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THERMAL PHYSICS AND STATISTICAL MECHANICS : 
COURSE INTRODUCTION 

We know that under normal conditions, matter exists in three states: solids, liquids and gases. 

To gain knowledge of thermal properties of matter, we begin with understanding of the 

gaseous state. It marked the beginning of kinetic theory of matter. In Block 1, you will learn 

kinetic theory of gases, which, in conjunction with the laws of mechanics for individual 

molecules, helps us to know bulk properties of matter. You will realise that Kinetic theory has 

great aesthetic elegance. 

In its manifestation as heat, energy is intimate to our existence. However, early physicists 

struggled with questions such as: What is heat? How can we specify the direction of flow of 

heat? and so on. Our quest to answer these and other related questions is contained in the 

subject of thermodynamics. This subject developed on phenomenological basis long before 

we knew the nature or behaviour of elementary constituents of matter such as electrons, 

atoms or molecules. 

There are two distinct approaches to learn this subject. The traditional or classical approach is 

based on some postulates derived from experience. In our view, as a distance learner, you 

will find it easier to understand the subject following the formal approach based on postulates, 

which is illustrated in the second and third blocks of this course. Among others, Joule, Carnot, 

Clausius, Kelvin, Maxwell, Gibbs and Planck have contributed to the development of this 

subject. 

The classical statistical mechanics evolved out of the efforts of Boltzmann. He supplemented 

purely statistical methods (considerations of probability) by the laws of (classical) mechanics 

for a large number of particles making up the system. With the advent of quantum mechanics, 

this subject got a new shape at the hands of Bose, Einstein, Fermi, Dirac and Fowler. You will 

learn it in Block 4 of this course. 

We have explained some interesting physical phenomena encountered in the nature and  

certain mathematical concepts and techniques in Appendices of Units 7, 11 and 13 of this 

course for better understanding. You will not be examined on the material given in these 

Appendices. 

In its present state, Thermal Physics is one of the most fascinating courses taught to 

undergraduate physics students. It finds use in material science, engineering, chemistry, 

quantum, atomic and molecular physics, spectroscopy and beyond. It provides ample 

opportunities to develop a sensibility towards nature; it is an essential part of physics 

education. Therefore, while a simplistic reading will enable you to understand the subject, 

more thoughtful study will bring extra rewards! 

Our best wishes are with you! 
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BLOCK 1 : KINETIC THEORY OF GASES 

In your school classes, you have learnt that Dalton established the law of partial pressures 

and explained the laws of chemical combination. This work provided much needed impetus to 

kinetic view point. In 1811, Avogadro’s hypothesis was proposed. But it was not until 1859, 

when Maxwell showed that this result could be derived from kinetic theory, that physicists 

placed their confidence in this theory. Subsequent growth was due to pioneers like Joule, 

Clausius, Jeans and van der Waals. 

Matter is not continuous in structure and its state is determined by the interplay of thermal 

energy and intermolecular forces. You will learn that macroscopic properties of gases such as 

pressure and temperature can be related to its microscopic properties such as speed and 

mass of its constituent atoms/molecules.  

In Unit 1, we have reviewed the basic concepts of the kinetic theory of gases. You will learn 

how to apply them to obtain various gas laws and kinetic interpretation of temperature. You 

may be familiar with some of these concepts, but we have included these for the sake of 

completeness. You will also learn how elementary kinetic theory failed to explain the 

behaviour of real gases under different temperatures and pressures. A satisfactory 

explanation was provided by van der Waals. This work was so profound that Boltzmann 

considered van der Waals as ‘Newton of real gases’. We know that gas molecules move 

randomly with all possible velocities; but it required the genius of Maxwell to derive the 

distribution function for spread of molecular velocities/speeds. You will learn about it in Unit 2. 

As a consequence of random motion of molecules, non-equilibrium conditions such as mass 

motion in a particular direction make a gas to undergo transport processes. You will learn 

about mean free path, coefficient of viscosity, thermal conductivity and diffusion coefficient in 

Unit 3. 

The direct experimental evidence of molecular motion, which provided this theory a sound 

pedestal, came in the form of Brownian motion. In Unit 4, we have discussed Brownian 

motion, and its connection with random motion qualitatively. Physical examples of Brownian 

motion are also discussed here.   

After going through this block, you will realize that kinetic theory has great aesthetic appeal. 

Very elegant laws governing the gaseous behaviour emerge out of chaotic motion of a large 

number of molecules. We urge upon you to read the block carefully and work out SAQs as 

well as TQs. Only then you will enjoy it.   
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 Unit 1                                                              Ideal and Real Gases 

       UNIT1 
  IDEAL AND REAL 

GASES 
Structure 
 

1.1 Introduction 

Expected Learning Outcomes 

1.2 Assumptions of Kinetic Theory 

1.3 Pressure Exerted by an Ideal Gas 

 Kinetic Interpretation of Temperature 

 Molecular Speeds 

 Deduction of Gas Laws  

 

 

STUDY GUIDE           

 

 

1.4 Deviations from Ideal Gas Behaviour 

1.5 van der Waals’ Equation of State 

 Comparison with Experimental Results 

1.6 Summary 

1.7 Terminal Questions 

1.8 Solutions and Answers 

 

In this unit, you will learn basic concepts of kinetic theory of gases and use the expression for 

pressure to obtain kinetic interpretation of temperature and deduce gas laws. The elementary kinetic 

theory fails to explain the behaviour of real gases under different temperatures and pressures. This 

problem was overcome by van der Waals. It is possible that you are familiar with some of these 

concepts from your +2 physics classes. In that case, you will find it easier to follow the content and 

begin your journey through this course on a positive note. Therefore, we would like you to refresh your 

earlier knowledge by referring to your school textbook. Then it will be a perfect launch pad into the 

core of kinetic theory. 

“Life is a relationship between molecules.”  Linus Pauling 
 

 

The behaviour of real gases is different 

from ideal gases. You will learn the 

differences between these gases when 

you study this unit. (Picture source: 

https://pixabay.com/photos/industry-smoke-chimney-

pollution-80956/) 
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1.1   INTRODUCTION 

In your school science curriculum, you have learnt that matter is made up of 

atoms and a few atoms combine to form a molecule. A molecule is the 

smallest entity that can exist in free state and exhibit all characteristic 

properties of a substance. You may recall that these building blocks are 

identical in size, mass and chemical properties. When Clausius supplemented 

this hypothesis by laws of mechanics for molecular motion, a new area of 

knowledge – the kinetic theory of gases – was born. You may recall that 

elementary kinetic theory has been used successfully to explain even               

large-scale physical phenomena. Some of these include distribution of gases 

with altitude in the Earth’s lower atmosphere and adiabatic lapse rate (which   

refers to the change in temperature of air as we move upwards), etc. 

Broadly speaking, kinetic theory of gases is based on two basic postulates:         

(i) Matter is made up of identical molecules, and (ii) thermal energy can be 

identified with molecular motion. Based on these postulates, a few 

assumptions are made about the nature of molecules, interactions among 

them and their movement. To describe this motion, simple laws of mechanics 

are used. This helps us to obtain elegant explanations of the laws governing 

the behaviour of ideal gases in equilibrium.  

In Sec. 1.2, you will learn the assumptions of kinetic theory of gases. We have 

given justifications for their appropriateness as far as possible. In Sec. 1.3, 

you will learn an expression for the pressure exerted by a gas on the walls of  

a container and use it to correlate temperature with molecular properties. In         

particular, you will discover that Absolute Zero is that temperature at which all 

molecular motion ceases to exist. You will also apply this to deduce gas laws 

and calculate the magnitude of molecular speeds for different gases. These 

help us to explain the observed distribution of gases in our atmosphere.  In 

Sec. 1.4, we have discussed the behaviour of real gases – how van der 

Waals’ equation helps us in explaining their observed properties.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 discuss the basic assumptions of kinetic theory of gases; 

 use the expression for pressure to deduce gas laws; 

 interpret temperature in terms of molecular properties; 

 discuss deviations shown by a real gas from an ideal gas behaviour; and 

 explain how van der Waals’ equation of state satisfactorily explains the 

behaviour of real gases. 

To develop understanding of elementary kinetic theory, we first state its basic 

assumptions as a convenient starting point. 

 
 
 
 

 
 
 
 
 
 

Rudolf Julius Emmanuel 

Clausius (1822-1888) 

was a German physicist 

and mathematician who 

is considered to be one 

of the founders of kinetic 

theory of gases and 

thermodynamics. 

Beginning with his 

famous paper in 1850 

entitled “On the 

mechanical theory of 

heat”, he formulated the 

statements of first and 

second laws of 

thermodynamics. He 

interpreted the free heat 

of the system as the 

kinetic energy of gas 

molecules. 
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1.2 ASSUMPTIONS OF KINETIC THEORY 

The basic assumptions of kinetic theory of ideal gases are: 

1. A gas consists of a very large number of identical molecules. This 

assumption is quite justified. The number of molecules in a kilomole is 

.10023.6 26  (This is commonly known as Avogadro number.) It means 

that 1 cm
3
 of an ideal gas at standard temperature and pressure (STP) 

contains nearly 19103  molecules. (This number is almost six billion times 

the population of the world as of now.)  

2. The gas molecules can be regarded as point masses. Experiments 

show that the diameter of a gas molecule is about m.1032 10  The 

distance between any two neighbouring gas molecules at STP, on an 

average, is about 9103  m, which is an order of magnitude bigger than 

their diameter. 

3. The gas molecules are in a state of constant random motion. This is 

shown in Fig. 1.1. (The motion of gas molecules resembles the motion of 

honeybees disturbed from their hive.) In essence, it means that molecules 

of an ideal gas can move in all possible directions and all positions are 

equally probable. The support for this assumption came from Brownian 

motion. 

 
Fig. 1.1: Depiction of random motion of molecules of a gas. 

4. In the absence of any external force field, the molecules are 

distributed uniformly in the container. It means that an ideal gas 

behaves as an isotropic medium. In practice, however, some randomness 

in the direction of the velocities may arise because of irregularities in the 

walls of the container.  

5. The molecules of a gas experience force only during collisions. This 

assumption implies that there are no intermolecular forces (of mutual 

attraction) or any forces between the molecules and the walls of the 

container. That is, molecule of a gas can be thought of as moving about 

freely unaware of the presence of other molecules. It means that 

molecules of an ideal gas possess only kinetic energy.   

6. The molecules of a gas behave as perfectly elastic hard spheres. It 

means that the molecules undergo perfectly elastic collisions, i.e. they do 

not deform in collisions among themselves or with the walls of the 

container.  

Standard Temperature 

and Pressure (STP) 

refer to commonly 

agreed sets of 

conditions under which 

experimental 

measurements are 

reported. 

Internationally, two 

standards are in use: 

International Union of 

Pure and Applied 

Chemistry (IUPAC) and 

the National Institute of 

Standards and 

Technology (NIST). The 

IUPAC's standard refers 

to a temperature of 0°C 

(273.15 K) and an 

absolute pressure of 

100 kPa (0.986 atm) 

while NIST's standard is 

a temperature of 20°C 

(293.15 K) and an 

absolute pressure of 

101.325 kPa (1 atm). In 

this course, we shall 

use IUPAC standards, 

unless stated otherwise. 
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7. The duration of collision is negligible compared to the time interval 

between successive collisions.  

8. All molecules do not move with the same speed. That is, there is a 

spread of molecular speeds about a mean value. This is depicted in      

Fig. 1.2. An indirect justification for this assumption lies in the finite width 

of spectral lines. 

9. All molecules move in a straight line between successive collisions. 

The authenticity of this assumption was validated by Brown. 

 

Fig. 1.2: Distribution of molecular velocities at a given temperature. 

You now know the basic assumptions of kinetic theory of gases. Using these 

assumptions, an expression for pressure exerted by the molecules of a gas  

on the walls of a container can be derived. You must have learnt it in your 

school physics. So, we will just quote the result and use it to obtain gas laws 

and some other useful results. The correctness of its various predictions put 

faith in the kinetic theory model in its initial stages.  

You may now like to answer the following SAQ. 

SAQ 1  –  Validity of assumptions  

Write down the assumptions which are not justified for real gases. 

 

1.3 PRESSURE EXERTED BY AN IDEAL GAS 

Consider   kilomole of a gas confined in a container (Fig. 1.3). For generality, 

we denote the total number of molecules in volume V  byN . So we can say 

that there are )/( VNn   molecules per m3. We assume that mass of each 

molecule is m. Since gas molecules are moving randomly with finite speeds, 

these will collide with the walls of the container and recoil. This will cause 

change in their momentum. Using Newton’s second law of motion, it can be 

related to force and force exerted per unit area leads to following expression 

for pressure: 
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Fig. 1.3: Schematics of motion of molecules of a gas in a cubical container 

 2

3

1
vmnp   

    22

3

1

3

1
vvmN

V
  (1.1) 

where VNn / is number density,  is density of the gas and 2v is mean 

square speed of gas molecules. This is an important result. You will note that 

it relates macroscopic properties (p and V) with the microscopic properties (m 

and v) of individual molecules making up the system. Moreover, it is 

independent of the shape of container. 

Before proceeding further, we summarise the result of this section. 

 

 

 

 

 

 

 

 

You will agree that we started from a purely mechanical picture of a gas as a 

collection of randomly moving molecules. But we have obtained an expression 

for pressure in terms of the microscopic properties of individual molecules. Let 

us now discover kinetic interpretation of temperature and learn to use Eq. (1.1) 

to deduce gas laws.  

1.3.1 Kinetic Interpretation of Temperature 

To seek kinetic interpretation of temperature, we first rewrite Eq. (1.1) as 

 







 NvmNpV

3

2

2

1

3

2 2                  (1.2) 

Density = 
Volume

Mass
 

In the instant case,  

Mass of gas = mN. 

 

EXPRESSION FOR PRESSURE 

The pressure exerted by the molecules of an ideal gas on the walls of the 

container is given by 

                    2

3

1
vmnp   2

3

1
v  

where m is the mass of a molecule, n is the number of molecules per 

cubic metre,  is the density of the gas and 2v  is the mean square speed 

of gas molecules. Note that in this prescription, gas molecules are 

regarded as randomly moving point masses devoid of inter-molecular 

forces. 
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We cannot see gas molecules. But to get a feel of increased molecular 

motion, observe the motion of potassium permanganate (KMnO4) 

molecules in water kept in a glass beaker. As you heat water, motion of 

KMnO4 molecules will gradually become more and more vigorous.  

 

 

where 2

2

1
vm  is average kinetic energy of a gas molecule.  

For one mole of a gas, N equals Avogadro’s number, AN . And from ideal gas 

equation, we recall that 

 RTpV   

where A/NN is the number of kilomole of the gas, T  is absolute 

temperature and R  is kilomolar gas constant. Its value is .KkmolJ8314 11   

By combining ideal gas equation with Eq. (1.2), we can connect   to 

temperature through the relation 

 RTN  A
3

2
 

or TkT
N

R
B

A 2

3

2

3
      (1.3) 

where AB /NRk   is Boltzmann constant. Its value is .JK1038.1 123   At     

300 K, kinetic energy of a molecule is about J106 21  or 04.0 eV (see     

SAQ 2). Therefore, even if all this energy could be absorbed in a head-on 

collision between molecules moving in opposite directions, it is too small to 

increase the internal energy of either molecule. This justifies why it is 

reasonable to treat gas molecules as perfect hard spheres. 

Note that in arriving at Eq. (1.3), we have connected a purely mechanical 

quantity – the average kinetic energy of a molecule – to temperature. This is a 

big step as it relates molecular (microscopic) and macroscopic viewpoints 

through Boltzmann constant. (In Block 4, you will learn that Boltzmann 

constant appears in the relation that bridges the statistical and the 

thermodynamic viewpoints for a system in equilibrium.) This assigns a 

completely new and deeper meaning to temperature: 

 Temperature is linearly proportional to average (kinetic) energy of 

molecules of an ideal gas. 

 At a given temperature, the (kinetic) energy of the molecules of all gases, 

irrespective of the differences in their masses, will be the same. 

 The motion of gas molecules will become more vigorous as temperature 

increases. However, at absolute zero of temperature, the gas 

molecules will be devoid of all motion. So kinetic theory predicts that  

at absolute zero, all molecules will behave as if frozen in space. (In Block 

4 on Statistical Mechanics, you will learn that due to quantum effects, a 

few typical systems possess finite energy even at absolute zero.)  

 

 

 

 

In text books, 

Boltzmann constant is 

denoted by k. 

 

 

1.61019 
J = 1 eV 
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Before proceeding further, you should solve the following SAQ. 

SAQ 2  –  Average kinetic energy of an ideal gas  

Calculate the average kinetic energy of molecules of an ideal gas at STP. 

Take .JK1038.1 123
B

k  

 

Do you think that we have developed a reliable model of gaseous state? As a 

first check of this model, let us use it to calculate the value of molecular speed. 

Thereafter, we shall calculate some other numbers of physical interests.  

1.3.2 Molecular Speeds 

To know how fast the molecules in a gas move, we equate expressions for 

kinetic energy expressed in terms of mean square speed and temperature as  

 Tkvm B
2

2

3

2

1
 T

N

R

A2

3
  

so that 

 
m

Tk
v B2 3


M

RT3
  

where AmNM   is molecular weight of the gas.  

The square root of mean square speed is usually denoted as rmsv  and is 

called root mean square speed. It is given by 

 2vvrms   
m

Tk

M

RT B33
   (1.4) 

From this expression we note that rmsv is inversely proportional to the 

molecular weight of a gas. It implies that at a given temperature, lighter gas 

molecules would move faster. For a few gases found in our atmosphere, the 

values of rmsv  at STP are given in Table 1.1.  

Table 1.1: Values of rmsv for different gases at 273 K 

Gas )ms(
1

rmsv  Gas )ms(
1

rmsv  

H2 1840 O2 450 

He 1300 Ar 410 

H2O 615 CO2 393 

N2 493 Benzene vapour 290 

Air 485 Mercury vapour 180 

KINETIC INTERPRETATION OF TEMPERATURE 

Temperature is linearly proportional to average (kinetic) energy of 

molecules. It means that the motion of gas molecules will become more 

lively as temperature increases. However, at absolute zero, all molecules 

will behave as if frozen in space, devoid of all motion. 
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The fact that lighter molecules move faster has an interesting consequence for 

existence of life on our planet. Gases like hydrogen, helium, nitrogen and 

water vapour move upward in the Earth’s atmosphere, whereas oxygen and 

carbon dioxide are available near the Earth’s surface. This provided an 

indirect evidence in favour of kinetic theory.  

Further, from your school physics, you will recall that an object having radially 

outward velocity more than 11.2 km s
1

 can escape from the influence of 

gravity of Earth. ( gRve 2 , where R  is radius of the Earth.) Since no gas 

molecule has speed greater than ev , there is little chance of their escaping 

from the Earth instantaneously. For the Moon, Jupiter and the Sun, the values 

of escape velocity are 3.2 km s
1

, 60 km s
1 and 600 km s

1
, respectively. 

This explains why over a period of time, all gases have escaped from the 

surface of the Moon, whereas even hydrogen is held back by the Sun. 

The vertical distribution of gases in our atmosphere can also be used to 

understand the ill-effects of pollution of air and greenhouse effect caused by 

gases such as carbon monoxide and nitrogen oxide, which combine with 

atmospheric oxygen and get converted into carbon dioxide, 

chlorofluorocarbons (CFCs) and oxides of nitrogen. These chemicals are 

discharged by vehicular/air traffic, air conditioners and refrigerators in our 

atmosphere. This highlights why we should plant more trees and push for   

eco-friendly systems. Moreover, it is important to get our vehicles regularly 

checked for pollution. (In fact, in metropolitan cities, the central and state 

governments have made pollution check for all vehicles mandatory.                      

Now-a-days, these agencies are recommending the use of CNG gas. But 

some experts are of the view that even the use of CNG is not devoid of 

harmful effects, since benzene vapour tends to stay close to the ground level. 

The emission standards for vehicles are also being reviewed periodically and 

GoI proposes to move to Bharat VI compliant vehicles.) In the upper layers of 

the atmosphere, these gases are breaking up ozone, which is so vital for 

absorbing ultraviolet radiations and stopping them from entering the 

biosphere.   

The correct prediction of vertical distribution of gases in our atmosphere 

provided indirect but sound evidence in its favour and boosted the confidence 

of physicists in it. The next step was to deduce gas laws from the expression 

for pressure. You will now learn to deduce the gas laws. 

1.3.3 Deduction of Gas Laws 

By combining Eqs. (1.2) and (1.3) for a given mass of a gas, we can write 

 TkNpV B   (1.5) 

Since the right-hand side in the above relation will remain constant at a fixed 

temperature, we can write 

 constantpV                   (1.5a) 

From this result we note that pressure exerted by a given mass of a gas varies 

inversely with its volume, when temperature remains constant. This is Boyle’s 

law.  

The ever widening 

ozone holes in the 

upper atmosphere 

over the North Arctic 

as well as Antarctica 

are together of the size 

of Australia and pose a 

serious threat to the 

existence of life on our 

planet. 

 

 



   

15  

 Unit 1                                                              Ideal and Real Gases 

For constant volume, Eq. (1.5) implies that  

 constant
T

p
  (1.5b) 

That is, at constant volume, pressure exerted by a given mass of a gas is 

directly proportional to its temperature. This is Gay-Lussac’s law. 

 

Fig. 1.4: Graphical depiction of a) Boyle’s law; b) Gay-Lussac’s law;  

c) Charles’ law. 

When pressure remains constant, Eq. (1.5) implies that 

  constant
T

V
   (1.5c) 

That is, the volume of a given mass of a gas changes linearly with 

temperature. This is Charles’ law. Fig. 1.4 illustrates these three laws 

graphically. 

Note that the straight lines in Figs. 1.4b and c seem to merge towards origin. 

The trend is only indicative, as absolute zero is unattainable. Therefore, these 

curves can be obtained only for finite values of temperature.  

Note that these laws are strictly valid only for ideal gases. 

Next, we consider two different gases at the same temperature and pressure. 

Then, from Eq. (1.1) we can write 

 2
111

3

1
vnmp    

    2
222

3

1
vnm                         (1.6) 

where 2
1v   and 2

2v are respectively the mean squared speeds of the 

molecules of two gases. 

Recall that at constant temperature, the mean kinetic energies of both gases 

will be equal. So, we can write 

 2
11

2

1
vm 2

22
2

1
vm                         
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On combining this result with Eq. (1.6), we get 

 21 nn                           (1.7) 

This is mathematical statement of Avogadro’s law, which states that at 

constant temperature and pressure, equal volume of all gases contains the 

same number of molecules.  

Before proceeding further, you should answer the following SAQ. 

SAQ 3  –  Gas laws  

When we blow air in a balloon, both pressure and volume increase 

simultaneously. Does it violate Boyle’s law? Explain. 

 

To get a feel of these results you should go through the following example 

carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You will agree that motion of extremely large number of molecules can be 

described in terms of simple laws which can be verified by experiments up to 

a fairly reasonable degree of correctness. The remarkable elegance of kinetic 

theory brings out its aesthetic appeal. The success proved an important 

milestone in the growth of the kinetic theory. However, this theory was put to 

litmus test when it was applied to real gases.  

 

Calculate the number density of oxygen at 25 Nm10013.1atm1   and        

300T K. Also calculate its density using the data given in Table 1.1. 

Take .JK1038.1 123
B

k  

SOLUTION   By combining Eq. (1.1) with the equation of state for an 

ideal gas, we can write 

 2

3

1
vmnp   TnkB  

so that 
Tk

p
n

B

   

On substituting the given numerical values, we get 

 
K)300()JK101.38(

Nm10013.1
123

25










n  

                3253
26

m1045.2m
14.4

10013.1  


  

Using the value of 2v  given in Table 1.1, we can write 

  3
21

25

2
mkg5.1

)ms450(

Nm10013.133 









v

p
 

 

 

 

 

XAMPLE 1.1:   DENSITY OF A GAS 
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1.4 DEVIATIONS FROM IDEAL GAS BEHAVIOUR 

You now know that ideal gas model is simple and widely applicable. However, 

it does not hold universally. The concept of ideal gas breaks down for 

common gases at high pressures and low temperatures. That is, the ideal gas 

equation does not apply at high pressures and low temperatures. Another 

major drawback of ideal gas model is its inability to predict liquefaction of 

gases, which is technologically important. You will now definitely like to know 

the reasons responsible for these limitations. The following paragraphs will 

serve this purpose. 

1. Regnault’s Experiments: Regnault performed a series of experiments by 

applying pressure up to 30 atmosphere and varying the temperature from 

273 K to 373 K. His results for hydrogen, oxygen, nitrogen and carbon 

dioxide for K273T  and pressure in the range 0-10 atm are shown in 

Fig. 1.5, where we have plotted pV as a function of p. The straight line 

(dotted curve) parallel to the p-axis corresponds to a perfect gas. On 

closely examining the curves, you will note that for real gases:  

 i) The curves are straight lines inclined to the p-axis.  

 ii) The product pV increases with p for hydrogen and decreases for 

 nitrogen, oxygen and carbon dioxide.  

 iii) All the curves converge to the same point )molJ10271.2( 13   on the 

pV-axis at 273 K. This value corresponds to 11KmolJ31.8   for           

T = 273 K. This is the accepted value of Universal gas constant. 

Therefore, we can say that real gases deviate from perfect gas 

behaviour, except for .0p  

 
Fig. 1.5: Variation of pV versus p for hydrogen, oxygen, nitrogen and carbon 

dioxide in the range 0-10 atm. The dotted horizontal line indicates the 

values for an ideal gas.  

2. Andrews’ Experiments: Andrews carried out detailed experiments on the 

compressibility of gases while trying to liquefy them. For CO2, his results 

are shown on the p-V diagram at various temperatures in Fig. 1.6. We can 

draw the following conclusions: 

i) At 321 K and above, the behaviour of CO2 resembles that of a perfect 

gas. 
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ii) At 304.4 K, a kink appears in the isotherm. It signifies that CO2 gas 

has begun to condense. The point P is called point of inflexion.  

iii) At 294.5 K, the kink has spread into a horizontal line. It signifies 

coexistence of liquid and gaseous phases. Physically, it implies a 

discontinuous change in the density of the material for a particular 

range of values of pressure and temperature.  

iv) For T < 294.5 K, this trend continues. 

 

 

 

 

 

 

 

 

Fig. 1.6: Andrews’ curves for CO2. 

The set of values of temperature (Tc) and pressure (pc) at the point of 

inflexion are called critical values.  

You may ask: Are the gaseous and liquid phases identical at this 

point? Note that the dotted curve in Fig. 1.6 passes through the 

extremities of horizontal portions of different isotherms indicating 

vapour state on the right and liquid state on the left. The area within 

the dotted curve marks co-existence of vapour  liquid phase in 

equilibrium.  

The values of Tc and pc for some common gases are given in         

Table 1.2.  

You will note that each gas has its characteristic critical temperature 

and pressure. Furthermore, the pressure required for liquefaction is 

less for a gas having lower value of critical temperature. 

Table 1.2: Critical temperature and pressure for some common gases 

Gas Tc (K) pc (10
5
 Pa) 

He 5.2 2.3 

H2 33 13 

Ar 151 49 

O2 155 51 

CO2 304 74 

NH3 405 113 

Critical temperature 

(TC): of a gas is 

defined as that 

temperature below 

which the gas can be 

liquefied by the 

application of pressure 

alone. Above the 

critical temperature, 

the gas cannot be 

liquefied howsoever 

large the applied 

pressure may be. 

Critical pressure (pC) 

is the pressure applied 

to the gas at its critical 

temperature so that it 

gets liquefied. 
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From Fig. 1.6, we can say that 

a) A gas can be liquefied only if it is cooled up to or below its 

characteristic critical temperature. It is therefore clear that the 

increase in pV for hydrogen observed by Regnault (Fig. 1.5) arises 

because its critical temperature is much below the room 

temperature. 

b) There exists a continuity of liquid and gaseous states. That is, these 

are two distinct stages of a continuous physical phenomenon. It 

means that it is possible to move from the gas to the liquid phase by 

compressing the gas to a high pressure and then cooling it 

gradually.  

3. Amagat and other experimentalists investigated the behaviour of several 

gases at various temperatures and up to 3000 atm pressure. Their work 

lent support to the findings of Regnault and Andrews.   

Before proceeding further, let us recapitulate what you have learnt in this 

section. 

 

 

 

 

 

 

 

 

Before proceeding further, you may like to answer an SAQ. 

SAQ 4  –  Liquefaction of gases  

In Table 1.2 we have given values of Tc and pc for some common gases. 

Which of these gases cannot be liquefied by compression alone at room 

temperature? 

 

So far, we have discussed the observed behaviour of a few gases under 

different conditions of temperature and pressure. A satisfactory theoretical 

explanation of these results was provided by van der Waals. 

1.5 VAN DER WAALS’ EQUATION OF STATE 

In order to explain experimental results, theoretical physicists revisited the 

assumptions of elementary kinetic theory with a view to modify the ideal 

equation of state. Accordingly, several equations of state were put forward to 

describe the behaviour of real gases. But the most elegant effort in this 

 

Johannes Diderik van 

der Waals (1837 –

1923) was a Dutch 

theoretical physicist. 

He is credited for his 

equation of state to 

understand the 

behaviour of real 

gases, concept of 

molecular size and 

intermolecular forces. 

He received the Nobel 

Prize in 1910 for this 

work.  
 
 

 

 

REAL GASES 

The work of Andrews, Regnault, Amagat and other experimental 

physicists on real gases showed that 

 Real gases do not obey ideal gas equation of state, except for low 

pressures. 

 It is easier to liquefy a gas at lower temperatures. No liquefaction can 

occur above critical temperature, howsoever high the pressure may 

be. 

 Compression promotes liquefaction. 
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direction was made by van der Waals. He made reasonable assumptions 

regarding the size of gas molecules and nature of intermolecular forces. It is 

therefore pertinent to first know the assumptions made by him. 

Assumptions 

1. Gas molecules have finite size and behave as incompressible rigid 

spheres.  

2. Gas molecules attract each other with a weak force which is a function of 

distance between them. (This implies that molecules of a real gas have 

kinetic as well as potential energies.) However, only nearest neighbour 

interactions are important. 

3. The number of collisions with the walls of the container remain the same 

for point and finite size molecules. 

For one mole of the gas, he obtained the following equation 

    RTbV
V

a
p 










2
 (1.8) 

This equation is known as van der Waals’ equation of state. The constants 

a and b are known as van der Waals’ constants. Their values are assumed to 

depend only on the nature of the gas. For some common gases, we have 

listed the values of van der Waals’ constants in Table 1.3. )/( 2Va  is termed 

as cohesive pressure and arises due to presence of inter-molecular 

interactions. 

Table 1.3: van der Waals’ Constants for Some Common Gases 

Gas a (10
6

 atm m
6
 mol

2
) b (10

6
 m

3
 mol

1
) 

H2 0.244 26.6 

He 0.034 23.7 

N2 1.39 39.1 

O2 1.36 31.8 

Ar 1.35 32.2 

Ne 0.210 17.1 

H2O 5.46 30.5 

NH3 4.17 37.1 

CO2 3.59 42.7 

CH4 2.25 42.8 

For  moles of the gas, van der Waals’ equation takes the form 

    RTbV
V

a
p 







 


2

2
 (1.9) 

Note that for a rarefied gas, p >> a / V 2 and V >> b, van der Waals’ equation 

A p-V diagram is also 

referred to as an 

indicator diagram. 
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reduces to the equation of state for an ideal gas. For a given temperature, plot 

of Eq. (1.8) on the indicator diagram is shown in Fig. 1.7. The contribution of 

self-attracting term is shown separately. 

 

                                   Fig. 1.7: Plot of Eq. (1.8) on p-V diagram. 

We now give a solved example. It should give you an idea about the 

magnitude of various terms occurring in Eq. (1.8). You should go through it 

carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One mole of CO2 occupies 192 cm3 at 32.5C and 70 atm. Calculate the 

pressure exerted by CO2 molecules, if we assume that it obeys (i) perfect 

gas equation, and (ii) van der Waals’ equation. Given a = 3.59  106 atm 

m6 mol2, b = 42.7 106 m3 mol1 and R = 8.2  105 atm m3 K1 mol1. 

SOLUTION   Volume of CO2 = 192  106 m3 mol1,  

T = 273 + 32.5 = 305.5 K 

i) In case CO2 behaves as a perfect gas, we have 

  atm131
)molm10192(

K)5.305()molKmatm102.8(
136

1135











V

RT
p  

ii) If 2CO  obeys van der Waals equation, the pressure exerted by 2CO  

 molecules is given by 

  
2V

a

bV

RT
p 




1366

1135

molm)1042.710192(

K)5.305()molKmatm102.8(







  

                      
2136

266

)molm10192(

molmatm1059.3







  

                       atm4.70  

You will note that in this case, (a) the pressure calculated for a van der 

Waals’ gas is close to the observed value of 70 atm, and (b) it is much less 

than that calculated by assuming 2CO  to be an ideal gas. It means that the 

cohesive pressure and co-volume account for nearly 60.6 atm. 

 

 

 

XAMPLE 1.2:  VAN DER WAALS’ EQUATION 
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Before proceeding further, we recapitulate what you have learnt about it so 

far. 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.1    Comparison with Experimental Results 

We now discuss how van der Waals’ equation explains experimental results. 

To do so, we first rewrite Eq. (1.8) as 

  
2V

a

bV

RT
p 


  (1.10) 

In expanded form, this equation can be rewritten as 

  pV 3  (pb + RT) V 2 + a (V – b) = 0 (1.11) 

From this we note that: 

1. van der Waals’ equation is cubic in V. It means that for given values of p 

and T, V will have three values, which become equal at the point where 

condensation begins ).( cTT    

2. For large values of V, p would be small and van der Waals’ equation 

reduces to an ideal gas equation. On the other hand, when V  b for finite 

temperatures, p  . Further, V cannot be less than b as this will lead to 

negative values of p, which is physically unacceptable. Obviously, a gas 

cannot occupy volume less than that of molecules, which are assumed to 

be incompressible rigid hard spheres.  

3. For 2CO , the plot of theoretical curves obtained on the basis of van der 

Waals’ equation at various temperatures is shown in Fig. 1.8. Note that  

the qualitative shape of the curves resembles the experimental isotherms 

of Andrews (Fig. 1.6). However, there are differences in details, 

particularly at low temperatures. For instance, van der Waals’ equation 

predicts    wave-like pattern in the straight-line region of Andrews’ curves 

obtained for 294.5T K. This is depicted as shaded portion in this figure. 

For 1.286T K, the portions AB and FG respectively represent gaseous 

and liquid states. However, the portion BC represents supersaturated 

VAN DER WAALS’ EQUATION 
 

 van der Waals modified the ideal gas assumptions on the size of 

molecules and inter-molecular forces. 

 Based on these assumptions, for one mole of the gas he obtained 

the equation 

                        
RTbV

V

a
p 








 )(

2
 

 where a and b are constant for a gas. 

 b is referred to as co-volume.  

 Due to intermolecular forces, the pressure exerted by the molecules 

of a real gas is less than that exerted by an ideal gas. This drop is 

known as cohesive pressure. 

 



   

23  

 Unit 1                                                              Ideal and Real Gases 

vapour and portion EF represents a superheated liquid. These correspond 

to meta-stable states and are not observed in the experimental results 

obtained by Andrews, which represent only the states of stable 

equilibrium. The portion CDE of the theoretical curve indicates that as we 

move from the state of supersaturated vapour towards superheated liquid, 

the volume and pressure decrease simultaneously. This corresponds to a 

collapsible state, which is unnatural and can never be realised in practice.  

 

      Fig. 1.8: Theoretical isotherms for CO2. 

We thus find that proper interpretation of van der Waals’ curves helps to 

resolve the apparent discrepancy with observed results. 

Let us now sum up what you have learnt in this unit. 

1.6 SUMMARY 

Concept Description 

Pressure exerted by 

gas molecules                          

 The pressure exerted by the molecules of a gas on the walls of a  

container is given by  

                 
.

3

1

3

1 22 vvmnp 
 

 

 

Root mean square 

speed 

 The root mean square speed of a gas molecule is given by 

                m

Tk

M

RT
vvrms

B2 33


 

 At absolute zero temperature, gas molecules are devoid of all 

motion. 

 

 

Van der Waals’ 

equation for real 

gases 

 Ideal gas equation fails to explain observed behaviour of real gases, 

except at low temperatures. van der Waals’ equation of state for one 

mole of a real gas is 

                   RTbV
V

a
p 










2
 

  
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1.7 TERMINAL QUESTIONS 

1.   Calculate rmsv for helium atoms at 300K. At what temperature will     

oxygen molecules have the same value of rmsv ?  

Take .kg1067.6 27
He

m  

2. A cubical box of side m1.0  contains 22103  molecules of a gas at 

300 K. Calculate the average pressure exerted by it on the walls of the 

cube. 

3. Calculate the temperature at which the root mean square speed of 

hydrogen and oxygen molecules will be equal to their escape velocities 

from the Earth’s gravitational field. The radius of the Earth is 6400 km. 

  123
B

2126
A JK1038.1,8.9,mol106   kmsgN  

4.   Calculate the average kinetic energy of neutrons at 300 K. Take the mass 

of the neutron as 2710675.1  kg. 

5. 210 g of 2N  gas at 8 atm pressure occupies 33m1024   of volume. 

Assuming that the gas obeys van der Waals’ equation of state with           
266 molm atm1039.1 a  and ,molm atm101.39 136 b  calculate 

its temperature. 

1.8 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. The assumptions made about point size of molecules and lack of 

intermolecular attraction will not be valid for real gases. The equation of 

state for real gases is more accurately described by van der Waals‘ 

equation.  

2. We know that the average kinetic energy of a molecule is given by 

  TkB
2

3
 K300)JK1038.1(

2

3 123    

                  211021.6  J meV39eV1088.3 2    

 since 1 eV 1910602.1  J.  

3. Boyle’s law is not violated because in this case the mass of the gas does 

not remain constant inside the balloon. 

4. We know that a gas can be liquefied by compression when its temperature 

is below its critical temperature. So, we cannot liquefy helium, argon, 

hydrogen and oxygen at room temperature. 

  Here (a / V 2) arises due to the presence of intermolecular 

interactions and is called cohesive pressure. b is known as co-

volume and has its origin in the finite size of the gas molecules. 

 van der Waals’ equation reduces to perfect gas equation at low 

pressures.  

  
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Terminal Questions 

1. We know that 

   
He

B3
)He(

m

Tk
v rms   

  On inserting the numerical data, we get 

   
   

kg106.67

K300JK1038.13

27

123








rmsv  

           1365 ms1 

  You can also write 

   1  
 
 He

O

rms

2rms

v

v
 

     
He

He

T

M

M

T


2

2

O

O
 

 so that the temperature at which the root mean square speed of oxygen 

will become equal to that of helium is given by 

   
He

HeHe

He

HeO
O

82

2 M

TM

M

TM
T   

                           K24008 He  T  

2.  Here 22103N  molecules, 300T K and 310V  m3. On inserting 

these values in the ideal gas equation 

   Tk
V

N
p B  

  we get 

   K)300()JK1038.1(
m10

103 123

33

22




 


p  

                          51024.1  Nm2 

3. The average kinetic energy of a gas molecule of mass m and moving with 

root mean square speed, rmsv is equal to 2

2

1
vm or .

2

3
BTk  We know that 

the escape velocity from the surface of the Earth is given by 

  02 Rgves   

 where g is acceleration due to gravity and 0R is the radius of the Earth. 

 Since kinetic energy of a molecule moving with escape velocity will be 

equal to 2
es

2

1
mv we can write 

    0B
2

3
mgRTk   

 so that   
B

0

3

2

k

mgR
T   

a) For hydrogen molecules 

        
B

0H
H

2

2 3

2

k

gRm
T   
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  Here kg
106

22

26
A

H2



N

m , 8.9g ms1, 6
0 104.6 R m 

  and 23
B 1038.1 k JK1. 

  4

123

62

26H 101.1
JK101.38

m)104.6()ms8.9(
kg

106

2

3

2
2



































T K 

 b) For oxygen molecules 

       
2

2

2
16

16

3

2

3

2
0

B

2

B

0O
O H

H
TRg

k

m

k

gRm
T   

            K1062.1 5  

4. The average kinetic energy of an ideal gas molecule is given by  

   TkB
2

3
  

       We consider that assembly of neutrons behaves as an ideal gas.   

Therefore, on substituting the values of 123
B JK1038.1 k  and 

300T K, we get 

        21
23

1021.6
2

3001038.13 





 J 04.0 eV 

 Such neutrons are known as thermal neutrons and are very effective in 

inducing fission reaction in isotopes of uranium and plutonium. A 

controlled fission reaction is used to produce electricity in a nuclear power 

plant. Nuclear energy also finds important uses in agriculture, industry and 

medicine, among others. 

5. Since mass of the gas taken is 210 g and its molecular weight is 28, the 
number of moles is .5.7g28/g210   

Volume of the gas V = 24  103 m3 

External pressure p = 8 atm 

Now, van der Waals’ equation of state for μ moles reads 

   RTbV
V

a
p 













 


2

2

 

We rewrite it as 

  bV
V

a
p

R
T 













 





2

21
 

Substituting various values, we get 

    

















 )Kmolmatm10(8.2mol5.7

1

1135
T  

                           























233

26622

)m10(24

)molmatm10(1.39mol(7.5)
atm8  

             )molm101.39mol5.7m1024( 13633    

    K2.313  
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              UNIT 2 

MOLECULAR VELOCITY 
DISTRIBUTION FUNCTION 

Structure 
 

2.1 Introduction 

Expected Learning Outcomes 

2.2 Maxwell’s Distribution Law 

 Assumptions 

 Velocity Distribution Function 

 Distribution Function for Molecular Speeds  

 Determination of Constants A and B 

2.3 Some Useful Deductions from  

Maxwell’s Law 

 Average Speed 

 

STUDY GUIDE           

 

 

 

 

 Root Mean Square Speed 

 Most Probable Speed  

2.4 Direct Experimental Verification of Maxwell’s 

Law 

2.5 Law of Equipartition of Energy 

 Degree of Freedom 

 Heat Capacity of Gases 

2.6 Summary 

2.7 Terminal Questions 

2.8 Solutions and Answers 

In the preceding unit, you have learnt kinetic interpretation of temperature, gas laws and van der 

Waals’ equation formulated to explain the behaviour of real gases. In this unit, you will learn to derive 

Maxwell distribution law for velocities as well as speeds. To follow the mathematical treatment, you 

should have basic knowledge of probability theory, know how to obtain derivative of a function and 

evaluate the integral of a function. Moreover, you will have to deal with special functions. However, do 

not worry. We have included all that you will need in this unit. You should therefore refresh your 

knowledge of 10+2 mathematics. In order to enhance your understanding of various concepts, you 

should work out numerical problems and answer questions in SAQs and TQs, which test your 

analytical abilities and conceptual clarity. This unit may take you a little more time as compared to   

Unit 1. 

“Anyone who thinks the sky is the limit, has limited 

imagination.”  

James Clerk 
Maxwell 

 

 

In stars, the gas molecules undergo 

intermolecular-collisions and move 

with all possible speeds. The 

estimate of these speeds gives us an 

idea about the nature of molecular 

distribution as you will learn in this 

unit. (Picture source: 

https://pixabay.com/photos/astronomy-bright-

constellation-dark-1867616/ ) 
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2.1   INTRODUCTION 

In Unit 1, you have learnt that elementary kinetic theory supports the view that 

molecules of a gas move randomly in all directions. You may recall that we 

defined the root mean square speed of all gas molecules, even though there 

is spread of speeds. In fact, based on Eq. (1.4), Clausius deduced the values 

of root mean square speeds of nitrogen and oxygen molecules as 1ms493   

and ,ms461 1  respectively. The critics of kinetic theory argued that in a room 

having dimensions of m,3m3   pungent odour should permeate in a fraction 

of second (0.006 s). But it is well known that invariably it takes up to a minute 

or so. To explain this discrepancy, Clausius argued that in actual practice, gas 

molecules have finite size and therefore undergo inter-molecular collisions as 

they move. (It means that strictly speaking, the assumption made in Unit 1 to 

depict gas molecule as a point mass is not valid.) As a result, the molecules 

move in a zig-zag path as they diffuse from one part of a volume to another 

rather than move in straight lines. He therefore introduced the concept of 

mean free path. (You will learn about it in the next unit.) However, he could 

not visualise how the molecular velocities were spread. 

In his characteristically novel and profound work published in 1860, Maxwell 

provided the correct answer for the distribution of molecular velocities and 

introduced statistical concepts in kinetic theory of gases. His theory marked 

the beginning of a new era in physics; it formed the basis of modern theory of 

statistical mechanics and led to statistical interpretation of the laws of 

thermodynamics. Using the theory of probability, Boltzmann put Maxwellian 

theory on firm mathematical foundations. For this reason, distribution function 

for molecular velocities is also referred to as Maxwell-Boltzmann 

distribution function. In Sec 2.2, you will learn about Maxwell-Boltzmann 

distribution function for molecular velocities as well as speeds. This helps us 

to estimate the number of molecules having velocities/speeds in a particular 

range. 

In Sec. 2.3, you will use Maxwell distribution function for speeds to obtain 

expressions for average speed, most probable speed and root mean square 

speed. In science, no theory is accepted till such time that it is directly verified. 

The first direct proof of Maxwell’s law was given by Stern in 1920. His 

technique was subsequently modified by Zartman and Ko. A detailed 

discussion of these experiments, with necessary theory will take us too far. 

However, we outline the experimental procedure in Sec 2.4. For other more 

elegant methods conducted in the second half-of the 20th century, you may 

like to refer to Further Readings.  

An important result associated with Maxwellian distribution leads us to the law 

of equipartition of energy. In Sec. 2.5, you will learn about it and its 

applications to explain temperature dependence of heat capacities of gases. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 derive expression for Maxwell’s distribution function for molecular 

velocities and speeds;  

 
James Clerk Maxwell 

(1831-1879) was a 

celebrated Scottish 

theoretical physicist and 

mathematician. Before 

working on kinetic theory 

of gases, he had 

proposed the well-known 

Maxwell’s equations for 

e. m. fields and brought 

the entire science of 

optics under the 

umbrella of 

electromagnetism  a 

classic example of 

unification of knowledge. 

This amazing and 

exciting work brought 

crowning glory to 

Maxwell. His work 

opened flood gates for 

new research and 

development in 

telecommunication. 

He is also credited with 

the creation of the first 

true colour photograph.  
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 obtain expressions for average speed, most probable speed and root 

mean square speed using Maxwell’s distribution function; 

 describe direct experimental verification of Maxwell’s distribution law; 

 discuss law of equipartition of energy; and 

 apply law of equipartition of energy for thermal heat capacities of gases. 

2.2   MAXWELL’S DISTRIBUTION LAW 

The molecules in a gas are known to be in a state of constant random motion. 

As a result, these molecules collide against each other as well as against the 

walls of the container. This results in a continuous change both in magnitude 

and direction of their velocities. It implies that in a real system, even if all the 

molecules have the same velocity at a given time, we should expect that 

molecular collisions will result in a wide distribution of molecular velocities at 

some later time. You may therefore logically ask: What is the distribution of 

molecular velocities and how to determine the number of molecules having 

velocities in a certain range? The answer to this question was first provided by 

Maxwell.  

To derive the expression for distribution function of velocities, Maxwell 

modified some assumptions of kinetic theory made by Clausius and made a 

few additional assumptions. We now state these.  

2.2.1    Assumptions 

1. The gas molecules move with all possible velocities from zero to 

infinity. As such, at STP no molecule can move with infinite or zero 

velocity. But this assumption helped to simplify mathematical steps without 

affecting the physics of the system.  

2. There is no mass motion or convection current in the body of the 

gas. As long as there is no net force (or pressure gradient) acting on the 

system, this assumption is quite justified. 

3. The probability that the x-velocity component of a molecule, say after 

a large number of collisions is independent of other two components 

(in the y and z-directions). This assumption follows from random motion 

of gas molecules. 

4. The probability that a molecule selected at random has velocity 

component in the given range is a function purely of the magnitude 

of velocity component and the width of the interval. 

5. The gas molecules have no vibrational or rotational energies. This 

assumption is quite justified at STP because vibrational and rotational 

energies remain unchanged when gas molecules undergo collisions. 
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You will now learn how to derive the expression for Maxwell distribution 

function for velocities. 

2.2.2    Velocity Distribution Function 

Suppose that a gas made up of a total of N randomly moving molecules is 

enclosed in a vessel of an arbitrary shape, as shown in Fig. 2.1a. To each 

molecule, we attach a vector, which represents its velocity in magnitude and 

direction. We then transfer these vectors (not the molecules) to a common 

origin (Fig. 2.1b). To do so, we use the property that a vector remains 

unchanged when it is translated parallel to itself. We represent these 

molecules on a velocity diagram, as shown in Fig. 2.1c. Here v


d  is an 

infinitesimal volume element. 
 
 
 
 
 
 
 
 
 

Fig. 2.1: a) Gas molecules in random motion; b) all velocity vectors transferred 

to a common origin; c) a volume element v


d  in velocity space for a 

molecule of velocity v


. 

Note that each velocity vector will be defined by the coordinates of its end 

point. Let us denote the yx,  and z  components of the velocity v


 of a particle 

by yx vv ,  and zv . Therefore, in terms of these three rectilinear components, 

we can write 

  2222
zyx vvvv   (2.1) 

The number of velocity vectors ending in element zyx dvdvdvd v


 gives the 

average number of molecules whose velocities lie between given limits v


 and  

vv


d  after a large number of collisions among identical molecules. It means 

that we have to calculate the number of molecules simultaneously having 

velocity components in the range xv  to ,xx dvv   yv  to yy dvv   and zv  to   

.zz dvv   Assumption (4) stated in sub-section 2.2.1 implies that the fraction 

of molecules having velocity components in the range xv  to xx dvv   can be 

expressed as .)( xx dvvf  That is  

  
N

dN
xv

xx dvvf )(   

or  xxv dvvfNdN
x

)(  (2.2) 

where 
xvdN is the number of molecules having velocity components in the 

range xv  and ,xx dvv  N is the total number of molecules and f  is an 

unknown function, which we have to determine. Mathematically, the ratio, 

N

dN
xv

denotes the probability that a molecule with x-component of velocity lies 

in the range xv  to .xx dvv    

The probability of an 

event is the ratio of the 

number of favourable 

outcomes to the total 

number of outcomes. 

For example, the 

probability of getting a 

head in tossing a coin 

is one-half. 
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Proceeding further, we note that existence of velocity component xv  does not 

in any way affect velocity components yv and zv , since these are mutually 

perpendicular and independent of each other. So the number of molecules 

having velocity components in the range yv to yy dvv  and zv  to zv zdv  

are, respectively, given by  

  yyv dvvNfdN
y

)(  (2.3)  

and  zzv dvvNfdN
z

)(  (2.4) 

Note that we have assumed the same functional dependence in all three 

cases. It signifies that there is no preferred direction of motion of gas 

molecules. 

Since the three perpendicular components of velocity are independent, we 

can express the probability for a molecule to simultaneously have velocity 

components in the range xv  to xv xdv , yv  to yv ydv  and zv  to zv zdv  

using the law of compound probabilities. This gives  

  zyxzyx
zvyvxv

dvdvdvvfvfvf
N

Nd
)()()(

3

  (2.5) 

Hence, the number of molecules simultaneously having velocity components 

lying between xv to xv xdv , yv  to yv ydv  and zv  to zv zdv is 

  zyxzyxzvyvxv dvdvdvvfvfvfNNd )()()(3   (2.6) 

Note that all these 
zvyvxvNd3  molecules lie in the small volume element 

.zyx dvdvdv  In Fig. 2.1c, one such molecule is depicted as a velocity point.     

(A point representing a molecule with velocity components in the three 

coordinate directions is called velocity point.) 

Therefore, the density of velocity points, i.e., number density of gas molecules 

can be expressed as 

  
zyx

zvyvxv

dvdvdv

Nd3

  (2.7) 

On combining Eqs. (2.6) and (2.7), we can write  

  )()()( zyx vfvfvNf   

Since the velocity space has been assumed to be isotropic, the density of 

velocity points can be taken as constant. So, we can write 

  )()()( zyx vfvfvNf  constant )()( 2vNFNJ  v


 (2.8) 

where F is some other function. Note that this equation holds for a fixed value 

of v


, i.e. it is subject to the condition 

   2222
zyx vvvv  constant (2.9) 

According to the law 

of compound 

probabilities, for 

independent events, 

the composite 

probability is equal to 

the product of the 

probabilities of 

individual events. 
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Physically it means that after a large number of collisions, the distribution will 

be isotropic. Therefore, we can take 

  0)( 2 vdF  

In terms of xdv , ydv and d zv , we can write Eq. (2.8) as 

  yz
y

y
xzyx

x

x dvvf
v

vf
vfvfvfdv

v

vf
)(

)(
)()()(

)(









  

             0
)(

)()( 



 z

z

z
yx dv

v

vf
vfvf  (2.10) 

Proceeding further, we divide Eq. (2.10) by )()()( zyx vfvfvf  and obtain 

 0
)(

)(

1)(

)(

1)(

)(

1















z

z

z

z
y

y

y

y
x

x

x

x

dv
v

vf

vf
dv

v

vf

vf
dv

v

vf

vf
 (2.11) 

The differential form of Eq. (2.9), which expresses the condition under which 

,xv yv  and zv  can vary while v


 remains constant is 

  0 zzyyxx dvvdvvdvv  (2.12) 

From this equation it is clear that the differentials xdv , ydv and zdv  are not 

mutually independent; these can take any value but must satisfy Eq. (2.12). 

To relax this constraint, we use Lagrange’s method of undetermined 

multipliers. In this method, the constraining relation is multiplied by a constant 

and the resultant expression is added to the constrained equation. In this 

case, we choose the undetermined multiplier to be 2B. (You will soon realise 

that the factor 2 with B simplifies mathematical steps.)   

On multiplying Eq. (2.12) by 2B and adding the resultant expression to         

Eq. (2.11), we get 

 yy
y

y

y
xx

x

x

x

dvBv
v

vf

vf
dvBv

v

vf

vf 





























2

)(

)(

1
2

)(

)(

1
 

                                           02
)(

)(

1














 zz

z

z

z

dvBv
v

vf

vf
 (2.13) 

We now choose the constant B such that 

  02
)(

)(

1





x

x

x

x

vB
v

vf

vf
    (2.14) 

Then Eq. (2.13) reduces to   

 yy
y

y

y

dvBv
v

vf

vf 















2

)(

)(

1

 
 

02
1














 zz

z

z

z

dvBv
v

vf

vf
 (2.15) 

Of the three variables xdv , ydv and zdv , we can consider ydv and zdv to be 

independent. Then, for finite values of ydv and zdv , Eq. (2.13) will be 
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satisfied if the coefficients of these differentials in Eq. (2.15) vanish separately. 

This leads us to the equations  

  02
)(

)(

1





y

y

y

y

Bv
v

vf

vf
 (2.16)  

and   02
)(

)(

1





z

z

z

z

Bv
v

vf

vf
 (2.17) 

To proceed further, we rewrite Eq. (2.14) as 

  xx
x

x dvvB
vf

vdf
2

)(

)(
   

Note that we have replaced ‘’ with d because f in the above expression is a 

function of xv  only.  

This equation can be easily integrated to obtain 

  A
Bv

vf x
x ln

2

2
)(ln

2

  

where Aln is an arbitrary constant of integration.  

You can rewrite this result as 

  
2

)( xBv
x Aevf


  (2.18) 

where A and B are unknown constants. Note that Lagrange’s method of 

undetermined multipliers has helped us to discover the form of the function f; it 

is a decaying exponential. But now we will have to deal with two unknown 

constants (A and B) rather than one unknown function ).(f  This apparent 

complexity should not discourage you; it is more difficult to determine an 

unknown function than two unknown constants.  

Note that Eq. (2.18) gives the probability for a molecule having velocity 

component in the x-direction between xv  and .xx dvv   

On combining this result with Eq. (2.2) we can express the number of 

molecules having velocity components in the range xv  to xv xdv as 

  NAdN
xv  exp )(

2
xBv xvd  (2.18a) 

Proceeding further, we note that the differential equations satisfied by 

)( yvf and )( zvf will be similar to that satisfied by )( xvf . Therefore, by analogy, 

we can write 

  
2

)( yBv
y Aevf


   (2.19) 

and  
2

)( zBv
z Aevf


  (2.20) 

On combining Eqs. (2.18), (2.19) and (2.20) with Eq. (2.6), we obtain the 

required expression for 
zvyvxvNd3 : 
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  zyx
zvyvxvB

zvyvxv dvdvdveNANd
)(33

222 
  

                                      
23 BveNA  zyx dvdvdv  (2.21) 

Hence, the probability that a molecule has velocity between v


 and vv


d  is 

given by 

  vdeA
N

Nd
Bvvvv zyx 33

3
2  (2.22)  

where zyx dvdvdvvd 3  is three-dimensional element of velocity space. 

This expression is referred to as the Maxwell velocity distribution function. 

This result shows that the probability that a molecule has velocity between v


 

and vv


d  decreases exponentially with .v


  

Usually we are not interested in knowing the molecular distribution for 

individual velocity components since the distribution has been assumed to be 

isotropic and gas molecules show no preferential direction of motion. 

Therefore, it is more desirable to express Eq. (2.21) in other forms. We now 

discuss distribution function for molecular speeds. 

2.2.3    Distribution Function for Molecular Speeds 

To obtain the expression for distribution function for molecular speeds, we 

consider the number of molecules having speeds in the range v  to .dvv   

We can easily calculate this number by considering a spherical shell of radius 

v  and thickness ,dv  in the velocity space (see Fig. 2.2). The number of 

velocity vectors ending in such a spherical shell gives the required number.  

 
Fig. 2.2: A spherical shell of radius v and thickness dv. 

The volume of such a shell in velocity space will be .4 2 dvv  In view of the 

geometry under consideration, it will be more appropriate to express the 

volume element zyx dvdvdv  in terms of spherical polar coordinates. So we 

put  dvddvdvdvdv zyx  sin2  and replace 
zyx vvvNd3 by .vdN Note that 

the limits of integration over  vary from 0 to  and over  from 0 to 2. This 

gives 

 











2

0

23

0

   sin
2

dvddveNAdN Bv
v  

           dvevNA Bv   20coscos
223 dvevNA Bv 2234  (2.23) 
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The ratio, dvdNv /  determines the Maxwellian distribution of molecular 

speeds. The qualitative shape of the Maxwellian distribution function as a 

function of molecular speed is shown in Fig. 2.3. 

 

Fig. 2.3: A plot of Maxwellian distribution function versus molecular speed. 

Note that  

 The shape of the curve is determined by the interplay of an increasing 

quadratic function and a decaying exponential. 

 For smaller values of v, the quadratic function dominates and the curve 

rises. The exponential function begins to become important gradually.  

 Beyond a certain value of v, the exponential term begins to dominate and 

limits the maximum of the curve to a finite value. At that point, the curve 

shows an inversion and decays exponentially thereafter. 

 If we consider a strip of width dv, its area (shown by the shaded part) 

gives us the number of molecules with speeds between v and .dvv   The 

number of gas molecules with very small and very large speeds is 

extremely small.  

 The area under the curve gives the total number of molecules in the gas. 

Note that to relax the constraint expressed by Eq. (2.9), we introduced only 

one unknown constant (2B) but Eq. (2.23) for molecular velocity distribution 

has two unknowns (A and B). Obviously, we must determine these to obtain 

the quantitative shape of the distribution curve. Let us do so now.  

2.2.4    Determination of Constants A and B  

To evaluate the unknown constants A and B, we first make use of the fact that 

if we integrate Eq. (2.23) for dNv over all possible values of v from 0 to , we 

will get the total number of molecules: 

  




0

23 2

4 dvevNAdNN Bv
v  (2.24) 
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Note that at ordinary temperatures, all molecules move with finite speed. 

Moreover, Einstein’s theory of relativity puts the upper limit of v at the speed   

of light and no material particle can move with infinite speed. And, at speeds 

comparable to the speed of light, the theory of relativity stipulates that we 

should include relativistic effects. Therefore, strictly speaking, the limits 0 to  

are non-realistic. However, for mathematical simplicity in present discussion, 

we will work within these limits without any reference to relativistic effects. 

To know the total number of molecules, we have to evaluate the integral in 

Eq. (2.24). We have given the value of a general integral of this type in the 

margin. You will be required to use it several times in this unit. Therefore, it 

will be worthwhile to remember it for fast calculations. If you compare the 

integral in Eq. (2.24) with that given in the margin remark, you can easily 

identify that 2n  and the integral on the RHS of Eq. (2.24) can be expressed 

in terms of the gamma function as: 
22

3

2

1 

















 


n
 (see table). Using 

this result in Eq. (2.24), we get an elegant expression for the total number of 

particles: 

 
22

4
)2/3(

2

1
4

2/3

3

2/3

3 


B

NA

B
NAN   (2.25)  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On simplification and rearrangement of terms in Eq. (2.25), we can express A 

in terms of B:  

  /BA       (2.26) 

Those of you who would like to know how the integral in Eq. (2.24) has 

been evaluated, we illustrate it now. Change the variable of integration and 

put xBv 2  so that dxdvBv 2  or dx
B

dvv
2

1
 and  

.
2

1 2/1

2/3

2 dxx
B

dvv   However, the limits of integration will not change 

since 0x  for 0v  and x  for .v  Hence we can write 

                




0

2/1
2/3

3

2

1
4 dxxe

B
NAN x                             (i) 

The integral in this expression denotes a special function, known as 

gamma function: 

                 




0

1)( dxxen nx  

In this case, 2/3n . Therefore, the integral in (i) is equal to 

 )2/1()2/1()2/3( / 2 . In writing the last step, we have used the 

relation )1()1()(  nnn  and .)2/1(   (You will learn these special 

functions in higher level physics.) Hence, the expression for total number of 

particles in the gas takes a simple form: 

                
22

1
4

2/3

3 


B
NAN  

 

The value of the 
integral 
 








 








2

1

)2/)1((
2

1

0

2

n

n
B

dvv
Bv

e
n

  

where (n) is gamma 
function. Its values for 
a few values of n are 
given below: 
 

n (n) 

2

1
 

  

1 1 

2

3
 

2


 

2 1 
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To determine B, we calculate the mean square speed 2v  of a molecule. It is 

defined as  

  











0

0

2

2

v

v

dN

dNv

v  (2.27)  

On substituting for vdN  from Eq. (2.23), we can write 

  



















0

23

0

223

2

2

2

4

.4

dvveNA

dvvveNA

v

Bv

Bv














0

2

0

4

2

2

dvev

dvev

Bv

Bv

 

By referring to the integral in the margin remark on the previous page, we get 

  

 

 2/3
2

1

2/5
2

1

23

25
2







B

Bv
)2/3(2

)2/5(2

25

23






B

B
 

Since )2/3()2/3()2/5(  , the expression for 2v simplifies to 

  2v
B2

3
  (2.28)       

In Unit 1, you have learnt that average kinetic energy of a molecule is equal to 

.)2/3( BTk  So we can write 

  Tkvm B
2

2

3

2

1
  

On combining this result with Eq. (2.28), we get 

  Tk
B

mvm B
2

2

3

2

3
.

2

1

2

1
  

so that  

  
Tk

m
B

B2
  (2.29) 

On substituting this value of B in Eq. (2.26), we obtain the value of constant A: 

  
Tk

m
A

B2
  (2.30) 

If we now substitute the values of A and B from Eqs. (2.29) and (2.30), 

respectively, in Eq. (2.23), we can express the number of molecules in a 

Maxwellian gas having speeds in the range v  to dvv   as 
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  NdNv  4 dv
Tk

mv
v

Tk

m


























 B

2
2

2/3

B 2
exp

2
 (2.31) 

Let us pause for a while and reflect on the implications of this result. Eq. (2.31) 

tells us that distribution of molecular speeds is a function of temperature of the 

gas. Note that at a given temperature 

 The probability that a molecule has a speed between v and dvv   is 

./ NdNv  

 The value of Maxwellian distribution function of molecular speeds, 

dv

dN
f v
v  , will be zero for 0v  as well as v . It means that molecular 

speeds can have only finite values. 

 For small molecular speeds, Maxwellian distribution function increases as 

a quadratic function. 

 As magnitude of molecular speed increases, the exponential function, 

which is a decaying term, starts becoming important. As a result, the 

Maxwellian distribution function increases initially, attains a maximum 

value and then decreases exponentially. This is illustrated in Fig. 2.4. 

 The Maxwellian distribution curve becomes flatter as temperature 

increases; the peak value shifts to the right and entire distribution is 

pushed towards higher speeds because the gas molecules become more 

energetic. 

 The nature of the gas comes into play in determining the shape of the 

curve through the presence of mass of the molecules. 

 

Fig. 2.4: Plots of Maxwellian distribution function versus speed at three different 

temperatures.  

To give you an idea about the numbers involved, we would like you to go 

through the following Example carefully. 
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Consider a cubical container having oxygen gas. The velocities of oxygen 

molecules in this sample have speeds between 1ms185   and 1ms195   

at 0C. Calculate (i) the number of molecules in this range, and (ii) the 

probability that the speed of an oxygen molecule will lie between these 

values. The mass of oxygen sample is 0.25 kg. Take 

.JK1038.1 123
B

k  

Solution  From Eq. (2.31) we know that the number of molecules having 
speeds in the range v  to dvv   is given by 

     v
Tk

mv
v

Tk

m
NdNv d

2
exp

2
4

B

2
2

2/3

B 





































  

The interval of speeds under consideration is dv 10185195  ms1 and 

the mean speed of molecules is 

     v   1ms190
2

380

2

185195 


 

Recall that 32 kg of oxygen contains 261002.6  molecules. Hence, the 

number of molecules in the given sample ( 25.0 kg) of oxygen is given by  

    26
26

10047.0
32

1002.625.0



N  

The mass of an oxygen molecule, 26

26
1031.5

1002.6

32 


m kg 

At 273T K, 23
B 1038.1( Tk  JK1) 273 K 2110767.3   J 

On substituting these values in the expression for vdN , we get 

               






















2/3

21

26
24

J10767.32

kg1031.5
107.44vdN  

                  )ms10(
)J10767.3(2

)ms190( kg)1031.5(
exp)ms190( 1

21

2126
21 




 


















  

                    2/3627 )10245.2(3611008.59  exp ( 2544.0 ) 

(i)  22930 1052.577.0)1036.3(1033.21  
vdN molecules. 

(ii) The probability that the speed of an oxygen molecule lies between 

 the given range is only about 1%: 

     
24

22

107.4

1052.5






N

dNv 21017.1   

 

 

XAMPLE 2.1:  MAXWELL DISTRIBUTION FUNCTION 
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2.3   SOME USEFUL DEDUCTIONS FROM 
MAXWELL’S LAW 

Now you know that Maxwell distribution function gives the number of 

molecules whose speeds lie within a small range. You may recall that 

molecules of a gas are free to move with all speeds between zero and infinity. 

Therefore, it should be possible for us to characterise a Maxwellian gas with 

some average speed,v . Since Maxwell distribution function comprises two 

competing functions  an increasing quadratic function and a decaying 

exponential function  it should be possible to determine the speed at which 

the function will have maximum value. It is referred to as the most probable 

speed, pv . From Unit 1, you may recall that energy of a molecule is defined in 

terms of mean square speed, .2v  It will, therefore, be instructive to derive an 

expression for root mean square speed, rmsv for a Maxwellian gas. An 

estimate of the values of these speeds gives us an idea about the nature of 

molecular distribution. You will learn how to obtain expressions for these now.  

2.3.1    Average Speed 

The average speed is defined as 

  


 







0

0

0 1
v

v

v

vdN
N

dN

vdN

v  (2.32) 

On substituting for vdN  from Eq. (2.31), we get 

  dv
Tk

mv
v

Tk

m
N

N
v 
































0
B

2
3

2/3

B 2
exp

2
4

1
  (2.33)  

The integral on the RHS of above expression can be evaluated following the 

steps described in the Box in Sec. 2.2.4. That is, we introduce a change of 

variable by defining 
Tk

mv
x

B

2

  and substituting for .3dvv  You can easily verify 

that the integral in Eq. (2.33) has the value ).2(
)2/(2

1
2

B


Tkm

 

Since ,1)2(   the expression for average speed simplifies to 

  
m

Tk

m

Tk

Tk

mTk

m
v BB

2

B

2/3

B

55.28

2
2

1

2
4 






















  (2.34)  

Let us now obtain the expression for root mean square speed. 

2.3.2    Root Mean Square Speed 

The root mean square speed of a molecule is defined as 

2vv rms      
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From Eq. (2.28), we recall that for a Maxwellian gas, mean square speed is 

related to constant B. On substituting the value of B from Eq. (2.29), we get 

  
m

Tk

B
v B2 3

2

3
   

Hence, 

  
m

Tk
vv rms

B2 3
  (2.35) 

By comparing the expressions for average speed and root mean square 

speed given in Eqs. (2.34) and (2.35), you will note that 
__

vv rms  .  

2.3.3    Most Probable Speed 

Refer to Fig.2.4 again. The speed at which the Maxwellian distribution function 

vf  exhibits maxima is known as the most probable speed. It is denoted by 

the symbol .pv  To obtain an expression for the most probable speed, we use 

the elementary knowledge of calculus: For maxima of a function to occur, 

the first derivative with respect to the independent variable should be 

zero and the second derivative less than zero. Therefore, let us first 

calculate 
dv

dfv  using Eq. (2.31). This gives  

 
dv

dfv






































Tk

mv
v

dv

d

Tk

m
N

B

2
2

2/3

B 2
exp

2
4  

                


















































  

2

2

2
exp

2
exp2

BB

2
2

B

2

Tk

mv

Tk

mv
v

Tk

mv
vC  (2.36) 

We now equate 0
dv

dfv and solve for v . This value will define pvv  . Hence, 

we can write 

  0
2

2

2
exp

2
exp2

BB

2
2

B

2





































































Tk

mv

Tk

mv
v

Tk

mv
v

pp
p

p
p   

We can rewrite it as 

  0
2

1
2

exp2
2

BB

2






































 p

p
p v

Tk

m

Tk

mv
v  

For finite value of pv , this equality will hold only if 

  0
2

1 2

B

 pv
Tk

m
 

or  
m

Tk
v p

B2 2
  

Hence, the most probable speed of a molecule in a Maxwellian gas is given by 

  
m

Tk
v p

B2
  (2.37) 
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The numerical values of average speed, root mean square speed and most 

probable speed calculated for molecules of a few typical gases on the basis of 

Eqs. (2.34), (2.35) and (2.37), respectively, at STP are given in Table 2.1. You 

will note that root mean square speed of a molecule of a Maxwellian gas is 

greater than its average speed, which, in turn, is greater than the most 

probable speed. You can easily convince yourself that 

vvp : : 224.1:128.1:1::rmsv . 

Table 2.1: Values of pv , v  and rmsv  for different gases at STP 

Gas 

 

)ms(
1

pv   

m

TkB2
  

)ms(
1

v  

m

TkB55.2
  

)ms(
1

rms


v  

m

TkB3
  

H2 1501 1695 1838 

H2O 502 567 615 

N2 403 455 493 

Air 396 447 485 

O2 376 425 461 

CO2 321 362 393 

On the basis of this discussion on most probable speed, we cannot say very 

authentically that Eq. (2.37) corresponds to the maximum of the Maxwellian 

distribution function. Can you argue this out? As mentioned earlier, for pv  to 

correspond to maximum of the Maxwellian distribution function, the second 

order derivative should be less than zero. This is a simple exercise of calculus 

and we will leave it as an SAQ.  

SAQ 1  –  Most probable speed  

Calculate the second order derivative of Maxwellian distribution function, 

substitute the value of most probable speed given by Eq. (2.37) and convince 

yourself that 0
2

2


dv

fd v . 

You may like to solve another SAQ. 

SAQ 2  –  Molecular speeds  

Calculate the most probable speed, average speed and the root mean square 

speed for oxygen molecules at 300K. Given 26
O 1031.5

2

m kg 

and
123

B JK1038.1 k . 

 

Let us now revise what you have learnt so far in this unit. 
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So far, we have confined our discussion to distribution of molecular speeds 

for a Maxwellian gas at finite temperatures. Another physical quantity of 

interest is the energy of a gas molecule. You may, therefore, like to know the 

energy distribution of a Maxwellian gas. Let us learn about it now. 

2.4   DIRECT EXPERIMENTAL VERIFICATION OF 
MAXWELL’S LAW: ZARTMAN AND KO 
EXPERIMENTS 

The apparatus used by Zartman and Ko is illustrated in Fig. 2.5. A beam of 

bismuth molecules, produced in an oven, was collimated by a series of slits 

S1, S2, S3. A glass plate P fixed inside a cylindrical drum, D, which can be 

rotated at a high speed about an axis passing through its centre, was used to 

collect bismuth molecules. (Instead of the plate, a photographic film could also 

be placed.) The entire apparatus was placed in an evacuated chamber.  

 
Fig. 2.5: A schematic diagram of the apparatus used by Zartman and Ko to 

verify Maxwell’s law for distribution of molecular speeds. 

 The number of molecules in a Maxwellian gas having speeds in the 

rangev  and dvv  is given by 

 vNd N4  dv
Tk

mv
v

Tk

m



























 B

2
2

2/3

B 2
exp

2
 

 The Maxwellian distribution of molecular speeds is determined by the 

interplay of an increasing quadratic function and a decaying 

exponential.  

 The Maxwellian distribution is pushed towards higher speeds as 

temperature increases. However, the peak value of the distribution 

function vf corresponding to the most probable speed shifts to the right 

and is lowered. That is, as temperature increases, the distribution curve 

becomes flatter and broader. 

 The average speed, root mean square speed and most probable speed 

of molecules in a Maxwellian gas are respectively given by    

 
m

Tk
v B55.2
 ,

m

Tk
v rms

B3
 and 

m

Tk
v p

B2
  

MAXWELL’S DISTRIBUTION LAW OF SPEEDS 
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When the drum is stationary, the beam will strike the glass plate at a particular 

spot, A, say. And as the drum is rotated, the molecules will enter it only when 

the slit S crosses the molecular beam. If the rotation is clockwise, the glass 

plate moves towards the right and the faster moving molecules entering the 

cylinder will strike it to the left of A; the point of impact when the cylinder was 

stationary. Suppose that the slower molecules reach the plate between B and 

C. The density of deposit across the plate gives a measure of the velocity 

distribution of molecules.  

The results obtained by Zartman and Ko are shown in Fig. 2.6. The 

agreement between theoretical and experimental values was surprisingly 

good. 

 
Fig. 2.6: Spread of molecular deposit in the experiment of Zartman and Ko. 

2.5   LAW OF EQUIPARTITION OF ENERGY 

In Sec. 1.3.1, you have learnt that translational kinetic energy of a molecule is 

given by Eq. (1.3): 

 Tkvm B
2

2

3

2

1
  

We also know that molecular motion is completely random. So, for an isotropic 

distribution in equilibrium, all three directions are equivalent and translational 

(kinetic) energy associated with each component of velocity of an ideal 

(perfect) gas molecule is one-third of its total translational (kinetic) energy; 

equal to 2/BTk . In other words, we can say that energy is equally partitioned 

among the three components of velocity. This is known as the principle of 

equipartition of energy for a monatomic ideal gas. This is an important result 

of classical physics. And to discuss its applications, we introduce the concept 

of degree of freedom (d.f.). 

2.5.1    Degree of Freedom 

The degree of freedom of a molecule is defined as the number of 

independent coordinates required to specify its position in space 

completely. A point moving along a curved path has only one d.f. Similarly, a 

house fly moving on a stretched string has only one d.f. This is because we 

can completely specify its motion/position with only one coordinate. However, 

when the house fly moves on the floor, the number of its degrees of freedom 
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increases to two. Similarly, when the housefly flies (in the room), its motion is 

3-dimensional and we will require three coordinates (x, y, z) to specify its 

position. That is, the number of degrees of freedom will be three. How many 

d.f. does a randomly moving molecule of monatomic gas (like helium, argon, 

or krypton) have? If you are thinking that it has three translational d.f, you 

have visualised its motion correctly. 

In addition to translational degrees of freedom, a diatomic or a polyatomic 

molecule has a tendency to rotate (about fixed axes). In another course, you 

have learnt that we can resolve the angular velocity of a rotating body 

(molecule in the instant case) along three mutually perpendicular coordinate 

axes, as shown in Fig. 2.7. So, you may expect a rigid diatomic molecule (H2, 

O2, N2 …) to have three rotational degrees of freedom. But the moment of 

inertia of a diatomic molecule about an axis along or parallel to the axis of the 

molecule (i.e., the line joining the atoms) is very small and no rotation of the 

molecule as a whole is possible. So, the number of rotational degrees of 

freedom of a linear diatomic molecule is, in general, only two. That is, a rigid 

linear diatomic molecule will have a total of five degrees of freedom. (A non-

linear molecule like H2O has 3 rotational degrees of freedom.)  

 

 

 

 

 

The general formula for the number of degrees of freedom (f ) of a molecule 

can be written as 

 cqf  3                        (2.38) 

where q is the number of atoms constituting the molecule and c is the total 

number of constraints.   

For a single atom, 1q  and 0c , since the motion is random, i.e., there is 

no constraint on its motion. Hence, 3f . For a rigid diatomic molecule 

)2( q and the distance between the atoms is fixed so that 1c  and .5f  

You will agree that gas molecules do not have a perfectly rigid structure. So, 

they may even vibrate as a result of intermolecular collisions. 

You may now like to know how much energy is associated with a rotational 

and vibrational degree of freedom. To discover answer to this question, we 

recall that in case of translational energy, we have seen that the energy 

associated with each degree of freedom is solely determined by (linear 

velocity) 2 in each of these independent coordinates and the mean value of the 

corresponding energy is 2/BTk . The energy of rotation of a body about a 

specified axis is determined by (angular velocity)
2  and is equal to ,2/2I  

where I  is moment of inertia about the axis of rotation. So, each of these 

degrees of freedom has mean rotational energy 2/BTk . Vibrations present a 

Fig. 2.7: A linear 

diatomic molecule. 

DEGREE OF FREEDOM 

 

 
The degree of freedom of a molecule is defined as the number of     

independent coordinates required to specify its position completely. 

The number of d.f. can also be defined as the total number of 

independent squared terms appearing in the expression of energy of 

a system. 

. 

 

The number of d.f. can 

also be defined as the 

total number of 

independent squared 

terms appearing in the 

expression of energy of 

a system. 
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special problem. For a harmonic oscillator, the equation of motion for a body 

of mass m is 

  x
dt

xd 2
2

2

  

It has solution of the form 

  tAx  sin  

The kinetic energy of the oscillator at any time is 

2

2

1









dt

dx
m and the potential 

energy is 22

2

1
xm  and the sum of kinetic and potential energies is 22

2

1
mA  

suggesting that total energy is independent of x as well as its first time 

derivative. Nevertheless, at any instant of time, the kinetic energy is a 

quadratic function of linear velocity and the potential energy is a quadratic 

function of displacement. And each of these contributes 2/BTk  to mean 

thermal energy. We may therefore conclude that every active degree of 

freedom for which thermal energy of a system is a quadratic function of 

a variable has associated with it an average thermal energy of 2/BTk . 

(The total energy of such a system will be 2/BTkf .) This is the general 

statement of the principle of equipartition of energy. Note that this principle 

is not valid for systems where energy is a linear function of the variable, as in 

the case of potential energy due to elevation. 

 

 

 

Let us now apply the concept of degree of freedom to discuss the heat 

capacities of gases. 

2.5.2 Heat Capacity of Gases                                                  

To begin our discussion, we assume that an amount of heat Q given to a 

substance increases its temperature by T. Then heat capacity of a 

substance is given by ./ TQ   From your +2 classes, you may recall that heat 

capacity is proportional to the mass of the substance and depends on the 

temperature. It means that for a given mass of a substance, a different amount 

of heat may be needed for a unit rise in temperature at different temperatures. 

We now define specific heat capacity as 

  
T

Q

m
C






1
 

where m is the mass in kg. The specific heat capacity of a substance depends 

on its nature and temperature. It is measured in .KkgJ 11  For a gas, we 

define specific heat capacity at constant volume as 

PRINCIPLE OF EQUIPARTITION OF ENERGY 

The thermal energy of a system is equally divided amongst all active 

degrees of freedom and the mean energy associated with each 

degree of freedom is .2/BTk  
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V

V
T

Q

m
C






1
 

and specific heat capacity at constant pressure as 

  
p

p
T

Q

m
C






1
 

If the amount of substance is specified in moles () instead of mass, we define 

molar heat capacity (c), which is written as 

  
T

Q
c








1
 

The unit of c is .KmolJ 11   

Like specific heat capacity, we will have two types of molar heat capacities for 

a gas: 

  
V

V
T

Q
c








1
  

and   

  
p

p
T

Q
c








1
 

Let us consider one mole of a gas. Its total kinetic energy is given by 

   ANu  

If each molecule in the system has f degrees of freedom, we can rewrite the 

expression for energy as 

   RT
f

Tk
Nf

u
22

B
A   (2.39) 

This equation implies that molar heat capacity at constant volume, defined 

as the energy required to raise the temperature of one mole of an ideal 

gas by one kelvin, is 

   R
f

cV
2

  (2.40) 

From your school physics, you know that molar heat capacity at constant 

pressure Rcc Vp  .  (This is known as Mayor’s formula). Hence, we can 

write 

  R
f

cp 






 


2

2
 (2.41) 

On combining Eqs. (2.40) and (2.41), we can express the ratio of molar heat 

capacities at constant pressure and at constant volume as 

  
f

f

c

c

V

p 2
  (2.42) 

In Unit 5, you will learn 

why we have put  

before Q and  before 

T.  
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From Eq. (2.42) we note that molecular theory predicts the absolute values as 

well as the ratio of heat capacities in terms of the degrees of freedom and the 

gas constant. In particular, it shows that pV cc ,  and   do not vary with 

temperature.  

Proceeding further, we recall that for monatomic gases, .3f  For a 

monatomic gas, molar heat capacity at constant volume, molar heat capacity 

at constant pressure and their ratio are given by 

  RcV
2

3
 , Rcp

2

5
  and 67.1

3

5
               (2.43) 

This result shows that the value of )or( pV cc  is same for all monatomic 

gases. As such, this prediction is fairly well borne out by experiments.  

You may now ask: Is this result true even for diatomic molecules? To seek 

answer to this question, we note that for diatomic molecules, 5f  so that 

  RcV
2

5
 , Rcp

2

7
  and 4.1

5

7
           (2.44) 

Note that the ratio of molar heat capacities decreases with increasing 

atomicity of gases. This conclusion is in general conformity with experiments. 

We can also conclude that for all ideal gases, molar heat capacities and their 

ratios are independent of temperature. This result of molecular theory is fairly 

well borne out by observed results. Refer to Table 2.2 where we have listed 

the values of  and molar heat capacities (in units of R) for a few typical gases.  

Table 2.2: Molar heat capacities at room temperature 

Gas Rcp /  Rcv /   

He 2.50 1.51 1.66 

Ne 2.50 1.52 1.64 

Ar 2.51 1.51 1.67 

H2 3.47 2.47 1.40 

O2 3.53 2.52 1.40 

Cl2 4.07 3.00 1.36 

Air 3.50 2.50 1.40 

From the above discussion you may get the impression that elementary kinetic 

theory explains all observed results. This is not true. The first sign of 

disagreement between theory and experiments came to knowledge when the 

ratio of heat capacities of different gases at constant pressure and at constant 

volume was determined from their measured values and used to determine 

the number of degrees of freedom; the result was not, in general, an exact 

integer. You will discover answer to this question as you proceed in this 

course. 

Let us now sum up what you have learnt in this unit. 
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2.6   SUMMARY 

 

Concept Description 

Distribution of 

molecular velocities 

 

                           

 The distribution of molecular velocities is given by 

 vdeNAdN Bv
v

33 2  

 Maxwell’s law  The distribution of molecular speeds is given by Maxwell’s law:   

                       



























Tk

mv

v e
Tk

m
NdN

B

2

22

3

B2
4 dvv2  

Root mean square 

speed, average speed 

and most probable 

speed 

 

 

 The root mean square speed, the average speed, and the most 

probable speed are, respectively, given by the expressions: 

  ,
3 B

m

Tk
v rms  ,,, ,

55.2 B

m

Tk
v       

m

Tk
v p

B2
  

 Note that prms vvv  . 

 Average energy of           

a molecule 

 The average energy of a molecule obeying Maxwell’s law is given by 

                 TkE B
2

3
  

Law of equipartition of 

energy 

 The law of equipartition of energy states that thermal energy is 

equally divided amongst various active degrees of freedom of a 

molecule and its magnitude is .2/BTk  

 Molar heat capacities  The molar heat capacity at constant volume, molar heat 

capacity at constant pressure and their ratio for a monatomic 

gas are given by 

  RcV
2

3
 , Rcp

2

5
  and 67.1

3

5
  

 The molar heat capacity at constant volume, molar heat 

capacity at constant pressure and their ratio for a diatomic gas 

are given by 

  RcV
2

5
 , Rcp

2

7
  and 4.1

5

7
    

 The ratio of molar heat capacities decreases with increasing 

atomicity of gases and their values are independent of 

temperature. 
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2.7   TERMINAL QUESTIONS 

1. Calculate the temperature at which the velocities of nitrogen molecules 
1

1 ms400 v
 and 1

2 ms800 v  are associated with the same value of 

Maxwell distribution function .vf  

2. The average energy of helium molecules is .J1089.2 21E  Calculate 

their average speed ).(v   

3. Obtain the expression for mean translational energy per degree of 

freedom for the molecules of a Maxwellian gas. 

4. Calculate the temperature at which root-mean square speed of nitrogen 

molecules exceeds their most probable speed by .ms100 1  

5. a) Prove that for a system of particles in random motion, the average 

 velocity v  is zero. 

 b) Show that the average velocity distribution is a Gaussian centred about 

zero velocity. 

2.8   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. To prove that the most probable speed corresponds to a maximum of the 

distribution function, we have to show that the second order derivative of 

the Maxwell’s distribution function is less than zero. So we differentiate  

Eq. (2.36) with respect to v  and substitute pvv   in the resultant 

expression.  
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 On substituting the value of the most probable speed, 
m

Tk
vp

B2
 in this 

expression, we get 
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 


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
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
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
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                          0)1exp(4  C . 

2. Let us first calculate the value of mTk /B  as all the speeds require this 

value: 
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 Hence, 

    12 ms108.22 pv  1395ms  

    12 ms108.255.2 v   1446ms  

    12 ms108.23 rmsv    1484ms  

Terminal Questions 

1. Let the temperature at which the two distributions are same be T.  

 Then, from Eq. (2.31), we can write 
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 Taking natural logarithm of both sides and on rearranging the terms,  

 we get 
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2. The average energy is given by 

    Tk
f

E B
2

  

 where f is the number of total degrees of freedom. Helium is a mono-

atomic gas, therefore 3f  and hence J.1089.2
2

3 21 TkE B  

Further, we know that 

    
m

Tk
v B55.2
  

 Here m is the mass of helium. 
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3
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 Therefore, the average speed is given as 
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3. If we consider that molecules are moving along the x-axis, their distribution 

function is given by Eq. (2.18): 

    xxxx dvvBAdvvf )(exp)( 2  (i) 

 where 



B

A   and  .
2 BTk

m
B   

 The average kinetic energy of molecules moving along x-axis is given by 
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 On substituting for )( xvf  from (i), this expression takes the form 
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 The integral on the RHS (with 2n ) is equal to .
42

1
2/32/32/3 BB


  On 

using this result in (iii), we get 
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 This result is consistent with the principle of equipartition of energy. 

4. We know that rmsv  and pv  for a gas obeying Maxwell’s law are 

respectively given by 
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 On squaring both sides, we get 

    2B22 )23(sm10000 

m

Tk
 

                               
m

Tk

m

Tk B2B 1.0
)41.173.1(   

    
B

224

1.0

sm10

k

m
T


  

 For nitrogen 

    kg1065.4
kmol106.02

kmol kg28 26

126

1









m  

    
)JK1038.1(1.0

sm10)kg1065.4(
123

22426








T  

           K337  

5. a) Average velocity 
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  Since the integral is an odd function of ,xv the integral will be zero. 

Hence, 

     0xv  
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  This result is expected for a system of particles in random motion. 

 b) On integrating both sides of Eq. (2.18) over xv  in the limits   to , 

and setting the result equal to one, we can write 

     








 1)(exp)( 2
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  We use the standard integral: 

     









 dxe x 2
 (ii) 

  Using this result in Eq. (i), we get 
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  This result shows that the normalised velocity distribution is a 

Gaussian distribution, centred about mean velocity ,xv  which is zero 

since there is no preferred direction. It is shown in Fig. 2.8. 

 

Fig. 2.8: 1-D Maxwell velocity distribution, which is Gaussian centred about 

0xv . 
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   UNIT 3 

MEAN FREE PATH AND 
TRANSPORT PHENOMENA 

Structure 
 

3.1 Introduction 

Expected Learning Outcomes 

3.2 Mean Free Path 

 Elementary Derivations 

 Distribution of Free Paths 

3.3 Transport Phenomena 

 Viscosity: Transport of Momentum 

 Thermal Conductivity: Transport of Energy 

 Diffusion: Transport of Matter  

 

STUDY GUIDE           

 

 

 

 Thermal Conductivity: Transport of Energy 

 Diffusion: Transport of Matter 

3.4 Summary 

3.5 Terminal Questions Solutions and 

Answers 

 

 

3.4 Summary 

3.5 Terminal Questions 

3.6 Solutions and Answers 

In the previous unit, you have learnt about Maxwell distribution function for molecular speeds and used 

it to obtain expressions for average speed, most probable speed and root mean square speed. In this 

unit, you will learn about mean free path and transport phenomena. The study of free paths involves 

simple concepts of probability, which you have learnt in your school mathematics classes. You are, 

therefore, advised to refresh your earlier knowledge of probability. Also, you are familiar with the 

concept of viscosity, diffusion and thermal conductivity. It will be a good idea to revise your school 

physics about these concepts. This unit is slightly longer but the concepts are simple. Yet we advise 

you to master sub-topics one at a time. Moreover, if you solve numerical problems given here as also in 

other texts, you should get extra rewards. 

“Atoms and molecules from their very nature can never be 

made the objects of sensuous contemplations.”  
Ernst Mach 
 

 

Diffusion is a transport 

phenomenon. You will learn about it 

in this unit.  
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3.1   INTRODUCTION 

In the previous units you have learnt that molecules of an ideal gas can be 

considered as point masses, which move randomly with varying speeds. We 

have seen that even at room temperature, the molecules of a gas, say 

oxygen, move with very large speeds: .ms480 1rmsv  It means that a small 

amount of scent released in a large room from a vessel should spread 

throughout the room in no time. But this is not supported by our observation; 

when we open the lid of a perfume bottle in one corner of the room, the 

perfume is smelt at the other corner after a considerable time. This apparent 

paradox led to a serious objection in the early stages of development of 

kinetic theory of gases. However, this paradox was resolved by Clausius when 

he argued that gas molecules have finite size and as they move, they 

collide with one another leading to increase in diffusion time. This 

amounts to modifying the basic assumption about the size of gas molecules.  

You may now like to know: What is the average distance travelled by a 

molecule between successive collisions? What is the mechanism of these 

collisions? To answer these and such other questions, we use the concept of 

mean free path. We have derived an expression for mean free path in                  

Sec. 3.2 under simplified assumptions. These help us to get a feel of the basic 

physics. The distribution of free paths is also discussed in this section. 

Suppose that a gas moves with a flow velocity towards the right. If its 

molecules experience velocity gradient in a direction normal to the direction of 

flow, the gas experiences net transport of momentum across an imaginary 

plane in the gas along the direction of flow. This is characterised by the 

coefficient of viscosity. You will note that in gases, unlike the case of liquids, 

random thermal motion associated with gas molecules rather than frictional 

force between successive layers, gives rise to the phenomenon of viscosity. 

We will just quote the expression for the coefficient of viscosity in terms of 

mean free path and discuss its temperature as well as pressure dependence. 

When a temperature gradient exists in the body of such a gas in a direction 

perpendicular to the direction of flow, random motion of gas molecules leads 

to net transport of thermal energy in the direction of flow. This gives rise to the 

phenomenon of thermal conduction. This is characterised by thermal 

conductivity. You will learn how to correlate it with the coefficient of viscosity 

in Sec 3.3.2.  

When concentration gradient exists inside a gas normal to the direction of 

flow, there is net transport of mass in the direction of preferential motion. This 

is characterised by the coefficient of diffusion. You will learn how to express 

the coefficient of diffusion in terms of mean free path, discuss its temperature 

dependence and correlate it with coefficient of viscosity in Sec. 3.3.3. These 

processes (viscosity, thermal conduction and diffusion) are collectively 

referred to as transport phenomena, since we observe net transfer of 

momentum, energy or matter.   
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Expected Learning Outcomes 
After studying this unit, you should be able to: 

 define mean free path and obtain its expressions using elementary 

derivation; 

 describe the law of free paths; 

 explain the term transport phenomena; 

 discuss physical implications of viscosity of a gas; 

 discuss how thermal conductivity is related to the coefficient of viscosity; 

and 

 establish the relation between mean free path and coefficient of                    

self-diffusion. 

3.2   MEAN FREE PATH 

You may recall that in elementary kinetic theory, gas molecules are 

considered point masses (Assumption 2, Sec. 1.2) and intermolecular 

collisions are ignored. But as mentioned earlier, to explain the finite time taken 

by a gaseous mass in an open container to disperse, Clausius assigned a 

finite size to gas molecules. He argued that when a molecule moves within the 

gas under equilibrium conditions, it necessarily collides with other molecules it 

encounters in its path and undergoes frequent changes in its direction of 

motion. This results in a series of zig-zag paths. These are called free paths. 

The trajectory of a molecule moving with average speed v  is shown in            

Fig. 3.1. The concept of mean free path may be visualised if you consider a 

person shooting aimlessly in a thick forest. The bullets fired by him may 

eventually hit trees but some will travel farther than others. 

 

Fig. 3.1: The trajectory of a molecule moving in a gas. 

Now carefully examine Fig. 3.1. You will note that free paths are of unequal 

length; some are short while others are long. The average length of the free 

paths is referred to as mean free path. Thus, mean free path is the average 

distance travelled by a molecule between two successive collisions. We 

denote it by the symbol  (pronounce as lambda).  
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If 1, 2, 3, …, N are the successive free paths traversed by a molecule in 

time t and N denotes the total number of collisions suffered in this period, we 

can write 

        
N

N


...321  

        
collisions of number  total

travelled  distance  total
  

If v is the average speed with which a molecule moves in the body of the gas, 

then you can write 

  
N

tv
   (3.1) 

Under normal conditions, the mean free path of oxygen molecules is about 

m.102 7  This is smaller than the wavelength of visible light, which is in the 

range m.106m104 77    However, mean free path is greater than the 

average intermolecular separation ).m103( 9  

If Nt /  denotes the mean time between two successive collisions, then you 

can also write 

  
cP

v
v   (3.2) 

Here )( 1cP denotes the collision frequency, which is a measure of the 

average number of collisions per second. You may now ask: How can we 

relate  to the microscopic properties of a gas? To answer this question, we 

first make an elementary calculation. 

3.2.1    Elementary Derivations 

Suppose that a gas consisting of a large number of molecules, each of mass 

m and diameter d, is in thermal equilibrium. We assume that gas molecules 

undergo random collisions. Mathematically speaking, we can say that the 

probability of a molecule suffering a collision in a small interval of time dt is 

independent of the history of past collisions made by it. As a simple analogy, 

you can consider that if you throw a dice, the probability of getting a six does 

not depend on the preceding throw, where a six may or may not have 

appeared. Similarly, winning or losing toss before a match is independent of 

earlier results. 

From Eq. (3.2), we note that to derive an expression for , we must first know 

the expression for cP . We shall make this calculation by assuming that only 

one molecule is in motion. We refer to it as Zeroth order approximation. You 

will realise that essential physics involved in this phenomenon can be 

understood well through simple arguments. 

Case 1: Zeroth order approximation: Only one molecule in motion 

We assume that only one molecule, labelled as A, criss-crosses a sea of   

other molecules that are at rest. (As such, this is an over-simplification of the 

actual situation.) You can easily visualise that for a collision to take place, the 
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centre-to-centre distance between the moving and a stationary molecule 

should be equal to )(2 dr  , as shown in Fig. 3.2a.  

Note that the centre-to-centre distance at the time of collision between the 

moving and a stationary molecule will also be equal to the diameter d of a gas 

molecule, if the stationary molecules were shrunk to geometrical points and 

the moving molecule is taken to be of radius d (Fig.3.2b). You can visualise 

this as if the moving molecule carries with it a circular disc of radius d. 

Therefore, the moving molecule can be thought of as sweeping out a cylinder 

of cross-sectional area 2d and length tv  in time t. This is illustrated in  

Fig. 3.2c. During this time, it will collide with all other molecules whose centres 

lie within a cylinder of volume tv 2d . You must convince yourself about this 

before proceeding further. 

 

 

 

 

 

 

Fig. 3.2: a) Collision of two molecules of radii r : Instantaneous representation;                 

b) equivalent representation of collision in (a) where radius of the 

moving molecule is increased to 2r and the stationary molecule is 

shrunk to a geometrical point; c) cylindrical volume mapped by the 

moving molecule of radius 2r. 

If the number of molecules per unit volume is n, the number of molecules 

contained in the cylinder of volume tv 2d will be equal to tv nd2 . You will 

agree that this number also equals the number of collisions suffered by the 

moving molecule in time t. 

The collision frequency, which defines the number of collisions per second, is 

given by 

  cP  v 2d n  n  v  (3.3) 

where 2d is known as microscopic collision cross-section. It is expressed 

in .2m   

Substituting this result in Eq. (3.2), we get 

  
nndP

v

c 





11
2

 (3.4) 

The quantity n  is called macroscopic collision cross-section and its unit is  

.m 1  Note here that the unit of macroscopic collision cross-section is 

reciprocal length, not an area. 

Let us pause for a moment and ask: What is good about the relation 

contained in Eq. (3.4)? What are its implications? To seek answers to these 

questions, we note that Eq. (3.4) predicts that mean free path is inversely 

proportional to the macroscopic collision cross-section or number density and 

second power of diameter of the molecule. It means that mean free path will 

r 

2r 

r 

d=2r 

(a) 

(b) 

(c) 
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be less for a denser and/or a heavier gas. This is in perfect agreement with 

common observation and lends support to the basic tenets of kinetic theory. 

The aesthetic beauty of kinetic theory is in its ability to relate experimentally 

measurable macroscopic quantity such as mean free path to a microscopic 

quantity – size of a molecule. 

You may now logically ask: What is the typical magnitude of mean free path in 

a gas at STP? The answer to this question is contained in the following 

example. You should go through it carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To ensure that you have grasped the ideas and your progress is satisfactory, 

we would like you to solve an SAQ before proceeding further. 

SAQ 1  –  Mean free path  

The mean speed of oxygen molecules at room temperature is  

450 ms
1

. If the radius of an oxygen molecule is 1.8 Å, calculate , ,cP   ,  and 

. Take .m103 325 n  

 

 

The average speed of hydrogen molecules is .ms1840 1  The radius of a 

hydrogen molecule is .m1037.1 10  Calculate (i) collision cross section,      

(ii) collision frequency and (iii) mean free path. Take .m103 325 n  

SOLUTION   Since the radius of a hydrogen molecule is m1037.1 10  

and number density n is ,m103 325   we can easily calculate the collision 

cross-section, collision frequency and mean free path using Eqs. (3.3) and 

(3.4): 

(i) 22022022 m106.23m10)37.1(4   d   

(ii) ndPc
2 v n v         

           )m106.23()ms1084.1()m103( 22013325    

      110s103.1   

(iii)  
)m10(23.6)m103(

11
2203252  





dn

 

                 nm141m10141 9    

Note that the number of collisions per second is of the order of 10
10

, which 

is a very large number. For this reason, the path of a molecule is made up 

of so many kinks and zigzags that it is almost impossible to follow its 

trajectory. 

Also note that  is large compared to intermolecular distance, which is only 

a few nanometer 3( nm). 

XAMPLE 3.1:  COLLISION CROSS-SECTION 
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From ideal gas equation, we know that the pressure exerted by a gas can be 

expressed in terms of its temperature as  

  Tnkp B   

On using this result to substitute for n in Eq. (3.4), the expression for mean 

free path takes the form 

  pTk  /B  (3.5) 

This result is very interesting; it suggests that mean free path is directly 

proportional to absolute temperature of a gas and inversely proportional to the 

pressure exerted by it on the walls of the container. It means that the value of 

 will increase as pressure decreases and/or temperature increases. Now 

suppose we reduce pressure to a very small value using a vacuum pump. 

According to Eq. (3.5), the mean free path can approach infinity. But in actual 

practice, this is forbidden by physical considerations. At the most, the value of 

 can equal the dimensions of the container.  

You will agree that in deriving Eq. (3.4), we made a rather unrealistic 

assumption that only one molecule moved while other molecules were at rest. 

But in Unit 2 you have learnt that molecules in a gas move about randomly. 

Therefore, a better way to represent the actual situation will be to assume that 

all molecules move with the same speed.  When we consider this, Eq. (3.5) 

modifies to  

  






nn

75.0

4

3
C




p

TkB75.0  (3.6) 

It may be mentioned here that this result was obtained by Clausius. That is 

why we have put the subscript C with . It shows that mean free path of the 

molecules in a gas decreases when all molecules are moving. 

You will recall that in actual practice, we should have considered Maxwellian 

distribution of velocities. However, the mathematical calculations are quite 

involved and it will be sufficient to quote the result. (Those of you who are 

interested in these details may refer to references given in the Further 

Readings): 

    






nn

1
707.0

2

1
M  

              



p

TkB)707.0(  (3.7) 

Note that .94.0
C

M 



  

This result shows that there is a correction of only 6 per cent in the value of 

mean free path when we go from uniform speed model to Maxwell distribution. 

You will also note that for point molecules ),0( d  collision cross-

section 0  and mean free path  . 

Before proceeding further, we would like you to revise what you have learnt so 

far in this unit. 
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Now go through the following example carefully to get a feel of the values 

involved in real situations. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To test your understanding, you may like to answer the following SAQ. 

 The average distance covered by a gas molecule between two 

successive collisions defines the mean free path.  

 The mean free path of a gas molecule when only one molecule moves 

with speed  v   is given by  

  
nd 2

1


  

 

MEAN FREE PATH 

 

 

A gas is assumed to obey Maxwell’s law of distribution of speeds. 

Calculate the (i) molecular diameter of a gas and (ii) the number of 

collisions per unit distance if mean free path at STP is 85.2  710 m. Take 

.m103 325 n  

SOLUTION   From Eq. (3.7), we can write  
nd2

1

2

1


  

(a) To determine ,d  we rewrite the expression for mean free path as 

      
n

d



1

2

12  

 On substituting the given values in this expression, we get 

       
3257

2

m103

1

m1085.2

1

14.3

1
.

2

1
 




d  

           2

18
m

1096.37

1




220m1063.2 
 

   so that  

                       101062.1 d  m  

 Note that the order of magnitude of mean free path is 310 times that 

of molecular diameter. 

(b) By definition, the number of collisions per unit distance is reciprocal 

of the mean free path. Therefore, we can write 

  
m1085.2

11
7




cN  

                       61051.3  m1 

 

XAMPLE 3.2:  MOLECULAR DIAMETER 
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You now know that molecules undergo collisions very frequently. It means that 

the distribution of free paths will be spread over a wide range. It is, therefore, 

interesting to know their distribution. This forms the subject of discussion of 

the following sub-section. 

3.2.2    Distribution of Free Paths 

Imagine a person shooting aimlessly in a thick forest. Every bullet eventually 

hits a tree, but some travel farther than others. This situation is analogous to 

the flights of gas molecules. We now wish to know the distribution of free 

paths. To do so, let us consider a molecule at the start of its journey (point O).  

 

 

 

 

 

 

 

 

Fig. 3.3: A molecule travels from O to A without colliding with another 

molecule. It traverses a further distance AB in time dt.  

We assume that past history of a molecule does not influence its subsequent 

motion in any way. Suppose that a molecule moving with average speed ,v  

travels a distance xOA   without suffering any collision. The probability of 

this event will be a function of x . Let us denote it by )(xf . The probability that 

this molecule makes a collision in moving from A  to B  will be determined by 

the product of collision frequency and time interval in which it covers the given 

distance. So, we can take it to be equal to ,dtPc  where cP  is the collision 

frequency. Since dx v dt , we can write  

 
v

dx
PdtP cc   




dx
 

where   is the mean free path defined by Eq.(3.2). Hence, the probability that 

a molecule traverses a distance dx without making a collision is .1 











dx
 

1. If the probability of 

occurrence of a 

collision is p(x), the 

probability of its non-

occurrence will be  

1  p(x). 

2. The probability of 

occurrence of two 

mutually exclusive 

events is 

multiplicative. 

 

 

 

SAQ 2  –  Pressure and mean free path  

The mean free path of the molecules of an ideal gas at 15C is 

.m1028.6 8 If the radius of a gas molecule is 1.88 Å, calculate the pressure 

exerted by the gas. Also calculate the number of collisions suffered by a 

molecule in travelling a distance of one metre. Take .JK1038.1 123
B

k  

 

A 
O 

B 

dx 

x 
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Since motion from O to A and from A to B can be considered as two 

independent events, we can say that the probability )( dxxf  of this molecule 

completing its journey from O to B without making any collision is equal to the 

product of probabilities for individual events. Mathematically, we express it as 

  .1 











dx
xf  Hence, we can write 

    











dx
xfdxxf 1  (3.8) 

To simplify this expression, we use Taylor series expansion of )( dxxf   and 

ignore second and higher order terms in dx . Then we can write 

     
 

dx
dx

xdf
xfdxxf    

On using this result in Eq. (3.8), we get 

  
   




xf

dx

xdf
 

You can easily integrate it to obtain 

  )/exp()(  xAxf . (3.9) 

The constant of integration A can be easily evaluated using the fact that          

1)0( f . (Physically it means that the particle is yet to move or collide.) This 

gives .1A Hence, Eq. (3.9) takes a compact form: 

  )/exp()(  xxf  (3.10) 

This is the law of distribution of free paths. It suggests that the probability of a 

molecule travelling very large distance without making a collision will be 

vanishingly small. 

If we have a sample of 0N molecules to start with, only )/exp(0 xN of these 

will survive a collision in traversing a distance x . Let this number be denoted 

by )(xN . Then we can write 

 











x
NxN exp)( 0  (3.11) 

This equation is known as survival equation. You will come across similar 

equations in other areas of physics. For example, radioactive decay obeys the 

equation  tNxN  exp)( 0 , where )(xN is the number of atoms which 

survive disintegration for time t and  is disintegration constant.  

Now refer to Fig. 3.4. It shows the plot of distribution of free paths as a 

function of /x . Note that the fraction of molecules with free paths larger than 

  is only .37.01 e  

We now give a solved example to reinforce our discussion of this section.  

The function of a real 

variable at a point is 

expressed in terms of 

the power series 

involving the value of 

the function at a 

neighbouring point and 

its derivatives using 

Taylor series 

expansion: 

f (x + dx)  

    = f (x) + x (df /dx) + 

     

...
!2

)(

2

22


















dx

fdx
… 

 
 

Fig. 3.4: The plot of the        

survival equation. 
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You may now like to solve an SAQ to assess your understanding. 

SAQ 3  –  Law of free paths  

The mean free path of the molecules of a gas at pressure p and temperature 

T is .m102.5 8  Calculate the probabilities that a molecule will travel 

m104.10 8  without making a collision, if (i) temperature is doubled, (ii) both 

temperature and pressure are doubled, and (iii) pressure is tripled. 

 

Before proceeding further, let us revise what you have learnt in this section.  

 

 

 

 

 

 

 

 

So far we confined ourselves to a gaseous system at uniform temperature and 

pressure in equilibrium so that there is no preferential motion of any kind. This 

is because the rate of migration of molecules across a given plane in the gas 

is exactly balanced by an equal number moving in the opposite direction. 

However, when the entire gas or a part of it moves as a whole in a particular 

direction, the preferential motion and random molecular motion combine to 

give rise to a new behaviour. Let us learn about it now. 

 

 

In a sample of 10
4
 gas molecules, each molecule is moving with the same 

speed. Calculate the number of molecules that will continue to travel 

undeflected after traversing distances of 0.4 , 0.5 , , 2 , and 10  . 

SOLUTION   The values of )(xN are tabulated below for different 

distances traversed by the gas molecules and you can readily verify these 

using Eq. (3.11). To illustrate, for  4.0x , we can write 

 670310)( 4.04  exN  



x
 

0.4 0.5 1 2 10 

N  6703 6065 3679 1353 0.4540 

You will note that after traversing a distance of  2,  and 10 , nearly 37 %, 

13.5% and 0.5% molecule, respectively, will survive a collision. 

XAMPLE 3.3:  SURVIVAL EQUATION 

 

 

 

 The law of distribution of free paths gives the probability that a gas 

molecule covers a distance x without making a collision:  

     )/(exp)(  xxf  

 The law of distribution of free paths is supported by experimental 

results. 

 

LAW OF FREE PATHS 
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3.3   TRANSPORT PHENOMENA 

We know that each gas molecule has a finite mass and is characterised by 

random molecular motion. Therefore, it possesses momentum as well as 

energy. So, while moving from one part of the container to another, it is a 

potential carrier of these physical quantities under certain peculiar conditions. 

When a gas is in equilibrium, there is no net transport of matter, energy, or 

momentum. However, when a gas is endowed with macroscopic motion, i.e., 

the entire gas or a part of it moves as a whole in a particular direction, the 

following three cases may occur singly or jointly: 

 The different parts of the gas move with different velocities. This will give 

rise to relative motion between different layers of the gas. As a result, the 

faster moving layers in the body of the gas will lose momentum to the 

slower moving layers. Therefore, across an imaginary plane, there will be 

net transport of momentum in the preferential direction. This results in a 

frictional force, which is characterised by the coefficient of viscosity.  

 Note that viscosity in gases arises due to the random thermal motion of 

molecules when it is endowed with macroscopic motion rather than a 

frictional force between any two adjacent layers, as in the case of liquids. 

 Different parts of a gas are at different temperatures. In this case, the 

molecules of the gas will carry thermal energy from regions of higher 

temperature to regions of lower temperature and tend to attain thermal 

equilibrium. This gives rise to the phenomenon of thermal conduction. 

 Different parts of a gas have different concentrations. The molecules from 

regions of higher concentration will migrate to the regions of lower 

concentration resulting in the transport of mass (matter). This leads to the 

phenomenon of diffusion. 

We thus find that viscosity, conduction and diffusion are bulk properties of 

gases signifying transport of momentum, energy and mass, respectively. 

These are collectively categorised under the title of transport phenomena. 

These processes are of vital importance in physical sciences and find several 

important applications. We will now discuss these in some detail on the basis 

of the simple molecular model discussed in the preceding chapters. 

3.3.1    Viscosity: Transport of Momentum 

In your school physics classes, you have learnt that the property by virtue of 

which a liquid opposes the motion between adjacent layers is referred to as 

viscosity. It is quantitatively expressed in terms of the coefficient of viscosity, 

. Can you recall its definition? The coefficient of viscosity is defined as the 

tangential force per unit area when a unit velocity gradient exists in a direction 

perpendicular to the direction of motion. Mathematically, for small velocity 

gradient we write 

  
dy

du
AF   (3.12) 

Here F  denotes the viscous force acting on an area A  and dydu / is velocity 

gradient along the +ve y-direction. The negative sign signifies that the viscous 

force is directed against the velocity gradient. Note that  has dimensions 
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.TML 11   Its SI units are .smkg 11   It is also denoted as pascal-second. The 

CGS unit of  is poise ).smkg10( 111   

Let us consider a gas enclosed between two planes depicted as aa   and bb   

in Fig. 3.5 and seprated through a distance h.  Suppose that the gas is 

endowed with mass motion from left to right and a positive velocity gradient 

exists along the y-axis, which is normal to the direction of flow.  

 

Fig. 3.5: Momentum transport across a plane in a gas having velocity gradient.  

Mathematically, the coefficient of viscosity of a gas is given by 

   vvmn
3

1

3

1
 (3.13) 

On substituting the expression for  corresponding to Maxwellian distribution 

of speeds in Eq. (3.13) from Eq. (3.7), we can express  in terms of : 

  



vm

23

1
M  (3.14) 

This result provides us a useful way to estimate a microscopic property such 

as molecular diameter in terms of a macroscopic property such as viscosity , 

which is directly measureable. This finding provided remarkable support to 

elementary kinetic theory. 

To be able to discuss pressure and temperature dependence of , we 

substitute for 
m

Tk
v


 B8

from Eq. (2.34) in Eq. (3.14). This gives 

  



Tkm B

M
3

2
 Tkm B

376.0


  (3.15) 

Effect of Temperature and Pressure on Viscosity 

 From Eq. (3.15) we note that the viscosity of a gas is directly proportional 

to the square root of absolute temperature. So, if we plot   versus ,2/1T  

we should obtain a straight line. However, experiments show that viscosity 

of a gas increases with temperature at a slightly faster rate than 2/1T .  
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The departure from the value 0.5 provides us an opportunity to review the 

assumptions of elementary kinetic theory. 

 According to elementary kinetic theory, the viscosity of a gas is indpendent 

of pressure (or n). But in actual practice, pressure independence of   is 

observed only for a limited range – from a few mm of mercury to a few 

atmosphere. Experiments show that at very low pressures, viscosity 

decreases and at very high pressures, viscosity increases.  

 We can explain these observations as follows: 

At very low pressures, intermolecular collisions become rare and as 

mentioned earlier, the mean free path becomes comparable to the 

dimesions of the apparatus. However, the number density decreases 

continuosly with pressure. This makes the coefficient of viscosity to 

decrease as pressure decreases. On the other hand, at very high 

pressures, the mean free path is comparable to molecular size and the 

coefficient of viscosity increases with pressure (or n).  

We now recapitulate important results of this sub-section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 When different parts of a gas endowed with mass motion and its 

molecules move with different speeds, there is net transport of 

momentum  in the direction of mass motion.  

 The coefficient of viscosity of a gas is given by  vvmn
3

1

3

1
.  

 Theory predicts that  is independent of pressure but varies as .2/1T  

 

COEFFICIENT OF VISCOSITY 

 

 

 

The coefficients of viscosity of argon and helium are sPa1022 6 and 

s,Pa1019 6  respectively. Calculate the mean free paths for these 

gases, if they are kept under identical conditions. 

SOLUTION   Since the gases are under identical conditions, n is same 

for both gases. Then from Eq. (3.13) we can write  

  
He

Ar

HeHe

ArAr

He

Ar










vm

vm
 (i) 

Using the relation 
m

Tk
v


 B8

, we can rewrite (i) as 

  




He

Ar

He

Ar

He

Ar





m

m
 

On re-arranging terms, we get 

           
He

Ar

Ar

H

He

Ar










m

m e 367.0
sPa1019

sPa1022

9.39

4
6

62/1

































 

 

XAMPLE 3.4:  COEFFICIENT OF VISCOSITY AND MEAN 

FREE PATH 
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You may now like to solve an SAQ to assess your understanding. 

SAQ 4  –  Viscosity and molecular dimensions  

Calculate the radius of an oxygen molecule, if coefficient of viscosity of 

oxygen is 116 smkg106.19   at 15C and .ms436 1v  Assume that it 

obeys Maxwellian law of distribution of speeds. 

 

3.3.2    Thermal Conductivity: Transport of Energy 

When a gas is endowed with mass motion and a temperature gradient exists 

between its different layers, a finite amount of energy is transported by gas 

molecules due to their random motion from regions of higher temperature to 

regions of lower temperature. As mentioned earlier, this gives rise to the 

phenomenon of thermal conduction. The rate at which thermal energy is 

transported across any surface per unit area is characterised in terms of 

thermal condctivity, K and we can write  

  
dy

dT
KQ   (3.16) 

where )/( dydT  is temperature gradient and temperature of the gas at an 

imaginary surface xx   within the gas is T.  

The expression for thermal conductivity is given by 

  B
6

kvn
f

K   (3.17) 

From this equation, we note that thermal conductivity is directly proportional to 

average molecular speed. Therefore, theory predicts that thermal conductivity 

 

 

The molecules of helium gas move with an average speed of 1200 ms
1

. If 

s,Pa1019 6  calculate the mean free path for helium. 

SOLUTION   We can rewrite Eq. (3.13) as 

  
vM

V

v









33
 

where M is molecular weight and V  is volume occupied by one mole of the 

gas. On inserting the given numerical values, we get 

  
)ms1200(kg)104(

)m104.22()smkg1019(3

13

33116








  

        m102.66 7  

 

 

 

XAMPLE 3.5:  COEFFICIENT OF VISCOSITY AND MEAN 

FREE PATH 

 

You should not 

confuse the symbol K 

used for thermal 

conductivity with the 

symbol used for kelvin, 

the unit of 

temperature. 
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is directly proportional to square root of temperature. However, in actual 

practice, K increases somewhat more rapidly suggesting that when 

intermolecular forces come into play, they begin to influence energy transport. 

Relation Between  and K 

When we closely examine the expressions for  and K, we expect some 

connection between them. It is instructive to ascertain it as both these 

quantities are physically measureable. Therefore, we divide Eq. (3.17) by     

Eq. (3.13) and obtain 

  
m

kfK B

2


 M

Nkf AB

2


M

Rf

2
  (3.18) 

where 
AN

M
m  and M is molecular weight of the substance. 

From Unit 2 you will recall that molar heat capacity at constant volume is  

given by 

  R
f

cV
2

  

Using this result, we can rewrite Eq. (3.18) as 

  
M

cK V


 

or  1
 Vc

KM
 (3.19) 

From this result we note that the ratio ( VcKM / ) is constant, same for all 

gases. But experiments show that this ratio is greater than one. A more 

rigourous calculation shows that this ratio varies between 1.5 and 2.5 and is 

different for different gases; decreasing with atomicity. There can be several 

reasons for this difference.  

You should now go through the following example carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The coefficient of viscosity of helium is 126 kmolkg4,Nsm106.18   M  

and .KJkmol105.12 113 Vc  Calculate the thermal conductivity of 

helium. 

SOLUTION   From Eq. (3.19) we can write 
M

c
K V
 . On putting the 

given values, we get 

  
1

11326

molkkg4

)KmolkJ105.12()Nsm106.18(


 
K  

     1112 KsJm108.5  . 

 

XAMPLE 3.6:  THERMAL CONDUCTIVITY AND 

VISCOSITY  

 

Atomicity of a gas 

defines the number of 

atoms in its molecule.  
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Before proceeding further, we recapitulate important result in this sub-section. 

 

 

 

 

 

 

 

 

3.3.3    Diffusion: Transport of Matter 

Inter-mixing of gases is known as diffusion. This phenomenon is responsible 

for the smell of flowers/scent reaching us. This is also why while sitting in your 

study room, you can know what is being cooked in the kitchen. It is a direct 

consequence of random molecular motion when there are inequalities in 

concentration. Molecules diffuse from regions of higher concentration towards 

regions of lower concentration. Fig. 3.6a schematically depicts self-diffusion 

(diffusion of like molecules). Diffusion of unlike molecules is shown in                   

Fig. 3.6b. 

 
Fig. 3.6: a) Self-diffusion across a barrier; b) Diffusion of unlike molecules. 

We describe intermixing of gases in terms of diffusion coefficient, D. If the 

molecular concentration along a horizontal plane xx  is n and there is positive 
concentration gradient dydn /  in the vertical plane, the number of particles 

crossing the given surface per unit area per unit time is given by 

  
dy

dn
D  (3.20) 

 When a temperature gradient exists between different layers of a gas 

endowed with mass motion, there is net transport of energy from 

regions of higher temperature to regions of lower temperature. This 

gives rise to phenomenon of thermal conduction. 

 The thermal conductivity of a gas is given by 

B
6

k
vfn

K   

 In terms of the coefficient of viscosity, we can write 1
 Vc

KM
. 

 

THERMAL CONDUCTIVITY 
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The calculation of diffusion coefficient is complicated due to the fact that the 

rates of diffusion of two gases may not be the same. However, we can 

understand the essential ideas by considering the diffusion of like molecules, 

i.e., self-diffusion. The diffusion of the isotopes of the same element (say 
235U and 238U) is an excellent example of self-diffusion. For self-diffusion, the 

expression for diffusion coefficients is 

   vD
3

1
 (3.21) 

If we now substitute the values of v  and   for a Maxwellian gas, we get 

  
 

mp

Tk
D

2/3
B376.0


  (3.22) 

For air at STP, 100 nm, and .ms450 1v  It means that the diffusion 

coefficient for air is of the order of .sm10 125   Moreover, Eq. (3.22) implies 

that diffusion coefficient will vary inversely with pressure and directly with 

temperature as 2/3T . The predicted variation with pressure is in agreement 

with the observed results but the power of T lies between 1.75 and 2. The 

reason for the more rapid increase with temperature is attributed to the 

presence of intermolecular forces in real gases. To be precise, it is due to the 

attractive part of the intermolecular potential.  

Relation between D and  

If we combine Eqs. (3.13) and (3.21), we can write 

  1


D
 (3.23) 

Though simple kinetic theory predicts that   is constant, equal to one for all 

gases, its observed value lies between 1.3 and 1.5. It means that simple 

calculations given here help us to know qualitative behaviour. 

We now sum up what you have learnt in this unit. 

3.4   SUMMARY 

Concept Description 

Mean free path 

 

                          

 The mean free path is the average distance travelled by a molecule 

between two successive collisions. If we assume that all but one 

molecule moves with average speed ,v  the expressions for  is given 

by 

  






nnd

11

2
 

 where n is the molecular number density and   is the collision cross-

 section. For a sphere of diameter ,d 2d . 

  

 vdeNAdN Bv
v

33 2  

 

The concentration of 
235

U isotope in natural 

uranium is 0.71%. For 

power generation in a 

nuclear power plant, it 

is desirable to increase 

its concentration to     

2-3%, i.e., above its 

natural value. Then we 

say that uranium has 

been enriched. 
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3.5   TERMINAL QUESTIONS 

1. Calculate the diffusion coefficient of hydrogen molecules at 27C when 

pressure is 2 atm. Assume that it behaves as a Maxwellian gas. Take 

  m1037.1 10
H2

r  and 123
B JK1038.1 k  

2. Calculate the radius of the nitrogen molecule using the following data: 

  ,KmsJ107.23 1113 K  
113 KkmolJ101.29 Vc  at 273 K 

  2610023.6,kg02.28  ANM  and 123
B JK1038.1 k  

3. Calculate the mean free path for hydrogen molecules at STP. The 

diameter of a hydrogen molecule is 2.9


A . Take 

.m molecules103 325 n  

Survival equation  For a sample of 0N  molecules, the number of molecules which travel 

a distance x without making any collision is given by survival 

equation: 

  )/exp(0  xNN  

  Transport phenomena 

 

 

 When a gas is endowed with mass motion, random molecular motion 

can lead to transport of energy, momentum and mass, depending 

on the physical conditions, which lead to the phenomena of thermal 

conduction, viscosity and diffusion, respectively. These are 

collectively referred to as transport phenomena. 

 
Coefficient of 

viscosity 

 The coefficient of viscosity for a gas having velocity gradient is 

given by 

  vvnm
3

1

3

1
 

where m is molecular mass and v  is average speed of a molecule. 

 

Thermal conductivity  The thermal conductivity K is given by 

                 B
6

kvn
f

K   

        where f denotes the number of degrees of freedom. 

 K and are connected by the relation 

     1
 Vc

KM
 

 

 

Coefficient of 

diffusion 

 The coefficient of diffusion D is given by 

 
3

v
D  
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4. The coefficient of viscosity of a gas is .msN106.16 26    Calculate the 

diameter of the gas molecule at STP, when average molecular velocity 
12 ms105.4 v ; number density 25107.2   molecules 3m , and 

molecular weight of nitrogen .28  Take Avogadro’s number 
123mol10023.6  . 

5. Calculate the thermal conductivity of air using the following data: 

 ,ms470 1v ,mkg29.1 3 ,m106.5 8 29M ,  ,4.1   and       

.KmolkJ31.8 11 R  

3.6   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. We have 

  2102 )m108.1(44  r 220 m107.40   

   nPc v  )m103( 325   )ms450()m107.40( 1220    

        19s1049.5   

  s108.1 101 
 cP  

 and            82
)m107.40()m103(

1
220325







nm 

2. From Eq. (3.7), we recall that 

   



p

TkB  

 Here 2202102 m1042.44)m1088.1(14.344   r   

 On substituting the given values of Boltzmann constant and temperature 

(in kelvin), we get 

   
)m104.44(m)1028.6(

K)288()JK1038.1(

2208

123

M

B













Tk
p  

                                   25 Nm1043.1   

 For a Maxwellian gas, the value for p will be lower by a factor of .
2

1
 

Hence, its magnitude will be 

   .Nm1001.1 25 p  

 The number of collisions suffered by a molecule per metre of the path 

   16

8
m1016

m1028.6

1 





sN . 
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3. From Eq. (3.10) we recall that the probability of a molecule travelling a 

distance x without making a collision is given by ,exp)( 










x
xf where  is 

a function of p and T. Here m104.10 8x  and 

   m102.5),( 8 Tp   

 i) Using Eq. (3.7) we can write m.104.10),(2)2,( 8 TpTp  

   Required probability = e1 = 0.37 

 ii)   (2p, 2T) =  (p, T) = 5.2  108 m 

   Required probability e2 = 0.14 

 iii)   (3p, T) = 
3

1
 (p, T) = 

3

2.5
 108 m = 1.73  108 m 

   Required probability e6 = 2.48
310  

4. 26

26
1033.5

106

32 


m kg 

 From Eq. (3.13) we recall that 

   
23

1

d

vm


  

 On re-arrangement, we can write 

   



3

2 vm
d  

 On substituting the values of various physical quantities, we get 

   
)smkg106.19(3

)ms436(kg)1033.5(

116

126
2








d  

 Hence, 

   10
2/1

10
6.193

43633.5 











d m 

            = 101055.3  m 

 and  m1077.1 10r   

Terminal Questions 

1. From Eq. (3.22), we recall that 

  
mp

)(376.0 2/3
BTk

D


  
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 On substituting the given values, we get 

 
2/12725

2/3123

210 )kg103.3()Nm10026.2(

)]K300()JK1038.1[(

m)1037.1()41417.3(

376.0




 




D  

     
)kg1074.5()Nm10026.2(

J104.266

)m1059.23(

376.0
2/11425

2/333

220 



 




  

     125 sm1056.3   

2. We have from Eq. (3.19) 

    
M

c
Tk

m

M

c
K VV 2/1

B376.0





  
A

V

MN

c
Tk

2/1
B

376.0


  

 where we have used Eq. (3.15) for  and ANMm / . 

 Hence, 

  
  

NMK

cTk
r V

2/1
B2 376.0

4   

 or 
  

NMK

cTk
r V




4

376.0
2/1

B2  

 On substituting the given values, we get 

 
211261113

1132/12/1123
2

kg)](28.02)molk1002[(6.)KsmJ10(23.74

)KmolkJ101(29.K)(273)JK10(1.38(0.376)










r  

       220
10

9

m1074.1
100.3869

105.671 






 

 Hence  m1032.1 10r  

3. From Eq. (3.7) we recall that 



n

1
 

 Here     = d 2 =  (2.9  1010)2 m2 = 26.42  1020 m2 

 and n = 3  1025 m3 

 Hence, 

   
)m1042.26()m103(

1

220325  
  

   m1026.1 7   

4. 
126

1

kmol10023.6

kmolkg28






m  
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               kg10649.4 26  

   26 mNs106.16   

   12 ms105.4 v  

      From Eq. (3.13), we can write 

   
vmn




3
 

 On inserting the values of various physical quantities, we get 

 m1085.8
)ms105.4()m107.2(kg)1065.4(

)mNs106.16(3 8

1232526

26










   

 Now, the diameter of a gas molecule can be determined by using the 

relation 
nd22

1


  

 and rewriting it as 

   

2/1

2

1












n
d  

 On substituting the values of n and , we get 

   

2/1

8325 m)1085.8()m107.2(14.3414.1

1



















d  

         m1007.3 10  

 and  m1053.1 10r  

 Note that the values of radius calculated in TQ 2 and TQ 4 are slightly 

different. These deviations point to limitations of theory, or values of 

physical quantities used in two calculations.   . 

5. Using Eq. (3.17), we can write 

   B
6

kvn
f

K   

 But we know that 
A

B
N

R
k  , therefore we can rewrite the above 

expression as 

   
A6 N

R
vn

f
K   (i) 
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 You will recall that molar heat capacity 

   R
f

cv
2

  (ii) 

 Substituting the value of cv in Eq. (i), we get 

   









 v

N

nc
K v

A3
 

           v
M

cv

3

1
 (iii) 

 Since air is primarily a mixture of two diatomic gases (N2 and O2), 

   RcV
2

5
 113 KkmolJ108.31

2

5   

                   113 KkmolJ1078.20
2

55.41   

 Now substituting the values of various physical quantities in Eq. (iii), we 

get the required result: 

  
1

811133

kmol kg29

m)10(5.6)ms(470)KJkmol10(20.78)mkg(1.29

3

1


 
K          

      113 KWm101.8   
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         UNIT 4 
BROWNIAN 

MOTION 

Structure 
 

4.1 Introduction 

Expected Learning Outcomes 

4.2 Brownian Motion 

4.3 Theoretical Analysis 

4.4 Examples of Brownian Motion 

 Sedimentation 

  

   

 

 

STUDY GUIDE           

 

 

4.5 Determination of Avogadro Number 

4.6 Summary 

4.7 Terminal Questions 

4.8 Solutions and Answers 

 

 Thermal Conductivity: Transport of Energy 

 Diffusion: Transport of Matter 

3.4 Summary 

3.5 Terminal Questions 

3.6 Solutions and Answers 

 

4.5 Determination of Avogadro Number  

4.6 Summary 

4.7 Terminal Questions 

4.8 Solutions and Answers 

In the previous unit, you have learnt about mean free path, coefficient of viscosity, thermal conductivity 

and diffusion coefficient. These physical properties helped us to estimate the size of gas molecules in 

terms of directly measurable quantities. The conformity of theoretical and experimental results 

provided indirect evidence in favour of kinetic theory. In this unit, you will learn about Brownian motion, 

which provided the first direct evidence in favour of kinetic theory. For this reason, this concept is 

extremely important and we have discussed the physics of this phenomenon. However, you should 

answer the SAQs and TQs, which will help you develop conceptual clarity. 

“We cannot solve our problems with the same thinking we 

used when we created them.”  
Albert Einstein 

 

 

Brownian motion is continuous and 

random motion of molecules. You 

will learn about its importance in 

kinetic theory in this unit.                  
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4.1   INTRODUCTION 

You now know that elementary kinetic theory successfully explains many 

observed properties of gases and has great aesthetic appeal; well defined 

laws are used to describe chaotic motion. Moreover, it helps us to estimate 

the size of gas molecules in terms of directly measurable quantities fairly well. 

The agreement between theoretically predicted behaviour with observed 

results constituted indirect evidence in favour of kinetic theory. However, 

direct evidence for the existence of molecules and their motion was lacking 

and prominent scientists were reluctant to accept the realities of atoms and 

molecules.  

The first experimental evidence for the existence of molecules and their 

continuous chaotic motion was provided by Robert Brown while he was 

observing the motion of particles suspended in a fluid. These suspended 

particles were seen to move completely haphazardly. This irregular motion 

was termed Brownian motion. The nature of Brownian movements (motion) 

of suspended particles was seen to depend on the properties of the fluid in 

which the particles were suspended. In view of its importance, in Sec. 4.2, we 

review the developments that led to the discovery of Brownian motion.  

Albert Einstein explained the phenomenon of Brownian motion theoretically in 

1905 in terms of the effects of collisions between fluid molecules and the 

suspended particles. He argued that although each impact is very small, the 

net result of a large number of random collisions gives rise to haphazard 

motion. Einstein quantified this problem by relating the diffusion of particles to 

the properties of the molecules responsible for collisions. In this way, he 

related the molecular theory of gases to the observed motion of particles. His 

predictions were verified by Perrin in 1908. This work convinced everyone 

about the reality of molecular/atomic nature of matter. Several efforts have 

been made to generalise Einstein’s theory of Brownian motion. In 1908, 

Langevin re-derived Einstein’s formula for mean square displacement by 

considering the equation of motion of suspended particles. In this unit, we 

shall not go into mathematical aspects of these effects. In Sec. 4.4, we have 

discussed examples of Brownian motion and Sec. 4.5 is devoted to the 

discussion of Perrin’s experiments, which provided a convenient method to 

determine Avogadro number. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain the significance of Brownian motion; 

 write expression for the mean square displacement; 

 discuss sedimentation as an example of Brownian motion; and 

 explain how Perrin determined Avogadro’s number and discuss its 

significance for kinetic theory of gases. 

 

 

 

 

 

 

 

Robert Brown (1773 –

1858) was a Scottish 

botanist. He reported the 

initial observation of 

continuous random 

motion of pollen particles 

in a viscous liquid 

observed under a 

microscope. He is also 

credited with coining the 

word ‘nucleus’ in 

reference to living cells.  

 

In the study of Brownian 

motion, scientists from 

three diverse disciplines 

were involved: Brown, a 

botanist, observed the 

phenomena; Einstein, a 

physicist, provided 

theoretical explanation 

and Perrin, a chemist, 

provided experimental 

evidence through 

determination of 

Avogadro’s number.  

This is an excellent 

example of unified 

nature of knowledge. 
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4.2   BROWNIAN MOTION 

In 1827, Scottish botanist Robert Brown observed the motion of pollen grains 

suspended in an aqueous solution through a high-power microscope. These 

pollen grains were seen to exhibit a continuous and completely erratic 

movement. This irregular motion is termed as Brownian motion (Fig. 4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1: Brownian motion of suspended particles in an aqueous solution. 

The observed characteristics of Brownian motion are: 

1. The motion is continuous, completely random and irregular. 

2. No two particles execute the same motion. 

3. Smaller particles execute faster and hence more noticeable motion. 

4. The movement is about the same in all directions. 

5. The motion is independent of external influences. 

6. Smaller the viscosity, faster is the motion. 

7. Motion is more rigorous at higher temperatures. 

A proper explanation of this phenomenon eluded scientists for a long time. 

Studies of Guy Williams and other physicists led to the view that Brownian 

motion arises due to collisions of suspended particles with the molecules of 

the surrounding fluid. This phenomenon provided a very elegant picture of the 

gaseous state wherein gas molecules were in random motion and frequently 

collided against each other. In a way, Brownian motion provided us a 

mechanism for visualising the behaviour of matter at microscopic scale. Only 

for this reason, it has been of such great interest to physicists. But it required 

the genius of Einstein to work out a detailed theory of Brownian motion. 

Einstein’s predictions were found to be precisely correct by the beautiful 

experiments of Perrin. This also paved the way for accurate determination of 

molecular masses and convinced everyone of the reality of the molecular 

nature of matter.  

 

 

 

BROWNIAN MOTION 

A perpetual, irregular and completely random motion of particles 

suspended in a viscous solution is known as Brownian motion. This 

phenomenon provides an elegant picture of gaseous state. 
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4.3   THEORETICAL ANALYSIS 

Einstein’s Theory 

Einstein gave an exact description of Brownian motion by relating Brownian 

motion to physical processes. In particular, he considered the effects of 

random collisions between molecules of the liquid and suspended particles. 

To quantify this problem, he obtained expressions for diffusion coefficient, D, 

from the random motion of suspended particles as well as from the osmotic 

pressure difference in different parts of the solution caused by difference in 

concentrations of suspended particles (see box below). He then equated 

these expressions to calculate mean squared displacement of a Brownian 

particle. We just quote the result without going into mathematical details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Osmotic Pressure   

 

Fig. 4.2: Glass tube with semi-permeable membrane M at its end filled with 

sugar solution dipped in water. 

Osmotic pressure of a solution is the pressure required to prevent osmosis 

when the solution is separated from pure solvent by a semi-permeable 

membrane. van’t Hoff’s law of osmotic pressure states that the osmotic 

pressure of a dissolved substance in a solution is numerically equal to the 

pressure which it would exert if it were assumed to behave like a gas 

having same volume as occupied by the given solution at the same 

temperature. Suppose we take an open glass tube and cover its one end 

with a ‘semi-permeable membrane’ that is permeable to water but not to 

sugar in solution. Let us fill this tube with a dilute sugar solution and dip it 

into a beaker of water, as shown in Fig. 4.2 above. We observe that the 

solution rises to a height above the level of the water.  

This means that the solution has a pressure  g h higher than that of pure 

water at the same temperature. This pressure, exerted by the sugar 

dissolved in solution, is called osmotic pressure. For dilute solutions, i.e., 

in which the number of solute molecules is very small compared to the 

solvent molecules, van’t Hoff established that 

     Tnkposmotic B  

where n is concentration of the solution. That is, for dilute solutions, the 

osmotic pressure is equal to the pressure which the solute would exert if it 

were assumed to behave like an ideal gas having the volume and 

temperature as that of the solution. 

 

SAQ 1  –  Brownian motion  

State the importance of Brownian motion. 

 

 

  

 

Albert Einstein (1879 –

1955) is regarded as the 

greatest physicist of 20
th
 

century. 1905 was a 

wonder year for Albert 

Einstein. He published 

four very important 

papers in this year. Each 

of these papers 

significantly contributed 

to enhance our 

knowledge at that point 

of time. The diverse 

topics covered in these 

papers were 

photoelectric effect, 

Brownian motion, special 

theory of relativity and 

matter energy 

equivalence  

(E = mc
2
) relation. In 

1921, Nobel prize was 

conferred on him for his 

work on photoelectric 

effect. In the paper on 

Brownian motion, 

Einstein gave an exact 

description of the effects 

of random collisions with 

the molecules of the 

liquid on the motion of 

the suspended particles. 
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 



0

B2

3 r

Tk
  




0A 3

1

rN

RT
 (4.1) 

This is the famous Einstein’s formula for mean square displacement of a 

Brownian particle.  

It is instructive to note that Brownian mean square displacement is 

independent of the mass of particles. Through a brilliant series of experiments, 

Perrin confirmed this prediction by varying mass through a factor of 15,000. 

We further note that diffusion of particles is related to molecular motion. 

Moreover, since ,2  ,  and r0 are measureable quantities, Eq. (4.1) proved a 

ready tool for determination of Avogadro number. In fact, this equation was 

verified by Perrin, and was found to be precisely correct. His experiments, 

therefore, established the existence of molecules beyond any doubt and 

provided general acceptability to kinetic theory of gases.  

You must have realised that Einstein laid greater emphasis on relating 

Brownian motion to physical processes.  

Langevin Theory 

A somewhat more elegant explanation was given by Langevin. He assumed 

that the average force acting on a suspended particle due to molecular 

bombardment is made up of a frictional and a fluctuating component.  

Langevin argued that a suspended particle undergoes, on an average, one 

collision in about 10
21

s with the molecules of the liquid. So the mean free 

path of the molecules is small compared with the size of the suspended 

particles. It means that the surrounding medium can be considered 

continuous. Langevin also assumed that all suspended particles are spherical 

in shape. Then using Stoke’s law and the fact that the direction of motion of 

each suspended particle changes after each collision, he arrived at Einstein’s 

expression for mean square displacement of Brownian particles. 

    






0A0

B2

3

1

3
)(

rN

RT

r

Tk
x  (4.2) 

Note that )( 2x  is not the actual displacement of Brownian particles. We have 

to take a snapshot of the suspension at time 0t  and again at time .t  

Then we measure the component of displacement along any arbitrarily chosen 

direction, say x-axis, and determine )( 2x  for each particle. A sum over all 

the )( 2x  and division by the number of particles gives )( 2x . In his 

experiments, Perrin worked with 100 different particles of known size. If we 

closely re-examine Fig. 4.1 we find that the motion is so complex that an 

experimentalist may not find it convenient to work with such a large number. 

However, we can make use of the fact that if one particle is followed for N 

succesive intervals of time (when N is a large number), the motion is almost 

equivalent to the motion of N particles during a single time interval.  
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4.4   EXAMPLES OF BROWNIAN MOTION 

We have just now seen that colloidal suspensions in a fluid exhibit Brownian 

motion. We come across many other interesting examples of Brownian 

motion. These include sedimentation, diffusion of pollutants or smoke particles 

in air and Johnson noise in electrical devices. We will discuss sedimentation 

now.  

4.4.1    Sedimentation 

From common experience we know that if we take sandy water in a beaker, 

the sand settles down at the bottom. This natural process is known as 

sedimentation. It is responsible for automatic cleaning of rainwater stored in 

ponds and lakes. In sedimentation, the distribution of particles is determined 

by the influence of gravity and diffusion. Whereas gravity tends to settle them, 

diffusion brings about homogenisation. (The same is true of pollutants in our 

atmosphere, which give rise to acid rain, greenhouse effct and climate 

change.) 

To calculate the number of particles at a given height, we consider a shallow 

box of depth z  enclosing layers of particles bound at heights z and zz  . 

Let the pressure on the lower and upper faces be p and pp   respectively 

as shown in Fig. 4.3. 

 

Fig. 4.3: A shallow box of depth z and cross-sectional area A. The pressures 

on the lower and upper faces are assumed to be p and p + p, 

respectively. 

If  and g, respectively, denote the density of particles and acceleration due to 

gravity, the pressure difference between the two surfaces in equilibrium is 

given by 

SAQ 2  –  Size of a particle  

In an experiment with colloidal particles suspended in water at temperature 

32C, the mean square displacement in unit time was found to be 

.cm108.1 26  Calculate the value of the radius of a suspended particle. 

Take 117 Kmolerg1031.8 R  123
A mol10023.6 N  and 

poise.01.0  
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 zgp     (4.3) 

The negative sign signifies that pressure decreases as height increases. If the 

mass of a single particle is m and number density is n, we can write .mn  

Then we can rewrite the expression for pressure difference as 

 znmgp   z
V

mgN
  

If we assume that Brownian particles obey gas laws, we can replace V by 
./ pRT  This gives  

 z
RT

mgN

p

p






 

where  denotes the number of moles. 

This expression can be readily integrated to obtain 

 0lnln pz
RT

mgN
p 


  

where 0ln p  is constant of integration. 

On taking antilog, we get 

 exp0pp  









 z

RT

mgN
 (4.4) 

where 0pp   at 0z . From Unit 1, you may recall that the pressure exerted 

by the molecules of a gas on the walls of the container is proportional to 

number density ( 2

3

1
vmnp   ). Using this result, we can rewrite Eq. (4.4) as 

 exp0nn  


















 z

RT

mgN
nz

RT

mgN A
0 exp  (4.5) 

where  /A NN is Avogadro number.  

This result shows that during sedimentation, particle concentration decreases 

exponentially as height increases. In practice, the suspended particles 

experience upward bouyant force due to difference in the densities of the 

solute   and the solvent  . As a result, the effective mass of the suspended 

particles is reduced to 

 effm
3

4 3
0)( r  (4.6) 

where 0r  is the radius of a particle. If  , effm would be substantially 

small. We now take natural log of both sides of Eq. (4.5) and use the value of 

effm  given in Eq. (4.6). Then we can write the expression for Avogadro’s 

number in terms of the microscopic properties of the suspended paricles: 

 











n

n

gzr

RT
N 0

3
0

A ln
)(4

3
 (4.7) 

Eq. (4.7) suggests that if we study the variation of n  with height for fine 

suspensions, we can conveniently determine Avogadro number. Perrin 

A. Avogadro, an Italian 

scientist, had proposed 

in 1811 that equal 

volume of all gases at a 

given pressure and 

temperature contains 

the same number of 

molecules. The number 

of molecules in one 

mole of a gas is known 

as Avogadro number. 

We denote it by NA. 

Jean Perrin proposed 

this nomenclature in 

1905.  
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worked with emulsions of gamboge and mastic (resin pigments obtained from 

trees) and obtained a value very close to the presently accepted value. His 

results lent support to molecular theory of gases. 

In the next section, we will discuss Perrin’s work. However, for now, go 

through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us now recapitulate what we have discussed in this sub-section. 

 

 

 

 

 

 

Perrin carried out a series of beautiful experiments on colloidal suspensions to 

obtain the value of Avogadro number. This work signified a great triumph of 

molecular theory. For these investigations Perrin was awarded Nobel Prize for 

Physics in 1926. We now discuss Perrin’s experiments. 

 

 

In an experiment, motion of 49 particles per cm
2
 is observed in a layer of 

gamboge suspended in water at one level and 14 particles per cm2 in a 

layer 60 microns higher ).m10micron1( 6 If the density of gamboge is 

1.194 g cm
3

 and radius of each particle is 0.212 micron, calculate 

Avogadro number. Take the temperature of the solution as 20C, 

.ms 8.9 and ,Kmol J31.8 211   gR  

SOLUTION   From Eq. (4.7), we have 

 









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n

n
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RT
N 0

3
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A ln
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On substituting the values of various quantities, we get 

3336

11

A
kgm10)0.1194.1(m)10212.0(14.34

)KmolJ31.8(3







N  

                                             











 14

49
ln

m)1060()ms8.9(

K)293(
62

 

     121
3

mol10
608.9194.0)212.0(14.34

25.129331.83 



  

     123 mol107.6  . 

XAMPLE 4.1:  AVOGADRO’S NUMBER 

 

 

 Sedimentation and Johnson Noise are two very familiar examples of 

Brownian motion.  

 During sedimentation, particle density decreases exponentially as 

height increases: 









 z

RT

mgN
nn A

0 exp  

 

EXAMPLES OF BROWNIAN MOTION 
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4.5   DETERMINATION OF AVOGADRO NUMBER 

To determine Avogadro number, we have to measure 2x , the mean square 

displacement of a Brownian particle. Perrin observed the motion of a single 

gamboge grain suspended in water at intervals of thirty seconds with the help 

of a microscope and a camera. To locate the particle, the microscope had in 

its field of view a series of mutually perpendicular lines, as shown on a graph 

paper in Fig. 4.4. The projections of successive displacements along the        

x-axis give a set of values of x from which 2x can be calculated.  

 

Fig. 4.4: Calculation of 
2x  for a Brownian particle. 

It should be realised that the straight-line segments in Fig. 4.4 are in no way a 

representation of the actual path of the particle. The particle is hit millions of 

times in a second, and hence, its trajectory has a jagged and irregular 

structure. For example, if we magnify the part AB of the trajectory, it will 

appear as shown in Fig. 4.5. 

 
Fig. 4.5: The path AB after magnification. 
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You may now ask: How could Perrin make such wonderful observations with   

a simple arrangement? The physical basis of his work was very sound. Perrin 

derived his argument from the fact that at 300 K, 12
rms ms102 v  for a        

m102 7  radius grain of gamboge having a mass of about kg103 17  

(which is 10
9
 times the mass of H2O molecule). This combination of slow 

speeds and large size was used by Perrin to observe the motion of 

suspended particles. It justifies the popular belief that Nature likes simplicity: 

most natural laws have been unfolded using very simple arguments. (Sir C. V. 

Raman explained the blue colour of Deep Ocean in terms of scattering of light 

by OH2  molecules and used a very modest apparatus, to vividly demonstrate 

it.) 

From his measurements, Perrin obtained a value of 261085.6   molecules 

kmol
1

 for Avogadro number, which is fairly close to the currently accepted 

value of .kmol10022.6 126    

From this value of Avogadro number, we can estimate the mass of a 

molecule. For example, one kilo-mole of nitrogen gas has a mass of 14 kg. 

Hence, mass of a nitrogen molecule 

 kg1032.2
10026

kg14 26
26N2





.

m  

Perrin is, therefore, said to be the first person to have weighed the atom with 

kinetic theory as the tool! 

4.6   SUMMARY 

Concept Description 

Brownian motion 

 

                          

 Brownian motion is perpetual and irregular motion of the particles 

immersed in fluid. It is caused by their continuous bombardment by 

the surrounding molecules of much smaller size. Sedimentation and 

Johnson noise are familiar examples of Brownian motion. 

 Brownian motion provided direct experimental evidence in support of 

kinetic theory of gases. 

  Einstein’s relation  Einstein’s relation for mean square displacement of a Brownian 

particle is 

 



0A
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1

rN

RT
  

  Sedimentation 

 

 

 The variation of particle concentration with height, z, during 

sedimentation is given by 

  



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4.7   TERMINAL QUESTIONS 

1. W. Pospisil observed the motion of soot particles of radius cm104.0 4  

in a water-glycerine solution with 0278.0  poise at .K292T  The 

observed value of 
2x  was 28 cm103.3   for .s10t  Use this 

information to calculate Boltzmann constant and hence NA. 

2. The mean kinetic energy of molecules of hydrogen at 0C is 

J1060.5 21  and molar gas constant is .KmolJ31.8 11 
 Calculate 

Avogadro’s number. 

3. A Brownian particle of radius m1010.2 7  moves in a liquid at 20C. If 

the value of RMS displacement in 32s is ,m105.6 6  calculate the value 

of Boltzmann constant. The coefficient of viscosity of the liquid is 
23 mNs102.1  . 

4.8   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. The Brownian motion is the experimental evidence in support of the basic 

assumption of kinetic theory of a gas that it consists of molecules moving 

at random. 

2. Given  poise,10,mol10023.6 2123

A

 N  

   ,K30527332C32 T   = 1s 

   ,cm108.1)( 262  x  117 Kmolerg108.31 R . 

 From Eq. (4.2), we recall that 

  



0A

2

3

1
)(

rN

RT
x  

On rearranging the terms, we can express 0r  in terms of the given 

physical parameters: 

  



3)( A

2
0

Nx

RT
r  

 On substituting the given values, we get 

 
)scmdyne01.014.33()cm108.1()mol10023.6(

s1)K305()Kmolerg10(8.31

226123

117

0 






r  

           cm1053.2479 10  cm1048.2 7   

Avogadro number  Perrin determined the value of Avogadro number and used it to 

determine the mass of nitrogen atom. That is, Perrin weighed the 

atom with kinetic theory as tool.  
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Terminal Questions 

1. We have  



0

B2

3 r

Tk
x   

 On rearrangement, we can write 

 



 20

B

3
x

T

r
k

s)10(K)292(

103.3cm)104.0(poise)0278.0(3 84


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



 

           116 Kerg1018.1   

 Using this result, we can write 

  
116

117

B
A

Kerg1018.1

Kmolerg1031.8









k

R
N  

                 123 mol1004.7   

2. Given:  J1060.5
21E , 

11KmolJ31.8 R  and K273T . 

We have 

  TkE B
2

3
  (i) 

But  
AN

R
k B  (ii) 

On combining Eqs. (i) and (ii), we get the following expression for energy: 

  T
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3
A   (iii) 

On substituting the values in Eq. (iii), we get 

  
J105.602

K273KmolJ18.33

21

11

A 






N 123 mol1008.6   

3. From Eq. (4.2), we can write 

  



0

B2

3
)(

r

Tk
x  

       We are given that RMS displacement is m,105.6 6     

23 mNs102.1  , and m1010.2 7
0

r . To use the value of RMS 

displacement in the above formula for )( 2x , we have to calculate its 

square. Hence, we can write 

  26 m)105.6( 
m)1010.2()mNs102.1(223

7s32K)293(

723

B

 




k
 

 or  
K65632

Nm1032.1661025.42 1012

B

 
k  

        
K

J

65632

1002.7027 22
   123 KJ1007.1   




