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BLOCK 2: THE ZEROTH  AND THE FIRST LAWS OF 

                           THERMODYNAMICS 

In Block 1, you have learnt about elementary kinetic theory where we made simplifying 

assumptions about the motion of gas molecules. You must have realized that kinetic theory of 

gases explains various observed phenomena with aesthetic elegance. This block deals with 

the basic concepts of thermodynamics, the terminology used therein, the zeroth law of 

thermodynamics, the first law of thermodynamics and some of its applications. From your 

school physics course, you are familiar with some of these concepts. But to make the block 

self-contained, we have included these in brief.  

In Unit 5, we have introduced the basic terminology of thermodynamics and explained the 

basic concepts to be used in this course. You will get familiar with the thermodynamic 

systems and processes and learn to classify the thermodynamic processes based on the 

behaviour of the thermodynamic parameters of the system.  

This is followed by the discussion of the zeroth law of thermodynamics in Unit 6. You will also 

learn that the zeroth law introduces the concept of temperature, which, in turn, helps us in 

formulating the equation of state of a thermodynamic system.  

We have discussed the thermodynamic concepts of heat and work in Unit 7. In this process 

you will learn about the concept of internal energy of a system. This helps us to develop 

mathematical formulation of the first law of thermodynamics, which is the principle of 

conservation of energy for thermodynamic systems. The applications of this law to diverse 

physical phenomena observed in nature like propagation of sound as well specific heat 

capacity measurement of a gas as performed in a laboratory are also given in this unit. An 

interesting phenomenon of adiabatic lapse rate, responsible for explaining the drop in the 

temperature as we move upwards in the atmosphere is explained in the Appendix of this unit. 

Please note that you will not be examined for the material provided in the Appendices of the 

course, but it will surely provide you an enriched learning experience. 

You will appreciate that each law of thermodynamics introduces a new thermodynamic 

variable. Moreover, thermodynamics is phenomenological and powerful science. The 

mathematics used in these units is quite simple. Yet you should brush up your previous 

knowledge of +2 physics as well as differential calculus, with particular emphasis on partial 

differentiation. 

We wish you the best for learning of this interesting topic of physics!
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             UNIT 5 

  THERMODYNAMIC 
DESCRIPTION OF A SYSTEM 

   Structure 
 

    5.1 Introduction 

Expected Learning Outcomes  

    5.2 Basic Terminology 

 Classification of Thermodynamic Systems 

Classification of Boundaries  

    5.3 Thermodynamic State of a System and  

            Thermodynamic Variables 

 Intensive and Extensive Variables 

 Thermodynamic Equilibrium 

  

  
    STUDY GUIDE       
    

 

5.4 Thermodynamic Processes 

 Reversible and Irreversible Processes 

 Quasi-static Processes 

 Representation of a Process on an Indicator 

       Diagram  

5.5  Summary 

5.6    Terminal Questions 

5.7 Solutions and Answers 
 

In the last block, you learnt basic concepts of kinetic theory of gases. You discovered that 

macroscopic properties of a gas could be related to its microscopic properties. You also learnt about 

Brownian motion and how it provided undisputed evidence in favour of kinetic theory. This unit deals 

with basic concepts of thermodynamics. We are sure that you are familiar with at least some of these 

concepts from your school physics course. Therefore, it provides perfect platform for starting our 

journey into the interesting field of thermodynamics. 

The solved examples and SAQs given here should help you fix your ideas and check your progress. 

We expect you to answer TQs yourself. Even if you find  them tough, do not look for answers at the 

first instance. We strongly recommend that you go through the particular section again. This will help 

you to develop better appreciation of the subject. 

 

Classical thermodynamics ... is the only physical 
theory of universal content which I am convinced ...  
will never be overthrown. 

Albert 
Einstein 

A thermodynamic system is usually 

characterized by its interaction with the 

surrounding, which is governed by the 

nature of its boundary. You will learn 

about the behaviour of familiar things 

like hot tea kept in an open cup and a 

thermos flask in this unit. 
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5.1   INTRODUCTION 

There may have been some occasions for you to use a bicycle pump  to 

inflate a tyre. Did you feel that the pump get hot? In winter, when we rub our 

palms together, we get a sensation of warmth. In these examples, the heating 

is not caused in the conventional way by a flame or something hot underneath 

the pump or the palm. The heat arises due to motion, i.e. the mechanical work 

done in compressing the gas inside the pump or forcing the palms to move 

against friction. These examples suggest a connection between mechanical 

and thermal effects. The study of the relationship between mechanical and 

thermal energies constitutes the subject of thermodynamics. 

We begin our journey by discussing what we understand by a thermodynamic 

system enclosed by an arbitrary surface called boundary. Classification of 

systems and boundaries is also discussed in Sec. 5.2. This is followed by a 

discussion of thermodynamic state of a system, thermodynamic variables– 

intensive and extensive – and thermodynamic equilibrium in Sec. 5.3.  A 

discussion of thermodynamic processes forms the subject matter of Sec. 5.4. 

We have introduced the concepts of reversible and quasi-static processes. 

This is followed by representation of a process – isothermal, isobaric, 

isochoric, cyclic and adiabatic – on an indicator diagram. This information will 

be used in the study of heat engines based on Carnot cycle.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 identify thermodynamic systems with their surroundings and 

boundaries; 

 explain the term thermodynamic variable and identify the variables 

characterising different thermodynamic systems; 

 explain thermodynamic equilibrium; 

 distinguish between a reversible and an irreversible process;  

 describe the character of a quasi-static process; and 

 depict different types of thermodynamic processes diagrammatically. 

5.2   BASIC TERMINOLOGY 

While beginning our journey in the study of thermodynamics, we focus our 

attention on a certain quantity of matter or a definite region of space, which is 

considered to be distinct and separated from everything else that can 

influence it. We refer to it as a thermodynamic system. Every such system   

is enclosed by a surface, either real or imaginary, which is called its 

boundary. The boundary may be at rest or in motion and it may or may not 

change its shape. The region of space and everything else that lies outside 

the boundary constitute its surroundings. These are illustrated schematically 

in Fig. 5.1. In thermodynamics, we consider only that portion of the 

surroundings as effective, which can influence the system.  
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Fig. 5.1: a) General depiction of a system and boundaries; b) an apple as a  

                    system; c) compressed gas in a cylinder. 

Any study of thermodynamics begins with the identification of a system, its 

boundary and surroundings (Fig. 5.1a). Let us consider some specific 

examples of systems with different kinds of boundaries. 

If we consider apple as a thermodynamic system (Fig. 5.1b), the boundary is 

real and fixed. Everything outside the skin of the apple constitutes the 

surroundings. For the system of a compressed gas (Fig. 5.1c) in a cylinder 

fitted with a piston, the boundary is real but movable since the piston, which is 

a part of the boundary, can be moved in or out. Everything outside the 

boundary of the gas constitutes its surroundings.  

A system may be simple, such as water in a vessel or complex, like a dry cell 

which has zinc and carbon electrodes, electrolyte etc. A system may be 

completely uniform with respect to its chemical composition and physical 

conditions. Then it is said to be homogeneous. However, an inhomogeneous 

system is called heterogeneous. Air in a cylinder or in a rubber balloon is a 

uniform mixture of gases like N2, O2 and CO2. It, therefore, makes up a 

homogeneous system. On the other hand, ice and water in a beaker constitute 

a heterogeneous system. 

Thermodynamic systems can also be classified from the point of view of their 

interactions with the surroundings. In fact, interacting systems are of greater 

interest in thermodynamics. Let us learn to classify systems according to the 

nature of interaction. 

5.2.1    Classification of Thermodynamic Systems 

Closed system: A system is said to be closed if it exchanges energy with the 

surroundings but the mass remains unchanged. In other words, no mass can 

cross the boundary of a closed system but its volume may change.  For 

example, the gas in a conducting cylinder fitted with an air-tight piston is an 

example of a closed system (Fig. 5.1c). In this case, no mass crosses the 

boundary. However, the movement of piston can change the volume of the 

gas. You may note that the piston and cylinder walls are conducting and 

energy may cross the boundary. That is, in a closed system, there is 

exchange of energy but not of matter (mass). Mathematically, we can write  

0,0,0  mVE  

System System 
(Apple) System 

(Gas) 

Boundary Boundary Boundary 

(a) (b) (c) 



 

102  

Block 2                          The Zeroth and the First Laws of Thermodynamics 

Open system:  A system is said to be open if it exchanges mass as well as 

energy with the surroundings. However, an open system has a fixed volume, 

known as the control volume. An electrically operated water heater used in 

bathroom is a familiar example of an open system. The water in its tank is 

heated in order to get a steady supply of hot water. The hot water flowing out 

of the tank is replaced by cold water flowing in. In this case, it is not 

convenient to choose a given mass of water as our system. Instead we direct 

our attention on the volume formed by the inner surface of the tank. Since 

water is flowing in and out across the boundary, the geyser is an open system. 

This is depicted in Fig. 5.2. Mathematically, we can write 

0,0,0  mVE  

Can you name another physical open system? 

Fig. 5.2: Electrically operated water heater: An open system. 

Isolated system: A system for which there is no exchange of energy or mass 

with the surroundings is said to be isolated. The content of an ideally sealed 

thermos-flask is an example of such a system. Mathematically, we can 

express it as 

0,0,0  mVE  

It may be mentioned here that open systems find greater applications in 

practice. 

While learning classification of systems, you must have realised that the 

characteristics of the boundary play an important role in determining the 

nature of the system. We now discuss different types of boundaries. 

5.2.2    Classification of Boundaries 

(i) Diathermal Boundary: If a boundary allows exchange of energy 

through it between the system and its surroundings, we say that the 

boundary is diathermal or thermally conducting. Note that such a 

boundary puts the system in thermal contact with the surroundings. A 

metallic (tea) pot provides a diathermal boundary to its contents.  

Mathematically we 
can represent 
closed, open and 
isolated systems, 
respectively, as 
 

0,0,0  mVE  

 
0,0,0  VmE

 
0,0,0  VmE
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(ii) Adiabatic Boundary: If a boundary does not allow any heat to flow 

across it, we call it an adiabatic boundary. An adiabatic boundary 

isolates the system thermally from its surroundings. The wall of an ideal 

thermos flask is adiabatic and a filled thermos flask with tight lid is a 

thermally isolated system. 

(iii) Rigid boundary: If a boundary is such that it cannot be moved, even 

with large external mechanical force, it is said to be rigid. A system 

having a rigid boundary cannot be compressed or expanded. The 

surface of a spherical ball of steel, as used in ‘shot put’, is the closest 

approximation to a rigid boundary. 

(iv) Permeable Boundary: If a boundary allows matter to flow through it, we 

call it permeable.  

(v) Semi-permeable Boundary: If a boundary permits some constituents of 

the system to pass through selectively, it is called semi-permeable. Hot 

quartz is an excellent example of semi-permeable boundary; it allows 

only helium to pass through. In RO systems used for water purification, 

semi-permeable membranes are used to filter out impurities. 

Now you may like to answer an SAQ to assess your understanding. 

SAQ 1  –  System and boundaries 

 

 

 

 

 

 

 

 

We hope that you now understand what we mean by a system and its 

surroundings. For a particular problem, these must be properly defined and 

the boundary must fulfil the conditions imposed. To illustrate this statement, 

suppose you want to assess the performance of a refrigerator kept in your 

dining room. Here the refrigerator along with its contents forms the system. Its 

walls define its boundary and the room in which it is placed constitutes its 

surroundings. But if we consider an air-conditioner installed in the same room, 

the room itself becomes the system, its walls, roof, floor, doors and windows 

constitute the boundary and its neighbouring rooms, corridor etc. become its 

surroundings. 

Before proceeding further, we recapitulate the important terms and their 

definitions. 

a) Cite one example (different from what is given in the text) each of a 

system with (i) a real fixed boundary and (ii) a real moving boundary.  

b) Hot water flows into the radiator of a car and flows out after cooling by 

radiation of heat. Should it be called an open or a closed system? 

c) A bottle of water at room temperature is cooled by putting it in the 

refrigerator. Would you call the bottle and water an open or a closed 

system? 

d) State the nature of a system (i.e. open, closed or isolated) enclosed 

by a (i) diathermal boundary and (ii) permeable boundary.  
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Once we select a thermodynamic system for study, we have to describe it 

precisely. This has analogy in mechanics, where we define the position and 

velocity of a particle in order to describe its motion, i.e. mechanical state of    

the particle. Likewise, we should know how to define thermodynamic states             

of different systems. This is the subject of discussion of the following section. 

5.3   THERMODYNAMIC STATE OF A SYSTEM 
AND THERMODYNAMIC VARIABLES 

In thermodynamics, a system is described by specifying its physical properties 

such as pressure, volume, temperature, mass, density etc. From Block 1, you 

may recall that a gas is characterised by its temperature, pressure and 

volume. These variables can be used to define its state. The state of a 

stretched wire is specified by its length and tension in it. These are called 

thermodynamic variables.  The value of any property defining a system 

depends on its condition at the instant that property is measured. For 

example, the pressure and volume of a gas kept in a cylinder have fixed but 

different values in the two conditions shown in Fig. 5.3a and 5.3b.  So we can 

say that the state of a system means specifying those properties of the system 

which uniquely define it at a particular instant. 

 

 

 

 

 

 

 

 

We know that the 
pressure exerted by a 
gas is related to the 
average rate of change 
of momentum due to the 
collisions of gas 
molecules on a unit area 
of the walls of its 
container. Higher the 
rate of change of 
momentum, higher will 
be the pressure. 
Similarly, the 
temperature of a gas can 
be related to the average 
kinetic energy of its 
molecules. This means 
that the system can also 
be described in terms of 
the properties of the 
atoms and molecules 
that constitute the 
system. These are 
referred to as 
microscopic properties 
and are not directly 
perceptible. 

Fig. 5.3: Different states of a gaseous system are characterised by  

different values of pressure and volume. 

p1, V1 
p2, V2 

BASIC TERMINOLOGY 
 

 A thermodynamic system is a certain quantity of matter or a 

definite region of space, which is distinct from everything else 

that can influence it. 

 The surface surrounding a thermodynamic system is called its 

boundary. 

 Thermodynamic systems can be categorized as closed, open or 

isolated. 

 The boundaries are classified as diathermal, adiabatic, rigid, 

permeable and semi-permeable. 
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You must have realised that the pressure and temperature can be perceived. 

As such, these properties represent gross characteristics of the system and 

are called macroscopic properties.  

5.3.1 Intensive and Extensive Variables 

Refer to system A shown in Fig. 5.4. Suppose it is divided in two parts A1 and 

A2, each having same mass. If you measure the temperature of A and then of 

A1 and A2, you will find that its value is the same in all three cases. But the 

volumes of A1 and A2   are different from that of A. Variables whose value does 

not change when the system is subdivided or multiplied in size are called 

intensive and variables whose values change are said to be extensive. For a 

gaseous system, pressure, and temperature are intensive while mass and 

volume are extensive. The intensive variables are independent of mass 

whereas the extensive variables are dependent on mass. The intensive and 

extensive variables describing different systems are listed in Table 5.1.  

Table 5.1 : intensive and Extensive Variables for Typical Thermodynamic 

Systems 

Thermodynamic System Intensive Variables Extensive Variables 

Gas in a cylinder Pressure (p) 

Temperature (T) 

Density () 

Mass (m) 

Volume (V) 

Paramagnetic solid Flux density (B) Intensity of magnetisation (M) 

Stretched wire  Tension (F) Length (L) 

Surface film Surface Tension ( ) Area (A) 

Electric Cell emf () Charge (q) 

We would now like you to answer an SAQ. 

SAQ 2  –  Thermodynamic variables 

 

 

 

 

 

5.3.2 Thermodynamic Equilibrium 

The state of a system may be completely specified even from a knowledge of 

some of its properties. It implies that we can use known properties to 

determine the unknown properties. For example, suppose we know the values 

of pressure (p), volume (V) and the number of moles (n) of an ideal gas.  

a) ‘If f and g are two extensive variables, f / g is intensive’.  Justify this 

statement with the help of an example. 

b) List the thermodynamic variables required for specifying the following 

systems (i) Air inside a bicycle pump, and (ii) A dielectric substance 

placed in an electric field. 

 

  

Fig.5.4: Intensive and 
extensive variables. 

 

A 

A2 A1 
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Then we can obtain its temperature (T) by using the ideal gas equation:  

  pV = nRT                        (5.1) 

An equation of this type is known as equation of state. It is a relation 

between the values of the variables p, V, n and T when the system has 

attained equilibrium. In fact, the properties of a system are truly defined only 

when it is in equilibrium. We refer to this as thermodynamic equilibrium. We 

shall now discuss it in more detail. 

Suppose you have some water at 60C in a container. If this container is left 

to itself, it will gradually cool down to attain room temperature. This means 

that the container and water interact with the surroundings and temperature  

of water decreases with time. Once the system attains room (surroundings) 

temperature, no further change occurs. We then say that the container and 

water have attained thermal equilibrium with the surroundings. 

If within the system, there are variations in pressure or elastic stress, its parts 

may move/expand/contract. Eventually when these movements cease, i.e. 

when no unbalanced force or torque acts on the system, it will be in 

mechanical equilibrium. For example, when a person steps on a weighing 

machine, the springs inside it are compressed and the pointer moves before it 

comes to rest showing the weight of the individual. It is then said to have 

attained a mechanical equilibrium.  

Finally, suppose that a system contains substances that can react chemically. 

After a sufficient time, when all chemical reactions have stopped, the system 

is said to be in chemical equilibrium. In other words, a mixture of substances 

is in chemical equilibrium when they show no tendency for a chemical change 

to occur. 

A system in thermal, mechanical and chemical equilibrium is said to be 

in thermodynamic equilibrium. Under this condition, the macroscopic 

properties of a system do not change with time. In thermodynamics, the 

phrase ‘state of a system’ refers to an equilibrium state. Note that a system 

can be in different equilibrium states at different times.  

 

 

 

 

 

 

 

 

You may ask: How does a system go from one equilibrium state to another?  

Let us discover the answer to this question. 

THERMODYNAMIC STATE OF SYSTEM 

 A thermodynamic system is described in terms of its physical 

properties such as pressure, volume, temperature, density etc. 

These properties are known as thermodynamic variables. 

 Thermodynamic variables are classified respectively as intensive 

and extensive variables, depending on whether or not they change 

when the system is sub-divided or multiplied. 

 A system simultaneously in thermal, mechanical and chemical 

equilibrium is said to be in thermodynamic equilibrium. 
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5.4   THERMODYNAMIC PROCESSES 

When the value of any thermodynamic variable associated with a system 

changes while going from one equilibrium state to another, the system is said 

to execute a thermodynamic process. Thus, a process signifies a change of 

a system from one equilibrium state, called the initial state, to another 

equilibrium state, called the final state.  

For example, the expansion of a gas in a cylinder fitted with piston and 

maintained at constant pressure due to heating is a thermodynamic process. 

Again, suppose a wire is stretched tight between two rigid supports. It has 

certain tension and length. Now, if this wire is allowed to cool, it will try to 

shrink. Since it is not permitted to shrink, the tension in the wire will increase 

to keep it stretched at its initial length. The wire is then said to have executed 

a thermodynamic process.  

In the subsequent units of this block, we will analyse thermodynamic 

processes. In order to do so, first we represent a thermodynamic process 

graphically. Suppose two variables x and y specify a system as shown in    

Fig. 5.5. Here A is the initial equilibrium state represented by the coordinates 

(xA, yA ) and B is the final equilibrium state represented by the coordinates  

(xB, yB).  It is possible to reach from state A to state B in many different ways. 

Each of these curves is called a path.  

Note that in whichever way you go, you would like that the intermediate states 

must also be defined by specific coordinates. What does that imply? It implies 

that all the intermediate states between A and B should be equilibrium states. 

But is this possible in practice? To  answer this question, we first consider two 

types of thermodynamic processes. 

5.4.1   Reversible and Irreversible Processes 

If a process is executed in a very slow and controlled manner so that all the 

intermediate states between the initial and the final states are in equilibrium 

and if it is possible to execute the reverse process through the same 

equilibrium states, it is called reversible. If the above conditions are not 

satisfied, the process is called irreversible. 

Let us now take an example to understand whether a reversible process can 

be executed in practice or not. 

Consider a cylinder fitted with a piston and containing a gas, as shown in Fig. 

5.6a. The gas occupies a volume V. We assume that weight W placed on the 

piston is such that on its removal, the piston will take the position A´B´, i.e., 

the volume of the gas will become 2V at constant temperature.  

If we remove the weight W suddenly, the layer of the gas in immediate contact 

with the piston will expand first. This will result in instantaneous local drop in 

temperature and pressure. But other layers of the gas will remain relatively 

unaffected. This imbalance leads to an irreversible process. 

 

 

Fig. 5.5: Graphical 

representation of 

several processes 

occurring between 

states A and B. 

B(xB, yB) 

A(xA, yA) 
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(a)             (b)         (c) 

Fig. 5.6: Realising a reversible process. 

Now instead of having a single weight W, we put a weight equal to W / 2. It is 

as if we have removed a weight W / 2 from the configuration shown in  

Fig. 5.6a. The piston moves to position CD, midway between AB and A'B' 

(Fig. 5.6b). Next, the weight W / 2 is removed and the position goes to position 

A'B' (Fig. 5.6c). This experiment shows that we get only one equilibrium state, 

CD, between the initial and the final states.    

Similarly, by putting two weights, each equal to W/3, we can generate two 

intermediate states. By using n equal weights, each equal to W/n, we can 

have (n 1) intermediate states. And for this expansion process to be 

reversible, all the intermediate states must be in equilibrium. For this, n must 

be infinitely large, i.e. the system should pass through an infinite number of 

equilibrium states. But this is impossible, which means that a reversible 

process can only be idealized rather than achieved in practice.    

You may now like to answer an SAQ on the concepts of reversible and 

irreversible processes. 

SAQ 3  –  Reversible and irreversible processes 

 

 

 

 

 

 

 

You have understood that a system can be restored to its initial state by a 

reversible process. When the process is completely reversible, the 

surroundings experience no resultant change. But, when the process is 

irreversible, some changes do occur in the surroundings. We may extrapolate 

this result to conclude that all natural processes are irreversible. This means 

that for such processes, the intermediate stages do not correspond to 

a)  Classify the following processes as reversible or irreversible. 

     (i)  A gas enclosed in a cylinder fitted with a frictionless piston is 

 quickly compressed.  

     (ii)  Mixing of glucose in water.   

     (iii)  Oscillations of an ideal simple pendulum with a frictionless  

                support in vacuum. 

b)   Energy is dissipated during an irreversible process – illustrate this      

statement with the help of an example. 
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equilibrium states and hence such processes cannot be represented by a 

path. But then its thermodynamic analysis is also not possible. This raises a 

vital question ‘Can we not at all analyse natural processes 

thermodynamically?’  The answer lies in the description of quasi-static 

processes. You will learn about these now.  

5.4.2   Quasi-static Processes 

If a process is so executed that it passes through states which are not 

equilibrium states but deviate only infinitesimally from equilibrium states, it is 

said to be quasi-static (i.e., almost static). Thus, a quasi-static process 

closely approximates a succession of equilibrium states. If there are finite 

departures from equilibrium, the process is non-quasi-static. 

Suppose we wish to heat a system from an initial temperature T1 to a final 

temperature T2. This could be done by enclosing the system in a diathermal 

boundary and maintaining the surroundings of the system at a temperature T2. 

But this process would not be quasi-static because the temperature of the 

system near its boundary increases more rapidly than at points in the interior. 

To heat the system quasi-statically, the temperature of the surroundings 

should be kept initially at T1 and then this temperature should be increased 

sufficiently slowly so that at all times it is infinitesimally higher than that of the 

system. 

All real processes are non-quasi-static because during the process there is 

always a finite difference of pressure or temperature or both between several 

parts of the system. For dealing with such a process, we visualize it as being 

executed quasi-statically. You will be able to appreciate this statement when 

you solve the following SAQ.  

SAQ  4   Quasi-static processes 

 

 

 

 

 

Now that you have learnt about quasi-static processes, you may ask: How do 

we represent an actual process on a diagram with different thermodynamic 

parameters as axes? You will learn this now. 

 
5.4.3   Representation of a Process on an Indicator   

Diagram 

You must have realized that the stages of a quasi-static process are a series 

of approximately equilibrium states. As you have seen in Fig.5.5, equilibrium 

Classify with reason the following processes as quasi-static or non-quasi-

static. 

(i) Air is being pumped in a tyre-tube slowly. 

(ii) The tyre-tube in which air is being pumped bursts suddenly. 

(iii)  A small sapling grows into a big plant in two years, and we take 

          observations of its height every day.  

.       
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states are indicated by a series of points in the xy-plane, where x and y are 

any two thermodynamic variables. A curve through these points represents 

the path of the process. Such a representation is called an indicator 

diagram. Let us now learn to represent an actual process on an indicator 

diagram. 

Refer to Fig. 5.7a. A gas is contained in a cylinder C fitted with a frictionless 

piston P, having dia-thermal walls. The cylinder is immersed in a constant 

temperature bath. The initial state of the gas is defined by (pi, Vi, Ti). Now we 

pull out the piston very slowly so that the gas expands at constant 

temperature Ti in such a way that at any instant, the external pressure on the 

piston differs from the gas pressure by an infinitesimal amount. Let the final 

state of the gas be defined by (pf, Vf, Ti). Note that while undergoing the 

change from the initial to the final state, the system passes through a series  

of values of p and V, which differ only infinitesimally from each other. The plot 

of these successive values with V along the abscissa and p along the   

ordinate gives us the required representation (Fig. 5.7b).  

 

 

 

 

 

 

  

Fig. 5.7:   a) Arrangement for isothermal expansion of a gas; b) p vs V diagram  
                 for a quasi-static isothermal expansion of a gas. 

So far, we have classified processes on the basis of the pace of their 

execution. We can also classify processes on the basis of the property of the 

system that remains constant during the process. We code these processes 

by prefixing ‘iso’ before that property. For example, if the gas has been 

expanded at constant temperature, as in the example given above, the 

process is said to be isothermal.  If the process takes place at constant 

pressure, it is called isobaric. A process taking place at constant volume is 

called isochoric or isovolumic.  A change of state, e.g., melting of ice into 

water and water into steam, takes place at constant temperature and 

pressure. These are examples of isothermal-isobaric processes. 

Furthermore, if the system has adiabatic boundaries, the process occurs 

without any exchange of heat between the system and its surroundings. We 

refer to such a process as an adiabatic process. For example, a single 

stroke of the piston of an internal combustion engine is very nearly adiabatic. 

This is because the duration of the process is extremely small and no heat 

can flow in or out of the system during this time.  

(a) (b) 

Bath 

C 

P 

V 

p 

(pi ,Vi) 

(pf ,Vf) 
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If a process is such that the system returns to its original state along any path 

other than the initial one, we say that it has undergone a cyclic process. The 

working substances of all heat engines and refrigerators go through cyclic 

operation.   

We have represented some of the above-mentioned processes on p-V 

diagrams in Fig. 5.8. 

 

 

 

 

Fig. 5.8: Representation of an a) isobaric; b) isochoric; c) isothermal;  

               d) a cyclic process on an indicator diagram. 

You may now like to answer an SAQ on the representation of processes. 

SAQ  5   Thermodynamic processes 

 

 

Before completing this unit, we would like you to recapitulate what you have 

learnt in this section. 

 

  

 

 

 

 

 

 

5.5   SUMMARY 

Concept Description 

Basic definitions 

  

                           

 A region of space under study is called the system and everything 

else around it is the surroundings. An arbitrary surface enclosing 

the system is called the boundary. 

 

p 

V 

p 

V 

p 

V 

p 

V 

(a) (c) (b) (d) 

Isobaric Isochoric Isothermal Cyclic 

THERMODYNAMIC PROCESSES 

 When a thermodynamic system goes from one equilibrium state 

to another equilibrium state, it is said to execute a 

thermodynamic process. 

 If all intermediate states between the initial and final states are 

equilibrium states and it is possible to execute the reverse 

process through exactly same states, the process is called 

reversible. 

 If it is not possible to execute a reverse process through same 

intermediate states between initial and final states, the process is 

called irreversible. 

 Depiction of a process on a  p-V plot is called indicator diagram. 

 

 

 

Draw V-T and p-T diagrams for a perfect gas undergoing (i) isobaric 

expansion and (ii) isothermal compression. 
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5.6   TERMINAL QUESTIONS 

1. A rose plant in a garden is an example of an open system. Discuss. 

2. Show that the specific value an extensive variable is an intensive property. 

3. The weight of 3m 2  of mercury at 0°C and 1 bar pressure at a place     

where -2ms 9.8 g  is N1067.2 5 .  Write the two extensive and four 

intensive variables of this system. 

4. Boiling water is kept in an open vessel to cool down to room temperature. 

Is this process quasi-static? Justify your answer. 

5. Fig. 5.9 shows two isothermal processes at temperatures T1 and T2,              

respectively. By inspecting the curves, find out which of the two 

temperatures is higher. 

5.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. a) (i) A cricket ball (ii) an inflatable balloon. 

 b)      Open system, since the volume of water is constant.  

 Thermodynamic 

variables 

 The macroscopic quantities that determine the thermodynamic state 

of a system are called thermodynamic variables.  

 
 Extensive and 

intensive variables 

 

Equation of state 

  

 Thermodynamic variables that depend on mass of the system are 

referred to as extensive. On the other hand, thermodynamic 

variables which do not depend on mass of the system are said to be 

intensive. 

 The variables of a system in thermodynamic equilibrium can be 

expressed in the form of a mathematical relationship called the 

equation of state. 

  Thermodynamic 

equilibrium 

  A system is said to be in thermodynamic equilibrium if it is in 

thermal, mechanical and chemical equilibria. It does not change with 

time in any way whatsoever.  

 Process   When any property of a system changes, the state of the system 

changes and the system is said to undergo a process. 

 
 Reversible and 

irreversible processes 

  A reversible process is one that is performed in such a way that at 

the conclusion of the process, both the system and the surroundings 

are in their respective initial states without producing any change 

in the rest of the universe. If the above condition is not satisfied, 

the process is called irreversible.  

  
 Quasi-static process   If a process is carried out in such a way that at any instant, the 

system departs only infinitesimally from an equilibrium state, the 

process is called quasi-static. 

 

T1 

T2 

p 

V 

Fig. 5.9: Isotherms. 
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      c)      Closed system, since the mass is constant.  

 d)    (i) Closed  (ii) open.  

2. a) Let f be the mass and g the volume of a homogeneous substance. 

 Then gf / defines density, which is an intensive variable. 

 b)     (i) Air inside a bicycle pump: Pressure, volume, temperature, mass 

and density;  

              (ii) Dielectric in an electric field: Mass, volume, temperature, intensity  

of polarization, electric field Intensity. 

3.  a)    (i) Irreversible (ii) Irreversible (iii) Reversible. 

 b)    Let us consider the case of compression of a gas contained in a 

cylinder by pushing the cylinder inwards. A part of the mechanical 

energy spent in pushing is used up to overcome friction between the 

piston and the cylinder. Part of the heat developed in the gas is 

conducted away through the wall of the cylinder. This process is 

irreversible and energy is dissipated in this  process. 

4. (i)  Quasi-static because due to slow pumping, the pressure in the tube 

increases in infinitesimally small amounts at a time and the pressure 

throughout the tube is almost uniform at any given time. This can be 

approximated to a system in equilibrium at any given point of time. 

 (ii) Non-quasi-static because after bursting of the tube, the air pressure 

in the tube as well as the volume occupied by the air changes 

suddenly and cannot be approximated to an equilibrium state.   

 (iii) Quasi-static because when we take the readings of height every day, 

the increase is infinitesimally small and the state observed on each 

day can be treated as an equilibrium state. 

5. The diagrams are shown in Fig. 5.10. Here i and f represent initial and 

final states respectively.  

 

 Isobaric Expansion 
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Fig. 5.10: Representation of isobaric expansion and isotheral 

compression on V-T and p-T diagrams.    
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Terminal Questions 

1.   The rose plant in a garden is a system with soil, atmosphere and other 

plants as surroundings. It takes up sunlight and CO2 from air in day time 

and gives out O2. It also takes nutrients and water from soil. Thus there is 

exchange of matter and energy with the surroundings. The rose plant is 

therefore an example of an open system. 

2.   An extensive variable, say X, is by definition, proportional to the mass so 

that it may be written as km where k is constant of proportionality. The 

corresponding specific value is X / m which is equal to k. It is independent 

of mass. From this we may conclude that specific value of an extensive 

variable is an intensive property. 

3.   Extensive variables: Volume = 3m 2 ,  

Mass = N1067.2 5 / -2ms 9.8 = kg1072.2 4   

    Intensive variables : Temperature = 0°C, Pressure = 1 bar,  

density = kg1072.2 4 / 3m 2 = -34 m kg1036.1  ,   

specific volume (volume per unit mass)  = 3m 2 / kg1072.2 4   

                                      = -135 kgm 1035.7  . 

4. Non-quasi-static because the temperature of a cooling body follows the 

Newton’s cooling law, which is exponential in nature. It falls sharply in the 

initial stages of cooling, and then slows down as shown in Fig. 5.11. 

Hence the rate of change of temperature is much higher in the initial 

stages of cooling and cannot be approximated to an equilibrium state.  

5. In order to determine the higher of the two temperatures, draw a horizontal 

line parallel to volume axis, as shown in Fig. 5.12. This line represents a 

constant pressure. Find out the two volumes V1  and V2 corresponding to 

the intersections of the horizontal line with the two isotherms. From 

Boyle’s law, at constant pressure, the larger volume of the gas 

corresponds to higher temperature. From the figure we have,  V1 > V2. 

Hence, we can conclude that   T1 > T2.  

 You will notice that generally, the isotherm closer to the origin has lower 

temperature. Fig. 5.12: Isotherms. 
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Fig. 5.11:  Newton’s 

law of cooling. 
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                 UNIT 6 

THE ZEROTH 
LAW  

Structure 

6.1     Introduction 

Expected Learning Outcomes 

6.2     The Zeroth Law of Thermodynamics 

6.3     The Equation of State 

 

            

STUDY GUIDE           

 

    6.4     Deductions from the Equation of State 

 6.5     Summary 

 6.6     Terminal Questions 

 6.7     Solutions and Answers 

 

In the last unit, you have learnt the basic terminology used to describe a thermodynamic system. In this 

unit, you will learn about the Zeroth law of thermodynamics and how it helped to introduce the concept 

of temperature. You will also learn how to obtain parametric equation of state of a system.  Parametric 

equation can be used to relate quantities such as the coefficient of volume expansion, compressibility 

and elasticity to thermodynamic variables. This would involve use of elementary calculus, including 

partial differentiation. You may have learnt these in your school mathematics classes. It will be useful if 

you refresh your knowledge about the differential equations before starting to study this unit.  

We reiterate that you should answer SAQs and TQs yourself in order to check your understanding and 

enjoy the subject. 
 

Heat energy of uniform temperature [is] the ultimate 
fate of all energy. The power of sunlight and coal, 
electric power, water power, winds and tides do the 
work of the world, and in the end, all unite to hasten 
the merry molecular dance. 
 

Frederick 
Soddy 

 

B A 

The Zeroth law of 
thermodynamics introduces 
us to the concepts of thermal 
equilibrium and temperature 
about which you will learn in 
this unit. 
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6.1   INTRODUCTION 

The study of thermodynamics is based on four empirical laws, which are 

derived from experience and need no proof. That is why thermodynamics is a 

phenomenological science. Its laws find wide applications in the design of 

combustion engines, refrigeration and air conditioning systems, power 

generation and the like. With the help of these laws, we can determine the 

efficiency of all types of thermo-mechanical devices such as steam engines, 

thermal power plants and automobiles. These laws can also be applied to 

analyse energy transformations in chemical and geological systems. 

In Block 1, we have used the term ‘temperature’ quite freely, since we are 

quite familiar with it. But have you ever thought as to how the concept of 

temperature was first introduced? Its basis lies in the Zeroth law of 

thermodynamics. We have discussed it in Sec. 6.2. The genesis of 

nomenclature of this law was in its formulation after the first and the second 

laws of thermodynamics had been established. And the concept of 

temperature was considered more basic than the internal energy and entropy. 

This law leads us to the equation of state. This equation can be represented in 

parametric form as discussed in Sec. 6.3. In Sec. 6.4, you will learn how to 

use the parametric equation of state to obtain mathematical relations between 

physical quantities such as coefficient of volume expansion, isothermal and 

adiabatic compressibilities/elasticities, etc. 

Expected Learning Outcomes   
After studying this unit, you should be able to: 

 state the Zeroth law of thermodynamics; 

 explain how the Zeroth law introduces the concept of temperature; 

 apply the parametric equation to describe different thermodynamic 

processes; and 

 use the equation of state to solve problems in thermodynamics. 

6.2   THE ZEROTH LAW OF THERMODYNAMICS 

Refer to Fig. 6.1. Here, the adiabatic walls are denoted by solid lines and the 

diathermal walls are indicated by shaded lines. 

    

 

 

 

 
(a)            (b) 

Fig. 6.1: The zeroth law of thermodynamics: a) A and B are in thermal contact 
with C separately; b) A and B are in thermal contact with one another. 

This nomenclature is due to 
RH Fowler. 

This nomenclature is 
due to RH Fowler. 
 

B 

C C 

B A A 
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In Fig. 6.1a, A and B are separated by an adiabatic wall but are individually in 

thermal equilibrium with C. When these systems are insulated from C but put 

in thermal contact with one another as shown in Fig. 6.1b, they are seen to 

remain in thermal equilibrium.  

We can summarise this observation as follows: 

If two systems A and B are in thermal equilibrium independently with a third 

system C, then A and B will also be in thermal equilibrium with one another.  

This is known as the Zeroth law of thermodynamics. 

You may now like to know: What determines whether a number of bodies will 

be in thermal equilibrium or not when they are put in thermal contact? They 

must have a common property which has the same value for all systems. This 

property is called ‘temperature’. Thus, the temperature of a body is that 

property which determines whether or not it will be in thermal equilibrium with 

other bodies.  

The phenomenon that two bodies in thermal contact tend towards a common 

temperature is so common that its importance was initially overlooked. When 

physicists finally appreciated its significance and fundamental nature, it was 

elevated to the status of a ‘Law of Thermodynamics.’ By that time the first and 

second laws of thermodynamics had already been enunciated. So, in order to 

place it ahead of the first and second laws, it was named the ‘zeroth law.’ The 

significance of this law lies in the fact that it introduces the concept of 

temperature. 

You are familiar with the equation of state. The relation pV = nRT (Eq.(5.1)) is 

one such equation of state for n moles of an ideal gas. Can such relations 

exist for other thermodynamic systems as well? From the zeroth law it can be 

established mathematically that relations do exist between the temperature 

and the other thermodynamic variables associated with a system. All such 

relations are the equations of state. Let us now study these equations in 

detail. 

6.3   THE EQUATION OF STATE 

You know that temperature of a system can be expressed in terms of two 

other thermodynamic variables. If x and y (pressure p, volume V, say) are the 

two parameters, then mathematically we can write 

       T = f1 (x, y)      (6.1a) 

Eq. (6.1a) can be solved for x in terms of T and y or for y in terms of T and x. 

Then we get the relations of the form 

       x = f2 (T, y)      (6.1b) 

and        y = f3 (T, x)      (6.1c) 

Eqs. (6.1 a, b and c) can be expressed as a composite relation as 

       f (x, y, T) = 0        (6.2) 

Eq. (6.2) is parametric as the form of the function f is not given. But the 

equation of state for an ideal gas (Eq. 5.1) is exact. Likewise, we have 
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equations of state of other systems like a real gas, a stretched wire, etc. In 

Table 6.1, we quote equations of state for a few typical physical systems.  

Table 6.1: Equations of state for various systems  

System 

(variables) 

Equation of State 

Parametric Exact 

Ideal gas 

(p,V,T) 

f (p, V, T) = 0 pV = RT, where R is the universal gas 

constant  

Real gas 

(p,V,T) 

f (p, V, T) = 0 RTbV
V

ap  ))((
2

, where a and b are 

constants 

Paramagnetic solid 

(M, B, T) 

f (M, B, T) = 0 M = CB / T, where M is the intensity of 

magnetisation and B is the flux density of the 

magnetic field in which the solid is placed. C 

is a constant. 

Stretched wire 

(L, F, T) 

f (L, F, T) = 0 L = L0 [1 + q1F + q2 (T – T0)] where L and L0 

are the lengths of the wire at temperatures T 

and T0, respectively. F is the tension in the 

wire, q1 and q2 are constants.   

The parametric forms of the equations of state may be used to study some 

typical characteristics like coefficient of thermal expansion, elasticity, 

compressibility and so on of any substance. We shall do so now. This 

exercise will enable you to handle thermodynamic relations involving partial 

derivatives. You will encounter several such relations, particularly in Block 3 of 

this course.  

6.4   DEDUCTIONS FROM THE EQUATION OF 
STATE 

Before we proceed to study the characteristics using the equation of state, we 

need to learn about partial differentiation, which is an extension of the idea of 

ordinary differentiation. You have learnt about it in the second semester 

course entitled Electricity and Magnetism (BPHCT 133). We come across 

such differentiation when a quantity is ‘a function of more than one variable 

and we need to know the change in the quantity when any one of the 

variables changes by a small amount’. For example, the temperature of a 

gaseous system is a function of pressure and volume. Now we may like to 

obtain the rate of change of temperature with respect to pressure for an 

isochoric (volume = constant) process. In this case, we are seeking the partial 

derivative of T with respect to p at constant V, denoted by (T / p)V. On the 

other hand, if we seek the rate of variation of T with respect to V for an 

isobaric (pressure = constant) process, the appropriate partial derivative will 

be (T / V)p. 

We shall now work out the mathematical relationship between partial 

derivatives involving any three variables. These will be very useful to you in 

doing the relevant deductions involving any three variables.  

Note that instead of 

using the symbol ‘d’, 

as in case of 

ordinary differentials, 

we use ‘  ’ 

(pronounced as ‘del’) 

in case of partial 

differentials. 
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Let us assume that a gas is defined by pressure p, volume V and temperature 

T.  So, V may be taken as a function of p and T, i.e., we can write                       

V = V (p, T). The change in volume can be expressed as  

                  T
T

V
p

p

V
V

pT

ddd 
























                                (6.3a) 

where the first term indicates the change of volume due to change of pressure 

alone and the second term indicates the change of volume due to change of 

temperature alone. Similarly, we can write p = p (V, T) and the total differential 

dp for change of pressure due to changes in volume and temperature as   

      

T
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                                               (6.3b) 

On substituting the expression for dp from Eq. (6.3b) in Eq. (6.3a), we get 
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On collecting the coefficients of dV and dT, we can write  
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    (6.4) 

Note that of the three variables p, V and T, only two are independent. Let us 

choose V and T as the independent variables. Then, Eq. (6.4) must be true for 

all sets of values of dV and dT. So, for any two states which are at the same 

temperature (dT = 0), but have different volumes (dV  0), Eq. (6.4) implies 

that 
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This means that the partial derivative of any variable can be replaced by the 

reciprocal of the inverted partial derivative with the same variable (here T) 

held constant. There is another important relation which you will derive in the 

following SAQ. 

 
SAQ 1  –  Equation of state 

 

 

 

 

 

Imposing the conditions dV = 0 and dT  0 in Eq. (6.4), prove that 

thermodynamic variables are connected through the relation 

                  1




































pVT
V

T

T

p

p

V
                                                      (6.6) 
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We shall now discuss how to use Eqs. (6.5) and (6.6) to obtain some results 

of physical interest. To do so, we first define thermal expansivity or the 

isobaric coefficient of volume expansion, , the bulk modulus or isothermal 

elasticity, ET and the isothermal compressibility )/1β( TT E : 

       
pT

V

V














1
                            (6.7) 

and            
TT

T
V

p
VE 














β

1
                                                            (6.8) 

Note the negative sign in Eq. (6.8).  It has been put to give ET [or )β( T ] a 

positive value since pressure decreases as volume increases, i.e., (p / V)T  

is negative for all systems.  

You may like to attempt an SAQ to find out the values of Tβ and  for an ideal 

gas.  

 

SAQ 2  –  Isothermal compressibility and volume expansion 

coefficient 

 

 

 

 

 On combining Eqs. (6.7) and (6.8), we can write  

      Tp
T

V

p

T

V
E 
























  

or       
TTp Ep

V

V

T


























 1

  

 

Using this result in Eq. (6.6), we get 

      
T

V

E
T

p













                                                                (6.9) 

Similarly, an infinitesimal change in pressure may be expressed in terms of 

changes in temperature and volume as  

      

V
V

p
T

T

p
p

TV

ddd 
























  

Using Eqs. (6.8) and (6.9), we can write 

      V

V
ETEp TT

d
dd    

At constant volume, if change in temperature is small but finite,  and ET may 

be assumed to be constant. Hence, the change in pressure p, corresponding 

to a finite change in temperature, T, at constant volume is given by   

      TEp T               (6.10) 

Show that for an ideal gas 

   
p

T
1

     and     
T

1
  
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We now take up a numerical example to illustrate Eq. (6.10). 

 

 

 

 

 

 

 

 

 

Let us now sum up what you have learnt in this unit. 

6.5   SUMMARY 

Concept Description 

Zeroth law of 

thermodynamics and 

temperature   

                   

 The zeroth law of thermodynamics states that if systems A and 

B are separately in thermal equilibrium with a system C, then A 

and B will be in thermal equilibrium with one another.  This 

nomenclature has genesis in the fact that it introduces the 

concept of temperature, which has fundamental significance.   

Thermal equilibrium   All systems in thermal equilibrium are characterized by the 

same temperature.  

The general equation 

of a gaseous system 

 

 

 The general equation of any gaseous system is given by  

        ,0),,( TVpf   

where f is a single valued function of pressure p, volume V and 

absolute temperature T. 

 

Coefficients of 

isobaric volume 

expansion, isothermal 

elasticity and 

isothermal 

compressibility 

 

 In terms of partial derivatives, the coefficients of isobaric volume 

expansion (), isothermal elasticity (ET) and isothermal 

compressibility (T) are defined as 

     
pT

V

V














1
,     ,

T
T

V

p
VE 












     

T
T

p

V

V 













1
 

These are related to pressure through the relations 

                 ,
d

d
V

V
ETEp TT      

V

V
TEp

T
T

d1
dd


  

 

 

The temperature of a block of copper is increased from 400K to 410K. 

What change in pressure is necessary to keep the volume constant? 

Given, for copper, 15K105   and .Nm103.1 211 TE  

SOLUTION  In Eq. (6.10), we have T = 10K. 

So  K10)Nm103.1()K105( 11115  p   

                27 Nm105.6   

 

XAMPLE  6.1:  ISOCHORIC PROCESS 
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6.6   TERMINAL QUESTIONS 

1. Write down the relation between thermodynamic variables expressed by 

Eq. (6.6) for (i) a paramagnetic solid and (ii) a stretched wire. 

2. A stretch of railway track is laid without expansion joints in Thar desert 

where day and night temperatures differ by 25K. The cross-sectional area 

of the rails is .m106.3 23  The Young’s Modulus, Y, of its material is  
211Nm102  and the coefficient of linear expansion, , is .K108 16   

a)   If the length of the track is kept constant, what is the difference  

 in the tension in the rails between day and night?  

b)   If the track is 15 km long and is free to expand, calculate the 

   change in its length between day and night.  

 (Hint: Use 
TL

F

A

L
Y 












  and 

FT

L

L














1
 where L, F and T denote 

length, tension and temperature, respectively.) 

3. The density of a substance is . Show that 

  (i)   

T
T

p 
















1
   and    (ii)   

pT
















1

 

4.   Prove that for a pVT-system

 
             dpdT

V

dV
T

 

5. Calculate the coefficient of volume expansion and isothermal 

compressibility for a van der Waals’ gas.
 

6. The isothermal compressibility and expansivity of a substance are, 

respectively, given by 

   
2

3

p

aT
T        and       

p

bT2

  

 Obtain the equation of state of the system under consideration. 

6.7   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. Imposing the condition dV = 0, dT  0 in Eq. (6.4), we get   

                  0





































pVT
T

V

T

p

p

V
    or    

pVT
T

V

T

p

p

V





































 

      Since  ,
1

p

p

V

TT

V


























 we can write 
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         1




































pVT
V

T

T

p

p

V

 

2. We know that isothermal compressibility is defined as 

    

T
T

p

V

V 













1
 (i) 

  For a perfect gas,  
p

RT
V   

  so that   
2p

RT

p

V

T













 

  On using this result in Eq. (i), we get 

    
ppV

RT

pVp

RT
T

1
.

1
2

  

  Similarly, volume expansion coefficient is defined as 

    
pT

V

V














1
 (ii) 

  For one mole of a perfect gas,  RTpV   

  so that 

    
p

R

T

V

p













 

     
TpV

R 1
  

 
Terminal Questions 

1. (i) Paramagnetic solid: 1




































BMT M

T

T

B

B

M
 

 (ii) Stretched wire:        1




































FLT L

T

T

F

F

L
 

2. a) Let L = length, F = tension and T = temperature of the track. 

 Since  f ( L,F,T) = 0, following the relation for stretched wire 

 obtained in TQ-1 (ii),  we can write 

        1




































FLT T

L

F

T

L

F
   

 Using the relations for Y and  given in the question, we can write, 

                1 



















L

F

T

L

YA

L

   

      











 YA

T

F

L
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  So, if the length of the track is kept constant, difference in tension 

  corresponding to a difference of temperature T is given by          

                   ΤYAF        

 When we consider change from day to night, T =  25K.  

      ΤYAF   

    25KK)108()m106.3()Nm 102( 623211    

                        N1044.1 5  

 As the temperature falls during night, the track tries to contract. 

However, since it is not permitted to contract, the tension increases to 

keep it stretched to its original length. Therefore, F is positive.  

 b) Since L = L(F,T),  dT
T

L
dF

F

L
dL

FT


























  

 If the track is free to expand, dF = 0. T = 25K. 

The change in length in terms of the coefficient of linear expansion is   

defined as  

   m 3 25K)()m1015()K 108( 3-16  TLL  

 Thus the track will contract by 3m. 

3. (i)    We know that isothermal compressibility is defined as 

   
TTT

T
p

V

Vp

V

V 






































11
 (i) 

  Since ,



m

V  we can write 

   
2












 mV

T

 (ii) 

  Using this result in (i), we get 

   

TT
T

pp

m

V 












































11
2

 (iii) 

 (ii) We know that volume expansivity at constant pressure is given by 

    
ppp T

V

VT

V

V







































11
 (iv) 

  On substituting for pV )/(   from (ii), we get 

    
pp TTV

m































1
2

 (v) 

4.  For a pVT-system, we choose volume as independent variable and write 

   ),( pTVV   
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   dp
p

V
dT

T

V
dV

Tp

























  

         dpVdTV T  

  or dpdT
V

dV
T  

  5.  We know that for one mole of a gas, van der Waals equation of state is 

                 RTbV
V

a
p 








 )(

2
 (i) 

  Further the coefficient of volume expansion and isothermal 

compressibility are defined as 

   
pT

V

V














1
 (ii) 

  and 

T
p

V

V 













1
 (iii) 

  Hence, from Eq. (i) we can write 

   R
T

V
bV

V

a

V

a
p

p






























 )(

2
32

 

  or 

)(
2

32
bV

V

a

V

a
p

R

T

V

p 





















 

  To simplify, we multiply the numerator as well as the denominator on 
the right-hand side by )( bV   and use Eq. (i), this gives 

   













 






















3

22

3
)(2

1)(
2

)(

RTV

bVa
T

bV

bV
V

a
RT

bVR

T

V

p

 

                
23

3

)(2

)(

bVaRTV

bVRV




  

   
23

2

)(2

)(1

bVaRTV

bVRV

T

V

V p 















  (iv) 

  To obtain the expression for ,T  we rewrite Eq. (i) as 

   
2V

a

bV

RT
p 


  

   
32

2

)( V

a

bV

RT

V

p

T
















 

  and 
22

2

)( V

a

bV

RTV
E

V

p
V T

T


















22

23

)(

)(2

VbV

bVaRTV




  
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  Hence     
23

22

)(2

)(1

bVaRTV

bVV

ET
T




  (v) 

6. The equation state is a relation between any two variables out of p, V and 

T. Therefore, we first establish the relation between p and V. To do so, we 

write 

                       ),( TpVV   (i) 

 An infinitesimal change in V corresponding to infinitesimal change in p and 

T can be expressed as 

                 dT
T

V
dp

p

V
dV

pT


























  (ii) 

  In terms of  and ,T  we can rewrite this equation as 

   dTVdpVdV T   

  or dTdp
V

dV
T   (iii) 

  For an isothermal process, 0dT  and Eq. (iii) reduces to 

   dp
V

dV
T  

  On substituting the given value of T, we get 

   dp
p

aT

V

dV
2

3



 

  On integration, we get the following expression: 

   0

3

lnln V
p

aT
V 

 

 On taking antilogarithm, we get the equation of state for an isothermal 

process as 

    















p

aT
VV

3

0 exp  (iv) 

  For an isobaric process, 0dp  and Eq. (iii) reduces to  

   dTT
p

b
dT

V

dV 2  

  On integration we get 

   0
3 ln

3
ln VT

p

b
V 

 

      On taking antilogarithm, we get the equation of state for an isobaric  

           process as

 

         

 3
0

3

b
V V exp T .

p

 
  

 
 (v)
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                     UNIT 7 

      THE FIRST LAW AND  
          ITS APPLICATIONS  

Structure 
 

7.1 Introduction 

Expected Learning Outcomes  

7.2   Nature of Heat 

7.3 Work 

7.4 Expression for Work 

 A Gaseous System 

 Path Dependence of Work and Heat 

7.5  Internal Energy 

7.6  The First Law of Thermodynamics 

  Differential Form of the First Law 

 

STUDY GUIDE           

 

 

7.7  Heat Capacities of a Gas 

7.8  Equation of State for an Adiabatic 

 Process 

  Work done in an Adiabatic Change 

 The Speed of Sound 

7.9  Summary 

7.10  Terminal Questions 

7.11   Solutions and Answers 

Appendix 7A: Adiabatic Lapse Rate 

 

 

 

 

In Unit 6, the concept of temperature was introduced through the Zeroth law of thermodynamics. In 

this unit, you will learn about the nature of heat. You are aware of the thermodynamic concept of 

work from your school physics curriculum. We will build upon that knowledge to introduce the 

concept of internal energy and formulate the first law of thermodynamics. You will appreciate that this 

law is universal and explains various phenomena observed in nature as well as in a laboratory  from 

fall in temperature with height in outer atmosphere to pressure oscillations in sound waves. This will 

require a basic knowledge of ordinary as well as partial differentiation and it will be a good idea to 

revise your prior knowledge up-front.  

To enable you to grasp various important concepts and develop problem solving skills, we have 

interspersed solved examples in the text. Try to solve these SAQs and TQs on your own.  

Ideally a sequence of 
isothermal and adiabatic 
processes can result in a 
reversible cyclic process, 
about which you will learn in 

this unit.  
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“Suppose we take a quantity of heat and change it 
into work. In doing so, we haven’t destroyed the 
heat, we have only transferred it to another place or 
perhaps changed it into another energy form.” 

Isaac Asimov 
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7.1   INTRODUCTION 

From your +2 physics curriculum you know that a question that puzzled the 

best brains of the 19th century for a long time and confronted them with many 

conceptual problems was ‘what is the nature of heat?’ The answer to this and 

other related questions was ultimately provided by Joule through a series of 

classical experiments when he concluded that ‘heat is some form of motion’.  

It tells us that heat is equivalent to other forms of energy. Much of our world 

works because of this equivalence. The electrical energy that lights our 

houses, operates machines and runs trains originates in heat released in 

burning of coal, oil, gas, etc.  

We begin this unit by discussing the nature of heat in Sec. 7.2. This is 

followed by a discussion of work done on or by a system in Sec. 7.3. In              

Sec. 7.4, you will obtain the expression for the work done by a gaseous 

system. The efforts made to develop analytical theory of heat based on 

dynamical view-point led to introduction of the concept of internal energy, 

which is defined as the sum of the energies of the individual constituents of 

the system. (You have learnt about molecular nature of matter in Block 1 of 

this course.) This is discussed in Sec. 7.5.  

The recognition of heat as a form of energy led to the formulation of the first 

law of thermodynamics, which is essentially a statement about the 

conservation of energy for thermodynamic systems. This constitutes the 

subject matter of discussion in Sec. 7.6. The first law of thermodynamics is 

universal and has been successfully used to understand diverse physical 

phenomena observed in the nature as well as in a laboratory. Using this law, 

we can explain interesting phenomena like the pressure oscillations in a 

sound wave and fall in the temperature as we move upward in the outer 

atmosphere.  

In Sec.7.7, we begin by considering applications of the first law of 

thermodynamics and obtain the expression for the difference in molar heat 

capacities of a gas at constant pressure and constant volume. For a typical 

substance, the difference between heat capacities can be related to 

measurable quantities like volume expansion coefficient and bulk modulus of 

elasticity. 

In Sec. 7.8, we have used this law to derive the equation of state for adiabatic 

processes. You know that the sound waves are propagated in a medium due 

to pressure oscillations. This is an adiabatic process.  You will learn here to 

correlate the thermodynamic parameters with the speed of sound.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain the nature of heat; 

 discuss the thermodynamic concept of work and obtain expressions 

for work done by different thermodynamic systems; 
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 define internal energy and use it to formulate the first law of 

thermodynamics;  

   apply the first law of thermodynamics to obtain an expression for 

the difference between heat capacities of a gas at constant 

pressure and at constant volume; 

   derive the equation of state for an adiabatic process; and 

 obtain the expressions for speed of sound in air. 

7.2   NATURE OF HEAT 

We know from experience that a glass of ice-cold water left on a table on a hot 

summer day eventually warms up, whereas a cup of hot tea on the same table 

cools down. It means that when temperature of a closed system  water or tea 

in this case  is different from that of the surroundings, energy is exchanged 

till such time that thermal equilibrium is established. That is, energy transfer 

continues till the body and the surroundings are at the same temperature.  We 

also know that in the case of cold water, energy flows spontaneously from the 

surroundings to the glass, whereas in the case of hot tea, energy flows from 

the cup to the environment. In other words, the natural direction of energy 

transfer is always from the body at higher temperature to that at lower 

temperature. 

You may now ask: In what form is energy being transferred? In the above 

cases, energy is said to be transferred in the form of heat. So, we can say that 

heat is the form of energy transferred between two (or more) systems or a 

system and its surroundings by virtue of temperature difference. (The system 

at higher temperature is called the source and the one at lower temperature is 

called the sink.)  

In 1840, Joule performed a classical experiment on the equivalence of heat 

and mechanical work. In the apparatus used by him, heat was produced by 

churning water contained in a cylinder by means of brass paddles. It means 

that the mechanical energy of the paddles was converted into heat. Joule 

argued that the heat must have been produced through chaotic motion of 

water molecules. Thus, he established that molecular motion was associated 

with heat. 

We often say that a cup of hot coffee has heat or there is tremendous heat in 

the Sun. But henceforth, we shall use the word ‘heat’ only when it enters or 

leaves a system. Heat is a form of energy in transit. It is wrong to say heat 

‘in’ a body. You will learn soon that when we speak of heat in a body, we 

essentially mean its internal energy. You will learn about the difference 

between ‘heat’ and ‘internal energy’ a little later in this unit. 

Since heat is a directional quantity, we adopt a sign convention to represent it. 

Heat transferred to a system is taken as positive whereas heat taken out of a 

system is taken as negative. If there is no heat transfer in a process, it is said 

to be adiabatic.  

 Now go through the following example to grasp the ideas discussed so far.  

Source of heat at 

temperature T  is a 

body or a system 

which supplies heat 

to its surroundings or 

a body in its contact 

and continues to 

remain at constant 

temperature T, 

without exchange of 

any work. A sink of 

heat at temperature T 

is a body which 

receives heat from its 

surroundings or a 

body in contact with it 

without any change of 

temperature or 

exchange of work.  
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7.3   WORK 

We now know that if the cause of transfer of energy is temperature difference 

between the system and the surroundings, then that form of energy is heat. 

But it is possible that energy interaction is not caused by temperature 

difference between the system and the surroundings. When energy crosses 

the boundary of a system and it is not in the form of heat, it is work. 

If a system as a whole exerts force on its surroundings so that a displacement 

takes place, the work that is done by or on the system is called external work.  

If gas contained in a cylinder at uniform pressure expands, it imparts motion to 

the piston and does external work on its surroundings.  

On the other hand, the work done by a part of the system on another part is 

called internal work. In thermodynamics, internal work is of no consequence. 

Let us take an example of a storage battery. When it is not in operation, the 

changes that take place in its cells, such as internal-diffusion of chemicals, are 

not accompanied by the performance of any work, and so are not significant 

for us.  

We adopt the convention that work done by a system is positive and the work 

done on a system is negative. According to this convention, the work 

produced by car engines or gas turbines is positive, whereas the work 

consumed by compressors or mixers is negative.  

You may now like to answer an SAQ. 

HEAT 

 Heat is a form of energy in transit;  

 The natural direction of energy transfer is always from the body at 

higher temperature to that at lower temperature;  

 Energy is transferred in the form of heat by virtue of temperature 

difference; and 

 Heat is closely connected to the molecular motion. 

 

 

 

 

 

 

A potato is initially at room temperature (30C). It is baked in an oven 

maintained at 200C. Take the potato to be the system of interest and 

explain whether any heat is transferred during the process. 

SOLUTION  The skin of the potato can be considered as the system 

boundary. Now owing to the difference of temperature between the oven 

and the potato, a part of the energy of the oven will pass through the skin 

of the potato in the form of heat. 

 

 

 

 

 

XAMPLE 7.1 :  HEAT TRANSFER IN A THERMODYNAMIC   

SYSTEM 
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7.4   EXPRESSION FOR WORK 

In thermodynamics, we express the work in terms of the state variables of the 

system. This permits simple mathematical analysis. To do so, we have to 

ensure that the system is always near an equilibrium state, i.e. the process is 

quasi-static. With this understanding, we now proceed to obtain the 

corresponding expressions for work done on/by gaseous system .for different 

processes. 

7.4.1    A Gaseous System 

Refer to Fig. 7.1, which shows a cylinder fitted with a frictionless piston and 

filled with a gas of mass M. Let the area of cross-section of the piston be A 

and the pressure exerted on it by the system at any instant be p. Obviously, 

the force acting on the piston will be equal to pA. This force pushes the piston  

 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1: Work done during expansion of a gaseous system. Here i and f  stand 

for the initial and final states, respectively. 

outwards. If the piston moves in the direction of the force through dx, we can 

write down the work done by the system as  

 W = p A dx 

Note that A dx signifies the increase in volume of the system due to outward 

movement of the piston and we can write dV for A dx. Thus, the work done by 

the system when the piston moves outward through dx is given by 

 W = p dV                    (7.1) 

You will learn that the 

internal energy (U) is a 

function of the state 

whereas work (W) and 

heat (Q) are not. An 

infinitesimal change in a 

quantity which is not a 

function of state is 

indicated by putting the 

symbol  (pronounced 

as delta) on the left of 

the quantity of interest. 

The infinitesimal 

change in a quantity 

which is a state function 

is indicated by putting 

‘d’ on the left of the 

quantity. Hence, an 

infinitesimal amount of 

work is denoted by W, 

an infinitesimal amount 

of heat by Q. And an 

infinitesimal amount of 

internal energy is 

denoted by dU. 

f 

i 

F = pA 

SAQ 1  -   Work done by a system  

a)  Explain whether any work is done or not in the following processes. 

 (i)  A magnet is brought near an electrical circuit carrying conductor. A 

change in magnetisation takes place by way of realignment of 

domains within the magnet.  

     (ii)  A galvanometer coil is set into motion by sending a current in it.  

b)   What are the signs of work (i) we get from a steam engine (ii) done on 

an electric motor attached to a pump? 
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If the system expands quasi-statically from initial volume Vi to final volume Vf, 

the total work done by the gaseous system on its surroundings is given by  



f

i

V

V

pdVW  (7.2) 

For evaluating the integral in Eq. (7.2), we need to know how p varies with V, 

which depends on the nature of the process. The pressure p and the volume 

V at any instant can be shown on an indicator diagram (Fig. 7.2) as a point. 

The curve joining a series of such points gives the path of the process of 

expansion or compression. The nature of the curve depends on how p varies 

with V. Note that pdV is represented by the area of the shaded strip in the 

figure. The total work done W between the initial and final states is the sum of 

the areas of strips obtained for all the infinitesimal changes from the initial to 

the final state. This is equal to the total area under the p-V curve of the 

system. 

Work done in an isothermal process   

Let us now calculate the work done in an isothermal expansion (or 

compression) of an ideal gas. You will recall that n mole of ideal gas obeys  

the perfect equation of state:  

pV = nRT (7.3) 

On substituting for p from Eq. (7.3) in Eq. (7.2), we obtain the expression for 

total work done: 

f

i

V

isotherm

V

W (nRT / V )dV   

                           f inRT ln(V / V )  102 303 f i. nRT log V / V       (7.4) 

From this equation we note that when an ideal gas expands isothermally, the 

work done by it depends on the temperature T and the expansion ratio of final 

to initial volumes rather than the difference (Vf  Vi). We know that during 

expansion, Vf > Vi and ln (Vf / Vi) > 0. It means that the work done by the 

system when it expands isothermally is positive.  

However, in the case of compression, Vf < Vi so that ln (Vf / Vi) < 0 and 

Wisotherm is negative. This means that when a system is compressed 

isothermally, work is done on the system. 

You may now like to answer an SAQ to check your progress.  

 

 

 

 

 

 

 

Fig. 7.2: p-V diagram 

for a gaseous system 

undergoing 

expansion. 

(pi,Vi) 

(pf,Vf) 

V 

p 

SAQ  2 -  Work done by a gaseous system 

 a)  Express Eq. (7.4) in terms of pressure.  

 b)  Obtain the expression for work done in expanding the gas from volume 

Vi to Vf  in an isobaric process. 

 

 



   

133  

 

Unit 7                                                   The First Law and its Applications 

Work done in an isochoric process   

Next let us consider a gas that undergoes an isochoric process. In this case, 

dV= 0, and hence, W = pdV = 0. So, no work is done either on or by the 

system in an isochoric process.  

We now give a solved example to help you grasp the concept. 

 

 

 

 

 

 

 

 

 

7.4.2    Path Dependence of Work and Heat  

You know that the work done by a gaseous system can be represented by the 

area under the p-V diagram of the system from the initial to the final state. 

Refer to Fig. 7.3, which depicts three processes ACB, ADB and AEB between 

initial and final states defined by A and B on an indicator diagram. The path 

ACB indicates a general process. The path ADB is the combination of an 

isochoric and an isobaric process, whereas the path AEB is the combination 

of an isobaric and isochoric process. The work done for the process ACB is 

equal to the area ACBFG. Similarly, the work done during the processes ADB 

and AEB are given by areas DBFG and AEFG, respectively. Since these 

areas are not equal, we can say that that the work done between the same 

initial and final states during these processes is not the same. It means that 

the work done by a system between any initial and final state depends on the 

path taken. In other words, work is not a function of the state.  

Is the same true about heat content? To understand this let us take an 

example. Suppose you have a glass of milk at 30ºC and you wish to have its 

temperature raised by 5ºC. This can be done by adding heat to it or churning it 

vigorously or by a combination of heating and churning. However, in all the 

cases we ultimately arrive at a state which can be defined as ‘milk at 35ºC’. In 

all the cases, the initial state was ‘milk at 30ºC’. The processes connecting 

these states were different and the quantities of heat given to the system in 

the three processes were not the same. So we can say that heat given to the 

system depends on the process, i.e., the path followed between the initial and 

the final state. Hence, heat is not a function of the state.  

Before proceeding further, you should recapitulate what you have learnt so far 

in this unit. 

 

Two mole perfect gas at STP is expanded isothermally to twice its original 

volume. The gas is then made to undergo an isochoric change to attain its 

initial pressure. Calculate the total work done. Given: .molJK3.8 11 R  

 

 

 

 

 

XAMPLE 7.2:  WORK DONE BY AN IDEAL GAS 

 

 

SOLUTION  Here 2f iV / V .  Hence work done by the gas in the 

isothermal expansion is         

         1 1 32 mol 8 3 JK mol 273 K 2 3 1 10  Jf inRT ln V V . ln .        

Since no work is done during an isochoric process, the total work done by 

the gas 33 1 10 J. .   

 

 

 

 

 

Fig.7.3: The points 

A and B, are 

connected by 

different paths.  

V 

p 
D 

A 

B 

C 

E 

G F 
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So, we now know that work and heat are not functions of the state. You may 

now ask: Is there any function which is independent of the path followed 

between the initial and final states? Yes, such a function does exist. It is 

known as internal energy. You will now learn about it in some detail.  

7.5   INTERNAL ENERGY 

We know that on heating, ice melts to form water at 0ºC. On the basis of the 

kinetic theory of gases we can say that if temperature remains constant, the 

kinetic energy remains constant. Since energy has to be conserved, what can 

you say about the added thermal energy? When ice is converted into water, 

its specific volume changes from 0.92 cc g
1

 to 1 cc g
1

. To bring about this 

change, work is done at the expense of added energy.  

However, the major share of the additional energy is used up in breaking the 

bonds of intermolecular attraction in ice and this energy is stored in water. (It 

is released when water freezes into ice.) The energy apparently shown by a 

system during a phase transition is termed as internal energy.  

In thermodynamics, it is not necessary to know the source of internal energy. 

But it can be easily understood that the sum of kinetic energies of all the 

molecules in a system defines internal kinetic energy. Also, due to the inter-

atomic/ intermolecular attractions, each atom / molecule making up the 

system possesses potential energy.  

The total energy stored in the system due to the interactions defines total 

internal potential energy. The sum of internal kinetic and potential energies of 

all the molecules constitutes the internal energy of the system. We denote it 

by the symbol U.  

The internal energy depends only on the state variables like pressure, 

temperature and volume. It is therefore a ‘state function’. In SAQ 3, you will 

learn that for a cyclic process, there is no change in the internal energy. In 

fact, this result holds for all functions of state. 

You can now answer an SAQ on the concept of internal energy. 

WORK DONE BY AN IDEAL GAS 

 The work done by a gaseous system on its surroundings is given by 

                 

2

1

V

V

VdpW  

 For an isothermal process  10 2 1
2 303isoW . nRT log V / V  

 Heat and work are function of the path followed, i.e., these depend on 

the process rather than the state. 
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We now know that heat and work inputs into a system cause its internal 

energy to rise. Likewise, if heat is taken out of the system or some work is 

done by the system, its internal energy is lowered. In Figs. 7.5a and b, we 

have shown schematically two methods, viz. adding heat energy and doing 

work on it, respectively, by which the internal energy of a system can change. 

We shall now invoke the well-known principle of conservation of energy to 

analyse the aspect of change of internal energy and in the process, we shall 

arrive at the first law of thermodynamics.  

7.6   THE FIRST LAW OF THERMODYNAMICS 

The principle of conservation of energy states that ‘Energy can neither be 

created nor destroyed; it can be transformed from one form to another, the 

total amount of energy (in the universe) remaining constant. According to this 

principle, we cannot get energy out of nowhere. If energy of a system 

increases, there must have been an equivalent loss of energy of the 

surroundings. 

Let us again consider the example of raising the temperature of a cup of milk. 

We can say that the internal energy of the milk can be increased in three 

ways: (i) by way of heat input only, (ii) by way of work input only and (iii) by 

way of heat and work input. For (i), let the heat absorbed by the system be 

Q. The work done on the system is zero and the work done by the system is 

also zero. For (ii), the heat absorbed is zero. Let the work done by the system 

be W so that the work done on the system is  W.  For (iii), let the heat 

absorbed be Q and let the work done by the system be W, so that the work 

done on the system is  W. However, the change in internal energy is the 

same in each case. Let us denote it by U. Here all the quantities are 

expressed in heat units. From the principle of conservation of energy, we have 

Increase in internal energy = (Heat absorbed) + (work done on the system) 

Mathematically, we can write 

 U  = Q + ( W) = Q  W (7.5) 

Fig. 7.5: Internal 

energy of a system 

can be changed by 

a) Adding thermal 

energy; b) by 

doing work on it. 

(a) (b) 

SAQ  3 -  Internal energy of a cyclic process 

Show that the change in the internal energy during a cyclic process 

depicted in (Fig, 7.4) is zero. 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7.4: A cyclic process. 

 

 

 

 

 

 

 

 

 
Fig. 7.4: A cyclic process. 

 
 

V 

p 

D 
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This is the mathematical form of the first law of thermodynamics.  The formal 

statement of the first law is: ‘Internal energy of a system is a function of the 

state of the system and any change in it during a thermodynamic process is 

equal to the sum of the heat given to the system and the work done on the 

system.’  According to this law, we can say that for a thermodynamic process 

taking place between two particular states, the difference between the heat 

absorbed and the work done by the system is always constant; equal to the 

change in internal energy of the system.  

You may recall that the heat required to convert 1 g of water at 100°C to 1 g  

of steam at 100°C is 540 cal at normal atmospheric pressure. This is termed 

as latent heat as it does not induce temperature rise. You may naturally 

wonder, as to what happens with this heat? A part of it is utilised in performing 

external work by the system. The rest is utilised in breaking up intermolecular 

bonds so that water is converted from liquid to vapour state, i.e. to raise the 

internal energy of the system. Let us now look at this from a quantitative point 

of view. Go through the following numerical example carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now before proceeding further, attempt the following SAQ.  

 

 

 

 

 

 

 

 

When heat is converted 

into other forms of 

energy (as in a steam 

engine) or vice versa 

(as in an electric 

heater), in each form it 

is equivalent. If a 

quantity of heat, Q, is 

converted entirely into 

work, W, then W is 

equivalent to Q and 

W/Q = constant known 

as the mechanical 

equivalent of heat. It is 

denoted by J and its 

value is approximately 

equal to 4.2 J cal
1

. 

Thus, one calorie of 

heat is equivalent to 

4.2J of work. Likewise, 

work can be expressed 

in heat units. We shall 

express both work and 

heat by the same units.  

 

V 

p 

b i 

f a 

c 

Fig. 7.6: Change of 

state of a system 

along different 

paths. 

 

 

1g of water and steam at normal atmospheric pressure (1.013  105 Nm2) 

occupy 3cm1  and 31671 cm volumes, respectively. Calculate the change 

in internal energy for vaporisation of 1g of water at 100°C. (Latent heat of 

steam is 540 cal and mechanical equivalent of heat 14 2Jcal.  ). 

SOLUTION  For 1g of water vaporising to steam, U = Q  W, where 

Q = 540 cal, W = p (V2  V1), and V1 and V2 are volumes of water and 

steam, respectively. 

Here, p = 1.013  10
5 Nm

2
, V1 = 1 cm

3
, V2 = 1671 cm

3
. 

       W = (1.013  105 Nm2)  (1671  1)  106 m3 = 169.2 J = 40.3 cal. 

  and, U = (540  40.3) cal = 499.7 cal. 

Thus we see that out of 540 cal, only 40.3 cal is spent in doing external 

work, while the rest goes to raise the internal energy of the system.                              

U (= 499.7 cal) for this process is often referred to as the internal latent 

heat. 

XAMPLE  7.3 : PHASE CHANGE AND INTERNAL ENERGY 

 

 

SAQ  4 -  First law of thermodynamics 

Refer to Fig. 7.6. When a system is taken from state i to state f following 

the path iaf, it is found that Q = 45J and W = 20J. But along the path ibf,        

Q = 30J.  

a) What is W along the path ibf ?  

b) If W =  13J for the curved return path fci, what is Q for this path?  

c) Taking Ui = 10 J, what is Uf?  

d) If Ub = 21 J, what are Qs for the processes ib and bf ? 
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To study further applications of the first law of thermodynamics, we need to 

know the differential form of the law. You will now learn about it. 

7.6.1    Differential Form of the First Law 

You now know that functions like work and heat are path dependent and so 

will be the changes in these. But the change in internal energy is independent 

of path.  

We may now extend Eq. (7.5) to write the differential form of the first law of 

thermodynamics as 

dU = Q – W 

or,    

Q = dU + W (7.6) 

Eq. (7.6) is the differential form of the first law of thermodynamics.  

You may now like to work out an SAQ on the first law of thermodynamics. 

 

 

 

 

 

 

Significance of the First Law 

So far, we have learnt that the first law of thermodynamics is very significant 

since it defines ‘internal energy’ as a function of the state of the system and 

heat as energy in transit. Being an extension of the principle of conservation of 

energy, it rules out the possibility of constructing a machine which can work on 

its own, without any input. There are several physical situations, where this 

law can be successfully applied. In the next sections we will discuss some 

important applications of the first law.  

7.7   HEAT CAPACITIES OF A GAS  

You may recall that according to kinetic theory, molar heat capacity of an ideal 

gas is independent of its nature, i.e., for all gases of given atomicity, molar 

heat capacity at constant volume or at constant pressure is same. But, 

physical conditions under which heat is given introduce change in the value of 

heat capacity of a gas. Let us, therefore, obtain an expression for the 

difference in the heat capacities of an ideal gas at constant pressure and  

constant volume. Assume that one kilomole of a gas is contained in a cylinder 

fitted with a frictionless piston. In Unit 5, you have learnt that the state of a gas 

If a physical quality is a 

function of state rather 

than the path, it is said 

to be exact differential. 

On the other hand, if a 

physical quality 

depends on the path, it 

is said to be an inexact 

differential. In order to 

indicate this difference 

mathematically, we put 

‘d’ before the exact 

differential U, while we 

put ‘’ before the 

inexact differentials (Q 

and W). 

 

SAQ  5 -  Mathematical form of the first law 

a) Write down the mathematical form of the first law of thermodynamics 

applied to a thermally insulated system and comment on the nature of 

change in its internal energy. 

b) Using the symbols used in the text write down the differential form of the 

first law for a gas in a cylinder fitted with a piston. 

c) Suppose you place a tray filled with water in a freezer. What will be the 

signs of W, Q and dU for the contents of the tray?  Justify your answer. 
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can be described in terms of any two thermodynamic variables out of p, V and 

T. Let us choose T and V as independent variables. Since internal energy is a 

function of state, we can write 

  U = U (T, V) 

Then the differential of U can be written as sum of its partial differential with 

respect to T at constant V multiplied by dT and that with respect to V at 

constant T multiplied by dV: 

  dV
V

U
dT

T

U
dU

TV













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



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




  (7.7) 

The symbol  (pronounced as del) denotes a partial derivative. On combining 

Eqs. (7.6) and (7.7), and expressing the work done by the gas as W= pdV, 

that you have worked out in SAQ 5b, we can write 

  dVp
V

U
dT

T

U
Q
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  (7.8) 

Now suppose that the piston was tightly clamped. As we heat the gas, it 

cannot expand, i.e., it cannot do any work and all the heat goes to raise its 

internal energy and hence, its temperature. The heat required to raise the 

temperature of one kilo mole of a gas through one degree when its 

volume is kept constant is termed as molar heat capacity at constant 

volume. It is denoted by the symbol CV and generally expressed in                 

J kmol
1 K

1
. For such a system, Eq. (7.8) reduces to 

  
VV

V
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C 


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




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


  (7.9) 

Note that different symbols have been used to depict changes in heat, internal 

energy and temperature because heat is not a function of state. Now suppose 

that the piston was allowed to move in or out so that the gas is kept at 

constant pressure. The gas does work on the piston and some of the heat 

ends up as mechanical energy given to the surroundings. So, to achieve the 

same rise in temperature, more heat has to be supplied to the gas in a 

constant pressure (isobaric) process. The molar heat capacity of a gas at 

constant pressure is defined as the amount of heat required to raise the 

temperature of one kilo mole of a gas by one degree. It is denoted by the 

symbol Cp. Mathematically, we can write 

  
p

p
T

Q
C 












  (7.10) 

On combining Eqs. (7.8 and 7.10), we can write 
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The first term on the right-hand side of this result is molar heat capacity at 

constant volume [Eq. (7.9)]. Then on rearranging terms, we can write 

  
pT
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V
p

V
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  (7.11) 

You may recall that 

heat capacity of a 

substance varies with 

temperature as well as 

amount of the 

substance. The 

amount of substance is 

expressed in kg or by 

number of moles. The 

corresponding 

measures of heat 

capacity are specific 

heat capacity and 

molar heat capacity. 

At constant volume, 

the specific heat 

capacity is denoted by 

small letter cv and 

molar heat capacity is 

denoted by CV. These 

are connected through 

the relation 

 
m

C
c

V

v   

where m is the mass of 
one kilomole of the 
substance.  The 
specific heat capacity 
is measured in                  

J kg
1

 K
1

 and molar 

heat capacity is 
measured in the units 

of J kmol
1

 K
1

. 
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Let us pause for a while and interpret this result. The first term in the square 

brackets on the right-hand side tells us that the internal energy of a gas may 

vary with volume even when temperature is kept fixed. This implies that for 

change in volume, work has to be done against intermolecular forces in the 

gas. It means that knowledge of the difference of heat capacities at constant 

pressure and at constant volume gives us information about variation of 

internal energy of a substance with volume.  

We recall that according to kinetic theory, there are no intermolecular forces in 

an ideal gas. This implies that internal energy of a perfect gas is wholly kinetic 

and (U / V)T = 0. Using this result in Eq. (7.11), we get 

   
p

Vp
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V
pCC 





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




  (7.12) 

This shows that the difference in the molar heat capacities of a gas depends 

on how the volume of a system changes with temperature at constant 

pressure. We expect this difference to be substantial since a small change in 

temperature brings about significant change in the volume of a gas. Using the 

gas law (pV = RT), we can write 

  R
T

V
p

p













 

Using this result in Eq. (7.12), we get 

  RCC Vp   (7.13) 

This result is known as Mayer’s formula. It shows that the difference between 

constant pressure and constant volume molar heat capacities is equal to the 

molar gas constant; independent of temperature; and same for all gases.  

You may now ask: How do these predictions compare with the observed 

results? To know the answer to this question, refer to Table 7.1, where we 

have given molar heat capacities of some gases (in units of R) at constant 

pressure as well as at constant volume. 

Table 7.1: Molar heat capacities of a few gases at constant pressure and 

constant volume 

Type of Gas Gas Cp / R CV / R  p vC C R  

Monoatomic He 2.5 1.5 1.0 

Ar 2.5 1.5 1.0 

Diatomic H2 3.45 2.45 1.0 

O2 3.53 2.53 1.0 

CI2 4.17 3.09 1.08 

Polyatomic CO2 4.43 3.42 1.01 

NH3 4.42 3.34 1.08 

C2H6 6.21 5.18 1.03 

You must have noted that but for CI2 and polyatomic gases, Mayer’s formula 

holds rather well. Before proceeding further, you should answer an SAQ. 
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Proceeding further, we recall that a real gas is made up of molecules having 

small but finite size and non-zero inter-molecular forces. This suggests that 

we should use the van der Waals’ equation of state. The mathematical steps 

are somewhat cumbersome and we will just quote the result (TQ 4): 

               









VRT

a
RCC Vp

2
1                                       (7.14) 

On comparing Eqs. (7.13) and (7.14) we note that the difference between  

heat capacities at constant pressure and at constant volume is more for a   

real gas than for a perfect gas. Did you not expect this result? We know that 

for a real gas, the internal energy changes with volume because work has to 

be done against the intermolecular forces. Also, at high pressures, molecules 

experience a repulsive force. Thus, we may expect some change, howsoever 

small, in temperature when a real gas is made to undergo 

expansion/compression. 

You may now ask: Do we distinguish heat capacities at constant volume and 

constant pressure for solids and liquids as well? For these substances, such a 

distinction is of little significance because they are incompressible. In fact, for 

solids and liquids, measured values are quoted at constant pressure. Before 

proceeding further, let us summarise what you have learnt about the heat 

capacities of different substances. 

 

 

 

 

 

 

 

 

 

HEAT CAPACITIES OF A GAS 

 The molar heat capacity of a gas at constant pressure (volume) is 

defined as the amount of heat required to raise the temperature of one 

kilo mole of a gas by one degree. 

 For one mole of an ideal gas, the difference in molar heat capacities at 

constant pressure and constant volume is given by Mayer’s formula: 

RCC Vp   

 For a van der Waals’ gas, we have: 









VRT

a
RCC Vp

2
1  

 For solids and liquids, the difference in molar heat capacities at 

constant pressure and constant volume is almost negligible. 

SAQ  6 -  Heat capacities of gases and the first law 

a) For hydrogen, the molar heat capacities at constant pressure and 

constant volume are 28.8 J mol1 K1 and 20.5 J mol1 K1, respectively. 

Calculate the gas constant.  

b) The constant pressure molar heat capacity of a gas is 160 J mol1K1. 

Calculate the ratio of specific heat capacities at constant pressure to 

that at constant volume. 

 c)   Show that for an ideal gas, the first law of thermodynamics can also be 

written as 

 Q = CV dT + pdV      and     Q = Cp dT  Vdp 
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So far, we have obtained the expression for the difference between molar heat 

capacities at constant pressure and constant volume for an ideal and a van 

der Waal’s gas. Let us now consider a process in which no heat is exchanged 

between the system and surroundings. You may have experienced that if you 

let air out of a tyre, you feel that the air is cool. You can do a simple activity 

yourself. Blow on the back of your hand with your mouth wide open. You will 

feel that your breath is warm. Now close your lips into a small opening and 

blow again. Your breath now feels cool. Does this mean that your body 

temperature is different in the two cases or do the conditions induce this 

apparent change? It happens because in the latter case, air undergoes 

adiabatic expansion.  

You may be aware of some adiabatic processes occurring around you. Sound 

propagation in air, drop in temperature with altitude, existence of Deep Ocean 

currents are a few important examples of adiabatic processes. Here, we will 

consider propagation of sound in air. To be able to do so, we must know the 

equation of state for an adiabatic process. We now derive it using the first law 

of thermodynamics. 

7.8 EQUATION OF STATE FOR AN ADIABATIC 
 PROCESS  

In an adiabatic process, no heat exchange takes place. That is, the system 

and the surroundings are not in thermal contact and   0Q . Then the first law 

of thermodynamics can be written as 

  0 WdU  (7.15) 

From this expression we note that internal energy will decrease in an adiabatic 

expansion. Since internal energy is a function of temperature, a fall in internal 

energy implies drop in temperature, i.e., the system cools. You may now ask: 

What happens in an adiabatic compression? We expect that the temperature 

will increase as work is done on the system. From this you may conclude that 

adiabatic expansion produces cooling and adiabatic compression produces 

heating. This finds an important application in the production of low 

temperatures. We will not discuss this here but those of you who are 

interested in details should read the books given in the references at the end 

of this volume. 

Proceeding further, let us suppose that one mole of an ideal gas is made to 

undergo quasi-static adiabatic expansion. Then, using the result obtained in 

SAQ 6c, we can write 

  0 pdVdTCV  (7.16) 

During the expansion, the gas passes through an infinite number of 

equilibrium states. This means that the equation of state ( RTpV  ) will hold 

for each state. On substituting  p RT V in Eq. (7.16), dividing throughout by 

TCV and rearranging the resulting expression, we get  

  
V

dV

C

R

T

dT

V

  (7.17) 
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For a quasi-static process, V and T are well defined for each state. So, if we 

assume that VC  is independent of temperature, we can readily integrate        

Eq. (7.17) to obtain 

  KV
C

R
T

V

lnlnln   (7.18) 

where Kln  is constant of integration. 

Taking antilog and rearranging terms, we get  

  KTV VCR


/  

Using Eq. (7.13) we can rewrite it as 

  KTV VVp CCC


 /)(
  

From Block 1, you may recall that the ratio of heat capacity at constant 

pressure to that at constant volume is denoted by the Greek symbol 

gamma; p VC / C  . It is referred to as adiabatic index. So, we can rewrite        

the equation for an adiabatic transformation as 

  KTV  1  (7.19) 

This relation tells us that when a perfect gas undergoes a quasi-static 

adiabatic change and temperature increases, volume will decrease and vice 

versa. Note that the change is not linear. This is an important result.  

You may now ask: Can we similarly relate pressure and temperature or 

pressure and volume for an adiabatic process? To get the answer to this 

question, we would like you to solve an SAQ. 

 

 

 

 

 

 

 

  

 

Eq. (7.20) predicts that during an adiabatic process, change in pressure is 

accompanied by a corresponding change in temperature. What can you say 

about Eq. (7.21)? 

Note that Eqs. (7.19), (7.20) and (7.21) are equivalent forms of the so-called 

adiabatic equation. These equations will hold provided 

i) the initial and final states are equilibrium states, 

ii) the perfect gas equation RTpV  holds, and 

iii)      the internal energy of the gas is proportional to temperature only. 

In general, the heat 

capacity at constant 

volume changes with 

temperature. But this is 

significant only when 

the change in 

temperature is very 

large (~ 1000K). 

Therefore, it is 

pertinent to assume 
that VC  remains 

independent of 

temperature. 

 

SAQ  7 -  Other equations of state for an adiabatic process 

Starting from Eq. (7.19), show that 

                   11

T
K

p




  (7.20) 

and                    2pV K   (7.21) 

where K1 and K2 are constants.  

[Hint: Use Equation of state RTpV  ] 
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Before proceeding further, you should assess your understanding by 

answering the following SAQ.  

 

 

 

 

While answering SAQ 8 you must have noted that an adiabat is steeper than 

an isotherm by a factor of  . You will obtain the same result if you plot                

Eq. (7.21) on a p-V diagram (Refer to Fig. 7.7). 

 

 

 

 

 

 

Fig. 7.7: Plot of Eq. (7.21) 

From the solution of SAQ 8 you will recall that  
S

p / V  , which defines the 

slope of an adiabat, is equal to )/( Vp .  It is  times the slope  
T

p / V     

of an isotherm. It implies that relative change in volume in an adiabatic 

process is less than that in an isothermal process.  

Before proceeding further, you should carefully go through the example given 

below based on adiabatic change. 

V 

p 

Isotherm 

Adiabat 

SAQ  8 -  Application of adiabatic process 

Differentiate Eq. (7.21) w.r.t. V and calculate addVdp )/( . Also calculate the 

corresponding expression for an isothermal change. Compare the results. 

What do you conclude? 

 

Since the physical 

properties of a gas 

depend on the physical 

conditions under which 

a process is carried 

out, we put a suffix to 

denote the type of 

change. It is for this 

reason that p and V 

were used to denote 

heat capacities at 

constant pressure and 

constant volume. 

Similarly, for adiabatic 

and isothermal 

processes we put the 

suffixes S and T, 

respectively with the 

physical quantity of 

interest. 

 

 

The nozzle of a bicycle pump  is blocked. With no force on the handle, the 

pump contains a volume V of air at 300K and atmospheric pressure. The 

handle is pushed down with a constant force of magnitude F reducing the 

volume to one-third. No air escapes from the pump. Assume the change 

to be adiabatic. Taking   for air to be 1.4, calculate the final temperature 

of air in the pump. 

SOLUTION   For an adiabatic change, we use Eq. (7.21) and write 

  Vpi  












3

V
pf  

where fp  is pressure of the gas when the handle is in final equilibrium 

state. On simplifying this equation, we get  

   3 4.66 .f i ip p p  

XAMPLE  7.5 : ADIABATIC CHANGE 
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You may now like to answer an SAQ.  

 

 

 

 

Earlier in this unit, you have learnt how to obtain an expression for work done 

in an isothermal and isochoric processes. Let us now obtain the expression  

for work done in an adiabatic change. 

7.8.1    Work done in an Adiabatic Change 

Suppose that one mole of a perfect gas undergoes adiabatic change and its 

volume changes from 1V  to 2V  and pressure changes from 1p  to .2p  We 

know that during an adiabatic process, a system is thermally insulated from its 

surroundings.  

So, when a gas expands from volume 1V  to 2V , the work done by it is given 

by  

  
2
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d

V
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V

W p V                                               

On substituting the value for pressure from Eq. (7.21) in this expression, we 

obtain 
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TTR
               (7.22) 

An important manifestation of adiabatic process is found in the troposphere in 

that as we move up, the temperature gradually drops. This is referred to as 

adiabatic lapse rate. You can read about it in Appendix 7A.  

Another important manifestation of adiabatic processes is the transmission of 

sound in air. You will now find out the relationship between the speed of 

sound and thermodynamic parameters. 

Using the perfect gas equation of state, you can write: 
( / 3)i f

i f

pV p V

T T
 

or                i
i

f
f T

p

p
T

3
 iT

3

66.4
 )K300(55.1  K465  

Note that this temperature is higher than the boiling point of water! So, 

you are advised not to touch the nozzle of a blocked pump after you have 

used it. This is a vivid demostration of theoretical prediction that adiabatic 

compression produces heating. 

 

 

SAQ  9 -  Adiabatic expansion 

The pressure inside a scooter tyre is 2 atm at 300K. It bursts sudenly. 

Assuming the change to be adiabatic, calculate the final temperature.    

Use  = 1.4. 
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7.8.2    The Speed of Sound 

In your school physics classes, you have studied propagation of sound in air. 

This essentially consists of pressure oscillations in the medium and are 

accompanied by local changes in temperature. However, the total energy of 

the system is conserved. That is, we can say that adiabatic changes occur in 

air when sound propagates. You may now like to know as to how the speed of 

sound is related to the properties of the medium. It is given by  

       


 s
s

E
v  (7.23) 

where Es and , respectively, denote the adiabatic bulk modulus of elasticity 

and density of the medium. By definition, the bulk modulus of elasticity is 

given by 

  
strain Volume
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In the language of calculus, we can write: 
dp

E V
dV

   

The negative sign appears because for all known systems, V decreases as p  

increases. Therefore, we can write the expression for the adiabatic bulk 

modulus of elasticity as: 

  s
s

p
E V

V

 
   

 
                                                   (7.24) 

From Eq. (7.21), we know that   .pV K  On differentiation, we get 

  01   dpVdVpV  

which gives  
s

p p

V V

  
  

 
 

Using this result in Eq. (7.24), we get 

  sE p                                                            (7.25) 

This shows that adiabatic elasticity is   times pressure. Upon using this result 

in Eq. (7.23), you will get the expression for speed of sound in terms of 

pressure: 

  s
p

v





 (7.26) 

This expression for speed of sound is known as Laplace formula. For air,        

 = 1.4,  = 1.29 kg m3 and 
51001.1 p N m2 so that Eq. (7.26) gives 

speed of sound in air  to be sv  = 331 ms1. This value is in excellent 

agreement with the measured value of 332 ms1. From this we can conclude 

that thermodynamic arguments work really well in this case.  

You may now like to answer an SAQ. 
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Using the equation of state in Eq. (7.26) for one mole of air, the expression for 

speed of sound can also be written as  

  
M

RT

V

RT
v







  (7.27) 

This result shows that speed of sound in air is directly proportional to square 

root of temperature and inversely proportional to square root of the molecular 

weight of air. Do these predictions agree with the observations? Indeed, there 

is remarkable agreement.  

We now recapitulate important results obtained in this section. 

 

 

 

 

 

 

 

 

Let us now sum up what you have learnt in this unit. 

7.9   SUMMARY 

Concept Description 

Heat 

  

                           

 Heat is a form of energy that is transferred between systems or a 

system and its surroundings by virtue of temperature difference. 

 Heat added to a system is considered positive and heat taken away 

from the system is considered as negative. 

 

SAQ  10  -  Speed of sound 

Newton proposed that when sound wave propagates in air, isothermal 

changes take place. Then speed of sound can be defined as 

  TE
v 


 

Using this definition, derive the relation equivalent to Eq. (7.26) and estimate 

the percentage difference from the value obtained using Laplace formula. 

 

ADIABATIC PROCESS 

 

 The equation of state for an adiabatic process is given by  

pV  constant. Other equivalent forms are  1TV  constant and 

 1pT  constant. 

 The work done in an adiabatic process is given by 

              )(
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1
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 Work  If an energy interaction takes place between a system and its 

surroundings, not by way of difference of temperature, then it is 

called work. 

 Work done by a thermodynamic system is taken as positive and that 

done on the system is taken as negative. 

 The expressions of work done in different systems undergoing finite 

changes are: 

  Expansion of a gaseous system from volume Vi  to Vf :  

                          dVpW
f

i

V

V

  

 Isothermal expansion of a perfect gas from volume Vi  to Vf : 

             )/(ln if VVnRTW   

 Work done by or on the system during a process as well as heat 

absorbed or evolved by a system during a process are path 

dependent. Therefore, work and heat are not functions of the state    

of the system. 

 

 

 Internal energy 

 

The first law of 

thermodynamics 

  

 The internal energy of a system is the sum of the energies of 

individual constituents of the system. It is a function of the state of    

the system. 

 The first law of thermodynamics states that when a system 

undergoes a process, its internal energy changes by an amount 

equal to the difference in the quantity of heat transferred to and the 

work done by it and the change in internal energy is the same for all 

processes connecting the same initial and final states. The     

differential form of the first law is:   

                   Q = dU + W 

 Heat capacities  For one mole of a perfect gas, the difference of heat capacities at 

constant pressure and constant volume is equal to the molar gas 

constant: 

            RCC Vp   

  Equation of state of an 

adiabatic process 

 The equation of state for an adiabatic process in terms of 

temperature and volume is:   

           1TV    constant 

      In terms of temperature and pressure, it is:  

                 




1p

T
 constant 

In terms of pressure and volume, it is:   

           pV  constant 

      where   is ratio of heat capacities at constant pressure and constant       

volume and is known as adiabatic index. 
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7.10   TERMINAL QUESTIONS 

1. Two moles of a perfect gas occupy a volume of 0.050 m3 and exert a 

pressure of 2.6  105 Nm-2. It is compressed isobarically to a volume of 

0.035 m3. Determine the work done on/by the gas and the change in its 

temperature. (Given R = 8.3 JK-1 mol-1). 

2. A perfect gas at 300K occupies a volume of 0.2 m3 at a pressure of            

5  106 Nm-2. It is allowed to expand isothermally until its volume is 0.5 m3. 

Next the gas is compressed isobarically up to its original volume. And 

finally, the pressure is increased isochorically until the gas returns to its 

initial state. Calculate the work done during the cycle.  

3. A person consumes a diet of 104J per day and spends total energy of           

1.2  104J per day. Determine the daily change in the internal energy.  If 

the net energy spent comes from sucrose at the rate of 1.6  104J kg1, in 

how many days will the person reduce his mass by 1 kg? 

4. Obtain the expression for the difference in the heat capacities for a real 

gas given by Eq. (7. 14). 

5. Starting from the first law of thermodynamics, show that  

       p
V

CC

V

U Vp

T


















 

       











pVC

T

U
p

p

 

    

















T

Vp

TT
E

CC

E

pV

p

U
 

 where TE  is isothermal elasticity and  is volume expansion coefficient. 

6. Isothermal compressibility ( T ) is inverse of isothermal elasticity. 

Calculate T  for (i) an ideal gas, and (ii) a van der Waals’ gas. 

7. A reversible cyclic process consists of four steps: isothermal expansion  

(AB) at temperature T1,  adiabatic expansion (BC), isothermal 

compression (CD) at temperature T2  and adiabatic compression (DA) as 

shown in Fig. 7.8. Using the first law of thermodynamics, obtain an 

expression for the total work done.  

8. Two identical gaseous systems, each containing 0.06 mol of ideal gas, are 

at 300K and 2.0 atm. The ratio of heat capacities of the gas is 1.4. One of 

the gases is made to expand adiabatically and the other isothermally till 

they reach atmospheric pressure. Calculate the final volume in each case. 

 Propagation of       

sound in air 

 The propagation of sound in air is an adiabatic process. The 

expression for the speed of sound is 

 
M

RTE
v s 




   

 where sE  is adiabatic elasticity and  is average density of air. 

Adiabat 

Isotherm 

A 

B 

D 

C 

p 

V VA VD VC VB 

Fig. 7.8: A reversible 

cyclic process.  
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7.11   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1.  a)  (i)   When the magnetic domains are realigned against frictional forces     

inside a magnet, some work is done. This work results in the rise in 

the temperature of  the magnet. 

          (ii)   In this case, current flows in the coil and it gains kinetic energy. So 

work is done.  

      b)  (i) +ve  (ii) –ve. 

2.  a)  For an ideal gas undergoing isothermal process from state (pi ,Vi) to 

state (pf ,Vf), we have piVi = pfVf . Therefore Vf / Vi = pi / pf. Substituting 

this in Eq.  (7.4), we get  

      Wiso = nRT ln (pi / pf) 

 b)  Since the system expands from volume Vi to Vf  at constant pressure, 

we can write 

                                     VpVVppdVWW if

V

V

V

V

p

f

i

f

i

  )(   

3.    Refer to Fig. 7.4. During the process ACB, the change in internal energy 

is UB  UA and that during the process BDA is UA  UB. So, the overall 

change of U during the cyclic process is (UB  UA) + (UA  UB) = 0. 

4    a)    We know that Uf  Ui = constant independent of path joining i and f.    

For iaf, Q = 45 J and W = 20J. So from Eq. (7.5), we get  

    U = (45  20) J = 25J  and hence, Uf  Ui = 25 J.  

Therefore, for ibf, we have 25 J = 30 J  W or W = 5 J  

 b)     Uf  Ui = 25 J. So, for the return path fci, we have 

    25 J = Q  W = Q + 13 J  

        or  Q = ( 25  13) J =  38J 

     c)      Uf  Ui = 25 J.  Hence, Uf  = Ui + 25 J = 10 J + 25 J = 35 J        

 d)      We have already obtained in (a) that W for ibf = 5 J. But bf being 

           an isochoric process, no work is done in it. Hence, for ib, W = 5 J.  

  Now, Q  5 J = Ub  Ui = 21 J  10 J = 11 J 

    For ib,  Q = 16 J. Again for bf, W = 0J,  

   Q = W + Uf  Ub   = 0 + 35 J  21 J = 14 J 

5. a)  For a thermally insulated system, Q = 0. Then Eq. (7.6) implies that 

dU =  W. Therefore, increase in internal energy is equal to the 

work done on the system. Alternatively, the work done by the system 

equals the decrease in internal energy i.e. the system does work at 

the cost of its internal energy.  

 b) Q = dU + pdV 
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c)   W  0, since change in volume is negligible; Q is negative since the   

      system loses heat and dU is negative since temperature decreases. 

6.    a)    We know that .RCC Vp   On substituting the given values, we get    

.KmolJ3.8 11 R  

    b)    It is given that molar heat capacity at constant pressure is 

.KmolJ160 11   Using Eq. (7.13) we can calculate VC :  

    CV = Cp – R  

     Since R = 8.3 J mol
1 K

1
, we find that 

    CV = (160 J mol
1 K

1
)  (8.3 J mol

1 K
1

) = 151.7 J mol
1 K

1
 

    Hence,  05.1
Kmol J7.151

Kmol J160
11

11






V

p

C

C
 

   c)    The first law of thermodynamics is 

    Q = dU + pdV  (i) 

      Using Eq. (7.9) you can write:  dU = CVdT  

     Hence, Q = CVdT +pdV (ii) 

     From the equation of state for an ideal gas, pV = RT  we get  

   pdV + Vdp = RdT          pdV RdT Vdp   

   Using this result in (ii) we get 

    Q = (CV + R) dT – Vdp = Cp dT – Vdp  (iii) 

7.   From Eq. (7.19), we recall that 

  KTV  1  (i) 

 For a perfect gas, the equation of state is pV = RT. On substituting for V 

 we get 

  K
p

RT
T 








 1

    or   111
K

R

K

p

T






 (ii) 

 Similarly, on substituting for T in (i) you will get 

   2pV KR K    (iii) 

8. From Eq. (7.21), for an adiabatic process, we have  pV K.On 

differentiation 

   pV 
1

dV + V

 dp = 0 

   

















V

p

dV

dp

s

 (i) 

 For an isothermal process, pV = constant 

     pdV + Vdp = 0       or       

















V

p

dV

dp

T

 (ii) 

 These results show that the curve depicting an adiabatic process is 

steeper than the one corresponding to an isothermal process since  > 1. 

In fact, the slope of an adiabat is  times the slope of an isotherm. 
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9. Since the change is adiabatic and we have to compute the variation in 

temperature, we use Eq. (7.20): 11

T
K

p




  

 So, for initial and final states defined by  i iT , p  and  f fT , p  we can write 

   
11 









f

f

i

i

p

T

p

T
  or 

 

i
i

f
f T

p

p
T















/1

 

 It is given that the initial pressure in the tube is 2 atm. When it bursts, it 

attains atmospheric pressure.  On substituting the given data, we get 

   K1.246K30082.0)K300(
2

1
4.1)14.1(













fT   

  This result shows that temperature drops in an adiabatic expansion. 

10.  We are told that according to Newton, the expression for speed of sound 

should be 


 TE
v  

   For a perfect gas,  pV = RT and so, 
2V

RT

V

p

T













 

 Hence,  p
V

RT

V

p
VE

T
T 












  

 and  TE RT p
v

V
  

  
 

 Substituting for air,   = 1.29 kg m
3

 and 51 01 10p .  N m
2

 we find that 

    
5 -2

1

-3

1 01 10 Nm
280 ms

1 29kg m

.
v

.


   

 The difference between the values obtained by Laplace and Newton 

formulations is 

    11 ms51ms)280331(  v  

 % difference with respect to the standard (Laplace’s) value = 15.4%  

Terminal Questions 

1. Work done by the gas under isobaric condition is given by                        

Wp = p (Vf  Vi). Inserting the given values, we get  

                  Wp = 2.6  105 (0.035  0.050) J =  3.9  103 J.  

 The negative sign implies that work is done on the gas. Now for a 

perfect gas pV = nRT, so that     

               Wp  = nR T   

The change in the temperature is given by  

            T = Wp / nR =  3.9103J / (2 mol8.3 J mol1K1 ) = 235 K 
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2. The equation of state of a perfect gas is pV = nRT.  

   n = pV / RT = (5  10
6
  0.2) / (8.3  300) = 400 moles.  

  (i)  For the isothermal path, Vi = 0.2 m
3
, Vf = 0.5 m

3
, p = 5  10

6 Nm
2. 

     pf = piVi  / Vf = 5  10
6 Nm

2 


  0.2 m
3
 / 0.5 m

3   =  2  10
6
 Nm

2 

     Work done by the gas, WT =  nRT ln (Vf / Vi)    

     WT =  400 mol  8.3 J mol
1

 K
1

  300K  ln (0.5 / 0.2) 

             =  9.1  10
5
 J 

  (ii)  Work done on the gas in compressing it from 0.5m3 to 0.2m3 at 

 constant pressure of 2  10
6
 Nm

2
 is 

        Wp =  ̶  p V =   ̶ 2  10
6
 Nm

2
  (0.5  0.2) m

3
 =   ̶ 6  10

5
 J 

  (iii)  No work is done along the isochoric path. 

 Hence, total work done by the gas  

  = (9.1 – 6.0)  10
5 J = 3.1  10

5
J. 

3. The calorie content of the diet consumed is the heat supplied and 

energy spent is the work done by the system. Thus,  

     Q = 104 J per day and W = 1.2  104 J per day. 

       dU  =  Q  W  

            =  1.0  104  1.2  104 =  2000 J. 

The decrease corresponds to loss of sucrose. The amount of sucrose  

lost per day is 2000J / (1.6 104 J kg
-1

) = 0.125 kg. 

Required number of days = 1 kg / 0.125 kg = 8. 

4.      For one mole of a van der Waals’ gas, the equation of state is 

        RTbV
V

a
p 










2
                                   (i) 

where a and b are van der Waals’ constants for a gas. 

If we assume that internal energy of a real gas is given by  

 
V

a
U  constant, we can write  

          
2V

a

V

U

T













 

          Using this result in Eq. (7.11), we get 

          Cp – CV = 









2V

a
p

pT

V












                                  (ii) 

To proceed further, we differentiate Eq. (i) with respect to T and obtain 

           R
T

V
bV

V

a

V

a
p

p
































32

2
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We can rewrite it as  

         

 bV
V

a

V

a
p

R

T

V

p 






















32

2
 

On multiplying both sides of this expression by ,
2










V

a
p  we can write    

               

 

























































2
332

2

2 )(2
1

2

V

a
pV

bVa

R

bV
V

a

V

a
p

V

a
pR

T

V

V

a
p

p

 

         On using this result in Eq. (ii), and replacing 









2V

a
p  in the 

denominator of above equation by ,
)( bV

RT


we get 

                  

 2
3

2
1 bV

RTV

a

R
CC Vp



  

VRT

a

R

2
1

  

          since a and b are very small.  

          Using binomial expansion with n=1, we obtain the required result:  

                
2

 1p V
a

C C R
VRT

 
   

 
                (iii) 

5.     From Eq. (7.11) we recall that  
pT

Vp
T

V
p

V

U
CC 

































  

     By definition, the volume expansion coefficient  is given by Eq. (6.7) as 

               
pT

V

V












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1
 

    Hence,       




















 Vp

V

U
CC

T
Vp  

        On rearranging terms, we get the required result: 

    p
V

CC

V

U Vp

T


















 (i) 

 To prove the second result, we take U as a function of p and T, i.e. 

  U = U (p, T) 

 Then,            dT
T

U
dp

P

U
dU

pT


























  

 so that           pdVdp
P

U
dT

T

U
Q

Tp


























  

 On dividing throughout by dT and keeping pressure constant, we find that 

Binomial expansion is 

2

1
1

1

1

2

nx
n

( x )

n(n )
x ..

!
.

 



 
 
 
 
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pP

p
p T

V
p

T

U
C

T

Q






































 

 Hence, 











pVC

T

U
p

P

 (ii) 

 To know pressure variation of internal energy you have to rewrite (i) as 

    p
V

CC

V

p

p

U Vp

TT






























 (iii) 

 By definition, isothermal elasticity is given by Eq. (6.8) as 

         
T

T
V

p
VE 












        or       

V

E

V

p T

T













 

 Using this result in (iii), we get pressure variation of internal energy: 

   
T

Vp

TT
E

CC

E

pV

p

U

















 (iv) 

6. For an ideal gas, the equation of state is 

                pV = RT                                                                    (i) 

 Hence,         
2

1 1
T ideal

T

V p RT

V p RT pp

  
              

             (ii) 

 That is,  T ideal
 is the inverse of pressure for an ideal gas. You may  have 

expected this result from Eq. (7.25). Similarly, for a van der Waals’ gas 

                 RTbV
V

a
p 










2
 (iii) 

 or              
2V

a

bV

RT
p 


  

 So, 
  32

2

V

a

bV

RT

V

p

T
















   and  

 
2 2

1 2

TT

P a RT
V V

V V V b

 
     

   
 

 On using (iii), we find that      
2

2

1 2

T

a
p V

a V

V bV

 
 

 
  

 
  

 If we ignore b in comparison with V, we get  

      
2 2 2

1 2

T

a a a
p p

V V V

   
        

    
    or        

Van

2

1
T a

p
V

 



 

 This shows that    
Van

 > T T Ideal
  . This is physically expected    

because of the presence of inter-atomic forces in a real gas.  

7. For an isothermal process, dU = 0 so that all heat absorbed during this 

process is converted into work: Q = pdV 

 Hence, 1

B B

A A

V V

A B

V V

dV
W pdV RT

V
      1

B

A

V
RT ln

V

 
  

 
 (i) 

 where T1 is the temperature at which heat is absorbed by the system. 
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 For an adiabatic expansion, Q = 0 and increase in volume tends to 

decrease internal energy and hence temperature so that T2 < T1. Hence 

        
 

C C

B B

V V

B C

V V

K dV
W pdV

V
 

   1 1

1 1

1
C B

K

V V 

 
   

    

 

 Using the equation of state for an adiabatic process, we can rewrite it as 

     
 1 2

1
B C

R T T
W 




 
 (ii) 

 Similarly, for isothermal compression you can readily show that 

            2
D

C D
C

V
W RT ln

V


 
  

 
2

C

D

V
RT ln

V

 
   

 
 (iii) 

 whereas for adiabatic compression 

    
 1 2

1
D A

R T T
W 

 
     

 (iv) 

 On combining results contained in (i) to (iv), you will get 

  A B B C C D D AW W W W W       1 2
CB

A D

VV
RT ln RT ln

V V

   
    

   
 

8. The initial volume of both gases may be obtained using the ideal gas 
law, pV nRT . On solving for V , we get 

  
     

   

1 1

5 1

0 06mol 8 3JK  mol 300K

2 0atm 1 0 10 Paatm

. .nRT
V

p . .

 



 
 

 
 

                 4 37 5 10  m.    

 For the isothermal process, temperature remains constant at 300K. So 

when pressure drops to half the initial value, the equation pV  const 

implies that the volume will double. So the final volume will be 
3 31 5 10  m.  . That is, 

  3 31 5 10 mfV .    (i) 

 For the adiabatic process, we have i i f fpV p V   

 On solving for fV , we get 

 

1/
i

f i
f

p
V V

p


 

  
 

  
1 1 4

4 32 0atm
7 5 10 m

1.0atm

/ .
.

.  
   
 

                   

             3 31 2 10 m.    (ii) 

On comparing (i) and (ii), you will note that the volume of the gas undergoing 

an adiabatic expansion is less than that when it undergoes isothermal 

expansion. 
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APPENDIX-7A: ADIABATIC LAPSE RATE 

The heat from the Sun, on being absorbed by the ground, heats up the air in 

immediate contact. The heated air rises upward and a vertical density  

gradient is established. This gives rise to convection currents which transport 

cooler air downwards and hot air upwards. As hot air rises, it expands. Will it 

exchange heat with its environment? It may not do so because air is a poor 

conductor of heat. This means that in intermixing of air, we have an adiabatic 

expansion. 

To calculate the drop in temperature with height, we assume that air behaves 

as a perfect gas. That is, we ignore the presence of water vapour in 

atmosphere. This means that we can use Eq. (7.20). For one mole of the gas, 

Eq. (7.20) in logarithmic form becomes: 

  11lnT ( )ln p lnK      

On differentiation, we can write the resultant expression as: 

  
1

0
dT dp

T p

 
 


 

which can be rearranged as: 

  
1

dp dT

p T



 

 (7A.1)  

Let us now pause for a moment and ask: What are we looking for? We wish to 

calculate variation of temperature with height, i.e. dT / dh . To do so, we must 

relate pressure with height. For this, we recall that as we go up, pressure 

decreases. Mathematically, this is expressed as: 

  dp gdh  

where  is average density of air and g is acceleration due to gravity. The 

negative sign signifies that pressure decreases as we move up. 

Since we have assumed that air behaves as perfect gas, for one mole of air, 
we can use the equation of state p RT / V in the above expression. This 

gives: 

  
dp Mg

dh
p RT

   (7A.2) 

where M V   is the mass of one mole of air . ( AM mN , where m  is  the 

average mass of one air molecule.) On combining Eqs. (7.A.1) and (7.A.2), we 

get: 

  
  

  
 

1dT Mg

dh R
 (7A.3) 

This is the expression for adiabatic lapse rate. The negative sign on the RHS 

indicates that temperature decreases as we move upwards.  

Typically,  3 19 8 10  K m
dT

.
dh

   . This means that over one kilometre, the 

temperature falls by about 10K. 
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Symbol Quantity Value 

c Speed of light in vacuum 8 13.00 10 ms  

0 Permeability of free 

space 

6 21.26 10 NA   

0 Permittivity of free space 12 2 1 28.85 10 C N m    

1/40  9 2 28.99 10 Nm C   

e Charge of the proton 191.60 10 C  

 e Charge of the electron 191.60 10 C   

h Planck’s constant 346.63 10 Js  

  h / 2 341.05 10 Js  

me Electron rest mass 319.11 10 kg  

 e/me Electron charge to mass 

ratio 

11 11.76 10 Ckg   

mp Proton rest mass 271.67 10 kg  (1 amu) 

mn Neutron rest mass 271.68 10 kg  

a0 Bohr radius 115.29 10 m  

NA Avogadro constant 23 16.02 10 mol  

R Universal gas constant 1 18.31 Jmol K    

kB Boltzmann constant 23 11.38 10 J K   

G Universal gravitational 

constant 

11 2 26.67 10 Nm kg   

TABLE OF PHYSICAL CONSTANTS 
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SYLLABUS: THERMAL PHYSICS AND STATISTICAL MECHANICS  

 (BPHCT-135)                         4 Credits 

Kinetic Theory of Gases: Expression for pressure (no derivation), kinetic 

interpretation of temperature and derivation of gas laws, real gases (van der Waals 

equation, qualitative discussion). Derivation of Maxwell’s law of distribution of velocities 
and its experimental verification, expression for average speed ),(v  most probable 

speed ),( pv  and root mean square )( rmsv , law of equipartition of energy (no derivation) 

and its applications to specific heat of gases, monoatomic and diatomic gases. Mean 

free path (zeroth order). Transport phenomena, viscosity, conduction and diffusion 

(discussion of physical implications only, no derivation). Brownian motion (no 

derivation) and its significance, sedimentation, Perrin’s experiment. 

The Zeroth Law and The First Law of Thermodynamics: Boundaries, variables, 

processes (reversible and irreversible), graphical description. Statement of zeroth law, 

introduction of concept of temperature, applications of the zeroth law. Compressibility 

and expansion coefficient. First law of thermodynamics, statement, parametric form, 

mathematical form (integral and differential), relation between cp and cv, work done 

during isothermal and adiabatic processes, velocity of sound. 

The Second and Third Law of Thermodynamics: Heat engines, conversion of heat 

into work, Carnot cycle, efficiency of a Carnot engine, Carnot theorem, Kelvin-Planck 

and Clausius statements of second law of thermodynamics, equivalence of Kelvin-

Planck and Clausius statements. Entropy, second law and entropy, entropy changes in 

reversible and irreversible processes, entropy-temperature diagram, statement and 

consequences of the third law of thermodynamics (unattainability of absolute zero 

temperature, etc.). Thermodynamic potentials, enthalpy, Gibbs, Helmholtz and internal 

energy functions, Maxwell’s relations and their applications, Clausius-Clapeyron 

equation, Joule Thomson effect, TdS equations. Black body radiation, spectral 

distribution, concept of energy density, derivation of Planck’s law, deduction of laws of 

radiation (Wien’s distribution law, Rayleigh-Jeans law, Stefan Boltzmann law and 

Wien’s displacement law). 

Statistical Mechanics: Phase space, macrostate and microstate, entropy and 

thermodynamics probability, distribution function. Maxwell-Boltzmann law, partition 

function of a monoatomic gas and deduction of thermodynamic functions. Need for 

quantum statistics, Bose-Einstein distribution function, Bose-Einstein photon gas, 

Fermi-Dirac distribution function, strongly degenerate Fermi system, Fermi energy, 

electronic heat capacity, comparison of the three statistics. 




