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BLOCK 4: HARMONIC OSCILLATIONS

In this block, you will study the oscillatory behaviour of an isolated system and wave motion.
The discussion of oscillatory motion is mainly confined to mechanical oscillators. But, the
mathematical techniques developed through these discussions apply equally well to other
types of physical systems such as electrical systems. Further, we have adopted the
familiar approach of going from easy to difficult in so far as mathematical treatment and
conceptual difficulty level of the topics is concerned. Therefore, we have first considered the
oscillations of an ideal isolated mechanical oscillator and then taken up the analysis of
superposition of two oscillations and damped oscillations. In the end, we have discussed
the formation and propagation of waves.

In Unit 16, you will study the oscillations of an idealised spring-mass system to appreciate
the basic characteristics of the simplest kind of oscillatory motion called simple harmonic
motion (SHM). You will also learn how the mathematical techniques developed for SHM
can be used to determine the energy associated with oscillatory systems.

In Unit 17, you will study the superposition principle and learn how this principle can be
used to analyse the motion of an object on which two or more harmonic oscillations act
simultaneously. You will discover that when the superposing oscillations are orthogonal to
each other, the object traces very interesting paths known as Lissajous figures.

As you know, any motion — linear or oscillatory — in the real world is always resisted,
generally by frictional forces. For example, the oscillations of a swing, left to itself, gradually
die out due to air drag. So, to appreciate the behaviour of a real oscillator, you must know
how a drag force affects its oscillatory motion. This is the subject matter of Unit 18
wherein we have not only analysed the effect of damping on the motion of an oscillator but
have also defined and obtained mathematical expressions for some parameters which are
used to characterise the extent of damping in an oscillatory system.

In Unit 19, we discuss wave motion. What is a wave? For most of us, the first image which
comes to mind when we think of waves is the wave moving across the surface of ocean,
lake or pond. However, in science, wave is a generic term which refers to propagation of
‘disturbance’ created by something oscillating or vibrating. In case of water waves, the
disturbance caused in the still water surface (say, by dropping a piece of stone) propagates
as wave. Similarly, we hear each other because our vocal cord creates disturbance in the
surrounding air and the disturbance propagates as sound waves. And, the electromagnetic



waves are the variations or ‘disturbance’ in the electric and magnetic fields in the area
surrounding an antenna in which electrons execute oscillatory motion. The phenomena of
oscillations and waves are related and they have many common characteristics such as
amplitude, frequency and phase. The formation and propagation of waves is the subject
matter of Unit 19. You will learn how to represent waves graphically as well as

mathematically. You will also study about the phase of waves and phase difference between
them.

We hope that you enjoy studying oscillatory motion, and wish you success.



This is a picture of Foucault's pendulum
kept at the National Museum of Science and
Technology in Milan, Italy. Foucault's
pendulum, named after the French physicist
Léon Foucault, is a simple pendulum which
demonstrates the rotation of the Earth.
(Source of picture: commons.wikimedia.org)
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In this unit, you will learn how to describe simple harmonic motion. For better understanding of the
subject matter of this unit, you need to refresh some basic concepts of mechanics, differential calculus
and differential equations from your school physics and mathematics courses. In particular, you should
revise the concept of derivatives in calculus before studying this unit. You know that knowledge of the
force being exerted on an object is essential to describe its motion. You should focus on the nature of the
force responsible for oscillatory motion. The equation of motion of a simple harmonic oscillator is a
second order linear ordinary differential equation and you have learnt how to solve it in Unit 4 of this
course. Depending on the complexity of the oscillatory system, different mathematical techniques are
used to solve differential equations describing its motion. However, we would like you to focus more on
the physical inferences and conclusions we can derive on the basis of the solutions of these equations of

motion.

“It doesn't matter how beautiful your theory is, it doesn't matter how
smart you are. If it doesn't agree with experiments, it's wrong.”

Richard

P. Feynman
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Harmonic Oscillations

16.1 INTRODUCTION

In your school physics course, you have learnt about rectilinear motion, motion
in a plane and periodic motion. You are also familiar with the motion of falling
bodies, planets and satellites. A body dropped from rest falls freely (under the
action of gravity) along a straight line. Food packet dropped from an aeroplane
or a cricket ball thrown by the fielder at the stumps follows a curved path. The
motion of the planets and satellites are periodic in nature.

You may have observed the motion of the pendulum of a wall clock, a swing
and a vibrating string of a musical instrument such as a violin, a sitar or a
guitar. These are examples of oscillatory motion. In Block 2 of this course, you
have learnt how to analyse rectilinear motion as well as motion in a plane
using the laws of mechanics. We can also analyse and understand the salient
features of oscillatory motion using the laws of mechanics. Further, the
study of oscillatory motion is necessary to understand wave phenomenon
because waves are generated when energy is exchanged among a large
number of interconnected oscillating systems.

In this unit, we have discussed simple harmonic motion (SHM) — the
simplest kind of oscillatory motion. The study of SHM is very useful
because (i) oscillatory motion of a variety of mechanical systems is indeed
SHM for small displacements from the equilibrium position and (ii) it enables
us to analyse even complex oscillatory motion in terms of SHM. Further, the
oscillatory motion of different types of physical systems can be
visualised as SHM under certain approximations.

In Sec. 16.2, we begin by discussing the physics of the oscillatory motion of a
spring-mass system and obtain conditions under which it can be characterised
as SHM. In Sec. 16.3 you will learn how to establish the equation of motion of
a spring-mass system and solve it to obtain a relation between instantaneous
displacement and time. You will also learn how to use this relation to obtain
instantaneous velocity, acceleration and phase of an oscillator. The energy
associated with the oscillatory motion of a spring-mass system executing SHM
is discussed in Sec. 16.4.

Expected Learning Outcomes
After studying this unit, you should be able to:

< state the basic criteria for the motion of a system to be called simple
harmonic motion;

< establish the equation of motion for a simple harmonic oscillator;
» define the terms amplitude, time period and phase of an oscillator;
% derive expressions for velocity and acceleration of an oscillator; and

< obtain expressions for potential energy, kinetic energy and total energy

of a body executing SHM.



16.2 SIMPLE HARMONIC MOTION: BASIC
CHARACTERISTICS

You know that periodic motion is very common in our everyday life. For
example, the hands of a clock come back to a particular position after the
passage of a fixed time. Similarly, the beating of our heart, our breathing, the
motion of the Earth around the Sun, the motion of the Moon around the Earth
etc., are familiar examples of periodic motion. When a body in periodic
motion moves to-and-fro (or back and forth) about a fixed position, the

motion is said to be vibratory or oscillatory. So, we can say that the motion

of the hands of a clock is periodic but not oscillatory.

Like periodic motion, oscillatory motion is also a common phenomenon. Well
known examples of oscillatory motion are oscillating bob of a pendulum clock,
swing, piston of an engine, motion of piston in a shock absorber, vibrating
strings of a musical instrument, atoms in a solid, etc. Even large buildings and

bridges may execute oscillatory motion. Fig. 16.1 shows some typical systems

in which oscillatory motion takes place.
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Fig. 16.1: A few typical systems in which oscillatory motion takes place:
a) bob of a pendulum clock; b) atoms in a solid (bound to each other
through inter-atomic forces represented here by imaginary springs);
c) a shock absorber.

Left to itself, oscillatory motion dies down gradually due to resistance by the
medium air, liquid, etc.. Further, the oscillatory motion around us is generally
quite complex. The simplest kind of oscillatory motion is SHM. A system
executing SHM is called simple harmonic oscillator. We believe that you
know a lot about oscillatory motion from your +2 classes. However, for the
sake of completeness, we discuss a simple oscillator system called spring-
mass system.

16.2.1 Oscillations of a Spring-Mass System

Refer to Fig. 16.2a. It shows a spring-mass system which consists of a spring
of negligible mass, whose one end is fixed to a rigid support S and the other
end has a block of mass m attached to it. (The mass of a spring is said to be
negligible if it is much less than the mass of the block attached to it.) We
assume that the system lies flat on a horizontal frictionless surface.

We choose a coordinate system whose x-axis is along the length of the spring
to analyse the motion of this system. When the block is at rest, we mark a

Simple Harmonic Motion

If a spring is stretched
within its elastic limit,
Hooke’s law holds. It
implies that the
restoring force will be
linearly proportional to
the extension of
spring. In other words,
Hooke’s law is valid
only if the extension of
the spring is ‘small’ so
that the stretching
does not cross the
elastic limit of the
spring. Eq. (16.1) will
not be valid for large
displacements. In fact,
F will then be a rather
complex function of x.




To appreciate the fact
that an equal force will
produce larger extension
in a longer spring than in
a shorter one, let us
assume that a spring has
been cut into two
unequal pieces such that
the shorter one has 10
coils (or turns) and the
longer one has 20 caoils.
Suppose the piece
having 10 coils is
stretched by 20 cm. For
this extension, each coil
must be stretched by 2
cm. Further, suppose
that the longer piece of
the spring having 20
coils is also stretched by
20 cm. In this case, each
coil will be stretched only
by 1 cm. The force
required to stretch a coil
by 2 cm will be larger
than the force required to
stretch it by one cm.
Thus, to produce the
same extension, we
need to apply greater
force on the shorter
spring. Conversely, if
equal force is applied on
two similar springs of
unequal lengths, they will
be stretched or
compressed unequally.
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point O on it and define the origin of the coordinate system by this point. That
is, at equilibrium, O lies at x = 0 as shown in Fig. 16.2a.

. Block of
Spring &~ mass, m
@]
¥ 5 (@
| X-axis
x=0
S m
i (b)
v
Fx—’ X-axis »
x=0
S m
. (c)
r c
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Fig. 16.2: A spring-mass system as an ideal oscillator: a) equilibrium
configuration; b) extended configuration; c) compressed
configuration.

We now pull the mass longitudinally (along the positive x-axis), so that the
spring is stretched through a distance x, (Fig. 16.2b) and then release it. What

will you observe? The spring-mass system moves back and forth about the
equilibrium position(x = 0). That is, the system executes oscillatory motion.

To understand the nature of oscillations, we note that due to elasticity, a
restoring force, say F is generated in the spring which tends to bring
the mass back to the equilibrium position. When the spring is stretched
(Fig. 16.2b), the restoring force tends to compress the spring but when the
spring is compressed (Fig. 16.2c), the restoring force tends to extend the
spring. (The more you stretch/compress the spring, the greater is the restoring
force.) That is, the direction of restoring force is always opposite to the
displacement of the block.

To determine the magnitude of the restoring force, we recall that for
small extension, Hooke's law holds (see the margin remark on page 9). Then
magnitude of the restoring force (F) will be linearly proportional to the
extension, x of the spring and we can write:

F=—kx (16.1)
The negative sign in Eq. (16.1) signifies that the restoring force opposes
displacement of the mass attached to the spring. Note that the magnitude of
the restoring force is a function of displacement, x, and is, therefore, variable.
The quantity k is called the spring constant or force constant of the spring.

The spring constant is a measure of the stiffness of the spring. For a given
value of x, a stiffer spring will exert larger restoring force on the mass. The



value of the spring constant depends on the physical properties such as
density and bulk modulus of elasticity of the material the spring is made up of.
However, if a spring is cut into pieces of unequal lengths and equal force is
applied on each one of them, the longer spring will be stretched/compressed
more than the shorter one (see the margin remark on page 10). The spring
constant is numerically equal to the magnitude of restoring force exerted by
the spring for unit extension. Its Sl unit is Nm~".

For simplicity, here we confine our discussion only to such oscillations for

which Eq. (16.1) is valid. This is known as small oscillation approximation.
The magnitude of acceleration, a, produced in mass, m due to the restoring
force can be obtained using Newton’s second law of motion:

F =ma,
On combining the above equation with Eq. (16.1), we can write

— kx = ma,

or % =~ %] x
c=—|—
m

Eq. (16.2) shows that acceleration of the mass attached to the spring is
(i) directly proportional to its displacement (because (k/m)is a constant), and

(16.2)

(i) directed opposite to the displacement (as indicated by the negative sign on
RHS). When the oscillatory motion of a body is characterised by these two
features, we say that the body is executing simple harmonic motion. We may,
therefore, conclude as follows:

Simple Harmonic Motion

NOTE

Newton’s second law of
motion is written in the
vector form as:

F=ma,
where force, F and
acceleration, a,are

vector quantities. Since
the motion of the spring-
mass system is one-
dimensional, we have
written Newton’s second
law in the scalar form.

Any oscillatory motion which has the following two characteristics is said to
be simple harmonic motion:

e The acceleration of a body is directly proportional to its displacement
from the equilibrium position.

e The acceleration is always directed opposite to the displacement, i.e.
towards the equilibrium position.

At this stage, you may ask: Why does the spring-mass system oscillate?
To know the answer to this question, we note that when we pull the mass of
the spring-mass system from its equilibrium position, the spring is stretched.
The restoring force in the spring tries to bring back the mass to its equilibrium
position. In this process, the mass acquires kinetic energy. Due to this kinetic
energy, the mass comes back to the equilibrium position and continues its
motion. That is, the mass overshoots the equilibrium position; it happens
because of inertia (of motion). Once the mass overshoots and moves to the
other side of the equilibrium position, the spring is compressed and the
restoring force again comes into play but, in the opposite direction. This
process repeats in time. Thus, we may conclude as follows:

The oscillatory motion of a spring-mass system arises due to two intrinsic
properties of the system: elasticity (of the spring) and inertia (of motion) of
the mass.

Don't forget

11
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You should now answer the following SAQ to get a feel of the numerical
values of different quantities associated with the SHM.

SﬁQ 1 - Spring-constant and its determination

a) Suppose that a spring is cut into two pieces A and B. The length of A is
one-third and that of B is two-thirds of the length of the original spring.
One end of A as well as B is fixed in a rigid wall.

i) If equal force is applied to the free ends of A and B separately, will
their extensions be equal?

ii) If not, which spring will stretch more?
iii) Which spring has a higher value of spring constant?
b) Suppose that the spring in Fig.16.2a is stretched by 5 cm when a force of

2 N is applied. Calculate the spring constant. If a force of 2.5 N is applied
on this spring, determine the compression of the spring.

We have, so far, considered the oscillatory motion of a horizontally aligned
spring-mass system and discovered that it executes SHM when it undergoes
small displacement. You may now like to know: Will the motion of the
spring-mass system be different when we suspend it vertically from a
rigid support? What forces will act on the system in this configuration?
We shall discuss it now.

Vertically aligned spring-mass system

Refer to Fig. 16.3, which shows a spring-mass system suspended vertically
from a rigid support S. Unlike the earlier case of horizontally aligned spring-
mass system, here we also need to take into account the force of gravity on
the mass. (We ignore the mass of the spring in comparison with the
suspended mass.) Note that two forces — the restoring force due to spring
and the force due to gravity — act on the mass simultaneously.

You may now ask: What will the nature of its oscillations be?

To analyse the motion of the vertically suspended spring-mass system, let us
choose the x-axis to be along the length of the spring. We take the bottom of
the spring as our reference point, x =0, when no mass is attached to it

(Fig.16.3a).

When mass m is suspended from the spring, it stretches to the point, say
X = Xp, and the system comes to rest. That is, the reference point shifts to

x = Xxg (Fig. 16.3b). You will agree that in this situation, the weight, mg of

mass m balances the restoring force kxq acting in the upward direction and
we can write:

mg —kxg =0
or mg = kxg (16.3)



x=0 ===

X=X,
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Fig. 16.3: A vertically hanging spring-mass system: a) spring with no mass
suspended from it; b) spring in equilibrium when mass m has been
attached to it; c) spring-mass system displaced from its equilibrium
position.

Now, we pull the mass further downwards so that the spring stretches to
x = x4 (Fig.16.3c) and then release it. We observe that the system starts

oscillating about the point x = x3. You may ask: How do we explain this

motion? We note that, at the instant we release the mass, the total restoring
force acting on the mass is kx4 and it points in the upward direction. It means

that the total downward force acting on the mass is also equal to kx4. But, the
total downward force includes the externally applied force and the force due to
gravity. Thus, the net downward force, F’ acting on mass m at that instant is

F’' = kxq — mg
Using Eq. (16.3), we can write
F,=kX1 —kXO = k(X1 - Xo):kX

where x = x4 — xg . Recall that F’is equal to the force that the spring exerts on

the mass after it is released and the force exerted by the spring is directed
upward. Therefore, we can write the restoring force as

F=- kx

Note that the net restoring force on the mass executing vertical oscillations
has the same form as Eq. (16.1). Therefore, we can say that the oscillatory
motion of a vertically suspended spring-mass system is simple
harmonic and the force due to gravity does not affect its nature of
oscillations. The effect of gravity is that it shifts the equilibrium position.

Eq. (16.1) gives the force law obeyed by the spring-mass system. We now
use Newton’s second law of motion to establish the equation of motion of a
simple harmonic oscillator and address questions like: How does the motion of
a simple harmonic oscillator evolve with time? What is the velocity and

Simple Harmonic Motion
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NOTE

Velocity v is defined as
the rate of change of
displacement x with
time. Mathematically, we
can write

v =dx/dt
Similarly, acceleration is
defined as rate of change
of velocity with time.
Thus, we can write:

. W d(

Note that displacement,
velocity and acceleration
are vector quantities and
they have been
represented by their
respective symbols in
bold face and with arrows
above their symbols to
distinguish them from
scalar quantities such as
time, t. Since we are
dealing with one-
dimensional motion of the
oscillator, we can confine
to the magnitude of
various vector quantities.
Thus, we can write:

v =dx /dt
and ap = d?x/dt?

_d%

Don't forget
14
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acceleration of the oscillator at any given instant of time or at a given point in
space? How much time does the oscillator take to complete one oscillation?

16.3 THE DIFFERENTIAL EQUATION OF SHM

We reconsider the motion of an ideal spring-mass system and refer again to
Fig. 16.2b. Suppose that, at instant £, the displacement of mass m from its
equilibrium position is x. The restoring force F, acting on the mass, is given by
Eq. (16.1). Hence, the acceleration, a, experienced by the mass in one
dimensional motion is given by Newton’s second law of motion:

F =ma,
On combining this result with Eq. (16.1), we can write

ma, = —kx (16.4a)

Since for one-dimensional motion,

o _dv_d(dd)_d*x
€ dt dtldt) g2

we can write Eq. (16.4a) as
d?x

X _kx
dt?

(16.4b)

2
u+£x:0

or
dt2  m

(16.4c)
Eq. (16.4c) is the equation of motion of a simple harmonic oscillator. Note that
the unit of (k/m)is Nm™" kg_1 = (kg ms"z) (m"1 kg_1) = s72. It means that

we can replace (k/m) by 03%, where ® is angular frequency and has the
unit s~! and dimension T_1, where T is time.

You may now ask: What is the physical significance of wg? Can we relate a
physical quantity having the dimensions of reciprocal of time with SHM?

In terms of g, we can write Eq. (16.4c) as

d?x 2
=403

dt? x=0

(16.5)

where g = vk/m . Eq. (16.5) is yet another form of the equation of motion of
an oscillator executing SHM. Note that Eq. (16.5) is a linear, second order
homogeneous ordinary differential equation and describes simple harmonic
motion in one dimension. It is important to mention here that we have
arrived at Eq. (16.5) for a spring-mass system, but it describes SHM in
general. This result is reproduced below:

The differential equation describing the SHM of mass m attached to a
2
X o

72 x=0.

spring of force constant k is




You have learnt how to solve Eq. (16.5) in Unit 4 of this course. You may
recall Eq. (4.4b) and see that the general solution of Eq. (16.5) is given as

x(t) = Cysinwgt + Co cos mt (16.6a)

where Cq and C, are arbitrary constants. You have learnt in Unit 4 that with
an appropriate choice of the constants C; and Cs, the general solution can be
recast in any one of the following forms:

x(t) = asin(wot + ) (16.6b)
x(t) = acos(wot + ) (16.6c)
x(t) = asin(wpt — 0) (16.6d)
x(t) = acos (gt — 0) (16.6e)

where a, 0y and ¢ are constants. Before studying further, you should
convince yourself, by solving the following SAQ, that the above solutions
satisfy the ordinary differential equation [Eq. (16.5)], which describes the
oscillatory motion of a spring-mass system.

SﬂQ 2 - Solutions of the equation of motion for SHM

Show that the solutions given by Egs. (16.6b, c, d, e) satisfy Eq. (16.5).

From Egs. (16.6b to e), you may note that the variation of displacement with
time is given by a sine or cosine function. Therefore, SHM is said to be
sinusoidal motion. We will examine their physical significance soon. Note
further that

e we can consider any one of these solutions [Eq. (16.6b), Eq. (16.6c),
Eq. (16.6d) or Eq. (16.6€)] in our discussion;

e the solution of the equation of motion of a spring-mass system gives
displacement of the oscillating mass as a function of time ; and

e the solution enables us to determine physical parameters such as velocity,
acceleration, energy, etc. of the mass executing SHM and also helps us to
know the physical significance of the parameter m, appearing in
Eq. (16.5). You will learn about it later in this unit.

The plots between displacement of the oscillator from its equilibrium position
and time, based on Egs. (16.6b) and (16.6c), are shown in Figs. 16.4a and
16.4b, respectively. For simplicity, we have taken ¢ =0 while plotting these
graphs. Note that the qualitative features of variation of x with t in both the
graphs are similar.

From Fig. 16.4a, we note that at t =0, x =0, i.e., the oscillating mass is at the
equilibrium position denoted by point A on the graph. As time elapses, the
displacement increases and attains maximum positive value, equal to a. This
is denoted by point B on the graph.

Simple Harmonic Motion
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Fig. 16.4: The variation of displacement with time of a body executing SHM
according to a) Eq. (16.6b); b) Eq. (16.6c).

With further passage of time, the displacement of the mass begins to
decrease, becomes zero (point C), increases in the opposite direction, attains
maximum (point D) and again becomes zero corresponding to (point E) the
equilibrium position. Beyond E, the variation in displacement repeats itself.
You will agree that the actual motion of the oscillating mass is truly
represented by the graph in Fig. 16.4a. The nature of displacement-time
graph in Fig. 16.4b is similar to that of Fig. 16.4a except for the fact that, in
this case, at t =0, the mass is at maximum displacement in the positive

Xx-direction.

Let us now discover the physical meaning of the parameters a, wgand ¢. The
constant a is called the amplitude of motion; it is the maximum value that the
displacement (x) of an oscillator can attain. Since the sine (or cosine)
functions can have values only between +1 and -1, the motion takes place
entirely between the limits +a and — a (Refer to Fig. 16.4). To understand the
physical meaning of wg and ¢, we need to learn the meaning of phase of an
oscillator. For this, we need to determine the velocity and acceleration of an
oscillator. Let us do it now.

16.3.1 Velocity and Acceleration of an Oscillator

You may recall from your school physics that instantaneous velocity v is the
first derivative of displacement x with time. Therefore, using Eq. (16.6b) we
can write the instantaneous velocity of the oscillating mass as

v:%zamo cos (Wgt + ) (16.7a)

Note that the product awg will be the maximum velocity of the oscillating
mass because cos (0t + ¢) can have maximum value of +1. We can also
express velocity of the oscillator in terms of its displacement. We square both

sides of Eq. (16.7a) and get

vZ = w% a? cos? (0ot + )

= wda® (1-sin? (0ot + 9)) = 03 (a2 — x?)
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v =0y y(@% - x?) (16.7b)

Further, as sin [g+ 6) = cos B, we can rewrite Eq. (16.7a) as

vV =awg sin{g+(w0t+¢)} (16.7¢c)
Note that the arguments of the sine functions for displacement and velocity
differ by (n/2).

Since acceleration a, is the time rate of change of velocity, from Eq. (16.7a),
we can write

a, :%:—aw%sin(moﬁq)) (16.8a)
= awgsin[m+ (wpt + §)] (16.8b)

because sin(m+ 0) = — sin6. Note that au)g is the maximum value of
acceleration. On combining Egs. (16.8a) and (16.6b), we get

a; = — Wgx (16.9)

Therefore, we note that, if x(t) is known, the velocity and acceleration can be
calculated easily. Before proceeding further, let us recapitulate the important
results obtained in this sub-section.

o The velocity and acceleration of a harmonic oscillator are given in - ED
terms of the displacement as

V= mm/(az —x2)

and ac = w%x

e The maximum values of velocity and acceleration of a harmonic S
oscillator are awy and aw%, respectively.

16.3.2 Phase of an Oscillator

You now know that an oscillator executes to and fro motion about its
equilibrium position and passes through the equilibrium position again and
again. Now, refer to Fig. 16.5. Suppose x = 0 denotes the equilibrium Pl
position of the spring-mass system when mass m is hanging freely. If the
mass m is pulled downwards and then released, it starts oscillating vertically.
While oscillating, the mass passes through the point Q, say while moving from Qt
x =0 to x = a (maximum displacement) and again while coming back from
x =a to x =0.Note that, at these two instants, when the mass is at point Q, X=ta I
the value of displacement is same but the direction of motion of the oscillating
mass is different: it is moving down, away from the equilibrium position, while x-axis v
going from x = 0 to x =a and it is moving up, towards the equilibrium
position, while going from x =a to x = 0. This means that its velocities (at Q)
at these two instances are different (because velocity is a vector quantity). We
then say that the states of motion of mass m are different at these two

Fig. 16.5: A vertically
oscillating spring-mass
system.

17
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instants. The state of motion of an oscillator is specified by its
displacement and velocity.

If the oscillating mass passes through point Q at times t1 and f> while moving
down from x =0 to x =a, its displacement as well as velocity are the same.
Then, we say that the oscillator is in the same state of motion. If the
state of motion of an oscillator is identical at any two instants, it is said
to be in the same phase at those instants.

So, we specify the state of motion at a point, say Q, by saying that the phase
of the oscillator is the same at those instants when it passes through Q while
going from x =0 to x =a orfrom x =a to x = 0. The same holds true for all
other points between x=a and x = - a, such as point P.

In other words, we can say that when an oscillator is in the same phase at two
different times, its displacements and velocities are the same at these
instants. The time interval between two consecutive instants at which the
phase of an oscillator is the same defines the time period of oscillation.
Thus, if we denote the time period of an oscillator by T, we can write

x(t)=x(t+T) (16.10)
Note that Eq. (16.10) defines the periodicity condition for displacement: for
an oscillating mass, displacement at time t is the same as its displacement at
time (t + T). Using this definition of the time period, we can say that the

periodicity condition must also hold for the instantaneous velocity of the
oscillator:

V(t)=v(t+T) (16.11)

These two periodicity conditions (Egs. (16.10) and (16.11)) help us
understand the physical meaning of the constant w,. Using Eq. (16.10),

we can rewrite Eq. (16.6b) as
asin(wpt + ¢) = asin(wgt + O + Wy T)
If we put 6 = wgt + ¢, we can write
sin 6 =sin(0+ wgT) (16.12a)
Similarly, using Eq. (16.11) in Eq. (16.7a), we can write
amq cos (Wpt + 0) = awg cos (Wot + O + WgT)
In terms of 6, we can rewrite this equation as

cos 0 = cos (0 +mgT) (16.12b)

Note that Egs. (16.10) and (16.11) or Egs. (16.12a) and (16.12b) must hold
simultaneously. Can you say why? It is because we are considering the two
states of motion of the oscillator separated in time by the time period T. Now,
can you use your knowledge of basic trigopnometry to tell as to when the two

periodicity conditions will hold simultaneously? We know that periodicity of
sine and cosine functions is 2m , i.e. sin (2w+6)=sin® and

cos (21+0) = cos6 . Therefore, if we assume that

2T+60 =0+ wgT (16.13)

then the two periodicity conditions will hold simultaneously.
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Further, it readily follows from Eq. (16.13) that

mozz—;tsz (16.14)

where f =(1/T)is the frequency of the oscillator. The frequency of the
oscillator is defined as the number of complete oscillations it makes in
one second. Eq. (16.14) gives us w in terms of the time period (or

frequency) of the oscillator. mg is called the angular frequency of the
oscillator.

Let us pause for a moment and reflect on what we have achieved so far.

Recall that using the concept of phase, we have been able to unfold the
physical meaning of mg. Further, an important aspect of our discussion about
the phase of an oscillator is that we have obtained a common condition

[Eqg. (16.13)] for periodicity.

Note that the factor (wyt + ¢) appears as the argument of the sine and cosine

functions specifying displacement and velocity. This factor also plays a vital
role in relating T and wg. So, it is taken as the measure of phase. Thus,

Phase of an oscillator executing SHM = gt + ¢ (16.15)

where ¢ is called the initial phase or the phase constant. It is also known as
the epoch of SHM.

Before proceeding further, let us recapitulate the definitions of the physical
parameters characterising SHM.

o Displacement gives the instantaneous position of an oscillator with
reference to its equilibrium position.

e Amplitude of oscillation is the maximum value of displacement on
either side of the equilibrium position.

e Phase of an oscillator specifies its state of motion at a given instant.

e Time period is the interval of time between two consecutive instants
at which phase of the oscillator is the same.

e Frequency of an oscillator is equal to the number of complete
oscillations it makes in one second.

Now, to understand the graphical representation of the expressions for
displacement, velocity and acceleration of an oscillator, refer to Fig. 16.6. It
shows the variation of displacement, velocity and acceleration of an oscillator
with time based on Egs. (16.6b), (16.7a) and (16.8a), respectively. For
simplicity, we have taken initial phase, ¢ of the oscillator to be zero.

Let us compare the time variations of displacement and velocity. You will note
that v attains maximum and minimum values before x by a quarter of a period
(i.e., T/4). Since one-fourth of a period corresponds to a phase change of
/2 rad or 90°, we say that velocity leads displacement by /2. This is also
evident from the comparison of Egs. (16.7c) and (16.6b).

Similarly, by comparing the time variations of displacement and velocity with
that of acceleration, you will conclude that acceleration leads 19
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displacement by © and velocity by 7/2. This is also evident from the
comparison of Eq. (16.8b) with Egs. (16.6b) and (16.7c), respectively.
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Fig. 16.6: Time variation of a) displacement; b) velocity; c) acceleration of a
harmonic oscillator.

Before proceeding further, we work out a few examples to give you a feel for
the numerical values of the parameters associated with SHM.

EM.‘M:‘PLE 16.1: PHASE OF AN OSCILLATOR

The block of mass m shown in Fig. 16.1 executes SHM with amplitude a.
The time is measured from the instant when itis at (i) x = a, (ii) x =—a, and

(i) x = al+2. Calculate its initial phase ¢, if its displacement is given by
x = a sin (0ot + 0)
SOLUTION m (i) If time is measured from the instant x = a, we say that
x =a when t =0. So, the expression for displacement reduces to
a=asind = sing =1 = 0=m/2
(i)  Inthis case, we have x = —a when t =0. So, the expression for
displacement simplifies to:

—-a=asind = sinp=-1 = 0=31n/2

(iii) In this case, x = a when t =0. So, the expression for displacement

V2

a . . 1 T
—— =asin = sinp=— = =—
0 0= ="

72 72

takes the form:




fMMLE 16.2 : AMPLITUDE, TIME PERIOD AND
DISPLACEMENT OF AN OSCILLATOR

The displacement of an object executing SHM is given by:

x =0.01cos 4xn (t + 0.0625) m

Determine (i) amplitude of the oscillatory motion, (ii) time period of
oscillation, (iii) maximum velocity, (iv) maximum acceleration, and (v) initial
displacement of the object.

SOLUTION B The standard expression for the displacement of an
oscillator executing SHM is given by Eq. (16.6b):

X = asin (0gt + 0)

On comparing this expression with the expression for displacement given
in the problem, we obtain

i) Amplitude, a = 0.01 m; Angular frequency, g = 47

ii) The time period of oscillation is defined as T = 21t/ wy. So, on
substituting the value of wg (= 47), we get

Time period, T =2—Tc =2—7t =0.5s
Wy 4m

iii) From Eq. (16.7a), we recall that
Maximum velocity = wpa = (41s™1)x(0.01m) = 0.13ms ™"
iv) From Eq. (16.8a), we recall that
Maximum acceleration = (1)(2) a= (471:)2 s x (0.01m)=1.6 ms ™2

v) The initial displacement, xq is obtained by putting t =0 in the given
expression. So, we have

Xo =(0.01m) xcos (41 x0.0625)

001X m=7.1%x10"3m

2

EMMLE 16.3 : AMPLITUDE AND TIME PERIOD OF AN
OSCILLATOR

The velocities of an object executing SHM are 10 cms™! and 24 cms™

when its displacements are 12 cm and 5 cm, respectively. Calculate the
amplitude and time period of oscillations.

SOLUTION B The displacement of the object executing SHM is given by
Eq. (16.6b). If we take the initial phase ¢ to be zero, we can write

x(t) = a sinmgyt

Simple Harmonic Motion
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Thus, instantaneous velocity of the body is given by

V= x_ Wpa cosmpt
p 0 0
so that v? = (0(2) a? cos? Wpt = (0(2) a? (1 —sin® wpt) = (1)(2) (32 - x2) (i)

Now, suppose the velocities of the object are v4 and v, at displacements
xq and x,, respectively. Then from Eq. (i), we can write the following two

equations:
2 2,2 2 .
vi =g (@ — x7) (ii)
2 2 .2

~x3) (i)

Substituting the value of (1)(2) from Eq. (ii) in Eq. (iii), we can write

and v5 =] (a

2.2 2
2 _vq (@ -x3)

"4 =
2 2 2
(a _X1)

2.2 2 ,2 _ 2.2 2,2
or vza —V2 x1_v1a _V1X2

On collecting the terms containing a?, we can write

2,2 2y _ 2.2 2.2
a®(vy —vy) = V5 X5 — vy X5
2,2 2.2
VS XS —vix
so that g2 =-2"1 172 (iv)
2 2
Vo = Vs

As per the problem, we have v4 =10 cms™! and vo =24 cms™ at

x4 =12 cmand x, =5 cm, respectively. Therefore, on substituting these
values in Eq. (iv), we get

42 _(24cm s M2 (12 cm)? = (10 ecms™)? (5 cm)?

=169 cm?
(24 cms™)? = (10 cms™1)?

so that a=13 cm.

On substituting this value of a in Eq. (ii) along with the values of v4 and xy,

we get

2 V12 3 (10 cms_1)2 _ 452

0~ 2 2\ 2 2 =4S
(@ -x7) (13cm)"-(12cm)

()]

The time period of SHM is given by Eq. (16.14)

T=2" _rs=314s
Vo)

So, we note that the amplitude of SHM is 13 cm and its time period is
3.14 s.

To check your understanding of the basic concepts associated with SHM, you
should answer the following SAQs.




SﬂQ 3 - Parameters associated with SHM

a) Show that the frequency of oscillation of a spring-mass system can be

expressed as

o
27

kim

b) The oscillation of a simple harmonic oscillator is described by the
equation

x(t) =0.4 sin(0.1t + 0.5)

where x and t are expressed in metre and second, respectively.
Determine the amplitude, time period and frequency of oscillation,
maximum velocity, maximum acceleration and initial displacement of the
oscillator.

Now that you have learnt how to establish the equation of motion describing
SHM and obtained expressions for velocity and acceleration of an oscillator,
you should be ready for further analysis. One of the important quantities
associated with SHM is energy. You will learn about it now.

16.4 ENERGY IN SHM

A mechanical system executing SHM possesses potential energy as well as
kinetic energy. For qualitative understanding of the origin of these energies
associated with SHM, refer to Fig. 16.7, which shows a spring-mass system.
Let us first obtain the expression for potential energy of the spring-mass
system. You will agree that as the mass oscillates, the spring is stretched and
compressed alternately. At every instant during oscillation, except when the
mass is at the equilibrium position (x =0), the spring exerts a restoring force
on the mass. Due to this force, energy is stored in the spring as elastic
potential energy (P.E.) of the spring.

—
X-axis

Fig. 16.7: The spring-mass system at the instant when the mass is displaced
by a distance x from its equilibrium position.

To obtain an expression for the P.E. of the spring-mass system, suppose that
the mass is displaced by a distance x from its equilibrium position (Fig. 16.7).

From your school physics, you may recall that the work done by the spring on
the mass m in moving it by a distance x is given by

X
W=dex
0

Simple Harmonic Motion

NOTE

The mathematical
analysis of SHM does
not change whether we
use Eq. (16.6b), (16.6¢),
(16.6d) or (16.6€) for the
displacement of the
oscillator. To show the
equivalence of these
equations, we have used
cosine representation for
displacement in

Sec. 16.4. You can
convince yourself that
the final result is the
same, irrespective of the
sine or cosine
representation for
displacement of the
oscillator.
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Note that the equality
between the change in
P.E. and the negative of
work done is valid only
for a conservative force.
Hooke’s law for an ideal
spring is an example of
one-dimensional
conservative force.
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For the system under consideration, the force exerted by the spring stretched
by a distance x is
F=—kx

So, we can write

W = J(=kx)dx = - [(1/2)kx2]g — — (1/2)kx?
0

Now, the change in the elastic potential energy (of the spring) is equal to the
negative of the work done by the spring on the mass. If (P.E.); and (P.E.)f

are, respectively, the initial and final potential energies of the spring as it is
stretched from equilibrium (x = 0) to x, we can write the change in potential

energy, A (P.E.) of the spring as
(P.E); — (PE.); = —(-1/2) kx? = (1/2) kx?
If we take (P.E.); =0 when x =0, and (P.E.)s = (P.E.), we can write
P.E. = (1/2)kx? (16.16)

Now you may ask: Does potential energy of the spring change with time?
To check this, we substitute the expression for displacement, x from
Eq. (16.6¢) in Eq. (16.16). This gives

P.E. = (1/2) ka® cos? (wgt + 0) (16.17)

Eq. (16.17) shows that the P.E. of the spring-mass system exhibits
sinusoidal behaviour in time. For ¢ =0, the initial potential energy (f =0) is

(1/2) ka’.

To obtain the expression for the kinetic energy of a spring-mass system, we
consider the configuration when the mass is released from its displaced
position at x. We know that due to the restoring force of the spring, it will move
towards the equilibrium position. You may ask: As the mass moves towards
the equilibrium position, what happens to x and hence the P.E. stored in the
spring? The decrease in the magnitude of x suggests that the P.E. decreases.

You may again ask: What happens to the lost P.E.? The P.E. changes into
kinetic energy of the mass.

To understand this, we note that at the instant mass is released, it is at rest
which implies that its velocity and hence its kinetic energy (K.E.) is zero. As it
moves towards the equilibrium position, its velocity increases gradually. That
is, its K.E. increases. Therefore, we can say that once the mass is released,
the P.E. of the spring gradually transforms to K.E. of the mass. If there is no
loss of energy due to friction, this transformation will be cent-per-cent.

Further, recall that the kinetic energy of mass, m moving with speed v is given
by: KE.=(1/2) mv?. You may also recall that for the spring-mass system
under consideration, the displacement of the mass can be represented by

Eq. (16.6c). Therefore, the velocity, v (= dx/dt) of the mass can be written as

v =—agsin (0pt + ¢)



Using this result in the expression for K.E., the instantaneous kinetic energy,
K.E. of the spring-mass system can be written as

KE.=(1/2)mw3 a?sin® (oot + )
K.E. = (1/2)ka? sin® (0ot + 0) (16.18)
since K :00(2) m. Note thatfor =0 and t =0, K.E. is(1/2)ka?.

Using Eq. (16.18), we can also express K.E. in terms of displacement, x by
writing
K.E.=(1/2)ka’ [1 —cos? (wpt + )]

since cos2 0 +sin2@=1. On simplification, we can rewrite it as
K.E.=(1/2)ka® — (1/2)ka® cos? (gt + §) = (1/2)ka® — (1/2)kx?
KE.=(1/2) k (a%>-x?) (16.19)

Eq. (16.19) shows that the K.E. of an oscillator

e is maximum when it passes through the equilibrium position x =0; and
e the maximum value of K.E. is equal to (1/2)kaz.

From your school physics you may recall that the total mechanical energy of a
system is the sum of its potential energy and kinetic energy. Hence, by
combining Egs. (16.17) and (16.18), we obtain the total mechanical energy, E
of the oscillator at any instant t:
E=P.E.+K.E.
= (1/2) ka? cos? (wpt + O) + (1/2) ka® sin? (wgt + 0)

= (1/2)ka® (16.20)

Eq. (16.20) shows that total energy of the spring-mass system

e does not change with time; and
e is proportional to the square of amplitude.

The analysis of the oscillatory motion of the spring-mass system leads us to
conclude that: the potential energy as well as the kinetic energy of an
oscillator varies with time but its total energy remains constant.

To understand the transformation of potential energy into kinetic energy and
vice-versa, study Fig. 16.8. Fig. 16.8a depicts the situation when the spring is
stretched and the displacement of the mass is maximum: x =a. From

Egs. (16.16) and (16.19), we note that the energy of the system in this
configuration is entirely potential and stored in the spring and kinetic energy of
the mass is zero. This is shown by the associated bar diagram for P.E. and
K.E. Note that the height of P.E. bar is maximum whereas that of the K.E. bar
is zero.

As the mass is released from x = a, the P.E. stored in the spring begins to
decrease (because P.E. o< x2) and is transferred to the mass, which acquires

K.E.

Simple Harmonic Motion

Don't forget
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Fig. 16.8: Energy transformation in spring-mass system at various instants
during one oscillation. The bar diagrams indicating the values of
potential and kinetic energies are shown at intervals of t = T /8.

So, at the instant when the mass is between x =a and x =0, as shown in

Fig. 16.8b, part of the P.E. of the spring has been transferred to the K.E. of
the mass. That is, energy of the system is partly potential and partly kinetic.
This is shown as shortened P.E. bar and finite K.E. bar in Fig. 16.8b. As the
mass reaches the equilibrium position (x = 0), entire energy of the system
becomes kinetic and its potential energy drops down to zero in accordance
with Eq. (16.16). This is illustrated in Fig. 16.8c. The corresponding energy
bars indicate P.E. as zero and K.E. as maximum. At this stage, due to inertia,
the mass, which has acquired kinetic energy, moves beyond x =0 in the
opposite direction and begins to compress the spring. As a result, its kinetic
energy begins to decrease and transforms into potential energy of the spring.
As the mass reaches maximum displacement (x =— a) in the opposite
direction, its K.E. becomes zero and P.E. of the spring becomes maximum
again. This is depicted in Fig. 16.8e. This transformation between P.E. and
K.E. continues interchangeably. Therefore, we may conclude that as the
mass oscillates, energy in the spring-mass system alternates between
potential and kinetic forms, keeping the total energy constant.

The graphs of P.E. and K.E. as a function of displacement, x and based on
Egs. (16.16) and (16.19), respectively, are shown in Fig. 16.9. You may note
that:

e the shape of P.E. curve as well as K.E. curve is parabolic;
e the graphs are symmetric about the origin; and

e the P.E. versus x and K.E. versus x graphs are inverted with respect to
one another.

Note that the total energy, E is represented by the horizontal line AA” in
Fig.16.9. At any value of x, the total energy is the sum of kinetic and potential
energies and is equal to (1/2) ka".
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Fig. 16.9: Graphs of potential energy (P.E.), kinetic energy (K.E.) and total
energy (E) versus displacement x based on Egs. (16.16), (16.19) and
(16.20), respectively.

The points A and A” where this horizontal line touches the P.E. curve define
the turning points.

At the turning points,

e velocity of the mass is zero and its acceleration is maximum [Eq. (16.9)].

e displacement of the oscillating mass about the equilibrium position is
maximum, (i.e., x = £a).

o the total energy of the oscillator is entirely potential, i.e., K.E is zero.

So far, we have discussed energy of SHM and transformation of P.E. into K.E.
and vice-versa by referring to a spring-mass system as our model simple
harmonic oscillator. However, this result is valid in general for any
mechanical system executing SHM. Let us now work out an example to use
these results for calculating the energy of a simple harmonic oscillator.

EX}UV[TLZI 16.4 : ENERGY OF A HARMONIC OSCILLATOR

An object of mass 0.5 kg is executing simple harmonic motion. Its
amplitude is 10 cm and its period is 0.1 s. Calculate the potential energy
and the kinetic energy of the object (a) when it is 5 cm from the equilibrium
position, and (b) atinstants t =T/ 8 and T/ 2. Assume that the initial phase
of the oscillations is zero.

SOLUTION ®m As per the problem, we have
m=05kg; a=10cm=0.1m; and T =0.1s

a) The potential energy of the particle executing SHM is given in terms of
displacement x by Eq. (16.16):

P.E. = (1/2) kx? (i)
We have to calculate P.E. when displacement x = 0.05 m. Further, for
calculating k, we use the relation

g =k/m = k=wdm (ii)

Simple Harmonic Motion
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b)

We know that
_2n _ 2m

W =28 = 2 ii
o7 T To1s ()
Using this result in Eq. (ii), we get
2
k=2 | x(05kg) (iv)
0.1s

On substituting the value of k from Eq. (iv) in Eq. (i) and putting
x =0.05 m, we get

21

PE.=(1/2) (m

2
] x (0.5 kg) x (0.05 m)? = 2.47J

The kinetic energy of the particle executing SHM is given by
Eq. (16.19):
KE.=(1/2) k(a® -x?)

On substituting the values of k, a, and x, we get

27

2
j x (0.5 kg) [(0.1m)? — (0.05 m)?] = 7.41J

The potential energy of a particle executing SHM is given by
Eq. (16.17):

P.E. = (1/2) ka® cos? (wot + )

Since the initial phase is zero, we have ¢ =0 and the expression for
instantaneous P.E. simplifies to

P.E. = (1/2) ka? cos? wpt
For t =T /8, we have

PE. = (1/2)ka? cos? [ 2E x L
T 8

21
0.1s

The instantaneous kinetic energy is given by Eq. (16.18):

2
=(1/2)>{ ] x (0.5 kg)x(0.1m)? x cos? GJ =242

K-E-=(1/2)ka? sin? (gt + 0)
For ¢ =0, we have K.E.=(1/2)ka? sin® (wqt)
Substituting the value of k, a, wg and t(=T/8), we get

2
K.E. =(1/2)><[OZT”J % (0.5 kg)x(0.1m)2 xsin? gj -242
1S

Similarly, the P.E. and K.E. at the instant ¢t =T /2 are

P.E.=(1/2)ka? cos? (%x%}:(wz)kaz cos? ()

27
0.1s

2
=(1/2)><( j x (0.5 kg)x(0.1m)?> x1=4.39x1072 J




and K.E.=(1/2)ka? sin® (ZTnngz(HZ)kaz sin? ()

— (1/2)x 2"
0.1s

2
] x (0.5 kg)? x(0.1m)?x0 =0

Note that P.E. and K.E. of the oscillator are equal at t =T /8 and K.E. is

zero at t =T /2.You should compare these values with the physical

situations of a spring-mass system depicted in Fig. 16.8. You will note that
t =T /8 corresponds to configuration depicted in Fig. 16.8band t =T/2

corresponds to the one depicted in Fig. 16.8e.

Before proceeding further, you may like to work out following SAQ.

SAQ 4 - Energy of a harmonic oscillator

a) For what value of displacement the K.E. and P.E. of a simple harmonic
oscillator become equal?

b) In a spring-mass system, a 0.55 kg mass is attached to a spring of force

constant 25 Nm~". The mass is released from rest at x = 40 mm.
Calculate the P.E. and K.E. of the system at (i) x =20 mm and
(i) t =T /4. Take the initial phase to be zero.

c) Showthatthe P.E.and K.E. repeatin T/2.

16.4.1 Average Energy Associated with SHM

Refer to Fig. 16.6 again. You will note that in each case, the area under the
curve for the first half cycle is exactly equal to the area under the curve in the
second half cycle. But these are on opposite sides of the horizontal axis. It
means that over one complete cycle of oscillation, the algebraic sum of these
areas will be zero. So we can say that the average values of displacement,
velocity and acceleration over one complete cycle are zero.

However, the situation in case of P.E. and K E. of the oscillator is somewhat
different. Refer to Fig. 16.9 and note that the curves representing variation of
P.E. and K.E lie in the upper-half only. So, the total area under either curve is
positive for one complete cycle. This means that unlike displacement, velocity
and acceleration, we can talk about average values of kinetic and potential
energies. You will now learn how to obtain expressions for these quantities.

The time average of kinetic energy over one complete cycle is defined as

;
j (K.E.)dt
0

<K.E.>=
-

On substituting for K.E. from Eq. (16.18), we get

-
ka? . 2
<KE.>= ?J.O sin“ (wg t + ¢)dt

Simple Harmonic Motion

NOTE

The positive values of
P.E. and K.E. over one
complete cycle are due
to the fact that P.E. is
proportional to square of
displacement and K.E.
is proportional to square
of velocity.
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To solve the integral
T 2

I'=[sin” (ot + ¢)dt
0

we assume that ¢ = 0.

Then we can write
T 2

1= [sin” (wyt)dt
0

Recall the trigonometric

relation
1-cos260

2
Using this in the
expression for /, we get

. I[w} o
0 2

T1 T 2(wnt
=j'—dl‘—[ L((DO) dt
02 o 2

T o1 [1. T
=———x|—sin2(wyt)
2 2 |2 o

T 1 1| . 2n
=——-—X—|sin2| —xT
2 2 2 T

—sin2(0)]

sin2 0=

=T/2

| Recap |
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The value of the integral in the expression for average kinetic energy is T/ 2
(read the margin remark). So the expression for average kinetic energy of a
body executing SHM reduces to

ka2

<KE.>=" (16.21)

You can follow similar steps for P.E. and convince yourself that the average
value of the potential energy over one complete cycle for a body executing
SHM is

ka2

<PE.>=="- (16.22)

Egs. (16.21) and (16.22) show that, over one complete cycle of oscillation, the
average kinetic energy of a harmonic oscillator is equal to its average potential
energy. The sum of average kinetic and average potential energies is:

<K.E.>+<P.E.>=(1/4)ka® + (1] 4)ka’ = (1/2)ka® = E, total energy.

This result shows that the sum of the average K.E. and average P.E. of a
harmonic oscillator is equal to its total mechanical energy [Eq. (16.20)].

Before proceeding further, let us recall the important results of this section:

P.E. AND K.E. OF AN OSCILLATOR

e The potential energy (P.E.) and the kinetic energy (K.E.) of an
oscillator vary with time but total energy remains constant.

e The P.E., K.E. and total energy, E of an oscillator are given by

PE. = ‘kx?
2
KE. = 1(a? - x2)
2
E=a?
2

e The average P.E. and average K.E. of an oscillator are equal:
1, 2
<P.E.>:Zka =<KE.>

e The sum of average P.E. and average K.E. is equal to total energy of
an oscillator:

<KE.>+<PE. >= ka2 + ka?='ka? = E
4 4 2

Now, you should solve an SAQ.
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SﬁQ 5 - Average energy of a simple harmonic oscillator

The amplitude of oscillation of a simple harmonic oscillator is 40 cm. Show
that its instantaneous kinetic energy is more than its average kinetic energy
when the displacement is 20 cm.

Let us now summarise what you have learnt in this unit.

16.5 SUMMARY

Concept Description
Simple harmonic B An oscillatory motion is said to be simple harmonic when acceleration is
motion

Equation of motion H

Solution [ |
Velocity u
Phase n
Time period u

Potential and kinetic B
energy

(i) proportional to the displacement and (ii) along a direction opposite to the
displacement.

The equation of motion or the differential equation describing SHM is
given by
2
d_2x + (x)g x=0
dt

The solution of the differential equation describing SHM is given by

asin (gt + 0)
acos(wgt + )
asin(wpt - 0)
acos (gt - 0)

x(t)=

The velocity and acceleration of a body executing SHM is given by
V= u)O\/a2 - x? and a. =-— a)%x

The phase of an oscillator refers to its state of motion. If the state of motion
(that is, the value of its displacement and velocity) of an oscillator is identical
at any two instants, the oscillator is said to be in the same phase at those
instants.

The time period and frequency of oscillation of a body executing SHM are
respectively given by the relations

_2n
V)

and f—%zl

T =
n T

A simple harmonic oscillator possesses potential energy and kinetic
energy. The expressions for P.E. and K.E. are

P.E. = %kx2 = %ka2 cos? (ot +0)

KE.= 1k(a2 - x2) = 1ka2 sin? (0ot + )
2 2 31



Total energy

Time averaged
kinetic energy and
potential energy

Harmonic Oscillations

B The total energy of a simple harmonic oscillator is given by

E=PE. +KE. = %kaz

B The time averaged kinetic energy and potential energy of a simple

. . , . 1
harmonic oscillator are same and its value is equal to Zkaz.

16.6 TERMINAL QUESTIONS

1.

32

An object executes SHM with amplitude, angular frequency and initial

phase equal to 65 mm, 4.0 s and zero, respectively. Write expressions

for displacement, velocity and acceleration of the object. Also, determine
the values of these parameters at t =1.5 s.

In Fig. 16.10, three combinations of two springs of force constants k; and
ko are given. Calculate the period of oscillation in each case.

ki ki
ka
k,
m k2
m

(a) (b) (c)

Fig. 16.10: Three different combinations of spring-mass system.

An object undergoes SHM with frequency f = 0.45 Hz. The initial
displacement is 0.025 m and the initial velocity is 1.5 ms~. Calculate the
amplitude, maximum velocity and maximum acceleration of the object.

For a horizontally placed simple harmonic oscillator, the mass, amplitude
of oscillation, frequency and initial phase are 0.5 kg, 5 cm, 60 oscillations
per minute and (1/3) rad, respectively. Write the expression for
displacement of the oscillator at instant t. Also calculate the force constant
and mechanical energy of the oscillator.

Determine the amplitude and time period of a harmonic oscillator if at
distances x1 and x> from the equilibrium position, its velocities are vq and
Vo, respectively.

A spring-mass system executing SHM has m=0.5 kg, k =25 Nm~" and
its total energy is 25 mJ. Calculate (a) the amplitude of oscillation, (b) the
maximum velocity of the mass, (c) the velocity of the mass when
displacement is 15 mm and (d) the distance of the mass from the

equilibrium position when its velocity is 0.2 ms ™.

A rubber pad acts as an elastic spring. When a mass of 100 g is placed, it
is compressed by 1 cm. Then the mass is gently tapped downwards. It
begins to oscillate. Calculate the frequency of oscillation.
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16.7 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. a) i) As per the problem, we know that springs A and B are the parts of
the same original spring and spring A has smaller number of turns
than B. It is so because the length of spring A is one-third of the
original spring. Therefore, if equal force is applied on the free ends
of A and B, their extensions will not be equal.

ii) Spring B will stretch more because its length (or number of turns) is
larger than the length of spring A.

iii) From Eq. (16.1), we note that the spring (or force) constant k is
inversely proportional to extension x. Therefore, same force will
produce smaller extension in spring A as compared to spring B.
Thus, spring A will have greater value of spring constant.

b) From Eq. (16.1), we can write the spring (or force) constant as

Force 20N

- = =40 Nm™"
Displacement 50x1072m

Let the compression of spring be x'when a force of magnitude 2.5 N is
applied. So, from Eq. (16.1), we have
; Force 25N

e I =227 -6.3x1072m
Spring constant 40 Nm™

d?x
2. The differential equation for SHM is given by Eq. (16.5): X4 (Dg x=0
at?

Let us first take the solution given by Eq. (16.6b): x(t) = asin (wgt + ¢)

Differentiating it twice with respect to t, we get

2
C;—);:(x)oacos (ot +0) and Z—;:—wgasin (ot +0) = — 0 x
t
2
So, d ;(+ng 0
dt

Thus, Eq. (16.6b) satisfies Eq. (16.5). The solution given by Eq. (16.6¢) is
x(t)= acos (wpt + )

2
30,%=—w033in((00t+¢> and d—zz—wgacos (ot +0) == — 0F x
dt
2
So, d’x — +oogx 0
dt
Eq. (16.6d) is x(t)= asin (ot — 0)
2
So,d—xzmoacos((x)ot—q)) and d—xz—oogasin (ot —0)== - w3 x
dt dt?
2
So, d“x — +00(2)x 0
dt

Eq. (16.6e)is x(t)= acos (wpt — ) 33
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So,

3. a)

b)

b)

ax d?x 2 2

PG asin(wpt —9) and 2 = Wpacos (ot - ) == — F x
t
2
d_x+ mg x=0
at?
From Eq. (16.14), we recall that frequency f = g /2m. But, we have

defined the angular frequency wg [see Eq. (16.5)] as

wo=+vkim = f=/2n)Vkim

As per the problem, the displacement of a simple harmonic oscillator is
given by
x(t) = 0.4 sin (0.1¢+0.5)
On comparing this equation with the standard equation of SHM
x(t) = a sin (0t +0)
we can write
i)  Amplitude of oscillation a=0.4 m

i) Time period T=2%-—2" _6238

0 0.1s”
1

1 -1
i) Frequency f=—= =0.01
) q y T 628s S

iv) Maximum velocity = mga = (0.1 3_1) x (0.4 m)=0.04 ms™

v) Maximum acceleration = LO% a =(0.1 3"1)2><(0.4 m) = 0.004 ms 2

vi) Initial displacement, xq is the displacement at t = 0. So, on
substituting t = 0 in the given equation for x(t), we get
x(t=0)=0.4sin(0.5)=0.2m

Let the K.E. and P.E. of a simple harmonic oscillator be equal when its
displacement is x. Then the expressions for P.E. and K.E. given by
Egs. (16.16) and (16.19), can be written as

P.E. = (1/2) kx? (i)
and KE.=(1/2) k (a° - x?) (ii)
Since P.E. and K.E. are equal, from Egs. (i) and (ii), we have
2 2 2 a
a~ - x"=x = X=1—
V2

As per the problem, m = 0.55 kg, k =25 Nm~!

Since mass is released from rest at x = 40 mm, the amplitude of
oscillation, a = 40 mm = 0.04 m

i)  We need to determine P.E. and K.E. when the mass is at
x =20 mm =0.02 m. From Eq. (16.16), we have

P.E.= (1/2)kx?® =(1/2)x(25 Nm~ ") x (0.02 m)? =5x1073J
For K.E., we note from Eq. (16.19) that K.E.=(1/2)k (a2 —x2)
K.E.=(1/2) x (25 Nm~ ") x [(0.04 m)? —(0.02 m)?] =1.5x 1072 J



i) We need to determine P.E. and K.E. at t=T /4 when initial phase,

= 0. From Eq. A7), we have P.E.= a“ cos” (m,
From Eq. (16.1 have P.E.=(1/2)ka? cos? (wyt

P.E. =(1/2)x(25 Nm~1)x(0.04 m) xcosz(zTn Zj 0
since cos (1/2)=0. From Eq. (16.18), we have
K.E.= (1/2)ka? sin® (wgt)
—(1/2)x(25 Nm~1)x(0.04 m)2xsin (2: D 2x1072
c) From Egs. (16.17) and (16.18), we note that P.E. and K.E. changes
sinusoidally. Since the time period of the oscillator is (27/0g), we have

to show that the time period of P.E. will be (7/2) or (n/®y ). Thus, using
Eq. (16.17), we can write P.E. at t = (t + (1/mg)) as

PE. =(t=t+mwy)
= (1/2) ke'co [y (t + (mlg)) + ]

=(1/2) ka? cos? (wt + )
= P.E.(1)

Similarly, you can prove that the time period of K.E. is (1t/®g).

5. The K.E. of a simple harmonic oscillator is given by Eq. (16.19):

K.E.=(1/2)k(a*-x?)
We are given that the amplitude of oscillation, a =40 cm = 0.4 m. At
x =20 cm = 0.2 m, we can write

K.E.=(1/2)k [(0.4 m)? —(0.2 m)?]=0.06 km? (i)
And, the average K.E. of an oscillator is given by Eq. (16.21):
<K.E.>=(1/4)ka® =(1/4)k (0.4 m)?> =0.04 km? (ii)

On comparing Egs. (i) and (ii), we discover that the K.E. of the system at
x =20 cm is more than its average value.

Terminal Questions

1. The expressions for displacement, velocity and acceleration of an object
executing SHM are given by Egs. (16.6b), (16.7a) and (16.8a),
respectively:

x(t) = a sin(wgt + 0) (i)
v(t) = mpa cos (Wt + 0) (i)
and a. (t) = — g a sin(wpt + 0) (iii)

As given in the problem, amplitude a = 0.065 m, angular frequency
0y =4.0 s~ and initial phase ¢ =0. Substituting these values in Egs. (i),
(i) and (iii), we get

x(t) = (0.065 m) sin [(4s~ ] (iv)
v(t) = (4s71) x (0.065 m) cos[(4s "){] (v)
and a(t) = —(4s™1? x (0.065 m) sin[(4s~ )] (vi)

Note that w is actually in rad s~ and we have to express the argument
of the sine and cosine functions in degrees using the relation
mt(rad) = 180°. On substituting t =1.5s in Egs. (iv), (v) and (vi), we obtain

Simple Harmonic Motion
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x(t =1.5s)=(0.065m) sin[(4rads™ ") x (1.5 s)]
= (0.065m) sin (343.6°)= —1.84 x102 m
v(t=1.5s)= (43_1) % (0.065 m) cos[(4rads_1)>< (1.5s)]
= (4571 x(0.065 m) cos (343.6°) = 0.25 ms™"
a,(t=1.5s) = — (4s 1% x(0.065 m) sin[(4rads™")x(1.5s)] = 0.29 ms~2

In this arrangement, both springs will be extended by the same length
x and the restoring force is given by

F= —k1X - k2X (I)
Thus, the equation of motion (Eq. (16.4b)) is modified to
d?x .
m—; -+ (ki +ky)x=0 (i)
at?

The angular frequency characterising this arrangement is
1/2
0 = [(ky + ko)1 m]!
Hence, the time period of oscillation for the system will be given by
T= i—“ = 21 /mi(ks + ky) (i)
0

In this arrangement, if the mass is displaced up or down through a
distance x, the restoring forces are

F»] S —k1X and F2 = —k2X
Hence, the net restoring force acting on the mass is

F=-kix — kyx (iv)

Note that Eq. (iv) is identical to Eq. (i). Therefore, the equation of
motion and time period of oscillation will be given by Eqgs. (ii) and (iii),
respectively.

In this case, the two springs are connected in series. When the mass is
displaced by x, the same restoring force will be exerted by each spring.
But the extensions of the springs will be different, say x1 and xo,
because their spring constants, k4 and k> are different. Since the
restoring force, F is the same, we can write

F= —k1X1 = - k2X2

The total extension of the spring is x = x4 + x5
which can be written as

X = —(F/k1) - (F/kz) = —[(1//(1) + (1/k2)]F
so that F=—xK{(1/kq)+ (1/ko)}1= - k'x
where k' =[1K(1/kq) + (17 ko )}

is the effective spring constant of the system. Therefore, time period of
oscillation for the system is given by

T=2nym/Kk =2mm[(1/ky) + (11 kp)]

3. The velocity of an object executing SHM is given by



so that ve=mf (8% - x

or a=y(v?/0f) + x? (i)

In the given problem, f =0.45Hz; x=0.025 mand v=1.5 ms . So,
Wp = 21f =(2x3.14x0.45 s 1) =2.83s~"

On substituting the values of v, g and x in Eq. (i), we obtain the
amplitude of oscillations:

-1\2
. S

We know that the maximum velocity v, is given by
Vimax = Wga@ =(2.83 8 1) % (0.53m) =1.5ms™
The maximum acceleration (& )max IS
(8c)max = W8 a = (2.83 s71? x (0.53 m) = 4.24 ms 2

The expression for displacement of a simple harmonic oscillator at any

instant t is given by Eq. (16.6b): x(t) = a sin(wgt + ¢) (i)
As per the problem, m=0.5kg, $ =7/3 and a=5cm =0.05 m. Also, we
have frequency f = 60 oscillations per minute. So, f = % =1s™

s

This gives angular frequency wg = 27tf = 27 s On substituting the
values of a, mg and ¢ in Eq. (i), we get
x(t) =(0.05 m) sin[27tt + (n/3)]
The force constant can be obtained using the relation
k=wgm=2ns "% x(0.5kg)=19.7 Nm™’

Total mechanical energy of the oscillator is given by Eq. (16.20):

E =(1/2)ka? = % (19.7 Nm~2) x (0.05m)? = 2.46 x 1072 J

. The expression for instantaneous displacement of an oscillator executing
SHM is given by x = a cos (0gf + )

v :% =—awy sin(Wpt + 0) =-awmgy/1 _(leaz)

Hence, when displacement is x4 and velocity is v4, we can write

vilamg =— /1—(xf/az) (i)

Similarly, for displacement x, and velocity v,, we can write

valawg =— [1-(x2 1a?) (ii)

On squaring Egs. (i) and (ii), we obtain

Simple Harmonic Motion
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and (valawg)? =1-(x3 /a?) (iv)

On subtracting Eq. (iv) from Eq. (iii), we get

[vF - v31lawg)* = (x5 - x{)/ &

This expression may be simplified to obtain g = \/(v12 - v%)/(x% - x12)

On using this value of wg in Eq. (i), you can convince yourself that
amplitude of oscillations is given by

a=(2x3 ~v3x) IR -v3)
We are given that m = 0.5 kg, k =25 Nm~' and E=25%x1073J.

a) To determine the amplitude of oscillation, we use the expression for
total energy of the oscillator (Eq. (16.20)):

E =(1/2)ka®> = a=+2E/k = \/2><(25><10_3 J)/25Nm~" =0.044 m

b) From Eq. (16.7a), we note that the maximum velocity of the oscillator is

{ -1
Vmax = ®pa=((k/m)a= %x(0.044 m)=0.014 ms~]
-0 Kg

c) The velocity and displacement of an oscillator is related by Eq. (16.7b):

V= wowlaz ~ x? =Jkim .Na® - x?

So, at x =15 mm = 0.015 m, the velocity of the mass is given by

-1
v= [2oNm " [0.044 m? — (0.015m)? = 0.20 ms™!
0.5 kg
d) We use Eq. (16.7b) to obtain displacement when velocity is 0.2 ms™:
2 2 2 2 2 o V?
ve =wmf (8° — x9) = x“=a" -—
Wo

-1,\2
orx? = (0.044m)? —{9:2MS S X05K9 _ g 091m2 , x — 0.031m
25Nm™

Since m =100g, the deforming force acting on the rubber pad is given by
F =mg = (0.1kg) x (9.8 ms™2) = 0.98 N

From Newton’s 3™ law of motion, we can say that the deforming force is

equal in magnitude to the restoring force exerted by the rubber pad. Since
compression is 1cm = 0.01m, the force constant of the rubber pad is

k = (0.98N)/(0.01m) = 98 Nm™"
The frequency of oscillation is given by
f=wy/2m=(1/21) Jk/im = (1/2m) \/(98 Nm‘1)/(0.1 kg) =4.98Hz
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This is a photograph of Lissajous SUPERPO SITI ON
figures formed when a box full of sand
with a hole in its bottom is hung from a

string and swung freely. Sand flowing OF H ARMONIC

out from the hole forms the above

pattern on a surface below the box. This AT

family of curves was investigated in O S C I LL ION S
detail by Jules Antoine Lissajous

(1822-1880), French mathematician, in

1857 and hence they are known as

Lissajous figures.
(Source of picture: commons.wikimedia.org)

Structure
17.1 Introduction Perpendicular Harmonic Oscillations:
Expected Learning Outcomes Lissajous Figures
17.2 Principle of Superposition Orthogonal Oscillations of Equal Frequency
17.3 Superposition of Two Collinear Harmonic Orthogonal Oscillations of Unequal
Oscillations Frequencies
Collinear Oscillations of Same Frequency 17.5 Summary
Collinear Oscillations of Different Frequencies 17.6 Terminal Questions
17.4 Superposition of Two Mutually 17.7 Solutions and Answers

STUDY GUIDE

The central concept of this unit is the principle of superposition which helps us analyse a variety of
physical phenomena. The major portion of this unit deals with the applications of the superposition
principle to determine the nature of the resultant motion of a body when two harmonic oscillations act on
it simultaneously. To do so, we use algebra involving trigonometric identities. You should, therefore,
refresh your knowledge of school level trigonometry and coordinate geometry. Moreover, instead of
getting overwhelmed by the algebra and losing track of the underlying physics, you should try to make
sense of the expression for the resultant displacement in each case. We hope you will be able to
appreciate the physical situation described by these expressions better if you devote enough time in
examining the figures containing graphs more carefully.

“Study without desire spoils the memory, and it retains nothing that it Leonardo da
takes in.” Vinci
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17.1 INTRODUCTION

In Unit 16, you have studied the basic concepts of simple harmonic motion
(SHM). You have learnt that a body is said to execute SHM if its acceleration is
proportional to displacement and is directed opposite to the displacement. For
a spring-mass system, we obtained the equation of motion of the mass by
considering the forces acting on it. Further, the solutions of the equation of
motion led to the expression for displacement of the mass as a function of
time.

As you now know, SHM is an idealised model of oscillatory motion. The
oscillations or vibrations in actual physical systems, such as the vibrations of
the strings of musical instruments and the diaphragm in our eardrums, are
rather complex when they are subjected to more than one oscillation at the
same time. So, you may logically ask: How do we determine the resultant
motion of a body when it is subjected to a number of oscillations
simultaneously? To do so, we use the principle of superposition. The analysis
of the resultant motion in such situations is simplified considerably if we
assume that the simultaneously acting oscillations are simple harmonic. As
mentioned in the previous unit, one of the advantages of the idealised model
of SHM is that we can represent a complex oscillation by combining two or
more simple harmonic oscillations of appropriate amplitudes and frequencies.
Conversely, it also means that when two or more harmonic oscillations act on
a body at the same time, the motion is likely to be quite complex. The study of
such motions forms the subject matter of this unit.

In Sec. 17.2, you will learn the principle of superposition. You would agree that
the physical parameters such as amplitude, frequency and phase of the
superposing oscillations may be same or different. These factors determine
the nature of the resultant motion of the body. In Sec. 17.3, you will learn how
to apply the superposition principle to analyse the resultant motion when two
collinear (that is, along the same line) oscillations of the same frequency and
different frequencies are superposed. In Sec. 17.4, we have discussed the
resultant motion of a body when two mutually perpendicular oscillations act
on it simultaneously. You will learn how to obtain expressions for the
trajectories of the resultant motion, known as Lissajous figures.

Expected Learning Outcomes

After studying this unit, you should be able to:
<  State the principle of superposition;

<  Explain the conditions under which the principle of superposition can
be used for two or more oscillations;

< Apply the principle of superposition to analyse the motion of a body on
which two collinear harmonic oscillations of the same frequency and
different frequencies act simultaneously;

< Apply the principle of superposition to determine the resultant motion
of a body on which two mutually perpendicular harmonic oscillations
act simultaneously; and

<  Explain the formation of Lissajous figures.



17.2 PRINCIPLE OF SUPERPOSITION

In Unit 16, you have learnt that an oscillatory motion is simple harmonic, if the
force acting on it is directly proportional to its displacement and is directed
opposite to it. For example, the restoring force, F (= — kx) of the spring acting
on the mass in a spring-mass system gives rise to SHM. From your school
physics classes, you may recall that in the case of a simple pendulum, the
restoring force giving rise to the oscillatory motion of the pendulum is provided
by the tangential component of the weight of the bob.

We come across many physical situations where a body is simultaneously
subjected to two or more harmonic forces (or harmonic oscillations). For
example, in a market place, sound waves of different amplitudes and
frequencies are incident on our ear diaphragm simultaneously. These tend to
displace our ear diaphragm individually in different directions. In such a
situation, the resultant motion of the diaphragm can be determined by using
the superposition principle. For the given situation, the superposition principle
implies that at any given time, the displacement of the diaphragm will be equal
fo the sum of the displacements due to individual harmonic oscillations.

To elaborate the meaning of this statement, let us consider a few experiments
with a simple pendulum executing SHM under small angle approximation.
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Fig. 17.1: Simple pendulum with different initial conditions: a) initial
displacement = a;, initial velocity = 0; b) initial displacement = a,,
initial velocity = 0; c) initial displacement = a; (= a; + a,), initial
velocity = 0.

Suppose that the bob of a simple pendulum is constrained to oscillate in a
plane and its initial displacement is a4 (Fig. 17.1a). So, the initial conditions

on the displacement and velocity of the bob (at t = 0) are: displacement
x =aq and velocity v =0. Let the displacement of the bob measured at a
subsequent time t; be xq.

Let us repeat the experiment with another set of initial conditions: initial
displacement x = ap, and initial velocity v =0, as shown in Fig. 17.1b. When

Superposition of Harmonic Oscillations

NOTE

The principal of
superposition is a
general principle valid for
a variety of physical
phenomena studied in
different branches of
physics. These include
mechanics, electricity
and magnetism, optics
and quantum mechanics.
We will, however confine
ourselves to the use of
this principle here for
mechanical systems to
analyse superposition of

oscillations.

It is only when the value
of the angle of
oscillation (0) of a
simple pendulum is
such that sin 6 ~ 6, the
pendulum is said to
execute simple
harmonic oscillation.
This condition is called
small angle
approximation.
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the bob oscillates under these conditions, let the displacement of the bob
measured after the same interval of time, t; be x».

Now, let us do this experiment once again with initial conditions which are the
sum (or the superposition) of the initial conditions of the above mentioned two
experiments. That is, the initial displacement, a; of the bob is the sum of the
initial displacements, a; and ap, thatis, az = (a4 + ay)and initial velocity,

v =0 as shown in Fig. 17.1c. It is assumed here that, with this initial
condition, the pendulum oscillates under the combined influence of two
oscillations — represented by the oscillations of the pendulums in the
above two experiments — simultaneously. According to the principle of
superposition, the displacement, x3 of the bob after the same interval of time

t1 should be equal to (xq1 + x2). In other words, the resultant displacement x3
is the sum of the individual displacements x4 and xo.

We can, therefore, state the principle of superposition as follows:

The resultant displacement due to superposition of two (or more)
harmonic oscillations is the algebraic sum of individual displacements
at all subsequent times.

As such, the principle of superposition has universal validity. We can
generalise it as: The net effect is the sum of individual effects. Before
proceeding further, let us recall the important points discussed in this section.

e When two or more harmonic oscillations act on a body
simultaneously, the resultant motion of the body can be determined
using the principle of superposition.

e According to the principle of superposition, the resultant
displacement is the algebraic sum of the individual displacements. If
x4(t) and x»,(t)are the individual displacements of the superposing
oscillations, the resultant displacement, x(f) is given by

x(t) = x4(t) + x(t)

Linearity and Superposition Principle

As mentioned above, the principle of superposition is a general principle in the
sense that it is valid for a variety of phenomena observed in different branches
of physics. But, it is important to note that it is valid only for those
phenomena which can be described by linear homogeneous ordinary
differential equations. To elaborate the above statement, let us revisit the
equation of the motion of a spring-mass system given by Eq. (16.5):
2
d—2X+(ngx=O (17.1)
dt

Recall from Unit 4 that Eq. (17.1) is a linear homogeneous ODE. It does not

contain any non-zero term which is higher than the first power of the variable
2
X, or of its derivatives % u etc. You know that such a differential

at?
equation which contains only first power terms of the variable or its derivatives
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dx d?x . . . . .
(such as 9t 2 etc.) is called a linear differential equation. (If a
dt
differential equation contain term(s) with higher powers of the variable or their

derivatives, the equation is said to be nonlinear.)

Further, this differential equation does not contain any non-zero term
independent of the variable (which, in the present case is displacement, x).
So, it is a homogeneous differential equation. Thus, we find that the
equation of motion of a spring-mass system - a simple harmonic oscillator - is
a linear homogeneous ODE.

At this stage, you may ask: What is the theoretical basis of the fact that the
superposition principle can be used only when the motion of a system can be
described by a linear homogeneous ordinary differential equation? The
theoretical basis is provided by a property of linear homogeneous ordinary
differential equations, according to which the sum of any two solutions of a
linear homogeneous ODE is also a solution.

To understand this property, let us consider Eq. (17.1) which gives the
equation of motion of a spring-mass system. Note that it is a second order,
linear, homogeneous ODE. Now, recall from Sec. 4.2 of Unit 4 that such a
differential equation will have two linearly independent solutions. According
to one of the properties of linear ODEs, the sum of its two linearly
independent solutions is also a solution. To elaborate the meaning of this
property, let x4(t) and x»(t) be two different solutions of Eq. (17.1).

Therefore, x4(t) and x,(t) will satisfy Eq. (17.1) and we can write

2

‘iﬁ’; = —0F xq (17.2)
2

and dd’;2 = —0F Xy (17.3)
t

On adding Egs. (17.2) and (17.3), we get

d?(xq+ x
—(d1t2 2) =~ (% + x0) (17.4)

Eqg. (17.4) shows that x4(t)+ xo(t) is also a solution of Eq. (17.1). So, we find
that if x4(t) and x,(t) are two different solutions of Eq. (17.1), their sum,
{x4(t) + x5(t)} is also its solution. So, we can say that, according to the
superposition principle, if two harmonic oscillations, described by
displacements x4(t) and x,(t), act on a body simultaneously, the resultant
motion described by x(t)is given by:

x(t) = xq(t) + xo(t) (17.5)

You should understand the relation between linearity of the equation of motion
of harmonic oscillators and the principle of superposition. We can now discuss
the use of superposition principle to determine the resultant motion of an
object on which more than one harmonic oscillations act at the same time.
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When two harmonic oscillations act on a body simultaneously, we
expect its resultant motion to depend on the amplitudes, frequencies,
and phases of the superposing oscillations. In addition, it also depends on
whether the superposing oscillations are collinear or perpendicular to each
other. For simplicity, we begin our discussion by first considering the
superposition of two collinear oscillations.

17.3 SUPERPOSITION OF TWO COLLINEAR
HARMONIC OSCILLATIONS

When two collinear oscillations act on a body, each of them will displace it
along the same line. Therefore, you should expect that the resultant motion
will also be along the same line. But, the amplitudes, frequencies and phases
of these oscillations can influence the resultant motion differently. Here we
consider a few typical cases, in increasing order of complexity: oscillations
having same frequency but different amplitudes, and oscillations having
unequal frequencies and unequal amplitudes.

17.3.1 Collinear Oscillations of Same Frequency

You may recall from Section 16.3.1 that, if a body executes SHM, its
displacement, x (f) at time t can be expressed as

x(t)=acos(wgt+0) (17.6)

where a, 0y and ¢ respectively denote the amplitude, frequency and initial
phase of the oscillation. We wish to consider superposition of two such
harmonic oscillations whose frequencies are same but their amplitudes are
unequal. Let us further assume that the initial phase difference between
these two oscillations is 7. Such oscillations are said to be in opposite
phase. Under these assumptions, we can write the expressions for the
displacements, x4 (t) and x, (t) for the two collinear superposing oscillations

attime tas
X4(t) = a4 cos wpt (17.7)
and X (t) = ap cos (gt + M) = — ap cos Wyt (17.8)

Now, according to the principle of superposition, we can write the resultant
displacement of the body at a given time t as

x(t) = xq(t) + xa(t)
On substituting the values of x4(t) and x»(t) from Egs. (17.7) and (17.8), we
get

x(t) = ay cos mgt — ap cos Wyt = (a1 —ay) cos Wyt (17.9)

Eq. (17.9) gives the displacement-time relation for the resultant motion of the
body. On comparing Egs. (17.9) with Eqg. (17.6), we can say that when two
collinear oscillations with initial phase difference 7 act on a body
simultaneously, it will execute SHM with amplitude (a; — a,) and zero initial
phase. Eq. (17.9) also shows that if the amplitudes of superposing
oscillations were equal, the resultant displacement will be zero at all
times.



Displacement-time graphs for these oscillations are shown in Fig. 17.2. While
Figs. 17.2a and b depict the displacement-time graphs for individual
superposing oscillations x4(t) and x,(¢), respectively, Fig. 17.2c depicts the
displacement-time graph for the resultant oscillation (Eq. (17.9)). You may
note that displacement of the resultant oscillation at any instant of time is
obtained by algebraic addition of the displacements of individual superposing
oscillations. You should convince yourself about the validity of this statement
by closely examining Figs. 17.2a, b and c at different values of time, .
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Fig. 17.2: Plots of displacement-time graph for two collinear oscillations and
their superposition under different conditions: a) x;(f); b) x»(f); c) the
resultant displacement, x(t) due to their superposition when a; # a,
and initial phase difference is m; d) x4(f), xo(f) and x(t) together for the
case a; # a» and initial phase difference 7; e) x4(f), xo(t) and x(f) together
for the case a; = a, and initial phase difference 7. 45
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Fig. 17.2d represents all the three displacement-time graphs viz. x4(t), x»(t)
and x(t) on the same graph. Further, Fig. 17.2e depicts the superposing
oscillations x4(t) and x,(t) as well as the resultant oscillation, x(t) for the
case aq = ay. Note that, in this case, the resultant displacement is along the

x-axis (time-axis) which means that the resultant displacement of the oscillator
is zero at all times.

In the above discussion, we considered superposition of two collinear
oscillations in opposite phases. Let us now consider superposition of two
collinear in-phase oscillations of different amplitudes. (You may recall that for

in-phase oscillations, the initial phase difference is defined as
0=2nm;,n=0,12,....). In the following example, we have discussed this case.

EJGZBMPL% 17.1 : SUPERPOSITION OF TWO COLLINEAR IN-
PHASE OSCILLATIONS

Two collinear in-phase harmonic oscillations of amplitudes a; and a, have
the same frequency, g . Show that their superposition gives rise to a
harmonic oscillation of amplitude | a;+ay| .

SOLUTION B We can represent two in-phase collinear harmonic
oscillations having different amplitudes but same frequency as

x4(t) = a4 coswpt
and Xo(t) = ap cosmpt
According to the principle of superposition, the displacement of the
resultant oscillation is given by

x(t) = x¢(t) + xo(t) =(a4 + ap) coswyt
This result shows that the resultant displacement is sinusoidal in time. It
means that superposition of two-in-phase harmonic oscillations gives rise
to a harmonic oscillation. Further, we know that the cosine function varies

between + 1 and — 1. So, the amplitude of the resultant oscillation can be
expressed as |a; +ay|.

Let us now consider superposition of two collinear harmonic oscillations
having same frequency but different amplitudes and different initial
phases. Note that this is the most general case of superposition of two
collinear harmonic oscillations of same frequency because we have taken

arbitrary values of their amplitudes and initial phases. Suppose that the first
oscillation is characterised by amplitude a; and initial phase ¢4 and the

second oscillation is characterised by amplitude a, and initial phase ¢,. Let
the angular frequency of these collinear oscillations be my. Then, we can
write the displacements, x4(f) and x,(t) as

x4(t) = a4 cos (gt + ¢1) (17.10)

and Xo(t) = ap cos (Wpt + ¢2) (17.11)

From the principle of superposition, we can write
X(t) = x4(t) + xo(t)
= aq cos (Wot + §1) + ao cos (Wt + Oo)
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Using the cosine formula for the sum of two angles (see margin remark), we
get
x(t) = a4 cos wpt cosPq — a4 sin Wyt sin O4
cos (A+B)=cos Acos B

+ ay cos Wpt cos Gy — ay sin Wyt sin §o _sinAsin B
On collecting the coefficients of cos wpt and sin wgt, we obtain cos (A — B) = cos A cos B

x(t) = (a4 cos ¢ + ap cosdy) cos Wpt +sin Asin B

— (a4 sin 04 + ao sind,) sin wgt (17.12)
Since a4, ap, ¢1 and ¢, are constant, we express the terms containing these
constants by introducing two new constants, say a and 9, by defining

aq cos ¢4 + a, cos (o = a cosd (17.13)
and aq sin ¢4 + ao sin ¢, = a sind (17.14)

We combine Egs. (17.12), (17.13) and (17.14) to obtain the desired
expression for resultant oscillation:

x(t) = a cos d coswyt — a sind sin Wyt
= a cos (gt + 9) (17.15)

We can express constants a and 6 in terms of the amplitudes and initial
phases of superposing oscillations. You will learn about it in a moment.

Note that Eq. (17.15) is similar to Eq. (17.10) or Eq. (17.11). Moreover, the
resultant oscillation has the same frequency but different amplitude and initial
phase compared to the superposing oscillations. Thus, we conclude that the
resultant motion is simple harmonic but its amplitude and initial phase
are different from those of the superposing oscillations. The
displacement-time graphs of the individual superposing oscillations, x4(t) and
xo(t) and the resultant oscillation, x(t) are shown in Fig. 17.3.

. X4(t)

X,(t)

Displacement —»
(=}

Fig. 17.3: Graphical depiction of superposition of two collinear harmonic
oscillations of same frequency but different amplitudes and initial
phases. (For ease in comprehension, we have taken the phase

difference as m.)

) o For a; = a,, we can write
We now express the amplitude and phase of the resultant oscillation in terms | g, (17.16) as

of amplitudes, a; and a,, and initial phases ¢4 and ¢, of the superposing
oscillations. To do so, we take squares of Egs. (17.13) and (17.14) and add
the resultant expressions. On simplification, we get

a’ = 2a,> + 2a,° cos ¢
=2a:° (1 + cos ¢)
(Contd.)
a=\/a12+a§+2a1azcos(q)1—q)2) (17.16) 47




where ¢ = ¢, — ¢, denotes
the phase difference
between the superposing
oscillations. Using the
relation

cos 20 = 2 cos® ¢ — 1

the expression for a*
simplifies to

a’ = 2a,° x 2 cos® gj
2

= 4a,° cos® (gj
2
2

Hence a = 2a; cos

l Recap |
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Further, to obtain expression for phase, 8 of the resultant oscillation, we divide
Eq. (17.14) by Eq. (17.13):

aysindy +a; sind, } (17.17)

5=t ‘1{
aqcos(q +ap cos P,
For the special case when a4 = ay, that is, when the amplitudes of
superposed oscillations are equal (a4 = a5 ),Eq. (17.16) simplifies to (see the
margin remark for the derivation):

a = 2aq cos (QJ
2

where 0= ¢4 — 0,. Here ¢ denotes the difference between the initial phases of
superposing oscillations.

(17.18)

We now summarise the important results obtained in this section.

¢ |f superposing collinear harmonic oscillations are of the same
frequency, the resultant motion is always simple harmonic.

e When two collinear harmonic oscillations of same frequency, mg but
different amplitudes, a; and a, and initial phases, ¢4 and ¢, are

superposed, the resultant oscillation is simple harmonic along the
same line and its amplitude, a and phase, 5 are given by

a :\/a12 +a% +2aqa5cos (G — 02)

and o= tan_{

aqsindq +ap sind,
aqcos 04 + ap cos o

We hope that now you can derive expressions for the displacement and
phase of the resultant oscillation obtained by superposition of two collinear
harmonic oscillations of same frequency but having different amplitudes and
initial phases. You must have noted that the nature of the resultant motion is
determined by the interplay of the amplitudes and initial phases of the
superposing oscillations.

In the following example, we show how the phase difference of superposing
oscillations influences the amplitude of the resultant oscillation.

E)OZIML‘E 17.2 : SUPERPOSITION OF TWO HARMONIC

OSCILLATIONS OF SAME FREQUENCY
BUT ARBITRARY AMPLITUDES AND
INITIAL PHASES

Two collinear harmonic oscillations, each of frequency wg, have
amplitudes, a; and a, and initial phases, ¢4 and ¢,. Show that, when

these oscillations are superposed, the amplitude of the resultant motion is
equal to (a4 +a») if their phase difference (¢4 — ¢» ) is 2nm, where nis an

integer. What will be the value of the resultant amplitude when
(01 -02) = (2n+1)m?
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SOLUTION B From Eq. (17.16), we recall that amplitude of the resultant
motion arising due to superposition of two harmonic oscillations having
amplitudes, a; and a, and initial phases, ¢4 and ¢, is given by

a’ =a? +as +2aja, cos(O — o) (i)

When (04 —05) = 2nm, the value of cosine function is unity, i.e.,
cos (01— o) =1. Therefore, Eq. (i) reduces to

a? =a12+a§+231az =(a1+a2)2

so that a=zx(ag+ay)=(as+ay) (i)
The negative sign has been dropped as it will lead to physically unrealistic
result.

For (¢4 —05) = (2n +1)m, we have cos (¢4 — ) =-1 and Eq. (i) reduces to

a? =a12 +a§ —2aqay = (a1—az)2

so that a=|a;—ay| (iii)

From the results contained in Egs. (ii) and (iii), we may conclude that the
phase difference between superposing oscillations plays an important role
in determining amplitude of the resultant motion.

To check your understandingof the concepts discussed above, you should
solve an SAQ.

SAQ 1 - Superposition of harmonic oscillations

Two harmonic oscillations, each of frequency wg but amplitudes 5 cm and

3 cm act on a body simultaneously along the same direction. If the initial
phase difference between these oscillations is(1/2), calculate the

amplitude and the phase of the resultant oscillation.

In practice, we have to deal with harmonic oscillations of different frequencies.
For instance, sounds of different frequencies incident simultaneously on our
eardrums in a gathering make it to vibrate in a complex manner. So, you may
like to know: Will the conclusions drawn above hold even if the frequencies of
the two superposing collinear oscillations are not equal? Let us discover
answer to this question now.

17.3.2 Collinear Oscillations of Different Frequencies

Let us consider superposition of two harmonic oscillations having amplitudes
as and a, and angular frequencies w4 and w, respectively such that o4 > w,.

Let us represent these oscillations as
x4(t)=aqcos(wq t+0¢q) (17.19a)
and Xo(t) = ay cos(wyt +¢o) (17.19b)

The phase difference between these two oscillations is given by
0 = (w1 - w2)t + (01-92) (17.19¢)
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Note that the first term on right hand side of Eq. (17.19¢) changes
continuously with time whereas the second term is constant in time. Since we
are interested to know the evolution of resultant oscillation with time, initial
phase difference, (¢4 = ¢ ) will not play any role. Therefore, for convenience,
we may take the initial phases of these two oscillations to be zero, i.e.

01 =0, =0. Thus, Egs. (17.19a) and (17.19b) reduces to

x4(t)=aqcos wq t (17.20a)
and Xo(t) = ap cos wot (17.20b)
If these two collinear oscillations are superposed, we can write the expression
for the displacement of the resultant oscillation, x(f) using the principle of
superposition:
x(t) = x4(t) + xo(t)
= aqcoswqt + ap cosyt (17.21)

To express Eq. (17.21) in a physically more meaningful form, we introduce
two new terms, namely, average angular frequency, ®,, defined as

_ W1+ 0

() > (17.22)
and angular frequency of modulation, ®,, as
W, = @ (17.23)

So, with the help of Egs. (17.22) and (17.23), we can express ®y and ®, in
terms of w, and w,, as
W =W, + Oy, (17.24)
and Wy =Wy — Wy (17.25)
On substituting Egs. (17.24) and (17.25) in Eq. (17.21), we get
x(t) =aq cos (0w + Wy )t + ap cos (W — Wy )t
=aq[cos Wyt cosw,, t — sinw, t sin®, t]
+ ap[cosw, t cos®y, t + sinw,t sin®y, t]
On collecting coefficients of cos w,t cosw,, t and sin W, t sinw,, t, we get

X(t) = (a4 +ap)coswyt coswyt — (a1 —az)sinw,t sinw,,t (17.26)
Let us now make the substitutions:

(aq+ay) coswyt = ap, cosO,, (17.27a)
and (aq—ay)sinw,t =ap, sind,, (17.27b)
where a,, and 0, are the constants to be determined.

On making these substitutions, we can write Eq. (17.26) as
x(t)=a,, cosm,t cosO,, — a,, sinw,t sind,,
=ap, cos (Wt + 0p) (17.28)

Eq. (17.28) is the expression for the resultant oscillation in terms of modulated
amplitude a,,, and phase constant 6,,. To obtain the expressions for a,, in
terms of the known quantities a4, a, ¢ and ®,, we use Egs. (17.27a) and
(17.27b) and write:

a2 (cos? 0, +sin? 0,,)=(as +ay)? cos Ot +(ar —ay 2

)2 sin“ @t
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= ( 12 +a§ +2a4ay) cos (Dmt+(a12+ a% —-2aqay) sin? Ot
=(a’+a’) +2a, a, (cos*w, t —sin*w,t)
= a12 +a§ +2a4 ap cos2 W,t
Hence
am = [a12 +a§ +2a4 ap cos 2Mpt] 1/2 (17.29)
Again, using Egs. (17.27a) and (17.27b) we can write:
tan®,, = (a1 —ap)sinmp, t
(a4 +ap)cosw,, t

or 0, =tan1|\81=82)SINOy ! (17.30)
m (aq+ap)cosmpy, t

We now discuss some important conclusions that we can draw from these
results:

o If the amplitudes of the superposing oscillations are equal, that is, for
a1 = ao (= a,say) the numerator in Eq. (17.30) vanishes giving 06, =0.

Further, on using the relation cos20 = 2cos? 01, Eq. (17.29) reduces to

am(t) = [a2 +a%+ 232(200s2 oOm,t - 1)]1/2

=2acos ot (17.31)
Substituting the value of 6,,,(=0) in Eq. (17.28), we get
x(t)=a,, cosw,t (17.32)

where

am = 2acoswy,t
So, for a simpler case of the superposition of collinear oscillations of equal
amplitudes and different frequencies, the resultant oscillation is given by
Eq. (17.32) with modulated amplitude given by Eq. (17.31).

e You may note that Eq. (17.28) resembles the expression for displacement
of a body executing SHM. But, this resemblance is misleading. The
resultant motion represented by Eq. (17.28) is not harmonic because the

amplitude of motion varies with time according to Eq. (17.29). However,
the resultant oscillation will be periodic, that is, x(t)= x(t + T), for some

specific values of time period, T for which w4T =2nn4 and w,T = 2nn,
where nqandn, are integers. This means that the resultant oscillation will

be periodic when

T = @m = I71T1
1
and T= ﬁnz =nyTy
2

Thus, the condition for resultant oscillation to be periodic is
nqTy = nyTo
or n,m, =n,m, (17.33)

e When the frequencies of the superposing oscillations are nearly equal,
thatis, w1 = wo, Egs. (17.22) and (17.23) show that w,, << w,. This
means that modulation (or change) in amplitude of the resultant motion is 51
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very slow as compared to the average frequency w, of oscillation. Thus,
the resultant amplitude may be considered as constant over the time
period, (2n/m,) of the resultant oscillation. Under this condition, the
resultant oscillation can be considered to be harmonic oscillation of
frequency o,.
Further, when two harmonic oscillations of nearly equal frequencies (i.e.
w1 = Wy ) are superposed, we observe a periodic variation in the amplitude of
the resultant oscillation. This periodic variation in the amplitude is known as
the phenomenon of beats. The phenomenon of beats is easily
observed/heard in case of sound. When two sources of sound, such as tuning
forks, of nearly same frequencies are vibrating simultaneously, a listener
hears that the intensity of the resulting sound increases and decreases
periodically. This fluctuation in the intensity of sound, which is caused due to
change in amplitude, is called beats.

For graphical representation of beats, let us consider the case when the
amplitudes of the two superposing oscillations of nearly same frequencies are
same. Two such oscillations are depicted in Fig. 17.4a and 17.4b. When these
oscillations are superposed, their resultant will be as depicted in Fig. 17.4c. In
Fig. 17.4c, you may note that the amplitude varies periodically with time. This
periodic variation of amplitude gives rise to beats.

DAAAANAANR
FIVTVV VTV
FLAAARANAN
SRR
i .

Fig. 17.4: Superposition of two oscillations of equal amplitude and nearly equal
frequencies giving rise to beats; a) and b) depict the component
oscillations and c) depicts the resultant oscillation having time
varying amplitude.

Now, you may like to know: How is the periodicity of beats or the beat

frequency related to the frequencies of the superposing oscillations? To

discover the answer to this question, we need to obtain expressions for the
time intervals between two consecutive amplitude maxima and amplitude

minima (Fig. 17.4).

From the expression (Eq. (17.29)) for modulated amplitude, we note that it will

attain the maximum values (= a4 +ay) when

cos2m,t =1
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This means that ®,, should satisfy the condition

20, t = 2nm; n=012..
On using Eq. (17.23), we can write the above condition as
((01—(1)2)t=2n7'£; n=0,12 ..

Since the angular frequency, w = 27tf, where fis the frequency of oscillation,
this condition can be rewritten in terms of fas

(f=FK)t=n; n=012 ..
Therefore, we can conclude that the resultant amplitude will be maximum at
1 2 n

t=0, , . (17.34)
(fh=1f) (f-1f) (fh—1)

where f; = (w4/27) and f, = (W, /27) are the frequencies of superposing
harmonic oscillations.

Similarly, you can convince yourself that amplitude of the resultant oscillation
attains the minimum value (=|a;—as |) when

coS 2wy, t = -1
This requires that w,, should satisfy the condition
20, t =(2n+1)m, n=012,..

Thus, the resultant amplitude will be minimum for

1 3 5 (2n+1)

= , , . (17.35)
2(h-f) 2(fh-f) 2(f-1f) 2(f1-1h)

Eqgs. (17.34) and (17.35) show that the time interval between two consecutive
maxima or minima of the amplitudes of the resultant oscillation are equal. As
such, an amplitude maxima followed by a minima is called a beat. However,
the time period between two consecutive beats is called beat period:

1

I—
(1 —1F2)
Hence, the beat frequency is given as
fy = |f1 =12 (17.36)

Eq. (17.36) shows that the beat frequency is equal to the difference in the
frequencies of the superposing oscillations.

Now, before proceeding further, you should answer an SAQ.

SAQ 2 - Superposition of collinear oscillations of
different frequencies

a) A particle is simultaneously acted upon by the following two collinear
harmonic oscillations:

x4(t) = 0.05 cos(57t)m; x,(t) = 0.03 cos(37t)m

Calculate the amplitude and phase of the resultant motion at time
t =5s.

b) Two tuning forks of frequencies 385 Hz and 389 Hz are sounded
simultaneously. Calculate the beat frequency.
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Before we proceed further, let us recall some important points of this section.

o When two collinear oscillations of unequal frequencies are
superposed, the resultant motion is not simple harmonic because its
amplitude is modulated (i.e., varies with time).

e However, the resultant motion is periodic if the angular frequencies
1 and w, of the superposing oscillations satisfy the following

condition
Ny =Ny 01
e Further, when wq =wy, ®, <<w,. Under this condition, the resultant
motion is almost harmonic with angular frequency ,.
e When the frequencies are nearly equal, w1 = w», the periodic

variation in the amplitude of resultant oscillation gives rise to the
phenomenon of beats. The beat frequency is given as
fp = |f1 — 2

So far we have confined our discussion to harmonic oscillations in one
dimension. But oscillatory motion in two dimensions (2-D) is also possible.To
get a feel of such a motion, you may like to do the following activity.

[Activity |

Fig. 17.5: Superposition
in two-dimensions
(2-D): trace of resultant
motion.
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Superposition in 2-D
Take a funnel with a narrow bore and fill it with sand. Hang it from a

rectangular piece of card board as shown in Fig. 17.5. The funnel can now
oscillate independently in two mutually perpendicular directions.

Displace the funnel in the x-direction, and then release it with an impulse in
the y-direction. As the funnel oscillates, you will note that the sand drops on
the floor and generates a typical figure. Watch the shape of the figure. Is it
curved?

17.4 SUPERPOSITION OF TWO MUTUALLY
PERPENDICULAR HARMONIC
OSCILLATIONS: LISSAJOUS FIGURES

From the discussions in this unit so far, you know that when two harmonic
oscillations are superposed, the nature and path of the resultant motion
depend on frequencies, amplitudes and initial phases of the superposing
oscillations. We now learn to apply the principle of superposition to explain
superposition in two-dimensions (2-D). Let us first consider the case when
the superposing orthogonal oscillations are of the same frequency.

17.4.1 Orthogonal Oscillations of Equal Frequency

Consider two mutually perpendicular (orthogonal) oscillations: one along the

x-axis and the other along the y-axis. Let us suppose that each oscillation has
same angular frequency () but their amplitudes, a; and a, are different

such that a;> a,. These oscillations can be represented as
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x(t) = a4 cos gt (17.37)
and y(t)=ay cos(mgt + 0) (17.38)

Note that the initial phases of the oscillations along the x- and the y-axes are
zero and ¢, respectively.

We are interested in knowing the nature of and path traced by the resultant
oscillation when these two mutually perpendicular oscillations act on a body
simultaneously. We can do so using the criterion valid for superposition of
collinear oscillations: nqy ®, = ny, ¢ (Sec. 17.3.2). In the instant case, the

superposing oscillations are of the same frequency: ny =1=n,. Thus, we can
say that the resultant oscillation will be periodic.

To ascertain the path of the resultant oscillation, we have to determine how
instantaneous displacements along the x- and y-axes are related. We can
obtain the required relation by eliminating the terms containing ¢ in

Egs. (17.37) and (17.38). For mathematical ease, we consider a few typical
values of initial phase ¢ and gradually move from simple to complex
situations.

Casel: ¢0=0orm
For¢ =0,Eqgs. (17.37) and (17.38) take the form

x(t)=aq cosmwgt and y(t) = ap cosmyt

To eliminate terms involving t from the above equations, we note that
cosWyt = x / aq and substitute this value in the expression for y. This gives

. X
y(t)=as a_1 The equation of a
ay straight line is:
or y=7x (17.39) y=mx+c
! where m is slope of the
Do you recognise this equation? It describes a straight line passing through line and c is its intercept
the origin and having positive slope (= a, /a4). Therefore, we can conclude on the y-axis. In

that superposition of two orthogonal oscillations of same frequency and | Ed.(17.39), ¢ =0.
zero initial phases results in motion along a straight line (Fig. 17.6a). The

arrows on the straight line in Fig. 17.6 indicate the direction of motion of the

body along the path.

To ascertain whether or not the resultant motion is oscillatory, we determine
the direction of motion using Egs. (17.37) and (17.38) for ¢ = 0. From these

equations, we note that, for wgt =0, we have x =a4 and y =a, which
specifies point A in Fig. 17.6a. When wgt =7/ 2, we have x =0 and y =0,
which specify the origin of the coordinate axes. For wgt = 7T, we have

x =—-aq and y = — a» which specify point B. Similarly, you can convince
yourself that for values of wpt between 1 and 2T, the body traces the path BA
and when gt = 27 it reaches point A after completing one oscillation.

Further, for ¢ =, Egs. (17.37) and (17.38) take the form
x(t) = ay cos mpt

and y(t) = — ap cos mgt 55
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Fig. 17.6: Path traced by a body due to superposition of two orthogonal
harmonic oscillations of unequal amplitudes, equal frequencies but
different initial phases: a) ¢ =0; b) ¢ =m;c) ¢ = (n/2);and d) ¢ = (3n/2).

Again, by substituting cos wgt = (x / a) in the expression for y, we get

y=-224 (17.40)
a

This result (Eqg. (17.40))shows that the path traced by the resultant motion of
the body is along a straight line but the slope is negative. This corresponds
to the motion along the diagonal CD, as shown in Fig. 17.6b.

Casell: o=m/2

In this case, Eqgs. (17.37) and (17.38) take the form
x(t) = a4 coswpt (17.41)

and y(t) = ap cos(mot + gj = — ap sinmgt (17.42)
On squaring Egs. (17.41) and (17.42) on both sides and adding, we get

2 2
X,y (t):coszu)ot+sin2u)0t

+
a a3
2 2
or =1 (17.43)
a a

Eq. (17.43) represents an ellipse whose semi-major and semi-minor axes are
respectively a; and ap. Thus, we can conclude: when two orthogonal

oscillations of equal frequency, unequal amplitudes but initial phases
differing by n/2 are superposed, the resultant motion is along an ellipse
whose principal axes lie along the x- and the y-axes (Fig. 17.6c).
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To know the direction of motion of the body in this case, we note from

Egs. (17.41) and (17.42) thatat t =0, x=a4 and y =0. This means that,
initially, the body is at point A in Fig. 17.6¢c. But as t increases, x decreases
from its maximum positive value and y becomes more and more negative.
This means that the elliptical path is traced from point A towards point B.
Thus, the ellipse is described in the clockwise direction.

Similarly, you can obtain the equation for the path traced by the resultant
motion for ¢= 37/2.You should convince yourself that the resultant motion is
along an ellipse traced in the anticlockwise direction (Fig. 17.6d).

These traces for the path of the resultant motion are called Lissajous figures.

So far we have analysed superposition of two mutually perpendicular
oscillations of same frequency but unequal amplitudes and different initial

phases. You may now like to know: What happens when their amplitudes
are same? For a; = a, = a, Eq. (17.43) reduces to

X2(t) + y2(t) = a° (17.44)
You may recall from your school mathematics course that Eq. (17.44)

represents a circle of radius a. Thus, when two mutually perpendicular

oscillations of equal frequency, equal amplitude and initial phase
difference, ¢ = 7 /2 are superposed, the resultant motion is along a

circle traversed in clockwise direction (Fig. 17.7a). Similarly, if ¢ = 37 /2
and aq = ay, the circular path will be traversed in anticlockwise direction

(Fig. 17.7b).
A A
Yy Y
a, a,
T —81 T O T aj x L T _a1 T O T a1 Xr
-a -a,

Fig. 17.7: Path traced by resultant motion of a body due to superposition of two
orthogonal oscillation of equal amplitude, equal frequency and
different initial phase difference: a) ) =n/2; b) ¢ = 3n /2.

Now, before proceeding further, you should answer an SAQ.

SﬁQ 3 - Superposition of orthogonal oscillations of
equal frequency

The following two orthogonal harmonic oscillations act on a body
simultaneously:

x(t)=0.02 cos(5mt) m and y(t)=0.02 cos[Sanj m

Determine the path of the resultant motion of the body. 57
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So far in this section, you have learnt about the nature of resultant oscillations
of a body for some particularly simple values of initial phase difference, ¢. You
may now ask: What will the resultant motion be if initial phases take arbitrary
value? To seek answer to this question, we consider superposition of two
orthogonal oscillations of unequal amplitudes but same frequency and
arbitrary phase difference.

Case lll: General Case

Let the initial phase difference between the superposing oscillations be ¢. To

obtain the expression for the path traced by the resultant oscillation, we need

to eliminate t from Egs. (17.37) and (17.38). So, we rewrite Eq. (17.38) as
y(t)

=~ = cos(mWgt + ¢) = coswyt cosP — sinwyt sin O (17.45)
az

From Eq. (17.37), we note that
x(t)

():>smoo t= 1- >
a a;

cos Wyt =

To obtain time independent relation between the displacements of the body
along the x- and y-directions, we substitute these values of cos wyt and

sinmgt in Eq. (17.45). This gives

y(t) _ x(t) cos¢ _ (t Sind
ap a 31

or X(t)cosq) y(t) 1- X(t

a a a1

sing

On squaring both sides and rearranging terms, we get the following
expression for the resultant path:

2 2
X g) y L ét) =2 x(t) y(t) cos = sin? ¢ (17.46)
aq as aq ap
Eq. (17.46) is the general equation of an ellipse whose axes are inclined to
the coordinate axes. So, we can conclude: when two mutually
perpendicular harmonic oscillations of same frequency but different
amplitudes and initial phases are superposed, the resultant motion is
along an elliptical path. For some typical values of ¢ lying between 0 and
21, the paths traced out by the resultant oscillation are shown in Fig. 17.8.
Note that the resultant path for ¢ = 0, /2, ™ and 31/2 have been shown in Fig.
17.6 and 17.7. Also note that the paths for ¢ =0 and ¢ =7 are not elliptical;
they are straight lines.
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Fig. 17.8: Resultant paths traced by a body when two mutually perpendicular
harmonic oscillations of equal frequency but different amplitudes are
superposed for different values of initial phase difference a) n/ 4;

b) 3n /4; c) 5n /4; d) 7 /4.

In your physics laboratory, you will get an opportunity to obtain some of the

paths depicted in Fig. 17.8 using a cathode ray oscilloscope (CRO). To this

end, you will have to apply different alternating sinusoidal voltages at
horizontal plates (XX) and vertical plates (YY) of the CRO. An electron beam is
made to move under the simultaneous influence of the two AC voltages (which
are equivalent to harmonic forces). Thus, the path traced by the electron beam
will be analogous to the path of the resultant motion arising due to
superposition of two orthogonal harmonic oscillations. When AC voltages of
same frequency are applied, you will obtain various curves on the CRO screen
as shown in Fig. 17.8 by adjusting the initial phases and amplitudes of the
signals. Further, note that the elliptical paths traced by the electron, as shown
in Fig. 17.8, under the influence of two orthogonal superposing signals
correspond to some typical values (integral multiples of n/4) of phase
difference between the signals. However, using a CRO in a physical laboratory,
you can also determine any random value of the phase difference between the
two signals by analysing the shape of elliptical path. You will get an opportunity
to do it in the laboratory course on mechanics.

(/ |

(d)

We now work out an example to illustrate these conclusions.

EMMLE 17.3 : SUPERPOSITION OF ORTHOGONAL
OSCILLATIONS OF SAME FREQUENCY

In a cathode ray oscilloscope, the displacements of electrons due to two
mutually perpendicular and sinusoidally varying voltages applied between
the XX and YY plates are given by

x(t) =4cos2nft; and y(t) =4cos [2nft + %j

Determine the resultant path of the electron beam on the CRO screen.
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SOLUTION m From the given expressions for x and y, we have:
ay =4 units; ap, =4 units and ¢ =7/6

To determine the path traced by an electron on the CRO screen, under the
influence of these two orthogonal voltages, we use Eq. (17.46). On
substituting the values of a4, a» and ¢, we get

2 2
X Y 2xy cosE:sinzE
42 42 4x4 6
2 2
o XLYZ 2043 1
16 16 16 2 4
or x2+y2—\/§xy—4=0

This equation represents an ellipse. So, the resultant path of an electron
on the CRO screen is along an ellipse.

You may now like to solve an SAQ.

SﬂQ 4 - Superposition of orthogonal oscillations of equal
frequency

An object is acted upon simultaneously by the following two orthogonal
oscillations:

x(t) = 0.03 sin(4mt)m; y(t) = 0.04 sin(4nt + 1.57T)m

Obtain the equation of the path traced by the resultant motion of the object.

In the following, we summarise important results of this section.

e When two mutually perpendicular oscillations of equal frequency but
different amplitudes and initial phases are superposed, the resultant

displacement is given by

XA() | yA) L, x() yit)

> ; cos = sin? 0
aj ap a1 ap

where a; and a, are amplitudes of the two oscillations and ¢ is the

phase difference between them. The path traced by the resultant
motion is elliptical.

For some typical values of the phase difference between the
orthogonal superposing oscillations, the elliptical path reduces to a
straight line (for ¢ =0 or 1) and circular path (for ¢ =7/2 and a;=ay).

17.4.2 Orthogonal Oscillations of Unequal Frequencies

You now know that when two superposing orthogonal oscillations have the
same frequency, the shape of the curve traced out by the resultant oscillation
primarily depends on their initial phases. A slightly more complex situation
arises when the frequencies of two superposing orthogonal oscillations are
also unequal. However, if the frequencies of the superposing orthogonal
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oscillations are in the ratio 2:1 (that is, if w4 =2wq,then w, = wg ), the path
traced by the resultant motion for some typical values of the phase difference,

0 is rather simple. Two such orthogonal oscillations are represented by
x(t) = aq cos(2mpt + 0)

and y(t) = ap coswgt

The expressions for the path traced by the resultant motion due to

superposition of these two orthogonal oscillations for different values of the

phase difference, ¢ between them are given below (for the derivation of these
results, refer to Terminal Question 4):

i) ¢=0
For this value of ¢, the expression for the path of the resultant motion is
given by
2 a%
yo(t) = 2—[(X(l‘)+ ay)] (17.47)
a4

Eq. (17.47) represents a parabola. Thus, a body subjected to two
orthogonal oscillations having frequencies in the ratio 2:1 will trace a
parabolic path. This is shown in Fig. 17.9a.

T A
8 > 4
8¢ Y
w o
0 Displace 0 =
1 ment, X —p
(a) (b)

Fig. 17.9: Lissajous figures generated due to the superposition of two
orthogonal harmonic oscillations of different amplitudes and having
frequencies in the ratio 2:1. The initial phase difference between the
two superposing orthogonal oscillations is a) $ =0; b) n/ 2; ¢) m.

N T
i =—
) o 5
For this value of ¢, the expression for the path of the resultant motion is
given by
2 2 2
Al Ly 0 1] + X0 g (17.48)
as ar a 61
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Eq. (17.48) signifies a path which is like number ‘8’ in shape. This is
shown in Fig. 17.9b.

i) o0=m
For this value of ¢, the expression for the path traced by the resultant
motion is given by

2 a%
y (t)=—2—(X(t)—a1) (17.49)
a4

Eq. (17.49) also represents a parabola. The parabolic path represented
by Eq. (17.49) is shown in Fig. 17.9c. We note that the direction of the
parabola for ¢ = m is opposite to that for ¢ = 0.

We hope you now understand the genesis of Lissajous figures, which we
discussed in this section for some representative values of ¢ when the
frequencies of the superposing orthogonal oscillations are in the ratio 2:1.

It is interesting to mention here that before the days of digital frequency
meters, Lissajous figures were used to determine the frequency of sound as
well as that of radio signals. This was done by applying a signal of known
frequency to the horizontal plates of a cathode ray oscilloscope and the signal
whose frequency was to be measured was applied to the vertical plates. By
observing the resulting Lissajous figure, the unknown frequency was easily
estimated because the shape of the Lissajous figure is a function of the ratio
of the frequencies of the superposing signals.

Let us now sum up what you have learnt in this unit.

17.5 SUMMARY

Description

Principle of n
superposition

Linear differential u
equation

Superposition of |

collinear oscillations
with same frequency
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The principle of superposition states that when two or more harmonic
oscillations are superposed, the displacement of the resultant oscillation at
any given time t is the algebraic sum of individual displacements. If x4(t) and

Xo(t) are the displacements of two superposing harmonic oscillations at time
t then the displacement x(t) of the resultant oscillation at time t is given by

x(t) = x4(t) + xo(t)

The principle of superposition is valid only for those phenomena which
can be described by linear differential equations.

When two collinear harmonic oscillations of the same frequency, given by
x4(t) = a4 cos(wgt + O1)
and Xo(t) = ap cos(wpt + ¢y)

are superposed, the resultant motion is described by

x(t) = a cos(mpt + 9),
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where a=[a? +a3 +2aay cos (01— 0)] 2
_1[ aqsindq + a- sin
and § = tan-1[ _218iN®1 + 8o Sin¢y
a1cos( +ap cos Py

Superposition of B When two collinear harmonic oscillations of different frequencies are
collinear oscillations  superposed, the resultant motion is modulated and is represented as

with different X(t) = ap(t) cos m,t, where modulated amplitude,
frequencies an(t) = 2acos w,, t, angular frequency of modulation,
- 0+
Oy = % and average angular frequency, 0, = %

Superposition of B When two mutually orthogonal harmonic oscillations act on a body

mutually orthogonal simultaneously, the resultant motion traces out a variety of paths. If the

harmonic oscillations  oscillations have equal frequencies, the shape of the path depends on their
initial phase difference. In general, the path traced by the resultant motion is
elliptical but for certain values of initial phases of the superposing
oscillations, it reduces to a straight line.

Superposition of B When two mutually orthogonal oscillations of unequal frequencies and
mutually orthogonal different initial phases act on a body simultaneously, the resultant paths are
oscillations of complex curves. These paths are collectively known as Lissajous figures.
unequal frequencies

17.6 TERMINAL QUESTIONS

1. The motion of a simple pendulum is described by the differential equation

2
d—; +4x=0
dt
Write the solutions of this differential equation for the following two sets of
initial conditions:

a) att=0, x=3cm and %:O

b) att=0, x=2cm and %:4cms‘1

Denote these two solutions by x4(t) and x»(t)and show that for a new
displacement x3(t) = x4(t)+ xo(t), the initial conditions of the bob are
essentially the superposition of the initial conditions of x4(t) and x,(t).

2. Two collinear harmonic oscillations are represented by

x4(t) = 3sin(20nt+g] cm

and Xo(t) = 4sin(20m‘+§] cm
Calculate the amplitude, phase constant and the period of resultant
oscillation obtained on superposing these two collinear oscillations.

3. A particle is simultaneously subject to two mutually perpendicular
oscillations given by

63
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a) x=3sinwtcm, y=3cos wtcm
b) x=sin ot cm, y =4 sin (0t + 1) cm
Determine the trajectories of its motion.

4. The frequencies of two orthogonal harmonic oscillations of unequal
amplitudes are in the ratio 2:1. When these two oscillations are applied
simultaneously on a body, obtain the expressions for the path traced by
the resultant motion of the body for phase difference, ¢ between the
superposing oscillations equal to (i) zero, (ii) n/2, and (iii) m.

17.7 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. From Eq. (17.16), we recall that the amplitude of the resultant oscillation
due to superposition of two collinear oscillations is given by

a= \/312 +a§ +2aqay cos(01—02) (i)

As per the problem, we have a; =5cm = 0.05m; a, = 3cm = 0.03m;
01 =(n/2) and 0o =0 so that (¢4 —05)=m/2

On substituting these values in Eq. (i), we get

a= \/(0.05m)2 +(0.03m)? +2(0.05m)x(0.03m) cos(m/2) = 0.06m

Further, from Eq. (17.17), we note that the phase of resultant oscillation is
given by

N tan_{ assindq + ap sind, }

aqcosdq + ap cos o

_ tan_1[ (0.05m) sin(m/2) + (0.03m) sin(0)

=59.1°=1.03rad
(0.05m) cos(m/2) + (0.03m) cos(O)}

2. a) This is the case of superposition of two collinear harmonic oscillations
of unequal amplitudes and unequal frequencies. The amplitude of
resultant motion due to such superposition is given by Eq. (17.29):

am(t) = [a12 +a§ +2aq ap cos (2w,t)] 172 (i)
As per the problem
a;=005m;, ap =003m;, =57, Wy, =37 and t=5s.

(OF )] 21 _
=—1 2=_=TES1

So, O 5 5

On substituting these values in Eq. (i), we get
an (t =5s) = [(0.05 m)? +(0.03 m)? +2(0.05 m)
x(0.03 m)x(cos(2x(ns Mx(5s))]"? =0.08 m

The phase of the resultant motion is given by Eq. (17.30):
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1] (a1—ap)sin(on t) | _ tan-1 {(0.05—0.03)m x sin(5m) } 0
(ay+ap)cos(on t) | (0.05+0.03)m x cos(5m)

0,, =tan

b) From Eq. (17.36), we know that the beat frequency f, is given by

3. From the given expressions, we note that the orthogonal oscillations have
equal amplitude (=0.02 m) equal frequency (= 5n) and differ in phase by
1t/ 2. Hence from Eq. (17.38), we can write the equation for the trajectory
of the resultant motion as

2 2
X + y =1 or x°+ y2 =(0.02 m)2
(0.02 m)? (0.02 m)?

This is the equation of a circle of radius 0.02 m. So, the body moves along
a circular path of radius 0.02 m.

4. We note from the expressions for x(t)and y(t) that the two orthogonal
oscillations have same frequency but different amplitudes
(a4 = 0.03 m and a, =0.04 m) and the initial phase difference between
them is 1.5 (=3m/2). The general expression for the resultant path of a
body on which two orthogonal oscillations act simultaneous is given by
Eq. (17.41):
2 2
X—2+y—2—2 Xy cos( = sin2¢
aq as aiap

On substituting the values of a4, a, and ¢, we get

X2 y2 |

0.03m2  (0.04m)

This is the equation of an ellipse. It means that the resultant motion will be
along an elliptical path.

Terminal Questions

1. The given differential equation for a simple pendulum is

2

d—; +4x=0 ()

dt )
On comparing it with the standard equation for SHM, % + 0)% x =0, we

t

note that wg = 257", Therefore, the solution of this equation can be written
as

x(t) = a cos(2t + ¢) (i)
Differentiating this with respect to ¢, we get

dx

— =-2a sin(2t + iii

o (2t + 9) (iii)

a) As per the given initial conditions: at t =0, x =3cm and dx/dt =0.
Therefore, from Egs. (ii) and (iii), we obtain

3cm =a cos¢ (iv) 65
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and 0 =-2asind (v)
Eq. (v) implies that ¢ =0 since a is finite. Using this result in Eq. (iv),
we get

a=3cm

Hence, the complete solution of the given differential equation can be
expressed as

x4(t) = 3 cos2t cm (vi)

b) The second set of initial conditions are: at t =0, x =2cm and

% =4cms™. On substituting these values in Egs. (ii) and (iii), we get

2cm = acos ¢ (vii)

and 4cms™ = -2a sing = 2cms '=-a sind (viii)

On dividing Eq. (viii) by Eq. (vii), we get

T
tan¢p=-1 = =-—
0 0=-1

On substituting ¢ = — n/4 in Eq. (vii), we get
a=2v2 cm
Therefore, we can write the solution for the given initial condition as

Xo(t) = 242 cos (2t - %jom (ix)

Since superposition of x4 and x, yields x3, we get can write

x3(t) = xq(t) + xo(t)
On substituting the values of x4(t) and x,(t) from Egs. (vi) and (ix)

respectively, we get

x3(t)= 3 cos 2t + 242 cos (2t—%)
T . (T
=3 cos 2t+2x/§ {cos2t cos[zj + sin 2tsm[zﬂ

=3 cos 2t+2\/§ (LCOSZt +i sin 2tj

V2 V2
=(5 cos 2t + 2 sin2t) cm (x)

Now if we superpose the initial conditions corresponding to x4 and x»,
we have at

t=0, x=5cm and % =4cms™1.0n substituting these values of x
and dx / dt in Egs. (ii) and (iii), we get

5cm = a cos ¢ (xi)
and 4cms™' = -2a sing (xii)
On dividing Eq. (xii) by Eq. (xi), we get tan ¢ = - 2/5
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From this we can write singp =—-2/4/29 and cos¢=5/+/29

and a=429 cm

Therefore, the solution obtained on superposing the two initial
conditions is

x3(t) = @cos(Zt + )

= /29 [cos 2t cos ¢ — sin 2t sin¢] cm
On substituting for cos ¢ and sin ¢, we get
x3(t) = (5 cos 2t + 2 sin 2t) cm (xiii)
So, you may note that the value of resultant displacement, x3(t) given

by Eqg. (xiii) is the same as the one obtained by the superposition of
individual displacements, x4(t) and x»(t) (Eq. (x)).

2. We can write the displacements x4(t)and x,(t) of the harmonic

oscillations in terms of cosine functions as:

x4(t) =3 cos(ZOnt +%—%} cm =3 cos(ZOTct—gj cm (i)

and Xxp =4 cos(ZOan—gjcm =4 cos(ZOm‘ —gjcm (i)

When these two collinear oscillations of equal frequencies are
superposed, the expression for the displacement of resultant oscillation is
given as (Eq. (17.15)):

x(t) = a cos(wgt + ) (iii)
From Egs. (i) or (ii), we get that g = 207. To determine the value of the
resultant amplitude a, we recall from Eq. (17.16) that

a=[(af +a5 +2ay a cos (01~ )] 2
On substituting the values of a4, a, ¢1 and ¢, from Egs. (i) and (i), we

get 1/2
a =(32 +42 +(2x3x4xcosgn cm=6.77 cm

The phase constant § of the resultant oscillation is given by Eq. (17.17):
5 _ tan-1[ 3SINCT/3) +4sin(-/6) | 3V3+4
3cos(—m/3)+4cos(—T/6) 3+443

So, the expression for the resultant oscillation is obtained by substituting
the values of wg, a and 6 in Eq. (iii):

x(t)=6.77 cos (20Tt — 0.2471) cm

3. a) We are given

]:—0.247'5

x(t)=3sinwtcm and  y(t)=3 cos ot = 3 sin ((Dt+g} cm

These orthogonal oscillations are of equal amplitude and same
frequency but differ in phase by 1/2. Hence, using Eq. (17.44), we
may conclude that the resultant motion will be along a circle defined by

x2+y2:90m2 = x2+y2:(3cm)2 67
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b) We are given that
x(t)=sinwtcm and y(t)=4 sin (ot +7) cm
These orthogonal oscillations have different amplitudes
(g =1cm and ay, =4 cm), same frequency  and differ in phase by
7. Hence using this data in Eq. (17.46), we get
2

x2+y—+2ﬂ=0
16 4

or 16x2+y2+8xy=0 = (4x+y)2=0

So the trajectory of the resultant motion will be along a straight line
defined by

y=—4x

4. As per the problem, if the frequencies of two orthogonal superposing

oscillations are w4 and w,, then
w1 = 2 Q) and Wy =g

Thus, the expression for such orthogonal harmonic oscillations can be
written as

x(t) = aqcos(2mwpt + ) and y(t) = ap coswpt
where, ¢ is the phase difference between the two oscillations.
i) For ¢ =0, the expression reduces to

x(t) =aqcos2mgt and y(t) =ay cosmgpt
So,

x(t) = a4 cos2mpt = a4 (2cos? wot =1)
Substituting cos wgt = y/ay, we can write
x(t)=as[(2y? /a5)-1]
or (x/ay)=(2y?/a3)~1
or y?(t)= (a3 /2aq) [x(t)+ a] (i)

Eq. (i) is the equation of parabola and the resultant motion will be
along a parabola.

i) For ¢ =m/2, the expressions for x(t) and y(t) reduces to
x(t)=—-aqsin2mgt and  y(t)=ay cosmyt (i)
We can write x(f) as

—(x/aq)=2sinwgt cosmgt
Now, substituting coswgt =(y/ay) and sinmgt = 1/1—0032 ot

=\1-(y/az)?



ii)

Superposition of Harmonic Oscillations

We can write Eq. (ii) as
~(x/a)) = 2y 1)1~ (v /22)?

Squaring both sides and rearranging the terms, we get

(ay21a2) (2 /a3 )1+ [x2/a2]=0 (i)

Eq. (iii) represents a curve which is like number “8”.
For ¢ = m, the expressions for x(f) and y(t) reduces to

x(t)=—-aqjcos2mgt and  y(t) =ay cosmyt

or (x/a1)=20032 oot -1

Again, substituting coswgt =(y/ay), we can write,
(2y?/a3)=~(x/as)+1

or y2(t) = (a5 12a4) [x(t) - ] (iv)

Eq. (iv) represents a parabola but it is directed opposite to that
represented by Eq. (i) for ¢ = 0. So, in this case also, the resultant
motion will be along a parabolic path.
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UNIT1 8

This is a picture showing four shock

absorbers fitted near each wheel of a car. The DAMPED
shock absorber is a very good example of

damped oscillation. It contains spring-loaded O SCILL ATIONS
check valves and orifices to control the flow of

oil through an internal piston. When the piston

moves up and down in the hydraulic liquid,

the vibratory motion of the automobile is

reduced considerably. Shock absorbers are an

important part of automobile and motorcycle

suspensions, aircraft landing gear, and the

supports for many industrial machines.

Structure
18.1 Introduction 18.3 Characterising Weak Damping
Expected Learning Outcomes Logarithmic Decrement
18.2 Equation of Motion of a Damped Oscillator Relaxation Time
Heavy Damping Quality Factor
Critical Damping 18.4 Summary
Weak Damping 18.5 Terminal Questions

18.6 Solutions and Answers

STUDY GUIDE

So far, our discussion in the previous two units of this block has been confined to ideal physical systems
which execute simple harmonic motion. In this unit, you will learn to appreciate that real physical systems
are not ideal. In fact, the oscillatory motion of these systems are rather difficult to analyze mathematically.
The study of damped oscillations is the first step towards dealing with real oscillatory systems. As such,
we can describe the motion of a damped oscillator by a second order linear differential equation. You
have learnt how to solve the equation of motion of a damped oscillator in Unit 4 of this course. Here, our
emphasis will be on the physical implications of damping on the motion of an oscillator. You may recall
that the solution of equation of motion of a damped system involves exponential and hyperbolic
functions. So, you will do better if you refresh the basic algebra and calculus involving such functions.
Further, you should work out the problems involving logarithmic decrement, relaxation time and quality
factor to get a feel for their numerical values.

“Science is the attempt to make the chaotic diversity of our sense-
experience correspond to a logically uniform system of thought.”

Albert Einstein
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Unit 18 Damped Oscillations

18.1 INTRODUCTION

In Unit 16, you learnt about simple harmonic motion (SHM) and its
characteristics. You may recall that the displacement-time graph of a
mechanical system executing SHM is sinusoidal and the total energy of such a
system remains constant in time. This implies that once such a system is set
into motion, it should continue to oscillate indefinitely. Such an oscillation is
said to be free oscillation. Do you know of any real physical system that
keeps oscillating indefinitely? Probably, we can think of none.

In the real world, the amplitude (and hence energy) of oscillation of an
oscillatory system reduces gradually due to the presence of frictional forces in
the medium. Recall the oscillations of a swing, a simple pendulum or a vertical | The drag force is the
spring-mass system when left to itself. In all these systems, oscillations die frictional force _
down gradually because air exerts a drag force. This implies that every fnxfﬁ;ﬁ?ﬁ?r::d?ﬂrﬁbjed
oscillating system loses energy as time passes. The motion of such a system | ¢, a5 air or liquid.

is said to be damped motion. You may now ask: Where does this energy go?

The oscillating system has to work against the damping force, which causes

dissipation of its energy. That is, the energy of an oscillating body is used up in

overcoming damping.

In general, damping causes wasteful loss of energy. Therefore, we invariably
try to minimise it. But in some engineering systems, we knowingly introduce
damping. A familiar example is automobile shock absorber. When an
automobile goes over a bump, spring of the shock absorber is set into motion.
The shock absorber is so designed that it dampens (that is, minimises) the
oscillations and we enjoy almost jerk free ride even on a bumpy road.

In this unit, you will learn the salient features of damped motion. In Sec. 18.2,
you will learn to establish the equation of motion of a damped oscillator and
study physical implications of its solutions for over-damped, critically damped
and weakly damped systems. (You have learnt how to solve the equation of
motion for a damped system in Unit 4 of this course). Therefore, we will just
quote the results here. You will discover that weak damping leads to oscillatory
motion of gradually diminishing amplitude. In Sec. 18.3, you will learn to
characterise weak damping in terms of logarithmic decrement, relaxation time
and quality factor. You will learn to obtain expressions for these parameters
which help us obtain numerical measures of damping in an oscillator.

Expected Learning Outcomes
After studying this unit, you should be able to:

+ Establish the equation of motion of a damped harmonic oscillator;

+ Differentiate between weakly damped, critically damped and over-
damped systems;

+ Discuss the effect of damping on amplitude, period of oscillation and
energy of an oscillator; and

++ Obtain expressions for logarithmic decrement, relaxation time and
quality factor.
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According to Stokes' law,
the drag force
experienced by a
spherical body of radius r
falling freely in a viscous
medium (like water or oil)
is given by

Fy=6nnrv

Here 1 is the coefficient of
viscosity of the medium and

v is the velocity of the body.

Harmonic Oscillations

18.2 EQUATION OF MOTION OF A DAMPED
OSCILLATOR

72

In Sec. 16.2, you have learnt that the force law for a spring-mass system
executing SHM is given by

F=-kx

Here F is magnitude of the restoring force and x denotes instantaneous
displacement of the system from the equilibrium position. You may recall that
while discussing the motion of a spring-mass system (Unit 16), we completely
ignored the effect of friction or air drag on its motion. But in practice, every
oscillating system experiences some frictional force, which slows down
its motion. Such a force is called damping force. And to predict the
behaviour of an actual oscillator more realistically, we must study the motion
of a damped harmonic oscillator.

To discuss the motion of a damped oscillator, we consider a spring-mass
system in which the mass is made to oscillate horizontally in a viscous
medium, say in a oil container, as shown in Fig. 18.1. As the mass oscillates,
it experiences a damping force. Let us denote it by Fy. Usually, it is difficult to
quantify exact magnitude of this force. However, for oscillations of
sufficiently small amplitude, it is fairly reasonable to model the damping
force on Stokes’ law. That is, we assume F, to be proportional to velocity of
the mass and write

Fy=-yv (18.1)

Block of oil
mass, m

\

Spring

Fig. 18.1: A damped spring-mass system. Note that damping is introduced in
the system because the oscillating mass is immersed in oil — a viscous
medium.

X-axis—»
x=0

The negative sign on the RHS of Eq. (18.1) signifies that damping opposes
motion. The constant of proportionality, Y is called the damping coefficient or
damping constant. Numerically, it is equal to force per unit velocity and is

N kg ms 2
ms™’ ms™’
body moves, greater will be the opposition by the viscous medium to its
motion. Note that, unlike the restoring force which is proportional to
displacement, the damping force is proportional to velocity.

measured in =kg s, Eq. (18.1) implies that the faster a

Equation of Motion

To establish the equation of motion of a damped oscillator, we choose x-axis
to be along the length of the spring (Fig. 18.1). We take the equilibrium



position of mass as the origin (x = 0). Suppose that the mass (in the spring-

mass system) is pulled longitudinally and then released. Since the mass gets
displaced from its equilibrium position, a restoring force and a damping force
will act on it simultaneously. We express these forces as follows:

e Restoring force: — k x, where k is force constant, and

e Damping force: -7y v, where v (= dx /dt)is the instantaneous velocity of
the oscillator and vy is the damping constant.

Note that for a damped oscillator, the force law must include the
restoring force as well as the damping force. Therefore, we can write

dx
F=—kx—-vyw =—kx —-7vy—
Y Y dt
Using this expression for force in Newton’s second law of motion (F = ma,),

we can write the equation of motion for a damped oscillator as

d2x adx
m—-—=—Kkx—y— 18.2
g 15 (18.2)

On rearranging terms and dividing throughout by m, Eq. (18.2) takes the form
d®x dx

2 i2b = v @@ x=0 18.3

2 T2 X (18.3)
where 0)%:i and 2b=-L
m m

Note the factor of 2 that has been deliberately introduced in the damping term.
You will soon learn that it helps us in expressing the solutions of Eq. (18.3) in
a simpler form. Also note that the constant b, called damping factor, has the
dimensions of T
L force B MLT 2
" 2m  velocityxmass LT 'M

This result shows that the unit of b is 5_1, which is the same as that of mg.

Do you notice any similarity between the differential equations represented by
Egs. (16.5) and (18.3)? Both the differential equations are linear, of second
order and homogeneous with constant coefficients. This similarity will help us
analyse the motion of a damped oscillator.

Solution of Differential Equation

From Eq. (4.34) of Unit 4, you may recall that the solution of the differential
equation given by Eq. (18.3) can be written as:

x(t) = exp(~bt)[aq exp{(b2 — ®3 )1/2t}+ay expl- (b2 - ®3 )1/2t}] (18.4)

This expression shows that the exact solution is governed by the relative
magnitudes of the damping force (represented by the damping factor, b)
and the restoring force (represented by the force constant k and hence
the parameter, 0)(2) )- The quantity b? — 0)(2) can be negative, zero or positive,
depending on whether the damping factor is less than, equal to or greater than

Damped Oscillations

73



74

Harmonic Oscillations

the angular frequency, respectively. These conditions give rise to following

three distinct kinds of damped motion:

e If b>wy, the system takes a very long time to return back to its
equilibrium position. Then we say that damping is heavy and the system is
heavily damped or over-damped.

e If b =y, the system takes minimal time to return to its initial position.
Then we say that the system is critically damped. Such a system never
overshoots the equilibrium position.

o If b<wgp, the system executes oscillatory motion with gradually
decreasing amplitude. Then we say that the system is weakly damped. A
weakly damped system is of maximum interest in physics.

Now go through the following example.

EJQ‘ZIMLZ 18.1 : ADAMPED OSCILLATOR

The equation of motion of an oscillating body of mass 0.5 kg is

2
97X 49 Lox—0
dt?  dt
a) Calculate (i) force constant, k, (ii) angular frequency, @y, (iii) damping

constant, Yy and (iv) damping factor, b.

b) What is the nature of damping?

SOLUTION B a) The equation of motion of damped harmonic oscillator is
given by Eq. (18.3):
2
gx + 2b% -+ co%x =0
dt? ot
On comparing this equation with the given equation of motion, we get:
2b=4s"" and  @f=9s7?
i) To calculate the force constant k, we recall that

k
“’325 = k=wjm=(9s-2)x(0.5kg) = 4.5 kgs-2

ii) For calculating angular frequency g, we have:
(,0%298_2 = 0)0238_1
iii) To calculate damping constant y, we use the relation
2b = % —  y=2bm=(4s-1)x(0.5 kg) = 2 kgs-1
iv) For calculating the damping factor b, we have
2b=4s" = p=2s7"

b) From the calculated values of b (= 23_1) and g (= 38_1), we find that
b < . This signifies weak damping. Therefore, the motion of the
oscillator is weakly damped.




To fix the ideas discussed above, you should answer the following SAQ.

SAQ 1 - Determining the nature of damping in a oscillatory
system

The differential equation of an oscillator is given by

2
97X L 509, 255 =0
at? dt

Calculate the force constant, damping constant, angular frequency and
damping factor. What is the nature of damping?

18.2.1

On solving SAQ 1, you must have seen that the given equation represents
non-oscillatory motion corresponding to a heavily damped system. We can
write the solution for an over-damped system as

Heavy Damping

x(t) = ‘2/—0 exp (—bt) [exp (Bt) — exp (- Bt)] = Yo exp (—bt) sinh Bt (18.5)

B B

where B = b? — 03

From Eq. (18.5), we note that x(t)is a product of two terms: an increasing
hyperbolic function, say ¢(t) = sinh3t and a decaying exponential function,
say y(t) =exp (— bt). Interplay of these two terms determines the
time-variation of displacement of a heavily damped oscillator. The exponential
term will tend to reduce the displacement as time passes while the hyperbolic
term will tend to increase it. The plots of these two terms are indicated in

separately in Fig. 18.2. Note that 3 and b are constants and they will not affect

in any way the time variations of functions ¢(t)and w(t), respectively. When
these two terms (Eq. (18.5)) are plotted together, as shown by the continuous
curve in Fig. 18.2, we get the displacement-time graph for a heavily damped
system. You may note that initially the displacement increases with time. But
soon the exponential term begins to dominate and displacement begins to
decrease gradually. However, the motion is non-oscillatory because x(t)
does not become negative at any time. Such a motion is called dead-beat.

A

T exp (-bt)
N

< |\

- \,

= \

) \, | sin h pt
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= N\ ]
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— N\,
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»
>

Time, t —>»
Fig. 18.2: Time-variation of displacement of an over-damped system.

Damped Oscillations

sinh Bt

_ exp(Bt) — exp(-pt)
2

is hyperbolic sine
function.
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We may now summarise the result obtained for an over-damped system.

The motion of an over-damped (b > g ) system is non-oscillatory. The
instantaneous displacement, x(t) of such a system is determined by an
interplay of a decaying exponential function and an increasing hyperbolic
function. Mathematically, we write it as

x(t) = Yo exp (- bt) sinh Bt

B

18.2.2 Critical Damping

The critically damped oscillation is characterised by the condition b = ®y.

This means that (6> — ©8) = 0, and Eq. (18.4), the solution of Eq. (18.3)
reduces to:

x(t) = (a4 + az) exp (- bt)
=a exp (- bt) (18.6)
where a = aq + ap

You can verify (SAQ 2) that for critical damping, the complete solution of Eq.
(18.3) is given by

x(t)=(p +qt) exp (— bt) (18.7)

where p and g are constants. Note that p has the dimension of length and g
has the dimensions of velocity. We can determine the values of these
constants using the initial conditions.

SAQ 2 - Solution of the differential equation of a critically
damped oscillator

Show that Eq. (18.7) represents the complete solution of Eq. (18.3) for a
critically damped oscillator.

On the basis of the general solution of a critically damped oscillator given by
Eq. (18.7), we can draw the following conclusions about its behaviour:

e The time variation of displacement of a critically damped oscillator is
governed by a decaying exponential function. Therefore, the time taken
by the oscillator to come back to equilibrium position will be
minimum.

o The displacement remains positive at all times. This means that a critically
damped system does not overshoot equilibrium position or oscillate about
it.

Fig. 18.3 depicts time variation of displacement of a critically damped system.
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Displacement, x —»

Time, t—»
Fig. 18.3: Displacement-time graph for a critically damped system.

The door closing mechanism in a door closer and shock absorbers in an
automobile are the most common examples of critically damped systems. Due
to critical damping of the spring used in a door closer, the door closes quickly
but gently. Similarly, shock absorbers quickly damp the bounce that a car may
experience immediately after hitting a road bump or a pit. Some other
examples of critically damped systems are the indicator needles in electrical
and electronic instruments.

We may now conclude as follows:

A critically damped system attains the equilibrium condition in minimum I Recap '
time. The instantaneous displacement of a critically damped oscillator is
given by

x(t) = (p +qt) exp (- bt)

where p and g are constants.

You now know that an over-damped as well as a critically damped system
returns to the equilibrium position without any oscillation.

You may, therefore, ask: What is the essential difference between a
critically damped and a heavily damped system? A critically damped
system returns back to the equilibrium position in the quickest possible
time, whereas a heavily damped system attains equilibrium position very
slowly.

In physics, over-damped and critically damped oscillations have limited use.
The case of more general interest is weak damping. You will now learn about
it.

18.2.3 Weak Damping

When b < ®g, the system is said to be weakly damped and this gives rise to
damped oscillatory motion.

For a weakly damped system, the solution of Eq. (18.3) is given by:

x(t) =V—Oexp(—bt)cos[codt l]: a(t) sinogt (18.8)
Wy 2
where a(t):g)—oexp(—bt) = ap exp(—bt) (18.9)
d
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Displacement, x —»

and angular frequency of the damped oscillator is less than angular frequency
of free oscillations:

P 'Y2 1/2
Wy = (0)(2)—b2)1/2={z—m] (18.10)

Eq. (18.8) gives the general solution of Eq. (18.3) for weak damping. Note that
it represents sinusoidal motion of frequency @y (< ®y). However, the
amplitude, a(t) (= ag exp (— bt)) of oscillation decreases exponentially with
time. So, we can say that the motion of a weakly damped system is
oscillatory but not simple harmonic. The displacement-time graph for such
an oscillator is shown in Fig. 18.4. Since the sine function varies between +1
and —1, the displacement-time curve lies between ap exp (- bt) and

— ag exp (— bt).

Time, t —

Fig. 18.4: Displacement-time graph for a weakly damped oscillator.

In addition to amplitude of oscillation, weak damping also affects the
frequency of oscillation. You may ask: What is the period of the damped
motion depicted in Fig. 18.4? Strictly speaking, it is difficult to define time
period for weakly damped motion because the motion does not repeat itself.
That is, the value of amplitude, say A at time {4, is never reached again at any
subsequent time. But, using the analogy with simple harmonic motion loosely,
we define the time period as the time elapsed between three consecutive
values when displacement becomes zero. That is, time taken by the oscillator
between points B and F in Fig. 18.4 Further, since angular frequency, wy of
the damped oscillator is less than its natural frequency, ®g, damping

increases the period of oscillation of an oscillator. Mathematically, we
express the period of oscillation of a weakly damped oscillator as

2n 2n _ 2n
Wy (0)% —b2)1/2 k 72
m 4m?2

Tq =

(18.11)

Before proceeding further, let us recapitulate the results obtained for a weakly
damped oscillator.
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e For a weakly damped oscillator, the instantaneous displacement is
given by
x(t) =a(t) sin o4t
where amplitude of oscillation decreases exponentially with time:
a(t) = ag exp (- bt) and ag =vg /0y
e The motion of a weakly damped system is oscillatory but not simple
harmonic. The period of oscillation is given by
2n

k 7y2

m 4m?2

Tqg =

You should now go through the following example carefully to learn calculate
the magnitude of various quantities associated with a weakly damped system.

EXJZIMLf 18.2 : OSCILLATIONS OF A WEAKLY DAMPED
SYSTEM

Restoring and frictional forces of magnitudes kx and y % , respectively act

simultaneously on an object of mass m attached to a spring. Under the
influence of these forces, the mass oscillates with a frequency 0.5 Hz and
its amplitude reduces to half in 2 s. Calculate the force constant k, the
damping constant y and the damping factor b. Also write the differential
equation for the system.

SOLUTION B Since the object is subjected to frictional (or damping) force,

it constitutes a damped system which oscillates with frequency 0.5 Hz.
Thus, we can write the angular frequency, @, of this damped oscillator as

Wy = 2nf =mw 8_1

Since the system is oscillatory despite being damped, we can say that it is
a weakly damped system. The amplitude of a weakly damped system at
any given time t is given by Eq. (18.9):

a(t)=ag exp (—bt)
Further, we are told that the amplitude of oscillation reduces to half in 2 s.
Therefore, we can write

%ao =ag exp (—2b)

or exp (-2b)=1/2 = exp(2b)=2
On taking natural logarithm of both sides, we get

b= 1 In 2

2
We know that b=7y/ 2m. So, we can write
Y 2303 2.303x0.3010

——=———xlogyp2 =

2m 2 2
or Y =0.6932m (i)
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It can be rearranged to write

m 2m
Hence k=9.9m (i)

2
LS +(lj _ 2 1 (0.3466)% = 9.98

The differential equation of a damped harmonic oscillator is given by
Eq. (18.3):
2
u + l% + ix =0
dt2 mdt

Substituting the values of (y/m) and (k/m) from Egs. (i) and (ii)
respectively, we obtain the differential equation representing the motion of
the mass, m as:

2
97X 06939 19.08x=0
at? dt

You may now like to answer an SAQ.

SﬁQ 3 — Comparison of time periods of a damped
and an undamped oscillator

The amplitude of vibration of a damped spring-mass system decreases
from 10 cm to 2.5 cm in 200 s. If this oscillator completes 100 oscillations in
this time, compare the periods with and without damping.

You now know that the motion of an over-damped system and a critically
damped system is non-oscillatory. However, the motion of a weakly damped
system is oscillatory and its frequency is lower than that of a free (or
undamped) system. You must also have noted that the amplitude of a weakly
damped oscillator decreases continuously and the rate of decay is
characterised by damping factor, b. Let us now learn about the energy of a
weakly damped oscillator.

Energy of a weakly damped oscillator

From Sec. 16.4.1, you may recall that the average energy, E; of a harmonic
oscillator is given by

Eo = (1/2) ka?
where a is the amplitude of oscillation. This expression indicates that larger
the amplitude of oscillation, greater will be the average energy of the
oscillator. When such a system is damped, its energy is spent on overcoming
the effect of damping. The loss of energy of the system manifests as gradual
decrease in the value of amplitude of oscillation of the system.

Since amplitude is a measure of energy of an oscillator, you can get a
qualitative idea about the energy dissipation in a weakly damped system from
Fig. 18.4. Note that oscillations dies down gradually with time. It means that a




Unit 18 Damped Oscillations

damped oscillating system loses energy at a rate determined by the
magnitude of damping factor, b.

To obtain an expression for average energy of a weakly damped system, we
recall that average energy of a free oscillator is proportional to the square of
amplitude. We extend this argument to a weakly damped oscillator and write

<E >« 32 = C32
where C is the constant of proportionality. Using Eq. (18.9), we can write the
expression for average energy as

<E >=Caj exp (- 2bt) = Ey exp (- 2bt) (18.12)
where Ej = Cag is energy of an undamped oscillator.

Eq. (18.12) shows that the average energy of a weakly damped oscillator
decreases at a rate faster [exp (- 2bt)] than the rate of decrease of
amplitude [exp (- bi)]- In Fig. 18.5, we have plotted the time variation of
average energy. If you compare this with the envelope of plot shown by the
dotted lines in Fig. 18.4, you will note that the energy curve is steeper.

Average energy, <E> —»

o

Time, t —»
Fig. 18.5: Time variation of average energy for a weakly damped system.

So, we can conclude as follows:

e The average energy of a weakly damped oscillator decreases l Recap '

exponentially with time:

<E >=Ey exp (- 2bt)

e The average energy of a weakly damped oscillator decreases faster
than its amplitude.

You may now like to answer an SAQ.

SAQ 4 - Motion of a weakly damped system

An object of one kg mass executes one-dimensional motion. It experiences
a restoring force characterised by force constant 4 Nm~" and a resistive
force with damping constant 0.6 Nm™s,

i) Will its motion be oscillatory?

ii) Calculate the damping constant for which the motion will be critically
damped.

iii) For what mass will the motion be critically damped for the given forces? o1




The expression for the
instantaneous
displacement of a
weakly damped
system is given by
Eq. (18.8):

x(t) = a(t) sin w4t

For small values of b,
we can take oy = 0y
and write

x(t) = a(t) sin wpt
= a(t) sin 2rt/ T)

Harmonic Oscillations

You must have noted that a weakly damped oscillator exhibits oscillatory
behaviour, with continuously decaying amplitude with time. However, we need
to know the magnitude (or extent) of damping operative in a system, even if it
is weak. This is because a quantitative measure of the damping in a weakly
damped oscillator is useful for investigating the motion of a variety of physical
systems. Therefore, it is important to learn to characterize weak damping and
obtain its quantitative measure. You will learn about it now.

18.3 CHARACTERISING WEAK DAMPING

To obtain a quantitative estimate of damping in the system, we define three
parameters, namely, logarithmic decrement (1), relaxation time (T) and quality
factor (Q). These parameters are defined in terms of angular frequency w, and
damping factor b. Depending on the system, one or more of these parameters
may have to be calculated to determine the extent of damping. We now
discuss these parameters one by one.

18.3.1 Logarithmic Decrement

82

In this method of characterising weak damping, the damping present in a
system is measured in terms of the rate at which the amplitude of oscillation
dies down with time. Suppose a weakly damped system, initially at rest at its
equilibrium position, is given an impulse, i.e.at t=0, x=0 and v =v,. The
instantaneous displacement of this oscillator can be expressed in terms of the
time period of oscillations as (see margin remark):

x(t) = a(t) sin (@j

where a(t) = ag exp (- bt) and ag is amplitude of free oscillations (b = 0).

To obtain an expression for the rate of decrease of amplitude of a weakly
damped oscillator, refer to Fig. 18.4 again. Note that at t = T/4, the
displacement rises to its first maximum value (point A). Let the value of
amplitude corresponding to point A be a4. So, using above expression for
displacement, we can write

(Tj ( ij . (2n Tj
X|—|=agexp|—-—|sin| =—x—
4 4 T 4

%)
or a1 = ag exp e

since sin (n/2)=1.After one complete oscillation, that is, after time (1+ T),

the amplitude becomes maximum again (point E in Fig. 18.4). Let us denote
the value of amplitude corresponding to point E by a,. Note that both these

amplitudes, aq and a, will lie in the same direction/quadrant.

Thus, using t =(5T /4) in the expression for a(t), we can write the amplitude

ap as
( 5ij
ap = ag exp —T



The next maximum of displacement, a3 will occur at (%+Tj = %TT The

corresponding amplitude (point /in Fig. 18.4), a3 will be given by

az = ag exp _9b_T
3 0 4
Similarly, we can write
( 13ij
as =dag exp —T

Note that the ratio of successive amplitudes separated by one time period, T
is constant:

S8 _ 8 S eppT)=d (18.13)
as as as anp
The constant d which denotes the ratio of two successive amplitudes
separated by one period, is called the decrement of the motion. The
logarithm of decrement is called logarithmic decrement of the motion. We
denote logarithmic decrement by A and write

A=Ind =In(exp (bT))=bT :ﬂ (18.14)
2m

Note that A depends on damping factor (b) as well as the time period (T) of
the oscillating system. From Egs. (18.13) and (18.14), it readily follows that

A _g= exp (L)
ap

A _ 3,82 _ g2 _exp (2M)

as ax as
and so on. This result shows that we can measure A by knowing two
successive amplitudes separated by one period. However, from an
experimental point of view, it is more convenient to compare amplitudes of
oscillations separated by n periods. That is, by measuring(a/a,). We,

therefore, write

4@ _a4 @2 & M:exp[(n_'])}h]
ap ap, az ay an

Taking logarithm on both sides and simplifying, we get:

A= In(ﬂJ (18.15)

" (-1 \ap

If you plot In (a4/a,) along y-axis and (n—1) along x-axis for different values

of n, you will obtain a straight line. The slope of this line gives the value of
logarithmic decrement, A.

Let us now work out an example to illustrate the utility of the above results.

Damped Oscillations
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E)GZIWLE 18.3 ' LOGARITHMIC DECREMENT OF A DAMPED
HARMONIC OSCILLATOR

A damped harmonic oscillator has the first amplitude of 20 cm. The value
of the amplitude reduces to 2 cm after 100 oscillations. If period of
oscillations is 4.6 s, calculate the logarithmic decrement and damping
factor. Also determine the number of oscillations in which the amplitude
drops by 50 percent.

SOLUTION B The logarithmic decrement is given by Eq. (18.15):

A= L In[ﬂj
(n=1) an

We are given that ag =20 cm; a, =2cm; and n =100 .So, we can

write

A= (296 110y =0.023
99 2cm 99

The logarithmic decrement is given in terms of damping factor, b by
Eq. (18.14):
A=bT

So the damping factor b is

p_ A _0.023
T 46s

-0.005 s~

We know that the amplitude of a damped oscillator is given by Eq. (18.9):
a(t) = ag exp (- bt)
Let the initial amplitude be ay and after time {4, it drops by 50 percent.

Then, we can write

) — exp(-bt)

ao

1
— =exp(-bt
> p(=bty)

or, exp(bty)=2
Taking logarithm on both sides, we get
bty =1n (2)
or ty = In(2) = 0.693 = 139 s
b 0.005 s~

Since the period of oscillation is 4.6 s, total number of oscillations
completed in time t4 is
_139s _
T 46s
So, in 30 oscillations, the amplitude of the damped oscillator will drop by
50 percent.

30
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Before proceeding further, you should solve an SAQ.

SAQ 5 - Logarithmic decrement and damping factor of a
simple pendulum

The period of a simple pendulum is 4 s and its amplitude is 5°. After 30
oscillations, its amplitude decreases to 3°. Calculate the logarithmic
decrement and damping factor. Also calculate the number of oscillations in
which its amplitude reduces by 25%.

18.3.2 Relaxation Time

Another parameter which is used to quantify damping is relaxation time. It is
denoted by the symbol 1. Relaxation time is defined as the time in which the
amplitude of a damped oscillator decreases to e=1 (= 0.368) of its initial

value. To understand this, recall that the amplitude of a weakly damped
harmonic oscillator is given by Eq. (18.9):

a(t) = ag exp(— bt)

So the amplitude after time (t + T) can be written as
a(t +t)=ag exp[-b(t + 1)]

By taking the ratio of a (f + T) and a(t), we obtain

a(t+7)

a(t)

If we assume that bt =1, we have

=exp(—bhT1)

a(t+1) o —
a(t) - e

(18.16)

Thus, for b=1-1, the amplitude drops to 1/e (= 0.368) times of its initial

value. The relaxation time is, therefore, a measure of the rapidity with
which oscillations of a weakly damped oscillator decrease.

Yet another parameter which gives a quantitative measure of damping is
quality factor (Q) of a system. You will learn about it now.

18.3.3 Quality Factor

The quality factor is a measure of the rate of decay of energy. The quality
factor Q of a weakly damped oscillator is defined as

_ Energy stored in the system
Energy dissipated per radian

(18.17)

From the definition, it is obvious that smaller the energy dissipated per radian,

larger will be the value of Q for a damped system. It means that if a system

has high value of Q, the damping in the system is weak and dissipation of

energy is less. 85



The power series
expansion of the
exponential function is

For weak damping, we
can assume that
2 bT << 1 and write

exp (-2 bT)=1-2bT

x> X
e X o x+— -1,
2! 3!
For x << 1,
e X z1-x
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You may now ask: Why have we defined quality factor in terms of energy
dissipated per radian? To understand this, you may recall that in one
complete oscillation, an oscillator traverses angular distance equal to 2n
radians. So, energy dissipated in one cycle of oscillation is same as energy
dissipated in 2n radians. Moreover, inclusion of energy dissipated per radian
instead of energy dissipated per cycle facilitates mathematical convenience as
will be evident shortly.

To proceed further, we recall that average energy of a damped oscillator is
given by Eq. (18.12):

<E>=Ej exp (— 2bt)
where Ej is the energy of the undamped oscillator.

Further, let us suppose that average energies of the damped oscillator at
times tand (t + T)are Eq and E,, respectively. Therefore, we can write

Eq = Ey exp (— 2bt) and Ey =Epgexp{-2b(t+T)}

Hence, the ratio (see margin remark)

é=exp(—2bT) =1-2bT
Eq
or Ei=Ba _opt (18.18)
E;

The numerator of the LHS of Eq. (18.18) signifies the energy lost by a weakly
damped oscillator in one cycle. Now to write an expression for Q as per Eq.
(18.17) we need to know the energy dissipated per radian. So, we divide both
sides of Eq. (18.18) by 2r and rewrite it as

Eq 1 _ oo

= X2 = (18.19)
[(Eq—Ey)/2m] 2bT 2b
On comparing Egs. (18.17) and (18.19), we can write
Wo
Q=20 18.20
2b ( )

Eq. (18.20) is the required expression for quality factor of a weakly damped
oscillator. Note that Q is inversely proportional to b. It means that as damping
in the system increases, the value of the quality factor decreases. Further, on
substituting the values of wq (= vk/m) and 2b (=Y / m) in Eqg. (18.20), we

can express Q as

_Wy _m ﬁsz_m
Q_2b yx\/; V2

Eq. (18.21) expresses the quality factor of a damped oscillator in terms of
mass m, force constant k and damping constant y of the system. It is also
evident from Eq. (18.20) as well as Eq. (18.21) that Q is a dimensionless
quantity. Due to this fact, it can be defined for any oscillator — mechanical or
electrical.

(18.21)



We can also obtain the relation between the quality factor of an oscillator and
its relaxation time, T. In Sec. 18.3.2, you learnt that b = 1/1. On substituting

this value of b in Eq. (18.20), we can write

Q=3 (18.22)

So, we find that the quality factor and the relaxation time are directly
proportional to each other. This is expected as both these parameters
characterise the extent of damping in the system.

The quality factor of oscillating systems where damping is important, such as
door closer or a shock absorber, is approximately 0.5. On the other hand, the
value of Q of a tuning fork is approximately 1000. Can you guess the value of

Q for an undamped system? From Eq. (18.20) you can easily conclude that Q
is infinite for an undamped (b = 0) oscillator.

We now summarise the results obtained in this section.

e The ratio of two successive amplitude separated by one period is
called the decrement of motion. The logarithm of decrement is called
logarithmic decrement of damped oscillation motion and it is given by

A S (ﬂJ
(n=1) an

where n is the number of complete oscillations.

¢ Relaxation time is the time taken by the amplitude of a damped
oscillator to decrease to e-1 (= 0.368) times its initial value. It is
givenastT=1/b

¢ Quality factor Q is defined as the rate of decay of energy of a damped
oscillator. It is given by Q = wg/2b.

You should go through the following example carefully to get a feel for the
typical values of some of the parameters discussed above.

E.X’ﬂ.‘MTLf 18.4 : RELAXATION TIME AND QUALITY FACTOR
OF A STRINGED MUSICAL INSTRUMENT

The intensity of sound produced due to plucking of the string of a musical
instrument decreases by half in 8 s. The natural frequency of the string is
512 Hz. Calculate the (i) relaxation time, (ii) quality factor and (iii) fractional
loss of energy per cycle.

SOLUTION B We know that the intensity /() of sound is proportional to
the energy E(f) of oscillation generating sound. So, we can write

I(t) < E(t)

Damped Oscillations
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1

i) Using the result b =1 ', we can write Eq. (18.12) as

E(t)=Eq exp(— %)
or %;): exp(— %)

2t 165
In (Eg /E(t)) In(2)

so that T=

i) The quality factor Q is given by Eq. (18.20):

Q=0 _ DT _ 1 512%23.1=371375
o6 2

iii) Using Eq. (18.18) the fractional loss in energy can be expressed as

AE _2m__ 2m 4 69x1074
E_Q 371375

You may now like to answer an SAQ.

SﬁQ 6 - Parameters characterising damping

The upper end of a massless spring is fixed to a rigid support. It carries a
horizontal disc of mass 200 g at the lower end. It is observed that the
system oscillates with frequency 10 Hz and the amplitude of the damped
oscillations reduces to half its undamped value in one minute. Calculate
(i) the damping constant, (ii) the relaxation time, (iii) quality factor of the
system and (iv) the force constant of the spring.

Let us now summarise what you have learnt in this unit.

18.4 SUMMARY

Concept Description

Equation of motion ofa B The equation of motion of a damped oscillator is
damped oscillator

2
u+2b%+w(2)x:0
dt? dt

where 2b=7v/m and 0)% =k/m

Solution for heavy B The solution of the equation of motion for heavy damping (b > ®g)is
damping

x(t) = ;—gexm—bt)[exp(ﬁt) —exp(-Bt)]

88 where B = yb% — 0%



B For critical damping (b = @), the instantaneous displacement of a

Critical damping

Weak damping

Amplitude and average
energy

Time period of weakly
damped oscillator

Characteristics of weak
damping; logarithmic
decrement

Relaxation time

Quality factor

Damped Oscillations

damped oscillator is given by

x(t)=(p + qt) exp(-bt)

In case of weak damping (b < ®g ), the expression for instantaneous
displacement of a damped oscillator is

x(t) = ag exp(~ bt) cos (mdt —gj _ a(t)sinogt

The amplitude and average energy of a weakly damped oscillator
decrease exponentially with time:
a(t) = ag exp(—bt)
and <E > = Ejy exp(—2bt)

where ag is the initial amplitude and Ej is the energy of the
undamped oscillator.

The period of a weakly damped oscillator is given by

- _2n _ 21 B 2n
®g (R —b?)"2 K P 1/2
m 4m?

A weakly damped system is characterised by logarithmic
decrement, relaxation time and quality factor. The logarithmic
decrement is defined as the logarithm of the ratio of successive
amplitudes separated by one period. It is given by

A= LIn (ﬂj
(n=1) an
The relaxation time (7) is defined as the time taken by the amplitude of

a weakly damped oscillator to decay to e—1 or 36.8% of its maximum

amplitude. The relaxation time 7 is related to damping factor b as
T=1/b.

The quality factor Q of a weakly damped harmonic oscillator is defined
as the ratio between the energy stored in the system and energy
dissipated per radian. Its expression is given as

Wp @pT

T

18.5 TERMINAL QUESTIONS

1. A damped harmonic oscillator is represented by the equation

d?x ax

m—+ya+kx=0

dt?
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with m=0.25 kg, Y=0.070 kgs_1 and k =85 Nm™". Calculate (i) the
period of oscillation, (ii) the number of oscillations in which amplitude of
the oscillator will become half of its initial, (iii) the number of oscillations in
which its mechanical energy will drop to half of its initial value and

(iv) quality factor of the oscillator.

. A block attached to a spring is made to oscillate with an initial amplitude of

12 cm. After 2.4 minutes, the amplitude decreases to 6 cm. Calculate
(i) the time when the amplitude becomes 3 cm and (ii) the value of
damping constant 7y for this motion.

The period of a simple pendulum is 2 s and its amplitude is 5°. After 20
complete oscillations, its amplitude decreases to 4°. Calculate the
damping constant and relaxation time.

The quality factor of a sonometer wire is 4,000. The wire vibrates at a
frequency of 300 Hz. Calculate the time in which its amplitude will
decrease to half of its initial value.

Starting from the definition E(t) = K.E.(t)+ P.E.(t), show that, for a
damped oscillator

E(t)=Eqy exp(—2bt)
where Ej is the energy of an undamped oscillator.

The quality factor of a tuning fork of frequency 512 Hz is 6x104.
Suppose that its initial energy is Eg. Calculate the time in which its energy

drops to Eg e”!. How many oscillations will the tuning fork make in this
time?

A box of mass 0.2 kg is attached to one end of a spring whose other end
is fixed to a rigid support. When a mass of 0.8 kg is placed inside the box,
the system executes 4 oscillations per second and the amplitude falls

from 2 cm to 1 cm in 30 s. Calculate (i) the force constant, (ii) the
relaxation time and (iii) the quality factor of the system.

A steady force of 60 N is required to vertically lift a mass of 1 kg through a
viscous liquid at a constant speed of 5 ms™. Assuming that the effect of
viscosity can be taken to be proportional to velocity, calculate the
proportionality constant. The mass is suspended in the same liquid by a
spring of force constant 50 Nm~". Calculate the equilibrium extension of

the spring. The mass is pulled down and released from rest. It executes

oscillatory motion of continuously decaying amplitude. Calculate damping

constant and period of oscillation. Take g = 10ms 2.

18.6 SOLUTIONS AND ANSWERS

Self-Assessment Questions

. On comparing the given equation with Eq. (18.3) — the equation of motion

of a damped harmonic oscillator — we find that b =10 and ®y =5. Since
b > mq, the given equation represents non-oscillatory motion
characterising a heavily damped oscillator.
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2. From Section 18.2.3, we know that
x(t)=a exp(—bt)
does not represent complete solution of Eq. (18.3). Suppose that another
solution of Eq. (18.3) is represented by
x(t) = gt exp(—bt)
On calculating dx/dt and d’x/dt?, using the above expression for x(t)
and substituting them in Eq. (18.3), we note that it is satisfied. So,

according to the superposition principle, we can write the complete
solution of Eq. (18.3) as

x(t)=(p + qt) exp(-bt)
Note that the factor a has been replaced by (p + gt) where p and q are
constants.
3. The time period of the given damped spring-mass system

_200s
4~ "100

=2s (i)

Now, as per the problem, the system is oscillatory despite being damped.
This is possible only if the system is weakly damped. Thus, we can write
2n 2n ..
Tgy=—=—s——+——+ i
7wy (@2 —p?)!2 (i)
From Eqgs. (i) and (ii), we get, (0% =n? + b Hence, we can write the time
period of the oscillator without damping as
2n 2n

T = Q=
Wy (7‘C2+b2)1/2

(iif)

To compute b, we use the relation for the instantaneous amplitude of the
weakly damped system:
a(t)=ag exp(— bt)

Taking logarithm on both sides, this may be written as:

t \a(t)
Substituting the values of f, ag and a from the problem, we get:

b (100 _ 23 0 4-69x103s (iv)
200 s | 2.5cm 200s

Substituting Eq. (iv) in Eq. (iii), we get
B 2n
12 +(6.9x1073)2]"/2

=2.0s=Ty
Thus, we find that the time periods with and without damping of a weakly
damped system is nearly equal.

4. We are told that mass, m =1kg, force constant, k =4 Nm~ and damping

constant, Y=0.6 Nsm~. Therefore, the damping factor is given by 91



92

Harmonic Oscillations

and the angular frequency, when damping is absent, is given by

(N :\/2225—1
m

i) From these results, we note that wg > b. This implies that the system
is weakly damped and the motion will be oscillatory.
i) The extent of damping may be changed by changing the damping

factor, b. Further, we know that the condition for critical damping is,
g = b. So, to attain critical damping, we must change b such that

b=2s" (= ). To attain this value of b, the damping constant, y
should be
Y=2mb =2x(1kg)x (2s') =4 Nsm™"

iii) The system may be made critically damped by changing m and
keeping Y unchanged. If m’ is the new value of mass for which the
system is critically damped for the same value of the damping constant
Y, then

Wy =vk/m" and b= ZY’
m

And, as we know, for critically damped system, ®g = b. On
substituting the values of @y and b with new mass, m’, we get

k _ ¥

m  2m

2 -1\2
m,=y_=(0.6Nsm )

=0.0225 kg=225g
4k 4x(4Nm™

We know that the logarithmic decrement A is given by Eq. (18.25):
A= L In| 21
(n-1) \a,
As per the problem, a; = 5°, a, =3° and n=30. So, we can write
A SN (0 R PN )
29 (3°) 29 (3

:w:omg
29

Further, the damping factor, b and A are related by Eq. (18.24):

_&_0.018
4s

A=bT = b =0.01s™"

To compute the number of oscillations in which amplitude reduces by
25%, we note that the time variation of amplitude of a damped oscillator is
given by Eq. (18.10):
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a(t) = ag exp(— bt)
Since the amplitude reduces by 25% in time, say t;, we get
aly) _3

aop 4

3 4
So, — =exp(-bt bt =In| —
0 g = oxp(=bty) = bty (3)

N t1:1|n 4)_028
b \3) 0.01s™"

That is, the amplitude will reduce by 25% in 57 s. Since the period of the
pendulum is 4 s, the number of oscillations completed in this time is

573514
4s

Thus, in 14 oscillations, amplitude of the pendulum will reduce by 25%.

6. The angular frequency of oscillation of a weakly damped oscillator is given

by

Wg =03 -b2 =  ©f =3 + b2
Further, the angular frequency of the damped oscillator can also be
expressed as

g =2nf =2nx10s ' =20m s
Let the undamped amplitude be ap. The damped amplitude a(t) at time t is
ag exp(— bt). In this case, t =60s. So, we can write

a(60s) = %0 = ap exp(— 60b)

b= In2=001s"
60

i) The resistive force constant or the damping force constant is
Y=2mb=2x(0.2kg)x(0.01s7')=4.8x10"2 Nsm™

ii) The relaxation timeis T= 1 = % =86.6s
n

iii) The quality factor is Q = %

_ 20n s 'x86.6s
2

Q =2720

iv) The force constant of the spring is
k:(o%m:m((of, +b2)

= (0.2 kg) x [(400 w2 s72) + (.01s %] = 790 Nm™’ 93
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Terminal Questions

1. For the given damped harmonic oscillator, m=0.25 kg, y=0.070 kgs_1

and k =85Nm~". These values show that b < ®y and hence the damped
oscillator is weakly damped.

i)  For weakly damped oscillator, the period of oscillation is given by
Eq. (18.11):

21 2n
Kk ? -1 Y
_[YJ 85Nm~" (0.070kgs
m \2m 0.25kg 2x0.25kg
2n
J(340-1.96x1072) 52

2%

Tlgasst o

i)  We know that amplitude of a damped oscillator is given by
vt
a(t) = agexp(— bt)=agexp| - —
2m

As per the problem,

ﬂ:%:exp(_ fY_tj

ap 2m

On taking natural logarithm of both sides and rearranging terms, we
get
_2mIn2  2x(0.25kg)x0.693

t 1
Y 0.070kgs™

=4.95s

Since the period of the oscillator is 0.34 s, the amplitude will reduce
to half in 4.95s/0.34 s = 15 oscillations.

i)  From Eq. (18.12), we recall that average energy associated with a
damped harmonic oscillator is given by

vt
<E >=Eyexp(— bt)= Engexp| — —
o exp(- bt)= Ey p[ ZmJ

<E> ( 'yt}
=exp| - —
EO 2m
For <E>:l, we have
Eo 2

1 vt
. :exp P
94 2 2m



Damped Oscillations

Taking natural logarithm on both sides and rearranging the terms, we
can rewrite it as

_ min2 _ (0.25kg)x0.693
Y 0.070kgs™

Since the period of the oscillator is T = 0.34 s, we find that the energy

t =2.48s

of the oscillator will drop to half of its initial value in about
2.48s/0.34 = 7 oscillations.

iv) From Eq. (18.22), we recall that quality factor Q of a damped
harmonic oscillator is given by

_ Wom

oy

Q

since T= % = 2_m On substituting the values of various

quantities, we get

(18.44 s 1)x(0.25kg) _

66
0.070kgs™

The value of wghas been taken from (i) above where we have used

72 _2n

Oy o

Since the amplitude of the oscillator decreases with time, it is a damped
oscillator. The amplitude of a damped oscillator is given by

a(t) = ag exp(— bt) (i)
_ 4 _inl80 i
or exp(bt) = alt) — N ; In (a(t)] (i)

As per the problem,
a(t=2.4min)=6cm=0.06 m
ap=12cm=0.12m
t=2.4min =144s

On substituting these values in Eq. (ii), we get

__ 1. (012m
144s (0.06 m

): 481x10 35"

To find the time in which amplitude becomes 3 cm, we have
a(t) =3cm=0.03 m

So, from Eq. (i):
a(t) = ag exp(—bt)

1 ap 1 0.12m
t=—1In = In
b \a(t)) 481x103s? 10.03m

=288.2 s = 4.8 min
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ii) The expression for damping constant is
Y =2bm

= 2% (4.81x10-35-1)x (1kg)

=9.61x10-3Nsm-1

. The progressive decrease in the amplitude (angular displacement) of a

simple pendulum due to damping (say, air resistance) can be expressed
as:

6 = 0y exp(— bt)

= b:lln[e—oj
t 0

As per the problem, 69 = 5°, 6(t) = 4° and T =2s. Since the decrease in
amplitude takes place in 20 oscillations, the time taken by the pendulum to
complete these oscillations is 20x2s=40s. So, t=40s.

On substituting the values of 6q, 6(t) and t in the above expression, we
get

b= n[2]=558x103s"
40s \4

and, the relaxation time, T is given by

’C=1=179.3s
b

Since the quality factor, Q of a weakly damped system is given by

woT . . .
Q= TO , we can write the relaxation time, T as

£_2Q _ 2x4000

- —4.24s
Wy 2rnx300s"

Further, the amplitude, a(t) of a damped oscillator at time t is given by

a(t) =ag exp(— bt) = ag exp(—t/71)

So, t=tIn20 —(424s)xIn(2)=29s
a

. We are given that

E(t) = K.E.(t) + P.E.(t)

ORERER

where dx/dt denotes instantaneous velocity. For a weakly damped
oscillator, the instantaneous displacement is given by

x(t) = ag exp(—bt) cos(wy + )



By differentiating it with respect to time, we get instantaneous velocity:

% =ag exp(—bt) [b cos(wyt + O) + Wy sin(wgt + §)] (ii)

Hence, kinetic energy of the given oscillator is

2
KE.= (ljm (%j
2) \dt
= [%j m ab exp(-2bt) [b cos (gt + §) + Oy sin(agt + O)I

= (%J m ag exp(—2bt) [b2 cos? (gt + ¢)

+ @F sin? (wyt + 0) + by sin2(wyt + O)] (iii)

Similarly, the potential energy of the oscillator is
P.E.=(1 o = [ 1) m g x2
2 2
On substituting for x, we get

P.E.= [%j mag (og exp(—2bt) cos? (gt +0) (iv)

Hence, the total energy of the oscillator at any time t is given by
E(t) = [%j mag exp(-2bt) [(b% + ) cos? (wyt +0)

+®3 sin? (gt + 0)+bwy sin 2(wgt + 0)] (v)

When damping is weak, the amplitude of oscillation does not change
much over one oscillation. So we may take the factor exp (- 2bt) as
essentially constant. Further, since

< sin? (gt + 0) > = < cos? (w,t + ) > =%

and <sin 2(wg4t +0) > = 0, the energy of a weakly damped oscillator,
when averaged over one cycle, is

<E>= Gj mag exp(=2bt) < [(b? + 03) cos? (w4t +0)

+(o§ sin? (gt + 0)+bwy sin 2(wyt + 0)] >

1 2 b2+ 8
== —2pt)| 20 B
(3)mat o >[ LI

Since ®3 = Z —b2, this expression simplifies to

Damped Oscillations
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<E>= GJ mag o3 exp(-2bt) (vi)

From Unit 16, we recall that Eg = (1/2)mag 0)% is the total energy of an
undamped oscillator. Hence, we can write
<E >=E( exp(—2bt)

6. The average energy of a weakly damped oscillator is given by
<E >=E( exp(—2bt)

. 1 .
Since b =—, we can write
T

<E>=E exp(—gj
T

When t = 1/2, <E>:i
e

So, in time (T/2), the energy of the oscillator will drop to E e To
calculate T (the time for this to happen), we use the expression for quality

factor, Q = % . This gives

__20 _ 2x6x10"
®g  2nx512s

_ 3x10%

= 7= 8315
256ns”
Thus, energy will reduce to 1/e of its initial value in 18.7 s.

The number of oscillations, n made by the tuning fork in this time is given
by
n=fyxt=>512s"x18.7s =95.7 x 102

7. i) Here mp=2nf=2x(3.14)x4s'=251s""

We also know that

o =\/z =  k=ma§=(1kg)x(25.1s)? =630 Nm™’
m
since total mass, m=0.2 kg + 0.8 kg=1kg
i)  Since amplitude of oscillations decreases with time, the oscillator is
damped. The amplitude of the damped oscillator is given by
a(t) = ap exp(- bt) (i)
As per the problem, ag =2cm =0.02 m, a(t)=1cm =0.01m and
t =30s. On substituting these values in Eq. (i), we get

0.01m = (0.02 m) exp(— 30b)

or b="2 53,102 ¢
98 30



Hence, relaxation time
1 1

—ﬁ= 43.3s
b 23x107“s

iii) For a weakly damped system, the quality factor is given by

wWoT 255 ' x 43.3s

2 2

. When the mass is lifted vertically, it moves at constant speed and no net

force acts on it. The upward force of 60 N is, therefore, balanced by the
downward forces, mg + Cv, where C is a constant of proportionality
(called damping constant) and v is the velocity of mass with which it is
being lifted upward. Thus, we can write

F =mg+Cv
or c-F=-mg
v

_ (BON)—(1kg)x(10ms™?)

1 =10 Nm's
(5ms™)

When the mass is suspended in the fluid by a spring of spring constant, k,
no viscous force acts on it when it is in equilibrium. The weight, mg will be
balanced by the restoring force kx of the spring. Thus,

_mg _ (1kg)x(10ms™?)

=0.2m
k 50Nm~"

Since the given mass executes oscillatory motion of decaying amplitude, it
is clear that the system is damped. Therefore, we can write the damping
factor

C _10Nm~ s 1
——=5s
2m 2x(1kg)

\/7 50 Nm™" 7076
1kg

So, we have b = 551 and Wy = 7.07s”". Hence

=yJw§-b? =50-25 =

Therefore, the frequency of oscillation is given by

1
~%_ 55 _gg0H;
2 2x3.14

and the period of oscillations

T=1:;=1.25s

f 0.80s

Damped Oscillations
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One of the attractions of visiting sea
beach is to enjoy the pleasure of
watching the waves. These waves come
from far off in the sea and break down at
the shores. Can you imagine how much
energy stored in nature is in the form of
waves?

(Source of picture: wikimedia.org)
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Relation between Wave Velocity, Frequency and

Wavelength
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19.4
19.5
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Mathematical Description of Wave Motion
Phase of a Wave and Phase Difference
Summary

Terminal Questions

Solutions and Answers

In previous three units of this block, you have learnt about free and damped oscillations. In this unit, you
will learn about waves. As such, oscillations and waves are related concepts, but study of waves is more
important because it provides you with the basis to understand a variety of natural phenomena.

We believe that you have studied about waves in your school physics course and are familiar with many
concepts associated with waves. However, a better understanding of these concepts requires careful and
attentive study. Therefore, we advise you to focus on the following important aspects associated with
waves: i) how does wave motion arise? ii) how do we represent waves? and iii) how is energy carried by
waves? The level of mathematical treatment in this unit is fairly simple. You are advised to solve all the
SAQs, and TQs to get a feel for the qualitative difference between oscillatory motion and wave motion.

“An ocean traveller has even more vividly the impression that the ocean [WAVZI I/ @111}

is made of waves than that it is made of water.”
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Unit 19 Wave Motion

19.1 INTRODUCTION

You have learnt about waves in your school physics course. The study of wave
motion is interesting because waves are present all around us. For example,
what we hear and see around us depends on waves. When we speak, our
vocal cords inside our throat vibrate. Their vibrations cause the surrounding air
molecules to vibrate and the effect is heard as sound. When this sound
reaches the ears of other persons near us, their ear drums begin to vibrate
and the sound is heard by them. You know that sound is a form of energy and
it is carried by sound waves, which enable us to hear what others speak.
Sound waves are used in SONAR (Sound Navigation and Ranging) and
prospecting for mineral deposits and oil (commodities governing the economy
of nations these days). Now-a-days we also use ultra-sound waves — waves
of frequency greater than 20 kHz — to obtain images of soft tissues in human
body.

Visible light enables us to see. It is an electromagnetic wave. You also know
about radio waves, X-rays and microwaves. These are all electromagnetic
waves having different frequencies. Most modern communication technologies
such as radio, television, telephone, fax, etc. are based on transmission and
receipt of signals in the form of radio waves and microwaves. X-rays are used
in medical diagnosis, e.g., for taking images of bones to diagnose fractures.

Seismic wave is other lesser known wave but it is equally important. It can
cause immense destruction as seen due to earthquakes in Jan., 2001 in the
state of Gujarat, in Oct., 2005 in J&K and in April 2015 in Nepal. The under-
sea earthquake induced tsunami in Dec., 2004 caused huge destruction in
Tamil Nadu in India and many other nations in the Indian Ocean. Earthquakes
in Chile, China, Iran, Japan, Pakistan and several other countries have caused
huge losses of life and resources. At the microscopic level, we learn about
matter waves to understand the nature of atoms, molecules, electrons,
protons and other elementary particles.

All these examples should convince you that understanding the physics of
wave motion is of fundamental importance. The waves mentioned above can
be broadly categorised into three main types: mechanical waves,
electromagnetic waves and matter waves. Much of what we discuss in this
unit applies to waves of all kinds. However, in this unit we shall discuss only
mechanical waves on a string and sound waves. You will learn about
electromagnetic waves in the second semester course on Electricity and
Magnetism and the fourth semester course on Wave and Optics and about
matter waves in the course on Modern Physics.

We begin our study of wave motion by describing, in Sec. 19.2, how waves
are formed and propagate. We will consider the examples of waves on a
string and sound waves. In Sec. 19.3, you will learn to depict wave motion
graphically and describe it mathematically. In this section, we also define
various wave parameters and discuss the concepts of the phase of a wave,

phase difference and phase velocity.
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Fig. 19.1: Water waves in
still water in a container.

The word disturbance
has been used here as a
general term which refers
to the deformation in the
shape of the water
surface with respect to its
undisturbed horizontal
surface. It can also be
used for a string.
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Expected Learning Outcomes
After studying this unit, you should be able to:

<« Explain how a wave is formed and how it propagates in a medium;
% Represent waves at a fixed position or at a fixed time graphically;

< Define the wave parameters (amplitude, time period, frequency, angular
frequency, wavelength, wave number and phase);

% Write the mathematical expression for a wave;

% Calculate the values of wave parameters for a given wave; and

% Explain the concept of phase difference for waves.

19.2 WAVE FORMATION AND PROPAGATION

To discuss formation of waves and their propagation, we begin with water
waves because we can easily observe them. If you drop small pebbles in still
water, say, in a pond or in a tub (or a bucket), you will observe circular ripples
spreading out on the water surface. These ripples spread out from the point at
which the pebbles strike the water surface (Fig. 19.1). When you look casually
at these ripples, you may get a feeling that water itself moves with them.
However, if you observe the ripples carefully, you can see that this is not true:
water does not move along with the ripples. You can verify this by placing a
paper boat or a leaf on the water surface. You will observe that the paper boat
(or the leaf) bounces up and down at the same place on the water surface,
without moving with the ripples.

You may now like to know: If water does not move along the surface, what
is it that moves in a water wave? What moves is the disturbance caused in
still water when we drop pebbles in it. This disturbance is transferred to the
adjacent water molecules. To appreciate what we mean by disturbance and
how it propagates, refer to Fig. 19.2 which shows N masses, each of mass m
coupled to each other by identical springs. A push or pull at one end of the

1 2 3 N
PM‘O’&MMM‘O’UHME‘O’HMM‘O’UMM‘ (a)
o,

b H 1 2 3 N
Push O o0 O- 700000~ 1500 O~ Touom O sovo  (b)

—

Gouse0 O T O~ tou0sr O~ Tuute0™-O-Toir-O-tomm  (c)

1 5 B N

—

FMMM‘O’MOM‘O”MWO’UMM‘O’WM‘OW (d)

1 2 3 N
WWOWWWWOWWOW (e)

Time
Y

Fig. 19.2: a) A system of N-coupled masses. b), c), d) and e) shows the
instantaneous configuration of the system as disturbance
(compression of the spring), say, on the left of mass 1 is transferred
by it to the left of mass 2, by mass 2 to the left of mass 3 and so on via
adjacent masses.



chain of spring-mass systems makes a disturbance propagate along the
chain.

When no force is applied to disturb the system, the masses are located at
their respective equilibrium positions as shown in Fig. 19.2a. If we give a

sudden push to the left end of the chain of coupled masses, as shown in
Fig. 19.2b, so that it is displaced by a distance xg towards the right, the first

spring is compressed. The compressed spring pushes mass 1 and displaces it

from its equilibrium position towards the right. The mass 1 in turn, pushes the
spring on its other side to its right. After mass 1 is displaced by a distance x,
the spring on its left is relaxed while spring to its right is compressed and
pushes mass 2. The second spring repeats what the first spring did to it. As a
result, the disturbance, the compression of the spring, moves between
masses 2 and 3. This sequence repeats itself as time passes, as shown in
Fig. 19.2¢c, d and e. From these observations, we can say that the net
result of pushing one of the masses in the chain is that disturbance
propagates in the form of compressions of springs along the chain of
coupled spring-mass systems. A similar sequence of events would be
repeated if we pulled the spring at the left-end of the chain and created a
disturbance in the form of extension of the spring. In both cases, the
disturbance — compression or extension of the spring — propagates along the
chain via spring-mass systems.

If we periodically disturb (displace) the first mass from its equilibrium position,
individual masses will gradually begin to oscillate about their respective
equilibrium positions. Note that the masses and the springs or the system
as a whole do not leave their positions; what moves instead is the
disturbance — compression and extension of the spring.

Perform the following simple activity with a string to appreciate this idea of
‘propagation of disturbance’ which will help you understand how waves are
formed.

Wave Motion

Take a long thin elastic string and fix one of its ends to a distant wall as
shown in Fig. 19.3a.

| @

3 (b)
.
y . | ©
/\_.
7 I @
i A

Time e
4 Ve (e)

Fig. 19.3: a) An elastic string fixed to a rigid wall; b) one quick up and down
motion of the portion of the string held by hand; c) pulse A is
generated; d) and e) show that the pulse A moves along the string
as time passes.

| Activity |
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We can see the
propagation of a
disturbance in water
or on a string. Can we
see a sound wave
propagating in air? We
cannot. Then you may
like to know as to how
we detect sound
waves. For this, we
observe the motion at
the source (like sitar
string or tabla
membrane) or at the
receiver (microphone
membrane).

Harmonic Oscillations

Hold the other end of the string with your hand so that the string is
stretched and taut. Now quickly move your hand up and down, once. What
do you observe? A disturbance marked A in Fig. 19.3c travels along the
length of the string. An isolated disturbance like A is called a pulse and it is
generated due to one quick up and down motion of the portion of the string
held in your hand.

What will happen if you keep your hand moving up and down continuously?
You will observe that a series of pulses move along the string giving rise to
a wave. If the motion of the hand is sinusoidal, the wave will have
sinusoidal shape at any given time. This is the simplest way of producing a
mechanical wave.

104

You may ask: How does the periodic motion of the string in your hand, as
in the above activity, give rise to a wave moving along the string? To
answer this question, let us look a little more closely at the motion of the
string. Refer to Fig. 19.4.

Fig. 19.4: Periodic motion of the string element held in hand generates a
disturbance with a sinusoidal profile. Parts (a)-(i) of the figure depict
how the disturbance generated by the hand travels along the string
to form a wave.

Figs. 19.4a to 19.4i show nine snapshots of a wave on the string beginning at
the instant t =0. These have been taken at the intervals of T/ 8 up to the
instant t =T. Here T is the time period.

Fig. 19.4a shows the waveform at the instant ¢ = 0. In this figure, look at the
point marked B on the string. It is the maximum value of the disturbance
(displacement of the element of the string from its equilibrium position) and is



Unit 19 Wave Motion

called the crest of the wave. Let us denote the position of the crest B on the
x- axis at this instant by x4. Next, we tie a ribbon at the point of the string at

the position x4. Note that it coincides with the position of crest B at the instant
t = 0. The question we now ask is: What happens to the crest B as we
move the free end of the string up and down?

Note from Fig. 19.4b that, in the time interval t =0 to t =T /8, the crest Bon
the string has moved towards the right. The motion of B is indicated by the
short arrow beside it. As t increases, crest B (and the arrow) moves further
away from the oscillating hand (Figs. 19.4 cto h). At t =T, the crest Biis at
the position x = x, on the x-axis.

Now focus on the motion of the ribbon tied at the position x = x4 on the string
(Fig. 19.4a). Note that, as time passes and as the disturbance (the crest at B)

moves along the string, the ribbon moves up and down just like the hand even
as crest B moves from position x4 to position x,. From this we conclude that
as wave (disturbance) propagates in a medium (string), two distinct motions

are taking place: the disturbance (represented by crest B) and the
particles of the medium (represented by the ribbon) about their
respective equilibrium positions.

You may now like to ask: If the particles of the string do not move along the
wave, then what is transported? To discover the answer to this question, you
should perform the following activity using a spring-mass system.

Take a string and mark nine equidistant points (1 to 9) on it, as shown in [ ﬂCtlmty ]
Fig. 19.5a. Let each point represent a particle at that position. You can tie a
ribbon at each point to observe their motion very distinctly. Tie one end of
this string (at mark 1) to a vertical spring-mass system which can execute
vertical oscillations and the other end to a rigid wall.

1 2 3 4 5 6 7 8 9 I
| @

(b)

Fig. 19.5: a) A string marked with equidistant points (1 to 9); b) snapshot of
the string when its one end is fastened to a vertically oscillating
spring-mass system and the other end is tied to a rigid wall.

Pull (or push) the mass m of the spring-mass system vertically downwards
and then release it. It will begin to oscillate. You will note that particles of
the string at the 9 positions marked on it begin to oscillate one after the
other. In a little while, a wave is set up on the string. If possible, take a
snapshot (photograph), of the string. What do you observe in this
photograph? We hope that you observe a waveform, as shown in

Fig. 19.5b. 105
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Let us now address the question. Why do the particles in the string start
oscillating leading to wave propagation?

A

t=T/8

t=T/4

t=3T/8

t=1T/2

t=5T/8

t=3T/4

t=7T/8

Fig. 19.6: Snapshots of the motion of the particles at positions marked 1 to 9 of a
string fastened to a vertically oscillating spring-mass system at
intervals of T/8 in the timerange =0 to{=T.

Now let us refer to Fig. 19.6 which depicts snapshots of the positions of nine
particles at intervals of T/8 from t =0 to t =T . The arrow attached to each
particle indicates the direction along which it is about to move at a particular
instant. At t =0, all particles are at their respective mean positions (Fig.
19.6a) but particle 1 is set to move upward. In the interval { =0 to t =T/8,
the disturbance initiated by the spring-mass system propagates from particle 1
to particle 2 (Fig. 19.6b). Similarly, in the next T/ 8 interval, the disturbance
travels from particle 2 to particle 3 (Fig. 19.6¢) and this process continues as
the disturbance propagates from particle 1 to particle 9. Note that in this



process energy from the spring-mass system is transferred to these particles.

This is how the disturbance moves in the medium.

You may now like to know: When a wave propagates in a medium, how do
the particles of the medium move? Study the motion of each particle at the
marked positions in the time interval from ¢t =0 to t =T shown in Figs. 19.6a
to 19.6i. You will note that each particle executes oscillatory motion about its
respective mean position. From Fig. 19.6a and 19.6i, we can conclude that

The curve (called the envelope) joining the positions of all the particles at the

at t =0, all the particles are at their respective mean positions marked on

the string (Fig. 19.6a); and

at t =T (Fig. 19.6i), particles 1, 5 and 9 are at their respective mean

positions; particles 1 and 9 are about to move upward, whereas particle 5
is about to move downward. Particles 3 and 7 are at positions of maximum
displacement from their respective mean positions but on opposite sides

of the horizontal axis. Note that each particle oscillates about its mean
position and does not move along the wave.

instant t =T in Fig.19.6 (i) represents a wave.

Let us recapitulate important points discussed so far.

e A disturbance is generated in a medium when particles in that
medium (driven by an oscillator) oscillate. The disturbance may take
any shape from a finite width pulse to an infinitely long sinusoidal
wave or any other shape (see, for example, Fig. 19.8) depending on
the nature of the force driving the oscillations.

e The particles of the medium in which the disturbance travels,
oscillate about their respective equilibrium positions (the mean
position); the particles themselves do not travel with the
disturbance; they do not show any translational motion.

e The disturbance/wave propagating in the medium transfers energy
and momentum, not matter from one particle to another in the
medium. (This conclusion is true for electromagnetic waves also.)

Waves carry huge energy; these can cause immense destruction and also can

be used constructively for generating electricity (see the box below).

Energy Carried by Waves

A vivid demonstration of the energy carried by water waves is in the
damage caused in coastal areas by tidal waves in stormy weather. You
may know that the tidal waves generated in the super-cyclone in the Bay
of Bengal in October, 1990 caused immense loss of life and property in
coastal Orissa. More than ten thousand people lost their lives and
millions were rendered homeless. Similar devastation by tidal waves was
seen when typhoon Katrina struck US east coast in the year 2011. Tidal
waves generated due to (an earthquake in Chile) carried huge amount of
energy across 15,000 km of the Pacific Ocean and caused untold
damage in Japan. Do you know that a three metre high oceanic wave
can lift 30 bags of wheat by about 10 ft?

Wave Motion
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Electromagnetic (e.m.)
waves, which include
radio and microwaves,
infrared, visible and
ultraviolet light, X-rays
and gamma rays, travel
with speed 3 x 10° ms™".
Energy from the Sun
reaches our planet in
about 8 minutes in the
form of electromagnetic
radiations and sustains
all forms of life.

Electromagnetic
waves are transverse
in nature.

An isolated
disturbance is called a
pulse. When we drop
a stone in still water, a
pulse is generated
and travels on the
water surface. The
sound produced by
clapping of hands, a
single spoken word of
greeting or a
command shouted by
one person to another
are also examples of a
pulse of sound.
Similarly, while
standing on a railway
platform, you may
have seen that when a
railway engine joins
the compartments, the
jerk produces a
disturbance which is
carried through the
train as a pulse.
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Seismic waves can also cause untold damage. The earthquake in South
Guijarat on 26 Jan., 2001 reduced the area to rubbles killing an estimated
one hundred thousand people; high-rise buildings, houses and hospitals
collapsed and roads developed huge cracks. Similar devastation was
experienced by the people in Jammu and Kashmir in October, 2005 and
people in Nepal in 2015.

An earthquake under sea bed near Indonesia in the Indian Ocean on Dec.
26, 2004 caused a tsunami of a height up to 30 feet and brought
unimaginable misery in Indonesia, Thailand, Sri Lanka, Maldives, and
India (Tamil Nadu).

You may also be aware how the energy of tidal waves is being harnessed
the world over to meet the increasing electricity requirements.

We have taken the examples of mechanical waves on strings to introduce
wave motion. Mechanical waves can exist only in a material medium such
as water, air, rocks, strings, etc. Mechanical waves can be transverse or
longitudinal. You must have learnt about these in your +2 classes. However,
we now discuss these for completeness.

Transverse and Longitudinal Waves

Refer to Fig.19.6 again and note that the particles of the string oscillate
perpendicular to the direction in which the wave travels. Such a wave is
said to be transverse. Waves propagating on the strings of ektara, sarangi,
sitar, vina and violin are transverse waves. As a child, you must have enjoyed
playing a flute. The musical sound produced by a flute is an example of
longitudinal wave in which particles oscillate along the direction of
propagation of the waves. While a gaseous medium supports only
longitudinal waves, liquids and solids support transverse waves also.
Longitudinal waves arising due to the vibrations of a tuning fork are
accompanied by alternate regions of compression and rarefaction. These are
shown in Fig. 19.7a. You can also visualise the regions of compression and
rarefaction by generating a longitudinal wave on a spring (Fig. 19.7b) by
compressing or stretching it along its length.

()
//

00000 WA~ 000000 Wi 00000

(b)

Fig. 19.7: Longitudinal waves having alternate regions of compression (C) and
rarefaction (R) in a) air; b) a spring.
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Fig. 19.8: Waveforms for a) periodic (sinusoidal) wave; b) sound produced by a
violin; c¢) sound produced by a piano.

Waves produced in an continuous medium are known as travelling waves. In
Fig. 19.8 we have shown three waveforms: a sinusoidal wave, a wave
generated by a violin and a wave generated by a piano. If the oscillations of
the driving force are simple harmonic, the travelling waves are said to be
harmonic waves; these waves propagate with the frequency of the periodic
driving force. In this unit we shall confine only to harmonic waves in one-
dimension.

You may like to quickly check your understanding of waves by answering a
simple SAQ.

SAQ 1 - Understanding waves

Give short answers to the following questions:

a) How does a pulse differ from a wave?

b) Give examples of waves (i) which require a medium for propagation;
and (ii) which do not require a medium for their propagation.

c) State the difference between transverse and longitudinal waves. Give
examples of both types of waves.

Before proceeding further, let us recall the important points discussed so far.

e When particles of a medium oscillate in a direction perpendicular to | Recap I

the direction in which a wave travels, the wave is called a
transverse wave.

e When particles of a medium oscillate along the direction of
propagation of the wave, the wave is called a longitudinal wave.
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The frequency of the
wave is equal to the
number of vibrations
completed by particles
of the medium per
second.

Harmonic Oscillations

19.3 DESCRIBING WAVE MOTION

We hope that the activities and the discussion given in the preceding section
have helped you to understand the role of the oscillatory motion in generation
of mechanical waves. However, the description of wave motion presented so
far is qualitative and as a student of physics, you may like to know: How do
we represent wave motion graphically as well as mathematically? Now,
let us discuss these aspects of wave motion. For simplicity, we consider
mechanical waves on a string, though results will apply to other types of
one-dimensional (1-D) waves as well.

19.3.1 Representation of Wave Motion

110

In Sec. 19.2, you have learnt that a wave is produced when a vibrating source
(e.g., hand, spring-mass system or a tuning fork) creates a disturbance in a
medium; the wave travels through the medium while the particles of the
medium oscillate around their respective mean positions. To proceed further,
we assume that

e The waves are sinusoidal.
e The medium is uniform and the wave propagates at a constant speed.

Under these assumptions, the wave will propagate with the same time period
as the period of vibration of each particle of the medium. Since frequency
is reciprocal of time period, we can write f =1/T.

The amplitude of the wave is defined by the maximum displacement of the
particles of the medium from their respective mean positions.

In Unit 16, you learnt the concept of phase for oscillatory motion: an oscillator
is said to be in the same phase at any two instants when its states of motion
are the same. For a wave, it implies that particles at two consecutive crests or
troughs are in the same state of motion. The distance between any two
consecutive particles on a waveform in the same phase defines the
wavelength of the wave.

Using this information, we can arrive at graphical and mathematical
representations of wave motion. Let us take the example of sinusoidal waves
on a string (Figs. 19.5 and 19.6) and represent them graphically. When
depicting waves, we show the displacement of the particle(s) of the medium
on two types of graphs:

1. We keep the position of a particle of the medium fixed and plot its
displacement as time passes.

2. We keep the time fixed and plot the displacement of the particles located
at different positions.

The first type of graph is referred to as a vibration graph. It shows the wave
behaviour at a single location along the path of the wave as time passes.
You can obtain it by fixing a slit at a point in space along the path of the wave
and observe wave motion as time passes. Recall from Fig. 19.6 that this is the
same as the displacement-time graph for any oscillating particle on the string
at a given position (say, x = x4) on the string. It will be a sinusoidal graph, as
shown in Fig. 19.9.



The graph shown in Fig. 19.9 represents the motion of a wave with time at
a given location in space. You know that the equation representing such a
motion is given by

y(t)=a sin ot (19.1a)

Here, a is amplitude of the wave (which is the same as the amplitude of
oscillation of the particles) and w is its angular frequency. It is related to the
frequency, fby @ =2nf and to the time period, Tby ®=271/T. Thus,

Eq. (19.1a) can also be written as

y(t)=a sin 2w (t/T)
A Time period

(19.1b)

Crest
Amplitude

jui]
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<

Displacement, y(x,t)—>

Trough

Fig. 19.9: The vibration graph of a wave showing its motion at a given position
as a function of time. The period of the wave is also shown.

The waveform graph is obtained by keeping the time fixed and plotting
displacement of particles with changing position. This graphical representation
of wave motion is the same as the snapshot shown in Fig. 19.6i but taken at a
much later instant of time. A waveform graph displays the wave behaviour at
different locations at a given time. A typical waveform graph for waves is

shown in Fig. 19.10.
A Wavelength

o]

WWAVAVAVS

Fig. 19.10: The waveform graph; this is like the snapshot at any instant of time,
say at { = {;. The distance equivalent to one wavelength is also
marked.

|
D

Displacement, y(x,t)—>

From Figs. 19.9 and 19.10, you will note that the shapes of both types of
graphs (vibration and waveform) are similar; the only difference is in the labels
for the horizontal axis: For the vibration graph, we have time on the horizontal

axis and for the waveform graph, we have position on the horizontal axis.
We can write the equation of the motion depicted in Fig. 19.10 as
y(x)=a sink x (19.2)

where k is called wave number. It is related to wavelength which denotes the
distance between any two consecutive points in the same state of motion
along the distance-axis, as shown in Fig. 19.10. This helps us to express kin

Wave Motion

At this stage, you may
like to recall the
equation for oscillations
of particles executing
SHM (Unit 16). Even
though we are using the
sine function in this unit
(Eqg. 19.1a) to represent
a sinusoidal function
mathematically, we can
as well use the cosine
function and write

y(t) = a cos ot

and sine would be
replaced by cosine in
other equations.

NOTE

Vibration graphs inform
us of the wave's shape,
amplitude, and time
period and waveform
graphs inform us of the
wave's shape, amplitude,
and wavelength.

The constant k used in
Eq. (19.2) is called wave
number. You should not
confuse it with spring
constant used in Unit 16.
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NOTE

Note that wave number k
is defined as 2n / A and it
should refer to the number
of waves in one meter.
That is, it should be
inverse of wavelength.
And k (= 2r/A) should be
called angular wave
number. But we will follow
the standard convention
and call k the wave
number. However, you
should be mindful of the
factor 2r used in defining
angular frequency ® and
wave number k.
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terms of A. From the definition of the wavelength, it is clear that the

displacement, y (x) is the same at both ends of this wavelength, i.e., at
y(x=x1)=y(x=xq+A\). Thus, using Eq. (19.2), we can write,

asink x; =a sink (x;+A)
= a sin (kxq + kL)

We know that for sinusoidal functions, we have sin (6 + 271) = sin0. Therefore,
the above equality will be satisfied only when

kh=2m or k:ZTTc (19.3)
Eq. (19.3) gives the required relation between k and A.
Using Eq. (19.3) in Eq. (19.2), we can write

y(x)=a sin 2m(x/A) (19.4)

The amplitude, time period, frequency and wavelength characterise a wave.
Their definitions are given below.

WAVE PARAMETER DEFINITION

Amplitude The maximum positive (or negative) displacement of the
particles of the medium from their respective equilibrium

positions.

Time period The time between two consecutive points in the same
state of motion. These points can be two consecutive

crests or two consecutive troughs.

Frequency It is the number of oscillations in one second. It is
reciprocal of the time period. We can also define
frequency as the number of wavelengths that pass a
given location each second along the wave's path.

Wavelength The distance traversed by the wave in one time period. It

is the distance between two consecutive particles of the
medium in same state of motion.

In addition to the wave parameters defined so far, we also need to know the
velocity of a wave. You may like to know: How can we obtain the
expression for the velocity with which the wave propagates? Let us find
out.

19.3.2 Relation between Wave Velocity, Frequency and
Wavelength

We can establish the relation between the velocity of the wave, its frequency
and its wavelength using their definitions. Recall that a wave moves a
distance equal to one wavelength in one time period. Therefore, the wave
velocity is given by



_ Wavelength A

v = oveengn _ 4 (19.5)
Time Period T
Since frequency is reciprocal of time period, (f =1/T), we can write
v=rFfA (19.6)

That is, the velocity of wave is equal to the product of its frequency and its
wavelength.

Note that we have obtained Eqgs. (19.5) and (19.6) for one dimensional waves.

But these equations hold for all kinds of waves, whether transverse or
longitudinal, mechanical or electromagnetic. To give you an idea about the
maghnitude of v, we have given the values of the speed of some familiar

Wave Motion

You know that velocity
is a vector quantity. In
the discussions of wave
motion here, we will
consider waves
travelling in 1-D only.
For such waves, we can
use the terms velocity
and speed

interchangeably.

waves) in some typical media in Table 19.1.

Table 19.1: Some Typical Wave Speeds

TYPE OF WAVE SPEED (ms_1) TYPE OF WAVE SPEED (ms_1)
Th d of di
Sound waves in air 332 Ripples on the 0.2 . gspee © S?“” n
air increases with
(at STP) surface of a pond temperature: v o \/?
Sound waves in 1500 Seismic waves 6x10° where temperature T is
water (at STP) moving in the measured in Kelvin.
Earth’s outer crust
Sound waves in 5100 Light waves in 3% 10°
steel (at STP) vacuum

From Table 19.1, you can see that the speed of sound is maximum in solids,
and minimum in air. But, the speed of light is much higher than that of sound.
This explains why on a thundery day, we see the flash of light before the
thunder.

You may now like to answer an SAQ to calculate the wave parameters.

SAQ 2 - Wave speed, frequency and wavelength

a) Light propagates with a speed of 3x108ms™. In the visible region of

the electromagnetic spectrum, the wavelength, A lies in the range
400 nm — 720 nm. Calculate the corresponding frequencies.

b) Sound propagates in air with a speed of 332 ms~". The audible range

for human beings lies between 20 Hz to 20,000 Hz. Calculate the
corresponding wavelengths.

We hope that now you know how to represent the time variation of a wave at a
given position and how a wave changes at different points in space at a given
instant of time. However, as wave propagates in a medium, it changes
both with time and position. This complete information is contained neither
in Eq. (19.1b) nor in Eq. (19.4). It means that neither of these equations
describes a wave completely. To obtain complete mathematical description of

a wave, we have to combine Egs. (19.1b) and (19.4). Let us see how we do
113
SO.
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19.3.3 Mathematical Description of Wave Motion

Refer to Fig. 19.11 which shows a snapshot of a wave travelling along the
positive x-direction. Let us assume that the wave travels with velocity v.

4 Wave propagation
_
<
= B
>
x=0 X—>

- -
)

X

Fig. 19.11: Snapshot of a wave travelling in the positive x-direction.

Now consider two particles located at A(x =0)and B on the snapshot
separated by a distance x. You may note that the displacement, y(x,t)of the
particle at B at time t will be the same as the displacement, y(x =0,t’) of the
particle at A at time t’ if
e
v

because the wave is travelling in positive x-direction and the time taken by the
wave to travel a distance, x with velocity, vis (x/v). Therefore, we can write

Y(x,t) = y(O.t) = y[x _ o,t—§] (197)

To determine the form of the function y(0,t"), we replace t by t’" in Eq. (19.1b)
and write the expression for displacement y(0,t’) as

y(0,t"Yy=asin2n(t'/T)

On substituting t' =t ~ X inthis expression, we get
v

y(0,t') = y(x :o,t—ﬁ)zasinz—”(t—ﬁj
v T v

A

because, wave velocity, v = (A/T). On combining Egs. (19.7) and (19.8), we
have

= asin{z—n(vt - x)} (19.8)

y(x,t):asin{z%(vt—x)} (19.92a)

Note that in the mathematical description of the wave given by Eq. (19.9a), the
velocity and wavelength of the wave appear in the argument of sine function.
It is possible to write Eq. (19.9a) in a few other equivalent forms. To do that,
we note that v =A/T. Then we can write Eq. (19.9a) in terms of vand T as

y(x,t) = asin{%_—n(t—ﬁﬂ (19.9b)

v



We can also rewrite this equation as:

y(x,t)= asin{Zn(%—%ﬂ

Egs. (19.9a to c) give complete mathematical description of a 1-D wave
travelling along the positive x-direction. Note that these equations are
equivalent representations of 1-D wave.

(19.9¢)

In terms of angular frequency ® (=271 / T)and wave number
k (=2m / A), we can write Eq. (19.9¢) as

y(x, t)=a sin (ot — kx) (19.9d)

The simple way in which @ and k enter the mathematical expression for the
wave explains why these quantities are so often used in the description of
wave motion. Note that a wave described by Eq. (19.9d) has a single constant
frequency and signifies a monochromatic wave.

The use of any one of Egs. (19.9a—d) to represent a wave mathematically
depends on the specific situation. However, we will mostly use Eq. (19.9d).
Note that the waves represented by these equations are of an infinite
extent. That is, x can vary from —oo to o for any fixed value of t, as there is no
mathematical limit on the value of x.

It is important to mention here that these equations describe transverse as
well as longitudinal waves travelling in the positive x-direction.
You may also like to know: How do we represent a wave travelling in the
negative x-direction? In this case, the displacement y(x =0,t") at point A in
Fig. 19.11 at time ¢’ will be the same as displacement at point B at time t if

, X

t'=t+—

v
and we can write

y(x,t)=y(x=0,t)

=y[x=0,t+£J
v

Now, you should repeat the steps used in arriving at Eq. (19.7 to 19.9d) and
verify the following results for a wave travelling in the negative x-direction:

2m

y(x, t)=a sin T(vt+x)} (19.10a)
y(x t)=a sin_z—“(nﬁﬂ (19.10b)
T v
[ t x
y(x,t)=a S|n_2n(?+xﬂ (19.10c)
y(x,t)=a sin(mt + kx) (19.10d)

On comparing Egs. (19.9a) and (19.9d) or Egs. (19.10a) and (19.10d), we
obtain the expression for wave velocity in terms of w and k as:

v=m/k

You should verify the result contained in Eq. (19.11). Before proceeding
further, answer the following SAQ.

(19.11)

Wave Motion

Note that for a
longitudinal wave, both
x and y (x, t) are along
the same direction.
They, however, refer to
two different quantities:
x refers to the position
of a particle of the
medium and y (x, t)
refers to the
displacement of the
particle located at x,
with respect to its
equilibrium position.

Whenever you are
given a function and
asked to check whether
or not it represents a
wave, you should
compare it with

Egs. (19.9ato d) or
Egs. (19.10a to d). If the
given function is similar
to anyone of these
equations, you can say
that the function
represents a wave. By
comparing
corresponding terms,
you can as well
determine the values of
wavelength, frequency,
time period, etc. of the
wave.

115



When we say ‘whole
wave pattern’ or ‘the
entire waveform’, we
mean the snapshot of
the wave at some
instant of time. For
example, waveform A
in Fig. 19.12is the
snapshot of the wave
attime t =0.
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SﬁQ 3 - Direction of wave travel

For each of the following mathematical expressions representing a 1-D
wave, identify the direction in which the wave is travelling:

a) o0 (z t)=a sin(wt-kz)
b) z(x, t)=a sin(kx—mt)
c) VY (y,t)=a sin(ot-ky)
d) &(z t)=asin(kz+ ot)

The basic feature of Egs. (19.9) and (19.10) representing waves is that the
whole wave pattern moves along the x-axis as time changes. This leads to
one vital difference between the displacement of the particles of the
medium (string) and the displacement y (x, t) of any point on the
waveform: while the former changes periodically, the latter remains
constant. As the wave travels, the entire waveform shifts. Hence, the
displacement of a point on the waveform remains the same and this holds for
all points on the waveform. You can understand this point by studying

Fig. 19.12.
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Fig. 19.12: Plot of a sinusoidal wave travelling along the positive x-direction in
the x-t plane.

Fig. 19.12 shows a travelling wave represented by Eqgs. (19.9 a to d) in the x-t
plane (plane of the paper) propagating in the positive x-direction. In the plot,
the displacement, y (x, t), of the particles of the medium is normal to the
x-t plane. The plot shows the variation of y (x, t) with both x and t. You may
now like to ask: What values the displacement y (x, t) takes for different values
of x and t as the wave travels?

To seek answer to this question, focus on the curves A, B and C in Fig. 19.12,
which show the wave at the instant t =0 and after the time intervals T/ 2 and
T, where T is the time period of the wave, respectively. Note that, with time,
the entire waveform shifts to the right. Now focus on the vertical displacement
of the points P(x=0,t=0) and Q(x =5A/4, t =0) in all the three curves.



Unit 19 Wave Motion

You can see that the displacements of the points P and Q remain unchanged
at all times. This is true for every point you select on the wave for all values of
t. Thus, we can conclude that as the wave travels, the displacements of all

points on the waveform remain constant with time and are equal to their
respective values at the reference position (in this case t =0and x =0).

We now give examples showing you how to obtain wave parameters from the
mathematical expression of a wave and how to write the mathematical
expression for a wave on the basis of its parameters.

EXJZIMTLz 19.1 : PARAMETERS ASSOCIATED WITH A
WAVE

A wave is represented by

y(x, t)=(4cm) sin [(203_1) t+(1OCm_1)x]
Determine the amplitude, wavelength, angular frequency, wave number
and velocity of the wave.

SOLUTION B We compare the given expression for the wave with the
standard forms and note that it is of the form of Eq. (19.10d):

y (x, t)=a sin (0t + kx) (i)
Thus, we conclude that the wave is propagating in the negative
x-direction. Comparing the corresponding terms in Egs. (i) and the given
expression, we obtain
Amplitude, a =4cm; Wave number, k=10 cm_1; Angular frequency,

®=20s"". On using Eqg. (19.11), we get velocity v of the wave

-1
k 10 cm™
And using the relation k = 21t/ A, we get the wavelength A of the wave:

kz[z—n]:OE cm

10 cm™’

You may now like to answer an SAQ.

SAQ 4 - Wave parameters
A progressive wave is described by
y(x, t)=(1) sin {1000 nt—%}cm

Determine its direction of propagation and calculate the amplitude, wave
number, wavelength, angular frequency and frequency of the wave. Also
calculate its velocity in cm s™.
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EX‘MV[‘PLf 19.2 : MATHEMATICAL EXPRESSION FOR WAVE
FOR GIVEN WAVE PARAMETERS

A sound wave of frequency 275 Hz travels with speed 340 ms™ along the
positive x-axis. Each point of the medium moves to and fro through a total
distance of 5.0 mm. Represent the wave mathematically.

SOLUTION B The amplitude of the wave is half the total distance that a
point in the medium moves to and fro. Thus

a=25mm=25x10"m

Further, we are given the wave speed and its frequency. Since the wave is
travelling in the positive x-direction, we have to write the wave equations in
the forms given by Eqgs. (19.9c) and (19.9d). For this, we need the time
period, the wavelength, the angular frequency and the wave number of the
wave. Using their definitions, we have

T =1/f=(1/275)s
A=v/f=340ms™ /27557
=(340/275)m=1.24m
=2nf = 2nx (2755~ 1)=550ms "
=1.73x10%s™"
k=2m/A=2m/(1.24 m)
=5.07m"
Hence, we can write the expression for wave in the form of Eq. (19.9c) as

y (X t)=(2.5x10™> m)sin 2n(275t ] %ﬂ

We can also write this as

x, 1)=(2.5 1073 m)sin _550n(t—iﬂ
y(x, t)=(2.5x )I_ 340

The expression for the wave in the form of Eq. (19.9d) is

y(x t)=(2.5x1072 m) sin (1.73x10% t —=5.07x)

SﬂQ S - Expression for a wave for given wave
parameters

A tidal wave having a maximum height of 7.4 m propagating in the negative
x-direction with a speed of 93 ms™" can be approximated by sine function.
The distance between two successive crests is 5 cm. Write the expression
for the wave.
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Before proceeding further, we recapitulate what you have studied in this
section till now.

Wave Motion

e Wave motion can be depicted graphically on vibration graph (which
shows a wave at a single location as time passes) and waveform
graph (which shows a wave at different positions at a particular

moment in time).

The frequency of a wave is a property of the source generating
the wave and it does not depend on the medium through which
wave propagates.

The velocity of the wave is given as: v =fA. This shows that for a
given medium, velocity of a wave of given frequency is
constant.

A wave travelling along the positive x-direction is represented by
y(x, t)=a sin(wt — kx)

and the wave travelling in the negative x-direction is given by
y (x, t)=a sin(mt + kx)

So far you have learnt that waves propagate in a medium when the particles
of the medium oscillate about their respective mean positions. You have also
learnt about the amplitude, time period, frequency and wavelength of the
wave which characterise a wave. For a complete mathematical description of
a wave, we also need to know the phase of a wave. This forms the subject
matter of discussion of the following section.

19.3.4 Phase of a Wave and Phase Difference

To explain the concept of phase of a wave, we consider a transverse wave
propagating on a string and focus our attention on a particle at the equilibrium
position at the start of the wave cycle. Recall that in one complete period, it
will reach the crest, come back to the equilibrium position before moving
downwards to the trough and finally attain its initial position. We use this
information to arrive at the concept of the phase of a wave.

Refer to Fig. 19.13a, which shows a stretched string at time, t = 0. We have
marked 17 particles on it. The positions of these 17 particles on a wave at
time, t = 2T is shown in Fig. 19.13b. (In a way, it is extended form of Fig. 19.6.)

4 5 6 7 8 9 10 M1 12 13 14 15 16 17

(a)

(b)

Fig. 19.13: Snapshot of a) a stretched string at time, t = 0; b) waveform created
due to transverse wave on the string at time, { = 2T.

When the periodic force
generating wave
completes one
oscillation, the wave
covers a distance equal
to one wavelength. If
we represent the
oscillatory motion on a
reference circle, as
shown in Fig. 19.14a,
with uniform speed,
then one complete

(Contd.)
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oscillation is equivalent
to one complete
rotation, that is, rotation
by an angle 360° or 2w
radians. Therefore, we
can say that a distance
equal to one
wavelength, as shown
in Fig. 19.14b, is
equivalent to 360° or 2n
radians in terms of
angle on the references
circle. This means that
in terms of angle, two
points on a waveform
separated by a distance
of (AM2) are (360°/2) =
180°or (2n/2)=n
radians apart. So, the
phase difference
between points A and C
in Fig. 19.14b is 180°
or t radian.

/2
B

O
m|>

(b)

Fig. 19.14: a) One
complete oscillation
generating a wave
represented on a
reference circle is
equal to rotation by
360° or 2z radian; b)
shapshot of a wave-
form corresponding to
one complete
oscillation of the
oscillator generating
the wave.
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Refer to Fig. 19.13b and compare the displacements of particles at any two
marked positions, say, at 1 and 2. We know that both these particles execute
simple harmonic motion of the same amplitude and frequency. But particle 2
begins to oscillate at a time t =T /8 later than particle 1. We describe this
situation as: particle 2 lags behind particle 1. Further, you may also note that
particles 1, 9 and 17 in Fig. 19.13b are about to go up and are in the same
state of motion. However, particle 1 is in a different state of motion than
particles 2 to 8 and 10 to 16. Similarly, particles 2 and 10 are in the same
state of motion and so on.

From the above discussion, we can say that even though all particles execute
SHM and their displacements show the same sinusoidal variation in time, their
states of motion may be different at any given instant of time. We denote this
difference in the states of motion of particles of the medium in terms of
the phase angle or simply phase. We say that particles 1, 9 and 17 are in the
same phase but the phase of particle 1 is not the same as that of particles 2,
3,....8and 10, 11,....16 oritis out of phase with these particles.

Now you may logically ask: How can we mathematically represent the
phase of a wave on the basis of above qualitative description? We know
that wave motion arises due to periodic motion of particles of the medium
around their respective mean positions. We make use of this fact to define the
phase of a wave: The argument of the sine (or cosine) function
representing a periodic travelling wave signifies the phase of the wave. We
denote it by the symbol ¢ (x, t). Thus, the phase of a sinusoidal wave at
position, x and time, t represented by Eq. (19.9d) is the argument of the sine
function:

O(x, t) = ot — kx (19.12a)

Note that the phase of a wave is an angle and is measured in degrees or in
radians. You can easily convince yourself that a phase difference of 360° or
27 radians corresponds to one wavelength (see Fig. 19.14 and read the
margin remark).

From Eq. (19.12a), we note that the phase of a wave changes with both space
and time. Further, from the definition of the phase, it follows that all points on
the waveform separated by one wavelength or its integer multiples will
be in the same phase. To elaborate this point, let us recall that for a
sinusoidal function at a given instant t

sin (ot — kx + 2m) = sin(wt — kx)
Now for a point x"= x + A, we have, (using the relation k =21/A),
sin(wt — kx’) = sin[wt — k (x + A)] = sin(wt — kx — kA)
= sin (Wt — kx — 21) = sin (®t — kx)

Thus, at a given instant t, the phase at any point x = A on the wave is the
same as the phase at point x = 0. In the same way, you can convince yourself
that all other points on the waveform separated by integer multiples of
the wavelength have the same phase. (You have to substitute x’ = x = n\
and use the result sin(6 +2nm)=sin® for n=0,1, 2, 3,...... ).



We can now obtain the expression for phase difference between two arbitrary

points on a wave. Let us consider two arbitrary points located at positions x;
and x, respectively on a waveform. Mathematically, the phases ¢4 and ¢, of

particles at positions x4 and x, at a fixed time t can be written as
(1)1 =t - kX1

and
(1)2 =f - kX2

Hence, the phase difference, A¢ between two positions x4 and x, on the
waveform at any given instant of time t is given by

AO(x,t) = (0t — kxo ) — (0t — kxq)
=k (x1-x2)

= 2Tn(x1 —X5) (for fixed f)

Eq. (19.12b) gives the phase difference between two arbitrary points (located
atxq and xp, respectively) in terms of the wavelength. This relation shows that

if the magnitude of separation (x1 — xo) between the two points on the

waveform is equal to one wavelength, the phase difference will be 2. And as
you know, two points having a phase difference of 21 are in the same phase.
Therefore, we say that two points separated by one wavelength (or integral
multiples of wavelength) are in the same phase or the phase difference
between them is zero. This implies that if phase difference changes by 27 or
its integral multiples, the waveform remains the same.

Next we consider a wave at any fixed position. The expression for phase
difference between two instants t; and t, of a wave readily follows from

Eq. (19.12a):

AO(x,t) = OAt (for fixed x)
We hope that you now have a fairly good understanding as to what we mean
by the phase difference between different points of a wave. We can extend
this discussion of phase of different points on a single waveform with respect
to some reference point to a situation where more than one wave is travelling
in space. Two waves are said to be in phase when the corresponding
points of each wave reach their respective maximum or minimum
displacements at the same time. Thus, if the crests and troughs of the two
waves coincide, they are said to be in phase (Fig. 19.15a). If the crest of one
wave coincides with the trough of the other wave, as shown in Fig. 19.15b,
their phases are said to differ by 180° and the waves are said to have
opposite phase. The phase difference between two waves can vary from 0
to 360°. Fig. 19.15c shows two out of phase waves A and B with phase
difference of an arbitrary angle 6. From your +2 physics course, you may
recall that phase difference between two or more waves plays a critical role in
deciding the outcome of their superposition.

(19.12b)

Wave Motion

You must differentiate
between the vertical
displacement of the
particles of the medium
(string) and the vertical
displacement of any
point P (or all other
points) on the
waveform: while the
former changes
periodically the latter
remains constant as the
wave propagates.

(19.12¢)
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Fig. 19.15: Two waves A and B are a) in-phase; b) completely out of phase;
c) out of phase by an arbitrary angle.

Before we end this unit, it is important to point out that displacement of a wave
given by Egs. (19.9a-d) and travelling with velocity v is solution of the wave

equation:
azy _(iJ azy
ox2 v2 ) ot?

where y represents the displacement of a particle of the medium in which a
wave propagates. To visualise wave propagation in a medium (strings, fluids
or a solid) consider a large number of masses connected through identical
springs (Fig. 19.2). When one of the masses is disturbed either longitudinally
or in a transverse direction, the bonding between them is disturbed and while
getting back to the original state, energy exchange takes place between
successive masses. Propagation of energy in the infinitely long spring-mass
system leads to wave propagation in one dimension. This analogy can be
extended to two and three dimensions.

Let us now summarise what you have learnt in this unit.

19.4 SUMMARY

Description

Wave is a disturbance

Transverse and
longitudinal wave

B Wave is a disturbance which propagates in a medium progressively.
Waves do not transport matter; these only transport energy and
momentum.

Mechanical waves can exist only in material medium.

B |n a transverse wave, such as a wave on a stretched string, the
particles of the medium oscillate in a direction perpendicular to the
direction of propagation of the wave. On the other hand, in a
longitudinal wave, such as sound wave in air, the particles of the
medium oscillate along the direction of propagation of the wave.

Graphical representation B The graphical representation of wave motion can be done by two
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types of graphs: vibration graph and waveform graph. A vibration
graph shows the wave behaviour at a single location along the wave
path as time passes. It is snap shot in space. A waveform graph
depicts the wave behaviour at different locations along the wave path at
a particular time. It is a snapshot at a given time.



Wave frequency

Wave velocity

Progressive wave

Phase of wave

In-phase wave

One-dimensional wave

Wave Motion

B The frequency of a wave is a property of the source responsible for

generation of wave.

The velocity, v of a wave is given as v = f A, where fis the frequency

of the wave and A is its wavelength. Thus, for a given medium, the
velocity of a wave of given frequency is constant. In terms of angular
frequency, m and wave number, k, the wave velocity is given as
v=m/k.

A one-dimensional progressive wave propagating along the positive
x-direction is described mathematically as

y(x, t)=a sin(wt — kx)

On using the relations @ =2n/T and k = 2/, we can rewrite the
above expression in other equivalent forms as

2n

y(x, t)=a sin[ 3 (vt—x)}
=a sin_2—n[t—ﬁﬂ
T v

=a sin| 2% (i—ﬁﬂ
L \T A

Two points on the vibration graph of a wave separated by T or its
integer multiples are in the same phase. Similarly, two points on the
waveform graph of a wave separated by A or its integer multiples are in
the same phase.

Two waves are said to be in-phase when the corresponding points of
each wave reach their respective maximum or minimum displacements
at the same time.

B One dimensional wave can be represented by the wave equation

az_yz(LJ %y
ox? v2) ot?

19.5 TERMINAL QUESTIONS

1. A progressive transverse wave is described by

y (x,t)=0.02 sin (1886t — 42x) m

where x is in meters and tis in seconds. Determine the direction of
propagation of the wave and calculate its amplitude, wavelength,

frequency and velocity.

2. A transverse wave on a string is represented by
y(x,t)=0.03 sin (2t —-3x) m

where x is in metres and t is in seconds. a) Calculate the displacement at
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x=0,0.1m and 0.3 m when t =0. b) Calculate the values of
displacementat x=0.1m at t =0, 0.1s and 0.2 s. c) Obtain the
expression for the velocity of oscillation of the particles of the string.
d) What is the maximum velocity of oscillation of a given particle of the
string?

3. A transverse wave travelling in the positive x-direction is represented as
y(x,t)=5 sin(4.0t —0.02x)cm

where x is in cm and t is in seconds. Calculate the velocity of the wave,
maximum particle velocity and acceleration.

4. A travelling wave is given by

y(x,t)=0.26 sin (12.1t - 2.3x +1.6) m

where x is measured in meters and t is measured in seconds. Determine
the distance by which the origin on the x-axis should be shifted so that the
expression for the wave becomes

y(x',t)=0.26 sin (12.1t —2.3x) m
5. A transverse wave of amplitude 1 cm is generated at one end
(x =0) of a long string by an oscillator of frequency of 500 Hz connected

to the string. At some instant of time, the displacements of the particles
situated at x=10 cm and at x =20 cm are + 0.5 cm and — 0.5 cm,

respectively. Calculate the velocity and wavelength of the wave. If the
wave is travelling along the positive x-direction and the end x =0is at the
equilibrium position at t =0, write the displacement in terms of wave

speed.

19.6 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. a) When a single disturbance propagates in a medium, it is called a
pulse. A wave is generated by continuous oscillations of medium
particles.

b) i) Mechanical waves such as sound and waves on a string.
i) Electromagnetic waves.

c) Inatransverse wave, the particles of the medium oscillate in a
direction perpendicular to the direction of wave propagation. A wave
on water surface is an example of transverse wave in 2-D. In a
longitudinal wave, the direction of oscillation of the particles is along
the direction of the wave motion. Sound waves are the most familiar
example of longitudinal waves.

2. a) From Eq. (19.6), we recall that frequency of light wave can be written
as

c
f==
A
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Now, the value of the wavelength, A for the violet-end of the range is
4000A =4x10""m. So, the corresponding frequency of light is

_3x108ms™

f = —7.5%x10Ms™
Y 4x10m

Similarly, the wavelength for the red-end of the visible range is
7.2x107" m. So, the corresponding frequency is

£ 3x108ms™

= —— =4.2x10"s™"
7.2x107"m

b) As per the problem, we have, for sound, v = 332 ms~ and frequency

of the sound wave at the lower end of audible range is 20 Hz. Again,
using Eq. (19.6), we can write

1
X=¥=—332 MS  _16.6m

20 s
Similarly, for the upper end of the audible range, we get

_ 332ms™

_ L 1=16.6><10_4m=1.66 mm
2x10% s~

A
3. a) positive z-direction; b) positive x-direction; c) positive y-direction;
d) negative z-direction

4. The equation of the given wave travelling in positive x-direction is

y(x, t)=1 sin {1000 nt—%} cm Q)

We recall that the standard form of a wave travelling along + x-direction is
given by Eq. (19.9d):

y(x, t)=a sin (0t — kx) (i)
On comparing Egs. (i) and (ii), we get
Amplitude = 1cm; Wave number k =7/50 cm_1;
Wavelength A =27t/ k =21t x(50/71)=100 cm;
Angular frequency w=1000 ns_1; Frequency
f=mw/21t=10007/271 = 500 Hz;
Wave velocity =f A = (500 s—1)x(100 cm)=5x104 cms-1

5. A wave propagating along negative x-direction is described by
y(x,t)=a sin (ot + kx)

Since the maximum height of the wave is 7.4 m, its amplitude a=7.4m.

Further, the angular frequency, o of the wave is related to velocity, v and
wavelength, A by the relation

_2nv
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As per the problem v =93 ms-1 and A =5 m because the distance
between two successive crests is 5 m. Hence

2tX93ms-1
O="""""_
5m

=116.8 s

Similarly, the wave number, k is related to wavelength, A as

JZR_2X22 4 56 m-
A 7x5m

Hence, the required equation of the wave is

y(x, t)=(7.4m) sin (1.26 x +116.81)

Terminal Questions

1. The standard expression for a progressive transverse wave is of the
form

y(x, t)=a sin(wt — kx)
On comparing the given expression with this expression, we note that the

direction of propagation of the wave is positive x-direction. Further, we find
that

Amplitude of the wave =0.02m = 2x107?m

Wavelength of the wave, A = Zi i 0.15m
k 42
Frequency of the wave, f = o _ 1886 =300 Hz
2t 21

Velocity of the wave, v = fA =(300Hz)x(0.15m) = 45 ms™|

2. a) To calculate the values of displacement, y (x,t) for different values of

X, and t, we substitute the given values of x and t in the expression for
the wave:

y(x,t)=0.03 sin (2t —3x) m
So, displacement y (x,t) at different values of x at t =0 are:

at x=0m, y(0,0)=0.03sin(0)m=0

at x=0.3m, y(0.3,0)=0.03 sin(-0.9) m=-2.35x10"?m

b) At position x =0.1m, displacement at different times are:
att=0s, y(0.1,0)=0.03sin(-0.3) m=-8.8x10"m
att=0.1s, y(0.10.1)=0.03sin(0.2-0.3)m=-3.0x10"m
att=0.2s, y(0.10.2)=0.03sin(0.4-0.3)m=3.0x10"m

c) Velocity of oscillating particles of the string is given by

v= % =0.06 cos (2t —3x)=6x10"2 cos (2t —3x) ms™"
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d) Maximum velocity of oscillation will be when
cos (2t -3x)=1

SO, |Viax |=6.0x102ms™

3. As per the problem, the expression for transverse wave travelling along
the positive x-direction is
y(x,t)=5 sin (4.0t -0.02 x)
On comparing it with the standard expression for a wave travelling in +ve
x-direction
y (x,t)=asin (ot — kx)
we note that ®=4.0 3_1, k=0.02cm " and a=5cm. Hence, velocity of

the wave is

-1
®_ 40s =200 cms™|

V=—= -
k 0.02cm™

The velocity of the particles of the medium is

dY_;’t"t) — 5% 4 cos(4.0t —0.02x) cms ™"

=20 cos (4.0t —0.02x) cms™

So, the maximum velocity of the particle is 20 cm s

Further, the acceleration of the particles of the medium is

2
d y(zx,f) — 20x 4 sin (4.0t —0.02x) cms 2
ot

=-80 sin (4.0t —0.02x) cms ™

Thus, the maximum particle acceleration is 80 cms 2.

4. We know that the relation between phase difference and the spatial
distance of two points x4 and x, on the waveform is given by

A¢=27n(x1 —X2)

As per the given problem,

1.6:E(x’—x) = X' -x=

A

, 16_ 16 —07m

k 23m
or x'=x+0.7m

Thus, the origin of x” is 0.7 m right to the origin of x.

5. We know that a transverse wave can be described by
y(x,t)=a sin [ZTR (vt - x)} (i)

As per the problem, we have amplitude, a =1cm. Further, at
x =10 cm, y(10,t) =0.5 cm. So, we can write from Eq. (i): 127
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+0.5 cm=(1.0 cm) sin [2% (vt—10)}

. |27 1 (T
or sin [T (vt—10)}_+5_s|n[€j

This equality implies that
2n T A y
— (vt-10)=— vt—-10=— ii
3 )=5 = 12 (ii)
We are also given that at x =20 cm; y(20,t)=—-0.5 m. So, we can again
write from Eq. (i):

-0.5cm=(1.0 cm) sin{%(vt —20)}
= -0.5 :sin%[=sin{27n(vt—20)}
or vt —20 :ﬂ (iii)
12

From Egs. (ii) and (iii), we have
A=20cm=0.2m

Now, we know that the velocity
v=FfA=(500s"")x(0.2m)=100 ms™
So we can write the expression for the wave, in terms of wave velocity as

1 in | 2T _
y (x,t)=(0.01m) sin [0_2 (100¢ x)}

=(0.01m) sin [10m(100¢ — x)] m
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TABLE OF PHYSICAL CONSTANTS

Symbol Quantity Value
c Speed of light in vacuum | 3.00 x 108 ms™’
1o Permeability of free 1.26 x 107 NA2
space
€0 Permittivity of free space | 8.85 x 10712 C2NTm=2
1/4neq 8.99 x 10° Nm? C2
e Charge of the proton 1.60x 10719 C
-e Charge of the electron ~1.60x10" 1 C
h Planck’s constant 6.63 x 10°% Js
h hi2n 1.05 x 10734 Js
me Electron rest mass 9.11x 1073! kg
—elm, Electron charge to mass | —1.76 x 10" Ckg™"
ratio
m Proton rest mass 1.67 x 10727 kg (1 amu)
my, Neutron rest mass 1.68 x 10727 kg
aop Bohr radius 529x10 "' m
Ny Avogadro constant 6.02 x 102 mol™"
R Universal gas constant 8.31 Jmol K1
kg Boltzmann constant 138 x10723JK™!
G Universal gravitational 6.67 x 10~ Nm? kg_2
constant
Astrophysical Data
Celestial Mass (kg) Mean radius Mean distance from the centre
Body (m) of Earth (m)
Sun 1.99 x 100 | 6.96 x 10® 1.50 x 10"
Moon 7.35 x 10?2 | 1.74 x 106 3.84 x 108
Earth 5.97 x 10%* | 6.37 x 10° 0
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SYLLABUS: MECHANICS (BPHCT-131) 4 Credits

Vector Algebra: Geometrical and algebraic representation of vectors, Vector algebra; Scalar
and vector products; Derivatives of a vector with respect to a scalar.

First Order Ordinary Differential Equations: First order homogeneous differential equations
(separable and linear first order differential equations).

Second Order Ordinary Differential Equations: 2™ order homogeneous differential equations
with constant coefficients.

Laws of Motion: Frames of reference; Newton's Laws of motion; Straight line motion; Motion in
a plane; Uniform circular motion; 3-d motion.

Applications of Newton's Laws of Motion: Friction; Tension; Gravitation; Spring-mass system
— Hooke's law; Satellite in circular orbit and applications; Geosynchronous orbits; Basic idea of
global positioning system (GPS); Weight and Weightlessness.

Linear Momentum and Impulse: Conservation of momentum; Impulse; impulse-momentum
Theorem; Motion of rockets.

Work and Energy: Work and energy; Conservation of energy; Head-on and 2-d collisions.

Kinematics of Angular Motion: Kinematics of angular motion: Angular displacement, angular
velocity and angular acceleration; General angular motion.

Dynamics of Rotational Motion: Torque; Rotational inertia; Kinetic energy of rotation; Angular
momentum; Conservation of angular momentum and its applications.

Motion under Central Force Field: Motion of a particle in a central force field (motion in a
plane, conservation of angular momentum, constancy of areal velocity); Kepler's Laws
(statement only).

Dynamics of Many Particle Systems: Dynamics of a system of particles; Centre of Mass,
determination of the centre of mass of discrete mass distributions, centre of mass of a rigid body
(qualitative).

Conservation Laws: Linear momentum, angular momentum and energy conservation for
many-particle systems.

Simple Harmonic Motion: Simple Harmonic Motion; Differential equation of SHM and its
solutions; Kinetic Energy, Potential Energy, and Total Energy of SHM and their time averages.

Superposition of Harmonic Oscillations: Linearity and Superposition Principle; Superposition
of Collinear Oscillations having equal frequency and having different frequencies (beats);
Superposition of Orthogonal Oscillations with equal and unequal frequency; Lissajous Figures
and their uses.

Damped Oscillations: Equation of Motion of Damped Oscillations and its solution (without
derivation); Qualitative description of the solution for Heavy, Critical and Weak Damping;
Characterising Damped Oscillations — Logarithmic Decrement, Relaxation Time and Quality
Factor.

Wave Motion: Qualitative Description (Wave formation and Propagation; Describing Wave
Motion, Frequency, Wavelength and Velocity of Wave; Mathematical Description of Wave
Motion).
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