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BLOCK 3 : SECOND AND THIRD LAWS OF THERMODYNAMICS

In Block 2, you have learnt the basic terminology of thermodynamics and the basic concepts
that will be used in this course. You have also learnt the zeroth law and the first law of
thermodynamics as well as their applications. You now know that the first law of
thermodynamics is essentially the principle of conservation of energy for thermodynamic
systems. Moreover, each of these laws introduces a new thermodynamic variable, which has
universal validity.

Block 3 deals with conversion of heat into work using a heat engine working in a cycle, an
ideal Carnot engine and its efficiency. In this block, you will also learn the Kelvin-Planck and
Clausius statements of the second law of thermodynamics and their equivalence, and Carnot
theorem.

One of the most important concepts in thermodynamics is that of entropy introduced by
Clausius. In fact, thermodynamics became an important science only after the introduction of
entropy. A detailed study of entropy near absolute zero led Planck to the third law of
thermodynamics. These developments were followed by the formulation of thermodynamic
free energies.

Block 3 ends with a detailed discussion of the theory of black body radiation, which posed a
huge challenge to physicists in the second decade of the twentieth century. To explain the
observed results on spectral distribution of radiant energy, Planck presented his theory based
on discrete nature of energy exchange.

In Unit 8, which is the first unit of Block 3, we have introduced the concept of heat engine. In
this unit, we have obtained an expression for the efficiency of a completely reversible Carnot
engine using T-S diagram. On inverting the sequence of processes occurring in a heat
engine, we obtain a refrigerator. So, you will also learn about Carnot cycle as a refrigerator.
Kelvin-Planck and Clausius summed up these observations in two different but equivalent
statements. These are also discussed here. Carnot theorem — that no real engine can be
more efficient than the Carnot engine — forms the subject of discussion in Sec. 8.5.

In Unit 9, you will learn about entropy, which is a property of state. We have obtained
expressions for changes in entropy for an ideal gas under different physical conditions.
Planck postulated that entropy of a system becomes zero as temperature approaches
absolute zero. This led to the formulation of the third law of thermodynamics. You will realise
why soon after Clausius introduced the concept of entropy, thermodynamics became a
powerful science. (In Block 4, you will learn that entropy helps to connect thermodynamics
with statistical mechanics. That is, entropy is a tool by which we can correlate the
macroscopic and microscopic behaviours of a system.)

In Unit 10, we have discussed thermodynamic potentials, which are essential to determine the
general condition of thermodynamic equilibrium. You will learn that these are a rich treasure
of vast information. These are handy in obtaining Maxwell’s relations, TdS equations, energy
equations and involve a lot of good physics.

The mathematics used in this unit is quite simple and you are advised not to memorise
relations. Instead, use mnemonic diagrams for deriving a relation of interest. Some
illustrations to this effect are given in the text.



In the beginning of Unit 11, a few definitions and concepts about blackbody radiation are
given. The Stefan-Boltzmann law, which relates the total energy density of black body
radiation with temperature, is discussed in detail. But it does not give any information about
the distribution of energy in different parts of the spectrum. We have discussed Planck’s law
and shown that Rayleigh-Jeans law, Wien’s law and Stefan’s law are contained in the
Planck’s law.

We hope that you enjoy studying the concepts discussed in this block. We wish you success.
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Carnot engine led to the CARNOT CYCLE

industrialisation of Europe.

Structure
8.1 Introduction 8.4  The Second Law of Thermodynamics
Expected Learning Outcomes The Kelvin-Planck and Clausius Statements
8.2 Heat Engines: Conversion of Heat Equivalence of Kelvin-Planck and Clausius
into Work Statements
8.3 The Carnot Cycle 8.5 Carnot Theorem
Efficiency of a Carnot Engine 8.6 Summary
Carnot Cycle as Refrigerator 8.7 Terminal Questions
8.8 Solutions and Answers
STUDY GUIDE

In the previous units of this course, you have learnt about the zeroth law and the first law of
thermodynamics. As you now know, these laws facilitated introduction of the concepts of temperature
and internal energy, respectively. In this unit, you will learn about conversion of heat into work, Carnot
cycle and the second law of thermodynamics.

In TQ 9 of Unit 7, you have obtained expression for the work done in Carnot cycle depicted on an
indicator diagram. We will extend this result to calculate the efficiency of Carnot engine and show that
no engine can be more efficient than a Carnot engine. As mentioned earlier, thermodynamics is a
phenomenological science and its laws need no proof. In fact, the second law of thermodynamics has
been stated in two different but equivalent forms by Kelvin-Planck and Clausius. You will learn these
equivalent statements.

The mathematics used here is rather simple and basically, we will use the results derived in Unit 7.
You are, therefore, advised to master that unit before reading this unit. Moreover, if you work out
SAQs and TQs given in this unit on your own, you will appreciate the subject matter better.

“Imagination is more important than knowledge. ) i
Knowledge is limited. Imagination encircles the world.” Albert Einstein
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Second and Third Laws of Thermodynamics

8.1 INTRODUCTION

We now know that the first law of thermodynamics is a statement of
conservation of energy for thermodynamic processes. But it does not give us
information about the direction of flow of heat. For instance, it is a common
experience that heat flows from a hotter body to a colder body spontaneously
but it cannot flow by itself from a colder body to a hotter body. However, the
first law of thermodynamics does not rule out this possibility. Similarly, it is a
common experience that it is possible to completely convert work into heat via
friction, say. But the first law of thermodynamics puts no definite limitation on
conversion of heat into work, though engineering experience refrains us from
achieving 100% conversion. If this were not true, we could convert virtually
unlimited heat of the environment into work and energy crisis would not have
been such an issue for present day civilisation. We can similarly consider
many natural processes where energy is conserved but those never happen.
This suggests that besides the first law, we must have some other
fundamental principle which satisfactorily explains these facts of experience.
This principle is known as the second law of thermodynamics. In fact, the
second law goes far beyond conversion of heat into work.

In Sec. 8.2, we begin our discussion by considering convertibility of heat into
work using a heat engine. For simplicity, we confine ourselves to the
framework of reversible Carnot cycle. We derive an expression for the
efficiency of a Carnot engine in Sec. 8.3. You will learn that the direction of
operation of Carnot cycle determines whether a device acts as a heat engine
or a refrigerator. It is for such reasons that Carnot cycle is the most important
reversible cycle of great practical utility. You will also learn that Carnot engine
has maximum efficiency but it is a theoretical idealisation.

It may be mentioned here that contributions of Carnot facilitated industrial
revolution in Europe. As we now know, the work of Carnot led Clausius,
Thomson (later Lord Kelvin) and Planck, among others, to study convertibility
of heat into work. These studies led them to sum up generalisations of
experiences in different statements of the second law. However, the two most
well-known statements of the second law are due to Kelvin-Planck and
Clausius. These statements are discussed in detail and their equivalence has
also been established in Sec. 8.4. We show that if one statement is not
obeyed, the other one is also violated. In Sec. 8.5, we have discussed Carnot
theorem.

Expected Learning Outcomes

After studying this unit, you should be able to:
+» derive the expression for the efficiency of a Carnot engine;
+ explain the physics of the working of a heat engine and a refrigerator;

+ state Kelvin-Planck and Clausius statements of the second law of
thermodynamics, discuss their implications and prove their equivalence;
and

«» establish Carnot theorem.
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8.2 HEAT ENGINES: CONVERSION OF HEAT
INTO WORK

Let us begin our discussion by stating the preliminaries of heat engines which
convert heat into work.

Basic Terminology

We know that heat flows spontaneously from a hotter to a colder body. If we
intercept this flow with a machine, some of it can be converted into work. A
machine that can convert heat into work is known as heat engine. To be a
useful device, a heat engine must operate continuously; absorb heat at a
higher temperature and reject it at a lower temperature. That is to say, a heat
engine operates between two heat reservoirs (Fig. 8.1). Moreover, the
processes which take place inside an engine must not cause permanent
changes. This means that an engine has to operate in a cycle.

The material used in the operation of an engine is called the working
substance. The working substance can be solid, liquid or gas. In a steam
engine, the working substance is steam (water). Other familiar working
substances for automobile engines are petrol, diesel and CNG. In a
refrigerator, the most widely used working substances used to be
chlorofluorocarbon compounds. But these have now been phased out as
these deplete the ozone layer present in stratosphere.

Hot reservoir

S,

Engine p—PW =0Q;-Q2

3

Cold reservoir

Fig. 8.1: Schematics of operation of a heat engine.
Efficiency

The efficiency of an engine is defined as the ratio of the net work done to the
heat absorbed during one complete cycle. It is usually denoted by the symbol
n (pronounced as eta):

Useful work done
n= (8.1)
Heat absorbed

After one complete cycle, the engine returns to its original state. Therefore,
there will be no change in its internal energy, i.e. AU = 0. Using the first law,
we can write

AU=Q1—Q2—W=0
or

W = Q1—Q2 (8.2)
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Nicolas Leonard Sadi
Carnot (1796-1832) was
a French physicist and
engineer. With his
pioneering work on heat
engines, he successfully
proposed an engine
based on reversible
thermodynamic
processes, which offered
maximum possible
efficiency. Unfortunately,
his work was not
appreciated during his life
time. Clausius and Kelvin
used his ideas to propose
the second law of
thermodynamics.
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where Q: is the heat absorbed from the source, Q: is the heat rejected to the
sink and W is the work done during one cycle (Fig. 8.1). Note that in a real
engine, heat is rejected to the surroundings in the form of hot exhaust gases
or steam and, therefore, Q. contributes to thermal pollution of our
environment.

From Egs. (8.1) and (8.2), we can write

n:ﬂ:Ql_QZ Q2
Q1 Q1 Q1

This result shows that efficiency of a heat engine will always be less than one.
Nevertheless, it is desirable to design an engine with maximum efficiency. To
know how high n can be, we have to consider the conditions in which an
engine operates and the role of the working substance. You will learn about
these in the following sections. However, it may suffice to say here that Carnot
was the first researcher who recognised that for maximum efficiency, a heat
engine should be (thermodynamically) reversible. That is, all stages of
operation should be carried out infinitely slowly so that there are no dissipative
losses due to friction or turbulence, leading to wastage of energy. (In practice,
however, there are always some losses.) It may be mentioned here that any
heat engine operating in a Carnot cycle is called a Carnot engine and the
working substance exchanges heat with heat reservoirs. We will discuss it in
some detail now. But before that let us now summarise what you have learnt
in this section.

—1- (8.3)

CONVERSION OF HEAT INTO WORK

¢ A machine repsonsible for conversion of heat into work is called a heat
engine.
e In a steam engine (power-plant or an automobile) we burn fuel for

generating heat which, in turn, makes the engine do work through the
motion of a piston (turbine).

e The difference in the heat generated and the amount utilised to do work
is released to surroundings and is one of the causes of thermal
pollution of our environment.

e The ratio of work done and heat absorbed characterises the efficiency

of a machine which converts heat into work.

8.3 THE CARNOT CYCLE

The Carnot cycle consists of four stages. These are schematically depicted in
Fig. 8.2. Suppose that T1 and T are temperatures of the heat reservoirs such
that T1 > T». The working substance, say a gas, is contained within a cylinder
fitted with a frictionless piston. To simulate the working of a real engine, we
consider the following reversible sequence:
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I) isothermal expnasion, ii) adiabatic expansion, iii) isothermal compression,
and iv) adiabatic compression.

N

Nl N\

\

P

Vs
5 ﬁﬁ oz%

Fig. 8.2: Four stages in the Carnot cycle.
To realise the processes stated above in an engine, it is operated as follows:

1. We place the cylinder in thermal contact with the hot reservoir and let the
gas undergo reversible isothermal expansion. Suppose heat Q1 flows from
the reservoir into the gas in this process. We have indicated this change
as A to B on the p-V diagram in Fig. 8.3. (It was similarly depicted in
Fig. 7.8 in TQ 9 in Unit 7). Note that the process is reversible so that the
temperature of the working substance continues to be equal to the
temperature of the reservoir during heat transfer.

P Q.
* Adiabats

Q|

VoV, V, V,

Fig. 8.3: Carnot cycle on indicator diagram.

2. Next, the gas is thermally isolated and allowed to undergo reversible
adiabatic expansion. The temperature falls from T1 to T, the temperature
of the cold reservoir. Do you know, why the temperature drops? It is
because work is done by the gas at the cost of its internal energy. This
change is indicated as B to C on the p-V diagram.

3. On attaining the state defined by C, the working substance is at relatively
low pressure and to use it in a cycle, it has to be restored to its initial state.
Therefore, the gas is compressed in two stages: First isothermally and
then adiabatically. This is done by placing the cylinder in thermal contact
with the cold reservoir at lower temperature T, and compressing the gas

11



Block 3

Second and Third Laws of Thermodynamics

To simplify Eq. (8.7) we
use the algebraic
theorem that if powers
are positive and equal,
the bases are also
equal.

You have learnt in

TQ 9 in Unit 7 that
using the first law of
thermodynamics for
an isothermal process,
we can write

W, =Q,
since AU =0

Work done by the gas
on the piston is given
by

B
W, = [pdV
A

V
B dv
W1=Q1:nRTl J. 7

A
“ Q=nRT; In(Vg /V,)

isothermally and reversibly. Suppose heat Q2 is given up by the gas to the
cold reservoir. This change is indicated as C to D.

4. Next, the gas is thermally isolated and compressed under reversible
adiabatic conditions till its original state is restored.

8.3.1 Efficiency of a Carnot Engine

While answering TQ 9 of Unit 7, you have obtained expression for the work
done by the gas in a Carnot engine. We just quote the result here:

W =nRT1In (Vg /Va) — NRT, In\\;—c
D

(8.4)

To simplify this expression, we note that B and C (in Fig. 8.3) lie on the same
adiabatic curve. Then, using Eq. (7.21), we can write

-1 -1
Ve =TV

-1
T, (Ve
or e S (i o4 (8.5)
To \Ve
Similarly, for states D and A we can write
y-1
T Vv
-1 [Lj (8.6)
To \Va
On comparing Egs. (8.5) and (8.6), we get
-1 y-1
V Y
(_CJ - (\/QJ (8.7)
Vg Va
We can rewrite it as
Ve |_(Vbo
Vg ) (Va
or Ve _Vc
Va Vp
Using this result in Eqg. (8.4), we get
w =nR(T1—T2)|n(VB /VA) (88)

On substituting this expression for W in Eq. (8.4), we can express the
efficiency of a Carnot engine in terms of the temperatures within which it
operates:
_ W _ nR (T1-T3)In(Vg /Va)
170, TnRT; (Vg /Va)

_M-T2) ;T2

8.9
T1 T1 (89)

We can draw the following conclusions from this result:
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1. Efficiency of a Carnot engine depends on the temperature difference
between the source and the sink; greater the difference, higher will be
efficiency. In practice, the temperature of the sink is limited by the
surroundings and the only way to increase n is to raise temperature of the
source, T,. It means that heat is more useful when it is supplied at a higher
temperature. This explains why saturated steam at high pressure is a
more efficient working substance.

2. Efficiency of a Carnot engine is less than one. This is a fundamental
limitation imposed on the convertibility of heat into work by the second law
of thermodynamics. (We know that most of the electricity is generated in

large fossil fuel (coal, oil, gas) or nuclear power plants. These are basically

heat engines (where energy is released in chemical or nuclear reactions).

The working substance, water, gets heated in a boiler and converted into
steam at high pressure. It is made to expand adiabatically in a turbine,
which is coupled to a generator and converts mechanical energy into
electrical energy. The maximum efficiency of a power plant is about 50%.
(This is also true of diesel and petrol engines.) It means that only half of
the heat generated (fuel used) in a plant is converted into useful work. In
fact, a substantial amount of our expensive fuel ends up as waste heat; it
is released in the environment and causes thermal pollution, which is
responsible for various ecological problems. It is, therefore, desirable to
design maximum efficiency engines.

3. If the source and the sink are at the same temperature, the efficiency will
be zero. It means that we cannot operate an engine (and convert heat into
work) if there is no temperature difference. To understand this, consider
the following situation:

You take a motor boat to sea and run out of fuel. (If you are lucky, you
may be rescued by another boat.) The first law of thermodynamics permits
you safe return as the ocean has a vast amount of energy. But the second
law tells us that this energy cannot be converted into useful work because
ocean surface is at an almost uniform temperature.

4. The efficiency of a Carnot engine is independent of the nature of the
working substance. You may expect that real engines will also be
independent of the working substance and ask: Why are we then so
concerned about a particular fuel? The answer to this question lies in their
availability, economics, tenchonological feasibility and environmental
factors. That is to say, thermodynamic considerations alone do not decide
between various fuels and methods of harnessing energy sources.

5. On comparing the expressions of efficiency given in Egs. (8.3) and (8.9),
we can correlate the ratios of heat absorbed and heat rejected to
temperature of the source and temperature of the sink:

Q_T
Q T

Before proceeding further, answer the following SAQ.

13
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SAQ 1 - carnot engine

Can efficiency of a Carnot engine be increased more effectively by increasing
T, or lowering T, ? Explain your answer.

You should now go through the following solved example.

EX}‘IW[@LE 8.1. EFFICIENCY CALCULATION

The cluster of nuclear power plants at Tarapur produces 540 MW electric
power. In the reactor core, energy is released (as heat) at the rate of
1600 MW. Steam produced in the reactor enters the turbine at a
temperature of 560K and leaves it at 350K. Calculate the efficiency of the
power plant.

SOLUTION B The thermodynamic efficiency is given by Eq. (8.9):

T
n _q-t2 4 35K 4475
T, 560K

That is, the system is only 37.5% efficient.

The actual efficiency of a power plant is defined as the ratio of the electric
power output to the thermal power produced:

_ 540MW

n=—""_-0.337
1600MW

The waste heat of 1060 MW is normally discharged in a river (like Ganges,
Mahanadi) or sea. This is a huge amount of energy and harmful for aquatic
life.

To reduce problems arising out of this, the designers of the power plant at
Narora (UP) made use of cooling towers where expandig steam is made to
cool by releasing heat to the atmosphere (air) rather than to water. This
nevertheless causes thermal pollution in the troposphere.

Diesel engines used in vehicles constitute another example of heat
engines. A typical automobile engine operates at about 800K and releases
exhaust gases to the environment at about 300K.

The maximum possible efficiency is then

n=1-22% 563
800K

In practice, the actual efficiency is much lower (~ 40%) and emanating hot
gases are responsible for thermal pollution of our environment.

You may now like to answer an SAQ.
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SAQ 2 - Efficiency of a Carnot engine

a) Inthe tropics, the temperatures at the surface of the ocean and at a
depth of 300m are 25°C and 5°C, respectively. Will you recommend to
tap this energy? Discuss.

b) A Carnot engine is made to work between ice point (273K) and nitrogen
temperature (77K). Calculate its efficiency. Is it possible to attain this
figure in actual practice?

Now go through the following example.

EM.‘W[@L@ 8.2: EFFICIENCY OF A CARNOT ENGINE

A Carnot engine has an efficiency of 60% when its sink temperature is at
27°C. Calculate the change in the source temperature for increasing its
efficiency to 70%.

SOLUTION B Let the initial temperature of the source be T,. The
temperature of the sink, T, = 27°C = 300K.
Using Eq. (8.9) for a Carnot engine, we can write

ne1-Liy 390 _og
Tl Tl

On rearranging terms and solving for T,, we get
T,=750 K

Let the temperature of the source be raised to (750 + T )K for efficiency to
become 70%. Thus, we can write

300

nN=1-————=0.7
(750+T)
On solving this, we get, T = 250K

Hence, the temperature of the source should be raised by 250 K.

SAQ 3 - Efficiency of a Carnot engine

An engine has an efficiency of 40%. Its efficiency is to be raised to 45%. By
how much must the temperature of the source be increased if heat is released
to atmosphere at 27°C?

You will now agree that the beauty of Carnot cycle lies in the fact that all its
stages are completely reversible. So if you invert the sequence of processes
occuring in a heat engine, you will obtain a refrigerator. Do you know that an
air conditioner is also a refrigerator designed to cool a room? (The first

15
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modern electrical air conditioner was designed by Willis Carrier in 1902 in
Buffalo, New York.) Let us now understand the physics of this device.

8.3.2 Carnot Cycle as Refrigerator

Most of us now use refrigerators in our homes to keep various food items
fresh so that they do not get stale and lose taste. This is done by keeping
these cool. Have you ever thought: How is cooling achieved in a refrigerator?
The most beautiful aspect of a Carnot engine is that we can run the whole
system backward so that the sequence of events and their functions are
reversed. Thus, Carnot cycle working in the reverse direction will act as an
ideal refrigerator, in which heat is extracted from the reservoir at lower
temperature and transferred to the reservoir at higher temperature. Therefore,
in a sense, a refrigerator is also a heat engine.

Let us re-examine Fig. 8.3 again. If the directions of the arrows are reversed,
the cycle ABCDA becomes ADCBA . Since each process is reversible, the
cycle is also reversible. Therefore, magnitudes of heat taken, heat rejected
and the work done remain the same, except that their signs are reversed. It
means that heat Q, is absorbed by the working substance from the lower

temperature reservoir and heat Q, is rejected to the reservoir at higher

temperature. And the work W represents the work done on the system

(Fig. 8.4). In a domestic refrigerator, heat is pumped out of its interior, which
is at a temperature lower than the surroundings and work is done by the
motor driving the refrigerator. Thermodynamically, a refrigerator makes heat
to flow from a lower temperature to a higher temperature, i.e., in a direction it
does not spontaneously go. You can feel it by putting your hand near the
coils, body, of the refrigerator. (You should not however touch the coils.)

Hot reservoir
T

Q=W +Q,

Carnot
refrigerator

r Yo

Cold reservoir
T

Fig. 8.4: A Carnot refrigerator.
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The ability of a refrigerator is rated in terms of the coefficient of performance
or figure of merit. We denote it by the symbol ®» and define it as

o= heat extractedat low temperature from the object to be refrigerated
work input

Mathematically, we write
o= Q__Q (8.10)
W Q-Q
where Q, is heat absorbed at the low temperature (cooler body) and Q; is
heat rejected at higher temperature (kitchen environment).

In terms of temperatures of the eatables kept inside the refrigerator and the
kitchen environment, we can express the coefficient of performance as

o2 (8.11)
T, -Ty

where T,and T,, respectively denote the temperatures of the kitchen

environment and the eatables kept inside the refrigerator.

On comparing the expressions for ® given by Egs. (8.10) and (8.11), we can
write

W=0Q,/w0= Qz(TlT_ZTZ ] (8.12)

We can derive following conclusions from Egs. (8.11) and (8.12):

) o is directly proportional to T, . That is, the coefficient of performance will
be small when T, is low. In fact, ® approaches zero as T, — 0. This
means that more work will have to be done or more energy will be used up
by the refrigerator for transferring the same amount of heat as T,
decreases. If T, = 0, infinite amount of work will be required to produce
cooling. This essentially implies that it is not possible to attain absolute
zero mechanically.

ii) o is inversely proportional to T; —T», i.e., lesser the difference between
the hot and cold bodies, greater will be the coefficient of performance. As
(T, —T,) approaches zero, ® approaches infinity. This means that a
refrigerator will be most effective when eatables/chemicals placed inside it
are close to the temperature of surroundings. So to conserve energyi, it is
advisable to put eatables in a kitchen refrigerator while they have cooled to
room temperature. (You may have seen your maid/mother/sister allowing
boiled milk to cool down to room tempearture before putting it in the
refrigerator. If they are not doing so, advise them accordingly.)

i) Unlike the efficiency of a heat engine, the coefficient of performance of a
refrigerator can be greater than unity. That is, the amount of heat removed
from the refrigerated space can be greater than the work input. (In fact,
one of the reasons for expressing the efficiency of a refrigerator by another
nomenclature — the coefficient of performance — is the intention to avoid

confusion of having thermal efficiencies greater than unity.) To give you an
17
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idea about the figure, let us consider that freezer in a refrigerator or cold
storage is maintained at —10 C and the room temperature is 30 C. You

can readily convince yourself that the value of coefficient of performance in

this case will be ©= % =6.58.

You should now go through the following examples to grasp the ideas
discussed in this section.

EX}IMPLE 8.3 COEFFICIENT OF PERFORMANCE

A typical home freezer operates between —18°C and 30°C. Calculate the
maximum value of o of this refrigerator. With this @, how much electrical
energy would be required to freeze 0.5 kg of water, initially at 0°C. Given
latent heat of fusion = 334 kJ kg™.

SOLUTION B The coefficient of performance is given by Eq. (8.11) as

T, 255K 255K

= = -_— 5-3
T, -To 303K-255K 48K

(@)

To produce 0.5 kg of ice, you have to extract heat from water. It is given by
Q=mL
where L is latent heat of fusion. Hence,

Q, = (0.5kg) x (334 kJ kg1)= 167 kJ

Q2 167kJ
()

Using Eq. (8.10), you can write: W = =31.5kJ

In actual practice, ® would be lower and the corresponding work input
would be higher because a real engine is not completely reversible.

EXAM(PLE 8.4: COEFFICIENT OF PERFORMANCE

A domestic refrigerator is driven by a 1000 W electric motor, which operates
at an efficiency of 60%. If the refrigerator can be treated as a reversible
heat engine operating between —10°C and 20°C, calculate the time required
by it to freeze 10 kg of water which is at 0°C. Neglect heat losses. Take
latent heat of fusion of ice as 334 kJ kg .

SOLUTION B We know that work done by a refrigerator is given by

HereT; =20 °C=293K, and T, =-10°C =263 K. Since the refrigerator is
being driven by a motor of 1000 W with 60% efficiency, we get

W =1000x-2% — 600 W = 60035~
100
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T2 — 600 x _ 283K
T,-T, 293K — 263K

Hence, Q, =W x =5260Js .

But the heat required to freeze 10 kg of water = mL =10 x 334 KJ. Hence
the time required to extract 334X10*J of heat

_ 334x10%J

t
5260Js

= 635s =10min 35s

In a household refrigerator, Freon-12 is used as the working substance. It has
a boiling point of — 29’ C. (Freon-12 is a gas at room temperature.) Freon gas
in a tube is made to expand suddenly from high pressure to low pressure. In
this process it cools and a vapour-liquid mixture is obtained. This cold fluid,
circulated through expansion coil around the region to be cooled, absorbs
heat from the eatables kept inside the refrigerator and the entire liquid in the
mixture changes into vapour. The vapour is compressed and work is done by
the compressor on the vapour. The temperature as well as pressure of the
vapour rise. The compressed vapour rejects heat to the surrounding medium
such as the kitchen air and condenses through a set of tubes (called
condenser and located at the back of the refrigerator).

It has been observed that CFCs adversely affect the life protecting layer of
ozone in our atmosphere. So, there is now growing emphasis on phasing out
CFCs. In India, non-CFC refrigerators are available.

An air-conditioner is also a refrigerator and the refrigerated space is a room
rather than the food compartment. A window air-conditioning unit produces
cooling by discharging heat of the air in the room outside. (When you travel by
an aeroplane, sit in an air-conditioned room/office for long hours, it is
advisable to drink water every half-hourly to avoid dehydration due to loss of
body heat in the form of perspiration.) The same unit can also be used as heat
pump by installing it backward. Now-a-days, systems fitted with controls so as
to operate them as air-conditioners in summer and as heat pump in winter are
available in the market.

We hope that now you appreciate the importance of Carnot’s work on
convertibility of heat into work. In fact, Carnot’s genius lay in his imagination
that a heat engine is the most efficient machine when it is operated in a
reversible cycle. Historically, the work of Carnot led to the formulation of the
second law of thermodynamics, which is a generalization of certain
experiences and observations about the direction of transfer of thermal
energy. This law has been stated in two different ways: (i) by Kelvin and
Planck and (ii) by Clausius. We now discuss these in turn.

8.4 THE SECOND LAW OF THERMODYNAMICS

Kelvin and Planck confined themselves to the working of a heat engine and
summarised the fact that it converts only a part of heat into work; the rest is
rejected to a sink at a lower temperature. Let us now learn about it.
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8.4.1 The Kelvin-Planck and Clausius Statements

Kelvin-Planck statement of the second law of thermodynamics is as follows:

No process is possible whose sole result is complete conversion of
heat into work.

This statement implies that one cannot devise a machine which just absorbs
heat from a reservoir and produces 100% work. That is, we need two
reservoirs for exchange of heat and running an engine in a cycle.

There are other processes in which energy is conserved but they do not
occur. For example, it is a fact of experience that heat does not flow on its
own from a body at a lower temperature to a body at higher temperature.
That is, spontaneous heat flow is unidirectional and is a fact of experience. It
is contained in the Clausius statement of the second law of thermodynamics,
which is as follows:

No process is possible whose sole result is the transfer of heat from a
body at a lower temperature to a body at a higher temperature.

Note that Clausius statement is relevant for the working of a refrigerator. An
important implication of this statement is that it is not possible to transfer heat
from a cold body to a hot body without some change somewhere, including
the working substance/surroundings of the system.

Note that the two statements of the second law apparently seem different or
unconnected but they are equivalent. In fact, each statement implies the other.
If one statement is untrue, will the other statement necessarily be untrue?
Indeed, it is so and the truth of either form is both a necessary and sufficient
condition for the truth of the other. We now discuss the equivalence of Kelvin-
Planck and Clausius’ statements.

8.4.2 Equivalence of Kelvin-Planck and Clausius
Statements

The equivalence of these statements implies that if one statement is untrue,
the other statement is necessarily untrue.

1. Let us suppose that the Clausius statement of the second law is
violated by a hypothetical refrigerator A. Suppose that it transfers Q»
units of heat in each cycle from a cold reservoir at temperature T, to
a hot reservoir at temperature T; without expenditure of any work
(Fig. 8.5a). Let us now assume that a heat engine working between
the same heat reservoirs draws an amount of heat Q; from the hot
reservoir and rejects heat Q to the low temperature reservoir and
performs work Wyet =Qq —Q> in one cycle. Further, suppose that the
heat engine operates at such a rate that it completes one cycle in the
same period as does the refrigerator.
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Hot reservoir

.
Q‘ _Qz
Refrigerator = ol .,
A Composite v—b
40Q, Engine ',‘:\Nnet =Q1-Q
Cold reservoir
T
(a) (b)

Fig. 8.5: a) Refrigerator A supposedly violates the Clausius statement of the
second law, whereas B does not violate the law; b) the composite
engine violates the Kelvin-Planck statement.

Now suppose that a composite engine is formed by considering the
refrigerator and the heat engine to act together (Fig. 8.5b).

Since the heat drawn by the heat engine Q- is equal to the heat rejected
by the refrigerator, the need for the hot reservoir will be eliminated
completely, if heat Q1 were fed to the heat engine by the hotter reservoir.
That is, even though the composite engine exchanges heat with only one
reservoir at a fixed temperature, there is net work output in each cycle.

Such a composite engine obviously violates Kelvin-Planck statement,
which implies that no engine can run with just one reservoir.

2. To prove that if Kelvin-Planck statement is violated, the Clausius
statement is also violated, let us consider a hypothetical heat engine
which extracts heat Q4 from the hot reservoir, converts it completely into
work and rejects no heat to the low temperature reservoir (Fig. 8.6a).

Hot reservoir |

i R
fo
- ]
Cold reservaoir |
T2
(a) (b)

Fig. 8.6: a) Heat engine A violates Kelvin-Planck statement of the second law,
whereas refrigerator B does not violate the law; b) the composite
engine violates Clausius’ statement.
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Suppose that the work performed by the heat engine is used to drive a
refrigerator operating between reservoirs at temperatures T, and To.
Further, suppose that the refrigerator absorbs heat Q, from the low
temperature reservoir and rejects heat W + Q> to the hot reservoir per
cycle. As before, we also assume that the refrigerator completes one
cycle in the same period as does the heat engine.

You will agree that the refrigerator by itself does not violate any law but
when it is made to form a composite engine with a heat engine

(Fig. 8.6b), the net result of operation of the composite system will be
to transfer heat Q, from the low temperature reservoir to the higher
temperature reservoir without any external work. This obviously
violates Clausius statement of the second law. You can now conclude
that both the statements of the second law are equivalent.

Having analysed the operation of Carnot cycle, we can do two things: a) show
that no real engine can be more efficient than the Carnot engine, i.e., prove
Carnot theorem, and b) introduce the concept of thermodynamic temperature.

Let us now discuss Carnot theorem.

8.5 CARNOT THEOREM

Carnot theorem states that of all heat engines working between the same
(constant) temperatures, the reversible Carnot engine has the maximum

efficiency. Let us consider an irreversible engine (1) and a reversible engine
(R) operating between the same reservoirs which are at temperatures T, and

T,. Suppose that the irreversible engine is more efficient than a reversible
engine. That is, we assume that

n > MR

And Carnot theorem demands that this assumption is to be proved wrong. So,

if the assumption is valid, then we must have
w W

7> 7
Qi

(8.13)

where Q is heat absorbed by the irreversible engine and
W =Q; —Q, =Q1 — Q5. This implies that Q7 > Q. That is, heat absorbed by

the reversible engine is more than that absorbed by an irreversible engine.

We now couple these engines and regard the system of combined engines to
be a single device. Now suppose that the work produced by the irreversible
engine is used to drive the reversible engine backwards so that it acts as a
(Carnot) refrigerator, as shown in (Fig. 8.7). Thus, the overall effect of the
combined engine is to transfer a net amount of heat

(Q1—-W)—-(Q1 —W) =01 —Q1 from the cold reservoir to the hot reservoir on its
own. That is, the combined engine acts as a self-acting device, which requires
no external input. But this is forbidden by the Clausius statement of the
second law. Therefore, the assumption that n, > ngr is not valid, i.e., an
irreversible engine cannot have efficiency greater than that of the reversible
engine i.e., n; <ngr . In fact, the efficiency of a Carnot engine is maximum.
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We should expect it physically because friction and heat losses in an
irreversible engine will make it less efficient.

7
D)

Magic
machine

Fig. 8.7: lllustrating the proof of Carnot’s theorem.

A corollary of Carnot theorem is: All reversible engines operating between the
same temperature limits have the same efficiency.

It may be remarked here that Carnot engine is an ideal device because all
losses due to conduction, radiation or friction are assumed to be absent.
However, in real appliances, some useful energy is always dissipated. Yet, a
study of this idealized engine helps us to understand the working of a real
engine. You should now go through the following example.

EX}IM(PLE 8.5: Carnot theorem

For a reversible engine, show that zg =0.

SOLUTION m According to Carnot theorem: n; <ngr

where ngr denotes the efficiency of a Carnot engine and n, is the
efficiency of any other engine operating between the same temperature
limits. In terms of heats exchanged, we can write

1_Q_%S1_& or Q_%ZQ_ZZT_Z
Q1 Q1 QO Q1 T
Hence, %—ﬁso
LE

Therefore, for any cycle in which heat exchange takes place with two
reservoirs only, the algebraic sum

zgso.

Note that the equality sign holds for a reversible cycle, whereas the
inequality sign holds for an irreversible cycle.
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Concept

We now sum up what you have learnt in this unit.

8.6 SUMMARY

Description

Efficiency of a Carnot
engine

Second law of
thermodynamics

Coefficient of
performance
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The efficiency of Carnot’s engine is maximum. The efficiency of a
heat engine is given by:

Q_1 T

n=1-
Q T

Two equivalent statements of second law of thermodynamics are due
to Kelvin-Planck, and Clausius.

The Kelvin-Planck statement governs the working of a heat engine. It
states that it is impossible to construct an engine, no matter how
ideal, which, working in a cycle, will transform the entire heat into

The Clausius statement of second law governs the working of a
refrigerator. It states that it is impossible to make a refrigerator
operate in a cycle so that its sole effect is transfer of heat from a
cooler body to a hotter body.

The coefficient of performance of a refrigerator is given by:

Q _ T
Ql—QZ T1_T2

8.7 TERMINAL QUESTIONS

A reversible engine works between two temperatures and the difference of
two temperatures is 110°C. If it absorbs 756 J of heat from the source and
gives 536 J to the sink, calculate the temperature of source and sink.

A Carnot engine whose sink is at 300 K has an efficiency of 40 percent.
(i) Determine the source temperature. (ii) Obtain the increment in the
temperature of source to increase the efficiency by 25 percent of original
efficiency?

A Carnot engine has efficiency 25%. It operates between reservoirs of
constant temperature with temperature difference of 80 K. Calculate the
temperature of the low-temperature reservoir in Celsius.

The efficiency of a Carnot’s engine at particular source and sink

temperatures is % When the sink temperature is reduced by 100°C, the

: - 2
engine efficiency becomes 3 Calculate the new source temperature.
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5. Anideal Carnot engine, whose efficiency is 40%, receives heat at 500 K. If
its efficiency is 50%, calculate the intake temperature for the same
exhaust temperature.

8.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. The efficiency of a Carnot engine can be increased more effectively by
increasing the temperature of source. Increasing the temperature of sink
will have opposite effect.

2. a) n:l—k:l—ﬁ _20 =0.07 = 7%
T1 298 298

This is a highly inefficient system and it is not advisable to tap this
source of energy.

b) ne1-L 2196 675 - 700
273 273

It is too high to be attainable in practice.

3. From Eqg. (8.9) we recall that

Here T, =273+27 =300 Kand n=0.40.

Using this data, we can easily calculate the temperature of the source:

0.40=1- 290
Ty
sothat Ty =—20 _500K 0
0.60

For the increased efficiency, we can write

300 .
T =2 _5455 K i
17055 (i)

Hence the temperature of the source should be raised by

AT =T{-T; = (545.5-500)K = 45.5 K

Terminal Questions

1. Letthe temperature of the source and sink be T, and T,, respectively. Itis

given that
T, -T, =110°C =110K
(As temperature differences in Celsius and Kelvin scales are the same.)

Using Eq. (8.9), the efficiency of the heat engine is given by
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n:]__Q_ZZ _E (as &:T_]-J
Q1 Ty Q T
or n:T—l_TZ
Ty
T_Q_76 | T, 5%
T, Q, 536 T, 756
_,_T2 _, 536 _220
T, 756 756
110 220

or (since T; —-T, =110K)

T, 756

On solving the above equation, we get

T = 378K and

source

Ty, =268K  (=Tp-T,=110K)

2. i) Using Eg. (8.9), we can write

where T, is the temperature of the source and T, that of the sink. On
inserting the values in the above expression, we get

40 _, 300
100 T

Hence, 2 =1- 3@
5 T

or 2Tl = 5|'1 —-1500
Tl = 500 K
Hence, the source temperature is 500 K.

i) 25% of original efficiency = 10%. Therefore, we can write

40+10 3 300
100 T1+X

where x is the increment in temperature. On solving, we get

1 Ty +x-300
2 T1+X

or Ty + X =2T1 +2x - 600
or 500 + x =1000 + 2x — 600
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or

500 + x = 400 + 2x
x =100 K
Hence, the temperature of source should be raised by 100 K.

3. We use the expression of efficiency,

—-1--L [
4 TH U
4 N
or Ty ==T i
H=3ML (i)
Also, it is given that Ty —T; =80
On substituting the value of Ty from Eqg. (i), we can write
4
—T, =T, =80K
3L L
T (ﬂ - j =80K
3
or T, (Ej = 80K
3
or T, = 240K
In Celsius, T =(240-273)°C =-33°C
4. The expression for efficiency is given by Eqg. (8.9) as
Ty .
=1-—= [
n T (i)
Substituting the value of n = % in Eq. (i), we can write
_1
173
1— (T2 ~100) _2 (ii)
T 3
On solving Eq. (i), we get
T2_1 (i)
T, 2

Similarly, solving Eq. (ii), we get
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(T, —100) _ 1 (iv)
T 3

Dividing Eq. (iii) by Eqg. (iv), we get

_ T2 3

(T, —100) 2
or 2T, =3T, —300
or T, =300 K

T, = 600K.

Hence, the new source temperature will be 600 K.

5. We can write the expression of efficiency using Eqg. (8.9) as

On substituting the values, we can write

04-1-12
500

On solving, we get
T, =300K

Now, 0.5=1- @

Ty

T, =600 K
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e ENTROPY AND THE LAWS
The entropy of the universe is OF THERMODYNAMICS

continuously increasing.
(Picturesource: https://pixabay.com/illustrations/bla
ck-hole-abstract-photoshop-4118711/

Structure
9.1 Introduction 9.5 Representation of Carnot Cycle on
Expected Learning Outcomes Entropy-Temperature Diagram
9.2 Defining Entropy 9.6 Entropy at Absolute Zero: Third Law of
9.3 Entropy and the Second Law of Thermodynamics
Thermodynamics Consequences of the Third Law
The Combined Form of the First and 9.7 Summary
the Second Laws 9.8 Terminal Questions
9.4 Entropy Change of an Ideal Gas 9.9 Solutions and Answers

Entropy of Mixing
Entropy Change of Phase Transition

STUDY GUIDE

In the previous unit, you have learnt how to obtain the expression for efficiency of Carnot engine
and coefficient of performance of a refrigerator using an indicator diagram. In this unit, you will
learn about entropy, which is a variable of state and used to state the second law of
thermodynamics. You will learn that entropy is a mathematical tool. That is, unlike temperature and
pressure, entropy cannot be measured. You will also learn how to obtain expressions for entropy
changes for a few typical thermodynamic systems.

The expression for efficiency of a Carnot engine can be obtained rather easily using the
temperature-entropy (T-S) diagram. You will learn that the calculation of the absolute value of
entropy is not possible even for a reversible process. However, the behaviour of entropy at low
temperatures approaching absolute zero led Nernst to postulate the third law of thermodynamics.
This statement was subsequently modified by Planck. You will learn about these developments
here. The mathematics used in this unit is very simple but physical concepts are of fundamental
importance. Therefore, you should focus on understanding the underlying physics. Answering
SAQs and solving TQs on your own would help you enjoy this unit.

“Our greatest weakness lies in giving up. The most certain Thomas Alva
way to succeed is always to try just one more time.” Edison
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Rudolf Julius Emanuel
Clausius (1822-1888)
was a German
physicist, who is
famous for his
significant contributions
to kinetic theory of
gases and
thermodynamics. His
pioneering work on
convertibility of heat
into work led to the
formulation of the
second law of
thermodynamics in
1850. Later on, he also
introduced the concept
of entropy.
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9.1 INTRODUCTION

From experience we know that heat flows from a body at higher temperature
to a body at lower temperature spontaneously. But the reverse is not true, i.e.,
heat does not flow on its own from a body at lower temperature to a body at
higher temperature. This is because cooling is a unidirectional natural
process. You may be familiar with many other unidirectional processes
occurring in physically diverse systems. We may mention spontaneous
expansion of a gas into fixed volume (free expansion), battery discharge
when in operation (chemical process), and intermixing of two fluids (diffusion),
among others.

Do you know why natural processes take place in a particular direction? To
discover an answer to this question, we need to know: What determines the
direction of a natural process? Can we give a quantitative thermodynamic
criterion which governs this change?

The answer to these and many other such questions was given by Clausius in
1850 when he introduced a new thermodynamic function called entropy (from
the Greek word tropos, which means ‘change’). Clausius showed that for
natural processes, entropy of the universe always increases. That is, natural
processes evolve in the direction of increase of entropy.

But you may now ask: What is entropy? Entropy characterises disorder in a
system. It is a mathematical tool, an abstract property and it cannot be
measured like temperature, pressure or volume. For simplicity, we first define
entropy with reference to a reversible process in  Sec. 9.2, though all natural
processes are irreversible and this definition holds for these as well.

In Sec. 9.3, we have postulated the second law of thermodynamics in terms
of entropy and established the combined form of the first and second laws of
thermodynamics. You will learn how to derive expressions for changes in
entropy of an ideal gas in Sec. 9.4. This is followed by the derivation of the
expression for the efficiency of a Carnot engine using T-S diagram. In

Sec. 9.6, you will learn about the behaviour of entropy at absolute zero and
the third law of thermodynamics.

Expected Learning Outcomes

After studying this unit, you should be able to:

% define entropy and state second law of thermodynamics in terms of
entropy;

% calculate entropy change for a system when it undergoes a reversible/
irreversible change;

¢ represent Carnot cycle on T-S diagram and derive expression for
efficiency of a heat engine; and

3

%

state third law of thermodynamics and discuss its important
consequences.
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9.2 DEFINING ENTROPY

To define entropy, let us consider n moles of an ideal gas at
temperature T and pressure p enclosed in an insulated cylinder fitted
with a frictionless piston. On a p-V diagram, this state of the system is
represented as shown in Fig. 9.1. Suppose that now an infinitesimal

amount of heat 6Q is added reversibly along the path 1A2 to the p4 c 2
system. Using the first law of thermodynamics, we can write:
8Qrey =nCydT + pdV (9.1a) A
The subscript rev signifies that we are considering a reversible process. 1
On dividing Eq. (9.1a) throughout by T, we can write: \;
Qv _ o, T Py O ofareversible process.

on p-V diagram.
Using the equation of state for an ideal gas (pV = nRT), we can write:

p_nR

T V

Using this result in Eq. (9.1b), we obtain:

aQﬂ =Ncy dl + an_V
T T Vv
Now suppose that as a result of addition of heat, the system changes from
1. : . ) .
initial state 1 to final state 2. Then, the net change in the value of —QTrﬂ is
given by:
2 2 2
Qrev dT dv
I—T = Inc\/ ?ﬁLnRJ-7
1 1 1

Let us now suppose that the initial and final states are characterized by the
thermodynamic variables (V1,T;) and (V,,T5), respectively. If we assume that
cy does not change when heat is added reversibly, we can readily carry out
integration to obtain:

2
_[SQi =ncy In T2} hrin[ Y2 (9.2)
T Ty V1
1

Before proceeding further, let us interpret this result. It tells us that the value of
d

% depends on Vq,V,,T; and Ts.

5(2 rev

In other words, the value of can be determined by considering the

temperatures and volumes corresponding to the initial and final states of the

3
system. We express this by saying that % defines a new property of the

gas and is characteristic of the state.
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You will recognise that
we have postulated
existence of entropy in
Eqg. (9.3).

Mathematically, an
inexact differential can
be made exact by
introducing an
integrating factor.
Therefore, we can say

that here T ~Lacts as
an integrating factor for

6Qrev :

Entropy is analogous
to gravitational
potential energy, which
is specified with
respect to some
reference level.

You would recognise that it is immaterial how the system got in that state.
How can you justify this?

To this end, we recall from Unit 7 of Block 2 that 3Q,, is an inexact

, which is the ratio

differential, i.e., a function of path. But the value of S(?I_i

of a path function and a state variable, is determined only by the initial and

, . . 3 , .
final states. This is possible only when % defines a change in some new

function. This function is called entropy and is denoted by the symbolS . So,
we write:

dS:SQﬂ

= (9.3)

In words, when we add an infinitesimal amount of heat 3Q,, reversibly to a

. 3

system at constant temperature T, its entropy changes by %.

In Sl units, entropy is expressed in joule per kelvin (JK™2). Like pressure,
volume and temperature, entropy is also a thermodynamic state variable. Can
we classify entropy as an extensive variable? Certainly yes, and we define
specific entropy as entropy per mole or per unit mass.

s== or s=—
n m

Let us now pause for a while and ask: How good is the relation contained in
Eqg. (9.3)? It may be mentioned here that although we arrived at Eq. (9.3) by
considering a gaseous system, it holds for every thermodynamic system.
Moreover, this equation enables us to write an expression for the change in
entropy for any system:

6Qrev

1 (9.4)

2
S;-S1=4S =]
1

The limits on the integral refer to two thermodynamic states of entropies S;
and S,. You can draw the following inferences from Eq. (9.4):

i) For areversible cycle, net change in entropy will be zero, i.e., entropy
does not change or is conserved in a reversible process.

i) We can calculate change in entropy rather than its absolute value.

The entropy of a system in a given state relative to some arbitrary
intermediate state (n) can be expressed as

£ 50,
J =

n

S=S5, + (9.5)

n

where S, signifies entropy of the intermediate state.

EqQ. (9.4) has been derived for a reversible process. You may now ask:
How will this equation modify for natural processes like free expansion
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or heat flow? To discover the answer to this question, refer to Fig. 9.1
again and consider heat flow along the path 1C2, which is an
irreversible process. You may like to know as to how the method of
calculation of entropy is modified in this case. To this end, we assume
that heat is given in infinitesimal steps so that irreversible process
between states 1 and 2 can be replaced by a reversible process
through infinite quasi-static equilibrium states. It means that we can
use Eq. (9.4) to calculate the entropy change for each quasi-static
state. Therefore, we can conclude that Eq. (9.4) is valid for irreversible
processes as well for the same initial and final states. This is because
entropy is a property of state and the entropy difference does not
depend on how a system got into that state.

Before proceeding further, you should recapitulate what you have learnt about
entropy so far in this section.

ENTROPY

Entropy for a reversible process is defined through the relation

AS — SQrev
T
where 8Q,, is the amount of heat given reversibly.

For a reversible cycle, net change in entropy will be zero, i.e., entropy
is conserved in a reversible process.

Between states 1 and 2, the change in entropy for reversible process
for n moles of a gas is given by:

2
)
S, =5, =AS ={ Qe
)
We can calculate change in entropy rather than its absolute value.

EqQ. (9.4) can also be used to calculate the change in entropy even for
an irreversible process.

Now we would like you to go through the following examples to grasp the
concepts discussed above.

EX}{MQ’LE 9.1: ENTROPY CALCULATION

Two blocks of iron are in thermal contact. The temperature of block A is
300K and that of block B is infinitesimally higher than 300K. The blocks
are so large that 600 J of heat transferred from B to A leaves their
temperatures unchanged. Calculate the entropy change of the individual
blocks and also the total entropy change. Take the process to be
reversible.

SOLUTION B Since block A is at lower temperature, it will absorb heat.
You can calculate the entropy change using Eq. (9.3):
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You should not
confuse small letter s
with entropy.

5Qa _ 600J

The entropy change for block A, ASy =—>=———=2JK1
by chang AT T 300K
The entropy change for block B, ASg = Qg =— 6007 =-2JK1
T 300 K

The negative sign is included with ASg as B loses heat. This means that
entropy of a system increases when it is heated and vice versa.

Total entropy change, AS = ASap +ASg =2JK1-2JK1=0

That is, when heat transfer is reversible, there is no net change in entropy
and you can say that entropy is conserved in a reversible process.

EMW[@LE 9.2: CHANGE IN ENTROPY OF A SYSTEM

A block of copper of mass1.5 kg is heated from 300K to 350K. Calculate
the change in entropy of the block. The specific heat capacity of copper is
389J kg 1K-1. Assume that heat is added irreversibly.

SOLUTION B Although heat has been added irreversibly, we can
calculate AS using Eq. (9.4):

s L 35JQK%

300K

(i)

The heat absorbed for an infinitesimal rise in temperature is given by:
Qrey = MSAT (ii)
where m is mass and s is specific heat capacity of the block. On inserting
the given data in Eq. (ii), we find that
8Qrey =(1.5kg) x (389 J kg*K™) x AT

350K -1,-1
as= | (1'5kg)x(3891k9 K Heat _ 583.5In (@]JK*
300K

= 583.5x2.303xl0g;0(1.67) JK 1= 90.0JK™!

You may now like to answer an SAQ to check your understanding.

SAQ 1 - Entropy change

One kg water at 27°C and 1 atm pressure is heated to 80°C at the same
pressure. Calculate the change in entropy. Take specific heat capacity of
water as 4.2x103 JK-1kg-1.

Before proceeding further, you may like to know the physical significance of
entropy. So far, we have not said anything about it. We know that when heat
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is added to ice, it melts and the molecular arrangement (in water) is
somewhat loosened (compared to ice). If you add more heat, water may
change to the vapour state. In vapour state, molecules are relatively far apart
and molecular motion is quite disordered. So, we can say that addition of
heat (or increase in entropy) creates disorder. On the other hand, when a
gas condenses or a liquid solidifies (giving out heat), the molecular
arrangement becomes more ordered. That is, disorder decreases when a
gaseous substance changes into the solid state. From this discussion we can
conclude that entropy is a measure of disorder in the system.

So far, we have introduced the concept of entropy and calculated entropy
change in a reversible/irreversible process. You may now ask: How does such
a change influence the system, its surroundings and hence the universe? The
answer to this question leads us to the second law of thermodynamics. It
applies to processes in our body, to combustion of fuel in an automobile, an
aeroplane and a rocket as well as to working of refrigerators and other cooling
machines. It enables us to specify the direction of evolution of natural
processes. We now discuss it in detail.

9.3 ENTROPY AND THE SECOND LAW OF
THERMODYNAMICS

Consider that an infinitesimal amount of heat 5Q flows from the surroundings
at temperature T_ _ to the system under consideration at temperatureTSys .

surr

The net change in the entropies of the system and surroundings is given by

1
AS = ASSyS + ASgyr =0Q [T L — T ] >0 (9.6)
Sys surr Recall that the second
law has been stated in

Note that the equality sign holds for reversible heat flow, whereas greater than | W9 W G-

sign signifies irreversible heat flow. Since all natural processes are essentially equivalent
irreversible, you may be tempted to conclude that entropy of the universe is forms by Kelvin-Planck
continuously increasing. If you think so, you are on the right track. This and Clausius. You

continuous increase of entropy in natural processes is known as the principle | have Igarntlabout
of increase of entropy. And the second law of thermodynamics may be these in Unit 8.
stated as follows:

The entropy of the universe can never decrease.

Don't forget

Consider the construction of a building from materials that were initially
dispersed in the Earth. In this process, matter goes from a completely
disorganized state to a highly ordered state. That is, the entropy decreases. In
Unit 7 of Block 2, you have learnt that the internal energy of a growing child or
a plant increases. But the growth of a living organism from a random mix of
molecules is accompanied by decrease in entropy. These examples may
seem to you to contradict the first and second laws of thermodynamics. But it
is not so. To understand this, let us enquire: What is responsible for life on the
Earth? We can trace it to the energy generated in the Sun’s core by nuclear
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\\&

Don't forget

fusion (H,— He cycle). For example, plants use solar energy for

photosynthesis and create food. Similarly, humans receive this energy via
food chain. So, to answer the above question, you have to consider the
Earth-Sun system. When you do so, you will find that the magnitude of
entropy decrease associated with life on the Earth is less than the entropy
increase associated with nuclear reaction in the core of the Sun. That is, the
organisation of matter is governed by a tendency towards greater disorder
elsewhere in the universe (Sun in this case). Thus, a more formal statement
of the second law in terms of entropy reads as follows:

When an isolated system undergoes a change, its entropy cannot
decrease; it increases or remains constant.

In view of the above discussion, can we say that entropy of the universe has
continuously increased ever since its creation? Definitely, yes.

You must now be convinced that the second law relates (available) energy to
entropy. We can use the integrated statement of these laws to obtain an
expression for entropy difference for any process. This is illustrated in the
next section.

9.3.1 The Combined Form of the First and Second Laws

The first law of thermodynamics establishes the existence of internal energy
(V) as a function of state. Similarly, the second law introduces entropy (S) as
a state function. You may now ask: Can we relate these functions? You may
recall from Unit 7 that for any change of state, the change in internal energy

is given by

dU =8Q — W (9.7)
Similarly, for an infinitesimal reversible process between two equilibrium

states, the second law of thermodynamics tells us that

_5Q
ds =7 (9.8)

These equations may be combined to obtain mathematical expression for the
combined form of the first and the second laws of thermodynamics:

TdS =dU +8W (9.9)

This is one of the most important thermodynamic relations. In the next unit,
you will use it to derive many useful thermodynamic relations.

Proceeding further, we note that for a gaseous system, W = pdV so that
Eq. (9.9) takes the form

TdS =dU + pdV (9.10)

Note that this equation relates all five thermodynamic variables that you have
learnt so far.
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Using the results obtained in Unit 8, we can rewrite Eq. (9.10) in three
equivalent forms:

TdS =nCydT + pdV (9.11a)
TdS = nCpdT —Vdp (9.11b)
and TdS = %(Cp pdV +CyVdp) (9.11¢)

where Cp and G, respectively, denote molar thermal capacities at constant
pressure and constant volume. Note that dS denotes change in molar
entropy.

Before proceeding further, you may like to answer the following SAQ.

SAQ 2 - Firstand second law of thermodynamics

Write the combined mathematical forms of the first and second laws of
thermodynamics for a i) stretched wire, ii) surface film, and iii) paramagnetic
substance.

Before proceeding further, we recapitulate the important results of this section.

ENTROPY AND THE FIRST AND SECOND LAWS

e The second law of thermodynamics states that when an isolated
system undergoes a change, its entropy either increases or
remains constant.

¢ Inthe most general form, the combined form of the first and the
second laws of thermodynamics can be mathematically expressed
as

TdS =dU +6W

We now use Egs. (9.114a, b, ¢) to obtain expressions for changes in entropy
for an ideal gas under different physical conditions.

9.4 ENTROPY CHANGE OF AN IDEAL GAS

Consider n moles of an ideal gas at temperature T in a cylinder fitted with a
frictionless piston. Depending on the physical conditions, we can use one of
the relations given in Egs. (9.11a, b, ¢) to obtain an expression for change in
entropy. Suppose that the gas is given an infinitesimal amount of heat, which
induces changes in temperature and volume. We can describe such a change
by Eq. (9.11a). On dividing throughout by T and substituting for p from the
equation of state (pV =nRT), we get

ds=ncy I 1 nrY (9.12)
T Y,
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Let us now suppose that the initial and final states are characterized by the
thermodynamic variables (V1,T;) and (V,,T,), respectively. If we assume that
Cy Iis independent of temperature, we can readily integrate Eqg. (9.12) to
obtain the same result as given in Eq. (9.2):

AS =nCy In (T—zj +nRIn (\Qj (9.13)
T Vi

You should study the following example to learn how to apply this result.

EXAMPLE 9.3: CHANGE IN ENTROPY

Calculate the increase in entropy of 1 g of hydrogen when its temperature
is raised from —173°C to 27°C and its volume becomes four times. It is
given that C, = 2.43calg 1K1, R =2.01calmol-1K-1 and molecular

weight is 2gmol-1,
SOLUTION B For n moles of an ideal gas, the entropy change is

calculated using Eq. (9.13). However, for 1g of the gas, you have to
replace nCy by Cy and nR by r = R/ mol. weight:

. _ 2.01calmol tKk 1

29mo|‘l

=1.005calg K ?

From Eg. (9.13) we recall that change in entropy is given by

T2 _1 —l V2

AS =2.303| Cy logyo | =2 |+ (1.005calg~K~1)iogg | —2

T Vi

Here Ty = (=173 +273)K = 100K, T, = (27 +273)K = 300K, and
Cy =2.43calg 1K1 On inserting the given values, we get
AS =2.303x[(2.43calg 1K 1)xlogig 3+ (1.005calg~1 K1) xlogyg 4]

= 2.303x(2.43x0.4771+1.005x 0.6021) cal g~ LK1

=4.062 calg™1K1,

Starting from Eqg. (9.11b), you can easily convince yourself that the entropy
change between states defined by (T1,p;) and (T,, po)is given by

AS =nCp In(T—Zj—ann(ﬁj (9.14)
T1 P1

Similarly, if reference states are defined by (p;,V1)and (p,,V5), the entropy
change is given by

AS =nCp In [\Qj—nc\, |n(p—2j (9.15)
Vi P1
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A gas may be made to expand or compress isothermally. When n moles of an
ideal gas are made to undergo isothermal changes, Egs. (9.13) and (9.14)
predict that entropy changes are, respectively, given by

AST =nRin (\QJ (9.16a)
Vi
and AST =RIn (ﬂJ (9.16b)
P2

The subscript T in ASt signifies that temperature remains constant. That is,
when an ideal gas undergoes an isothermal expansion defined by

(Vo >Vq,p1 > p2; T =constant), its entropy increases. When a gas undergoes
isothermal compression, entropy will decrease.

For isobaric changes, Egs. (9.14) and (9.15) predict that

ASp =nCp In [TZJ (9.17a)
T

and ASp =nCp In (\\/TZJ (9.17b)
1

These results tell us that when either temperature or volume increases during
an isobaric process, the entropy increases and vice versa.

Now you should go through the following example carefully.

EMMQ’LE 9.4. ENTROPY CHANGE IN TERMS OF R

One mole of an ideal gas expands isothermally to four times its initial
volume. Calculate the entropy change in terms of the gas constant.

SOLUTION B For one mole of an ideal gas, Eq. (9.16) implies that

% —In(V5 /1) = 2.303l0g10 (V2 V1)

Since V, /V; = 4,the entropy change during isothermal expansion, in terms
of gas constant, is given by

% =2.303log;g 4

=2.303 x0.6020 =1.386

You may like to answer the following SAQ before studying further.

SAQ 3 - Increase in entropy

Calculate the increase in entropy of one mole of argon heated from 300K to
600K at constant volume.
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9.4.1 Entropy of Mixing

Refer to Fig. 9.2. Suppose that the hollow circles depict n, moles of oxygen
and solid circles denote n, moles of nitrogen in two separate containers at
constant temeprature T and pressure p . The gases are separated by means
of a stopcock. We assume that these gases behave as an ideal gas. You may
now like to know: What happens when the stopcock is opened and these
gases mix? To answer this question, let us assume that partial pressures of
oxygen and nitrogen in the mixture are p,and p,, respectively.

o_O ° ® o0 e} o) eO .0 [¢}
o (eXe) ) o0 [e) o O
60, ooo o 0%, 90 OcC0 00 00 e
o .
OOOOO o0 P ) ..... [olEe) o.oo. .Oo.oooo
op ©° ® 0 4° o 0 oCe0”0 00p ©® e
Op o 0 e ® [ ] [ ]
0,000 0 o ®%ee® Oo CeOCece ®9®2 00
c)OOOOOOO A ®eee® .OO.O.OO 00 O®epo e
Ooooooo ® o°%° 00©° e e ©0,® 0,00
o o © ® o6¢ oo 0 4 0°0p 00 oep e
o] 000 LY o o L el ] ° °
oOoo o O L :'. o oo OoOO 00%%00°
o OOOOO e .oo.OOo OOO ®He
A B A+B

Fig. 9.2: Intermixing of two gases.

The entropy of mixing is equal to the sum of the entropy changes for each
gas as it expands from its initial pressure to its partial pressure in the mixture.
The changes in entropies AS; and AS, for the two gases when mixing takes
place at constant T can be obtained using Eqg. (9.14):

AS1 =-n1RIn (&j =niRIn (EJ
p P1

and AS> =nsRIn (ij
P2

Hence, when the gases have mixed, the entropy of mixing is given by

ASpix = AS1 +AS = nyRIn (ﬂj +n,RIN [ij (9.18)
P1 p2

From your school curriculum in chemistry, you may recall that the partial
pressures can be expressed in terms of total pressure as p; = x4p and

p, = Xop, Wwhere x, and X, are mole fractions of two gases. On substituting
these values of p, and p,in Eq. (9.18), we obtain

ASmix =MRIn (LJ +nsRIn (Lj
X1p X2 p

=-n1R Inx;—ny R InXx, (9.19)

Now suppose you have to compute the entropy of mixing per mole of the
mixture. You can do so easily by dividing both sides of Eq. (9.19) by n, +n,.

This gives

AS i n n
—MX___R L nx;+—2—Inxs
ni+nNo N1 +nNo ni+nNo
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n n
1 and —2
Ny +nNy Ny +nNy

The ratios

define the mole fractions of two gases.

Hence, the entropy of mixing per mole of mixture is

ASnix = -R[x1InX1 + X2 Inx5] (9.20)

Note that a negative sign occurs in the expression for entropy of mixing. Does
this mean that entropy decreases in the process of mixing of two gases? If
you think so, you are not correct.

Since xjand x, are less than one, the entropy of mixing will be always

positive. Note that we have derived Eq. (9.20) for ideal gases. But it holds for
liquids also where intermolecular forces between the components are uniform.
The concept developed in this section is illustrated in the following example.

EX;IM(PL{E 9.5 ENTROPY OF MIXING

Equal volumes of two gases are mixed under same temperature and
pressure. The pressure remains unchanged but the total volume is
doubled. Calculate the entropy of mixing for one mole of the mixture.

SOLUTION B Since the gases are initially at the same temperature and
pressure, Avogadro’s hypothesis tells us that equal volume will have equal
number of molecules, i.e., n; = n, = n,say. Therefore, the mole fraction of

each gas in one mole of the mixture is 0.5. Hence, the entropy of mixing is
given by

ASpix = —R[Xx1In X1 + X2 INX5]

= —(8.31JK-1mol~1)[0.5In0.5 + 0.5In 0.5] = 5.76 JK 1 mol 1

We know that matter can change its state from solid to liquid (ice to water) and
liquid to gas (water to steam) or solid to gas (dry ice, i.e., solid carbon dioxide
to CO, gas) under appropriate conditions of temperature and pressure. Such
a transformation is called phase transition. Conversion of ice to water is an
example of first order phase transition.You will now learn to obtain
expressions for entropy changes accompanying a phase transition.

9.4.2 Entropy Change of Phase Transition

We know that at atmospheric pressure, water boils at 100°C. But on hill
stations, boiling begins below 100°C. In a physics laboratory also, you can
make water boil below 100°C through a simple activity. Put some boiling water
in a flask and allow it to cool. Then pour some water over the flask. You will
observe that water begins to boil again even though it is below 100°C. It
means that phase transition is determined by pressure. However, it is
accompanied by absorption or evolution of heat. For an isobaric-isothermal
process, the quantity of heat evolved or absorbed by a system defines
enthalpy, H. Hence, the entropy change for an isothermal-isobaric process

can be calculated using the relation
41



Block 3

Second and Third Laws of Thermodynamics

42

8Qrey _ AH
T T

You can use this result to compute the entropy change accompanying the
transition of a solid to a liquid or a liquid to a vapour and vice versa.

AS (9.21)

When n mole of a solid melts to the liquid phase, the entropy of fusion is given
by
AHgysi
AStusion = ~fusion. (9-22)
fusion

where AHsysion IS molar enthalpy of fusion and Tsgion IS the melting point.

Similarly, for n mole of a substance, the entropy of evaporation is given by

(9.23)

where AHgyqp is molar enthalpy of vaporisation and Tey 4, is the boiling point.

In the following example, we have illustrated the use of some of these
relations to compute entropy changes.

fﬂﬂ'[@ﬁf 9.6 ENTROPY OF VAPORISATION

The enthalpy of vaporisation of ethanol is 43.5 kJ mol at its normal boiling
point of 351.5K. Compute the entropy of vaporisation. The enthalpy of
fusion of ethanol is 4.6 kJ mol™ at its normal melting point of 156 K.
Calculate the entropy of fusion.

SOLUTION B From Eq. (9.23), we recall that entropy of vaporisation is
given by

AHevap 435003 mol™*
Tevap  351.5K

—124IK Imol ™1

AS'evap =

Fron Eqg. (9.22), we note that entropy of fusion is given by

AHfusion _ 4600J mOl_l
Ttusion 156K

=29.5JKImol-1

ASfusion =

You will note that ASgyap >> AStysion - This difference shows that entropy

increases as a system becomes less restricted. When a solid melts, its
atoms become less ordered in their locations and motion. When a liquid

vaporises, molecules gain considerably greater freedom of movement.

We would now like you to solve an SAQ.

SAQ 3 - Entropy of solidification

The melting point of water at 1 atm pressure is 273.16 K and the specific
latent heat of melting is 334.4 Jg~1. Calculate the entropy of solidification for

one mole of water.
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Before proceeding further, we would like you to recapitulate what you have
learnt in this section.

ENTROPY CHANGE, ENTROPIES OF MIXING,

FUSION AND EVAPORATION

¢ When n moles of an ideal gas undergo an isothermal transformation,
the change in entropy is given by:

AST =nRIn (\QJ = nRIn{ﬁ}
Vi P2

e For an isobaric process, change in entropy of a gas made up of n
moles is given by:

ASp =nCp In[\gj =nCplIn T2
Vi T

e The entropy of mixing per mole of mixture of two gases is always
positive:
ASnix =—-R [xlln X1+ X21n Xz]

where x;and x, are mole fractions.

e For one mole of a substance, the entropy of fusion is given by:

AHgysi
AStysion = s Jusion.
fusion
. o AHevap
and the entropy of evaporation is: ASgyap = .
Tevap

Having established that entropy is a thermodynamic property of a system, we
now discuss its significance in various reversible processes and draw
corresponding T-S diagrams. These diagrams are often useful in engineering.
As you know, the simplest and the most important reversible cycle is the
Carnot cycle. You have learnt how to obtain an expression for the efficiency
of a Carnot engine in Unit 8. Here we will show how the same result can be
obtained more elegantly using a T-S diagram.

9.5 REPRESENTATION OF CARNOT CYCLE ON
ENTROPY-TEMPERATURE DIAGRAM

Refer to Fig. 9.3. It is a schematic representation of the Carnot cycle on the
T-S diagram.

T
& Isotherm

2

/

T

1

Adiabat

» S

Fig. 9.3: Representation of Carnot cycle on T-S diagram.
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You will recall that Carnot cycle consists of four reversible processes:

i) isothermal expansion, ii) adiabatic expansion, iii) isothermal compression,
and iv) adiabatic compression.

You will note that the isotherms are horizontal straight lines for a given
temperature, whereas the adiabats are vertical straight lines corresponding to
constant S (8Q =0=dS). So, Carnot cycle is a rectangle on the T-S diagram.
To obtain the expression for net entropy change in one cycle, let us consider n
moles of an ideal gas is enclosed in a cylinder.

Step I: The gas absorbs heat Q, reversibly at temperature T; and expands
isothermally. (The pressure decreases from p, to p,.) Using Eq. (9.3), we
can write the increase in entropy of the gas as
ASy = Q (9.24a)
T

Step Il: The gas expands adiabatically (but pressure falls from p, to p,).
We know that no heat exchange takes place between the system and its
surroundings in an adiabatic process. Therefore, according to the first law of
thermodynamics, expansion occurs at the expense of internal energy of the
system. This, in turn, implies drop in temperature of the gas. Suppose that
temperature drops from T, to T, . Since no heat transfer occurs, entropy does
not change and we can write

AS; =0 (9.24b)

Step lll: The gas at temperature T, is now compressed isothermally. In this
process, work is done on the gas and it gives up heat Q, to the environment.
Then change in entropy is given by
ASg =32 (9.24c¢)
T2

Step IV: Finally, the gas is compressed adiabatically to its original volume
and pressure. As a result, the gas attains its state and its entropy is
conserved during the process:

AS4 =0 (9.24d)

Since Carnot cycle is reversible, there will be no net change in its entropy,
i.e., As =0and we can write

AS =AS1 +ASy> +AS3 +AS, =0

On using Egs. (9.24a to d), we get

Q,9-22 .99
Ty T2

or &zT—l (9.25)
Q T»

This result shows that the ratio of the heat absorbed to the heat given out in a
reversible cycle is equal to the ratio of the temperatures of the source and the
sink. Since efficiency is ratio of work done and heat absorbed, we can write:
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W _ Q-Q

Q1 Q1
Using Eq. (9.25) we can write:
n=1—I;
T

(9.26)

Note that the expression for efficiency of Carnot engine has been obtained
more conveniently using T-S diagram as compared to the indicator diagram.

9.6 ENTROPY AT ABSOLUTE ZERO: THIRD LAW
OF THERMODYNAMICS

From experience we know that the basic difficulty with all cooling processes is
that it becomes gradually more difficult to achieve and maintain lower and
lower temperatures. For example, the cooler a liquid is, the harder it becomes
to maintain its temperature or pump it out to produce further cooling.

Suppose that temperature T,,, say 10% of the initial temperature T, is
achieved in one mechanical step. The second step will produce a temperature
T, which is approximately 10% of T,. This means that even by an infinite
number of adiabatic processes, it would not be possible to attain absolute
zero. From this we may conclude that

The absolute zero is not attainable by any number of mechanical
processes.

Don't forget
Like the second law, the third law can also be stated in terms of entropy. But

before giving that statement, we would like you to relook at Eq. (8.5). It can be

re-written as

f
S=5, +I6—Q_I_rﬂ where f is the final state.

n

It helps us to determine the change in entropy of a system during a reversible
process. But absolute entropy remains indeterminate because of the presence
of an additive constant (S,,). You may now ask: Can we determine this
constant? The answer to this question constitutes another statement of the
third law. It defines the entropy of a system as its temprature tends to absolute
zero.

Nernst observed that at low temperatures entropy change of a system is very
small when we go from one equilibrium state to another. It is because near
absolute zero, all systems are highly ordered and the entropy of all states (of
every substance) is almost constant. This prompted Nernst to state the third
law as follows:

The entropy changes associated with any reversible isothermal
process tend to zero as temperature approaches absolute zero.

Don't forget

Mathematically, this is expressed as: 45
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Don't forget

lim AS -0 (9.27)
T—>0

This fact beautifully manifests in the case of liquid helium-Il and
superconductors. To understand this, we recall Clausius-Clapeyron equation:

dp _ AS
dT ~ AV

You will recognise that 3—_? defines the slope of the melting curve. Eq. (9.27)

predicts that the curve should become horizontal (AS=0)as T — 0.

In 1912, Planck extended this idea by proposing that near absolute zero,
entropy of every substance is so small that it can be taken as essentially
zero. He stated the third law of thermodynamics as follows:

|| The entropy of every substance is zero at the absolute zero.

Mathematically, this is expressed as:

lim S —0 (9.28)
T—>0

Today, this law is supported by ample experimental evidences and finds wide
applications in low temperature physics. We now discuss some important
consequences of the third law.

9.6.1 Consequences of the Third Law

i) Behaviour of thermodynamic potentials

We know that G=H -TSand F =U —TS . According to the third law of
thermodynamics, as T — 0,S — 0 so that the product TS — 0. That is,
when temperature approaches absolute zero, Gibbs potential equals
enthalpy and Helmholtz potential equals internal energy. Physically, it
means that there is perfect order and entire energy is available for work.

i) Iso-thermal volume and pressure expansion coefficients

The changes in entropy of a system due to small changes in pressure
during a process near absolute zero may be expressed as

AS = j (%l(ﬂ (9.29)

But according to the third law of thermodynamics, as T — 0,AS — 0. So
we can say that

. 0S
lim (—j —0
T—>0\0p )t

Using Maxwell’s relation (ﬁj = _(
op J;

oV

— | , we can write:
oT 0
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lim (ﬂJ 50 (9.30)
T—>0 p

By definition, \%(Z_\'I{j is the coefficient of volume expansivity, a . So,

p

lim o—0 (9.31)
T—>0

Similarly, you can convince yourself that

lim (6_'0 -0 (9.32)
T>o0\OT

i) Heat capacities near absolute zero

Recall that specific heat capacity at constant pressure is defined as

corr(3)
oT D

Hence, at constant pressure, we can take

_CpdT
T

ds

By integrating it between finite temperature limits, we can write

e, dT

S(T1)-S(T)= pT (9.33)

T

In the limit T — 0, the third law implies that the integral on the right hand
side of Eq. (9.33) should be finite. That is, it should not divergeas T — 0.
Thus, we must have

lim C, =0 (9.34)
T—>0

Similarly, it can be shown thatas T — 0

[im ©, =0 (9.35)

It shows that in the limit T — O, the specific heat capacites attain the
same value. This prediction of the third law is borne out by experiments
rather well. Let us recapitulate what you have learnt in this section

THIRD LAW OF THERMODYNAMICS

Entropy of a system at absolute zero is zero and the system is in perfect
order. It essentially implies non-attainability of absolute zero temperature.

Let us now summarise what you have learnt in this unit.

a7
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9.7 SUMMARY
Concept Description
Entropy B Entropy is defined through the relation
ds _ Qrev
T

48

Second law of
thermodynamics in
terms of entropy

Entropy change of an
ideal gas

Third law of
thermodynamics

Entropy is an extensive variable and a state function.

B Entropy is a measure of disorder in the system; more chaotic the

system, greater will be its entropy.

B The second law of thermodynamics is essentially the principle of

increase of entropy. It states that, when a closed system undergoes a
change, its entropy cannot decrease; it either increases or remains
constant, Mathematically, it may be expressed as

AS >0

B The entropy change of an ideal gas made up of n moles can be

calculated using the relations

AS =nGCy In [-I'I_sz +nRIn (\\//-2]

1 1

= nCpin (Vz) +nCy In (pzj
\%1 P1

=nCp In(sz -nR In(pzj
T p1

B Third law of thermodynamics states that equilibrium entropies of all

systems and the entropy changes in all reversible isothermal
processes tend to zero as temperature approaches absolute zero.

9.8 TERMINAL QUESTIONS

1.

A huge copper block at 1000K is joined to another huge copper block at
500K by a copper rod. The rate of heat conduction is 104 Js—1. Calculate
the increase in entropy of the universe due to this process.

Eddington proposed that entropy is the arrow of time. Comment.

m g of water at temperature T, is mixed with an equal mass of water at
temperature To. Show that the change in entropy is

T1+To

T .
2mCp In[ av ] where Ty, = is average temperature.

112

20 g of ice at 0°C is converted into water at the same temperature.

Calculate the change in entropy. [Given: Latent heat of fusion
(L)=80 cal/g].
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5.

6.

Calculate the change in entropy when 10 g of ice at 0°C is converted into
steam. [Given: latent heat of fusion of ice = 80 cal/g; latent heat of fusion

of steam = 540 cal/g].

Write the third law of thermodynamics in terms of entropy differences.

9.9 SOLUTIONS AND ANSWERS

Self-assessment Questions

The change in entropy when 1 kg water is heated from 27°C (= 300K) to
80°C (= 353K) is given by

353

As= |

300

mcdT 353
=mc In| —
300

On substituting the given values, we get

353
As = (1k 4.2%x103Jkg 1K) In (kj
(1kg) x (4.2 x g ) 300

= (4.2x103Jkg~1K1)x 0.163JK1 =6.84x102JK-1
a) TdS=dU-Fdl; b) TdS=dU-ocdA and c) TdS =dU —BdM

R
ASy =nCy In [—ZJ =Cy In2
Ty

Since Cy :%R, we find that
ASy = gx (8.314JK1mol-1)In2=8.64 JK1

mA/  189x334.4Jg7 6019.2]
Tmelt 273.16K 273.16K

ASmeit = =22 JK1

Terminal Questions

1.

By carrying out the heat transfer reversibly, we can calculate that
AS =(q/T1) = (q /T2) =10%Js* [(1/ 500K) — (1 / 1000K)] = 10 JK st
Thus, the entropy of the universe increases by 10 JK! per second.

The statement is justified. If you calculate entropy of the universe at two
different times, the point of higher entropy would correspond to the point of
later time. This statement is further justified by the fact that the universe
has been expanding uniformly ever since its creation. Even if one
observed the motion of galaxies, these are found receding with respect to
any point of observation. This means that the entropy of the universe is
increasing continuously, as does time.

Since the masses of water being mixed are equal, the temperature of the
mixture will be the arithmetic mean of T1 and Ta:
Tl +T2
Tmix = T =Tay
49
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Since the process is isobaric, the change in entropy of water sample
whose temperature rises from T1 to Tay is given by:

3Q ij .
AS; =— =mCp In| = i
1= 7 P ( T, (i)
Similarly, the change in entropy of water sample whose temperature falls

from T to Ty is:

ASZ:rnCPM(LyJ (i)
T2
Hence, the net change in entropy is:
AS=A51+A82:mCPM(LﬂJ-+memtEij (i)
T1 T2

2
Sincelna +Inb = In (ab), you can write it as AS =mCp In G__?V j
T2

2

T T . .

=mCp In (&j =2mCp In( = J since Inx" =ninx. (iv)
JTiT, VTl

In (iii), Tay is the arithmetic mean. /T T, is geometric mean of T and T».

We know that the arithmetic mean of two unequal positive numbers is
greater than their geometric mean. So, the argument of logarithmic
function is greater than one and the entropy of the system increases:

AS>0 (v)
You will recognise that entropy change is not necessarily accompanied by

heat flow. That is why, entropy increases in free expansion, intermixing of
gases and so on.

4, Total heatisdQ =mL =20x80=1600 cal and T =0°C = 273K.
dQ _ 1600
T 28

5. ltis given that latent heat of fusion of ice = 80 cal/g, and
Latent heat of fusion of steam = 540 cal/g.

The increase in entropy dS = =5.86 cal/K

Step I: Ice changes into water at 0°C (isothermal change)

s, = b1 _ 10580 ok — 2 93calik
T, 273

Step II: Water changes its temperature from 0°C to 100°C.

373
ASH = J- medT =mc In (E) =10x1xIn (ﬁj =3.12callK
73 T 273 273

Step Ill: Water at 100°C changes into steam at 100°C.

AS3 = 10540 14.48cal/K
373

Net change in entropy =2.93+3.12+14.48 = 20.53 cal/K
6. Interms of entropy, third law of thermodynamics can be expressed as

imS—0
T—->0
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10.1  Introduction 10.5 Joule-Thomson Effect
Expected Learning Outcomes 10.6  Summary

10.2 Thermodynamic Potentials 10.7 Terminal Questions

10.3 Maxwell's Relations 10.8 Solutions and Answers

10.4 Deductions from Maxwell’'s Relations
TdS-Equations
Energy Equations
Clausius-Clapeyron Equation

STUDY GUIDE

In Unit 9, you have learnt the concept of entropy and used it to state the second law of
thermodynamics, which emphasises that entropy increases in all natural processes. In this unit, you
will learn that a change in a thermodynamic system under specific constraints requires a new
function, called free energy. We will introduce the concept of Helmholtz free energy, F and Gibbs
free energy, G. In deriving various thermodynamic relations, we shall make extensive use of partial
differentiation. Therefore, you should refresh your previous knowledge of this topic. We firmly believe
that you must not memorise thermodynamic relations. Instead, you should learn how to obtain these
based on mnemonic diagrams. This will make your learning an enjoyable experience. Quite a few
numerical problems, solved examples and SAQs based on Maxwell’s relations have been given in
the unit. Do practice solving these for better understanding. In case, you are not able to solve on
your own, read the section again before looking for the solutions provided at the end of the Unit.

“Thermodynamic irreversibility is due to cosmological Peter T.
expansion.” Landeberg
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Helmholtz free energy
is also denoted by the
symbol A in literature.

10.1 INTRODUCTION

So far, we have discussed three thermodynamic functions — temperature (T),
internal energy (U), and entropy (S). You may recall that temperature helped
us in formulating the equation of state of a thermodynamic system and
internal energy enabled us to develop a mathematical formulation of the first
law of thermodynamics. The concept of entropy was used to mathematically
formulate second law of thermodynamics, which emphasises that entropy
increases in all natural processes. From experience, we know that every
system has an inherent tendency to approach equilibrium and the first and
second laws of thermodynamics do not provide us any information about this.
This suggests that there is a need to supplement these laws when we wish to
get information about the condition of thermodynamic equilibrium of a system.
In Sec. 10.2, you will learn that a change under specific constraints requires a
new function, called free energy, which is a function of state. We introduce
enthalpy, H; Helmholtz free energy, F and Gibbs free energy, G. The
functions U, H, F and G are collectively called thermodynamic potentials or
free energies. You will note that each free energy has its own pair of natural
variables. Moreover, these carry a treasure trove of information about the
system.

Thermodynamic potentials are very handy in obtaining Maxwell’s relations,
which are used to derive all important thermodynamic relations. Their
usefulness lies in the fact that they frequently relate quantities which seem
unrelated. As a result, these relations enable us to link experimental data
obtained in different ways or replace a difficult measurement by an easier one.
We can also use these to obtain values of one property, which may be
straightforward, from calculations or measurement of another property. In
brief, these relations are very general and extremely useful as they
enormously simplify thermodynamic analysis. You will learn how to derive
Maxwell’s relations in Sec. 10.3. You will also learn how to obtain
TdS-equations and energy equations using Maxwell’s relations. We have also
discussed applications of Maxwell’s relations to derive Clausius-Clapeyron
equation in Sec. 10.4. In Sec.10.5, you will learn about Joule-Thomson effect
which is used to produce low temperatures.

Expected Learning Outcomes

After studying this unit, you should be able to:

X3

%

define thermodynamic potentials;

*

K/
*

derive Maxwell’s relations from thermodynamic potentials;

*,

X3

%

apply Maxwell’ relations to obtain the TdS-equations and energy
equations;

3

%

obtain Clausius-Clapeyron equation from Maxwell’s relations;

.0

discuss Joule-Thomson effect and how it can be used to produce low
temperatures; and

+« define inversion temperature and discuss its importance for liquefaction
of gases.
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10.2 THERMODYNAMIC POTENTIALS

Consider a gas contained in a cylinder fitted with frictionless piston. The
thermodynamic behaviour of this gas can be described in terms of any two
variables out of p, V and T, the third one is automatically fixed in view of the
equation of state. Such a system is said to be a two-coordinate system. But
even for description of such a system, we need several functions of state: p,
V, T, S, Uand H. (Of these, U and H have dimensions of energy.) In principle,
we can construct several functions of state by combining these functions.
However, only a few of these may have physical significance. In particular, we
define Helmholtz and Gibbs free energies, which also have dimensions of
energy like internal energy and enthalpy. As you proceed, you will learn that
knowledge of the behaviour of two-coordinate system can be obtained from
any one of these four free energies. These are defined as follows:

e Internal energy ; u A
e Enthalpy : H=U+pV
> (10.1)
e Helmholtz energy F=U-TS=H-pV-TS
e Gibbs energy : G=U-TS+pV=F+pV Y

It is interesting to mention here that U, H, F and G are collectively referred to
as thermodynamic potentials or free energies. Of these, Helmholtz energy is
particularly important as it provides a vital connection between
thermodynamics and statistical mechanics. That is, it provides a bridge
between macroscopic and microscopic viewpoints. You will know these details
in Block 4 of this course. Gibbs free energy finds wide applications in the
study of phase transitions.

The physical significance of thermodynamic potentials becomes clearer from
their differential forms. You will learn about these now.

Differentials of Potential Functions

Let us consider a gaseous system undergoing an infinitesimal reversible
process. From Eq. (9.10), you would recall that change in internal energy can
be written as

dU =TdS - pdV (10.2)
Also, a small change in enthalpy, defined as H =U + pV, can be written in
terms of changes in internal energy, volume and pressure as

dH =dU + pdV +Vdp

On combining this result with Eqg. (10.2), we can write
dH =TdS +V dp (10.3)

Likewise, using the definition of Helmholtz free energy(F =U —TS), we can

write
dF =dU — (TdS + SdT)
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On combining this result with Eg. (10.2), we get
dF =-SdT - pdV (10.4)

This equation defines the dependence of F on independent variations of
T and V.These thermodynamic variables, therefore, constitute the natural
pair for Helmholtz energy and we can write F =F(T,V). Note that the
right-hand side of Eq. (10.4) comprises two terms and each of these terms
consists of a pair of thermodynamic variables such that their product has
dimensions of energy.

It readily follows from Eg. (10.4) that entropy and pressure, respectively, of
constant V and constant T systems are given by

S - —(ﬁj (10.5a)
aT )y
oF
and p= _(G_VJT (10.5b)

These relations show that once F is known for a system under consideration,
we can obtain complete information about its thermal properties. Further,

Eq. (10.5a) shows that the Helmholtz energy decreases with rise in
temperature, since entropy of any substance is always positive definite. The
higher the entropy of a substance, greater would be the rate of decrease of
F. That is why at higher temperatures, the rate of fall of F with temperature is
maximum for gases and minimum for solids. Similarly, Eq. (10.5b) shows that
an increase in volume decreases Helmholtz energy; the rate of fall being
greater at higher pressures.

Starting from the definition of Gibbs energy (G =F + pV) and using
Eqg. (10.4), you can easily convince yourself that an infinitesimal change in G
is given by (SAQ 1):

dG =—SdT +Vdp (10.6)

Note that T and p constitute the pair of natural variables for Gibbs energy and
we can write G =G (T, p). Further, we can write

oG
s _[ i jp (10.7a)
and V= [ﬁJ (10.7b)
op )t

You should now solve an SAQ before proceeding further.

SAQ 1 - Gibbs energy

Derive Eqg. (10.6).
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Proceeding further, let us suppose that only one of the free energies is known
explicitly. You may then logically ask: Can we get complete information about
the system from it? The answer to this question is in the affirmative. We
illustrate this by considering the Helmholtz free energy.

To express U,H and G in terms of F, we have to start from their respective
definitions. For example, by substituting for S from Eg. (10.5a), the internal
energy can be expressed as

U=F+TS=F-T (Z—_';]V =T 2{@%(;)}\/ = B(g//;))}v (10.8)

since i i =—idT.
dT \T T2

Eq. (10.8) is known as the Gibbs-Helmholtz equation. It finds great use in
thermo-chemistry.

Similarly, on substituting for S and p from Egs. (10.5a) and (10.5b)
respectively, you can write

H=F+TS+pV=F-T (a—Fj -V (‘fj (10.9)
aT N Jr
and G=F+pV=F—V(EJ =—v2{ﬂ(5ﬂ {M} (10.10)
oV vV ) L aav)

Egs. (10.8), (10.9) and (10.10) clearly show that the entire information about a

thermodynamic system can be obtained once we know Helmholtz free energy.

You may now logically ask: Can we say the same for other thermodynamic
potentials? The answer to this question is in affirmative. However, we will not
establish this result. To convince yourself, you should answer the following
SAQ.

SAQ 2 - Thermodynamic potentials

a) Obtain first order derivatives of H and G which justify the following
statements:

i) At constant entropy, the rate of increase of enthalpy with pressure is
greater for a gas than that for a solid.

i) Under isothermal conditions, the Gibbs energy increases more rapidly
with pressure for a gas than for a liquid or a solid.

b) Prove that

{3, ()
T T

i) H :{6(G/T)}
p

()

Thermodynamic Potentials
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Before proceeding further, let us recapitulate what you have learnt in this unit
so far.

THERMODYNAMIC FREE ENERGIES

e The behaviour of any pVT system can be explained in terms of four
thermodynamic free energies:

» Internal energy, U

» Enthalpy, H=U + pV

» Helmholtz energy, F=U-TS
» Gibbs energy, G =F + pV

e Each thermodynamic free energy is associated with a natural pair of
variables:

U =U(S,V); H=H(S,p); F=F(T,V) and G = G(T,p)

Now that you have learnt about free energies, you can use these to obtain
several thermodynamic relations. We first illustrate it by deriving Maxwell’s
relations. As you proceed, you will learn that these relations derive their
usefulness from the fact that they frequently relate quantities, which
apparently seem unrelated. Moreover, Maxwell’s relations simplify
thermodynamic analysis considerably without compromising with elegance.

10.3 MAXWELL’S RELATIONS

You have read about exact differentials in Block 2. We will now use this
concept for deriving Maxwell’s relations, which connect the partial derivatives
of p,V,T and S for a simple compressible substance. These are extremely
useful relations. These can be readily applied to determine the changes in a
property that cannot be measured directly, by simply measuring the changes
inpVandT.

Suppose zis a function of state which depends on two independent state
variables x and y and we can write z = z(x,y). Then an infinitesimal change
dz in z due to changes in x and y can be expressed as

dz:(ﬁ—zj dx+[a—zj dy
X )y Y )y
= Mdx + Ndy (10.114)

where we have put M =(a—ZJ and N = a . If we differentiate M with
oX y oY )y

respect to y, keeping x fixed, and N with respect to x, keeping y fixed, we get
@j _ (i(a_z] J
)y \oylox)y §

and
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OX y ox\ oy ), y
We know that the order of differentiation does not affect the value of a perfect

differential, that is i 6_2 = i 6_2 . So, we can write
oy \0x )y, X\ 0y )y y
X

(5,
N X )y
We are now in a position to use Egs. (10.11a) and (10.11b) to obtain Maxwell

relations from thermodynamic potentials. But before doing so, let us
summarise what you have learnt in this section.

(10.11b)

If dz is an exact differential
dz=Mdx+Ndy

where z,M and N are functions of xand y , then

[5)(5),

To obtain Maxwell’s relations using thermodynamic free energies, you can
choose any one of the free energies as a function of any two thermodynamic
variables out of p,V,S and T. Let us first choose T and V as independent
variables. Recall that the free energy associated with these variables is F. It
means that we have to refer to Eq. (10.4) and compare it with Eq. (10.11a).
You will note that these equations have exactly the same form. In fact, these
will be identical if you identify F with z, —-S with M, —p with N, T with x
and V withy. (This means that F,S and p are now functions of T and V.)
Therefore, using Eqg. (10.11b), we can write:

(&)=l

)
or — | ==
oV )y \aT )y
Similarly, if we choose T and p as independent variables, we have to consider
Gibbs free energy and refer to Eq. (10.6). Then on comparing it with

Eqg. (10.11a), we note that these equations will become identical if we replace

G with z, =S with M, and V with N. Moreover, T is identified with x and p with
y. Then using Eg. (10.11b), you will obtain

_(88) (v
op )7 oT D
Similarly, if we choose S and V and S and p as independent variables, we
have to work with Egs. (10.2) and (10.3), respectively.

(10.12a)

(10.12b)

Don't forget

Maxwell’s relations can
be written from the
following statement:

o(pv) a(T.s)
alxy) a(xy)

where x and y can be
pairs out of

(T.V).(T,p)(S\V)
and (S, p).

The variables occurring
at exactly the same
position in the
numerator as well as
the denominator are
cancelled out and put
as suffix but if they
occur in crossed
positions, we put a
negative sign while
cancelling them.

Thermodynamic Potentials
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Following the procedure outlined above, you can easily convince yourself that
(ﬂj _ _(a_pj (10.12¢)
oV Jg oS )\

and (EJ :(ﬂj (10.12d)
P Jg \0S),

From Maxwell’s relations, you will note that:

i) Cross multiplication of the variables involved in the partial derivatives
always gives the form: (TS ) = (pV ), which has the dimensions of energy.

ii) The independent variable of the partial differentiation on the left-hand side
appears as a constant on the right-hand side and vice-versa.

iif) The sign is positive if T appears with p in a partial derivative (remember
‘p’ for positive).

iv) We can study pressure and volume variation of entropy in terms of partial
derivatives involving extensive and intensive thermodynamic variables

A detailed study of Maxwell’s relations leads to a satisfactory explanation of
many interesting physical phenomena. For example, let us consider the first
Maxwell relation. It can be used to explain the co-existence of two phases of a
substance in equilibrium. Similarly, the second relation can be used to explain
anomalous expansion of water when it is heated from 0°C to 4°C.

You can perform a very simple activity. Take Indian rubber and stretch it
before touching with your lips. Do you experience some heat? We can seek
explanation of this and such other phenomena in Maxwell’s relations. You will
learn about these a little later.

Before you go over to the next section, you should learn how to apply
Maxwell’s relations. We explain it by solving an example.

EXXIMG’LE 10.1: MAXWELL’S RELATIONS

Calculate the pressure at which water would boil at 160°C, if the change in
specific volume when 1 g of water converted into steam is 1676 cc. Given
1cal=4.2x107erg, 1 atm =105dyne cm~2 and specific latent heat of
vaporization of steam is 540 calg—1.

SOLUTION B From Maxwell’s first relation [Eq. (10.12a)], we can write

&)= &

Multiplying both sides by T, we get T (ﬁj =T (a_pj
oV )r aT )y
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But we know that 6Q =TdS

(@j T (a_PJ
N o aT )y
Here 5Q = ml =540cal =540x4.2x107 erg,

T1 =100°C = 373K, T, = 160°C = (160 + 273) K = 433 K,
AT = (433 -373) K=60 K and AV = (1676—1)cm3 =1675cm3.

Substituting these values in the above relation, we get

Ap =

aT (@j _ 60Kx540x4.2x107 erg
T oV 373K x1675cm3

=2.177 x 108 dyne cm=2 = 2.177atm

Therefore, the required pressure at which water would boil at
160°C = 2.177+1=3.177 atm.

This is the working principle of a pressure cooker.

We now summarise the important results of Maxwell’s relations.

MAXWELL’S RELATIONS [ Reecap

o Maxwell’s relations help us to study variation of entropy with volume
and pressure in terms of partial derivatives involving extensive and
intensive variables.

e Four important Maxwell’s relations are:

)7,
5k 1),
CRaty)
s (5,

In the Study Guide of this unit, we emphasized that you should not memorise
any thermodynamic relation. We now illustrate how you can conveniently write
these down based on a simple sentence.

Do not forget what we have explained in the box ahead.
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Memorise the sentence: Good Physicists Have Studied Under Very Fine
Teachers.

Note that the first letter of each word in this sentence highlights a
thermodynamic variable or free energy.

So, we draw a rectangle called mnemonic diagram, whose upper right and
lower left corners have been clipped.

Starting from the upper left corner in the figure, place the first letter of
each word successively proceeding clockwise, as shown in Fig. 10.1.

Note that each energy function is flanked by its respective set of natural
variables.

To write expressions for dG, dH, dU and dF in terms of changes in their
natural variables, we choose the energy corner as origin and note the
position of natural variables.

If a variable Is below or to the left of the origin, a negative sign precedes it.
Thus, we can write

dG=()dp—()dT

The variable in the brackets is chosen such that it ensures dimensions of
energy for the product. So, in the instant case, we can write

dG = Vdp — SdT

Don't forget You should practice writing expressions for other free energies. Once you
have written using the analogy with the relations

dz = Mdx + Ndy
w55
oy )y OX y

You can obtain Maxwell’s relations in the sequence given in the text by
working with (T,V); (T,p); (S,V) and (S, p) with their respective free
energies.

Vv

Fig. 10.1: Mnemonic diagram.
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10.4 DEDUCTIONS FROM MAXWELL’S
RELATIONS

The heat transfer in an infinitesimal reversible process is given by 6Q =TdS .
Let us see how Maxwell’s relations enable us to calculate heat transfer under
different physical conditions.

10.4.1 TdS-Equations

TdS-equations enable us to relate the entropy of a substance with directly
measurable quantities, provided its equation of state and heat capacities are
known. Depending on the choice of independent variables, we obtain three
TdS-equations. To derive the first TdS-equation, let us take T and V as
independent variables and express entropy of a substance as

S=S(T.V)

An infinitesimal change in T and/or V may induce a corresponding change in
entropy. We can mathematically express it as

dS=(§j dT +(55j av
aT ) N )

Mutiplying throughout by T, we get

TdszT[ﬁj ar +T[§j av
T )y N Jr

You would recall that for a gas made up of n moles, T(Z%) =nCy .
Y

Further, using Eq. (10.12a) we replace (asj by (ﬁapj . This gives
oV )t aT )y

TdS = nCydT +T(a—pj dv (10.13a)
aT Ay

Eqg. (10.13a) is called the first TdS-equation. Note that

i) all quantities occurring on the right-hand side of Eq. (10.13a) can be
measured, and

ii) the second term defines pressure variation with temperature for an
isochoric process.

So, once we know the equation of state, we can easily determine the pressure
variation with temperature at constant volume. (This is explained for a van der
Waals’ gas in Example 10.2.) However, we can express it as a ratio of two
measurable quantities: isothermal compressibility and volume expansivity. We
illustrate it now:

Recall that volume expansivity o = \%(Z_\'I{j and isothermal compressibility
p
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The cyclic relation between
variables (p,V,T) is

oV

(_

oT
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Using the cyclic relation between thermodynamic variables (p, V, T) we can

write

o _ (@_pj
On combining this result with Eq. (10.13a), we can rewrite the first TdS
equation as

TdS = nCydT +T > dV (10.13b)

Pr
Note that Egs. (10.13a, b) express variation in entropy in terms of physically
measurable quantities. We now illustrate the use of the first TdS equation
through an example.

EMM@LZE 10.2: APPLICATION OF MAXWELL’S RELATION

One mole of a van der Waals’ gas undergoes a reversible isothermal
expansion from a volume v; to a volumev; . Calculate the amount of heat
transferred in this process.

SOLUTION B For one mole, we can write the first TdS equation as
TdS = CydT +T ( ap) dv 0
aT )y

where S,C, and V, respectively, denote molar entropy, molar heat capacity

at constant volume, and molar volume of the gas. or one mole of a van der
Waals’ gas, we can write the equation of state as:

p=l 8 (i
V-b v?
From this, you can easily write: (8_pj = R (iii)
Ty V-Db
RT

Using this result in (i), we get:  Tds =C,dT +V 5 dav (iv)

Since the gas undergoes an isothermal expansion, dT = 0. Therefore, the

first term on the right-hand side of Eq. (iv) drops out. Further, we know that
the heat transferred Q =Tds . Hence on integrating (iv) over volume

between given initial and final values, we get

8Q = RTJ-——RTI[ ﬂ (v)

To obtain the second TdS-equation, we take entropy as a function of T and p.
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Then we can write:
TdS =T(§j dT +T(§j dp
oT D op )7
In terms of heat capacity at constant pressure, we can write
TdS =nCpdT +T(§) dp
op Jr

If we now use Eq. (10.12b), we get

Tds=nC,dT -T[ 2L | dp (10.14a)
aT Jp
This is the second TdS-equation. In terms of volume expansivity o, we can
rewrite it as
TdS=nC,dT -TV adp (10.14b)

Similarly, by taking p and V as independent variables and writing S =S(p,V),

TdS=T 72 dp+T(§j dv
op oV D

To put it in a more meaningful form, we split the bracketed terms on the RHS

of this equation and rewrite it as
( j ( j X
aT Jp\ oV ),

TolszT(§ T dp+T
oT op
aT ot
TdS=nCy| < | dp+nCy| S| v 10.15
Q/(aplp p(avjp (10.15)

we get

For n moles of the gas, we can write

This is the third TdS-equation. You may now like to work out an SAQ on
TdS-equations.

SAQ 3 - Tds-equations

The pressure on 0.015 litre of mercury at 0°C is increased reversibly
isochorically and isothermally from one to 1001 atm. Use Eq. (10.14b) to
calculate the heat transfer. It is given that o for mercury =178 x 10°k L.
Take latm =10°Nm™2. (Assume that V remains constant.)

EXAM(PLE 10.3: APPLICATION OF TdS-EQUATIONS

Write TdS equation for a surface film defined byTdS =dU —c dA.

SOLUTION B By comparing the TdS equation for surface film with for a
hydrostatic system, we note that p and V have been replaced by —c and

A, respectively.
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Using these variables in the first and second TdS-equations, we can write

TdS =CpdT -T[ 2| da
oT Ja

and TdS =C.dT +T| 2| do
ot )
Here C, and C are heat capacities of the film at constant area and at
constant surface tension, respectively.
If the film is stretched isothermally and the area increases by dA, the heat

transferred to the film is

5Q; =Tds = T[22 | da
oT )a

It is an experimentally established fact that surface tension is a function of
temperature only. Therefore, we can write

do
5Qr =-T——dA
dT

Since 3—2 is negative for liquids, 3Q¢ will be positive if dA>0.

Before proceeding further, let us recapitulate what you have learnt in this
section so far.

TdS-EQUATIONS

e A TdS-equation helps us to relate changes in entropy in terms of molar
heat capacities, volume expansivity and compressibility.

e For a hydrostatic system, the TdS-equations are

TdS = nCydT +T(a—pj dv
T N

TdS=nC,dT -T (ﬂ] dp
o ),

TdS=nGC, (Z—TL dp+nC, (%) dv
P

p

10.4.2 Energy Equations

Just as Maxwell’s relations enable us to know heat transfer, we can also use
these to study how internal energy changes with volume, temperature or
pressure. The resulting relations are known as energy equations. To derive
first of these, we divide Eq. (10.2) by dV .
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. du
This gives — =T ——
g qv p

If T is held constant, the derivatives in the above equation will have to be
treated as partial derivatives, so that you can write

(aUJ (asj
— =T| — _p
v J)r v g

Using first Maxwell’s relation (Eq. (10.12a)), we get

Uy _(ap)
(WJT _T(EBTJV o (10.16)

Eqg. (10.16) is the so-called first energy equation.
To illustrate its use, we consider a simple example. For an ideal gas, we know

that
p:ﬂ and aip :B
aT NV

Substituting this in Eq. (10.16), we have

ou nRT
(ava Y;

This result shows that internal energy of an ideal gas is independent of its
volume. So we may say that for an ideal gas U depends on only T.But, in
general, U is a function of both T and V. You will understand this by solving
the following SAQ.

SAQ 4 - Energy equation

Using Eq. (10.16), show that for one mole of a van der Waals’ gas,
(W} _a
N ) v2

The pressure dependence of internal energy can be obtained by dividing
Eqg. (10.2) by dp and using Eq.(10.12b). The result is the so-called second
energy equation:

ouU oV oV
5 =), A aean

Before proceeding further, we would like you to work out an SAQ.

SAQ S5 - Energy equation

Obtain Eg. (10.17) and show that for on ideal gas, internal energy is
independent of pressure that U is independent of p.
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transition involves
change of phase of
the matter
accompanied by
absorption or release
of latent heat at

constant temperature.
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10.4.3 Clausius-Clapeyron Equation

From the first Maxwell’s relation (Eq. (10.12a)) we recall that in isothermal
expansion, the heat absorbed per unit volume is equal to the product of the
absolute temperature and the rate of increase of pressure with temperature in
an isochoric process. Now, let us consider a cylinder which contains a liquid
in equilibrium with some of its vapour. (The pressure is called the saturated
vapour pressure. It does not depend on the quantities of liquid and vapour
present.) If we allow the system to expand at constant temperature, the

vapour pressure will stay constant but liquid will evaporate to fill the extra
space with vapour. Then we can write 6Q = /dm, where / is specific latent

heat of evaporation. The change in volume will be equal to (Vyap —Viig)dm
where vy5p and vjig are the specific volumes for the vapour and the liquid,

respectively. So, we can rewrite Eq. (10.12a) as

i(@j :(5_pj (10.18a)
Tlov )y ~\aT )y

or (@) — ==t ey (@L (10.18b)
8V T Vvap —V||q 5T

Alternatively, if we hold the volume constant and increase the temperature by
dT, the liquid will evaporate till the mixture reaches a new equilibrium state
and hence a new saturated vapour pressure. Then we may identify

)2,

On combining this result with Eq. (10.18b), we can write

(ap) -4 FIN (10.19)
0T Jsat T [Vvap —Viiq]

This is known as Clausius-Clapeyron equation. It is one of the most important
formulae in thermodynamics and gives the rate at which vapour pressure
must change with temperature for two phases to coexist in equilibrium.
(Inversely, you can study the effect of pressure on the boiling point of a

liquid.) We can also obtain Eq. (10.19) from the equality of Gibbs Free
energies in two co-existing phases. Since Vyap > Viiq always, (0p/oT )sat Will

be positive implying that increase in pressure raises boiling point and vice
versa. This explains why vegetables cook faster in a pressure cooker. This
also explains why it is difficult to cook food at high altitudes than at the sea
level. To give you a feel for the numbers, we may mention that at the top of
the Mount Everest, an altitude of about 8 km above the sea level, water boils
at about 80°C.

Though we have derived Eqg. (10.19) for the evaporation process, the
arguments can be extended to any phase change (solid-liquid, liquid-vapour
and solid-vapour transition) involving latent heat. That is, Eqg. (10.19) applies
to all first order phase changes in which entropy and volume are
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discontinuous at the transition temperature. (You will get an opportunity to
arrive at the Clausius-Clapeyron equation based on Gibbs energy in TQ 6.)

The phase diagrams for CO» and H>,O are shown in Figs. 10.2a and b,

respectively. These curves represent a unique relationship which must hold
for two phases to coexist. Note that the three curves intersect at one point.
The point (on p-T diagram) where all three phases coexist is known as the
Triple Point. For COy, Ty, = -56.6 C or 216.4 K and Py = 5.11atm whereas

for water, the triple point is defined by Ty, = 0.0075  C or 273.0075 K and

Pyp = 4.58 atm.
’é‘n
5| solid liguid
c
L | DR
f vapour
. . > T[°C
-56.6 °C T 0.0075 °C e

(a) {b)

Fig.10.2: The phase diagrams for (a) carbon-di-oxide, and (b) water.

From Fig. 10.2(a) we note that the slope of the solid-liquid curve is positive.
This means that most substances expand on melting and dp/dT is positive.
So melting point of such materials will increase when pressure is raised. On
the other hand, the solid-liquid curve for water (Fig. 10.2b) has a negative
slope implying that water expands on freezing and its melting point decreases
when pressure increases. Note that water is an exception in that at the triple
point, it passes from vapour — solid — liquid phase when pressure is
increased.

It may be remarked here that the Clausius-Clapeyron equation is obeyed by
systems to a high degree of accuracy and over a wide range of experimental
conditions. This constitutes strong evidence in favour of the second law of
thermodynamics.

Now you should study the following example carefully.

EX%[MPLE 10.4: CLAUSIUS-CLAYPERON EQUATION

Calculate the change in the melting point of ice at 0 °C when pressure is
increased by 2 atm. How much pressure is required to lower the melting
point by 1 °C? Given, latent heat of fusion is 79.6 cal g-* and the specific
volumes of water and ice are 1.001 cm? and 1.0908 cm?, respectively.

SOLUTION B From Eg. (10.19), we can write

I
orT sat T[Vwater ~Vicel
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On substituting ¢ = 79.6 x 4.186 x 107 erg g, Vyyater = 1.0001 cm?,
Vice = 1.0908 cm®* and T = 273.16 K, we get

dp _ 79.6x4.186x10" ergg1
dT = (273.16K) x (1.0001-1.0908)cm3

=—13.45 x 107 dyne cm=2 K?

Since dp = 2atm = 2.026x105 dyne cm~2, the change in melting point is
given by

6 -2
2.026x10°dyne cm —_0.015K =—0.015°C

dT =- =
13.45x107 dyne cm 2Kt

This result shows that the melting point of ice decreases with pressure; the
drop per atmosphere being 0.0075 °C. Thus, when enough pressure is
applied, ice melts. This fact is of significance in the game of ice skating as
well as in the study of glaciers.

The increase in pressure required to lower the melting point of ice by 1°C
is 1K/ 0.0075~ 133 atm.

10.5 JOULE-THOMSON EFFECT

From the discussion of van der Waals’ equation in Block 1, you may recall
that in arriving at his equation, van der Waals assumed that gas molecules
have finite size and experience molecular attraction. To verify these
assumptions, Joule performed a simple experiment wherein he allowed a gas
to undergo free expansion. He argued that if intermolecular forces do exist,
some work will be done against these when a gas expands. And since this
work can only be done at the expense of the internal energy of the gas, its
temperature should drop producing a cooling effect. However, he could
observe no cooling effect.

Soon after, Joule carried out a series of experiments in collaboration with
Thomson. They made a gas to expand adiabatically through a porous
plug from a constant higher pressure to a constant lower pressure. They
showed that when temperature of the gas was below a certain temperature,
known as inversion temperature, it did show cooling effect. This is known as
Joule-Thomson effect. The findings of Joule-Thomson experiment are
summarized below:

o All gases showed a change in temperature after passing through the
porous plug.

e At ordinary temperatures, all gases, except hydrogen and helium, showed
cooling effect. In fact, these gases showed slight heating, which was
completely unexpected.

¢ At low enough temperatures, all gases showed cooling effect.

e The fall in temperature was directly proportional to the pressure difference
on the two sides of the porous plug. However, for a given difference of
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pressure, the drop in temperature was more if the initial temperature of the
gas was less.

e For every gas, no change in temperature was observed when it was made
to expand at the temperature of inversion, denoted as T;. When the initial
temperature of a gas was below the temperature of inversion, it cooled
after adiabatic expansion through the porous plug.

Joule-Thomson coefficient is defined as

AT
=— 10.20
e ( )
Without going into details, we will just quote the result for a van der Waals’
gas:
HZi(ﬁ—bj (10.21)
Cp \RT

We know that Ap is greater than zero since gas is made to expand from a
constant higher pressure to a constant lower pressure. So, Eq. (10.21)
suggests that cooling or heating in Joule-Thomson expansion will be
determined by the competition between terms characterizing intermolecular
forces represented by a and finite size of gas molecules represented by b.

If intermolecular forces are strong, i.e. a >> b, then [S—_T_— b] >0.

Hence, AT > 0and the gas will cool and vice versa. However, there will be
neither cooling nor heating if

2a _y (10.22)
RT,

T; is referred to as inversion temperature. It signifies that when a gas
undergoes Joule-Thomson expansion below its inversion temperature, it will
cool down. But if the temperature before expansion is above its inversion
temperature, it will warm up.

The inversion temperatures for some typical gases are given in Table 10.1.

Table 10.1: Inversion temperatures of some gases

Gas He Ha2 N2 A 02 CO2 Air

Ti(K) 23.6 195 621 723 893 1500 603

Note that for H, and He, T; is well below the room temperature (273K) and

that is why they show warming at ordinary temperatures.

From Eqg. (10.21) we further note that for a perfect gas, a = b = 0. It means
that Joule-Thomson coefficient for a perfect gas would be zero.

We now sum up what you have learnt in this unit.
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10.6 SUMMARY

Description

Thermodynamic
potentials

Maxwell’s relations

TdS-equations

Energy equations
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B When a system can be subjected to work by pressure only, there exist
four thermodynamic potential functions: internal energy U ; enthalpy
H =U + pV; Helmholtz function F =U -TS; and Gibbs function

G=U-TS+pV.

B [nfinitesimal changes in thermodynamic potentials are given by

dU =TdS - pdV,

dF =-SdT - pdV,

dH =TdS +Vdp

dG = -SdT +Vdp

B The four Maxwell’s relations are

=)

w7l
)|

o)
0S D
0
aT )y

s :_(&]
op )t oT D

B Three TdS -equations relate changes in entropy to change in

temperature, volume

op
TdS=nCydT +T | =
it (37)

Oor pressure:

dv
%

TdS =ncpdT -T | £ | av
ot ),

TdS =nGCy (Z—TJ

dp+nCy (QJ dv
Py oV D

B Energy equations specify the variation of internal energy with volume

and pressure:

Tl

(@j T
P )t

ap
oT )V P

(&), #(5)
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Joule-Thomson B Joule-Thomson coefficient is defined as
coefficient
uzﬂzi(ﬁ_bjzi LI
Ap CID RT Cp T

where T; = ;—2 is the temperature of inversion of the gas. Every gas

undergoing Joule-Thomson expansion at a temperature below the
inversion temperature cools down and vice versa.

10.7 TERMINAL QUESTIONS

1. For a magnetic system, the infinitesimal change in internal energy may be
expressed as

dU =TdS + VB dM
Here B is the applied magnetic field and M is the intensity of

L m . . :
magnetisation. If M = v where m’ is the magnetic moment, you can write

dU =TdS + B dm’
Now, starting from the above equation, write for the magnetic system

a) the four Maxwell’s relations,
b) the second TdS-equation.

2. A gas obeys the equation p (V — b) = RT, where b is constant. Show that
a) Uisafunctionofonly T,
b) p(V —b)Y = constant for the gas undergoing a reversible adiabatic
process.

3. For an ideal gas show that

i) coefficient of volume expansion is a function of only temperature.
i)  the isothermal compressibility is a function of only pressure.

4. Water boils at a temperature of 101°C at a pressure of 78.8 cm of Hg. If
1 g of water occupies 1601 cm3 on evaporation, calculate the latent heat
of steam. Given 1cal = 4.2x107erg and g=980cms—2.

5. Calculate the specific volume of solid sulphur from the following data:
Melting point of sulphur = 115°C; latent heat of fusion of sulphur
=9.3calg1, volume of 1 g of liquid sulphur = 0.513cm3; rate of change

of melting point with pressure is 0.025°C atm™. (1 atm = 10° dyne cm)

(o2}

. When two phases of a substance co-exist in equilibrium at constant
temperature and pressure, their specific Gibbs free energies are equal.
Using this fact, obtain Clausius-Clapeyron equation.

10.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. We know that G =F +pV
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dG =dF + pdV +Vdp =-SdT — pdV + pdV +Vdp

or dG =-SdT +Vdp, which is Eqg. (10.6).

2. a) i) From Eq. (10.3), we can write V = (a—HJ
S

op
For a fixed mass, a gas occupies more space (volume) than a
solid. So, at constant entropy, the rate of increase of enthalpy with
pressure is greater for a gas than a solid.

p
As explained above, we can say that at constant temperature,
Gibbs energy increases with pressure more rapidly for a gas than
that for a liquid or a solid.

i) From Eq. (10.7b), we recall that V = (ﬁJ
-

b) i) From Eq. (10.5b), we know that p = —(ﬁj
N )t

On substituting for F from Eqg. (10.1), we get

o= 3] 1(3)

oV N v )7 oV Jr

This relation signifies that pressure exerted by a system arises out
of two contributions: isothermal variations of internal energy and
entropy with volume. While the first term dominates in case of
solids, the second term is more prominent in elastic polymers such
as rubber. The variation of entropy of a system with volume may
also contribute to pressure when its energy remains constant. This

is exactly what happens in the case of an ideal gas at constant
temperature.

i) We knowthat G=H-TSand S = —(Z—?] . Therefore, we can
p

invert this relation to write H =G -T @
oT D

On multiplying and dividing by T 2 we rewrite it as
a1 (%)
2| | 2] G136 |_ o[ 2(G
T2 T2 T\OoT D oT\T o

But {i(lﬂ = —iz. Hence, we get the desired result:
T
p

H :{8(G/T)}
o (T) |,

3. Since the process is reversible and isothermal (dT = 0), from Eq. (10.14)
we have
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$Q=TdS = -T (gj dp = -TVadp (i)
T ),

Q= —JTV(xdp =-T '[Vadp (- T is a constant)

Since V and o remain constant during the process, we can write
Q=-TVa[dp=-TVa(p; —p;) (il

where p; and pr are the initial and the final pressures.

We are giventhat T = (0 + 273)K = 273K, V = 0.015 litre,
B =178 x 10°K™, p; = 1001 atm, and p; = 1 atm,

On substituting these values in Eq. (ii), we get

Q =-(273K) x (0.015 litre) x (178 x 107°K1) x (1000 atm)
=—0.729 litre atm

Sincel litre = 103 m3, and 1 atm = 10° Nm~2 we can express this result as
J

Q=-0.729 x (103 m3) x 105Nm=2 =-72.9Nm= -729— >
4.2Jcalt

=-17.4 cal

The negative sign signifies that heat flows out of the system during the
above process.

RT a
4. For one mole of a van der Waals’ gas, we have p=— ——

V-b V2
and (a_p) ZL
oT ),V -b

From Eg. (10.12), we have (ﬁJ :T(a_pj -p
Nt oT )y

On substituting for p and (op / dT),, we get
(G_Uj _RT _RT  a_a
N)y V-b V-b y2 y2

5. From Eg. (10.2) we recall that dU = TdS — pdV

Dividing both sides by dp, we can write for constant T

(&) &) 5)

On using Eq. (10.13), we get

)5, 5]

For an ideal gas,

pV = nRT

or V :ﬂ, so that (a_vj :B and [a_VJ :_ﬂ
p oy p R
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This result shows that internal energy of an ideal gas is independent of
pressure.
Terminal Questions

1. a) We have dU =TdS +Bdm’
If we compare this with Eq. (10.2a), we see that p has been replaced
by B and V by —m’. Using this idea, we may write the analogues of
Eq. (10.2) for magnetic system as follows:

dUu=TdS+Bdm’
dH=TdS-m’dB
dF =-SdT +Bdm’
dG=-SdT-m’dB

Now applying the conditions (10.13), we have the following four
Maxwell’s relations

LTJ _(5_5)
om')s \aS ).y
ﬂj _ (om’
B)s oS g
) (&)
6m' T 8T m'

) [
B\ aT Jg

b) The TdS-equation may also be obtained by replacing p by B and V by

—m’ Thus, from Eqg. (10.14a), we have TdS =V CedT + T (?;_T_ J dB
B

2. a) p(V-b)=RT andso, p= RT and (a_p) __R
V-b oT v V-b

We know from Eq. (10.16), that

ou 8pj RT
(ava (aT v PTvop PTPTP

So, u is a function of only T.

b) We know from Egs. (10.13 and 10.14) thatTdS = CydT +T (g—_'?j dv
%

and TdS =CpdT -T (ﬂ) dp
T Jp

For a reversible adiabatic process, TdS =0

ap)
CydT =-T| ==
v (a

dv and CpdT =T[6—Vj dp
T v oT p
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RT RT
or CydT =—— and C,dT =—d
V V-b p D p

RT dp
CpdT _
Hence, P = D =—V bd—p=y
CydT  RT dv p dv
V-b
sothat—yd—V=@
V-b p

On integrating both sides, we can write
—yIn(V =b)=Inp +K
where K is constant of integration. We can rewrite it as
In(p(V -b)¥) =K
On taking antilog of both sides, we get p(V —b)Y =K’
3. 1) The coefficient of volume expansion or volume expansivity is given as
B= 1 (o . For anideal gas, pV =RT
v AaT ),

(avj R 1
A il or B:_
oT p P \%

That is coefficient of volume expansion of an ideal gas is an inverse
function of temperature only.

L O
p T

ii) The expression for thermal compressibility is written as

1 [avj 1 RT 1
o= - —| — = - — _ = —
vV dp )t vV p2) p
This shows that the isothermal compressibility of an ideal gas is a
function of pressure only.

4. From Clausius Clapeyron equation, we know that

dp _ ¢

dp
= = (=T -Vi)—
dT T (vo —Vvq) (V2 1)dT

Here T =373K, v —vq =1600cm3 g1

dp =(78.8-76.0)cmx(13.6 gcm=3) x(980cms—2) = 37318 dyne cm—2
and dT =1K =1°C
i (373K) x1600cm3g~1) x (37318dynecm—2)

=22.27x10%ergg~1
1K ag

_22.27x10%ergg~1

= =530.2cal g1
4.2x107ergcall J

5.  From Clausius-Clapeyron equation, we know that
__
dT T (vy-vy)
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¢ dT
or  (vp-vqg)= T

Here (;—T =0.025K atm1,/=9.3calg! and T =388K
p

9.3calg™!
388K

(Vo —V1) = x 0.025Katm-1 =0.252cm3

Since the volume of liquid sulphur is v, = 0.513cm?3, the volume of
solid sulphur is given by

v1=Vs =(0.513-0.252) cm3 =0.261cmS3.

6. The specific Gibbs free energy of two phases must always be equal for

coexistence of first order phase transitions: 0,=0, 0]

If we change the temperature and pressure by AT and Ap, respectively,

there will be a corresponding change in specific Gibbs free energies as

well. But the condition for two phases to co-exist and be stable is given by
91 +Ag1= 9 +AQy (i)

From Egs. (i) and (ii), we can write Ag;= Ag>.

That is, the change in the specific Gibbs free energy of one phase in

equilibrium with another phase is equal to the change in specific Gibbs

free energy of the other phase. For one-component system, which can

exist in two phases, the specific Gibbs energy is given by
dg = —sdT + vdp. So, on substituting for Ag; and Ag,, we get

V1Ap — S1 AT = VoAp — S, AT

AP _Sp=S; _AS
AT  vo—-Vv; AV

or

where As and Av, respectively, denote changes in specific entropy and
specific volume when the system goes from one phase to another. If the
specific latent heat (absorbed) required to accomplish change from
phase 1 to phase 2 is |, we can write

l
SZ_Slz-F

Hence, the required relation for changes in pressure and temperature in
stable phase equilibrium is

d__ £
dT  T(vp-Vvq)

This is the Clausius-Clapeyron equation. It gives the rate at which

pressure must change with temperature for two phases to remain in
equilibrium.

(Note: For details about the phase transitions, you should consult books
mentioned in Further Readings at the end of this block.)
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STUDY GUIDE

The blackbody radiation presented huge challenge to theoretical physicists of late nineteenth and early
twentieth century. Lord Rutherford described it as one of the two darkest clouds on the horizon of
theoretical physics. All efforts based on classical theory assumed that the energy of a system could be
taken as continuous variable but these failed to explain the experimental results in entirety. It required
the genius of Planck to provide satisfactory explanation of observed results for all wavelengths. He
made a drastic deviation from classical concept about energy of a system in that it should not be
treated as a continuous variable. He proposed that energy can change only in concrete steps in units
of what is now known as Planck’s constant. You will learn to obtain expression for Planck’s formula
and show that all other laws of radiation are contained in it.

The derivations given in this unit require good knowledge of geometrical series, calculus and
acquaintance with special functions. So, you are advised to re-read Block 1 on kinetic theory of gases
before studying this unit. To make the unit self-contained and for completeness, we have given all
mathematical steps. But you will enjoy the subject more if you solve these steps by yourself.
Therefore, keep a pen/pencil as well as a notebook ready with you. Also, answer SAQs and solve TQs
or other numerical problems to gain greater proficiency.

“An experiment is a question which science poses to Nature
and a measurement is the recording of Nature’s answer.”

Max Planck
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11.1 INTRODUCTION

In your school physics, you have learnt that all bodies emit thermal radiation.
And the intensity, wavelength and rate of emission depend on temperature.
For instance, at room temperature, most of the energy is radiated in the far
infra-red region, whereas at 6000K, which corresponds to the temperature of
the outer surface of the Sun, it lies in the visible region. You have also learnt
that the mode of energy transmission from the Sun to the Earth is radiation.
In fact, radiation is the main mechanism for energy transfer in our solar
system, interstellar space and the galaxies. It implies that energy transfer by
radiation does not require intervening medium to participate actively.

It is now well accepted that thermal radiations are electromagnetic in nature.
Moreover, these produce a sensation of warmth. An enclosure maintained at
a constant temperature can be imagined to be filled with electromagnetic
radiation, which is in thermal equilibrium with its walls. The electromagnetic
radiation in a cavity is called blackbody radiation corresponding to a
well-defined temperature. In the beginning, the laws of thermodynamics in
conjunction with the law of equipartition of energy were used to study the
behaviour of blackbody radiation. However, these efforts proved only partly
successful.

In this unit, you will get the correct insight into the nature of blackbody
radiation and its spectral distribution. We begin by discussing some important
terms and concepts related to blackbody radiation in Sec. 11.2. This is
followed by a discussion of spectral distribution of radiant energy in Sec. 11.3.
Planck proposed the concept of quanta as carriers of energy in emission or
absorption of blackbody radiation and explained all observed results available
then rather well. In Sec. 11.4, you will learn how to derive Planck’s formula of
blackbody radiation following the approach used by Planck. (For the number
of modes per unit volume in the frequency range v to v+dv, he used the
expression obtained by Rayleigh and Jeans.) In Sec. 11.5, you will learn that
all other laws of radiation (Wien’s law, Rayleigh-Jeans law and Stefan-
Boltzmann’s law) are contained in Planck’s law.

Expected Learning Outcomes

After studying this unit, you should be able to:

X3

%

explain the concepts of blackbody radiation, spectral distribution and
energy density;

3

%

discuss Planck’s theory of black body radiation;

¢ obtain Planck’s formula for spectral distribution of black body radiation;
and

« derive Rayleigh-Jeans law, Wien’s law and Stefan’s law from Planck’s

law.
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11.2 DEFINITIONS AND CONCEPTS

To discuss distribution of energies in blackbody radiation, we have to
introduce some basic definitions:

Spectral energy density (u, ) is defined with respect to a particular
wavelength A as a measure of the energy per unit volume per unit range of
wavelength. It means that u, dA denotes the energy per unit volume in the
wavelength range from A toA + dA. Therefore, a sum of spectral energy
densities for all wavelengths from 0 to « per unit volume gives the total energy
density:

u=Ju,dx (11.1)

o —38

Note that the total energy density is measured in units of Jm=3,

Spectral emissive power (e, ) of a body corresponding to wavelength A is a
measure of energy radiated per second per unit surface area per unit
wavelength. Therefore, e, d\ denotes the energy emitted by unit area in one
second in the wavelength range from A toA + dA. A sum of spectral emissive
powers for all wavelengths from O to « gives total emissivity:

e=[edr (11.2)

o — 8

Note that emissivity is measured in Jm=2s~1 or Wm~2.

Spectral absorptivity (a, ) denotes the fraction of incident energy of a
particular wavelength absorbed by unit surface area of a body in one second.

If a body absorbs all radiations incident on it, a, =1,then the body is said to
be a perfect blackbody. This nomenclature is based on the colour that we
see due to selective absorption of light. Do you know that the text of this unit
appears black because letters in it absorb all light falling on them? Why does
a flower have colour or why does the paper of your unit appear white?

Note that e and e, characterise the properties of a body as emitter whereas
a, describes the properties of the body as an absorber of radiation. However,
these three physical quantities depend on temperature and the nature of the
surface of the body.

When radiation of a particular wavelength A is incident on a body, it may be
partially reflected, partially absorbed and partially transmitted. But a blackbody
absorbs all radiations incident on it. Then we can write

r}\‘+a}h+tk=1

where r,, a, and t,, respectively, characterise energy reflection, absorption
and transmission coefficients of the body corresponding to wavelength A . If
rn. =t =0, then a, =1. Thatis, the body is perfectly black for a given
wavelength. In practice, no surface or body satisfies this ideal definition
strictly. Even lamp black and platinum black respectively absorb nearly 96%

and 98% of visible light. So, a, is always less than unity.
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11.3 SPECTRAL DISTRIBUTION OF RADIANT
ENERGY

In your school physics, you have learnt Stefan’s law of blackbody radiation. It
states that the rate of emission of radiant energy by unit area of a perfect
blackbody is directly proportional to the fourth power of its absolute
temperature. Mathematically, we express it as

E=0T? (11.3)

where o is called Stefan’s constant and has value

5.672x108Im 2K *s™L. Stefan’s law in the above form refers to the amount
of heat emitted by the body by virtue of its temperature, irrespective of what it
receives from the surroundings. Therefore, it is natural to extend the scope of
this law to represent the exchange of heat and be stated as follows:

For a blackbody at absolute temperature T surrounded by another blackbody
at absolute temperature To, the amount of net heat lost by the blackbody at
higher temperature per unit time can be expressed as

E=o*-T,) (11.4)

This law is known as Stefan-Boltzmann law.

Note that Stefan-Boltzmann law relates total energy density of black body
radiation with temperature; it does not give any information about the
distribution of energy in different parts of the spectrum.

Now refer to Fig. 11.1, which shows observed results of spectral energy
density of a black body at different temperatures.
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Fig. 11.1: Plot of spectral energy density of a black body with wavelength
at different temperatures.

You will note in Fig. 11.1 that:

e For agiven wavelength, u, increases with temperature.

e For each temperature, the spectral energy density plot shows a maximum.
It shifts to shorter wavelengths with increase in temperature.
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e The spectral energy density becomes zero as wavelength tends to either
zero or infinity.

To explain experimental results, Wien and Rayleigh and Jeans used
thermodynamic reasoning with the principle of equipartition of energy, wherein
energy is considered a continuous variable. However, they could not explain
the results satisfactorily in the entire range of the spectrum. In fact, their
efforts succeeded either in the higher or in the lower energy regions. This
raised doubts about the applicability/utility of the principle of equipartition of
energy to understand the physics of blackbody radiation.

Planck then conjectured, albeit heuristically, that emission and absorption of
radiation is a discontinuous process. To derive Planck’s formula, we have
preferred discussion of developments in chronological order as this approach
is more informative and learner-friendly. It will give you a feel of how scientists
handle difficult unknown situations, particularly when their results do not
conform to experimental results. (This law was later derived by Indian
physicist Prof. S.N. Bose by treating radiation as an assembly of photons,
which obey Bose-Einstein statistics. You will learn about it in Block 4.)

11.4 PLANCK’S LAW

Planck presented the following formula for energy density empirically to fit the
experimental results on blackbody spectrum:

2
udy =% ( hv Jdv (11.5)

c3 \exp(hv/kgT)-1

We can rewrite it as:
2

u,dv=nedv= 87:\/3 v dy (11.6)
C
where
hv
exp(hv/kgT)-1

is the average energy of an oscillator, and

2

8nv
ndv=—s
Cc

dv (11.6b)

defines the number of modes per unit volume in the frequency range v to
v+dv. (The calculation of the number of modes is given in Appendix 11A)
EqQ. (11.6b) can also be written as

2
N dv = 8nVv

v
C3

dv (11.6¢)

to define the number of modes in volume V in the frequency range v to
v+dv.

You should now go through the following example.
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EXAM(PLE 11.1: Calculation of Number of Modes

Calculate the number of modes of oscillations in a chamber of volume
100cm? in the frequency range 4.02x10Hz to 4.03x10*Hz.

SOLUTION W It is given that V =100 cm® =107*m?, v = 4.02 x10**Hz,
dv =0.01x10"Hz and ¢ =3x108ms™. On substituting these values in
the expression given in Eq. (11.6c), we get

_ 8x3.14%(4.02x10Hz)? x (10*m?) x (0.01x 10**Hz)
(3x 108ms_1)3

N.dv —15%x10%3

v

By substituting €, = kgT in Eq. (11.6), you will obtain Rayleigh-Jeans law,
which was derived by them based on the law of equipatrtition. (It suggests
thate, is the average energy of a mode of oscillation in Planck’s theory.) But
Planck was convinced about the inappropriateness of the classical theories
and he made a drastic deviation. He postulated that

¢ the exchange of energy between matter (walls) and radiation (cavity)
could take place only in bundles of a certain size; and

o the quantum of exchange is directly proportional to its frequency. That is,
the energy of an oscillator having frequency v could only be an integral
multiple of hv, where h is a constant.

These postulates marked a fundamental departure from the contemporary
ideas. The constant h is now known as Planck’s constant. Its value is
6.62618x10-34 Js. (Planck was awarded Nobel Prize in Physics in 1918 for
his work on blackbody radiation.)

Before proceeding further, it would be appropriate to clarify the significance of
Planck’s postulates with an example. Suppose two litre of milk is to be
distributed between two persons. Since milk is an infinitely indivisible entity,
you can divide it between two persons in an infinite number of ways. Next you
are asked to distribute milk in units of a litre. Now both the persons can
receive either 0, 1 or 2 litre meaning thereby that the number of ways reduces
to three. The number of ways will be five if the unit (quantum) of distribution is
half-a-litre. From this example, you can convince yourself how discretisation
introduces a drastic change. Planck achieved similar result in the case of
blackbody radiation by introducing the concept of energy quanta in energy
exchange.

Planck argued that blackbody radiation chamber be considered to be filled up
not only with radiation but also with a perfect gas, whose molecules
exchanged energy via resonators of molecular dimensions. (Matter-radiation
interaction was necessary to introduce the notion of temperature.) The
resonators were assumed to absorb energy from the radiation and transfer the
same wholly or partially to gas molecules when they collided with them. This
helped to establish thermodynamic equilibrium. (You may think that the
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process is somewhat roundabout but this was the only one possible and
consistent with accepted ideas at that time.)

Let us now suppose that the total number of Planck resonators is N and their
total energy is E. The average energy of Planck resonators is given by

hv
[exp(hv/kgT)-1]

rather thankgT .

Before proceeding further, go through the following example.

EXAM@LE 11.2: MEAN ENERGY

An oscillator vibrates with frequency 1.51x 10*Hz at T = 1800 K.
Compare the values of its average energy by treating it as (a) a classical
oscillator and (b) Planck’s oscillator. Take h =6.62x10-34Js71, and

kg =1.38x10723JK 1,

SOLUTION B (a) The average energy of a classical oscillator is given by
g =kgT =(1.38x10722JK 1) x (1800K)
=2.48x1072°]

(b) The average energy of Planck’s oscillator is given by

hv _ kgT(hv/kgT)
eV /keT _ 1 ghvikeT _4

g:

hv  (6.62x103*Js)x(1.51x10's™)
keT  (1.38x10722JK™1)x (1800 K)

We note that

-20
_9.99x10 ZOJ 403
2.48x10720)
(2.48x1072°J)x(4.03)  9.99x1029]

~1.81x107203
o403 _q 53.6

Hence, €=

Note that the average energy of Planck’s oscillator is less than that of a
classical oscillator.

You should now answer an SAQ.

SAQ 1 - Mean energy

Obtain expression for mean energy of a Planck’s oscillator in the limit v — O.

While answering SAQ 1 you have noted that in the limit v — 0, the mean
energy of a Planck’s oscillator is kgT. The implication of this result is that
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when hv is small compared to kgT, the discrete nature of energy does not

show up.
In terms of wavelength, we can express Planck’s formula using the relation

v=c/\ in Eq. (11.5). Note that |dv| = —%dx and we use the fact that
A

u,dA corresponds to u,dv. Hence, Planck’s law in terms of wavelength can

be expressed as

i - BE0(EY L - dh
A 3 () Lexp(hc/akgT)-1)| 22

_ 8rhe ! di (11.7)
2> [ exp(hc/rkgT)-1

Now refer to Fig. 11.2. It shows a plot of Planck’s law based on Eq. (11.7).
Since Planck’s law explained the observed results of blackbody radiation for
all wavelengths available then, the validity of the concept of discreteness of
energy was established. In fact, this revolutionary idea, led to the birth of a
new branch of physics known as qguantum mechanics.

Au,

11.2: Plot of Planck’s law based on Eq. (11.7).

11.5 DEDUCTIONS FROM PLANCK’S LAW

We now show that Planck’s law provides us with the most general description
of blackbody radiation. That is, you are justified to think that all other laws of
blackbody radiation are its special cases. We first show that Rayleigh-Jeans
law and Wien'’s law are its limiting cases in the region of longer and shorter
wavelengths, respectively.

11.5.1 Rayleigh-Jeans Law

To begin with, we obtain the expression for Rayleigh-Jeans law. For
A >>hc / kgT ,the exponential term in Eq. (11.7) can be approximated as
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exp(hc /ikgT) ~ 14 1S .
AkgT
so that exp(hc/AkgT) -1= he
B WkgT

Hence, for A >>hc/kgT EQq. (11.7) reduces to

U;\d;u =

8rhc X(?\,kBT jd?\,z 87'CkBT di (118)

This is Rayleigh-Jeans law.

11.5.2 Wien’s Law

For A <<hc/kgT, the exponential term in Eq. (11.7) will be significantly
greater than unity. Therefore, we can ignore 1 in comparison to the
exponential in Eqg. (11.7). Then Eq. (11.7) reduces to

u,di, = KSZECJeXp(—hC I 2kgT ) d (11.9)

This is Wien’s law.

11.5.3 Stefan’s Law

By integrating Eq. (11.7) for photons of all wavelengths, we obtain the
expression for total energy density:
* di

u(T) = Ju,dr = 8thc
é f gks[exp(hc/kkBT)—l]

(11.10)

To evaluate this integral, we introduce a change of variable and define

X = so that A = and diA =-— he
AkgT xkgT x2kgT

integration will change as —« to 0. Using these results in Eq. (11.10), we get

B 2hc dx
9 X kBT
u(T) = 8rhc j

5
—=| _he j [exp(x) 1]

dx . Note that the limits of

XkBT

If we now change the limits of integration as 0 to o, the negative sign will be
automatically absorbed. Hence, we can write

u(T)—8nkBAT4T x3dx
~ ¢3n3 Jexp(x)-1

0

The procedure to solve the integral in this expression is quite involved.
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You should just remember that it has the value T'(4) {(4) = n* 115. (Here
I'(4)=6 is gamma function of order 4 and {(4) = =190 is zeta function of

order 4.) So, we can write the expression for total energy density at
temperature T as

5 4
U(T) _ 8n 3l)(BS_I_4
15h ¢
or u(T) =ar? (11.11)
8n5k4
where a=——B_ —756x1016 gm=3 K.
15h3c3

The interior of the Sun can be assumed to consist of photon gas at constant
temperature 3 x 106 K. It means that the energy density radiated by the Sun
is given by

u = (7.56x1076Im 3 K#)x (3x10°K)*

~6.1x100Im >

The volume of the Sun is known to be nearly equal to 1.4x10%" m3. 1t
means that the total energy of photons inside the Sun is

E-uV=86x10>"1J

If photons are assumed to effuse through a small cavity-like opening in the
surface of the Sun, the net rate of flow of radiation per unit area of the opening
will be given by
5 4
R-Luc-2"ke 4

15h3c?

We can rewrite it as

R=oT” (11.12)

2n5ké

L2 B _5672x10°8 Jm2 K *sLis Stefan’s constant.
15h3¢c?

where ¢ =

There is another law of radiation: Wien'’s displacement law:
Amax T = 2.897x107° mK . We can use it to calculate the temperature of the
surface of celestial bodies.

Though obtaining this expression from Planck’s law involves cumbersome
mathematics, we have put it as a TQ. You should try to obtain this expression
rather than looking at the solution at the first attempt itself.

Let us now summarise what you have learnt in this unit.
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11.6 SUMMARY

Concept Description

Blackbody B A blackbody absorbs all radiations incident on it, regardless of their
frequency. A small hole in a large enclosure or cavity is a practical
approximation to an ideal black body.

Spectroscopic B Spectroscopic analysis of black body radiation shows that
analysis of blackbody _ _ _
radiation o for a given wavelength2, u, increases with temperature;

o for each temperature, the spectral energy density versus
wavelength curve shows a maximum, which shifts to shorter
wavelengths as temperature increases; and

¢ the energy density goes to zeroas A -0 oras A — .

Planck’s hypothesis B According to Planck:

o The exchange of energy between matter (walls) and radiation
(cavity) takes place in bundles of a certain size; and

¢ The quantum of exchange is directly proportional to its frequency.
That is, the energy of an oscillator having frequency vis an integral
multiple of hv, where h is a constant. It is now referred to as
Planck’s constant and its value is 6.67x10>%Js.

Planck’s law B According to Planck’s law, the energy density of blackbody radiation is
given by
2
udv = 8nv hv dv
¢ \exp(hv/kgT)-1

In terms of wavelength, we can express it as

U di = 8nhc 1 4
A exp(hc /AkgT) -1

Wien’s law B For A <<hc/kgT, Planck’s law reduces to Wien'’s law:

u,di = (Szg‘cjexp(—hc I 2kgT ) d

Rayleigh-Jeans law B For A >>hc/kgT,Planck’s law reduces to Rayleigh-Jeans law:

de?\,z

BTEhC X(?LkBT jd?\, _ 8TCkBT d?\,

87
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B Stefan’s law gives total energy density of all photons in blackbody
spectrum. It states that total rate of emission of radiant energy per unit
area is related to energy density as fourth power of temperature:

E =0T

where o is known as Stefan’s constant. Its value is
5.672x10 8 Jm2K *s71L.

Stefan-Boltzmann law states that when a blackbody at absolute
temperature T is surrounded by another blackbody at absolute
temperature Ty, the amount of net heat lost by the blackbody at higher
temperature per unit time can be expressed as

E=cT*-T4).

11.7 TERMINAL QUESTIONS

1. Calculate the number of modes in a chamber of volume 1m3 in the

frequency range 0.6x10%Hz to 0.61x10"*Hz.

2. Calculate the average energy of a Planck oscillator of frequency

0.6 x 1014 Hz at 2000 K. How does it compare with the energy of a
classical oscillator?

3. Calculate the number of modes of vibration in a 100 cm?® chamber in the
wavelength region (a) 500.0 nm — 500.2 nm and (b) frequency range
1.5x101Hz to 1.51x104Hz.

4. Calculate the number of photons in 1 cm? cavity containing black-body
radiation at 1000 K.

5. Using (Eg. 11.7), obtain Wien’s displacement law.

11.8 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. Inthe limit v > 0, the Planck factor reduces to kgT :

hv N hv KT
[exp(hv/kgT) -1 1- hv .1
kgT

Terminal Questions

1. Using Eg. (11.6a), we can write
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N_dv = 8nV

v
C3

vZdy

V =1m3: v=0.6x10"*Hz dv=0.1x10%Hz ¢ =3x108ms—L

8x3.14x1

N,dv =
Y (3x108)3

x(0.6x1014)2 x(0.1x1014)

_ 25.12x0.36x1028 x0.01x 1014
27x1024

_0.090432 x10%
27 x10%

~90.432x10%
27

—3.35x10%°

2. We recall that average energy of photons is
hv
hv
exp| — [-1
p(kBTJ

6.6x1073% x0.6 x10™
6.6x10734 x0.6 x10™
exp y -1
1.3x10 x 2000

é:

: 3.96x10-20 B 3.96x10-20
3.96x10-20 B els23 _1
2.6x10-20

3.96x1020  3.96x10-20
459-1 3.59

~1.10x10-20]

E:

The energy of a classical oscillator is

=kgT =1.38x10723 x 2000

=2.76x107%9
The energy of a Planck’s oscillator is nearly half of classical oscillator.

3. a) The number of modes per unit volume in the wavelength region A to
A + dA is given by

8nV

N =
7\'4

89
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Therefore, the number of modes within wavelength range A to A + dA
in a chamber of volume V is

8x3.14x(100cm") )

RO« (2x10 " em)
(5x10 cm)

N(L) =

~ 50.24x10°6
625x10-20

—8.014 x1012

b) The number of modes in the frequency range v to v + dv in chamber of
volume V is given by

8nv2
CS

N(v)=V dv

Here v=1.5 x 10" Hz, dv = 0.01 x 10 Hz, ¢ = 3 x 10%m s and
V = 100 cm®. Hence on substituting the values, we get

8x3.14 x (100 cm3) x (1.5 x 1014 s-1)2
(3x100¢cms—1)3

N(v) = x (0.01x10%4s-1)

~ 56.52x10%2¢m3s 3
27x10%0¢cm3s—3

—2.09x10%2

. According to Planck, the energy density of the radiation in the frequency

range v and v + dv is given by

8rh v3
dv
c3 exp(hv/kgT —1)

u,dv =

Since u,dv = hvdn,, the number density of photons in the frequency
range vand v + dvis

8n vadyv
dnvz—a—
c hv
exp| — [-1
(kBTj

To obtain the expression of the total number density of photons, we
integrate this expression to get

2
n::fyi vedv ()
c3 hv
exp| — -1
kgT

We now put ﬂ =X.
kgT
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Then Eqg. (i) can be rewritten as

_8n (kBT f T x2dx _ 16¢(3)n(kgT)3
c3\ h ,ex-1 c3h3

The Riemann Zeta function ¢(3) =1.202.
On substituting the given values
c=3x108ms™, h=6.6x10"3* Js, kg =1.38x10-23 JK-1 and

T =1000 K, we get

| _16x1.202xm(1.38x 1072%)3(10%)3

= 2.0456x10'°m3
(3x108)% (6.6x1073%)2

5. The wavelength at which maximum occurs can be obtained from
Eq. (11.7) using the condition

|:au;\‘ :| -0
ok A=kmax

This leads to

-5
oy, = 87rhci A
oA o\ | exp(hc/AkgT) -1

515 (exp(hc /2kaT) =1)— 25| — S exp(hc /kgT)
AKkgT
= 8rhc >
(exp(hc/AkgT)-1)
_ 8mnhc 1 _§+ hc exp(hc/AkgT)
22 (exp(hc/AkgT)-1)| A A2kgT (exp(hc/AkgT)-1)

L A2kgT (exp(hc/AkgT)-1)

=uk{ 5, hc  exp(hc/akgT) }

Suppose the value of u, is maximum forA = Amax -

Therefore, we equate the right-hand side of the above expression equal to
zero and put A = Ay - This gives

5 hc exp(hc/AmaxKgT)
- + =0
Mmax  MaxKeT (exp(hc/AmaxksT)—1)
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hc exp(hc/AmaxkeT) 5 ()

or =

We now introduce a new variable by defining x = hc/ Ao kgT . Then we can
rewrite Eq. (i) in an elegant form:

« exp(x) _
exp(x)-1

or x=51-e*) (i)

This is a transcendental equation and can be solved either graphically or
numerically. The exact value of x is 4.965.

Hence, we can write

x=_ NS _ o965
7“max kB
hc
or A T=bh=—"—— iil
mes kg x4.965 ()

This is Wien’s displacement law. On substituting forh,c and kg, we get

AmaxT = 2.897x107° mK



Unit 11

Theory of Radiation

APPENDIX 11A: NUMBER OF ALLOWED MODES OF
STANDING WAVES IN AN ENCLOSURE

Rayleigh considered blackbody radiation in an enclosure, a hollow cubical box
of side L, say, to consist of a number of electromagnetic waves which
travelled in all possible directions. As a result, these made multiple reflections
at the walls of the enclosure. Their subsequent superposition led to formation
of standing waves and the walls of the enclosure acted as nodes.

The standing waves in such a system are described by the wave equation

10 y(xy.21)

V2 y(x,y,z,t) = X (11A.1)
Voot

where v is velocity of the standing waves.

Since the walls of the enclosure act as nodal points, we can say that the
amplitude  of the waves will be zeroatx,y, z=0and x, y, z= L. Then we
take the solution of Eqg. (11A.1) to be of the form

mmnx nmy (nz

y(x,y,z,t)=C exp(—icot)sin(T] sin(Tj sin(Tj (11A.2)

where (m,n,/) are integers and o is the angular frequency of the wave. Note
that each combination of (m,n, /) defines a mode of oscillation of the waves in
the enclosure.

On combining Egs. (11A.1) and (11A.2) and simplifying the resultant
expression, we get

2
T 2 N O
— (M +n“+£%)=—
L2 v?2
2 12 2 2
or m2+n2+€2=w—2.|'—2:(2v|'j =(%j (11A.3)
eV v A

where A =v /v defines the wavelength of the standing waves of frequency v.

It may be remarked here that Eq. (11A.3) gives the number of allowed modes
of vibration inside the enclosure for different, positive and integral values of
m,n and /. The total number of modes of vibration will be specified by the
total number of possible sets (m,n, f).

If we now put % =p, EQ. (11A.3) can be rewritten as

m? +n? +¢% =p? (11A.4)

Geometrically, this result suggests that p is the radius of a sphere in (m,n, /)
space and the number of allowed modes can be obtained by plotting m,n, ¢

and counting the number of points corresponding to positive integral values.

These will lie in the positive octant of a sphere of radius p, as shown in
Fig. 11A.1. (In other octants, at least one value, either m,n or ¢ will be
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The fact that the
number of allowed
modes was to be
multiplied by two was
pointed out by Jeans.
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negative.) Note that in Fig. 11A.1, the allowed set of values of m,n and /¢
form a mesh of small cubes.

A

- N W o O\ O N

Fig. 11A.1: Calculation of the number of allowed modes of standing waves in an
enclosure filled with blackbody radiation.

For sufficiently large values of p, each point will correspond in one unit cube in
this octant. Therefore, the total number of allowed modes of vibration will be
equal to the volume of the octant and we can write

N L(4n 3| 1x4 2L\ 4nl®
8\ 3 8x3 A 33

Hence, the number of modes of wavelengths between A and A + d\ is
obtained by differentiating this expression for total number of modes. Thus,

4V

anV 2 (11A.5)

3

|N;Ld7\‘| =

(—3x—4)dx‘ =

Here V = L% is volume of the enclosure.

You may recall that we are dealing with electromagnetic waves, which are
transverse in nature and for a given value of wave vector, there will be two
independent polarisation states. We, therefore, have to multiply Eq. (11A.5) by
two. That is, the correct number of allowed modes will be twice as many:

8nV

N, dA = === d (11A.6)
7\,4

You can easily convince yourself that for blackbody radiation, the number of
modes in the frequency range v and v + dv can be expressed as

Nydv = 22 v2qy (11A.7)
C



