpendicular to the plane containing r  and F  
and directed into the plane of the paper. 

3. From Eq. (12.3b) with 1.0m, 90 and 50N:r F  
  (1.0m) (50N) sin90 50 Nm
From the right-hand rule, it is directed vertically upward, perpendicular to 
the plane containing r  and F . 

4. It is given that the time interval t in which the final angular speed is attained 
 is the same. Thus, from Eq. (11.8a), for zero initial angular speed 

0( 0), the angular acceleration 
t

  is larger for the higher final 
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angular speed. Hence from Eq. (12.12), for the same rotational inertia, the 
torque increases with increasing angular speed.   

5. The rotational inertia of the bead is given by Eq. (12.11):  

    2 2(0.50kg) (1.0m) 0.50kgmI  

  Its angular acceleration is given by Eq. (12.12):  

(i) Hence for 2 22.52.5Nm, rads 5.0 rads
0.50

2 20 rads2.5 rads 5.02.5
0 50

2 5 02
0

2.5Nm,
0

 

(ii) For 2 25.05.0Nm, rads 10 rads
0.50

2 2rads5.0 rads 105.0
0 50

2 102
0

5.0Nm,
0

 

6. a) From Eq. (12.20) and with I given by Eq. (12.11)  

                      2 1 21K.E. (1 kg) (1 m) (1 rads ) 0.5 J
2

 

 b) The angular speed of the particle is  12 0.286 rads
(22.0s)

 

 From Eq. (12.20), its rotational inertia is  2
2(K.E.)I  

2 3 2
1 2

2 (50.0J) 1222.6kgm 1.22 10 kgm
(0.286rads )

I

7. From Eq. (12.23b), the magnitude of the angular momentum of the particle 
 is ,sinmvrL  where  is the angle between the vectors r  and .p  From 

Fig. 12.23, the perpendicular distance between O and the line is simply  
.sinr   Thus, the magnitude of the angular momentum is 

                
1 2 1(5.0 kg) (2.0ms ) (2.0m) 20 kgm sL

Its direction is given by the right-hand rule and is perpendicular to the 
plane containing r  and ,p pointing into the plane of the paper. 

8. From Eq. (12.24d), the magnitude of the angular momentum of the child is  

2 14.0 2(25kg) (2.5m) rads
60

L 2 1 2 165.4kgm s 65kgm s  

Since the merry-go-round is rotating clockwise, the direction of the angular 
momentum is downwards along the axis of rotation. From Eq. (12.12), the 

magnitude of torque is ,I  where .d
dt

 

 2 2 2(25kg) (2.5m) 0.80rads 125 Nm 1.3 10 Nm22 2 225kg) (2.5m) 0.80rads 125 Nm 1.3 102 2 2222(2   

9. The only force is the force of gravitation, for which, as we have seen in 
Example 12.6, the angular momentum is conserved. The initial angular 
momentum of the star is 48 2(8.6 10 kgm ) 1iL  revolution per month 

The final angular momentum is 37 2(4.5 10 kgm )fL where  is 
the angular speed of the neutron star. 

48 2

37 2
8.6 10 kgm, rev per month
4.5 10 kgm

41048.6
4 5

, 31034
88
4

i fL L   

  111.9 1011.9 10  revolutions per month 
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Terminal Questions 
1. The force of static friction on the stone is 

N1018.3)ms8.9(kg)100.5(65.0 223
SF  

If this force provides the centripetal force, then for ,ms5.1 1v  we have 

      
R

mvFS
2

       ,
2

SF
mvR  where R is the radius of the tyre. 

   m35.0
N1018.3

)ms5.1(kg)100.5(
2

213
R   

2. We first determine the angular speed and then the angular acceleration of 
the particle situated at the edge of the tyre in order to calculate the 
centripetal and tangential components of the net force on it. To determine 
the angular speed corresponding to the speed ,ms0.5 1  we use the result 

rv  with .m30.0cm30r  Therefore, 

                      1
1

rads7.16
m30.0

ms0.5   

From Eq. (11.8a), with s5.2,00 t  and 116.7 rads  

2 2 216.7 rads 6.68 rads 6.7 rads
2.5

 

From Eq. (12.2b), centripetal component of the net force on the particle is  

rrF ˆN84.0ˆm)30.0()rads7.16(kg)100.1( 212
r
r

 

From Eq. (12.2c), tangential component of the net force on the particle is 
2 2 2F (1.0 10 kg) (6.7 rads ) (0.30 m) 2.0 10 Nt

r
 

From Eq. (12.2d), the magnitude of the net force on the particle is 

             N84.0N)02.0()84.0( 22F  

The direction of the force is given by the angle the force makes with the 
radial direction, which is given by Eq. (12.2e) as 

1
2

1
1 2

6.7radstan tan ( 0.024) 178.6 179
(16.7rads )

  
  
  

o o  

3. From Eq. (11.8b), the angular acceleration of the wheel is  

                               2
2

2 360rad 45 rads
(4.0s)

 

 From Eq. (12.12)  2 2(10kgm ) 45rads 450 Nm  

4. The position vector of the object is  kjir ˆm4ˆm)3(ˆm)2( 2 tt
r

 
 The velocity and the acceleration of the object are 

            12 msˆ)4(ˆ)3(ˆ)2( kjirv
dt
dt

dt
dt

dt
d

dt
d
r

r
ji ˆms3ˆms)4( 11t  

 2 2ˆ ˆ(4 )ms (3)msva i j
r

r d d dt
dt dt dt

îms4 2  

 The angular momentum of the object is given by Eq. (12.23a). 
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  L i j k i j2 1 1ˆ ˆ ˆ ˆ ˆ(5.0kg)[(2 m 3 m 4m ) (4 ms 3ms )]t t t  

     kji ˆsmkg30ˆsmkg80ˆsmkg60 1221212 tt  

 The torque is given by Eq. (12.28):  ˆ ˆ(80 Nm 60 Nm )ˆ(80 Nm 60L j kd t
dt
dd
dd

   

5.  Torque due to 1F  is   r F 0 r 01 1 1 1( )  

 Magnitude of torque due to 2F  is   r F2 2 2           

                 (0.2m) ( sin60 N) 0.17 Nm 0.2 NmF F F  
Magnitude of torque due to 3F  (0.5m) ( sin90 N) 0.5 NmF F     
Magnitude of torque due to 4F : (0.5m) ( sin45 N) 0.35 NmF F   

r F 05 5 5  since r5  is parallel to F5.  Therefore, the torque due to F3  

has the largest magnitude. 

6. a)  From Eq. (12.2a), the tangential acceleration of the boat is           

   2500N 2.50ms
200kg

t
t

F
a

m
  

    To determine the centripetal acceleration we first need to obtain the  
 angular velocity at 2.0 s. From Eq. (11.16c), the angular acceleration  

 is 
2

2 22.50ms 8.33 10 rads
30.0m

ta
r

 

  The initial angular speed  
1

1
0

5.00ms 0.167rads
30.0m

tv
r

 

  From Eq. (11.8a), we get the angular speed at 2.00 s:  

  1 2 2 10.167rads 8.33 10 rads 2.00 s 0.334rads  
From Eq. (11.16c), the centripetal acceleration is:  

   a r r1 2 2ˆ ˆ(0.334rads ) (30.0m) 3.35msr

  The centripetal force is given by: 
    F a r r2 ˆ ˆ(200)kg (3.35ms ) 670Nr rm

b) The net force is the vector sum of the centripetal and the tangential 
force:    ˆˆ670 N 500Nˆ670 N 50ˆF r ˆ  

c)  The magnitude of the net force is 2 2(670) (500) N 836 NF         

From Eq. (12.2e), the angle that the net force makes with the radial 
direction is 

          1 500Ntan
670N

1tan [ 0.746] 143.2 143  

7. The work done by the motor on the wheel is given by Eq. (12.19):  

       330Nm 8.0 2 rad 1.5 10 JW  

To find the angular speed  of the wheel, we use Eq. (12.22) with  

           3 2
1 21.5 10 J, 3.0 kgm , 0 and .W I  

2 2 3 1 11 (3.0kgm ) 1.5 10 J 31.6rads 32rads
2

1 1rads2(3.0kgm )2 31.6rads 321 3212 32 31.5 10 J2 3  
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8. The total angular momentum r v r v1 1 2 2( ) ( )m m
r rr r

  

 i j i j1 1ˆ ˆ ˆ ˆ(0.5m ) (2.0 kg 10ms ) ( 0.5m ) (3.0 kg [ 10ms ])  

  i j i j k2 1 2 1 2 1ˆ ˆ ˆ ˆ ˆ(10 kgm s )( ) (15 kgm s )( ) (25 kgm s )   

9. a)  We apply the principle of conservation of angular momentum. 
 Initial angular momentum of the system = L 0.i

r r
 From Eq. (12.24e),   

      the final angular momentum is 

     Lf
r

 angular momentum of the merry-go-round + angular momentum    
               of the girl 

                2 2 11.5 ˆ500kgm 20kg (5.0m) s ( )
5.0

  
    

kr
Q v r   (i) 

Here k̂  is the unit vector along the direction of the axis of the  
merry-go-round. Since L Li f

r r
                           

2 2 1 1ˆ ˆ500kgm 150kgm s 0.30 rads  k 0 k
rr r

 

the counter-clockwise direction.  

b)   From the work-energy theorem, the work done by the girl is equal to 
the change in the kinetic energy of the merry-go-round and the girl. 
Since initially both were at rest, from Eq. (12.20) for the rotational 
kinetic energy of the merry-go-round, we get, 

                2 21 1K.E.
2 2g g mm v I W  

Here gm  and gv  are the mass and the speed of the girl, mI  is the 

moment of inertia of the merry-go-round and  its angular speed. 
Thus,                                             

1 2 2 1 21 1(20kg) (1.5ms ) (500kgm ) (0.30rads ) 45J
2 2

W  

10. Since the axle is frictionless, the net external torque on the merry-go-round 
is zero and its angular momentum is conserved: .i fL L Here, 

  2 12(4500 kgm ) rads
60iL  

 Let the moment of inertia of the girl be .gI  Then  

  2 1
f g

2L (4500 kg m I ) 0.9 rads
60

 
  

  

2 12(4500 kg m ) 0.9 rads
60

 
  gI  2 124500kgm rads

60
        

             2 2 2 2 24500 kgm 4500kgm 500kgm 5 10 kgm
0.9gI  
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       UNIT 13 
 

MOTION UNDER 
CENTRAL FORCES 

  

 Structure 

13.1     Introduction 
Expected Learning Outcomes 

13.2 What is a Central Force? 

13.3 What is a Central Conservative Force? 

13.4 Motion under Central Conservative Forces 

Features of Motion under Central Conservative Forces 

Angular Momentum for Motion under Central Force 

The Law of Equal Areas  

STUDY GUIDE 
In this unit, you will learn the concepts of central force and central conservative force and study 
the general features of motion under central conservative forces. You will obtain the equation of 
motion for an object moving under such forces. You are not expected to solve this equation but we 
expect you to know its general solution for the force of gravitation given in this unit. You may be 
learning the concepts discussed in this unit for the first time. We have tried to keep the mathematics 
simple and given all steps. For understanding the concepts in this unit well, you should know the 
concepts of work, energy, conservative force and conservation of mechanical energy explained in 
Units 9 and 10 of Block 2. You should revise the concepts of angular momentum and torque 
explained in Unit 12, particularly for forces directed along the radial direction. You should also revisit 
the concepts of scalar and vector products given in Units 1 and 2 in Block 1. We advise you once 
again to solve all examples, SAQs and Terminal Questions on your own! 

13.5 Motion under an Inverse Square Force 

Objects moving under the Sun’s Gravitation 

Elliptical Orbits in the Solar System 

Kepler’s Laws of Planetary Motion 

Artificial Satellites 

13.6 Summary 

13.7 Terminal Questions 

13.8 Solutions and Answers 

What is the maximum distance of comet 
Halley, which returns to the Earth once in 
76 years on an average, from the Sun? You 
will learn the answer in this unit! 



  
Block 3                                      Rotational Motion and Many-particle Systems

13.1   INTRODUCTION 
In Block 2 and Units 11 and 12 of this block, you have studied Newtonian 
mechanics including concepts related to work, energy and angular motion. 
Newtonian mechanics gives us both the physical insight and the 
mathematical tools required to study the motion of all objects in the 
Universe. You have learnt that Newtonian mechanics applies to the motion of 
macroscopic objects around us and in the entire universe. In this unit, you will 
study the motion of objects under a special category of forces called the 
central forces or centre seeking forces. We have already introduced two 
such forces in Units 6 and 7 of Block 2: the force of gravitation and the 
spring force, which are also conservative. In Secs. 13.2 and 13.3 of this unit, 
you will learn the formal definition of central forces and central 
conservative forces.  

In Sec. 13.4, we discuss the special properties of motion under central 
forces. These properties give us a qualitative understanding of the motion of 
objects under any type of central force. We also discuss the motion of objects 
under a certain type of central force: the central conservative force. You 
know that the force of gravitation is a conservative force. It is also a central 
force. Therefore, it is a central conservative force. In Sec. 13.5, you will study 
in greater detail, the motion of objects under inverse square forces with 
special focus on the force of gravitation. You will learn how to calculate the 
orbits of objects in the solar system. It will also become clear to you how 
Kepler’s laws of planetary motion are a simple consequence of Newton’s laws 
of motion and gravitation. Finally, you will apply these concepts to objects 
moving around the Earth or other planets. In the next unit, you will study the 
motion of many-particle systems.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 define and identify central forces and central conservative forces; 

 explain the properties of motion under central conservative forces;  

 derive the law of equal areas for central forces; 

 write down the equation of motion for an object moving under the force of 
gravitation, and its general solution; 

 write down the conditions on eccentricity for which the path of an object 
moving under an inverse square force is a circle, ellipse, hyperbola or 
parabola;  

 determine the total mechanical energy and time period of an object moving 
in an elliptical orbit under the force of gravitation;  

 apply Kepler’s laws of planetary motion; and 

 calculate orbit parameters like the eccentricity, lengths of semi-major and 
semi-minor axes, aphelion (apogee) and perihelion (perigee) for an object in 
the solar system moving under the gravitational force of the Sun (Earth). 
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The notation for force 
adopted here is:  

FqQ  is the force on Q 

due to q. 

QqF  is the force on q 

due to Q. 

13.2   WHAT IS A CENTRAL FORCE? 
Let us consider the following forces, which you know very well from your 
school physics and Block 2: 

 The force of gravitation due to a point mass 1m  on another point mass 

2m  separated from it by a distance r (Fig. 13.1). It has a magnitude of 

1 2
2

Gm m
r

 and is directed towards 1m  along the line joining the two masses.  

 The restoring force F  on a mass due to a stretched spring. It is 
proportional to the length x by which the spring is stretched (Fig. 13.2) and 
directed along the spring opposite to the displacement x  of the mass.  

 The electrostatic force due to a point charge q  on another point charge 

Q  at a distance r (Fig. 13.3). It has magnitude 2 ,qQk
r

where k is a constant. 

This is also called the Coulomb force. From Fig. 13.3a, you can see that 
 

the force is directed towards q  when it is attractive (between unlike  
 

charges, that is one of the charges is positive and the other negative).  
 

Fig.13.3b shows that it is directed away from q  when it is repulsive  
 

(between like charges).  

 

 

 

 

 

 

 

You can see that these forces describe very different physical situations. Yet, 
do you think that they have something in common?  

To find the answer, consider the direction of the force in each of these 
examples.  

Did you notice that in each case, the force is always directed towards or 
away from a particular point? Also this point remains fixed, that is, it 
remains the same for a given force.  

For example, the gravitational force on 2m  due to 1m  is always directed 
towards the position of the mass 1.m  This is an example of a force called 

the central force.  

From Figs. 13.2 and 13.3, you can see that the spring force and the 
electrostatic forces are also examples of central forces.  

Fig. 13.2: The restoring 
force F on a mass 
attached to a spring. 

x
F xk

Fig. 13.3: a) The forces QqF  and qQF  between two unlike charges are attractive;  

 b) the forces QqF and qQF  between two like charges are repulsive.  

(a) (b) 

 
 

Fig. 13.1: The attractive 
force of gravitation on a 
point mass m2 due to 
another point mass m1 

separated by distance r 
from it. 
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When we say that the 
centre of force is fixed, 
we mean that it 
remains the same for a 
given force. It may or 
may not move in space. 
For example, the 
gravitational force on 
the Earth or any other 
planet due to the Sun 
always points towards 
the Sun. The centre of 
force is at the position 
of the Sun. So, even 
though the Sun moves 
in space, the centre of 
the force remains fixed 
at the Sun for the force 
of gravitation exerted 
by the Sun on the 
planets. 

Let us now give a formal definition of the central force. 

 

 

 
 
 
 
 

Let us now write down the mathematical expression for the central force F  of 
magnitude F acting on a particle: 

 

 (13.1) 
 

Here r̂  is the unit vector along the radial direction (see Fig. 13.4a).  It lies 
along the line joining the particle to the centre of the force and is 
directed away from the centre of force O towards the particle. Thus, a 
central force is always directed along the radial direction. For systems of 
two particles (as in the case of gravitational or electrostatic forces between 
two point masses or two point charges), it is always directed along the line 
joining the particles. That is why it is also called the radial force.  

Note that the direction of the unit vector r̂  would change as the particle moves 
under the influence of the force. Recall Example 7.1 of a geosynchronous 
satellite held in its orbit by the force of gravitation, which you have studied in 
Unit 7. The force on the satellite is always directed towards the centre of the 
Earth. Thus, the direction of the unit vector along the force changes at every 
point of its orbit (see Fig. 13.4b). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

What did you notice about the magnitude of the force in the examples of the 
central forces you have studied so far? In all these examples, the magnitude 
of the force on a particle depends only on its distance from the centre of 
force (apart from other constant physical quantities such as the mass, the 

CENTRAL FORCE 

A central force is a force which is always directed towards or away 
from a particular point, which remains fixed. The fixed point is called 
the centre of force. The force is always directed towards or away from 
the centre of force.  

F r̂F

In general, the function F 
of Eq. (13.1) depends on 
the spherical polar 
coordinates (r, , ) in the 
three-dimensional space. 
This discussion is being 
kept beyond the scope of 
this course.  

Central force 

Fig. 13.4: a) A central force F  with  O  as the centre of force. Note that  r̂  is the         
unit vector along the radial direction. It points away from the centre of 
force; b) the force of gravitation F  on a satellite due to the Earth is  
directed towards  the centre of the Earth as it orbits the Earth. It is a  
central force.  

(a) (b) 

F

F  
F  

F

O 
r̂

rF ˆF
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Which of the following forces are central? (Hint: You have to determine 
which of the forces are directed only along the radial direction r̂. ) 

a) The force rF k  for a simple harmonic oscillator oscillating in 
space, where r  is the position vector of the oscillator and k is a 
constant.  

b) Force  rF ˆˆ rbra  on a particle rotating with changing angular 
velocity. Here a and b are constants. 

c) Force ,ˆ)/( 3 rF rk  where k is a constant. 

charge or the spring constant, etc.). Therefore, in Eq. (13.1), we can substitute  
the expression ( )F f r for the magnitude of the force and write the force as 

                                                 (13.2) 

Eq. (13.2) tells us that the magnitude of F  given by ( )f r depends only on 
the distance of the particle from the centre of the force. The forces defined 
by Eq. (13.2) are called central conservative forces. Why they are called so 
will become clear to you when you study the next section. But before studying 
further, you may like to identify central forces using Eq. (13.1). 

 

 

 

 

 

 

 

 

13.3   WHAT IS A CENTRAL CONSERVATIVE 
FORCE? 

Consider a particle moving along the path AB (Fig. 13.5a) in space under the 
influence of the force F r̂( ) .f r  Recall Eq. (9.11) from Sec. 9.4 of Unit 9, which 
defines the work done by a force F  in moving the particle from any given point 
to another. From Eq. (9.11), the work done by any force F  in moving a particle 
from a point A to point B along its path is given by 

                           
B

A

dW lF.    (13.3) 

where ld  is the differential element of displacement along the path. Note that 
we have used a different symbol for the element of displacement in Eq. (13.3). 
Let us substitute the expression of the force from Eq. (13.2) in Eq. (13.3). Then 
the work done by the force rF ˆ)(rf  in taking a particle from the point A to the 
point B is given by 
 

                             
B

A

B

A
AB drfdW lrlF .ˆ)(.    (13.4a) 

rF ˆ)(rf  Central conservative 
force 

Fig. 13.5: Work done by 
a central conservative 
force. 

(a) 

(b) 

cos

cos

dr
dl

dr dl
 

rd ld
90  

O 

A 

B 

r

rd

rr d

rd

ld

Ar

Br

SAQ  1  –  Identifying central forces 
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Note that in Eq. (13.5) 
we have written the 
limits of integration 
from point A to point B 
as Ar and Br  since 
now the variable of 
integration is r.                 

Eq. (13.5) is another 
way of defining a 
conservative force. But 
Eq. (13.5) also tells us 
that central forces of 
the form  F r̂( )f r   
are conservative. 

Recall from Unit 10 
that conservative 
forces are called so 
because the total 
mechanical energy of 
the objects moving 
under such forces is 
conserved. 

Let us now obtain the value of ..ˆ lr d From Fig. 13.5a, note that ld  is a very 
small displacement along the path of the particle and rd  is a small element 
along the radius vector .rr d  Let  be the angle between the element 

ld and .rr d  Since ld is very small,  is approximately equal to the angle 
between the element ld  and the radius vector r  or the unit vector r̂ along .r   

Using the definition of the scalar product, we can write 

cos.ˆ dld lr  (13.4b) 

Now study Fig. 13.5b, which magnifies the shaded area of Fig. 13.5a 
containing the elements ld  and rd  along with the angle  between them. Let 
dl and dr be the magnitudes of vectors ld and ,rd  respectively.  From the                  
right-angled triangle in Fig. 13.5b, you can see that drdl cos and hence  

drdld cos.ˆ lr             (13.4c) 

Substituting Eq. (13.4c) in Eq. (13.4a), we get 

                           
B

A

r

r
AB drrfW )(  (13.5) 

Eq. (13.5) tells us that the work done by a force of the form rF ˆ)(rf  on a 
particle moving between any two points A and B depends only on the 
distance of these points from the centre of force. It is independent of the 
actual path followed by the particle between these two points. This is just 
the definition of a conservative force that you have learnt in Sec. 10.2 of               
Unit 10. Thus, Eq. (13.5) along with the definition of the conservative force tells 
us that forces of the form rF ˆ)(rf  are conservative.  

You know from Eq. (13.1) that these are also central. Hence such central 
forces, which are also conservative, are called central conservative 
forces. Let us now give a formal definition of a central conservative force. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CENTRAL CONSERVATIVE FORCE 

A central conservative force is always directed towards or away from 
a particular point, which remains fixed. Its magnitude depends only 
on the distance of the particle from the centre of the force. Thus, all 
forces of the form 

                                                   rF ˆ)(rf  

are central conservative forces. For such forces, the work done in taking 
a particle from one point to another is given by Eq. (13.5). It depends only 
on the distance of the particle from the centre of force at those points 
and not on the path followed by the particle. All conservative forces are 
central. 

Fig. 13.5: Work done by 
a central conservative 
force. 

(a) 

(b) 

cos

cos

dr
dl

dr dl
 

rd ld
90  

O 

A 

B 

r
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Ar

Br



   Unit 13                                                                         Motion under Central Forces 

For example, for the 
force of gravitation 
between particles of 
mass m and M, 
respectively situated 
at a distance of r 
from each other, 

2( )
GMm

f r
r

  

and for the 
electrostatic force 
between two 
charges q and Q 
situated at a 
distance of r  from 
each other 

2( ) k
r

qQ
f r  

Which of the following forces are central conservative forces? (Hint: You 
have to determine which of the forces have magnitudes depending only on r 
and are directed only along the radial direction r̂. ) 

a) The force vxF bkx ˆ  on a damped harmonic oscillator moving 
along the x-axis, where v  is the velocity of the oscillator.  

b) The force ,ˆ3 rF
r
K  where K is a constant. 

c) The force ,ˆcos
3 rF

r
k  where k is a constant. 

Before studying the motion of objects under central conservative forces, you 
may like to identify some such forces using Eq. (13.2) in the following SAQ. 

 
 
 
 
 
 
 
 

13.4 MOTION UNDER CENTRAL CONSERVATIVE 
FORCES 

 
Let us now study motion under central conservative forces. We can obtain the 
positions and velocities of the particles moving under any central conservative 
force by solving the equation of motion. Let us write down the equation of 
motion of a particle of mass m moving with acceleration a  under the influence 
of a central conservative force. For this, we substitute the expression of F  
given by Eq. (13.2) in Newton’ second law of motion and get 

ra ˆ)(rfm          or          rr ˆ)(2

2
rf

dt
dm  (13.6) 

Now, the equation of motion would be different for different forms of the 
function f (r), that is, for different central conservative forces. Hence, the 
solutions of Eq. (13.6) would also be different.  However, motion under such 
forces has some general features that make it easier for us to solve the 
equation of motion. We begin our study of motion under a central conservative 
force by understanding these general features. 
 

13.4.1   Features of Motion under Central Conservative 
Forces 

 
Even without knowing the actual form of the function ),(rf it is possible to 
deduce certain properties of the motion of objects under central conservative  
forces. We now explain these features.  

1. The Total Mechanical Energy is Constant. 

You have learnt in Unit 10 that the total mechanical energy of a particle 
moving under the influence of a conservative force is conserved. This 
result is also true for central forces that are conservative. Therefore, 

SAQ  2  –  Identifying central conservative forces
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2. The Angular Momentum is Constant. 

Recall the definition of a central force    it is always directed towards or 
away from a fixed point. This results in an interesting property. Let us find 
the torque  due to a central force rF ˆF  about the centre of force (see            
Fig. 13.6). Since r̂  is a unit vector along the vector ,r  we have: 

                    rrrrFr ˆˆˆ FrF                    (13.7a) 

where we have substituted rr ˆr in Eq. (13.7a). Here r is the magnitude 
of the vector r . Now even without knowing what kind of a function F is, 
can you say what the value of  is in Eq. (13.7a)?  It is the zero vector. 
Can you say why? This is because the vector product of r̂  with itself is 
zero: 

                0rr ˆˆ             )00sinˆˆˆˆ( rrrr  (13.7b) 

Substituting Eq. (13.7b) in Eq. (13.7a), we get      

 (13.7c) 

Thus, the torque due to a central force about the centre of force is 
always zero. Notice that this is true for any type of central force and not 
just a central conservative force, whatever its magnitude F may be. 

Now recall from Eq. (12.28) of Unit 12 that the torque due to a force 
about a point is equal to the rate of change of angular momentum L  
about that point: 

  
dt
dL (13.7d)

Hence, for central forces: 

       constantL0L0
dt
dor   (13.7e) 

Thus, we get the result that  

        (13.8) 

Here L  is a vector quantity. Therefore, you can say that  

 

 

 

L     constant   for central and central conservative forces 

0              for central forces 

Fig. 13.6: Torque due to 
central force about the 
centre of force is zero 
because the force F  is 
parallel to r.  

O 
r̂

rF ˆF
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The fact that the angular momentum is conserved in central force motion, 
leads to another interesting feature of motion under central forces. 

3. Particles Acted upon by Central Forces Move only in a Plane. 

Recall Eq. (12.23a) of Unit 12 which defines angular momentum. You 
know that we can write the angular momentum of a particle of mass m 
about a point O as, 

                            vrprL m  (13.9) 

where vp m is the momentum of the particle, v  its velocity and ,r its 
position vector with respect to O. Eq. (13.9) tells us that L  is always 
perpendicular to the plane containing r  and v  (see Fig. 13.7). Why is 
that so?   

Recall Example 12.6 from Unit 12 as well as the definition of the cross 
product of vectors. You have learnt that the direction of the vector 
c a b( )  is given by the right-hand rule and is perpendicular to the 
plane containing the vectors a  and b . You know from Eq. (13.8) that for 
a central force, the direction of L  is fixed. This means that the plane in 
the direction perpendicular to it is fixed (see Fig. 13.7). That is, the 
plane containing r  and v  is fixed. Since r  and v  determine the path of 
the particle, the plane containing r  and v  is the plane in which the 
particle moves. Therefore, 

 
 
 
 

Once again, this feature of motion under central forces holds for any type 
of central force. It does not depend upon the nature of the central force as 
described by F.  

Let us now summarise these features of motion under central conservative 
forces.  

 

 

 

 

 

 

 

 

 

Fig. 13.7: A particle 
having constant angular 
momentum L  moves in a 
fixed plane perpendicular 
to L .  

L
L

r v

L

 O 

For motion under central conservative forces,  

1. The total mechanical energy is constant.  

2. The angular momentum about the centre of force is constant both 
in magnitude and direction.  

3. The particle always moves in a plane perpendicular to the 
direction of the angular momentum.  

The last two features also hold for motion under those central forces, 
which are not conservative.  

FEATURES OF MOTION UNDER CENTRAL 
CONSERVATIVE FORCES 



  
Block 3                                      Rotational Motion and Many-particle Systems

For each of the following forces, identify the constants of motion. For which 
forces would the particle move in a plane? (Hint: You have to determine 
which of the forces are central and which ones central conservative.) 

a) The force vxF bxk ˆ  of a damped harmonic oscillator moving 
along the x-axis, where v is the velocity of the oscillator. 

b) The force ,ˆcos
3 rF

r
k  where k is a constant. 

c) The force ,ˆ2 rF
r

GmM  where G, m and M are constants. 

The physical quantities conserved in any motion, are called the constants of 
motion. We have, so far, identified two constants of motion. 

 
 
 
 
 

 
We now take up an interesting application of the fact that angular momentum 
is conserved for motion under central and central conservative forces. This is 
the law of equal areas, which you already know in a different form as one of 
Kepler’s laws of planetary motion. But before studying further, you should 
check whether you have understood the features of motion under central 
conservative forces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to arrive at the law of equal areas, we first need to determine the 
expression for the angular momentum of a particle moving in the xy plane 
under the influence of a central force. 

13.4.2   Angular Momentum for Motion under 
Central Force 

Consider a particle of mass m moving in a plane under the influence of a 
central force. Since the particle always moves in a plane, we can describe its 
motion using a two-dimensional coordinate system such that the centre of 
the force is at the origin. We can study the motion using plane polar 
coordinates r and  of a given point. We start from the definition of the 

The constants of motion for a central conservative force are 

 the angular momentum about the centre of force and 
perpendicular to the path of the particle, and  

 the total mechanical energy. 

CONSTANTS OF MOTION FOR                       
CENTRAL CONSERVATIVE FORCES 

SAQ  3  –  Motion under central conservative forces 
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angular momentum and use Eq. (12.23a) to get the expression for L  about 
the centre of the force (which we have taken at the origin). So we have 

                    
dt
dmm rrvrprL     (13.10) 

Substituting rr ˆr  in Eq. (13.10), we can write 

        
dt
rdmr )ˆ(ˆ rrL   

dt
dr

dt
drmr rrr

ˆˆˆ

or    
dt
dmr

dt
dmr

dt
drmr rr0rrrrL

ˆˆˆˆ)ˆˆ( 22      (13.11)            

The first term in the RHS of Eq. (13.11) is a null vector because .0rr   

We can now use the result r ˆˆ
dt
d (read the margin remark) in Eq. (13.11) to 

obtain the expression for angular momentum:  
                 )ˆˆ()ˆˆ( 22 rrL mrmr  (13.12) 
Since the unit vectors r ˆˆ and  are in the xy plane, their vector product will be 
the unit vector perpendicular to the xy plane. Its direction will be given by the 
right-hand rule and will be along the z-axis. Denoting this unit vector by k̂,  we 
have ,ˆˆˆ kr  and hence        

(13.13) 
 

This is the expression of the angular momentum of a particle of mass m 
moving in the xy plane under the influence of a central force, about the 
centre of force. We now derive the law of equal areas, which is just the 
conservation of angular momentum in a central force field stated in a different 
form. 

13.4.3   The Law of Equal Areas  

Study Fig. 13.8a. It shows the path PAB of a particle moving under a central 
force .F  Let r  be the position vector of the particle at an instant of time t, at 
the point A of its path. Since the force is central, the particle moves only in a 
plane. So we need to use only two coordinates to describe its motion. Let the 
coordinates of the point A be (r A to B in 

t, where its position vector is .rr  Let the coordinates of B be 
( , ).r r  

 

 
Fig. 13.8: Arriving at the law of equal areas. a) PAB is the path of the particle 

during the time interval t; b) the path for very small values of 

kL ˆ2rm

 
The plane polar 
coordinates r and  of the 
point P are given by:  

xyyxr

ryrx

/tan;

sin;cos
22

The position vector r  is 
then: 

ji
jir

ˆsinˆcos

ˆˆ

rr

yx
 

The unit vector along r is: 

j i rr ˆsinˆcosˆ
r  and 

ji ˆcosˆsinˆ  

so that  
 

jir ˆ)(sinˆ)(cos
ˆ

dt
d

dt
d

dt
d

ji  ˆcosˆsin dt
d

dt
d

ji  ˆˆcosˆsin

where we have written dt
d  

as   . Also in arriving at         
Eq. (13.12), we have used 
the following formula of 
differential calculus: 

( )
d dg df

fg f g
dt dt dt

 

where f and g are 
functions of t. 
 

 
 

(a)  (b)  
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t, the position vector r of the 
particle sweeps out the area OAB in the plane of the motion (shown by the 
shaded part). Let us denote the area OAB A. Note from Fig. 13.8b that for 

A is very close to B A is 
approximately equal to the area of the triangle OAB (shown by the shaded 

 AB ( )r  is a 
straight line equal to the height of the triangle OAB. Therefore, for very small 

OAB is given by 

 1 1 base height (  )
2 2

A OA AB r r    (13.14) 

or                         21
2

A r                                         (13.15) 

We define the areal velocity as the rate at which area is swept out by the 
position vector. Thus, it is simply the derivative of the area A given by                 
Eq. (13.15) with respect to time. You know from differential calculus that it is 
given by 

   2 2 2
0 0

1 1 1lim lim
2 2 2t t

dA A dr r r
dt t t dt

   (13.16) 

Now compare Eq. (13.16) with Eq. (13.13). The magnitude of the angular 
momentum given by Eq. (13.13) is simply 2 .mr  Therefore, we can write the 
expression of the areal velocity as 

    
2

21
2 2 2

dA mr Lr
dt m m

 (13.17) 

Since the angular momentum is constant for objects of constant mass 
moving under central forces, their areal velocity will also be constant. 
This is the law of equal areas.  

 

 

 

 

 

 

What does the law of equal areas [Eq. (13.17)] tell us about the motion of the 
object? In general terms, it tells us the following: The object would move 
faster when it is closer to the centre of force. Can you explain why? From 
Eq. (13.17), you can see that the smaller r is, the greater would  (the 

angular velocity of the object) be. This is because the areal velocity 2

2
1 r   

is constant. Thus, the object would move faster when r  is smaller (that is, 
when the object is closer to the centre of force).  

For any central force, the radial vector connecting the particle to the 
centre of force sweeps out equal areas in equal intervals of time. 

21 constant
2 2

dA Lr
dt m

(13.17) 

LAW OF EQUAL AREAS FOR CENTRAL FORCES 

Angular velocity 

dt
d  which is the 

same as .  

Law of equal areas 
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Using the law of equal areas, explain why an object would move slower 
when it is farther away from the centre of force. 

What will the case for larger values of  r  be, that is, when the object is farther 
from the centre of force? You may like to answer this question yourself. 
  
 

  
 
 
 
Kepler’s second law of planetary motion is a special case of the law of equal 
areas. When we apply the law of equal areas to the motion of the planets 
around the Sun under its gravitational force, we get Kepler’s second law. You 
will study it in the next section.  

Let us now study motion under an inverse square force, which is the most 
familiar central conservative force around us. This is an important problem 
because the gravitational force between point masses and the electrostatic 
force between charges are inverse square forces. In Sec. 13.5, we shall focus 
on the gravitational force between objects and obtain the orbits of various 
objects in the solar system. 
 
13.5 MOTION UNDER AN INVERSE SQUARE 

FORCE 

The general form of an inverse square force is, 

                                          rF ˆ
2r

kr
 (13.18) 

If the constant k in Eq. (13.18) is negative, (that is, k  0), the force is directed 
opposite to  r̂  and towards the centre of force. Therefore, it is attractive. 
Recall from Figs 13.1 and 13.3a that the gravitational force between two 
masses and the Coulomb force between two unlike charges are 
attractive inverse square forces. On the other hand, if k is positive, (k  0), 
it is directed away from the centre of force and is repulsive. The Coulomb 
force between two like charges is a repulsive inverse square force.  

 
   (13.19a) 

           

 (13.19b) 

 

In the rest of this section, we shall discuss the motion of objects moving under 
the gravitational force of the Sun. Do remember that the method and the 
steps of the analysis will be the same for other inverse square central 
conservative forces as well. 

2
ˆk

r

r
  attractive for k  0 

F r2
ˆk

r

r
  repulsive for k  0 

 Inverse square force 

 Attractive inverse           
square force 

 Repulsive inverse          
square force 

SAQ  4  –  Law of equal areas 
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13.5.1   Objects moving under the Sun’s Gravitation 

Let us write the equation of motion for an object of mass m moving under the 
gravitational force exerted by the Sun of mass M. The mass of the Sun is 
much greater than the mass of any object in the solar system: M >> m. We 
assume that the Sun is stationary and take the origin of the coordinate 
system at the Sun. Then r is the distance of the object from the Sun (see  
Fig. 13.9). Substituting the expression for the force of gravitation in Newton’s 
second law, we get 

                  ra ˆ
2r

GMmm  (13.20a) 

                                                                                           
 
 (13.20b) 

 

 

 

 

 

 

 

 

 

We can then solve Eq. (13.20b) using plane polar coordinates to determine the 
path followed by the object. We shall not be solving Eq. (13.20b) in this 
course.  

Here we write the general solution and then discuss it qualitatively for different 
situations. The general solution of Eq. (13.20b) for any object (of mass m) 
moving under the gravitational force due to the Sun (of mass M) is given as 

)cos1(1
2

2
e

rGMm
L                                             (13.21a) 

where L is the angular momentum of the object about the Sun. From                  
Eq. (13.13), 2 ,L mr  where is the angular velocity of the object when it 
is at a distance r  from the Sun. However, as we know, L is constant for  
motion under central force. Here 

                          
2

2 2 3
21 L Ee

G M m
        (13.21b) 

We have used the 
following results to 
write Eq. (13.20b): 
 

2

2

dt

d

dt
d

dt
d

dt
d
dt
d

r

rv
a

r
v

 

Thus,     rra ˆ
22

2

r
GM

dt
d                Equation of motion Equation of motion for 

objects in solar system 

Fig. 13.9: The Sun is at the origin and (r, ) are the plane polar coordinates 
of any object in the solar system.   
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and E is the total mechanical energy of the system, which is a constant. What we 
have in Eq. (13.21a) is a relation between r and , which determines the position 
of the object relative to the Sun. Note that while Eq. (13.20b) gives the variation 
of r with time t, Eq. (13.21a) is the equation of the path of the object around the 

Sun. We define a new constant 
2

2
Lp

GMm
 to write Eq. (13.21a) as 

         (13.22)  
 

We can now identify Eq. (13.22) as the equation of a conic section with an 
eccentricity of e. The value of the eccentricity decides the shape and the 
type of the conic section (see Figs. 13.10a to d). 

 Eccentricity Conic Section Shape 

 
 
 
a) 

 
 
 

e = 1 

 
 
 

Parabola 
 
 
 

 
 
 
 
 
 

 
 
 
 
b) 

 
 
 
 

e > 1 
 
 
 

 
 
 
 

Hyperbola 
 
 
 

 
 
 
 
 
c) 

 
 

 
 

e < 1 

 
 

 
 

Ellipse 
 
 

 

 
 
 
d) 
 
 

 
 
 
  0e   

 

 
 
 

Circle 
 
 
 

 

 

 Fig. 13.10: The shape and type of the conic section is determined by the value of the eccentricity.  
a) For a parabola, e = 1; b) for a hyperbola, e > 1; c) for an ellipse, e < 1; d) for a circle, e = 0.

2

21 cos wherep Le p
r GMm
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 Equation of conic           
section of eccentricity e 
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The orbit of a satellite about the Earth is given by 

                               km
cos5.01

8000r   

What are the eccentricity and shape of the orbit? 
 

Notice from Figs. 13.10a and b that if the path followed by an object is a 
parabola or a hyperbola, it would approach the Sun (the centre of force) and 
go away without returning. Such orbits are called open orbits. If the path 
followed by an object is an ellipse or a circle, it keeps moving in its orbit 
around the Sun. Such orbits are called closed orbits. Let us summarise these 
points. 

 
 
 
 
 
 
 
 
 
 
 
 
 

REMEMBER: The solution given by Eq. (13.21a) has been written under the 
following simplifying assumptions:  

(i) The Sun is stationary, and  

(ii) The only force being exerted on the object is the gravitational force of the 
Sun. The gravitational forces exerted on the object by all other objects in 
the solar system are neglected.  

We know that both these assumptions are not exactly true in the real solar 
system because the Sun is not stationary and all other members of the solar 
system exert gravitational forces on any object. However, these forces are 
negligible in comparison to the gravitational attraction of the Sun because the 
mass of the Sun is far greater than any other object. These assumptions are 
therefore reasonable for our solar system containing a huge Sun and a small 
number of other small objects like the planets, their satellites, comets and 
asteroids.  

You may quickly like to apply Eq. (13.21a). Try the following SAQ. 

 

 

 

 

 

 

 

 

 

SAQ  5  –  Eccentricity and orbit
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We now focus on elliptical orbits as these are the paths of the planets, 
satellites and many comets orbiting the Sun. 
 
13.5.2   Elliptical Orbits in the Solar System 

Most objects in the solar system move in closed elliptical orbits 
around the Sun, which is at one of the foci of the ellipses. The orbits 
of most of the planets (Fig. 13.11) in the solar system are very 
nearly circular as the values of eccentricity are very small. These 
are given in Table 13.1.  

 

 

 

 

 

 

 

 
 
 
 
 

Let us now study the properties of the elliptical orbits in some more detail. We 
first define certain orbit parameters. 

1. The shape of the ellipse is determined by its eccentricity as you can 
see in Fig. 13.12. When the value of e is close to zero, the ellipse is nearly 
circular, e.g., the orbit of planet Venus around the Sun. As it gets closer to 
1, it becomes elongated, e.g., the orbits of comets. 

 

 

 

 

 

 

Fig. 13.11: Model of planetary orbits in the solar system. Source: www.jpl.nasa.gov 

Table 13.1:
Eccentricities                
of planets in the solar  
system. 
 

Planet 

Mercury 

Venus 

Earth 

Mars 

Jupiter 

Saturn 

Uranus 

Neptune 

0.2056 

0.0068 

0.0167 

0.0934 

0.0483 

0.0560 

0.0461 

0.0100 

 

Fig. 13.12: Ellipses of different eccentricities. 

COMET,     1 

VENUS,

COMET,
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2. Let us now obtain some other orbital parameters, which determine the 
geometrical properties of elliptical orbits.  

Recall from your school mathematics courses that an ellipse has two foci. 
In Fig. 13.13a, the point O, which is at the centre of the force, is at one of  
the foci of the ellipse. From the figure, you can see that the maximum  
value of r will occur at  and its minimum value will occur at .0   

Hence, from Eq. (13.22): 

                          
e

prmax 1
             for                          (13.23a) 

and        
e

prmin 1
              for         0  (13.23b) 

At the point A, at which r is maximum, the object is farthest from the 
centre of the force. This point is called the aphelion for objects orbiting 
the Sun and apogee for objects orbiting the Earth. At the point B, r is 
minimum. It is the point of closest approach of the orbiting object to the 
centre of force. This point is called the perihelion for objects orbiting 
the Sun and perigee for objects orbiting the Earth.  

From Fig. 13.13a, you can see that AB is the major axis of the ellipse and  
its length (A) is equal to the sum of the two distances :and minmax rr   

   (13.24a) 

The lengths of the semi-major axis (a) and semi-minor axis (b) of the 
ellipse (see Fig. 13.13b) are defined as:  

         (13.24b) 

We can use Eq. (13.24b) to express the perihelion (or perigee) and aphelion 
(or apogee) distances in terms of the length of the semi-major axis. 

 

 

 

 

 

 

 

22 1
A pa

e
          

21

pb
e

 

 Major axis 

 Semi-major and 
semi-minor axes 

21
2

11 e
p

e
p

e
prrA minmax  

The perihelion (or perigee) is the point of closest approach of the orbiting 
object to the centre of force. It is the point on the object’s orbit at which r is 
minimum, and the perihelion/perigee distance is given by: 

                              (1 )
1p

pr a e
e

                                  (13.25a) 

The aphelion (or apogee) is the point on the object’s orbit which is farthest 
from the centre of force. It is the point at which r is maximum, and the 
aphelion/apogee distance is given by:                                   

       (1 )
1a

pr a e
e

              (13.25b)

PERIHELION/PERIGEE AND APHELION/APOGEE       

Fig. 13.13: Parameters of 
the elliptical orbit. 
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We can also express the total mechanical energy E in terms of a. Here we 
state the result without proof:                           

                 (13.26) 

 
We now summarise the results obtained for elliptical orbits in Table 13.2.  

Table 13.2: Parameters for elliptical orbits. 

Parameter Expression 

 
Length of semi-major axis, a 21

pa
e

 

Length of semi-minor axis, b 
 21

pb
e

 

Perihelion distance, pr  

 

(1 )pr a e  

Aphelion distance, ar  

 

(1 )ar a e  

Energy 
2

GMmE
a

 

Let us now take up an example of the orbit of Halley’s comet to show how we 
can determine the aphelion and perihelion distances given its orbital 
parameters.  

 

 

 

 

 

 

 

 

 

 

 

You may now like to work out a problem based on these concepts. 

2
GMmE

a
 

 

Halley’s comet (Fig. 13.14) moves in an elliptical orbit of eccentricity 0.967 
about the Sun. The length of the orbit’s semi-major axis is 122.7 10 m.  
Determine the distance of Halley’s comet from the Sun at perihelion and 
aphelion.  

SOLUTION  The KEY IDEA here is to use Eqs. (13.25a and b) to obtain 
the results.  

The perihelion distance of the orbit is  

         m108.90.967)(1m107.2)1( 1012earp  

The aphelion distance of the orbit is  

        m105.30.967)(1m107.2)1( 1212eara  
 

XAMPLE  13.1: ORBIT OF HALLEY’S COMET

Fig. 13.14: Halley’s comet 
moves in a highly elliptical 
orbit and returns to the 
Earth once in every 76 
years.  
Source: www.nasa.gov  
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Pluto has an elliptical orbit with 115.9 10 ma and 0.25.e  Calculate 
the aphelion and perihelion distances and the total mechanical energy of 
the planet. It is given that the mass of Pluto is 221.3 10 kg.  

 
 

 

 

 
You have studied Kepler’s laws of planetary motion in your school physics. We 
now relate what you have studied so far to these laws. 

13.5.3   Kepler’s Laws of Planetary Motion 

Johannes Kepler (Fig. 13.15) proposed the following three laws to explain the 
motion of planets round the Sun: 

1. The paths of the planets about the Sun are elliptical in shape, with the 
centre of the Sun located at one of its foci. (The Law of Ellipses.) 

2. An imaginary line drawn from the centre of the Sun to the centre of the 
planet will sweep out equal areas in equal intervals of time. (The Law of 
Equal Areas.)  

3. The ratio of the squares of the periods of any two planets is equal to the 
ratio of the cubes of their average distances from the Sun. (The Law of 
Harmonies.) 

You have learnt in Secs. 13.5.1 and 13.5.2 that the first two laws of Kepler 
(see Fig. 13.16) are a consequence of motion under the attractive inverse 
square gravitational force. You know that under the influence of the inverse 
square gravitational force exerted by the Sun, the planets, asteroids and 
comets move in closed elliptical orbits with the Sun at one of its foci. 

is then a consequence of the attractive inverse square nature of the 
gravitational force. 

 

 

 

 

 

 

 

 

Fig. 13.15: Johannes 
Kepler was a German 
mathematician and 
astronomer. He is best 
known for his laws of 
planetary motion. 

SAQ  6  –  Elliptical orbit

Fig. 13.16: Kepler’s first two laws of planetary motion. a) The orbits of planets are elliptical; 
b) the area swept out by the radius vector in equal times remains constant. 

(a)  (b)  

Area

Area Area
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The gravitational force of the Sun is central in nature and directed along the 
line joining the planet to the Sun. Refer to the law of equal areas that we have 
derived in Sec. 13.4.3. Let us apply it to the motion of planets around the Sun. 
It tells us that the line joining the Sun to the planet sweeps out equal 
areas in equal intervals of time, which is just Kepler’s second law. 

Using these two laws we can arrive at the third law of Kepler.  

You know that the areal velocity of a planet or the area swept out per unit 
time by the position vector of the planet is constant. We have   

      Area swept out per unit time, 
2

dA L
dt m

  

If the time period T of the planet is the time taken by it to complete one 
elliptical orbit, then  

       Area swept out in time T or one time period  
2
L T
m

    (13.27a) 

       Also, the area of the elliptical orbit a b  (13.27b) 

where a is the length of the semi-major axis and b is the length of the                   
semi-minor axis of the ellipse. Using Eqs. (13.27a and b), we can write  

                                     
2
LT a b
m

  (13.27c) 

or                                   
2

2 2 22mT a b
L

 (13.28) 

From Eq. (13.24b), you can show that the lengths of the semi-major and      
semi-minor axes of the ellipse are related as follows: 

                                        2 2 2(1 )b a e   (13.29a) 

and since 2(1 )p a e as given in Table 13.2, from Eq. (13.29a), we can write  

                 2b ap   (13.29b) 

Upon substituting 2b  from Eq. (13.29b) and 
2

2
Lp

GMm
 from Eq. (13.22) in 

Eq.(13.28), we get 

                            
2 2 3

2 32 4m aT pa
L GM

    

 
 
or (13.30)
  

This is just Kepler’s third law. This law tells us that for all planets orbiting 

the same massive body, the ratio 
2

3
T
a

 always remains the same.  

GM
kkaT

2
32 4where  

From Eq. (13.24b), we 
know 

21 e

p
b  

So 
)1( 2

2
2

e

p
b   

We can also write this 
as 

p
e

pb
)1( 2

2  

From Table 13.2 we 
know that  

21 e

p
a  

So,  apb2  

 Kepler’s 3rd law
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Calculate the time period of the comet Hale-Bopp about the Sun given that 
the length of the semi-major axis of its orbit is 132.79 10 m.  

The results derived so far and Kepler’s laws can be applied not only to the 
motion of the planets around the Sun but also to the motion of satellites 
(natural and artificial) around the planets. Satellites move under the 
gravitational force of the planet. Since the nature of the force is the same, the 
laws governing their motion are also the same. In the case of motion of objects 
around any planet, M would represent the mass of the planet. 

Can you imagine a simple application in which the calculation for the distance 
of closest approach can become important? Imagine an asteroid approaching 
the Earth with a certain velocity. Would it hit the Earth? Obviously it could if its 
distance of closest approach were less than the radius of the Earth!  You may 
like to apply Kepler’s laws to determine the orbital parameters of comet               
Hale-Bopp. 

 

 

 
Let us now apply what we have discussed so far to artificial satellites orbiting 
the Earth or some other body in space. 

13.5.4   Artificial Satellites 
An artificial satellite is a manufactured object that continuously orbits the Earth 
or some other body in space. While most of the artificial satellites in use today 
orbit the Earth, there are some which have also orbited the Moon, the Sun, the 
asteroids, and the planets Venus, Mars and Jupiter.  

Artificial satellites have several uses (see Fig. 13.17). They are used for 
weather forecasting, for transferring telephone calls and television signals over 
the oceans, assisting in the navigation of ships and aircraft, monitoring crops 
and other resources, and supporting military activities. There are also 
spacecrafts which carry astronauts. There are other artificial satellites like 
space capsules and space stations. The space telescopes gather information 
about the far reaches of the Universe.   

 

 

 

 

 

 

 

 
Fig. 13.17:   Some artificial satellites; a) drawing of the Indian spacecraft Chandrayaan orbiting the 

Moon; b) the Hubble space telescope; c) EDUSAT, an Indian geostationary satellite. 

(a)  (b)  (c)  

SAQ  7  –  Time period of comet Hale-Bopp 
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The motion of artificial satellites is also governed by the same laws that we 
have described in the previous section. Let us briefly discuss it. Consider  
an artificial satellite of mass m orbiting a celestial body of mass M in an 
elliptical orbit which has a semi-major axis a. The total mechanical  
energy of the satellite in the orbit, which is a constant, is given by Eq. (13.26) 
as 

          
2

GMmE
a

  

To understand the meaning of this equation, study Fig. 13.18. It shows the 
orbits of four satellites of equal mass around the Earth, which have the  
same semi-major axis. What can you say about the energy of the  
satellites? 

 

 

 

 

 

 

 

 

Different types of orbits are possible for artificial satellites. Some of these are 
geostationary and polar orbits. 

 Geostationary orbits: You have learnt about these orbits in Example 7.1   
of Unit 7 of Block 2. You have calculated the height of geosynchronous 
satellites from the surface of the Earth. You may know that communications 
satellites, such as those used to transmit satellite television and telephone 
signals are placed in geostationary orbits. They always appear in the same 
position when seen from the ground. Can you say why this is useful? This is 
why satellite television dishes that receive their signals can be fixed in their 
positions and do not need to move. 

 Polar orbits: Satellites used for observation and monitoring are placed in 
polar orbits (Fig. 13.19). These orbits are inclined at 90  to the equator and 
take the satellites over both poles. Polar orbits are at lower heights from the 
surface of the Earth than geostationary orbits. So a complete orbit takes 
less than a day. As a result, the Earth spins beneath the satellite as it 
moves, and the satellite can scan the whole surface of the Earth. 

With this, we end the discussion on motion under central forces and 
summarise what you have studied in the unit.  

Fig. 13.19: Artificial satellites 
in polar orbits. Source: 
http://www.enjoyspace.com 

Fig. 13.18: Possible orbits of satellites having the same major axis and hence the  
same energy. 
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13.6  SUMMARY 

 

Concept Description 

Central force                          A central force is always directed towards or away from a particular 
point, which remains fixed. The fixed point is called the centre of force. 
The central force can be expressed as 
                                  rF ˆF

r
   

Central conservative  
force                           

 When the magnitude of the central force, F, depends only on the distance 
of the object from the centre of the force, it is called a central 
conservative force. It can be written as 

                                 F r̂( )f r
r

 

It is conservative because the work done by the force between any two 
points on a path depends only on the distance of these points from the 
centre of force and not on the path followed by the particle. 

Properties of motion            
under central and                 
central conservative            
forces 

 For motion under central and central conservative forces  

i) The angular momentum about the centre of force is constant 
both in magnitude and direction.  

ii) Therefore, a particle on which a central force is exerted moves only 
in a plane perpendicular to the direction of  angular momentum. 

In addition, for motion under central conservative forces, the total 
mechanical energy is constant.  

Constants of motion  The total mechanical energy and angular momentum are constants 
of motion for central conservative forces. The angular momentum is 
a constant of motion for central forces. 

Motion under central 
conservative forces 

 The equation of motion for a central conservative force is given by 

                               r r
2

2
( ) ˆd f r
mdt

r

 

The solution of this equation gives the path followed by the particle. The 
paths or orbits of objects moving under a central conservative force may 
be classi ed by their energy into open and closed orbits. The equation 
for the orbit for an inverse square central conservative force is that 
of a conic section. The eccentricity and size of the conic section are 
completely determined by the angular momentum and the total mechanical 
energy of the object which are the constants of motion 

Orbits under the force of 
gravitation 

 The equation for the orbit for motion under the force of gravitation is 
given by   

                 
2

21 cos wherep Le p
r GMm
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13.7  TERMINAL QUESTIONS 

1. Which of the following forces are central? Give reasons for your answer. 

a) rF ˆˆ4 2 &
r

kr  

b) 
r

rF
ˆr

 

c) F ˆk
r

 

Eccentricity and orbits         The eccentricity of the orbit is related to the energy and angular 
momentum by  

                           
2

2 2 3
21 L Ee

G M m
  

For  E    0,      e    1                                   the orbit is a hyperbola.  

For 0,E      1e                                     the orbit is a parabola.  

For 
2

2 0, 0 1
2

L E e
mp

          the orbit is an ellipse .  

     For 
2

2 ,
2

LE
mp

  0e                          the orbit is a circle. 

Orbital parameters for 
elliptical orbits                      

 The eccentricity determines the shape of the elliptical orbits and the 
semi-major and semi-minor axes determine the size of the orbits. The 
orbital parameters are given as follows: 

Length of semi-major axis                  21
pa

e
 

   Length of semi-minor axis                 
21

pb
e

 

    Perihelion/perigee distance              (1 )
1p

pr a e
e

 

Aphelion/apogee distance                 (1 )
1a

pr a e
e

    

Energy and angular 
momentum for force of 
gravitation 

 The total mechanical energy of the object moving in elliptical orbits 
under the force of gravitation is given by 

                               2
GMmE

a  

    The magnitude of the angular momentum of the object is given by  

                               2L m r &  

Its direction is perpendicular to the plane in which the object moves. 
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d) rF ˆ
1
)1(

2r
r  

2. Which of the following forces are central conservative? Give reasons for 
your answer. 

a) rF ˆˆ4 2 kr  

b) 
r

rF
ˆ

 

c) F ˆk  

d) rF ˆ
1
)1(

2r
r  

3. State against each observation below whether it is true or false. Give 
reasons for your answer. 

a) The angular momentum of an artificial satellite orbiting the Earth under 
its gravitation varies with time. 

b) An alpha particle approaching a negative ion moves in a plane. 

c) An artificial satellite moves at greater speed when it is nearer to the Earth. 

4. Select the physical quantities that are constants of motion for a central 
conservative force: 

a) Kinetic energy 

b) Potential energy 

c) Linear momentum 

d) Angular momentum 

e) Total mechanical energy 

f) Rotational energy  

5. For a satellite moving about the Earth, 0.15.e  Determine its apogee and 
perigee for the following values of the semi-major axis of the orbit:  

a) 7000kma  

b) 36000kma   

Calculate the energy of the satellite in each case if its mass is 2000 kg. 

6. What is the total mechanical energy of a satellite of mass 1000 kg moving  
 

about the Earth in an orbit with 5000 km?a Determine the eccentricity 
and shape of the orbit for the following apogee distances:  

a) 5000 kmar  

b) 7500 kmar   

7. A star moves in a circular orbit of radius 2, 500,000 km with a time period 
of 18 hours about another massive star of mass 301.00 10 kg.3103 How far 
apart are the two stars?  

8. The planet Mercury has an elliptical orbit with 0.2056.e Its mass is 
233.3 10 kg  and the length of its semi-major axis is 657.9 10 km. Calculate  
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a) the aphelion and perihelion distances,  

b) the total energy, and 

c) the time period of its orbit. 

9. Galileo discovered four moons of the planet Jupiter. One moon Io had an 
orbital period of 1.8 days. The distance of Io was measured to be 4.2 units 
from the centre of Jupiter. Another moon Ganymede was measured to be 
at a distance of 10.7 units from the centre of Jupiter. Using Kepler’s third 
law, predict the orbital period of Ganymede. 

10. Saturn has a mass of 95.18 Earth masses. One of its moons, Titan has an 
orbital period of 15.95 days. What is the distance of Titan from Saturn? 

13.8   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 
1. A central force F  can be expressed as rF ˆF [ Eq. (13.1) ]. The forces 

given in (a) and (c) are both central forces because they are in the radial 
direction. However the force given in (b) is not a central force since it has 
not only a radial component which is r̂a r  but also an angular component at 
right angles to the radial direction given by .ˆbr  

2. Only the force (b) 3 ˆ( / )F K r( /( / r  is a central conservative force because it 
is a radial force and its magnitude 3( / )K r  is a function of only r. The force 
given in (a) is also radial, but the magnitude of the force depends on the 
velocity of the oscillator. Hence, it is not a conservative force. The force in 
(c) depends both on r and . Hence, it is not a conservative force. 

3. To identify the constants of motion we first need to know which of these 
forces are central conservative forces. Forces (a) and (b) are central forces 
but not central conservative forces. The force (c) is a central conservative 
force. Therefore for a particle moving under the forces (a) and (b), the 
angular momentum is conserved and the particle moves in a plane. For the 
force (c) both angular momentum and the total mechanical energy are 
conserved. Also a particle moving under this force would be confined to 
move in a plane. 

4. This is a consequence of the law of equal areas for central forces. From the  
law of equal areas given by Eq. (13.17), we have that 

 .constant
2
1 2r

dt
dA  Here r is the distance of the object from the centre 

of force and  is its angular speed. Since 2r  is a constant, the angular 
speed  is inversely proportional to the square of the distance of the object 

from the centre of force:  .1
2r

 Therefore, when the object is closer to 

the centre of force, r is small and  is large. When r is large,  is small. 
Hence, the object moves slower when it is far from the centre of force. 
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5. Here we use the equation of the path of an object moving under the 
gravitational force of the Sun given by Eq. (13.22): 

  cos1 e
r
p  (i) 

Rewriting the given equation of the orbit  
cos5.01

8000r km 

 as cos5.018000
r

   (ii) 

and comparing Eqs. (i) and (ii), we can identify the following parameters:   
68000km 8.0 10 m and 0.5p e   

Therefore, the orbit is elliptical because its eccentricity is 0.5 and it 
satisfies the condition 0 < e < 1. This is a closed orbit.  

6. We make use of the equations given in Table (13.2) to find the required 
quantities.  Using 115.9 10 ma and 0.25,e  

 the perihelion distance is m104.4)1( 11earp   

 and the aphelion distance is 11(1 ) 7.4 10 mar a e  

 The total mechanical energy is calculated from .
2a
MmGE   

Here M is the mass of the Sun 302.0 10 kg,  m is the mass of                             

Pluto 221.3 10 kg  and 11 2 26.67 10 Nm kg .G  Substituting the 
values of G, M, m and a, we get 

     

m)109.5(2
kg)103.1(kg)100.2()kgNm1067.6(

11

22302211
E J105.1 30  

 

7. We use Eq. (13.30) with m,1079.2 13a 2211 kgNm1067.6G  and 

the mass of the Sun .kg1000.2 30M  From Eq. (13.30) 

     
GM

aT
324    

kg)1000.2(kgNm1067.6
m)1079.2(4

302211

3132
   

                             years2543s1001.8 10  

Terminal Questions 

1. The forces (b) and (d) are central forces because they are directed along 
the radial direction. 

2. The forces (b) and (d) are central conservative forces because the 
magnitude of forces depends only on r, the distance from the centre of 
force. Forces (a) and (c) are not central as they have a component  
along ˆ.   
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3. a) False. The angular momentum of the satellite is constant because  
the satellite moves under the gravitational force, which is a central force. 

b) True. The force between the negative ion and the alpha particle is the 
electrostatic force, which is a central force and hence, motion is 
confined to a plane. 

c) True. This follows from the law of equal areas and is a consequence of 
the fact that for motion under a central force, angular momentum is 
conserved. In this case, the artificial satellite is moving under the 
gravitational force due to the Earth, which is a central force. 

4. The total mechanical energy and the angular momentum are constants of 
motion for a central conservative force. 

5. We use Eqs. (13.25a and b) for calculating the apogee and perigee with  
0.15e  and a as given. For energy, we substitute the values of G, M 

(mass of the Earth) and m (mass of the satellite) in Eq. (13.26).  

a) For  7000kma : 5950km,pr  8050kmar  and 

 
11 2 2 24

3
(6.67 10 Nm kg ) (5.97 10 kg) (2000kg)

2 2 7000 10 m
GMmE

a

11 2 2 2410 Nm kg ) (5.97 10 kg) (202411 2 2Nm kg )11 2 2(6.
2

GMm
a 37000 103  

     105.70 10 J  

b) For  36000kma : 30600km,pr 41400kmar  and 
101.11 10 JE  

6. The total mechanical energy is calculated from Eq. (13.26):
a

MmGE
2

 

 with 11 2 26.67 10 Nm kg ,G  mass of the Earth 245.97 10 kg,25.97 102M  

 mass of the satellite 1000kgm  and 65000km 5.00 10 m.a   

  
11 2 2 24

10
6

6.67 10 Nm kg 5.97 10 kg 1000kg 3.98 10 J
2 5.00 10 m

E
11 2 2 245 97 10 kg 1002410 11 2 2Nm kg11 2 22

1
6

6.67 10 Nm 5.97 10 1000kg 3.98 101

2 5 00 1 6E 10 Nm kg 5.97 10 kg 100Nm kg
5.00 10665 00 106  

To find the eccentricity and shape of the orbit, we use Eq. (13.25b) to write 

   1
a
re a  (i) 

Given ar  and 5000 km,a  we can find e from (i). 

a) For 5000 kmar  we get 0.e  The orbit of the satellite is a circle.  

b) For 7500 kmar  we get 7500 1 0.5
5000

e  and the orbit of the 

satellite is an ellipse since 0 < e < 1. 

7. We use Eq. (13.30) to find the distance between the two stars. Here a is  
 

the radius of the circular orbit of the star, which is also the distance  
 

between the stars. It is given that s,64800s360018hours18T  

mass of the star 301.00 10 kgM 31.00 103  and .kgNm1067.6 2211G Thus,                   
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1/32 11 2 2 30 2 1/3
2 2

6.67 10 Nm kg 1.00 10 kg (64800s)
4 4

1/32 30 2 1/36 67 10 Nm kg 1 00 10 kg (64800s)11 2 2 3010 Nm kg 1 00 10 kg (643011 2 2Nm kg11 2 226
2 2

g g ( )6.67 10 Nm kg 1.00 10 kg (64800s)g g (10 Nm kg 1.00 10 kg (646
2 22 4 24444 2222

GMTa    

                           91.92 10 m91.92 109  

8. a) To determine the aphelion and perihelion distances we use  
Eqs. (13.25a and b) with km109.57 6a  and .2056.0e  

   km108.69)0560.2(1km109.57 66
ar  

         km100.46)0560.2(1km109.57 66  rp  

 b) The total energy is given by Eq. (13.26) with SuntheofmassM   

kg,100.2 30  kg103.3ercuryMofmass 23m  and      

m109.57km109.57 96a       

 J108.3
m109.572

kg103.3kg100.2kgNm1067.6 23
9

23302211
E  

c) To determine the time period of its orbit we use Eq. (13.30) with, 

   m,109.57 9a 2211 kgNm1067.6G and  .kg100.2 30M  

   s
kg100.2kgNm106.67

m)109.57(4
2/1

302211

392
T     

               days Earth88s106.7 6                                       

9. Let 1T  and 2T  be the orbital periods of Jupiter’s satellites Io and Ganymede, 
respectively, and 1a  and 2a  be their respective distances from the centre of 
Jupiter. If JM  is the mass of Jupiter, using Eq. (13.30) we can write, 

             3
1

2
2

1
4 a

GM
T

J
 and   3

2

2
2
2

4 a
GM

T
J

    

Given that, units,7.10andunits2.4days,8.1 211 aaT we can find 
the orbital period of Ganymede as follows: 

2/1

3
1

3
2

2
1

2
a

aT
T   days3.7

units)2.4(
units)7.10(days)8.1(

2/1

3

32
 

10. We use Kepler’s third law as expressed in Eq. (13.30) to find the distance 

a. 
3/1

2

2

4
GMTa  with  2495.18 5.97 10 kgM 295.18 5.97 102  265.68 10 kg25.68 102  

 s8640095.15T  s1038.1 6  and  2211 kgNm1067.6G  

  
1/311 2 2 26 6 26.67 10 Nm kg 5.68 10 kg (1.38 10 s)

4 3.14 3.14

1/326 6 2s)66 67 11 2 2 26 65 68 10 kg (1 38 1026 610 11 2 2Nm kg11 2 226 g g ( )6.67 10 Nm kg 5.68 10 kg (1.38 10 s)g g (10 Nm kg 5.68 10 kg (1.38 10Nm kg6
4 43 14 3 14 3.14 3.144 3 14 3 143.14 3.13 14 3 1

a

m1022.1 9  
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UNIT 14 
 

DYNAMICS OF  
MANY-PARTICLE 

SYSTEMS 
  

 

Structure 
14.1     Introduction 

Expected Learning Outcomes 

14.2 Dynamics of Two-particle Systems 
Why Define a Centre of Mass? 
What is the Centre of Mass? 
Centre of Mass and Relative Coordinates 

14.3 Equation of Motion for Two-body Systems in                                                  
C. M. and Relative Coordinates 
Two-body Problem for No External Force 
Reduced Mass 
Two-body Problem for Non-Zero External Force 

STUDY GUIDE 
In this unit, you will study the dynamics of two-particle systems and see how the coupled equations of 
motion for such systems can be replaced by two independent equations and solved. You will be using 
all the concepts you have learnt for single particle motion. You may be learning the mathematical 
techniques discussed in this unit for the first time. Therefore, we have tried to keep the mathematics 
simple and given all steps. You will also learn how to apply these concepts to many-particle systems. 

For understanding the concepts in this unit well, you should know the concepts of Newtonian mechanics 
for a single particle explained in Block 2 of this course. So do revise the concepts of mechanics 
discussed in Block 2. You should also revise the mathematical concepts of vector algebra given in 
Units 1 and 2 and calculus from school mathematics. Do solve all examples, SAQs and Terminal 
Questions on your own! 

14.4 Dynamics of Many-particle Systems 

14.5 Summary 

14.6 Terminal Questions 

14.7 Solutions and Answers 

How can we describe the motion of  
particles in such fireworks? Picture source: 
http://www.colorado.edu/physics/ 
You will learn the answer in this unit! 
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                                            14.1   INTRODUCTION 

In Block 2, you have essentially studied the dynamics of single particles with 
applications in many physical situations. However, all around us we see many 
examples of two-particle systems other than that of the Sun and a planet or the 
Earth and Moon in the solar system (Fig. 14.1). For example, a hockey stick or 
bat striking a ball, a diatomic molecule and binary star systems are two-body 
systems. Similarly, many-particle systems exist all around us. For example, the 
solar system made up of the Sun, planets, asteroids and comets is one such 
system. Gas filled in a cylinder, exploding stars and fireworks, a cup of tea, an 
acrobat, a car, a ball are all examples of many-particle systems. 

How do we describe the motion of such systems? We can apply Newton’s 
second law of motion to each particle in the system. For example, consider the 
Earth-Moon system. To determine the motion of the Moon and the Earth, we 
can write down the equations of motion for both the Earth and Moon and solve 
them to obtain the paths of both objects. But it turns out that the mathematics 
is quite complex. We find that the dynamics of such systems can be simplified 
by introducing the concept of the centre of mass.  

Therefore, we begin our study of two-body systems by explaining this concept 
in Sec. 14.2 and introducing the centre of mass and relative coordinates. 
We then obtain the equation of motion for two-particle systems in terms of 
these coordinates in Sec. 14.3. In Sec. 14.4, we extend these concepts to                 
many-particle systems. In the next unit, we obtain the expressions of the linear 
momentum, angular momentum and energy for two-particle and many-particle 
systems and revisit the conservation laws.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 define the centre of mass and determine its coordinates for two-particle 
systems; 

 determine the relative coordinates for two-particle systems;  

 reduce the equation of motion of two-particle systems to the equations of 
motion in centre of mass and relative coordinates of a single particle; 

 determine the reduced mass of two-particle systems; 

 determine the centre of mass coordinates of many-particle systems; and  

 describe the centre of mass motion for many-particle systems under the 
force of gravity. 

14.2   DYNAMICS OF TWO-PARTICLE SYSTEMS 

Consider the following systems: 

 The Earth-Moon system (or the Sun and any one of its planets); 

 Rocket ejecting gas (where the ejected gas is treated as one body);  

Fig. 14.1: Some examples 
of two-particle systems. 
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We shall treat all 
objects as particles 
in this unit. Although 
the Earth and the 
Moon are extended 
objects you may take 
them to be particles 
under the condition 
that the distance 
between them is 
much greater than 
their radii. 

 Binary star systems;  

 Hydrogen atom (made up of one electron and one proton); 

 Diatomic molecule; 

 Marble (or billiards ball) striking another marble (or ball);  

 Elementary particle scattered from another particle, and so on. 

What is special about these systems? In each of these examples, there are 
two objects, which interact with each other. These objects may also be 
interacting with other objects in the universe. However, for the time being, let 
us suppose that all other interactions except that between the two of them can 
be neglected. Such two-body systems are also called binary systems.  

The question before us is: How do we describe the motion of each object in 
this two-body system in a simple way? The answer to this question leads us 
to the concept of centre of mass. So we relate the two and ask: Why do we 
need to define the centre of mass? 

14.2.1   Why Define a Centre of Mass? 
You can apply Newton’s second law of motion to determine the path of each 
object in a binary system. For example, consider the Earth-Moon system (see 
Fig. 14.2). To determine the motion of the Moon and the Earth, you can write 
down the equations of motion for the Moon (mass 1,m  position vector r1) and 
the Earth (mass 2,m  position vector r2 ), respectively, as follows: 

             ra r
2

1 1 2
1 1 1 122 2

12
ˆd m m

m m G
dt r

 (14.1a) 

            ra r
2

2 1 2
2 2 2 212 2

12
ˆd m m

m m G
dt r

 (14.1b) 

Notice that Eq. (14.1a) contains the position vectors of both the Earth and the 
Moon, since r r r12 1 2ˆ ˆ ˆ .  In the same way, Eq. (14.1b) contains the position  
vectors of both the Earth and the Moon. Also note that in writing 
Eqs. (14.1a and b), we have treated the Earth and Moon as particles even 
though these are extended objects. Why can we do so? Read the note in 
the margin. In general, the equations of motion for two-particle systems would 
be of the following form: 

                            ra F
2

1
1 1 1 12

d
m m

dt
 (14.1c) 

and                    ra F
2

2
2 2 2 22

d
m m

dt
 (14.1d) 

where F1and F2  are the net forces on the respective particles. We can add 

Eqs. (14.1c and d) and write                               

        r r F
2 2

1 2
1 22 2

d d
m m

dt dt
 where F F F1 2             (14.1e) 

Fig. 14.2: The Earth-Moon 
system. 

Moon 

Earth 
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Thus, F  is the total force on the system. Now, to determine the paths of the  
two particles, we need to solve Eqs. (14.1a and b, 14.1c and d or 14.1e) and  
obtain the solutions for r1 and r2.  Since both these vectors may appear in both 
equations, equations of this type (called coupled differential equations) are  
difficult to solve. For example, if we consider the motion of the Moon-Earth 
system in space, we need to use three coordinates for each object. Then 
we would get six coupled differential equations involving the three 
coordinates of each object. Solving these six equations is definitely not an 
easy task!  

So you see that determining the motion of the particles in a two-particle 
system is much more complicated than determining the motion of a 
single particle system. Let us now ask: Is it possible to simplify the 
problem? The answer is yes, and we can do it by introducing the concept of a 
“centre of mass”. Let us explain this concept. 

14.2.2   What is the Centre of Mass? 

Let us ask: Would it not be good if we could write Eqs. (14.1a, b, c or d) as the 
total mass multiplied by some acceleration? Indeed, we can do so. To do 
this, we take the sum of the two masses, i.e., the total mass of the two-particle 
system to be 1 2 .M m m  Then if we define a certain vector Rcm  as 

             r rR 1 1 2 2

1 2
cm

m m
m m

     (14.2) 

we can write Eq. (14.1e) as 

                      
R F

2

1 22 wherecmd
M M m m

dt
          (14.3) 

In writing Eq. (14.3), we also assume that M is a constant. Would you like to 
check the result in Eq. (14.3)? For this, let us rewrite Eq. (14.2) as follows:  

                          R r r1 1 2 2cmM m m      (14.4) 

Let us differentiate Eq. (14.4) twice with respect to time. We get 

                        R r r1 2
1 2

cmd d d
M m m

dt dt dt
    (14.5a) 

and                
R r r2 2 2

1 2
1 22 2 2

cmd d d
M m m

dt dt dt
    (14.5b) 

Substituting F  from Eq. (14.1e) in Eq. (14.5b), we get Eq. (14.3).  

Thus we find that,  

The net external force on the two-particle system is equal to just the  
total mass multiplied by the acceleration of an imaginary point whose 
position vector is given by R .cm  This point is called the centre of mass of 

Centre of mass 

Equation of motion      
of the c.m. 
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the system. Note that it is an imaginary point and a mathematical 
invention. 

You may ask: What is the advantage of introducing the centre of mass? 
To answer this question, let us see what Eq. (14.3) tells us. It tells us the 
following things:  

1. The centre of mass of a system moves as if a particle of mass M (the 
total mass of the system) is situated at the point and acted on by the 
net force which is the resultant of all the external forces acting on the 
particles of the system. 

2. If the net external force on the system is zero, the particles in the system 
can move in any way but the centre of mass will move with a constant 
velocity. If it is initially at rest, it will remain at rest.  

3. We can treat the motion of the centre of mass independently of the motion 
of the particles in the system. 

Thus, by inventing a point called the centre of mass and defining it by                     
Eq. (14.2), we can analyse the motion of the entire system rather than that of 
its individual parts. If we focus only on the motion of the centre of mass of a 
system of particles or an extended object with many particles in it, we can 
describe the complicated motion of the system in a simple way.  

As an example, consider the picture of a diver diving into the swimming pool 
(Fig. 14.3). Focus on the point P marked on her body. What path does this 
point follow as the diver jumps off the board?  It is a parabola  the path 
followed by a particle in projectile motion. So there is a point on the body, 
which moves as the body would, if we took it to be a particle. This point is the 
centre of mass of the body. So we need to consider only the motion of the 
centre of mass if we are not interested in knowing how her arms and legs 
move when she dives. 

There is another advantage of defining the centre of mass. Study Eq. (14.5a). 
We can write it as 

                            V v v1 1 2 2cmM m m  (14.6) 

where Vcm  is the velocity of the centre of mass, v1 and v2  are the velocities 
of the masses 1m and 2,m respectively. What does Eq. (14.6) tell us? It tells us 

that the linear momentum of the total mass located at the centre of mass 
is equal to the sum of the linear momenta of the particles in the two-
particle system. You will learn about the power of this equation in the next 
unit when you study the conservation of linear momentum. 

Let us now state the concept of centre of mass of a two-particle system in a 
formal way. 

Consider the system of two particles 1 and 2 in Fig. 14.4. Let the masses of  
the particles be 1m and 2,m respectively. Their positions are given by r1 and 
r2,  respectively. Then we define the centre of mass as follows.  

Fig. 14.3: A diver dives 
off a board. Even 
though most points on 
her body follow 
complex paths, a 
special point shown by 
dots follows a 
parabolic path. This 
point is her centre of 
mass. If we treated the 
diver as a particle, it 
would follow this path. 
 

P 

P 

You may like to watch 
a video clip on this 
concept available at 
http://www.answers.co
m/topic/center-of-mass 

x 

y 

z Centre of mass 

r1 

r2
1m  

2m  

Rcm  

Fig. 14.4: Centre of mass 
of a two-particle system. 
It lies on the line joining 
the two masses. 

Centre of mass 

Rcm
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For the two-body system, the centre of mass is situated on the line 
joining the two masses (see Fig. 14.4).  

What have we learnt so far? We have found a point which moves as 
though the system's total mass existed at that point and the net external 
force was applied at that point. This point whose position is defined by  
Eqs. (14.7a to d) is called the centre of mass. Note that we are referring to the 
net external force and not considering the internal forces of interaction 
between the particles. We shall discuss this point in greater detail in                   
Sec. 14.3 when we set up the equation of motion. 

So, using Eq. (14.7a) we can study the motion of complicated systems in a 
simple way by focusing on the motion of the centre of mass.  

You have learnt that using the concept of the centre of mass, we can describe 
the complicated motion of two-particle systems in a simpler way. We can make 
the mathematics even simpler by introducing the centre of mass and relative 
coordinates. Let us define these two coordinates. 

14.2.3   Centre of Mass and Relative Coordinates 

The centre of mass coordinate of a two-particle system is defined by            
Rcm  as given in Eq. (14.7a). In terms of the Cartesian coordinates, its 
magnitude is  

CENTRE OF MASS  

The centre of mass of a material body or system of particles is the point, 
which moves as though the system's total mass existed at that point 
and all external forces were applied at that point. Its position vector 
for a two-body system is defined as 

                                   r rR 1 1 2 2

1 2
cm

m m
m m

    (14.7a) 

The (x, y, z) coordinates of the position vector of the centre of mass in the 
three-dimensional Cartesian coordinate system are given by: 

                                   1 1 2 2

1 2
cm

m x m x
X

m m
     (14.7b) 

1 1 2 2

1 2
cm

m y m y
Y

m m
     (14.7c) 

1 1 2 2

1 2
cm

m z m z
Z

m m
(14.7d)

where 1 1 1( , , )x y z and 2 2 2( , , )x y z  are the coordinates of the particles with 
position vectors r1 and r2,  respectively.  

Centre of mass 
coordinates 
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        (14.8) 

 

where ,cmX  cmY  and cmZ  are given by Eqs. (14.7b to d). Henceforth, we 

shall refer to the centre of mass coordinate as the c.m. coordinate. The 
relative coordinate r for the two-body system is defined as: 

                                         (14.9a) 

Note that the relative coordinate is just the position of the mass 1m  relative 
to the mass 2.m Fig. 14.5 shows the relative coordinate of a two-particle 

system. Let us state the formal definition of the relative coordinate for a                   
two-particle system. 

 

 

 

 

 

 

 

 

 

 

 

Let us determine the centre of mass and relative coordinates of a couple of 
simple systems so that you get a better idea of this concept.  

                       
2 2 2

cm cm cm cmR X Y Z  

r r r1 2  

Centre of mass 
coordinate 

Relative coordinate 

Relative coordinate 

RELATIVE COORDINATE 

The relative coordinate of a two-body system is defined as the 
position of the mass 1m  relative to the mass 2 :m                                      

                        r r r1 2         (14.9a) 

In the three-dimensional Cartesian coordinate system, it is given by: 

                       1 2x x x         (14.9b) 

1 2y y y        (14.9c) 

1 2z z z   (14.9d)

where 1 1 1( , , )x y z and 2 2 2( , , )x y z  are the coordinates of the particles with 
position vectors r1 and r2,  respectively. The magnitude of r  is 

                      2 2 2r x y z      (14.9e) 

 

a) What are the centre of mass and relative coordinates of a two-particle  
system in which the particles of masses 1M  and ,2M respectively, are 
located along the x-axis (Fig. 14.6)? 

SOLUTION  The KEY IDEA here is to use Eq. (14.7b) and                      
Eq. (14.9b) in one-dimension since the two particles are located along 
the x-axis and only the x-coordinate will be non-zero for them.    

XAMPLE  14.1: C. M. AND RELATIVE COORDINATES 

x 

y 

z Centre of mass 

r1 
r2

1m  

2m  

r  

Fig. 14.5: Relative coordinate 
for a two-particle system. 
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 (3.0, 2.0)

Rcm  

(0, 0)

 y

Fig. 14.8: Rcm  gives 
the position of the 
centre of mass. Its 
coordinates in m are 
(1.5, 1.0). 

 (1.5, 1.0) 

 x

Refer to Fig. 14.6. The x-coordinates of the particles are given by  
 

1 2and ,x x  respectively. Then from Eqs. (14.7b and 14.9b), the 
coordinate of the centre of mass and the relative coordinate are,  
 

respectively, given by  

    1 1 2 2

1 2
cm

M x M x
X

M M
    and   1 2x x x

Let us apply this result to locate the position of the centre of mass of a 
system of two particles of mass 2.0 kg and 3.0 kg attached to a light 
rod AB of length 1.0 m at the points A and B (Fig. 14.7). 

Taking the origin to be at the point A, we have  

1 0x 0   for 1 2.0 kgM  and 2 1.0 mx  for 2 3.0 kgM 3.0   

Hence, the centre of mass and relative coordinates for this system are: 
                      

1 1 2 2

1 2

2.0kg 0m 3.0kg 1.0m 3.0 m 0.60m
2.0kg 3.0kg 5.0cm

M x M x
X

M M
 
and            1 2 1.0mx x x      (coordinate of 1 with respect to 2) 

b) Determine the centre of mass and relative coordinates of the                     
two-particle system (both of mass 1.0 kg) kept in the xy plane? It is 
given that their coordinates in m are (0, 0) and (3.0, 2.0) (Fig. 14.8).  

SOLUTION  The KEY IDEA here is to use Eqs. (14.7b and c) and    
Eqs. (14.9b and c) since the two particles are located in the xy plane 
and only the xy coordinates will be non-zero for them. From Eqs. (14.7b 
and c), we get 

1.0 0 1.0 3.0 kg.m
1.5m

1.0 1.0 kgcmX

1.0 0 1.0 2.0 kg.m
1.0m

1.0 1.0 kgcmY

2 2(1.5) (1.0) 1.8mcmR

From Eqs. (14.9b and c):  1 2 (0 3.0) m 3.0mx x x              

                                         1 2 (0 2.0) m 2.0 my y y  

                      2 2( 3.0) ( 2.0) 3.6mr

Fig. 14.6: Centre of mass of 
a two-particle system with 
the two particles lying 
along a straight line 
parallel to the  x-axis. Note 
that it lies closer to the 
particle with greater mass. 

Centre of mass 

x 

cmX
2x

1x

1M
2M

A B 
2.0 kg 3.0 kg cmX  

Fig. 14.7 

0.60 m 
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Determine the centre of mass and relative coordinates for each of the 
following two-body systems: 

a) An object of mass 2.5 kg at a distance of 1.0 m from another object of 
mass 25 kg. 

b) The Earth-Moon system, where 245.97 10 kg,eM 25.97 102  
227.35 10 kgmM 27.35 102  and the distance between the Earth and the Moon 

is .m1084.3 8  

c) Two objects of equal mass (5.0 kg) having the coordinates (0,0) and         
(0, 2.0), respectively, in m. 

You may like to calculate the centre of mass and relative coordinates of some 
two-body systems. 

What have we done in this section? We started with the two coordinates r1 and 
r2  (position vectors of the two bodies with mass 1m  and 2,m respectively) to 

describe the two-particle system. Now we have defined two new coordinates 
Rcm  and r.  You can choose to describe the binary system either in the set of 

coordinates r r1 2( , )  or in the new set of coordinates r R( , ).cm  Using the 

coordinates r R( , )cm  makes it easier to solve the equation of motion for the 

two-body system. In the next section, you will see how this is possible.  

14.3 EQUATION OF MOTION FOR TWO-BODY    
         SYSTEMS IN C.M. AND RELATIVE   
         COORDINATES  

Let us consider the motion of a system of two particles 1 and 2 of masses 1m  
and 2,m respectively. Let their position vectors be r1 and r2,  respectively, at 

the instant t with respect to an origin O in an inertial frame of reference                
(Fig. 14.9). Let the net force on particle 1 be F1 and the net force on particle 

2 be F2.  Then, from Newton’s second law, the equations of motion for the  

two-particle system are given by Eqs. (14.1c and d) repeated here as                        

Eqs. (14.10a and b): 

                       ra F
2

1
1 1 1 12

d
m m

dt
 (14.10a) 

                      ra F
2

2
2 2 2 22

d
m m

dt
                                 (14.10b) 

Note that these equations are written in terms of the coordinates r r1 2( , ).  We  
have to solve these equations to determine the path of the two particles. Since 
it is difficult to solve these coupled equations, we shall now express them in  

Fig. 14.9: Position vectors            
in a two-particle system. 

r1
r2

1m  

2m  

O 
x 

y 

z 

SAQ  1  –  Centre of mass and relative coordinates
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terms of the relative and c.m. coordinates r R( , ).cm  Note that F1 and F2  are 

the net forces on the particles 1 and 2. These are the resultants of the net  
external force on each particle and the internal forces of mutual interaction  
between the particles (Fig. 14.10). So we can write them as follows: 

                           F F F1 1 21e  (14.11a) 

and                     F F F2 2 12e  (14.11b) 

where                F 1e        net external force on particle 1, 

                          F21       internal force on the particle 1 due to particle 2, 

    F 2e        net external force on particle 2, and 

    F12        internal force on the particle 2 due to particle 1. 

Note that from Newton’s third law of motion, the force on particle 2 due to 
particle 1 is equal and opposite to the force on particle 1 due to particle 2:                     

                            F F12 21  (14.11c) 

Now there can be two situations: 

1. No net external force is exerted on the system. 

2. A non-zero net external force is exerted on the system. 

For keeping the discussion simple, we start with the first case when no net 
external force is exerted on the system. 

14.3.1   Two-body Problem for No External Force 

In this case, the particles interact only with each other. Thus, the only 
forces being exerted on the two particles are the mutual forces of action 
and reaction: the force on particle 1 is only due to particle 2 and the force on 
particle 2 is only due to particle 1. From Eq. (14.11c), you know that these are 
equal and opposite. There are many examples of such systems in nature. For 
example, in the Earth-Moon system, the force on the Earth is just the force of 
gravitation due to the Moon and the force on the Moon is just the force of 
gravitation due to the Earth. The same is true for the Sun-Planet system. In 
the same way, in a system of two charges, the Coulomb force is attractive 
for unlike charges and repulsive for like charges. In all these systems, no 
external force is exerted on the system (unless in the latter case we place the 
charges in an external electric field).  

Let us now write the equations of motion for the two-particle system on which  

the net external force is zero in terms of the coordinates r r1 2( , ).  We 

substitute F1 and F2  from Eqs. (14.11a and b) in Eqs. (14.10a and b) and put 

F 01e  and F 02e  in them to get:  

                     ra F
2

1
1 1 1 212

d
m m

dt
 (14.12a) 

Fig. 14.10: Forces on 
particle 1 and particle 2. 
Note that the forces of 
mutual interaction shown 
here are attractive. 

F1 
F2

1m  

2m  

F21 
F12  
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                    ra F F
2

2
2 2 2 12 212

d
m m

dt
                              (14.12b) 

We now do some simple algebra to express Eqs. (14.12a and b) in terms of  
the relative and c.m. coordinates r R( , ).cm  We first add Eqs. (14.12a and b)  

and get:  

              r ra a 0
2 2

1 2
1 1 2 2 1 22 2

d d
m m m m

dt dt
 

or       r r 0
2

1 1 2 22
d m m
dt

   since 1m  and 2m  are constant       (14.13) 

Using Eq. (14.7a), we can write Eq. (14.13) as  

            R 0
2

1 22 cm
d m m
dt

 

or                                 (14.14) 

 

since 1 2.M m m  We can also write Eqs. (14.12a and b) as follows: 

                         r F2
1 21

2 1

d
mdt

               (14.15a) 

 and                 r F F2
2 12 21

2 2 2

d
m mdt

            (14.15b) 

Subtracting Eq. (14.15b) from Eq. (14.15a), we get 

          r r F
2

1 2 212 1 2

1 1d
m mdt

 (14.16) 

Since r r r1 2,  we can write Eq. (14.16) as 

                        r F
2

212 1 2

1 1d
m mdt

 (14.17) 

We can write Eq. (14.17) in the standard form of Newton’ second law as 

                      (14.18) 

Here we have introduced a new quantity    given by 

                 
1 2

1 1 1
m m

           (14.19a) 

or                                1 2

1 2

m m
m m

           (14.19b) 

Note that in writing        
Eq. (14.18), we have 
used Eq. (14.19a) in 
Eq. (14.17) as follows:  
       

r F

r F

2

212

2

212

1

or

d

dt

d

dt

 

Note that in writing    
Eq. (14.12b), we 
have also used          
Eq. (14.11c). 

Equation of motion of 
the centre of mass for 
zero net external force 

2

2
cmd

M
dt
R 0  

r F
2

212
d
dt

 Equation of motion in 
relative coordinate  

Reduced mass 
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Note that we can 
use either                     
Eq. (14.18) or               
Eq. (14.20) to obtain 
the solution of the       
two-body problem. 

The quantity  given by Eqs. (14.19a and b) is called the reduced mass of the 
two-particle system. You will learn why it is called so in the next section. You 
can write 1221 FF  and show that  

                for   r r r2 1,          r F
2

122
d
dt

 (14.20) 

Work out the steps for Eqs. (14.18 and 14.20) before you study further. In fact  
 

Eq. (14.18) or Eq. (14.20) is the equation of motion of a particle of mass   
 

situated at a distance r  from the origin. It is of course a fictitious particle and  
 

there is no such particle at the position r.  Yet it does serve a purpose. The  
equation of motion for this fictitious particle is not a coupled equation if 21F
and 12F depend only on r and not on ., 21 rr  You can now use standard  
methods to solve this equation. Did you notice that Eqs. (14.14) and (14. 18) /  
 

(14.20) are the equations of motion in the centre of mass and relative  
 

coordinates? So we have reduced the coupled equations of motion in the  
 

coordinates r r1 2( , )  to two separate uncoupled equations in terms of the 

relative and c.m. coordinates r R( , ).cm  Let us put these equations together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Can you say why this new quantity  given by Eq. (14.21c) is called the 
reduced mass of the system? Let us find out. 

14.3.2   Reduced Mass  
From Eq. (14.21c), you can see that  has the dimensions of mass.                          
But  is neither the mass of particle 1 nor the mass of particle 2. It is the mass 
of the fictitious particle at a distance r from the origin at any instant t.  

If the net external force on a two-particle system with masses 1m and 2m  is 

zero, the coupled equations of motion for the system in the  

coordinates r , r1 2( ) are given by                                     

           r F
2

1
1 212

d
m

dt
       and         r F F

2
2

2 12 212
d

m
dt

 

If 21F and 12F depend only on ,r these equations are reduced to the 
following equations in terms of the relative and c.m. coordinates r R( , ) :cm  

                         
R 0

2

1 22 wherecmd
M M m m

dt
 (14.21a) 

 and r F
2

212
d
dt

         or         r F
2

122
d
dt

 (14.21b) 

where         
1 2

1 1 1
m m

    or       1 2

1 2

m m
m m

     (14.21c)    

EQUATION OF MOTION IN C. M. AND RELATIVE 
COORDINATES FOR ZERO NET EXTERNAL FORCE  

The word “fictitious” 
means “unreal” or 
“imaginary”.  

Equations of motion 
for two-particle 

system in c.m. and 
relative coordinates 
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We call  the reduced mass of the two-particle system. Eq. (14.18) or                   
Eq. (14.21b) is the equation of motion of a particle of mass  moving 
under the influence of the mutual force of interaction F21.  

We say that  

 

 

You may be wondering: Why is  called the reduced mass? We now answer 
this question with the help of some examples. 

Let us find the value of the reduced mass for some two-particle systems (see 
Fig. 14.11) using Eq. (14.21c).   

1. The value of  for the Sun-Earth system is 

                         s e

s e

m m
m m

 

where sm  is the mass of the Sun and em  is the mass of the Earth. We 

know that sm   em  since 301.99 10 kgsm  and 
245.97 10 kg.em 25.97 102 Hence, in the denominator, we can neglect em  and 

write 

                                s e sm m m  

Thus, we get            s e
e

s

m m
m

m
       (14.22a)                

So the mass of the fictitious particle of Eq. (14.18) is equal to the mass of 
the Earth, which is much less (or reduced) than the total mass of the    
Sun-Earth system.  

We can generalise this result to any two-particle system in which one 
particle’s mass is far greater than the other’s. 

The value of  for a two-particle system for which 1m     2m  is given by

2m               for    1m 2m  (14.22b) 

The mass of the fictitious particle is reduced and is approximately equal to 
m2, the mass of the less massive particle. 

2. The value of  of a binary system of particles of equal masses is 

                  
2

m m m
m m

 (14.22c) 

which is half of the mass of each particle. 

Thus, in all the cases we have considered above, the mass of the “fictitious” 
particle is less than the total mass of the two-particle system. That is why it is 
called the reduced mass.  

Eq. (14.21b) is the equation of motion of a “fictitious” particle of 
mass , called the reduced mass.   

Fig. 14.11: Reduced 
mass of a) the Sun-Earth 
system (not to scale); b) 
a system of two particles 
of equal mass. 

Sun 
Earth 

Reduced mass ,em  
mass of the Earth 

Reduced mass  ,
2
m  

where m is the mass of 
each particle. 

m  m  

(a)  

(b)  
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Determine the reduced mass of each of the following two-body systems: 

a) The Earth-Moon system. 

b) The system of two marbles, each of mass 0.2 kg. 

c) The electron-proton system in the hydrogen atom. 

d) The two-particle system of a star orbiting a black hole that is 100 
times more massive than the star. 

You may like to determine the value of the reduced mass of some two-particle 
systems to understand this concept. 
 
 
 
 
 
 
 
 
 
 
 
 

We hope that with these exercises, you have understood the concept of 
reduced mass Let us revise the formal definition of reduced mass. 

 

 

 

 

 

 

 

 

 

 

So far, you have learnt how to write the equations of motion for a two-particle 
system when the net external force is zero. We have also introduced the 
concept of reduced mass. You may now like to know: How do these 
equations change when there is a net external force being exerted on the            
two-particle system? This is the situation that we take up now.   

14.3.3   Two-body Problem for Non-zero External 
Force 

It is not possible to obtain the general analytical solutions for the paths of the 
individual particles of a two-particle system on which a net external force is 
being exerted except for special cases. We shall deduce the general equation 
of motion and apply it to the case when the only external force is that of 
gravity. Examples are the dumbbell and the baton of the leader of a music 
band. We start from Eqs. (14.10a and b) for a system of two particles 1 and 2 
of masses 1m  and 2.m  Let their position vectors at the instant t  be r1 and r2,  

Reduced mass 

The reduced mass of a system of two particles having masses 1m  and  

2,m  respectively, is given by  

                          
1 2

1 1 1
m m

                 

or      1 2

1 2

m m
m m

             

It is the mass of a fictitious particle, whose equation of motion                      
(Eq. 14.21b) is given in terms of the relative coordinate of the two-particle 
system on which no net external force is exerted.                 

REDUCED MASS  

SAQ  2  –  Reduced mass
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respectively, with respect to an origin O in an inertial frame of reference. The 
forces exerted on them are shown in Fig. 14.12. We repeat the equations of 
motion [Eqs. (14.10a and b)] here for convenience: 

ra F
2

1
1 1 1 12

d
m m

dt
and         ra F

2
2

2 2 2 22
d

m m
dt

 

You know that in these equations, F1 is the net force on particle 1 and F2 is 

the net force on particle 2. We also write Eqs. (14.11a and 14.11b) for ready 
reference: 

     F F F1 1 21e        and                     F F F2 2 12e   

where F 1e  is the net external force on particle 1, F21 is the internal force on the  

particle 1 due to particle 2, F 2e  is the net external force on particle 2, and F12   

is the internal force on the particle 2 due to particle 1. From Newton’s third law  
of motion, the force on particle 1 due to particle 2 is equal and opposite to the  
force on particle 2 due to particle 1:                                      

                                       F F12 21             

We have to now write the equations of motion for the two-particle system on 
which the net external force is non-zero in terms of the coordinates 
r R( , ).cm  Let us substitute F1 and F2  from Eqs. (14.11 a and b) in                             

Eqs. (14.10a and b) and add them. We get 

                  r r F F
2 2

1 2
1 2 1 22 2

d d
m m

dt dt
 (14.23a) 

On using Eq. (14.11a, b and c), we can write:  

             r r F F F F
2 2

1 2
1 2 1 2 1 22 2 e e

d d
m m

dt dt
       

or     r r F
2 2

1 2
1 22 2 e

d d
m m

dt dt
    where  F F F1 2e e e   (14.23b)                        

Thus, Fe is the net external force on the two-particle system. Now recall the 

definition of the centre of mass coordinate of this system: 

                
r r r r

R 1 1 2 2 1 1 2 2

1 2
cm

m m m m
m m M

           (14.24a) 

Differentiating this equation twice with respect to time, we get (for constant 
masses of the particles):                                    

r rR r r
2 22 2

1 2
1 1 2 2 1 22 2 2 2cm

d dd dM m m m m
dt dt dt dt

 (14.24b) 

Substituting Eq. (14.23b) in Eq. (14.24b), we can write  

       (14.25)               R F
2

2
cm

e
d

M
dt

 

Fig. 14.12: Forces on 
particle 1 and particle 2. 
Note that the forces of 
mutual interaction shown 
here are attractive. 

F1 
F2

1m  

2m  

F21 
F12  

Equation of motion of 
c.m. for non-zero net 

external force 
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CENTRE OF MASS MOTION OF A TWO-PARTICLE SYSTEM

Take a dumb-bell with equal masses. You could make one yourself by 
making holes in two rubber balls of the same kind and inserting a light rod 
to connect the balls (see Fig. 14.13). Where does the centre of mass of this 
system lie?  

Put a mark or a strip of paper at that point (which is at the middle of the 
rod). Now hold the dumb-bell at its centre of mass and throw it in the air. 
What is the path along which the centre of mass moves?  

You will see that the dumb-bell moves without rotating if you apply the force 
at its centre of mass while throwing it. Moreover, its c.m. follows a parabolic 
path. 

Eq. (14.25) is the equation of motion of a particle of mass M having the  
position vector R ,cm  which moves under a net external force F .e  Using the  

methods you have learnt in Units 5 and 6, you can solve the equation of  
motion for the centre of mass if you know the force. Note that Eq. (14.25) is  
the equation for the motion of the centre of mass and its solution gives us the  
path of the centre of mass of the system.  

The centre of mass of a system moves as if a particle of mass M (the 
total mass of the system) is situated at the point and acted upon by a 
force which is the resultant of all the external forces acting on the 
particles of the system. 

Thus, if a two-body system were falling freely with a finite horizontal 
component of velocity, its centre of mass would move along a parabola. You 
can test this result by performing a simple activity. 

 

 

 

 

  

  

 

 

 

 
In the next section, you will learn that the same result applies to a freely-falling             
many-particle system. We end this discussion with a few important points that 
you should keep in mind. 
 
 
 
 
 
 

 

 

 

 

 

Fig. 14.13: Motion of 
c.m. of a dumb-bell 
falling under gravity.  

In arriving at Eq. (14.25), we have assumed the following: 

 The second law of Newton in writing Eq. (14.23a);  

 The third law of Newton in going from Eq. (14.23a) to           
Eq. (14.23b); 

 The masses of the particles and hence  are constant in 
arriving at Eq. (14.25) from Eqs. (14.24a) and (14.24b). This 
assumption is not correct when we take into account the 
relativistic variation of mass with velocity. 

 1 2 0m m in writing Eq. (14.24a). This assumption is 

justified as the masses are all positive. 
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Let us now find out whether we can reduce the problem to an equivalent            
one-body problem in this case. From Eqs. (14.10a, b and 14.11a, b), we can 
write 

                     F Fr F2
1 211 1

2 1 1

ed
m mdt

           (14.26a) 

 and                 F Fr F2
2 122 2

2 2 2

ed
m mdt

       (14.26b) 

Subtracting Eq. (14.26b) from Eq. (14.26a), we get                     

F Fr r F F F
2

1 2
1 2 21 21 122 1 2 1 2

1 1 e ed
m m m mdt

 

or                     
F Fr F

2
1 2

212 1 2

1 e ed
m mdt

 (14.27) 

where  is the reduced mass of the system.  

Let us put these results together. 

 

 

 

 

 

 

 

 

 

 

 

 

 

So we have obtained two distinct equations: Eq. (14.25) and Eq. (14.27).   
Eq. (14.25) is the equation of motion of the centre of mass of the system. We 
can solve it for the motion of the system as if its entire mass were 
concentrated at its centre of mass.  

Recall that 
 

1 2

1 1 1
m m

 

 

or 1 2

1 2

m m
m m

 

If a non-zero net external force F F F1 2e e e  is exerted on a                      
two-particle system with masses 1m  and 2,m the coupled equations of 
motion for the system in the coordinates r , r1 2( )  are given by                    

           r F
2

1
1 12

d
m

dt
       and         r F

2
2

2 22
d

m
dt

 

These are transformed to the following equations in terms of the c.m. and 
relative coordinates r R( , ) :cm  

                         
R F

2

1 22 wherecm
e

d
M M m m

dt
 (14.25) 

 and
F Fr F

2
1 2

212 1 2

1 e ed
m mdt

             (14.27) 

EQUATIONS OF MOTION IN C. M. AND RELATIVE 
COORDINATES FOR NON-ZERO EXTERNAL FORCE  

Equations of motion 
in c.m. and relative 

coordinates for non-
zero net external force 
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A drummer’s band is led by a drum major whose baton is made up of two  
 

masses 1m  and 2m separated by a thin, light rod of length L (Fig. 14.14).  
Determine the positions of the masses with respect to the baton’s c.m.  
 

Write the equation of motion of the c.m. when it is thrown in air. Neglect air  
 

resistance and determine the path of the c.m.   

But we cannot obtain a general analytical solution of Eq. (14.27) for the motion 
of individual particles in the system except for special cases such as the 
following: 

1. F F 01 2e e  

2. F F1 2

1 2

e e
m m

 

The force of gravity is an example of the second kind.  

Thus, we need to solve two equations to determine the motion of the particles 
in the system and cannot reduce the problem to an equivalent one-body 
problem. Hence, we cannot obtain the general solution for the individual 
motion of the two particles except for very special cases mentioned above. 
However, we can still determine how the c.m. of the system moves, that 
is, how the system moves if we take its entire mass to be concentrated at 
its c.m.  

In this section, you have learnt that  

 

 

 

 

 

As an exercise, you may like to derive the equation of the motion of the centre 
of mass of a two-particle system falling under gravity. 

 

 

 

 

 

Let us now extend these concepts to briefly study the dynamics of many-
particle systems. 

14.4   DYNAMICS OF MANY-PARTICLE SYSTEMS 
Let us begin with a simpler example of a three-body system of masses 1 2,m m   
and 3m with position vectors r r1 2,  and r3  with respect to an origin O.                     
Fig. 14.15 shows an example of a three-body system: a weapon called the  
 

bola used for entangling animals. It is made up of three balls of iron or stone  
 

connected by leather thongs. What can we say about the motion of the bola 
when it is whirled and thrown in the air? 

It is not possible to obtain the general analytical solutions for the 
paths of the individual particles of a two-particle system on which 
a net external force is being exerted except for special cases. 
We can obtain the path followed by its centre of mass and hence 
study the motion of the system as if its entire mass were 
concentrated at its centre of mass. 

Fig. 14.14: Drum 
major’s baton.

1m

2m  

L 
SAQ  3  –   Two-body motion under gravity 
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Extending what you have learnt so far, you can say that the c. m. of the 
system would move along a parabola. This is useful because when one throws 
the bola, one can aim it like a single body at the animal and forget about the 
complicated motion of the three balls. What are the equations of motion for this 
system? These are: 

   
rr rF F F

22 2
31 2

1 1 2 2 3 32 2 2, and
dd d

m m m
dt dt dt

 (14.28) 

F F F F

F F F F

F F F F

1 1 21 31

2 2 12 32

3 3 13 23

where e

e

e

                           (14.29a) 

and               F F F F F F12 21 23 32 13 31, and  (14.29b) 

We now add the three equations of motion given in Eq. (14.28) and use            
Eqs. (14.29a and b) to obtain 

rr r F F F F F F
22 2

31 2
1 2 3 1 2 3 1 2 32 2 2 e e e

dd d
m m m

dt dt dt
 (14.30a) 

Using   
r r r

R 1 1 2 2 3 3

1 2 3
cm

m m m
m m m

  (14.30b) 

we can write             e
cm

dt
dM FR

2

2
     (14.30c)                        

where  321 mmmM   and   321 eeee FFFF       (14.30d) 

Now the external force on the three masses is just the force of gravity. Hence, 

        F g F g F g1 1 2 2 3 3, ande e em m m   (14.31a) 

We now substitute Eq. (14.31a) in Eq. (14.30c) and use Eq. (14.30d) to write it 
as 

ggFR Mmmm
dt

dM e
cm )( 3212

2
      (14.31b) 

 

or                                      
R g

2

2
cmd

dt
 (14.32) 

Eq. (14.32) tells us that the c.m. of the bola falls freely under gravity. Thus, if 
thrown with a non-zero horizontal velocity component, it will move along a 
parabola just like a projectile whatever may be the motion of the individual 
particles in it. We extend this result to an N-particle system without going into 
its derivation. 

Fig. 14.15: The bola is an 
example of a  
three-particle system. 



  Block 3                                  Rotational Motion and Many-particle Systems
                                            

Let us consider a system of N particles with masses 1 2 3 4, , , ,......, Nm m m m m
(see Fig. 14.16). Let the position vectors of these particles be 1 2 3 4, , , ,..., Nr r r r r  
with respect to an origin O. 

 

 

 

 

 

Extending the definition of the c.m. for a three-particle system to this system, 
we get the definition of the centre of mass of an N-particle system: 
      
 (14.33a) 

 

You will agree that this is a long expression to write all the time. So we 
introduce a special summation notation for the sum. We denote the sum 

                         1 2 3 4 ... Nm m m m m2 3 4 Nm m m m2 3 42 3 ...          by
1

N

i
i

m

and  1 1 2 2 3 3 4 4 ... N Nm m m m m2 2 3 3 4 4 Nm m m m2 2 3 3 4 42 2 3 3 ...r r r r r    by     r
1

N

i i
i

m  

The symbol 
1

N

i
denotes the sum of the quantity written after it over the 

values taken by the index i. The symbol is pronounced as sigma. It is the 

capital sigma (the small sigma is denoted by ). The index can be denoted by  
 

any letter instead of i, for example, j, n, p, m, etc.  

So, whenever you see 
1

N

i
followed by a quantity with the subscript i or 

1

N

m
 

followed by a quantity with the subscript m, you should always think of it as the 
sum of N quantities. For example,  

              1 2 3 4
1

......
N

i N
i

c c c c c c  

or r r r r r r1 2 3 4
1

......
N

m N
m

You must practice using this notation by expressing the sums of some 
more physical quantities for this system. For example, write the total linear 

1 1 2 2 3 3 4 4

1 2 3 4

...
...

N N
cm

N

m m m m m
m m m m m

2 2 3 3 4 4 Nm m m m2 2 3 3 4 42 2 3 3 ...

2 3 4 Nm m m m2 3 4 ...
r r r r r

R  Centre of mass of an 
N-particle system 

 

r2  

ri  

r1 

r3  

y 

x 

z 

O 

Fig. 14.16: Position vectors in a many-particle system.
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momentum, the total kinetic energy and the total angular momentum of the   
N-particle system and express it in this notation. Thus, using the summation 
notation, we can write the expression for the centre of mass of the system 
given by Eq. (14.33a) in a compact form as follows:   

                 

r

R 1

1

N

i i
i

cm N

i
i

m

m

 

or                     (14.33b) 

 

Let us now write the equations of motion for the N-particle system using this 
notation. In terms of the x, y, z coordinates, we can write the centre of mass 
coordinates as: 
       

 
 (14.33c) 

 

 
A rigid body is a familiar example of a many-particle system. It is defined as a 
continuous aggregate of point masses such that the relative separation 
between any two point masses in the body always remains constant. Rigid 
bodies can be symmetrical or asymmetrical in shape. For example, sphere, 
bar, lamina, cylinder, cube and disc are symmetrical rigid bodies. The problem 
of finding the c.m. of a rigid body is complicated when the body is 
asymmetrical. Here we will not discuss the method of finding the c.m. of a rigid 
body. However, in Fig. 14.17 we show the c.m of some symmetrical bodies. 

Let us now write the equation of motion for the c.m. coordinate of an N-particle 
system. It is simply 

                               R F F
1

N

cm ei e
i

M     (14.34) 

where cmR is given by Eq. (14.33b) and Fe  is the net external force being 
exerted on the system.   

Do you recognise that Eq. (14.34) is the equation of motion of a particle of 
mass M located at the centre of mass of the system?   

So, what have we been able to do in this section?  

We have replaced the set of N equations for the system of N particles by 

a single equation for a particle of mass 
N

i
imM

1
located at the centre of 

mass of the system. Physically, the system of N particles then behaves 

r

R 1

1
where

N

i i N
i

cm i
i

m

M m
M

 
Centre of mass of an 

N-particle system 

,

1

1
N

i
i

N

i
ii

cm

m

xm

X         N

i
i

N

i
ii

cm

m

ym

Y

1

1          N

i
i

N

i
ii

cm

m

zm

Z

1

1  
Centre of mass 

coordinates for an       
N-particle system 

Fig. 14.17: Location of 
the centre of mass of 
some symmetrical rigid 
bodies. 
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                                            as if the entire mass were located at the centre of mass of the system. 

This is the advantage of introducing the idea of a centre of mass. Let us state 
it once more.  

 

 

 

In the example of the bola, you have seen this result in action for the external 
force of gravity. The solution of the equation tells us that the centre of mass of 
a complex system or object follows a simple parabolic path under gravity even 
though its individual parts may follow complex motions. With this we end this 
section and summarise it. 

 

 

 

 

 

 

 

 

 

 

 

 

We now end this unit and summarise what you have studied in it. 

14.5  SUMMARY 

 

Concept Description 

 The centre of mass of a material body or a system of particles is the 
point, which moves as though the system's total mass existed at that point 
and all external forces were applied at that point. Its position vector for a 
two-particle system with masses 1 2andm m  having position vectors 

21 and rr , respectively, with respect to an origin O, is defined as 

                             r rR 1 1 2 2

1 2
cm

m m
m m

 

As long as we are interested in the motion of the system as a 
whole, we may replace the system by a particle of mass  (equal 
to its total mass) located at its centre of mass.  

The equation of motion for a system of N particles with masses  

1 2 3 4, , , ,..., Nm m m m m  having position vectors 1 2 3, , ,..., ,Nr r r r  respectively, 

with respect to an origin O, and acted upon by a net external force eF is, 

 R F F
1

N

cm ei e
i

M     (14.34) 

where cmR defines the position of the centre of mass of the N-particle 
system and is given by 

         

r r

R 1 1

1

1

where

N N

i i i i N
i i

cm iN
i

i
i

m m

M m
M

m

  (14.33b) 

EQUATION OF MOTION FOR THE C. M. OF             
AN N-PARTICLE SYSTEM 
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 The relative coordinate of a two-particle system is defined as the 
position of the mass 1m  relative to the mass 2m  and is given by:                  

                        r r r1 2  

 If the net external force on a two-particle system with masses 1m and 2m  is  
 

zero, the coupled equations of motion for the system in the  
 

coordinates r , r1 2( )  are given by                                     

           r F
2

1
1 212

d
m

dt
       and         r F F

2
2

2 12 212
d

m
dt

 

These equations are reduced to the following equations in terms of the 
relative and c.m. coordinates r R( , ) :cm  

                         
R 0

2

1 22 wherecmd
M M m m

dt
  

and r F
2

212
d
dt

             or         r F
2

122
d
dt

 

where         
1 2

1 1 1
m m

       or         1 2

1 2

m m
m m

       

 The reduced mass of a two-particle system with masses 1m  and 2m  is 
given by  

                    
21

111
mm

      or      1 2

1 2

m m
m m

 

 If non-zero net forces F1 and 2F  are exerted on the two particles having 
masses 1m  and 2m  in a two-particle system, respectively, the coupled 
equations of motion for the system in the coordinates r , r1 2( )  are 

given by                                     

                     r F
2

1
1 12

d
m

dt
       and         r F

2
2

2 22
d

m
dt

 

    These are reduced to the following equations in terms of the c.m. and 
relative coordinates r R( , ) :cm  

                         R F
2

1 22 wheree
dM M m m
dt

 

     and
F Fr F

2
1 2

212 1 2

1 e ed
m mdt

 

 

where F F F1 2e e e  is the net external force on the system    

and F 1e  and F 2e  are the net external forces on the respective  

particles. 



  Block 3                                  Rotational Motion and Many-particle Systems
                                            

14.6  TERMINAL QUESTIONS 

1. Two particles of masses 2 kg and 8 kg are separated by a distance of             
1 m. The distance of their centre of mass from the more massive particle is 

(a) 0.5 cm 

(b)  0.2 m 

(c) 0.8 m 

(d)  0.1 m 

2.  A proton and an electron, initially at rest, are allowed to move under their 
mutual attractive force. Their centre of mass will 

 (a)  move towards the proton. 

 (b)  move towards the electron. 

 (c)  remain stationary. 

 (d)  move in an unpredictable manner. 

3. Three homogeneous solid spheres of masses 2.0 kg, 3.0 kg and 5.0 kg are 
arranged with their centres at  ),ˆm0.5ˆm0.2ˆm0.2( kji  

i j kˆ ˆ ˆ(3.0m 4.0m 1.0m )  and i j kˆ ˆ ˆ(4.0m 2.0m 2.0m ),  

          
N-

 The position vector of the centre of mass for a system of N-particles  

with masses 1 2 3 4, , , ,..., Nm m m m m  having position vectors 1 2 3, , ,..., ,Nr r r r  

respectively, with respect to an origin O, is defined as 

           

r

R 1

1
where

N

i i N
i

cm i
i

m

M m
M

 

In terms of the x, y and z coordinates, it can be written as 

        N

i
i

N

i
ii

cmN

i
i

N

i
ii

cmN

i
i

N

i
ii

cm

m

zm

Z

m

ym

Y

m

xm

X

1

1

1

1

1

1 ,,            

          
N-

 The equation of motion of the centre of mass of a system of N 
particles with masses 1 2 3 4, , , ,..., Nm m m m m  having position vectors 

1 2 3, , ,..., ,Nr r r r  respectively, with respect to an origin O, and acted upon by 

a net external force Fe  is, 

                       R F F
1

N

cm ei e
i

M  

       where cmR is the position vector of the centre of mass of the  
       N-particle system. 
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respectively. The y-coordinate of the centre of mass of the system of 
spheres is  

(a)  3.3 m 

(b)  0.3 m 

(c)  1.8 m 

(d)   1.8 m 

4. Locate the centre of mass and relative coordinates of a two-particle system 
consisting of two masses of 1.5 kg and 2.5 kg placed 3.0 m apart. 

5. Particles of mass 1.0 kg, 2.0 kg, 3.0 kg and 4.0 kg are placed at four  
corners of a  rectangle ABCD as shown in Fig. 14.18. Given that 

8.0 cm and 4.0 cm,AB AD locate the centre of mass of the system. 
 6.  Three particles of masses 1.0 kg, 2.0 kg and 3.0 kg, respectively, are 

placed at the vertices A, B and C of a right-angled triangle (Fig. 14.19). 
Determine the centre of mass of the system. 

 7.   Determine the reduced mass (in au) of the carbon monoxide (CO) 
molecule given that the mass of the carbon and oxygen atoms are 12 au 
and 16 au, respectively.  

8. Obtain the reduced mass (in units of solar mass) of a binary star system in 
which the masses of the two stars are 1.1 and 0.90 times the solar mass, 
respectively. 

9. Determine the reduced mass of the system of planet Pluto and its moon. It 
is given that Pluto's mass is kg1031.1 22 and that of its moon is 

211.52  10  kg.  

10. The position vectors of three particle of masses 1 2.0kg,m  2 3.0kgm  

and 3 5.0kgm  are given by jir ˆm3ˆm)52( 2
1 ttt ,  

jir ˆm)7(ˆm4 2
2 t  and ,̂m2ˆm63 jir t  respectively. Determine the 

velocity and acceleration of the centre of mass of the system. 

14.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions  

1. a) Let the two objects be along the x-axis with the object of mass 2.5 kg at 
the origin. Then the coordinates of the two objects of masses 

1 2.5kgm  and 2 25kgm  are 1 0x  and 2 1.0m,x  respectively. 

From Eq. (14.7b) and Eq. (14.9b), respectively, the coordinate of the 
centre of mass and the relative coordinate are  

  m91.0
kg25kg2.5

m0.1kg250kg5.2
cmX   and  21 xxx    m0.1

 b) Let the centres of the Earth and the Moon be along the x-axis with the 
Earth at the origin. We use Eqs. (14.7b and 14.9b) with 

  24
1 5.97 10 kgem M 25.97 102

eM  and  22
2 7.35 10 kgmm M 27.35 102

mMm   

A B 

C D 

1.0 kg 2.0 kg 

4.0 kg 3.0 kg 

Fig. 14.18: Diagram for 
Terminal Question 5. 

A 

B 

C 

Fig. 14.19: Diagram for 
Terminal Question 6. 

10
 c

m
 

15 cm 
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                                                        Let     xx1  coordinate of the Earth 0  

  and   2x distance between the Earth and the Moon m1084.3 8

  The centre of mass coordinate is  
              

24 22 8
6

24 22
5.97 10 kg 0 7.35 10 kg 3.84 10 m 4.67 10 m

5.97 10 kg 7.35 10 kgcmX
24 22 810 kg 0 7 35 10 kg 3 84 1024 22 8

6
24 22

5.97 10 kg 0 7.35 10 kg 3.84 10 m 4.67 106
k225 97

10 kg 0 7.35 10 kg 3.84 10
10 kg 7.35 1024 224 210 k 7 35 1024 2

 
  So the centre of mass in this case is very close to the Earth, at a 

distance of 34.67 10 km from its centre. The relative coordinate is 

  m1084.3 8
21 xxx  

 c) We use Eqs. (14.7b and c) and Eqs. (14.9b and c) with 
1 2 5.0kg,m m  ,0,0 11 yx   02x  and m0.22y  

  So the centre of mass coordinates are:  0cmX  and  

   m0.1
kg0.5kg0.5

m0.2kg0.50kg0.5
cmY  

  The coordinates of the centre of mass in m are (0, 1.0). The relative 
coordinates are: 021 xxx  and  m0.221 yyy  

2. a) We use Eq. (14.19b) with 24
1 5.97 10 kgem M 25.97 102

eM  and  
   22

2 7.35 10 kg.mm M 27.35 102
mMm The reduced mass is 

24 22
22

24 22
5.97 10 kg 7.35 10 kg 7.26 10 kg
5.97 10 kg 7.35 10 kg

24 210 kg 7 35 1024 2
2

24 22
kg 7.26 102

5 97 10 k 7 35 10 k22
5.97 10 kg 7.35 10

10 kg 7.35 1024 224 210 k 7 35 1024 2 mM     

 b) For a binary system of particles of equal masses, the reduced mass is 
half the mass of each particle. In this case the reduced mass is half the 
mass of each marble, so  

   kg1.0kg)2.0(
2
1  

 c) The mass of the proton is 271.67 10 kgpm  and the mass of the 

electron is 319.1 10 kg.em  Since the mass of the proton is much 
greater than the mass of the electron ( 1836 ),p em m  the reduced 

mass of the system is approximately equal to the mass of the electron. 

 d) We use Eq. (14.19b) with 1m  mass of the star, m   

  and 2m  mass of the black hole ( 100 ).m  Thus, 

           mm
mm
mm 99.0

100
100    mass of the star 

3. Let the position vectors of the two masses 1 2andm m  in the baton be 
r r1 2and ,  respectively, with respect to the c.m. (Fig. 14.20). Neglecting the 
mass of the thin rod, from Fig. 14.20, we can write the position vectors of 
the masses with respect to their c.m. as  

          cmRrr 11     and    cmRrr 22  

 
Centre of mass

 

Fig. 14.20: Diagram 
for answer to SAQ 3. 
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     Substituting the expression for the c.m. coordinate, we get 

       r r r r r r r2 1
1 2 1 2

1 2 1 2
and , where

m m
m m m m

 

The magnitudes of these vectors are given as 

      r r r2 2
1 1 2

1 2 1 2

m m L
m m m m

and r r r1 1
2 1 2

1 2 1 2

m m L
m m m m

 

The equation of motion of the c.m. under gravity is given by Eq. (14.25) 
with   1 2M m m    and    F F F g g g1 2 1 2 1 2( )e e e m m m m  

                         
R g

2

2
cmd

dt
 

This is the equation of an object falling freely under the Earth’s gravity. 
Hence, the path of the c.m. is a parabola. 

Terminal Questions 

1. The correct option is (b). Let the particles be positioned on the x-axis,                    
with the more massive particle (of mass 8 kg) at the origin (Fig. 14.21).   
Let the centre of mass be at a distance x from the origin. From                           
Eq. (14.7b), the position of the centre of mass with respect to the origin is 
given by 

           (8kg 0 2kg 1m) 0.2m
10kgcmx  

2.  The correct option is (c) because an external force is needed to move the 
centre of mass of a system of particles. The mutual force of electrostatic 
attraction is an internal force which cannot change the position of the centre 
of mass of the system.  

3.  The correct option is (d). From Eq. (14.33c), the y-coordinate of the centre 
of mass is  

m8.1
kg)0.5kg0.3kg0.2(

m)]0.2(kg0.5m)0.4(kg0.3m0.2kg0.2[
cmY  

4.  We consider both masses to be located on the x-axis with the mass of               
1.5 kg at the origin. Using Eq. (14.7b), with 1 1.5kg,m  2 2.5kg,m  

1 0x  and 2 3.0m,x  we get the position of the centre of mass to be: 

            
kg5.2kg5.1

m0.3kg5.20kg5.1
cmX    m9.1  

 The relative coordinate 21 xxx    m0.3  

5. In Fig. 14.18, we choose the x and y-axis to lie along AB and AD, 
respectively, and A to be the origin of the coordinate system. We use                
Eq. (14.33c) with 

 kg0.11m       kg0.22m           kg0.33m     and    kg0.44m  

  01x             cm0.82x           cm0.83x    and     cm04x  

  01y             02y                   cm0.43y    and    cm0.44y  

x 

c.m. 8 kg  2 kg  

Fig. 14.21: Not to scale. 
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 So the coordinates of the centre of mass are 

kg .04kg .03kg .02kg 1.0
0kg0.4cm0.8kg0.3cm0.8kg0.20kg0.1

cmX     

cm0.4  

kg 10
cm0.4kg0.4cm0.4kg0.30kg0.20kg0.1

cmY   

cm8.2  

6.  In Fig. 14.19, let us take the x and y-axes to be along AC and AB, 
respectively. Then we can use Eq. (14.33c) to find the x and y coordinates 
of the centre of mass of the system. The coordinates of A, B and C (in m) 
are (0, 0), (0, 0.10) and (0.15, 0), respectively. Then 

  m105.7
kg06.

m15.0kg0.3m0kg0.20kg0.1 2
cmX  

  m103.3
kg06.

0kg0.3m1.0kg0.20kg0.1 2
cmY  

     So the coordinates of the centre of mass are 2 2(7.5 10 m, 3.3 10 m)  

7.  From Eq. (14.19b) with 1 212 au and 16 aum m , we get   

                 
au16au12
au16au12     au9.6  

8.  We use Eq. (14.19b) with 1 21.1 and 0.9 ,s sm M m M where sM is the 

solar mass. The reduced mass is 

  ss
ss

ss MM
MM
MM 5.0495.0

90.01.1
90.01.1        

9.  From Eq. (14.19b) with kg1031.1 22
1m  and kg,1052.1 21

2m               

  kg1036.1
kg1052.1kg1031.1
kg1052.1kg1031.1 21

2122

2122
 

10. Using Eq. (14.33a), the position vector of the centre of mass of the system 
is 

  jiR ˆm)1.26.00.1(ˆm)4.32.1( 22 ttttcm  

      The velocity and acceleration of the centre of mass are, respectively, 

  jiRv ˆms)2.46.0(ˆms)24.3( 11 tt
dt

d cm
cm  

  jiva ˆms2.4ˆms0.2 22
dt

d cm
cm  

 



   

125 

Unit 15                                  Conservation Laws for Many-particle Systems 

       UNIT 15  
 

CONSERVATION 
LAWS FOR  

MANY-PARTICLE 
SYSTEMS 

  
 Structure 

15.1     Introduction 
Expected Learning Outcomes 

15.2 Conservation of Linear Momentum 
Two-particle System 
Many-particle System 

15.3 Conservation of Energy 
Kinetic Energy of a Two-particle System 
Kinetic Energy of a Many-particle System 
Conservation of Mechanical Energy 

STUDY GUIDE 
In this unit, we determine the linear momentum, angular momentum and energy of two-particle and 
many-particle systems and deduce the respective conservation laws. 

For understanding the concepts in this unit well, you should know the concepts of linear momentum, 
energy and angular momentum of single particles and the respective conservation laws. You may need 
to revise these concepts from Block 2. You should also revise the mathematical concepts of vector 
algebra given in Block 1. Some parts of this unit are quite mathematical and abstract. While studying 
them, always keep a paper and pen with you and work out all the intermediate steps yourself. 
This will help you learn the concepts of this unit well. You must also solve all examples, SAQs and 
Terminal Questions on your own! 

15.4 Collisions of Two Particles 
Elastic Collisions in One-dimension  
Elastic Collisions in Two-dimensions  

15.5 Angular Momentum 
Angular Momentum of a Two-particle System 
Conservation of Angular Momentum 

15.6 Summary 

15.7 Terminal Questions 

15.8 Solutions and Answers 

Leonardo da 
Vinci   “Nature never breaks her own laws.”    

    

How do conservation laws applied to the 
collisions of elementary particles reveal 
the secrets of the microscopic world? 
This is what you will learn in this unit! 
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                                            15.1   INTRODUCTION 

In Unit 14, you have studied the dynamics of two-body systems and learnt the 
concept of centre of mass. You have learnt how to express the coupled 
equations of motion for two-particle systems in terms of decoupled equations 
in the centre of mass and relative coordinates. You have also learnt how to 
extend these concepts to many-particle systems. In this unit, we obtain the 
expressions of linear momentum, angular momentum and energy for                 
two-particle and many-particle systems. We also revisit the respective 
conservation laws. You may recall from Units 8, 10 and 12 that these laws 
make the study of motion of objects quite simple. That is why we would like to 
apply them to many-particle systems.  

In Sec. 15.2, we revisit the concept of linear momentum for two-particle 
systems and the law of conservation of linear momentum about which you 
have studied in Unit 8. We extend it to many-particle systems. In Sec. 15.3, we 
discuss the conservation of mechanical energy for two-particle systems and 
many-particle systems. In Sec. 15.4, we apply the laws of conservation of 
linear momentum and energy to study elastic collisions of two particles. In  
Sec. 15.5, we discuss the conservation of angular momentum for two-particle 
systems and many-particle systems. 

With this unit, we complete our study of mechanics as applied to the 
translational and rotational motion of objects. In the next block you will study 
about oscillatory motion. 

Expected Learning Outcomes 

After studying this unit, you should be able to: 

 determine the linear momentum, angular momentum and kinetic energy 
of two-particle and many-particle systems;  

 derive the expressions of linear momentum, kinetic energy, and angular 
momentum of two-particle systems in terms of the c.m. and relative 
coordinates;  

 write the expressions of linear momentum, kinetic energy, and angular 
momentum of many-particle systems in terms of the c.m. and relative 
coordinates;  

 state the laws of conservation of linear momentum, mechanical  
energy and angular momentum for two-particle and many-particle 
systems;  

 apply the laws of conservation of linear momentum, mechanical  
energy and angular momentum for simple two-particle systems;  
and  

 solve problems on elastic collisions of two particles. 
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15.2   CONSERVATION OF LINEAR MOMENTUM 

In this section, we first determine the linear momentum of a two-particle 
system in terms of the c.m. and the relative coordinates. Then we extend the 
concept to many-particle systems. We also discuss the law of conservation of 
linear momentum for two-particle and many-particle systems. 

15.2.1   Two-particle System 

The total linear momentum of the two-particle system is the sum of the linear 
momenta of the two particles in the system: 
 
                         p p p1 2  (15.1a) 

 
where   p v1 1 1m   and  p v2 2 2.m  Using the definition of the c.m. 

coordinate given in Eq. (14.2) of Unit 14, we can recast Eq. (15.1a) in terms of  
 

the c.m. coordinate. We write Eq. (15.1a) as 
 

                        r rp v v 1 2
1 1 2 2 1 2

d dm m m m
dt dt

 (15.1b) 

We now divide and multiply the RHS of Eq. (15.1b) by 1 2( ).m m  

Thus, we have            

r r

p
1 2

1 2
1 2

1 2

d dm m
dt dtm m
m m

 (15.1c) 

From Eq. (14.2),       
)( 21

2211
mm
mm

cm
rrR  

Differentiating Eq. (14.2) given above with respect to time, we get the velocity 
of the c.m. of the two-particle system:  

               

r r
RV

1 2
1 2

1 2

cm
cm

d dm md dt dt
dt m m

 (15.1d) 

Substituting Eq. (15.1d) in Eq. (15.1c) we get 

                              (15.1e)              

Thus,  

 

 

 

Let us apply this result.  

p V 1 2wherecmM M m m  Linear momentum of 
a two-particle system 
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Now recall Eq. (14.14) in Unit 14 for the case when there is no external force 
acting on the system; the only force is the force of mutual interaction between 
the two particles. When we integrate Eq. (14.14) with respect to time, we get 

R constantcmd
M

dt
 (15.2) 

Eq. (15.2) together with Eq. (15.1e) tells us that when no net external force 
is exerted on the system, the linear momentum of the centre of mass of 
the system is constant. This brings us to the law of conservation of linear 
momentum for a two-particle system. 

Fig. 15.1: Linear                   
momentum, position and 
velocity of c.m. of a  
two-particle system. 

 

A car of mass 1200 kg moves along a straight road with a speed of  
112.0 ms .  A truck of mass 1800 kg and speed 120.0 ms  moves in the 

same direction as the car. It is observed at some instant that the truck is  
 

40.0 m ahead of the car. Determine the position of the centre of mass of 
the system consisting of the car and the truck at that instant. Calculate the 
total linear momentum of the system and the velocity of the centre of mass 
of the system at that instant. 

SOLUTION   The KEY IDEA here is to treat the car and truck as particles 
and the system as a two-particle system. We can determine the 
coordinates of the car and the truck and hence the c.m. coordinates. The 
linear momentum of the system is given by Eq. (15.1a). The velocity of the 
c.m. can be determined using Eq. (15.1e).  

Since both vehicles are moving in a straight line (Fig. 15.1), we choose the 
direction of motion to be along the x-axis. Thus, both objects are situated 
on the x-axis at any given instant. If the car is at the origin 0 mx  at the  
given instant, the truck’s coordinate is 40.0 m.x  The position vectors of 
the car and the truck at that instant are given by r 01 and  r i2

ˆ40.0 m     

The position of the centre of mass of the system is    

1 2r r iR i
ˆ(1200kg) (1800kg) (1800kg) (40.0m) ˆ24.0m

(1200 1800) kg 3000 kgcm    

The velocities of the car and the truck are i1 ˆ12.0 ms  and i1 ˆ20.0 ms ,  
respectively. The total linear momentum of the system is 

1 11 2 2 1 2
1 1 4 1

1200 kg 1800kg

ˆ ˆ ˆ1200 kg 12.0 ms 1800 kg 20.0 ms 5.04 10 kgms

m m
1 1 4 1 ˆ4 1kgms4

1 11 2 2 11200 kg 181m m1 11

1200 kg 12.0 ms 1800 kg 20.0 ms 5.04 101 1 4ˆ 1 41800 kg 20 0 ms 5 04 101 1 4

p v v v v

i i i

The velocity of the centre of mass of the system is given by Eq. (15.1e) as  

                 
4 1

15.04 10 kgms ˆ ˆ16.8 ms
3000kgcm M

1
1 ˆ1

41045.04 10 kgms 16
3000kgM

ˆ10pV i i   

XAMPLE  15.1: MOTION OF TWO VEHICLES 
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a) A 2 kg ball and a 3 kg ball are moving towards each other with a speed of 
1ms5  each. What is the velocity of the centre of mass of the system? 

b) A bullet of mass 10 g is fired into a block of wood of mass 10 kg and lodges 
into it. The speed of the block and the bullet is .ms2.0 1  What is the initial 
speed of the bullet? 

 
 
 
 
 
 
 
 
 
Let us now take up a simple application of this law. 

 

The total linear momentum of a two-particle system remains constant 
if the net external force exerted on the system is zero: 

                               R V constantcm
cm

d
M M

dt
     (15.2) 

CONSERVATION OF LINEAR MOMENTUM FOR         
A TWO-PARTICLE SYSTEM 

Conservation of linear 
momentum 

 

Two skaters, one of mass 40 kg and the other of mass 50 kg, stand in a 
smooth ice skating rink holding a pole of negligible mass. Starting from the 
ends of the pole, the skaters pull themselves along the pole with constant 
velocities until they meet. What is the velocity of the skater of mass 50 kg if 
the speed with which the skater of mass 40 kg moves is ?ms10 1 Neglect 
friction. 

SOLUTION  The KEY IDEA here is to treat the system as a two-particle 
system, determine whether the law of conservation of linear momentum 
can be applied to the system and then apply it.  

Since there is no external force on the system, the total linear momentum 
of the system is conserved. Since the skaters are at rest initially, the total 
initial linear momentum of the system is zero. Let the velocities of the 
skaters of masses 40 kg and 50 kg be 1v  and ,2v  respectively. Since 
motion is in a straight line, we take the skater of mass 40 kg to move along 
the positive x-axis. Then from the law of conservation of linear momentum, 
we have 
                      v v 01 1 2 2m m   

or  0ii ˆˆ 2211 vmvm     (i) 

since both skaters are moving opposite to each other. Substituting the 
values kg,401m kg502m  and 1

1 ms10v  in Eq. (i), we get 

1
1

2 ms8
kg50

ms10kg40v  along the negative x-axis. 

XAMPLE  15.2: CONSERVATION OF LINEAR MOMENTUM 

SAQ  1  –  Linear momentum of a two-particle system
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                                            15.2.2    Many-particle System 

Let us consider a system of N particles with masses 1 2 3 4, , , ,..., Nm m m m m  
such as the one we studied in Unit 14. Let the position vectors of these 
particles with respect to an origin O be 1 2 3 4, , , ,..., ,Nr r r r r  respectively (see Fig. 
15.2). What is the total linear momentum of this system? It is given by 

                     P r r r1 1 2 2 N Nm m m  (15.3a) 

where 1 2, ,..., Nr r r  represent the velocities of the particles in the dot notation. 

We can use the summation notation to write the total linear momentum as 

   (15.3b)              
 

where we have used Eq. (14.33b) and put  r R
1

.
N

i i cm
i

m M   

Upon differentiating Eq. (15.3b) with respect to time, we get the equation of 
motion for a many-particle system. 
  

 (15.3c)
  
If the net external force on the system is zero, we have  

     P R 0cm
d M
dt

 (15.4a) 

or                  P R V constantcm cmM M  (15.4b) 

This is just the law of conservation of linear momentum for an N-particle 
system. 

 

 

 

 

 

 

 
 
 

In the dot notation,  
 

r rr r1 2
1 2, ...

d d
dt dt

and 
 

r r
r r

2 2
1 2

1 22 2, ...
d d

dt dt

P r R
1

N

i i cm
i

m M
 

Linear momentum of 
an N-particle system 

P R Fcm e
d M
dt  

y 

x 

z 

O 

r1 

r2  

ri  r3  

Fig. 15.2: Many-particle 
system. 

Equation of motion for  
N-particle system 

 

The total linear momentum of an N-particle system remains constant 
if no external force acts on the system: 

                               V constantcmM     (15.4b) 

Thus, when no net external force acts on the many-particle system, 
the velocity of the centre of mass of the system remains constant.  

The centre of mass of the system moves in a straight line. 

CONSERVATION OF LINEAR MOMENTUM FOR         
A MANY- PARTICLE SYSTEM 
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Consider the system of three particles of equal mass m whose position 
vectors (in m) at three different instants of time are given below: 

t (in s) r1 r2  r3  
0 i jˆ ˆ

 i jˆ ˆ2 2  i jˆ ˆ3 3  
1 î  ĵ  i jˆ ˆ3 3  
2 ĵ  i jˆ ˆ2  î2  

Determine the position of the centre of mass of the system at the three 
instants of time. Determine the average velocity of the c.m. between the 
time intervals of 0 to 1 s and 1s to 2s. Is there a net force being exerted on 
the system? Is its linear momentum conserved? 

SOLUTION   The KEY IDEA here is to determine the average velocity of 
the c.m. of the three-particle system and see whether it is constant or 
changes. This will tell us whether a net external force is exerted on the 
system and its linear momentum is conserved or not.  

The position of the c.m. (in m) at the three instants is given by 

i j i j i j
R i j

ˆ ˆ ˆ ˆ ˆ ˆ2 2 3 3
ˆ ˆ( 0) 2 2

3cm
m m m

t
m

i j i j
R i j

ˆ ˆ ˆ ˆ3 3 4 4ˆ ˆ( 1s)
3 3 3cm

m m m
t

m

j i j i
R i j

ˆ ˆ ˆ ˆ2 2
ˆ ˆ( 2s)

3cm
m m m

t
m

Let us now determine the average velocity of the c.m between 0 and 1 s 
and 1s and 2s. The average velocity of the c.m (in 1ms ) between 0 and 
1s and 1s and 2s is, respectively: 

R RV i j i j1
( 1s) ( 0) 4 4ˆ ˆ ˆ ˆ2 2

1s 3 3
cm cm

cm
t t

 

i j2 ˆ ˆ
3  

R RV i j i j2
( 2s) ( 1s) 4 4ˆ ˆ ˆ ˆ

1s 3 3
cm cm

cm
t t

 

i j1 ˆ ˆ
3  

Thus, we find that the average velocity of the c.m. is different over the two 
time intervals, that is, it is not constant. This means that a net external 
force is being exerted on the system and its linear momentum is not 
conserved. 

XAMPLE  15.3: LINEAR MOMENTUM  
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Let us now determine the kinetic energy of a system of many particles and 
arrive at the law of conservation of energy for such systems. 

15.3   CONSERVATION OF ENERGY 

In this section, we first determine the kinetic energy of a two-particle system in 
terms of the c.m. and the relative coordinates. Then we extend the concept to 
many-particle systems. Finally, we arrive at the law of conservation of 
mechanical energy for two-particle and many-particle systems. This section is 
quite mathematical and you should solve all intermediate steps yourself to 
understand it better. 

15.3.1    Kinetic Energy of a Two-particle System 

The kinetic energy (K) of a two-particle system is given by: 

                        2 2
1 1 2 2

1 1
2 2

K m v m v  (15.5) 

where 1
1

d
dt

1d
dt
rv  and 2

2 .d
dt

2d
dt
rv  We have to determine K in terms of the c.m. 

and relative coordinates. We can rewrite Eq. (14.2) given by  

                      r rR 1 1 2 2
1 2(where )cm

m m M m m
M

 as follows: 

       R r r1 2 1 1 2 2( ) cmm m m m  (15.6a) 

or    r R r R 01 1 2 2( ) ( )cm cmm m  (15.6b) 

As you have seen while solving SAQ 3 of Unit 14, the position vectors of the 
particles with respect to the c.m. are given by 

                         r r R1 1 cm   and    r r R2 2 cm  (15.6c) 

Substituting Eq. (15.6c) in Eq. (15.6b), we can write 

                             r r 01 1 2 2m m  (15.6d) 

Differentiating Eqs. (15.6d and c) with respect to time, we get: 

          v v 01 1 2 2m m      (15.6e) 

        v v V1 1 cm     and   v v V2 2 cm  (15.6f) 

Using the fact that v v2
1 1 1.v  and v v2

2 2 2. ,v  and substituting 1v  and 2v  

from Eq. (15.6f) in Eq. (15.5), we can rewrite it as 

              

v v v v

v V v V v V v V

2 2
1 1 2 2 1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 1( . ) ( . )
2 2 2 2

1 1[( ). ( )] [( ). ( )]
2 2cm cm cm cm

K m v m v m m

m m
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or v v V2 2 2
1 1 2 2 1 2 1 1 2 2

1 1 1 ( ) ( ).
2 2 2 cm cmK m v m v m m V m m  (15.6g) 

Now, from Eq. (15.6e),                v v 01 1 2 2m m   

Also 1 2 .m m M  So we can write Eq. (15.6g) as   

                               

 (15.7) 

 
This is the total kinetic energy of a two-particle system expressed in 
terms of the velocity of its c.m. and the velocities of the particles with 
respect to the c.m. What does Eq. (15.7) tell us? It tells us that the kinetic 
energy of the two-particle system has two parts:  

1. The kinetic energy of the total mass M (the sum of the masses of the two 
particles in the system) moving with the speed of the centre of mass. Thus, 
a certain amount of the total kinetic energy is locked in the motion of the 
c.m. of the system. When the net external force on the system is zero, the 
speed of the c.m. remains constant and therefore this part of the total 
kinetic energy does not change. 

2. The sum of the kinetic energy of the two particles relative to the centre of 
mass.  

We can also express the kinetic energy of the two-particle system in terms of 
the K. E. of the total mass moving with the velocity of the c.m. and the K.E. of 
a particle of reduced mass  moving with the relative velocity, .v  

You have proved in SAQ 3 of Unit 14 that 

              rrrrr rRrr
M
m

mm
m

mm
mm

CM
2

21

212

21

2211
111        (15.8a) 

where r r r1 2  and                 

              r r1
2

m
M

     (15.8b) 

 

Hence, r r1 2d m d
dt M dt

         or     v v2
1

m
M

 (15.8c) 

 

and      r r v v2 1 1
2ord m md

dt M dt M
 (15.8d) 

Substituting v1 and v2  from Eqs. (15.8c and d) and using the relation 

v v2 .v  for both velocities in Eq. (15.7), we get  

            v v v v2
1 1 1 2 2 2

1 1 1( . ) ( . )
2 2 2cmK MV m m  

Kinetic energy of a      
two-particle system 

2 2 2
1 1 2 2

1 1 1
2 2 2cmK MV m v m v
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or       
2 2

2 2 22 1
1 22 2

1 1 1
2 2 2cm

m mK MV m v m v
M M

 

or       2 21 2 1 21 1
2 2cm

m m m mK MV v
M M

 

or          2 21 2
1 2

1 1
2 2cm

m mK MV v M m m
M

 

 

Thus, 1 2 )( m m
M

       (15.9) 

What does Eq. (15.9) tell us? It tells us that the kinetic energy of the two-
particle system has two parts:  

1. The kinetic energy of the total mass M (the sum of the masses of the two 
particles in the system) moving with the speed of the centre of mass.  

2. The kinetic energy of a fictitious particle of mass  moving with the relative 
velocity v.  

We now state the expression for the kinetic energy for a many-particle system 
without detailed derivation. The result can be derived using the same method 
that we have followed for a two-particle system. 

15.3.2    Kinetic Energy of a Many-particle System 

The total kinetic energy (K) of an N-particle system is given as: 

  2 2 2 2 2
1 1 2 2 3 3

1

1 1 1 1 1...
2 2 2 2 2

N

N N i i
i

K m v m v m v m v m v  (15.10a) 

where im is the mass of the ith particle and v ,i its velocity. Generalising               

Eq. (15.6f) to all N particles, we can express the total kinetic energy of this  
 

system in terms of the c.m. and relative coordinates as follows: 

             v v v V v V
1 1

1 1( . ) [( ).( )]
2 2

N N

i i i i i cm i cm
i i

K m m  

or      v V2 2

1 1 1

1 1 ( ) ( ).
2 2

N N N

i i i cm i i cm
i i i

K m v m V m  (15.10b) 

since Vcm does not depend on i.  Further, generalizing Eq. (15.6e), we can 

write  v 0
1

N

i i
i

m  . Also 
1

.
N

i
i

m M  So we can write Eq. (15.10b) as   

                           (15.11) 
 

This is the total kinetic energy of an N-particle system expressed in terms 
of its c.m. and relative coordinates.  

2 21 1
2 2cmK MV vKinetic energy of a      

2-particle system 

2 2

1

1 1
2 2

N

cm i i
i

K MV m vKinetic energy of an         
N-particle system 
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The first term in Eq. (15.11) gives the kinetic energy of the total mass M (the 
sum of the masses of the particles in the system) moving with the speed of the 
centre of mass. Thus, a certain amount of the total kinetic energy is locked in 
the motion of the c.m. of the system. When the net external force on the 
system is zero, the speed of the c.m. remains constant and therefore this part 
of the total kinetic energy does not change.  

The second term in Eq. (15.11) is the sum of the kinetic energies of the 
particles with respect to the c.m. of the system. 

We now deduce the law of conservation of mechanical energy for a system of 
particles. 

15.3.3    Conservation of Mechanical Energy 

Recall from the discussion in Units 10 and 13 that the total mechanical energy 
of the system is conserved if the force being exerted on it is conservative. 
This means that the force depends only on the distance between the particles, 
i.e., the relative positions of the particles. Let us deduce the law of 
conservation of mechanical energy for a single particle again using a different 
procedure from the one followed in Unit 10.  

You know that for a single particle: Fv
dt
dm

Taking the scalar product of both sides with v dt  and integrating the result, we 
get (study the intermediate steps in the margin): 

                                        F r21 .
2

mv d  (15.12a) 

Recall from Unit 10 that if F r.d  depends only on the limits of integration and 

not on the actual path linking the initial and final positions of the particle, we 
can associate a scalar potential energy function U of the coordinates such 
that  
                                              F r.U d    (15.12b) 

We can then write Eq. (15.12a) as 
  
 (15.12c) 

 
Eq. (15.12c) gives the law of conservation of mechanical energy for a 
single particle and applies to conservative forces as you have studied in 
Units 10 and 13. We can extend this law to a system of two particles acted 
upon by conservative forces. Refer to Sec. 14.3 of Unit 14. Let the masses of 
the particles be 1m  and 2,m respectively. Let the position vectors of the 
particles be r1 and r2, respectively, at the instant t with respect to an origin O 
in an inertial frame of reference.   

The law of conservation of mechanical energy for the two-particle 
system is given as 
   
 (15.13)               

21 constant
2

mv U

2 2
1 1 2 2

1 1 constant
2 2

m v m v U
 

Taking the scalar product 
of both sides with dtv  
and integrating it with 
respect to t, we get:   

v
v F v. .

d
m dt dt

dt  (i) 

We can simplify (i) to 
obtain Eq. (15.12a) as 
follows: We first express 
the LHS of (i) in terms of 
the kinetic energy as 
follows. We know that 

v v

v v

2( ) ( . )

2 .

d d
v

dt dt
d
dt  

Using this result we can 
write 

v v 1 2. ( )
2

d d
m dt m v

dt dt  
Integrating this equation 
with respect to time, we 
get: 

  

v v.

1 2( )
2

d
m dt

dt
d

m v dt
dt     
2

2
1

mv (ii) 

Further,  

 rv ddt  

and  

 rFv F ddt. .  

so that  

 rFv F ddt. .   (iii) 

Substituting (ii) and (iii) in 
(i), we get Eq. (15.12a). 

Law of conservation of 
mechanical energy for 
a 2-particle system 
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                                            where U is the scalar potential energy function r r1 2( , )U defined by                      

Eq. (15.12b).  The derivation of Eq. (15.13) is beyond the scope of this 
syllabus. 

In nature, forces like the force of gravitation and electrostatic force are 
conservative but forces like friction are not conservative. You have studied in 
Unit 10 that when non-conservative forces are present, the law of conservation 
of mechanical energy does not hold. However, by bringing in different forms of 
energy such as heat, electromagnetic energy etc. within this concept we can 
arrive at the law of conservation of energy.  

We can extend the law of conservation of mechanical energy to many-particle 
systems on which conservative forces are exerted. Here we state the result 
without going into its derivation as it is beyond the scope of this course: 

     

(15.14) 

 
In this case U is the potential energy function for the many-particle system. 
 

We now study the collisions of two particles as an application of the concepts 
described so far. 

15.4   COLLISIONS OF TWO PARTICLES 
We begin by explaining briefly: What do we mean by collision between 
objects? Study the description given in the box below. 

 

 

 

 

 

 
If the net force exerted on each particle in a two-particle system 
depends only on its distance from the other particle (that is, it is a 
central conservative force), the total mechanical energy of the two-
particle system remains constant [Eq. (15.13)]. 

CONSERVATION OF MECHANICAL ENERGY FOR A 
TWO-PARTICLE SYSTEM 

2

1

1( ) constant
2

N
i i

i
m v U

A collision is said to take place between two or more objects when 
the objects come close enough so that there is some sort of 
interaction between them for a brief time interval. 

NOTE that in a collision process, there may or may not be any 
physical contact between the objects. Also external forces may or 
may not be exerted on them.  

COLLISION OF PARTICLES
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We can predict many details of a collision simply by applying conservation 
laws, even though we may not know the nature of the interaction or force. In 
this section you will study how to apply the conservation laws of momentum 
and energy to collisions of particles. To begin with, let us briefly describe the 
collision process. Study Fig. 15.5, which shows three distinct stages of the 
collision process in which the forces of interaction are important only at very 
small separations and for a very brief time interval: 

Stage 1: At a time long before collision, each particle is effectively free, that 
is, the total energy is just the KE of the particle.  

Stage 2: As the particles approach each other, the momentum and energy of 
each particle changes due to the forces of interaction between them. 

Stage 3: At a time long after the collision, the particles are again free and 
move along straight lines with new velocities in new directions. 

 

 

 

 

 

 

The scattered particles may or may not be the same as the original 
particles. In scattering experiments we usually know the initial velocities. 
Often, one particle is initially at rest and is bombarded by particles of known 
energy. We measure the final velocities of the colliding particles with suitable 
particle detectors or using other methods.  

Collisions are divided into two broad categories:  

1. Elastic collisions, in which both linear momentum and the total 
kinetic energy are conserved, and  

2. Inelastic collisions, in which conservation of linear momentum holds 
good but the total kinetic energy is not conserved. However, the total 
energy is conserved.  

Thus, if pi  and iK  are the initial linear momentum and kinetic energy of the 
system, respectively, before collision, and pf  and fK  are the respective final 

linear momentum and kinetic energy after collision, then 

            p pi f        and         i fK K    for elastic collisions (15.15a) 

             p pi f       and          Ki  Kf      for inelastic collisions (15.15b) 

Here we discuss only elastic collisions in one and two-dimensions. 

Fig. 15.5: The collision process. 

(a)  (b)  (c)  

1v
2v

2m

Before Collision During Collision 

1m 2m
2m

1m 1v

2v

After Collision 

Elastic Collisions 

Inelastic Collisions 
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15.4.1    Elastic Collisions in One-dimension 

Let us consider an elastic collision between two particles moving in a straight  
 

line along the x-axis (see Fig. 15.6). This is a head-on collision. Note from  
 

Fig. 15.6 that a particle of mass 1m  (called the incident particle or projectile) 
moving with velocity v1 collides with another particle of mass 2m  (called the 
target particle) moving with velocity 2.v  

 

 

 

 

 

 

Then using Eq. (15.15a), we can determine the final velocities of the particles  
 

whatever the force of interaction between them may be. Let the velocity of  
 

mass 1m  after collision be v1 and that of mass 2m  be v2.  Applying the laws 

of conservation of momentum and kinetic energy to the elastic collision of  
 

these two particles, we get: 

             v v v v1 1 2 2 1 1 2 2m m m m        Linear momentum   (15.16a) 

     2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
2 2 2 2

m v m v m v m v    Kinetic energy   (15.16b) 

Since the motion is along the x-axis, we can write Eq. (15.16a) as follows: 

            1 1 2 2 1 1 2 2m v m v m v m v  (15.16c) 

Eqs. (15.16a and b) are two equations for two unknowns and we can solve for 

1v   and 2v  in terms of 1 2 1 2, , and .m m v v  We can eliminate 1v  from these 
equations by using Eq. (15.16c) and solve for 2.v  The solution becomes 
easier if we assume that the particle of mass 2m  is initially at rest, that is, 

2 0.v Then from Eq. (15.16c), we have 

                 2
1 1 2 2

1
0

m
v v v v

m
  (15.17a) 

Squaring Eq. (15.17a), we get 

             
2

2 2 22 2
1 1 1 2 221 1

2 m m
v v v v v

m m
 (15.17b) 

We now substitute 2
1v  from Eq. (15.17b) in Eq. (15.16b) and solve for 2v : 

     
2

2 2 2 22 2
1 1 1 1 1 2 2 2 221 1

2
m m

m v m v v v v m v
m m

                  (15.17c) 

2v

1m
2m

(a) 

1v 2v

1m
2m

(b) 

Fig. 15.6: Elastic collision between two particles in one-dimension   a) before 
collision; b) after collision, the velocities of the particles may 
change. 

1v
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or        2
22

2
2

1

2
2

21220 vmv
m
mvvm  (15.17d) 

or      2 2
2 1 2

1
1 2 0

m
v v v

m
 (15.17e) 

or                 2
2 2 1

1
1 2 0mv v v

m
2m 022

m2m 2 1212v m222 11112 12 11 12
1m1mmm

 (15.17f) 

Eq. (15.17f) is a quadratic equation in 2,v  which has two solutions:   

1.                 2 1 10v v v1v2 10 v v1  (15.18) 

This solution simply restates the initial conditions. We always obtain such 
a solution in this type of problem because the initial velocities satisfy the 
conservation laws.  

2.                2
2 1

1
1 2 0mv v

m
2m

12 012122
m222 111

1m1mm
     (15.19a) 

or                               (15.19b) 

 

and from Eq. (15.17a)      (15.19c) 

 

We now consider a few interesting special cases of Eqs. (15.19b and c) for 
head-on collisions. 

1.  Suppose the masses of the colliding particles are equal, that is, 
1 2.m m Then Eqs. (15.19b and c) give 

  1 0v      and      2 1v v   (15.20a) 

Thus, when a particle collides with another particle of equal mass at 
rest, the incident particle comes to a stop, while the target particle 
starts moving with the velocity of the incident particle (Fig. 15.7). 

 

 

 

 

 

1
2 1

1 2

2mv v
m m22

2m
 

1 2
1 1

1 2

m m
v v

m m
 

Fig. 15.7: One-dimensional elastic collision between particles of equal mass
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2. Suppose a particle collides with a much more massive particle, that is, 
.21 mm  Then from Eqs. 15.19c and using the result for 1v  in 15.16b, we 

get  
                    11 vv     and       02v  (15.20b)                                                      

 Thus, when a particle collides with another much more massive 
particle at rest, the incident particle is reflected back with the same 
speed, while the target particle hardly moves (Fig.15.8). 

 

 

 

 

 

 
3. Suppose a particle collides with a particle of much less mass, that is, 

.21 mm  Then from Eqs. (15.19b and c), we get 

 11 vv   and   12 2vv   (15.20c) 

 Thus, when a particle collides with another much less massive particle 
at rest, the incident particle keeps moving as if nothing happened, 
while the target particle takes off with twice the velocity of the incident 
particle (Fig. 15.9). 

 

 

 

 

 

 

What happens when the target particle is also moving? Let us find out. 

 

 

 

 

 

 

 

You must try to 
picture the 
collision processes 
shown in                     
Figs. 15.7, 15.8, 
15.9, 15.10 and 
15.11 in your mind 
or do similar 
activities with 
marbles, balls, etc. 
to understand them 
better.   

Fig. 15.9: One-dimensional elastic collision between a more massive particle 
with a much less massive particle. 

1m
After   During  Before  

2m
1m

11 vv

2m
1m

1v

2m

21 mm

0v2
12 2vv

 

Two balls of masses m and 3m collide head-on in an elastic collision with 
equal and opposite velocities v  (Fig. 15.10). Determine their final 
velocities.  

SOLUTION   The KEY IDEA here is to use the fact that the linear 
momentum and kinetic energy of the particles are conserved. Since the 
collision is head-on, we can treat it as a one-dimensional problem and 
apply Eqs. (15.16b and c).                   

XAMPLE  15.4: HEAD-ON ELASTIC COLLISION  

Fig. 15.8: One-dimensional elastic collision between a less massive particle 
with a much more massive particle.

After   During  

11 vv
0v2

2m
1m

1v
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Before  

0v2

2m
1m

2m
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a) A ball of mass 5.0 kg moves to the right with a velocity of 1ms0.3  and 
collides head-on with a stationary ball of mass 8.0 kg. Calculate the 
velocity of each ball after collision given that the collision is elastic. 

b) A 40 kg cart travelling at 1ms0.6  collides head-on with a 50 kg cart. 
The final velocity of the first cart is 1ms5.1  in the direction opposite to 
its initial direction of motion. What are the initial and final velocities of 
the second cart if the collision is elastic?  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

So far you have studied head-on elastic collisions (that is, collisions in one 
dimension). Very often we come across situations in which collisions are in two 
or three-dimensions. Let us study elastic collisions in two-dimensions. 
Examples are collisions of billiards balls, alpha particles with atoms, gas 
particles with each other.  

15.4.2    Elastic Collisions in Two-dimensions 

Let us consider the collision of two particles of masses 1 2andm m  and 
determine their velocities after collision given the initial conditions. For keeping 
the mathematics simple, we assume that the target particle is initially at 
rest. Suppose the projectile (particle 1) initially moves along the x-axis with 
velocity v  (Fig. 15.11a). Let the projectile and the target move in the xy plane 
after collision with velocities v1 and v2,respectively (Fig. 15.11b). Since the 
linear momentum of the system is conserved, we have 

                          v v v1 1 1 2 2m m m   (15.21) 

We can express Eq. (15.21) in its component form along the x-axis: 

Putting the values given in this problem in Eqs. (15.16b and c), we get 

                  1 23 3mv mv mv mv  (i) 

    2 2 2 2
1 2

1 1 1 13 3
2 2 2 2

mv mv mv mv  (ii) 

We can eliminate 1v  from (i) and (ii). From (i):  1 22 3v v v          (iii) 
Substituting (iii) in (ii) and solving for 2,v  we get  

2 2 2
2 24 ( 2 3 ) 3v v v v          0)( 22 vvv  

This equation has two solutions, one of which represents the initial  
conditions: 1 2andv v v v  

The interesting solution is: 1 22 and 0v v v  

This solution shows that after the collision, the ball of mass m is reflected 
back and moves with twice its original speed and the ball of mass 3m 
comes to rest (Fig. 15.10). 

SAQ  2  –  Head-on elastic collision

Before

During

After
 

Fig. 15.10: Head-on 
collision between particles 
moving in opposite
directions.
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 )ˆsinˆcos()ˆsinˆcos(ˆ 2222221111111 jijii vmvmvmvmvm   (15.22a) 

 
 
  

 

 

 

 
 

In Fig. 15.11b, 1  and 2  are the angles that v1 and v2  make with the x-axis, 

respectively. Now equating the coefficients of î and ĵ  in Eq. (15.22a), we get 

 2221111 coscos vmvmvm  (15.22b) 

and           1 1 1 2 2 20 sin sinm v m v                                        (15.22c) 

Since the kinetic energy of the system remains constant, we have 

 2
22

2
11

2
1 vmvmvm        (15.22d) 

To eliminate 1 from Eqs. (15.22b and c), we can rewrite them as 

 2221111 coscos vmvmvm  (15.22e) 

and  222111 sinsin vmvm  (15.22f) 

Squaring Eqs. (15.22e and f) and adding the resulting equations, we get: 

)sin(cos)( 1
2

1
22

11vm  2
222

2
2221 )sin()cos( vmvmvm  

or            2221
22

1
2
2

2
2

2
1

2
1 cos2 vvmmvmvmvm  (15.22g) 

We now use Eq. (15.22d) to get an expression of 2v  in terms of v and .2  
Multiplying Eq. (15.22d) by 1m , we get  

 2
221

2
1

2
1

22
1 vmmvmvm  (15.22h) 

Replacing Eq. (15.22h) in Eq.(15.22g) we get 

 2 2 2
2 2 1 2 2 1 2 2 20 2 cosm v m m v m m v v  (15.22i) 

Eq. (15.22i) is a quadratic equation in 2v  of which 2 0v is a trivial solution. 

We disregard that and write only the acceptable solution, which is 

                 (15.23) 

We can determine the value of 1v  from Eq. (15.22f).  

1 2 2 1
2

1 2 2

2 cos 2 cos
where

1
m v v m

v
m m m

 

REMEMBER from 
elementary 
trigonometry that 
 2 2cos sin 1  

sin2 2 sin cos  
and 

2

2

cos 2 2cos 1

1 2 sin

y 

1m
2m

v

v1

2m

1m

v2

x 

  Before collision  After collision 

Fig. 15.11: Elastic collision between two particles in two-dimensions. 

1  

2  

  (a)   (b) 
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                                            To determine ,1  we divide Eq. (15.22f) by Eq. (15.22e) and write 

                1 1 1 2 2 2

1 1 1 1 2 2 2

sin sin
cos cos

m v m v
m v m v m v

1 2 2 2sinm v2

1 1 2 2 2cosm v m v1 1 22m
 (15.24a) 

In order to determine the angles, we multiply the numerator and denominator  
of the right-hand side of Eq. (15.24a) by 22cos .   

Then we get     
2

2
2221

222
1

cos2cos2
2sin

tan
vmvm

vm
 (15.24b) 

From Eq. (15.23), we replace 22121 )(cos2 vmmvm  in the denominator 
of Eq. (15.24b) and get 

            2
2 2 2

1
1 2 2 2 2 2

sin 2
tan

( ) 2 cos
m v

m m v m v
2

1 ( 2
2 2 2 2 2) 2 cos2 2 2 22 2 2) 2) 22 2 222 2 2

    (15.24c) 

or                   (15.25) 

Eq. (15.25) tells us that the relation between 1 and 2 is strongly dependent 
on , that is, the ratio of the mass of the projectile to that of the target particle. 

Let us now apply this result to the problem of collision of billiards balls of equal 
mass.  

 

 

 

 

 

 

 

 

 

 

 

 

 

What would happen if the projectile were much heavier than the target, for 
example, a proton colliding with an electron?  

2
1

2

sin 2
tan

cos 2
 

v 1v

m

m m

2v

m

Fig. 15.12: Elastic 
collision of two particles 
of equal mass in two-
dimensions. Note that 
the particles move at 
right angles to each 
other after collision.  

 
 
A billiards ball of mass m hits another billiards ball of equal mass at rest in 
an elastic collision and moves along a straight line at an angle of 1 from its 
original direction of motion. At what angle with each other do the target ball 
and the projectile move after collision? 

SOLUTION   The KEY IDEA here is to treat the balls as particles and the 
system as a two-particle system. This is a collision in two-dimensions. We 
use the fact that linear momentum and kinetic energy are conserved for 
elastic collisions.  

In this case, 1 2m m  and 1. Therefore, from Eq. (15.25), we get 

   2 2 2
1 2 222 2

sin 2 2sin cos
tan cot tan(90 )

1 cos 2 2sin
 

 1 290   or   1 2 90  

Thus, the billiards balls move perpendicular to each other after the 
elastic collision between them (see Fig. 15.12).  

XAMPLE  15.5: ELASTIC COLLISION OF BILLIARDS BALLS 
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Particle 1 of mass m
 
is initially moving in the positive x-direction with speed  

 

1v (Fig. 15.14). It collides with particle 2 of mass ,3/m  which is initially  
 

moving in the opposite direction with an unknown speed .2v  Assume that the 
net external force acting on the particles is zero and the collision is elastic.  
 

After the collision, particle 1 moves with a speed 2/11 vv  at an angle (  90 ) 
with respect to the positive x-direction. Particle 2 moves with an unknown  
 

speed 2v  at an angle 45  
 
with respect to the positive x-direction as shown in 

the figure. Determine 2v and 2v  in terms of .1v   

In that case  >> 1, i.e., 1 2.m m  Since 2sin2  and 2cos2  lie between       
– 1 and + 1, in this case we have  1tan 0  or 1 0. And as 1 0,  we 
get from Eq. (15.25) that 2 0  also. So when the projectile is much 
heavier than the target then both particles move along the same 
direction as that of the initial direction of the projectile (Fig. 15.13). 

You may now like to stop and absorb this discussion. Try the following SAQ. 

  

 

 

 

 

 

 

  

With this we end our discussion on collision of particles. In the last section of 
this unit, we shall discuss the conservation of angular momentum for                       
two-particle and many-particle systems.  

15.5   ANGULAR MOMENTUM 
So far you have learnt about the linear momentum and mechanical energy of 
two-particle and many-particle systems and studied the respective 
conservation laws. We now determine the angular momentum for such 
systems and deduce the law of conservation of angular momentum. 

15.5.1    Angular Momentum of a Two-particle System 

The total angular momentum of the two-particle system is the vector sum of 
the angular momenta of the particles: 

                             L L L1 2  (15.26) 

Recall the definition of angular momentum you have learnt in Unit 10. The 
angular momentum of each particle is given by 

L r p r v1 1 1 1 1 1m      and     L r p r v2 2 2 2 2 2m        (15.27a) 

Thus,                  L r v r v1 1 1 2 2 2m m  (15.27b) 

Once again we use Eqs. (15.8a and b) to substitute the values of  r1 and r2  

and obtain the expression of the angular momentum of the system in terms of  
the c.m. and relative coordinates: 

           L R r v R r v1 1 1 2 2 2cm cmm m  

1v 2v

3/mm

2v
45

2
1

1
v

v

After Collision 

Before Collision  

Fig. 15.14: Diagram 
for SAQ 3. 

x

x

SAQ  3  –  Elastic collisions in two-dimensions 

1v

Fig. 15.13: Elastic 
collision of two particles 
in two-dimensions when    

.21 mm  Both particles 
move along the same 
direction as that of the 
initial direction of the 
projectile. 

v
2v

1m 2m 1m 2m
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On simplifying we get 

       L R v r v R v r v1 1 1 1 2 2 2 2cm cmm m  

           R v r v R v r v1 1 1 1 1 2 2 2 2 2( ) ( )cm cmm m m m  

or   L R v v r v r v1 1 2 2 1 1 1 2 2 2( ) ( ) ( )cm m m m m      (15.28a) 

From Eq. (15.1e), p v v V1 1 2 2 cmm m M  and Eq. (15.28a) becomes 

               L R V r v r v1 1 1 2 2 2( ) ( )cm cmM m m  (15.28b) 

Note that r r1 2and  are the positions of the particles with respect to the c.m. 

Thus, the last two terms in Eq. (15.28b) are the respective angular momenta of  
the particles about the c.m. of the system. We denote their sum by Lcm : 

                         (15.28c) 

We can also express Lcm  in terms of the reduced mass of the system and the 

relative velocity as follows: 

Substituting r r2
1

m
M

 and r r1
2

m
M

 from Eqs. (15.8a and b) in                          

Eq. (15.28c), we can write 

 L r v r v r v v2 1 1 2
1 1 2 2 1 2( ) ( ) [ ( )]cm

m m m m
m m

M M M
 

or   (15.28d) 

Using Eq. (15.28d), we can write Eq. (15.28b) as follows: 

                                                (15.29) 
   

Thus, the angular momentum of the two-particle system is the sum of the 
angular momentum of the centre of mass and the total angular momenta 
of the particles about the centre of mass of the system. It is also the sum 
of the angular momentum of the c.m. and the angular momentum of a 
fictitious particle of mass  moving with relative velocity v.  

We can extend this result to a system of N particles. We simply state the result 
here without deriving it. 

The total angular momentum of the N-particle system about the origin is the 
vector sum of the angular momenta of the particles about the origin: 

 L r v r v r v1 1 1 2 2 2 N N Nm m m  (15.30a) 

We can write L  as 

L R V L R P Lcm cm cm cm cm cmM  

L r v r v1 1 1 2 2 2( ) ( )cm m m  

L r v( )cm     where   v v v1 2( )    

Angular momentum of 
a 2-particle system 

about the c.m. 

Angular momentum of 
a 2-particle system 

about the c.m. 

Angular momentum of 
a 2-particle system  
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Determine the angular momentum of the two-particle system at the instant 
shown in Fig. 15.15 with respect to the origin and the c.m. of the system.  

SOLUTION  The KEY IDEA here is to use Eqs. (15.27b and 15.28c) for the 
two-particle system.  

The total angular momentum about the origin O is given by Eq. (15.27b). 
From Fig. 15.15, the coordinates (in m) of the 3.0 kg particle (say, particle 1) 
are (0, 2.5) and those of the 2.0 kg particle (particle 2) are (3.5, 0). The 
velocities of these particles are i1 ˆ2.0ms  and j1 ˆ2.0ms , respectively. 
From Eq. (15.27b), the angular momentum of the system about the origin  
O is        

1 1 1ˆ ˆ ˆ ˆ ˆ3.0kg(2.5 ) ( 2.0ms ) 2.0kg(3.5 ) (2.0ms ) 29kgms1 1 1 ˆ1kgmsˆ3.0kg(2.5 ) ( 2.0ms ) 2.0kg(3.5 ) (2.0ms ) 29k1 1ˆ ˆ1 1) 2 0kg(3 5 ) (2 0ms ) 29k1 1L j i i j k  

The total angular momentum about the c.m. is given by Eq. 15.28c. The 
coordinates of the c.m. of the system are given (in m) by  

      j iR i j
ˆ ˆ3.0kg(2.5m ) 2.0kg(3.5m ) ˆ ˆ1.4m 1.5m
5.0kgcm  

The coordinates of the 2 particles with respect to the c.m. are given by  

      r r R j i j i j

r r R i i j i j

1 1

2 2

ˆ ˆ ˆ ˆ ˆ2.5 (1.4m 1.5m ) 1.4m 1.0m and

ˆ ˆ ˆ ˆ ˆ3.5 (1.4m 1.5m ) 2.1m 1.5m

cm

cm

  

Hence, from Eq. (15.28c),  
1 1

1

ˆ ˆ ˆ ˆ ˆ ˆ3.0kg( 1.4m 1.0m ) ( 2.0ms ) 2.0kg(2.1m 1.5m ) (2.0ms )
ˆ14.4kgms

cm
1 1 ˆ10ms )1

1 ˆ

ˆ ˆ3.0kg( 1.4m 1.0m ) ( 2.0ms ) 2.0kg(2.1m 1.5m ) (2.0111 ) 2 0kg(2 1m 1 5m ) (21 0

14.

L i j i i j j

k
 

Alternatively, we could have used Eq. (15.28d) to arrive at this result for .cmL  

  (15.30b) 

where the first term in Eq. (15.30b) is the sum of the angular momenta of 
all the particles of the system about the centre of mass of the system. It 
is given by  

                    (15.30c) 

 

In the last section of this unit, you will learn about the conservation of angular 
momentum. But first, we take up an example to determine the angular 
momentum of a two-particle system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now discuss the conservation of angular momentum for such systems. 

L r v
1

N

cm i i i
i

m  

L L R Pcm cm cm  

Fig. 15.15  

O 
2.0 kg  

3.0 kg  

2.5 m 

3.5 m 

12.0ms

12.0ms

XAMPLE  15.6: DETERMINING ANGULAR MOMENTUM  
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                                            15.5.2    Conservation of Angular Momentum  

Once again we begin by considering a two-particle system and then extend the 
result to an N-particle system. From Eqs. (15.29) and (15.28d), we have 

             L R V r vcm cmM  (15.31) 

To arrive at the law of conservation of angular momentum, we differentiate  
Eq. (15.31) with respect to time and determine the net torque on the system. 
Using the dot notation for derivatives, we have: 

 L R V R V r v r vcm cm cm cm
d M M
dt

     (15.32a) 

Since R Vcm cm  and r v,  the first and third terms in Eq. (15.32a) are  

equal to zero (because the vector product of a vector with itself is zero). Now if  
 

no external force is exerted on the system, the velocity of the c.m. is 

constant and V 0.cm  Therefore, when no external force is exerted on the 
system, the second term in Eq. (15.32a) is also zero and we are left with 

                   L r v r v r vd
dt

d
dt

 (15.32b) 

or                      L r F21
d
dt

 (15.32c) 

where F21 is the force of mutual interaction between the two particles.  

Now suppose that the force of mutual interaction between the two  
particles is central, that is, it is along the same direction as r,  or in the 
opposite direction. Then the definition of vector product gives 

                    r F 021  (15.32d) 

Thus,                L 0d
dt

 (15.33) 

This means that the net torque on the system is zero and the angular 
momentum L of the system is conserved. Thus, we arrive at the law of 
conservation of angular momentum for the two-particle system on which 
the net external force is zero and the mutual force of interaction between 
particles is central. 

 
 
 
 
 
 
 
 

This is also true for a many-particle system. We now end this unit and 
summarise what you have studied in it. 

 
If the net external force on the two-particle system is zero and the 
force of mutual interaction is central, the net torque on the system is 
zero and the angular momentum of the two-particle system is 
conserved: 

                               L constant              (15.34) 

CONSERVATION OF ANGULAR MOMENTUM FOR       
A TWO-PARTICLE SYSTEM 
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15.6  SUMMARY 

 

Concept Description 

Linear momentum of a        
two-particle system 

 

 The total linear momentum of the two-particle system is just the linear 
momentum of its centre of mass: 

Rp V 1 2wherecm
cm

d
M M M m m

dt
       

Conservation of linear 
momentum for a                   
two-particle system 

 

 The total linear momentum of a two-particle system remains constant 
if no external force acts on the system: 

                               p V constantcmM  

Conservation of linear 
momentum for an               
N-particle system 

 

 The total linear momentum of an N-particle system remains constant 
if no external force acts on the system: 

                         P V constant
1

where
N

cm i
i

M M m   

Conservation of 
mechanical energy for a 
two-particle/N-particle 
system 

 If the net force on each particle in a system depends only on its 
distance from the other particle (that is, the force is central 
conservative), the total mechanical energy of the system remains 
constant.         

Collision of particles  A collision is said to have taken place between two or more objects when 
the objects come close enough so that there is some sort of interaction 
between them for a brief time interval. In a collision process, there may or 
may not be any physical contact between the objects. Also there may or 
may not be any external forces being exerted on them. 

Types of collisions 

 

 

 

 

 

 

 

Head-on elastic collisions 
– special cases 

 Collisions are divided into two broad categories:  

1.    Elastic collisions, in which both linear momentum and kinetic energy 
 are conserved,  

                   p pi f       and i fK K    for elastic collisions  

2.    Inelastic collisions, in which conservation of linear momentum holds 
good, but kinetic energy is not conserved. However, the total energy 
is conserved. 

              p pi f       and   Ki  Kf      for inelastic collisions 

 When a particle collides with another particle of equal mass at rest, the 
incident particle comes to a stop, while the target particle starts moving 
with the velocity of the incident particle. 
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15.7  TERMINAL QUESTIONS 

1. In a system of two particles of equal mass, one particle is initially at rest.  
The other particle approaches the particle at rest from the left at speed v. 
The speed of the centre of mass is 

a) 0 
b) 0.5v 
c) v 
d) 0.75v 

2. Consider the same system as in Terminal Question 1. What is the velocity 
of the centre of mass after the two particles undergo an elastic collision? 

a) 0 
b) 0.5v 

 
When a particle collides with another much more massive particle at rest, 
the incident particle is reflected back with the same speed, while the target 
particle hardly moves. 

When a particle collides with another much less massive particle at rest, 
the incident particle keeps moving as if nothing happened, while the target 
particle takes off with twice the velocity of the incident particle 

Angular momentum of a  
two-particle system 

 The angular momentum of the two-particle system can be expressed 
as the sum of the angular momentum of the centre of mass and the total 
angular momenta of the particles about the centre of mass of the system.  

L R P Lcm cm cm

where  L r v r v1 1 1 2 2 2( ) ( )cm m m  

is the angular momentum of the two particles about the c.m. 

Angular momentum of a      
N-particle system  

 The angular momentum of an N-particle system is given by  

                   L r v
1

N

i i i
i

m  

We can express it as the sum of the angular momentum of the c.m. and 
the angular momenta of the particles about the c.m.: 

                    L L R Pcm cm cm   

where     L r v
1

N

cm i i i
i

m  

Conservation of angular 
momentum for a system  
of particles 

 If the net external force on system of particles is zero and the forces 
of mutual interaction between particles are central, the total angular 
momentum of the system is conserved: L constant.  
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c)  0.5v 
d) 0.75v 

3. In a car accident, a car A (mass 1000 kg) is initially at rest. It is hit at the 
back by a car B of mass 1500 kg. From the markings of the tyres on the 
road, the police are able to determine that after their collision, the speeds of 
car A and B are 1ms0.12  and ,ms0.8 1  respectively. Assuming that the 
collision is elastic, the speed of the car B before collision is  

a) 1ms16
 
 

b) 1ms24
 

b) 1ms14  

c) 1ms26  

4. A ball of mass 5.0 kg moving with a speed of 13.5ms  collides with a ball of  
 mass 2.5 kg at rest after which the balls move together. If the collision  
 between the balls is elastic, the kinetic energy of the ball of mass 2.5 kg  
 after collision is  

a) 1.7 J  
b) 3.4J 
c) 8.1 J 
d) 28 J 

5. A box sliding on a smooth floor collides with an identical box initially at rest 
on the floor. After collision, the two boxes move together. Which of the 
following is true about the kinetic energy before and after the collision? 

a) fi KK  

b) fi KK  

c) fi KK  

d) The information given is not enough. 

6 A neutron moving with speed v collides elastically with a helium nucleus (at 
rest initially) and the helium nucleus is observed to move off at an angle  
with the initial direction of motion of the neutron. The mass of the helium 
nucleus is four times that of the neutron. Determine the direction in which 
the neutron moves after collision and the speeds of the two particles.  

7.   Four particles of equal mass are tied to a rigid mass-less rod as shown in 
Fig. 15.16. The rod is attached to a pivot at O. The system is rotated about 
O in a horizontal plane with a constant angular speed. Determine the 
angular momentum of the system of particles in terms of their mass, 
distance between the particles and their angular speed. 

8. A proton makes a head-on collision with an unknown particle at rest. The 
proton rebounds back with 4/9 of its initial kinetic energy. Obtain the ratio 
of the mass of the unknown particle to that of the proton. 

9. An object is launched with a velocity of 120ms  at an angle of 45  with the  
vertical. At the top of its trajectory it breaks into two equal pieces. One  
piece falls vertically downwards. Where does the other piece fall? Take 

210ms .g  

M 

M 

M 

O 

R 

Fig. 15.16 

R 

R 

M 
R 
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10. Two astronauts (each of mass 80 kg) are tied by a light rope so that the 
distance between them is 8.0 m (Fig. 15.17). They are isolated in space 
and orbiting their c.m. at a speed of 15ms .  Treat the astronauts as 
particles and calculate the angular momentum and kinetic energy of the 
system. After a while they pull the rope and move closer to each other so 
that the distance between them is reduced to 4.0 m. What is the new 
angular momentum of the system? What are their new speeds? Does the 
kinetic energy of the system change or remain the same?  

 
 
 
 

 

 
15.8   SOLUTIONS AND ANSWERS 
Self-Assessment Questions 
1. a) From Eqs. (15.1d and e) with  iv andˆms5kg,3kg,2 1

121 mm  

  ,̂ms5 1
2 iv  we get 

  
kg3kg2

ˆ)ms5(kg3ˆms5kg2 11 iiVcm    îms1 1  

 b) Since there is no external force on the system, the linear momentum of 
the system is conserved: 

    ffii mm vv      (i) 

  where fi mm ,  and fi vv ,  are the initial and final masses and 
velocities of the system. Since the block is at rest initially, the linear 
momentum of the bullet equals the initial momentum of the system: 

                       iiim vv kg01.0 (ii) 

  Also since the bullet is lodged in the block, both move with the same 
velocity in the same direction after the impact and the final momentum 
of the system is given by:   

11 mskg002.2ms2.0kg01.10ff vm            (iii) 

  Substituting Eqs. (ii) and (iii) in Eq. (i), we get 

  10.01 kg 2.002 kgmsiv 12.0i
1 2 1200 ms 2.0 10 msiv 1 2 1ms2200 ms 2.0 101 22 0 101 2

2. a) For elastic collision, we use Eqs. (15.19c) and (15.19b) with  
  ,ms0.3 1

1v kg0.51m  and :kg0.82m    

   11
1 ms69.0ms0.3

kg0.8kg0.5
kg0.8kg0.5v  

   and 1
2 ms0.3

kg0.8kg0.5
kg0.52v  1ms3.2  

Fig. 15.17 

8.0 m 



   

153 

Unit 15                                  Conservation Laws for Many-particle Systems 

 b)  We use Eqs. (15.16a and b) with kg,50kg,40 21 mm   

        v i1
1

ˆ6.0ms  and .̂ms5.1 1
1 iv  We need to determine 2v  and 2v  

which are the initial and final velocities of the second cart. Using Eq. (15.16a),  
we get 

  2
1 kg50ms0.6kg40 v  2

1 kg50)ms5.1(kg40 v  

   0.622 vv  (i) 

 From Eq. (15.16b) we get  

 2
2

21 )kg50(
2
1)ms0.6()kg40(

2
1 v                              

2
2

21 )kg50(
2
1)ms5.1()kg40(

2
1 v

     272
2

2
2 vv  (ii) 

 Dividing Eq. (ii) by (i) we get   5.422 vv   (iii) 

 From (i) and (iii): iv ˆms75.0 1
2 and 2

1 1ˆ ˆ5.25ms 5.3ms1 1ˆ13ms5.25ms 5.31 5 31
2 5v i i

3. The initial and final velocities of particle 2 are 2v  and 2v . Since there is no  
 external force in the system, its linear momentum is conserved. So, the  
  

 initial and final momenta of the system are, respectively,  

  iip ˆ
3

ˆ 21 vmmvi  î
3

2
1

mvmv  

  1
2 2

ˆ ˆ ˆ( cos 45 sin 45 )
2 3f
v mm v v1

2
ˆ ˆ ˆ( cos 45 sin 45 )22 3

v mm 1 ( 22 2
ˆcos 45 sin2 2cos 452p j i j   

                 ji ˆ
223

ˆ
23

122 mvvmvm  

 Since ,fi pp  we equate the components of the momentum along the x 
and y directions, to get 

   
233
22

1
vmmvmv     and    0

223
12 mvvm  (i) 

 Solving for 2v  and 2v  from (i), we get, 12 2
23 vv  and 12 2

3 vv  

Terminal Questions 

1. The correct option is (b). The momentum of the system is equal to the 
momentum of the c.m. m be the mass of each particle and v be along 
the positive x-direction. Using Eq. (15.1e) we can write, 

0vV mmmm cm)( v
m

mvVcm 5.0
2

2. The correct option is (b). Since there is no external force in the system, the 
total linear momentum remains constant and hence from Eq. (15.2), the 
velocity of the c.m. of the system is the same as it was before the collision, 
which is 0.5v. 

From the second equation 
in (i), we have: 

      2 1
3 2

2
v v  

Substituting this value in 
the first equation in (i), we 
get 

1
2

1 2
23

.
233

v
mmv

mv    

12 2
3

vv  
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3. The correct option is (a). Let the motion of the cars be in the positive x 
direction. We use Eq. (15.16a) for the conservation of linear momentum for 
an elastic collision in one direction with   kg,1500kg,1000 21 mm  

1
1 10, 12.0msv v  and .ms0.8 1

2v  We obtain ,2v the velocity of the 

car B before the collision, from Eq. (15.16a): 

     2kg15000kg1000 v 11 ms0.8kg1500ms0.12kg1000                             

or  1
2 ms16v  

4. The correct option is (d). We use Eq. (15.19b) with kg5.2kg,0.51 2mm  
1

1 23.5ms , 0v v1
2 023 5ms3 5ms 111

 The velocity 2v  of the ball of mass 2.5 kg after the collision is then 

 2
12 5.0kg 3.5ms

(5.0kg 2.5kg)
v 15 02 5.0kg 3.5

(5 0kg 2 5kg)
5.0

2 2.52 5
 14.7ms 14.7  and the kinetic energy of the 

ball after collision is 1 21 (2.5kg) (4.7ms )
2

K 1 2)11 (2.5kg) (4.
2

 27.6J 28J27.6J 28  

5. The correct option is (b). Let the mass of each box be m. Let the initial 
velocity of the box before collision be ,̂iv  and the velocity of the two boxes 
after collision be .v  Then, from conservation of linear momentum, we have 

  vi )2()0(ˆ mmvm      iv ˆ
2
v  

The initial kinetic energy 22
2
10

2
1 mvmvKi and the final kinetic 

energy 
42

)2(
2
1 22 mvvmKf Therefore, fi KK  

6. We use Eq. (15.23) with 221 ,4, mmmm  and .
4
1

2

1
m
m  In 

Eq. (15.23), 2v  is the velocity of the helium nucleus after collision. Let 1 
be the angle that the neutron makes with the direction of motion after the 
collision. Thus,    

                      cos4.0cos
5
2

4
11

cos
4
12

2 vv
v

v   

 From Eq. (15.22d)  2
2

1

222
1 v

m
mvv    22 )cos4.0(4 vv   

       2
12

1 )cos64.01(vv  

 From Eq. (15.25):  
2cos

4
1

2sintan 1   
2cos

4
1

2sintan 1
1  

7. Since the particles are executing circular motion about O, the angular 
momentum of each particle is given by 2 ,mr  where m is the mass of the 
particle, r its distance from O and  its angular speed. Therefore, the total 
angular momentum of the four-particle system is 

            2 2 2 2 2(2 ) (3 ) (4 ) 30L mR m R m R m R mRmR 2 2 2 2(2 ) (3 ) (4 ) 302 2 22 2 2m R m R m R mR2 2 22 2 2(2 ) (3 ) (4 ) 30) (3 ) (42 2 22 2 22 2  
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8. Let the motion of the proton (of mass m) be along the positive x-axis. Let 
m  be the mass of the unknown particle. Suppose the initial velocity of the 
proton is î1v  and the final velocities of the proton and the unknown 
particle are î1v  and ,̂2 iv  respectively. For elastic collision, both linear 
momentum and kinetic energy are conserved. Therefore, we have 

           ii0i ˆˆˆ 211 vmvmmmv    (i) 

 and    2
2

2
1

2
1 2

1
2
1

2
1 vmvmmv     (ii) 

 It is given that  
9
4

2
1 2

1vm 2
12

1 mv 11 3
2 vv (iii) 

Substituting Eq. (iii) in Eq. (i), we get 

   iii ˆ
3
5ˆ)(ˆ 1112 vmvvmvm      12 3

5 vmvm (iv) 

  Using Eq. (iv), we get 

m

mv

m
vmvm

2

12
22

2
3
5

2
1)(

2
1

2
1

m
vmvm

2
1

2
2

2 18
25

2
1 (v) 

Substituting Eqs. (v) and (iii) in (ii), we get 

)(
18
25

3
2

2
1

2
1 2

1

2

1
2
1 vm

m
mvmmv

)(
18
25

18
4

2
1 2

1
2
1

2
1 vm

m
mvmmv

18
5

18
25

m
m mm 5

9. See Fig. 15.18. The highest point on the trajectory occurs when the object is 

a distance 
2
R  from the point of launch, where R is the range of the object 

given by 

                   

2 2
0 0sin2 2sin cosv v

R
g g  

 

 
 
 
 
 
 

 

 

The velocity of the object when it breaks into two parts is only along the 
horizontal direction since, by definition, the object has no vertical velocity at 
the highest point. Now let 2m be the mass of the object before it breaks up.  

0v

R 
x 

Fig. 15.18: Not to scale
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The system is made of two parts: Part 1 (of mass m) that falls vertically  
downwards and part 2 of mass m. Let 2v  be the velocity of part 2 in the  
horizontal direction. Since no forces are acting along the horizontal 
direction, linear momentum is conserved along the horizontal direction: 

 ix fxp p   or    0 2 2 0( ) cos 0 2 cosm m v m mv v v  

Thus part 2 has a new horizontal velocity which is twice the horizontal 
velocity of the original object. But there is no change in its vertical velocity 
since it is falling under the force of gravity. Normally, the whole object would 

have traveled a horizontal distance of 
2
R  from the midpoint. Since part 2 

takes the same amount of time to fall to the ground from the highest point 
as the object but travels at twice the horizontal velocity of the object, it will 
travel twice as far horizontally from the midpoint as the object. Therefore, 
the horizontal distance part 2 travels from the initial position of the object is  

2 1 2
0

2
3 sin cos3 3 (20 ms ) sin45 cos 452

2 2 2 10 ms
60m

vR R R
g  

10. Refer to Fig. 15.17. We treat the system as a two-particle system. The 
angular momenta of the particles are parallel (perpendicular to the plane of 
the paper and pointing towards us) and equal in magnitude. Since the 
particles are executing circular motion, the magnitude of the initial total 
angular momentum of the system is given by 

   mvrmvrmvrLLL 221  

 where  1ms0.5kg,80 vm    and   8.0 m 4.0m
2

r 8 0 4.08.08.0 m
22

m
2

m  

  1231 smkg102.3m)0.4()ms0(5.kg)80(2L  

 The initial total K.E. of the system is the sum of the K.E. of the individual 
particles.  

 J100.2)ms(5kg)80(
2
12.E.K 3212mv  

The astronauts move close to each other due to equal and opposite internal 
forces that act along the line joining them. This means that the mutual force 
is central. And there is no external force. Hence, the angular momentum of 
the system remains conserved, i.e. its magnitude  is 123 smkg102.3  and 
direction is the same as before. 

Let V and R be the new speed and radius, respectively. Then from 
conservation of angular momentum, we have, 

  123 smkg102.32mVR   where kg80m  and m0.2
2

m0.4R  

   1
123

ms10
m)0.2(kg)80(2
smkg102.3V

The new total .J100.8)ms10(kg)80(
2
12.E.K 3212mV

So the new K.E. is greater. 
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Symbol  Quantity Value 

c Speed of light in vacuum 8 13.00 10 ms  

0 Permeability of free 
space 

6 21.26 10 NA  

0 Permittivity of free space 12 2 1 28.85 10 C N m

1/4 0  9 2 28.99 10 Nm C   

e  Charge of the proton 191.60 10 C  

 e Charge of the electron 191.60 10 C  

h Planck’s constant 346.63 10 Js  

 h / 2  341.05 10 Js  

me Electron rest mass 319.11 10 kg  

 e/me Electron charge to mass 
ratio 

11 11.76 10 Ckg  

mp Proton rest mass 271.67 10 kg  (1 amu) 

mn Neutron rest  mass 271.68 10 kg  

a0 Bohr radius 115.29 10 m  

NA Avogadro constant 23 16.02 10 mol  

R Universal gas constant 1 18.31 Jmol K   

kB Boltzmann constant 23 11.38 10 J K  

G Universal gravitational 
constant 

11 2 26.67 10 Nm kg  

TABLE OF PHYSICAL CONSTANTS 

Astrophysical Data 

Celestial 
Body 

Mass (kg) Mean radius 
(m) 

Mean distance from the 
centre of Earth (m) 

Sun 301.99 10   86.96 10  111.50 10  

Moon 227.35 10210  61.74 10  83.84 10810  

Earth 245.97 10210  66.37 10  0 
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Vector Algebra: Geometrical and algebraic representation of vectors, Vector algebra; Scalar 
and vector products; Derivatives of a vector with respect to a scalar. 

First Order Ordinary Differential Equations: First order homogeneous differential equations 
(separable and linear first order differential equations). 

Second Order Ordinary Differential Equations: 2nd order homogeneous differential 
equations with constant coefficients. 

Laws of Motion: Frames of reference; Newton’s Laws of motion; Straight line motion; Motion 
in a plane; Uniform circular motion; 3-d motion. 

Applications of Newton’s Laws of Motion: Friction; Tension; Gravitation; Spring-mass 
system – Hooke’s law; Satellite in circular orbit and applications; Geosynchronous orbits; Basic 
idea of global positioning system (GPS); Weight and Weightlessness. 

Linear Momentum and Impulse: Conservation of momentum; Impulse; impulse-momentum 
Theorem; Motion of rockets. 

Work and Energy: Work and energy; Conservation of energy; Head-on and 2-d collisions. 

Kinematics of Angular Motion: Kinematics of angular motion: Angular displacement, angular 
velocity and angular acceleration; General angular motion. 

Dynamics of Rotational Motion: Torque; Rotational inertia; Kinetic energy of rotation; 
Angular momentum; Conservation of angular momentum and its applications. 

Motion under Central Force: Motion of a particle in a central force field (motion in a plane, 
conservation of angular momentum, constancy of areal velocity; Kepler’s Laws (statement 
only). 

Dynamics of Many Particle Systems: Dynamics of a system of particles; Centre of Mass, 
determination of the centre of mass of discrete mass distributions, centre of mass of a rigid 
body (qualitative). 

Conservation Laws: Linear momentum, angular momentum and energy conservation for 
many-particle systems. 

Simple Harmonic Motion: Simple Harmonic Motion; Differential equation of SHM and its 
solutions; Kinetic Energy, Potential Energy, and Total Energy of SHM and their time averages. 

Superposition of Harmonic Oscillations: Linearity and Superposition Principle; 
Superposition of Collinear Oscillations having equal frequencies and having different 
frequencies (beats); Superposition of Orthogonal Oscillations with equal and unequal 
frequency; Lissajous Figures and their uses. 

Damped Oscillations: Equation of Motion of Damped Oscillations and its solution (without 
derivation); Qualitative description of the solution for Heavy, Critical and Weak Damping; 
Characterising Damped Oscillations – Logarithmic Decrement, Relaxation Time and Quality 
Factor. 

Wave Motion: Qualitative Description (Wave formation and Propagation; Describing Wave 
Motion, Frequency, Wavelength and Velocity of Wave; Mathematical Description of Wave 
Motion).

SYLLABUS: MECHANICS (BPHCT-131)                                   4 Credits  


