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BLOCK 3 : SECOND AND THIRD LAWS OF THERMODYNAMICS 

In Block 2, you have learnt the basic terminology of thermodynamics and the basic concepts 

that will be used in this course. You have also learnt the zeroth law and the first law of 

thermodynamics as well as their applications. You now know that the first law of 

thermodynamics is essentially the principle of conservation of energy for thermodynamic 

systems. Moreover, each of these laws introduces a new thermodynamic variable, which has 

universal validity.  

Block 3 deals with conversion of heat into work using a heat engine working in a cycle, an 

ideal Carnot engine and its efficiency. In this block, you will also learn the Kelvin-Planck and 

Clausius statements of the second law of thermodynamics and their equivalence, and Carnot 

theorem.  

One of the most important concepts in thermodynamics is that of entropy introduced by 

Clausius. In fact, thermodynamics became an important science only after the introduction of 

entropy. A detailed study of entropy near absolute zero led Planck to the third law of 

thermodynamics. These developments were followed by the formulation of thermodynamic 

free energies.  

Block 3 ends with a detailed discussion of the theory of black body radiation, which posed a 

huge challenge to physicists in the second decade of the twentieth century. To explain the 

observed results on spectral distribution of radiant energy, Planck presented his theory based 

on discrete nature of energy exchange.  

In Unit 8, which is the first unit of Block 3, we have introduced the concept of heat engine. In 

this unit, we have obtained an expression for the efficiency of a completely reversible Carnot 

engine using T-S diagram. On inverting the sequence of processes occurring in a heat 

engine, we obtain a refrigerator. So, you will also learn about Carnot cycle as a refrigerator. 

Kelvin-Planck and Clausius summed up these observations in two different but equivalent 

statements. These are also discussed here. Carnot theorem − that no real engine can be 

more efficient than the Carnot engine − forms the subject of discussion in Sec. 8.5. 

In Unit 9, you will learn about entropy, which is a property of state. We have obtained 

expressions for changes in entropy for an ideal gas under different physical conditions.  

Planck postulated that entropy of a system becomes zero as temperature approaches 

absolute zero. This led to the formulation of the third law of thermodynamics. You will realise 

why soon after Clausius introduced the concept of entropy, thermodynamics became a 

powerful science. (In Block 4, you will learn that entropy helps to connect thermodynamics 

with statistical mechanics. That is, entropy is a tool by which we can correlate the 

macroscopic and microscopic behaviours of a system.) 

In Unit 10, we have discussed thermodynamic potentials, which are essential to determine the 

general condition of thermodynamic equilibrium. You will learn that these are a rich treasure 

of vast information. These are handy in obtaining Maxwell’s relations, TdS equations, energy 

equations and involve a lot of good physics.  

The mathematics used in this unit is quite simple and you are advised not to memorise 

relations. Instead, use mnemonic diagrams for deriving a relation of interest. Some 

illustrations to this effect are given in the text.  
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In the beginning of Unit 11, a few definitions and concepts about blackbody radiation are 

given. The Stefan-Boltzmann law, which relates the total energy density of black body 

radiation with temperature, is discussed in detail. But it does not give any information about 

the distribution of energy in different parts of the spectrum. We have discussed Planck’s law 

and shown that Rayleigh-Jeans law, Wien’s law and Stefan’s law are contained in the 

Planck’s law.  

We hope that you enjoy studying the concepts discussed in this block. We wish you success. 
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           UNIT 8 

CARNOT CYCLE 
Structure 
 

8.1 Introduction 

Expected Learning Outcomes 

8.2 Heat Engines: Conversion of Heat  

 into Work  

8.3 The Carnot Cycle 

 Efficiency of a Carnot Engine 

 Carnot Cycle as Refrigerator  

 

 

STUDY GUIDE           

 

8.4 The Second Law of Thermodynamics 

 The Kelvin-Planck and Clausius Statements 

Equivalence of Kelvin-Planck and Clausius 

Statements 

8.5 Carnot Theorem 

8.6 Summary 

8.7 Terminal Questions 

8.8 Solutions and Answers 

 

In the previous units of this course, you have learnt about the zeroth law and the first law of 

thermodynamics. As you now know, these laws facilitated introduction of the concepts of temperature 

and internal energy, respectively. In this unit, you will learn about conversion of heat into work, Carnot 

cycle and the second law of thermodynamics.  

In TQ 9 of Unit 7, you have obtained expression for the work done in Carnot cycle depicted on an 

indicator diagram. We will extend this result to calculate the efficiency of Carnot engine and show that 

no engine can be more efficient than a Carnot engine. As mentioned earlier, thermodynamics is a 

phenomenological science and its laws need no proof. In fact, the second law of thermodynamics has 

been stated in two different but equivalent forms by Kelvin-Planck and Clausius. You will learn these 

equivalent statements.  

The mathematics used here is rather simple and basically, we will use the results derived in Unit 7. 

You are, therefore, advised to master that unit before reading this unit.  Moreover, if you work out 

SAQs and TQs given in this unit on your own, you will appreciate the subject matter better. 

“Imagination is more important than knowledge. 

Knowledge is limited. Imagination encircles the world.”  

 

Albert Einstein 
 

 

Carnot engine led to the 

industrialisation of Europe. 
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8.1   INTRODUCTION 

We now know that the first law of thermodynamics is a statement of 

conservation of energy for thermodynamic processes. But it does not give us 

information about the direction of flow of heat. For instance, it is a common 

experience that heat flows from a hotter body to a colder body spontaneously 

but it cannot flow by itself from a colder body to a hotter body. However, the 

first law of thermodynamics does not rule out this possibility. Similarly, it is a 

common experience that it is possible to completely convert work into heat via 

friction, say. But the first law of thermodynamics puts no definite limitation on 

conversion of heat into work, though engineering experience refrains us from 

achieving 100% conversion. If this were not true, we could convert virtually 

unlimited heat of the environment into work and energy crisis would not have 

been such an issue for present day civilisation. We can similarly consider 

many natural processes where energy is conserved but those never happen. 

This suggests that besides the first law, we must have some other 

fundamental principle which satisfactorily explains these facts of experience. 

This principle is known as the second law of thermodynamics. In fact, the 

second law goes far beyond conversion of heat into work.  

In Sec. 8.2, we begin our discussion by considering convertibility of heat into 

work using a heat engine. For simplicity, we confine ourselves to the 

framework of reversible Carnot cycle. We derive an expression for the 

efficiency of a Carnot engine in Sec. 8.3. You will learn that the direction of 

operation of Carnot cycle determines whether a device acts as a heat engine 

or a refrigerator. It is for such reasons that Carnot cycle is the most important 

reversible cycle of great practical utility. You will also learn that Carnot engine 

has maximum efficiency but it is a theoretical idealisation.  

It may be mentioned here that contributions of Carnot facilitated industrial 

revolution in Europe. As we now know, the work of Carnot led Clausius, 

Thomson (later Lord Kelvin) and Planck, among others, to study convertibility 

of heat into work. These studies led them to sum up generalisations of 

experiences in different statements of the second law. However, the two most 

well-known statements of the second law are due to Kelvin-Planck and 

Clausius. These statements are discussed in detail and their equivalence has 

also been established in Sec. 8.4. We show that if one statement is not 

obeyed, the other one is also violated. In Sec. 8.5, we have discussed Carnot 

theorem. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

❖ derive the expression for the efficiency of a Carnot engine; 

❖ explain the physics of the working of a heat engine and a refrigerator; 

❖ state Kelvin-Planck and Clausius statements of the second law of 

thermodynamics, discuss their implications and prove their equivalence; 

and 

❖ establish Carnot theorem. 
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8.2 HEAT ENGINES: CONVERSION OF HEAT 
INTO WORK 

Let us begin our discussion by stating the preliminaries of heat engines which 

convert heat into work. 

Basic Terminology 

We know that heat flows spontaneously from a hotter to a colder body. If we 

intercept this flow with a machine, some of it can be converted into work. A 

machine that can convert heat into work is known as heat engine. To be a 

useful device, a heat engine must operate continuously; absorb heat at a 

higher temperature and reject it at a lower temperature. That is to say, a heat 

engine operates between two heat reservoirs (Fig. 8.1). Moreover, the 

processes which take place inside an engine must not cause permanent 

changes. This means that an engine has to operate in a cycle. 

The material used in the operation of an engine is called the working 

substance. The working substance can be solid, liquid or gas. In a steam 

engine, the working substance is steam (water). Other familiar working 

substances for automobile engines are petrol, diesel and CNG. In a 

refrigerator, the most widely used working substances used to be 

chlorofluorocarbon compounds. But these have now been phased out as 

these deplete the ozone layer present in stratosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

 

 

 

 

 

 

 

 

Fig. 8.1: Schematics of operation of a heat engine. 

Efficiency 

The efficiency of an engine is defined as the ratio of the net work done to the 

heat absorbed during one complete cycle. It is usually denoted by the symbol 

 (pronounced as eta): 

  
absorbed Heat

done  workUseful
=  (8.1) 

After one complete cycle, the engine returns to its original state. Therefore, 

there will be no change in its internal energy, i.e. U = 0. Using the first law, 

we can write 

   U = Q1 – Q2 – W = 0 

or 

   W = Q1 – Q2   (8.2) 

Hot reservoir 

Cold reservoir 

21 QQW −=  Engine 

1Q  

2Q  
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where Q1 is the heat absorbed from the source, Q2 is the heat rejected to the 

sink and W is the work done during one cycle (Fig. 8.1). Note that in a real 

engine, heat is rejected to the surroundings in the form of hot exhaust gases 

or steam and, therefore, Q2 contributes to thermal pollution of our 

environment. 

From Eqs. (8.1) and (8.2), we can write 

  
1

2

1

21

1

1
Q

Q

Q

QQ

Q

W
−=

−
==  (8.3) 

This result shows that efficiency of a heat engine will always be less than one. 

Nevertheless, it is desirable to design an engine with maximum efficiency. To 

know how high  can be, we have to consider the conditions in which an 

engine operates and the role of the working substance. You will learn about 

these in the following sections. However, it may suffice to say here that Carnot 

was the first researcher who recognised that for maximum efficiency, a heat 

engine should be (thermodynamically) reversible. That is, all stages of 

operation should be carried out infinitely slowly so that there are no dissipative 

losses due to friction or turbulence, leading to wastage of energy. (In practice, 

however, there are always some losses.) It may be mentioned here that any 

heat engine operating in a Carnot cycle is called a Carnot engine and the 

working substance exchanges heat with heat reservoirs. We will discuss it in 

some detail now. But before that let us now summarise what you have learnt 

in this section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

8.3   THE CARNOT CYCLE 

The Carnot cycle consists of four stages. These are schematically depicted in 

Fig. 8.2. Suppose that T1 and T2 are temperatures of the heat reservoirs such 

that T1 > T2. The working substance, say a gas, is contained within a cylinder 

fitted with a frictionless piston. To simulate the working of a real engine, we 

consider the following reversible sequence: 

 

 

 

 

 
Nicolas Leonard Sadi 

Carnot (1796-1832) was    

a French physicist and 

engineer. With his 

pioneering work on heat 

engines, he successfully 

proposed an engine 

based on reversible 

thermodynamic 

processes, which offered 

maximum possible 

efficiency. Unfortunately, 

his work was not 

appreciated during his life 

time. Clausius and Kelvin 

used his ideas to propose 

the second law of 

thermodynamics. 

 

CONVERSION OF HEAT INTO WORK  

• A machine repsonsible for conversion of heat into work is called a heat 

engine. 

• In a steam engine (power-plant or an automobile) we burn fuel for 

generating heat which, in turn, makes the engine do work through the 

motion of a piston (turbine).  

• The difference in the heat generated and the amount utilised to do work  

is released to surroundings and is one of the causes of thermal 

pollution of our environment.  

• The ratio of work done and heat absorbed characterises the efficiency 

of a machine which converts heat into work. 
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i) isothermal expnasion, ii) adiabatic expansion, iii) isothermal compression, 

and iv) adiabatic compression. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.2: Four stages in the Carnot cycle. 

To realise the processes stated above in an engine, it is operated as follows:  

1. We place the cylinder in thermal contact with the hot reservoir and let the 

gas undergo reversible isothermal expansion. Suppose heat Q1 flows from 

the reservoir into the gas in this process. We have indicated this change 

as A to B on the p-V diagram in Fig. 8.3. (It was similarly depicted in          

Fig. 7.8 in TQ 9 in Unit 7). Note that the process is reversible so that the 

temperature of the working substance continues to be equal to the 

temperature of the reservoir during heat transfer. 

 

 

 

 

 

 

 

 

Fig. 8.3: Carnot cycle on indicator diagram. 

2.  Next, the gas is thermally isolated and allowed to undergo reversible 

adiabatic expansion. The temperature falls from T1 to T2, the temperature 

of the cold reservoir. Do you know, why the temperature drops? It is 

because work is done by the gas at the cost of its internal energy. This 

change is indicated as B to C on the p-V diagram. 

3.  On attaining the state defined by C, the working substance is at relatively 

low pressure and to use it in a cycle, it has to be restored to its initial state. 

Therefore, the gas is compressed in two stages: First isothermally and 

then adiabatically. This is done by placing the cylinder in thermal contact 

with the cold reservoir at lower temperature T2 and compressing the gas 
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isothermally and reversibly. Suppose heat Q2 is given up by the gas to the 

cold reservoir. This change is indicated as C to D. 

4. Next, the gas is thermally isolated and compressed under reversible 

adiabatic conditions till its original state is restored. 

8.3.1 Efficiency of a Carnot Engine 

While answering TQ 9 of Unit 7, you have obtained expression for the work 

done by the gas in a Carnot engine. We just quote the result here:  

   
D

C
AB

V

V
nRTVVnRTW ln)/(ln 21 −=  (8.4) 

To simplify this expression, we note that B and C (in Fig. 8.3) lie on the same 

adiabatic curve. Then, using Eq. (7.21), we can write 

  
1

2
1

1
−−

=
CB

VTVT  

or  

1

2

1
−











=

B

C

V

V

T

T
  (8.5) 

Similarly, for states D and A we can write 

  

1

2

1
−











=

A

D

V

V

T

T
  (8.6) 

On comparing Eqs. (8.5) and (8.6), we get 

  

11 −−











=











A

D

B

C

V

V

V

V
 (8.7) 

We can rewrite it as 

  










=











A

D

B

C

V

V

V

V
 

or  
D

C

A

B

V

V

V

V
=  

Using this result in Eq. (8.4), we get 

  )/(ln)( 21 AB VVTTnRW −=  (8.8) 

On substituting this expression for W in Eq. (8.4), we can express the 

efficiency of a Carnot engine in terms of the temperatures within which it 

operates: 

  
)/(ln

)/(ln)( 21

11 AB

AB

VV

VVTT

nRT

nR

Q

W −
==  

     
1

2

1

21 1
)(

T

T

T

TT
−=

−
=  (8.9) 

We can draw the following conclusions from this result:  

To simplify Eq. (8.7) we 

use the algebraic 

theorem that if powers 

are positive and equal, 

the bases are also 

equal. 

 

 

You have learnt in   

TQ 9 in Unit 7 that 

using the first law of 

thermodynamics for 

an isothermal process, 

we can write 

 11 QW =  

since U = 0 

Work done by the gas 

on the piston is given 

by 

 =
B

A

pdVW1  

 ==
B

A

V

V
V

dV
nRTQW

111
 


 )/(ln11 AB

VVnRTQ =  
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1. Efficiency of a Carnot engine depends on the temperature difference 

between the source and the sink; greater the difference, higher will be 

efficiency. In practice, the temperature of the sink is limited by the 

surroundings and the only way to increase   is to raise temperature of the 

source, 1T . It means that heat is more useful when it is supplied at a higher 

temperature. This explains why saturated steam at high pressure is a 

more efficient working substance. 

2. Efficiency of a Carnot engine is less than one. This is a fundamental 

limitation imposed on the convertibility of heat into work by the second law 

of thermodynamics. (We know that most of the electricity is generated in 

large fossil fuel (coal, oil, gas) or nuclear power plants. These are basically 

heat engines (where energy is released in chemical or nuclear reactions).  

The working substance, water, gets heated in a boiler and converted into 

steam at high pressure. It is made to expand adiabatically in a turbine, 

which is coupled to a generator and converts mechanical energy into 

electrical energy. The maximum efficiency of a power plant is about 50%. 

(This is also true of diesel and petrol engines.) It means that only half of 

the heat generated (fuel used) in a plant is converted into useful work. In 

fact, a substantial amount of our expensive fuel ends up as waste heat; it 

is released in the environment and causes thermal pollution, which is 

responsible for various ecological problems. It is, therefore, desirable to 

design maximum efficiency engines.  

3. If the source and the sink are at the same temperature, the efficiency will 

be zero. It means that we cannot operate an engine (and convert heat into 

work) if there is no temperature difference. To understand this, consider 

the following situation: 

 You take a motor boat to sea and run out of fuel. (If you are lucky, you 

may be rescued by another boat.) The first law of thermodynamics permits 

you safe return as the ocean has a vast amount of energy. But the second 

law tells us that this energy cannot be converted into useful work because 

ocean surface is at an almost uniform temperature.  

4.  The efficiency of a Carnot engine is independent of the nature of the 

working substance. You may expect that real engines will also be 

independent of the working substance and ask: Why are we then so 

concerned about a particular fuel? The answer to this question lies in their 

availability, economics, tenchonological feasibility and environmental 

factors. That is to say, thermodynamic considerations alone do not decide 

between various fuels and methods of harnessing energy sources. 

5. On comparing the expressions of efficiency given in Eqs. (8.3) and (8.9), 

we can correlate the ratios of heat absorbed and heat rejected to 

temperature of the source and temperature of the sink:  

   
2

1

2

1

T

T

Q

Q
= . 

Before proceeding further, answer the following SAQ. 
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You should now go through the following  solved example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You may now like to answer an SAQ. 

 

 

The cluster of nuclear power plants at Tarapur produces 540 MW electric 

power. In the reactor core, energy is released (as heat) at the rate of       

1600 MW. Steam produced in the reactor enters the turbine at a 

temperature of 560K and leaves it at 350K. Calculate the efficiency of the 

power plant. 

SOLUTION ◼  The thermodynamic efficiency is given by Eq. (8.9): 

  375.0
560K

K350
11

1

2 =−=−=
T

T
 

That is, the system is only 37.5% efficient. 

The actual efficiency of a power plant is defined as the ratio of the electric 

power output to the thermal power produced: 

  337.0
MW1600

MW540
==  

The waste heat of 1060 MW is normally discharged in a river (like Ganges, 

Mahanadi) or sea. This is a huge amount of energy and harmful for aquatic 

life.  

To reduce problems arising out of this, the designers of the power plant at 

Narora (UP) made use of cooling towers where expandig steam is made to 

cool by releasing heat to the atmosphere (air) rather than to water. This 

nevertheless causes thermal pollution in the troposphere. 

Diesel engines used in vehicles constitute another example of heat 

engines. A typical automobile engine operates at about 800K and releases 

exhaust gases to the environment at about 300K. 

The maximum possible efficiency is then 

  63.0
K800

K300
1 =−=  

In practice, the actual efficiency is much lower (~ 40%) and emanating hot 

gases are responsible for thermal pollution of our environment. 

 

 

 

 

XAMPLE 8.1:  EFFICIENCY CALCULATION 

 

 

 

SAQ 1  –  Carnot engine 

Can efficiency of a Carnot engine be increased more effectively by increasing 

1T  or lowering ?2T  Explain your answer. 
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Now go through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You will now agree that the beauty of Carnot cycle lies in the fact that all its 

stages are completely reversible. So if you invert the sequence of processes 

occuring in a heat engine, you will obtain a refrigerator. Do you know that an 

air conditioner is also a refrigerator designed to cool a room?  (The first 

 

 

A Carnot engine has an efficiency of 60% when its sink temperature is at 

27C. Calculate the change in the source temperature for increasing its         

efficiency to 70%.            

SOLUTION ◼  Let the initial temperature of the source be 1T . The 

temperature of the sink, .K300C272 ==T  

Using Eq. (8.9) for a Carnot engine, we can write 

   6.0
300

11
11

2 =−=−=
TT

T
 

On rearranging terms and solving for 1T , we get 

   1T = 750 K 

Let the temperature of the source be raised to K)750( T+  for efficiency to 

become 70%. Thus, we can write 

   7.0
)750(

300
1 =

+
−=

T
 

On solving this, we get, = 250KT  

Hence, the temperature of the source should be raised by 250 K. 

XAMPLE 8.2:  EFFICIENCY OF A CARNOT ENGINE 

 

 

 

SAQ 2  –  Efficiency of a Carnot engine 

a) In the tropics, the temperatures at the surface of the ocean and at a 

depth of 300m are 25C and 5C, respectively. Will you recommend to 

tap this energy? Discuss. 

b) A Carnot engine is made to work between ice point (273K) and nitrogen 

temperature (77K). Calculate its efficiency. Is it possible to attain this 

figure in actual practice? 

  

 

SAQ 3  –  Efficiency of a Carnot engine 

An engine has an efficiency of 40%. Its efficiency is to be raised to 45%. By 

how much must the temperature of the source be increased if heat is released 

to atmosphere at 27C? 
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modern electrical air conditioner was designed by Willis Carrier in 1902 in 

Buffalo, New York.) Let us now understand the physics of this device. 

8.3.2 Carnot Cycle as Refrigerator 

Most of  us now use refrigerators in our homes to keep various food items 

fresh so that they do not get stale and lose taste. This is done by keeping 

these cool. Have you ever thought: How is cooling achieved in a refrigerator? 

The most beautiful aspect of a Carnot engine is that we can run the whole 

system backward so that the sequence of events and their functions are 

reversed. Thus, Carnot cycle working in the reverse direction will act as an 

ideal refrigerator, in which heat is extracted from the reservoir at lower 

temperature and transferred to the reservoir at higher temperature. Therefore, 

in a sense, a refrigerator is also a heat engine. 

Let us re-examine Fig. 8.3 again. If the directions of the arrows are reversed, 

the cycle ABCDA  becomes ADCBA . Since each process is reversible, the 

cycle is also reversible. Therefore, magnitudes of heat taken, heat rejected 

and the work done remain the same, except that their signs are reversed. It 

means that heat 2Q  is absorbed by the working substance from the lower 

temperature reservoir and heat 1Q  is rejected to the reservoir at higher 

temperature. And the work W represents the work done on the system          

(Fig. 8.4). In a domestic refrigerator, heat is pumped out of its interior, which  

is at a temperature lower than the surroundings and work is done by the  

motor driving the refrigerator. Thermodynamically, a refrigerator makes heat  

to flow from a lower temperature to a higher temperature, i.e., in a direction it 

does not spontaneously go. You can feel it by putting your hand near the  

coils, body, of the refrigerator. (You should not however touch the coils.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.4: A Carnot refrigerator. 

Hot reservoir 

1T  

21 QWQ +=

 

W
 Carnot 

refrigerator 

2Q

 

Cold reservoir 

2T  
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The ability of a refrigerator is rated in terms of the coefficient of performance 

or figure of merit. We denote it by the symbol   and define it as  

    

 
input work

edrefrigerat be to object the from etemperaturlow  at extracted heat
=  

 Mathematically, we write 

      
21

22

QQ

Q

W

Q

−
==   (8.10)  

where 2Q

 

is heat  absorbed at the low temperature (cooler body) and 1Q

 

is  

heat rejected at higher temperature (kitchen environment). 

In terms of temperatures of the eatables kept inside the refrigerator and the 

kitchen environment, we can express the coefficient of performance as 

   
21

2

TT

T

−
=

 

(8.11) 

where 1T and 2,T respectively denote the temperatures of the kitchen 

environment and the eatables kept inside the refrigerator. 

On comparing the expressions for   given by Eqs. (8.10) and (8.11), we can 

write 

  






 −
==

2

21
22 /

T

TT
QQW                                                     (8.12) 

We can derive following conclusions from Eqs. (8.11) and (8.12): 

i)   is directly proportional to 2T  . That is, the coefficient of performance will 

be small when 2T  is low. In fact,   approaches zero as 2T → 0. This 

means that more work will have to be done or more energy will be used up 

by the refrigerator for transferring the same amount of heat as 2T  

decreases. If 02 =T , infinite amount of work will be required to produce 

cooling. This essentially implies that it is not possible to attain absolute 

zero mechanically. 

ii)   is inversely proportional to 21 TT − , i.e., lesser the difference between 

the hot and cold bodies, greater will be the coefficient of performance. As 

)( 21 TT −  approaches zero,   approaches infinity. This means that a 

refrigerator will be most effective when eatables/chemicals placed inside it 

are close to the temperature of surroundings.  So to conserve energy, it is 

advisable to put eatables in a kitchen refrigerator while they have cooled to 

room temperature. (You may have seen your maid/mother/sister allowing 

boiled milk to cool down to room tempearture before putting it in the 

refrigerator. If they are not doing so, advise them accordingly.) 

iii) Unlike the efficiency of a heat engine, the coefficient of performance of a 

refrigerator can be greater than unity. That is, the amount of heat removed 

from the refrigerated space can be greater than the work input. (In fact, 

one of the reasons for expressing the efficiency of a refrigerator by another 

nomenclature − the coefficient of performance − is the intention to avoid 

confusion of having thermal efficiencies greater than unity.) To give you an 
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idea about the figure, let us consider that freezer in a refrigerator or cold 

storage is maintained at 
−10 C and the room temperature is 

30 C. You 

can readily convince yourself that the value of coefficient of performance in 

this case will be 58.6
40

263
== . 

You should now go through the following examples to grasp the ideas 

discussed in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A typical home freezer operates between −18C and 30C. Calculate the 

maximum value of   of this refrigerator. With this , how much electrical 

energy would be required to freeze 0.5 kg of water, initially at 0C. Given 

latent heat of fusion = 334 kJ kg−1. 

SOLUTION ◼  The coefficient of performance is given by Eq. (8.11) as 

  3.5
48K

K255

255K-303K

K255

21

2 ===
−

=
TT

T
 

To produce 0.5 kg of ice, you have to extract heat from water. It is given by 

  mLQ =  

where L is latent heat of fusion. Hence, 

  5.0(2 =Q kg)  (334 kJ kg−1) 167= kJ 

Using Eq. (8.10), you can write:   kJ5.31
5.3

kJ1672 ==


=
Q

W  

In actual practice,   would be lower and the corresponding work input 

would be higher because a real engine is not completely reversible. 

XAMPLE 8.3:  COEFFICIENT OF PERFORMANCE 

 

 

 

 

 

A domestic refrigerator is driven by a 1000 W electric motor, which operates 

at an efficiency of 60%. If the refrigerator can be treated as a reversible  

heat engine operating between −10C and 20C, calculate the time required 

by it to freeze 10 kg of water which is at 0C. Neglect heat losses. Take 

latent heat of fusion of ice as 334 kJ kg
1−
. 

SOLUTION ◼  We know that work done by a refrigerator is given by  

  









−= 1

2

1
2

T

T
QW                              

Here 201 =T K 293C = , and 2T K 263C10 =−= . Since the refrigerator is 

being driven by a motor of 1000 W with 60% efficiency, we get 

  1600Js W600
100

60
1000 −===W  

   

XAMPLE 8.4:  COEFFICIENT OF PERFORMANCE 
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In a household refrigerator, Freon-12 is used as the working substance. It has 

a boiling point of 
− 29 C. (Freon-12 is a gas at room temperature.) Freon gas 

in a tube is made to expand suddenly from high pressure to low pressure. In 

this process it cools and a vapour-liquid mixture is obtained. This cold fluid, 

circulated through expansion coil around the region to be cooled, absorbs 

heat from the eatables kept inside the refrigerator and the entire liquid in the 

mixture changes into vapour. The vapour is compressed and work is done by 

the compressor on the vapour. The temperature as well as pressure of the 

vapour rise. The compressed vapour rejects heat to the surrounding medium 

such as the kitchen air and condenses through a set of tubes (called 

condenser and located at the back of the refrigerator). 

It has been observed that CFCs adversely affect the life protecting layer of 

ozone in our atmosphere. So, there is now growing emphasis on phasing out 

CFCs. In India, non-CFC refrigerators are available.  

An air-conditioner is also a refrigerator and the refrigerated space is a room 

rather than the food compartment. A window air-conditioning unit produces 

cooling by discharging heat of the air in the room outside. (When you travel by 

an aeroplane, sit in an air-conditioned room/office for long hours, it is 

advisable to drink water every half-hourly to avoid dehydration due to loss of 

body heat in the form of perspiration.) The same unit can also be used as heat 

pump by installing it backward. Now-a-days, systems fitted with controls so as 

to operate them as air-conditioners in summer and as heat pump in winter are 

available in the market.  

We hope that now you appreciate the importance of Carnot’s work on 

convertibility of heat into work. In fact, Carnot’s genius lay in his imagination 

that a heat engine is the most efficient machine when it is operated in a 

reversible cycle. Historically, the work of Carnot led to the formulation of the 

second law of thermodynamics, which is a generalization of certain 

experiences and observations about the direction of transfer of thermal 

energy. This law has been stated in two different ways: (i) by Kelvin and 

Planck and (ii) by Clausius. We now discuss these in turn. 

8.4   THE SECOND LAW OF THERMODYNAMICS 

Kelvin and Planck confined themselves to the working of a heat engine and 

summarised the fact that it converts only a part of heat into work; the rest is 

rejected to a sink at a lower temperature. Let us now learn about it. 

 

Hence,  
KK

K

TT

T
WQ

263293

263
600

21

2
2

−
=

−
= .Js 5260 1−=  

But the heat required to freeze 10 kg of water 33410 == mL KJ. Hence 

the time required to extract 334X104 J of heat  

   35s min 10s635
Js5260

J10334

1

4

==


=
−

t  
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8.4.1 The Kelvin-Planck and Clausius Statements 

Kelvin-Planck statement of the second law of thermodynamics is as follows: 

 

 

This statement implies that one cannot devise a machine which just absorbs 

heat from a reservoir and produces 100% work. That is, we need two 

reservoirs for exchange of heat and running an engine in a cycle. 

There are other processes in which energy is conserved but they do not 

occur. For example, it is a fact of experience that heat does not flow on its 

own from a body at a lower temperature to a body at higher temperature.  

That is, spontaneous heat flow is unidirectional and is a fact of experience. It 

is contained in the Clausius statement of the second law of thermodynamics, 

which is as follows: 

 

 

 

Note that Clausius statement is relevant for the working of a refrigerator. An 

important implication of this statement is that it is not possible to transfer heat 

from a cold body to a hot body without some change somewhere, including 

the working substance/surroundings of the system.  

Note that the two statements of the second law apparently seem different or 

unconnected but they are equivalent. In fact, each statement implies the other. 

If one statement is untrue, will the other statement necessarily be untrue? 

Indeed, it is so and the truth of either form is both a necessary and sufficient 

condition for the truth of the other. We now discuss the equivalence of Kelvin-

Planck and Clausius’ statements. 

8.4.2 Equivalence of Kelvin-Planck and Clausius  
  Statements 

The equivalence of these statements implies that if one statement is untrue, 

the other statement is necessarily untrue.  

1. Let us suppose that the Clausius statement of the second law is 

violated by a hypothetical refrigerator A. Suppose that it transfers 2Q  

units of heat in each cycle from a cold reservoir at temperature 2T  to  

a hot reservoir at temperature 1T  without expenditure of any work            

(Fig. 8.5a). Let us now assume that a heat engine working between 

the same heat reservoirs draws an amount of heat Q1 from the hot 

reservoir and rejects heat Q2 to the low temperature reservoir and 

performs work 21 QQWnet −=  in one cycle. Further, suppose that the 

heat engine operates at such a rate that it completes one cycle in the 

same period as does the refrigerator. 

No process is possible whose sole result is complete conversion of 

heat into work. 

 

 

No process is possible whose sole result is the transfer of heat from a 

body at a lower temperature to a body at a higher temperature. 
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Fig. 8.5: a) Refrigerator A supposedly violates the Clausius statement of the 

second law, whereas B does not violate the law; b) the composite 

engine violates the Kelvin-Planck statement.   
 

Now suppose that a composite engine is formed by considering the 

refrigerator and the heat engine to act together (Fig. 8.5b).  

Since the heat drawn by the heat engine Q2  is equal to the heat rejected 

by the refrigerator, the need for the hot reservoir will be eliminated 

completely, if heat Q1 were fed to the heat engine by the hotter reservoir. 

That is, even though the composite engine exchanges heat with only one 

reservoir at a fixed temperature, there is net work output in each cycle.  

Such a composite engine obviously violates Kelvin-Planck statement, 

which implies that no engine can run with just one reservoir.  

2. To prove that if Kelvin-Planck statement is violated, the Clausius 

statement is also violated, let us consider a hypothetical heat engine 

which extracts heat 1Q  from the hot reservoir, converts it completely into 

work and rejects no heat to the low temperature reservoir (Fig. 8.6a).  

  

 

 

 

 

 

 

 

 

   

 

 

 

 

Fig. 8.6: a) Heat engine A violates Kelvin-Planck statement of the second law, 

whereas refrigerator B does not violate the law; b) the composite 

engine violates Clausius’ statement.   

Hot reservoir 

1T  

Cold reservoir 

2T  

(a)  (b)  

2Q  2Q  

−= 1 2netW Q Q  

−= 1 2netW Q Q  

Q2 

(a) 

2T  

1
T  

(b) 
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Suppose that the work performed by the heat engine is used to drive a 

refrigerator operating between reservoirs at temperatures 1T  and .2T  

Further, suppose that the refrigerator absorbs heat 2Q  from the low 

temperature reservoir and rejects heat 2QW +  to the hot reservoir per 

cycle. As before, we also assume that the refrigerator completes one 

cycle in the same period as does the heat engine.  

You will agree that the refrigerator by itself does not violate any law but 

when it is made to form a composite engine with a heat engine                    

(Fig. 8.6b), the net result of operation of the composite system will be 

to transfer heat 2Q  from the low temperature reservoir to the higher 

temperature reservoir without any external work. This obviously 

violates Clausius statement of the second law. You can now conclude 

that both the statements of the second law are equivalent. 

Having analysed the operation of Carnot cycle, we can do two things: a) show 

that no real engine can be more efficient than the Carnot engine, i.e., prove 

Carnot theorem, and b) introduce the concept of thermodynamic temperature.  

Let us now discuss Carnot theorem. 

8.5   CARNOT THEOREM 

Carnot theorem states that of all heat engines working between the same 

(constant) temperatures, the reversible Carnot engine has the maximum 

efficiency. Let us consider an irreversible engine (I) and a reversible engine 

(R) operating between the same reservoirs which are at temperatures 1T  and 

.2T  Suppose that the irreversible engine is more efficient than a reversible 

engine. That is, we assume that 

  RI   

And Carnot theorem demands that this assumption is to be proved wrong. So, 

if the assumption is valid, then we must have 

 
11 Q

W

Q

W


   (8.13) 

where Q1 is heat absorbed by the irreversible engine and 

.2121 QQQQW −=−= This implies that .11 QQ   That is, heat absorbed by 

the reversible engine is more than that absorbed by an irreversible engine. 

We now couple these engines and regard the system of combined engines to 

be a single device. Now suppose that the work produced by the irreversible 

engine is used to drive the reversible engine backwards so that it acts as a 

(Carnot) refrigerator, as shown in (Fig. 8.7). Thus, the overall effect of the 

combined engine is to transfer a net amount of heat 

1111 )()( QQWQWQ −=−−−  from the cold reservoir to the hot reservoir on its 

own. That is, the combined engine acts as a self-acting device, which requires 

no external input. But this is forbidden by the Clausius statement of the 

second law. Therefore, the assumption that RI   is not valid, i.e., an 

irreversible engine cannot have efficiency greater than that of the reversible 

engine i.e., RI  . In fact, the efficiency of a Carnot engine is maximum.  
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We should expect it physically because friction and heat losses in an 

irreversible engine will make it less efficient.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.7: Illustrating the proof of Carnot’s theorem. 

A corollary of Carnot theorem is: All reversible engines operating between the 

same temperature limits have the same efficiency.  

It may be remarked here that Carnot engine is an ideal device because all 

losses due to conduction, radiation or friction are assumed to be absent. 

However, in real appliances, some useful energy is always dissipated. Yet, a 

study of this idealized engine helps us to understand the working of a real 

engine. You should now go through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a reversible engine, show that 0=
T

Q
. 

SOLUTION ◼  According to Carnot theorem: RI  

where R  denotes the efficiency of a Carnot engine and I is the 

efficiency of any other engine operating between the same temperature 

limits. In terms of heats exchanged, we can write 

 
1

2

1

2 11
Q

Q

Q

Q
−




−

        

or     
1

2

1

2

1

2

T

T

Q

Q

Q

Q
=




 

Hence, 0
2

2

1

1 


−


T

Q

T

Q
 

Therefore, for any cycle in which heat exchange takes place with two 

reservoirs only, the algebraic sum 

    .0
T

Q
  

Note that the equality sign holds for a reversible cycle, whereas the 

inequality sign holds for an irreversible cycle. 

 

XAMPLE 8.5:  Carnot theorem 

 

 

 

Magic 
machine 
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We now sum up what you have learnt in this unit. 

8.6 SUMMARY 

8.7 TERMINAL QUESTIONS 

1. A reversible engine works between two temperatures and the difference of 

two temperatures is 110C. If it absorbs 756 J of heat from the source and 

gives 536 J to the sink, calculate the temperature of source and sink. 

2. A Carnot engine whose sink is at 300 K has an efficiency of 40 percent.   

(i) Determine the source temperature. (ii) Obtain the increment in the 

temperature of source to increase the efficiency by 25 percent of original 

efficiency? 

3. A Carnot engine has efficiency 25%. It operates between reservoirs of 

constant temperature with temperature difference of 80 K. Calculate the 

temperature of the low-temperature reservoir in Celsius. 

4. The efficiency of a Carnot’s engine at particular source and sink 

temperatures is  .
2

1
 When the sink temperature is reduced by 100C, the 

engine efficiency becomes .
3

2
 Calculate the new source temperature. 

 

Concept Description 

Efficiency of a Carnot 

engine 

◼ The efficiency of Carnot’s engine is maximum. The efficiency of a 

heat engine is given by: 

                1

2

1

2 11
T

T

Q

Q
−=−=   

                  

 

 

Second law of 

thermodynamics  

◼ Two equivalent statements of second law of thermodynamics are due 

to Kelvin-Planck, and Clausius.  

◼ The Kelvin-Planck statement governs the working of a heat engine. It 

states that it is impossible to construct an engine, no matter how 

ideal, which, working in a cycle, will transform the entire heat into 

work. 

 

◼   

▪  

 

 

 

 

 

Coefficient of 

performance  

   

◼ The Clausius statement of second law governs the working of a 

refrigerator. It states that it is impossible to make a refrigerator 

operate in a cycle so that its sole effect is transfer of heat from a 

cooler body to a hotter body. 

◼ The coefficient of performance of a refrigerator is given by: 

             21

1

21

2

TT

T

QQ

Q

−
=

−
=
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5. An ideal Carnot engine, whose efficiency is 40%, receives heat at 500 K. If 

its efficiency is 50%, calculate the intake temperature for the same 

exhaust temperature. 

8.8   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. The efficiency of a Carnot engine can be increased more effectively by 

increasing the temperature of source. Increasing the temperature of sink 

will have opposite effect.  

2. a)  
1

21
T

T
−=

298

278
1−=  

298

20
=  = 0.07 = 7% 

 This is a highly inefficient system and it is not advisable to tap this 

source of energy. 

 b)   
273

196

273

77
1 =−=  = 0.72 = 72% 

 It is too high to be attainable in practice. 

3. From Eq. (8.9) we recall that 

   
1

21
T

T
−= . 

 Here 300272732 =+=T  K and 40.0= . 

 Using this data, we can easily calculate the temperature of the source: 

   
1

300
140.0

T
−=   

 so that   500
60.0

300
1 ==T K (i) 

 For the increased efficiency, we can write 

   5.545
55.0

300
1 ==T  K (ii) 

 Hence the temperature of the source should be raised by 

    )5005.545(11 −=−= TTT K = 45.5 K 

Terminal Questions 

1. Let the temperature of the source and sink be 1T  and 2,T  respectively. It is 

given that 

   K110C11021 ==−TT  

(As temperature differences in Celsius and Kelvin scales are the same.) 

Using Eq. (8.9), the efficiency of the heat engine is given by 
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   









=−=−=

2

1

2

1

1

2

1

2 as11
T

T

Q

Q

T

T

Q

Q

         

  

−
 = 1 2

1

or
T T

T
 

   
756

536

536

756

1

2

2

1

2

1 ===
T

T

Q

Q

T

T
 

   
1

21
T

T
−=  

756

220

756

536
1 =−=  

 or  
756

220110

1

=
T

                              (since K11021 =−TT ) 

 On solving the above equation, we get  

    =
source1 378K andT

       

  
K268

sink2 =T        − =1 2( 110K)T T  

2. i) Using Eq. (8.9), we can write  

   
1

21
T

T
−=  

 where 1T  is the temperature of the source and 2T  that of the sink.  On 

inserting the values in the above expression, we get 

    = −
1

40 300
1

100 T
     

  Hence, 
1

300
1

5

2

T
−=  

  or = −1 12 5 1500T T    

 K 5001 =T  

  Hence, the source temperature is 500 K. 

 ii) 25% of original efficiency = 10%. Therefore, we can write 

     
xT +

−=
+

1

300
1

100

1040
 

  where x is the increment in temperature. On solving, we get 

     
+ −

=
+

1

1

3001

2

T x

T x
    

  or  60022 11 −+=+ xTxT  

  or  + = + −500 1000 2 600x x    
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or  xx 2400500 +=+  

  = 100 Kx  

  Hence, the temperature of source should be raised by 100 K. 

3. We use the expression of efficiency,  

  = −1 ,L

H

T

T
  

where LT

 

and HT  are the temperatures of reservoirs in Kelvin. 

   
H

L

T

T
−= 1

4

1
 (i) 

 or  LH TT
3

4
=

 
(ii) 

 Also, it is given that 80=− LH TT  

 On substituting the value of HT from Eq. (i), we can write 

    − =
4

80K
3

L LT T
    

    

 
− = 

 

4
1 80K

3
LT  

 or  
− 

= 
 

4 3
80K

3
LT

   

  

or

   

= 240KLT    

 In Celsius,  = −  = − (240 273) C 33 CLT  

4. The expression for efficiency is given by Eq. (8.9) as  

  
1

21
T

T
−=

 

(i) 

 Substituting the value of 
2

1
= in Eq. (i), we can write 

     =
1

2    

  

−
 − =2

1

( 100) 2
1

3

T

T
 

(ii) 

 On solving Eq. (i), we get   

     
2

1

1

2 =
T

T

 

(iii) 

 Similarly, solving Eq. (ii), we get 
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3

1)100(

1

2 =
−

T

T

 

(iv) 

 Dividing Eq. (iii) by Eq. (iv), we get 

    =
−

2

2

3

( 100) 2

T

T
  

or

     

30032 22 −= TT  

or    =2 300 KT     

         K. 6001 =T  

 Hence, the new source temperature will be 600 K. 

5. We can write the expression of efficiency using Eq. (8.9) as 

    
1

21
T

T
−=  

 On substituting the values, we can write  

   
500

14.0 2T
−=  

 On solving, we get  

    K 3002 =T  

 Now, = −
1

300
0.5 1

T
    

  

 =1 600 KT  
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Structure 
 

9.1 Introduction 

Expected Learning Outcomes 

9.2 Defining Entropy  

9.3 Entropy and the Second Law of  

Thermodynamics 

The Combined Form of the First and 

the Second Laws 

9.4 Entropy Change of an Ideal Gas  

             Entropy of Mixing 

Entropy Change of Phase Transition 

STUDY GUIDE           

 

9.5 Representation of Carnot Cycle on          

Entropy-Temperature Diagram             

9.6 Entropy at Absolute Zero: Third Law of 

Thermodynamics  

 Consequences of the Third Law 

9.7       Summary 

9.8 Terminal Questions 

9.9 Solutions and Answers 

 

In the previous unit, you have learnt how to obtain the expression for efficiency of Carnot engine 

and coefficient of performance of a refrigerator using an indicator diagram. In this unit, you will 

learn about entropy, which is a variable of state and used to state the second law of 

thermodynamics. You will learn that entropy is a mathematical tool. That is, unlike temperature and 

pressure, entropy cannot be measured. You will also learn how to obtain expressions for entropy 

changes for a few typical thermodynamic systems.  

The expression for efficiency of a Carnot engine can be obtained rather easily using the 

temperature-entropy (T-S) diagram. You will learn that the calculation of the absolute value of 

entropy is not possible even for a reversible process. However, the behaviour of entropy at low 

temperatures approaching absolute zero led Nernst to postulate the third law of thermodynamics. 

This statement was subsequently modified by Planck. You will learn about these developments 

here. The mathematics used in this unit is very simple but physical concepts are of fundamental 

importance. Therefore, you should focus on understanding the underlying physics. Answering 

SAQs and solving TQs on your own would help you enjoy this unit. 

“Our greatest weakness lies in giving up. The most certain 

way to succeed is always to try just one more time.”  
Thomas Alva 

Edison 

 

The entropy of the universe is 

continuously increasing.  

(Picturesource: https://pixabay.com/illustrations/bla

ck-hole-abstract-photoshop-4118711/ 
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9.1   INTRODUCTION 

From experience we know that heat flows from a body at higher temperature 

to a body at lower temperature spontaneously. But the reverse is not true, i.e., 

heat does not flow on its own from a body at lower temperature to a body at 

higher temperature. This is because cooling is a unidirectional natural 

process. You may be familiar with many other unidirectional processes 

occurring in physically diverse systems. We may mention spontaneous 

expansion of a gas into fixed volume (free expansion), battery discharge  

when in operation (chemical process), and intermixing of two fluids (diffusion), 

among others. 

Do you know why natural processes take place in a particular direction? To 

discover an answer to this question, we need to know: What determines the 

direction of a natural process? Can we give a quantitative thermodynamic 

criterion which governs this change?  

The answer to these and many other such questions was given by Clausius in 

1850 when he introduced a new thermodynamic function called entropy (from 

the Greek word tropos, which means ‘change’). Clausius showed that for 

natural processes, entropy of the universe always increases. That is, natural 

processes evolve in the direction of increase of entropy.  

But you may now ask: What is entropy? Entropy characterises disorder in a 

system. It is a mathematical tool, an abstract property and it cannot be 

measured like temperature, pressure or volume. For simplicity, we first define 

entropy with reference to a reversible process in    Sec. 9.2, though all natural 

processes are irreversible and this definition holds for these as well.  

In Sec. 9.3, we have postulated the second law of thermodynamics in terms  

of entropy and established the combined form of the first and second laws of 

thermodynamics. You will learn how to derive expressions for changes in 

entropy of an ideal gas in Sec. 9.4. This is followed by the derivation of the 

expression for the efficiency of a Carnot engine using T-S diagram. In        

Sec. 9.6, you will learn about the behaviour of entropy at absolute zero and 

the third law of thermodynamics.                             

Expected Learning Outcomes 
After studying this unit, you should be able to: 

❖ define entropy and state second law of thermodynamics in terms of 

entropy; 

❖ calculate entropy change for a system when it undergoes a reversible/ 

irreversible change; 

❖ represent Carnot cycle on T-S diagram and derive expression for 

efficiency of a heat engine; and 

❖ state third law of thermodynamics and discuss its important 

consequences. 

 
 
 
 

 
 
 
 
 
 

 

 

Rudolf Julius Emanuel 

Clausius (1822-1888) 

was a German 

physicist, who is 

famous for his 

significant contributions 

to kinetic theory of 

gases and 

thermodynamics. His 

pioneering work on 

convertibility of heat 

into work led to the 

formulation of the 

second law of 

thermodynamics in 

1850.  Later on, he also 

introduced the concept 

of entropy. 
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9.2   DEFINING ENTROPY 

To define entropy, let us consider n moles of an ideal gas at 

temperature T and pressure p  enclosed in an insulated cylinder fitted 

with a frictionless piston. On a p-V diagram, this state of the system is 

represented as shown in Fig. 9.1. Suppose that now an infinitesimal 

amount of heat Q  is added reversibly along the path 21A  to the 

system. Using the first law of thermodynamics, we can write: 

  pdVdTncQ Vrev +=  (9.1a) 

The subscript rev signifies that we are considering a reversible process. 

On dividing Eq. (9.1a) throughout by ,T  we can write: 

  dV
T

p

T

dT
nc

T

Q
V

rev +=


 (9.1b) 

Using the equation of state for an ideal gas ),( nRTpV =  we can write: 

  
V

nR

T

p
=  

Using this result in Eq. (9.1b), we obtain: 

  
V

dV
nR

T

dT
nc

T

Q
V

rev +=


 

Now suppose that as a result of addition of heat, the system changes from 

initial state 1 to final state 2. Then, the net change in the value of 
T

Qrev
is 

given by: 

   +=


2

1

2

1

2

1
V

dV
nR

T

dT
nc

T

Q
V

rev  

Let us now suppose that the initial and final states are characterized by the 

thermodynamic variables ),( 11 TV and ),( 22 TV , respectively. If we assume that 

Vc  does not change when heat is added reversibly, we can readily carry out 

integration to obtain: 

  







+








=




1

2

1

2
2

1

lnln
V

V
nR

T

T
nc

T

Q
V

rev  (9.2) 

Before proceeding further, let us interpret this result. It tells us that the value of 

T

Qrev
 depends on 121 ,, TVV  and 2T .  

In other words, the value of 
T

Qrev
 can be determined by considering the 

temperatures and volumes corresponding to the initial and final states of the 

system. We express this by saying that 
T

Qrev
 defines a new property of the 

gas and is characteristic of the state.  

Fig. 9.1: p-V diagram  

Fig. 9.1:  Representation 

of a reversible process 

on p-V diagram. 

V 

A 

2 

1 

C p 
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You would recognise that it is immaterial how the system got in that state. 

How can you justify this?  

To this end, we recall from Unit 7 of Block 2 that revQ  is an inexact 

differential, i.e., a function of path. But the value of 
T

Qrev
, which is the ratio 

of a path function and a state variable, is determined only by the initial and 

final states. This is possible only when 
T

Qrev
 defines a change in some new 

function. This function is called entropy and is denoted by the symbolS . So, 

we write: 

  =dS
T

Qrev
 (9.3) 

In words, when we add an infinitesimal amount of heat revQ reversibly to a 

system at constant temperature T, its entropy changes by 
T

Qrev
. 

In SI units, entropy is expressed in joule per kelvin (JK−1). Like pressure, 

volume and temperature, entropy is also a thermodynamic state variable. Can 

we classify entropy as an extensive variable? Certainly yes, and we define 

specific entropy as entropy per mole or per unit mass. 

  
m

S
s

n

S
s ==   or  

Let us now pause for a while and ask: How good is the relation contained in 

Eq. (9.3)? It may be mentioned here that although we arrived at Eq. (9.3) by 

considering a gaseous system, it holds for every thermodynamic system. 

Moreover, this equation enables us to write an expression for the change in 

entropy for any system: 

  


=−

2

1

12
T

Q
SSS rev  (9.4) 

The limits on the integral refer to two thermodynamic states of entropies 1S  

and 2S . You can draw the following inferences from Eq. (9.4): 

i) For a reversible cycle, net change in entropy will be zero, i.e., entropy 

does not change or is conserved in a reversible process. 

ii) We can calculate change in entropy rather than its absolute value. 

iii) The entropy of a system in a given state relative to some arbitrary 

intermediate state ( n ) can be expressed as 

  


+=

2

n

rev
n

T

Q
SS  (9.5) 

  where nS  signifies entropy of the intermediate state.  

iv) Eq. (9.4) has been derived for a reversible process. You may now ask: 

How will this equation modify for natural processes like free expansion 

You will recognise that 

we have postulated 

existence of entropy in   

Eq. (9.3). 

Mathematically, an 

inexact differential can 

be made exact by 

introducing an 

integrating factor. 

Therefore, we can say 

that here 1−T acts as 

an integrating factor for 

revQ . 

 

Entropy is analogous 

to gravitational 

potential energy, which 

is specified with 

respect to some 

reference level. 



   

33 

 

 Unit 9                            Entropy and the Laws of Thermodynamics 

or heat flow? To discover the answer to this question, refer to Fig. 9.1 

again and consider heat flow along the path 1C2, which is an 

irreversible process. You may like to know as to how the method of 

calculation of entropy is modified in this case. To this end, we assume 

that heat is given in infinitesimal steps so that irreversible process 

between states 1 and 2 can be replaced by a reversible process 

through infinite quasi-static equilibrium states. It means that we can 

use Eq. (9.4) to calculate the entropy change for each quasi-static 

state. Therefore, we can conclude that Eq. (9.4) is valid for irreversible 

processes as well for the same initial and final states. This is because 

entropy is a property of state and the entropy difference does not 

depend on how a system got into that state. 

Before proceeding further, you should recapitulate what you have learnt about 

entropy so far in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we would like you to go through the following examples to grasp the 

concepts discussed above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two blocks of iron are in thermal contact. The temperature of block A  is 

300K and that of block B  is infinitesimally higher than 300K. The blocks 

are so large that 600 J of heat transferred from B  to A  leaves their 

temperatures unchanged. Calculate the entropy change of the individual 

blocks and also the total entropy change. Take the process to be 

reversible. 

SOLUTION ◼  Since block A  is at lower temperature, it will absorb heat. 

You can calculate the entropy change using Eq. (9.3): 

XAMPLE 9.1:  ENTROPY CALCULATION 

 

 

 

ENTROPY  

• Entropy for a reversible process is defined through the relation 

   =S
T

Qrev
 

 where revQ is the amount of heat given reversibly. 

• For a reversible cycle, net change in entropy will be zero, i.e., entropy 

is conserved in a reversible process. 

• Between states 1 and 2, the change in entropy for reversible process 

for n moles of a gas is given by: 

             


=−

2

1

12
T

Q
SSS rev   

• We can calculate change in entropy rather than its absolute value.  

• Eq. (9.4) can also be used to calculate the change in entropy even for 

an irreversible process. 
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You may now like to answer an SAQ to check your understanding. 

 

 

 

 

Before proceeding further, you may like to know the physical significance of 

entropy. So far, we have not said anything about it. We know that when heat 

The entropy change for block A , 1JK2
K 300

J600 −==


=
T

Q
S A

A   

The entropy change for block B , −
 = = − = − 1600J

2JK
300 K

B
B

Q
S

T
  

The negative sign is included with BS  as B  loses heat. This means that 

entropy of a system increases when it is heated and vice versa. 

Total entropy change, 0JK 2JK 2 11 =−=+= −−
BA SSS  

That is, when heat transfer is reversible, there is no net change in entropy 

and you can say that entropy is conserved in a reversible process. 

You should not 

confuse small letter s 

with entropy.  

 

A block of copper of mass1.5 kg is heated from 300K to 350K. Calculate 

the change in entropy of the block. The specific heat capacity of copper is          

389J kg−1K−1. Assume that heat is added irreversibly. 

SOLUTION ◼  Although heat has been added irreversibly, we can 

calculate S using Eq. (9.4):  

     =

K350

300K

ev

T

Q
S r

 (i) 

The heat absorbed for an infinitesimal rise in temperature is given by: 

  TmsQrev =  (ii) 

where m is mass and s is specific heat capacity of the block. On inserting 

the given data in Eq. (ii), we find that 

 = revQ (1.5 kg)  (389 J kg−1K−1)  T  

 
( ) ( )




=
−−K350

300K

11Kkg J389kg5.1

T

T
S = ln5.583 1JK

300

350 −








 

  = )67.1(log303.25.583 10  1JK− = 1JK90.0 −  

XAMPLE 9.2:  CHANGE IN ENTROPY OF A SYSTEM 

 

 

 

SAQ 1  –  Entropy change 

One kg water at 27C and 1 atm pressure is heated to 80C at the same 

pressure. Calculate the change in entropy. Take specific heat capacity of 

water as .kgK J 102.4 113 −−  
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is added to ice, it melts and the molecular arrangement (in water) is   

somewhat loosened (compared to ice). If you add more heat, water may 

change to the vapour state. In vapour state, molecules are relatively far apart 

and molecular motion is quite disordered. So, we can say that addition of 

heat (or increase in entropy) creates disorder. On the other hand, when a 

gas condenses or a liquid solidifies (giving out heat), the molecular 

arrangement becomes more ordered. That is, disorder decreases when a 

gaseous substance changes into the solid state. From this discussion we can 

conclude that entropy is a measure of disorder in the system.  

So far, we have introduced the concept of entropy and calculated entropy 

change in a reversible/irreversible process. You may now ask: How does such 

a change influence the system, its surroundings and hence the universe? The 

answer to this question leads us to the second law of thermodynamics. It 

applies to processes in our body, to combustion of fuel in an automobile, an 

aeroplane and a rocket as well as to working of refrigerators and other cooling 

machines. It enables us to specify the direction of evolution of natural 

processes. We now discuss it in detail. 

9.3   ENTROPY AND THE SECOND LAW OF 
THERMODYNAMICS 

Consider that an infinitesimal amount of heat Q  flows from the surroundings 

at temperature surrT  to the system under consideration at temperature sysT . 

The net change in the entropies of the system and surroundings is given by 

 surrsys SSS += Q= 0
11















−

surrsys TT
 (9.6) 

Note that the equality sign holds for reversible heat flow, whereas greater than 

sign signifies irreversible heat flow. Since all natural processes are 

irreversible, you may be tempted to conclude that entropy of the universe is 

continuously increasing. If you think so, you are on the right track. This 

continuous increase of entropy in natural processes is known as the principle 

of increase of entropy. And the second law of thermodynamics may be 

stated as follows: 

 

 

 

Consider the construction of a building from materials that were initially 

dispersed in the Earth. In this process, matter goes from a completely 

disorganized state to a highly ordered state. That is, the entropy decreases. In 

Unit 7 of Block 2, you have learnt that the internal energy of a growing child or 

a plant increases. But the growth of a living organism from a random mix of 

molecules is accompanied by decrease in entropy. These examples may 

seem to you to contradict the first and second laws of thermodynamics. But it 

is not so. To understand this, let us enquire: What is responsible for life on the 

Earth? We can trace it to the energy generated in the Sun’s core by nuclear 

The entropy of the universe can never decrease. 

Recall that the second 

law has been stated in 

somewhat different but 

essentially equivalent 

forms by Kelvin-Planck 

and Clausius. You 

have learnt about  

these in Unit 8.       
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fusion (H →2 He cycle). For example, plants use solar energy for 

photosynthesis and create food. Similarly, humans receive this energy via 

food chain. So, to answer the above question, you have to consider the   

Earth-Sun system. When you do so, you will find that the magnitude of 

entropy decrease associated with life on the Earth is less than the entropy 

increase associated with nuclear reaction in the core of the Sun. That is, the 

organisation of matter is governed by a tendency towards greater disorder 

elsewhere in the universe (Sun in this case). Thus, a more formal statement  

of the second law in terms of entropy reads as follows: 

 

 

 

 

In view of the above discussion, can we say that entropy of the universe has 

continuously increased ever since its creation? Definitely, yes.  

You must now be convinced that the second law relates (available) energy to 

entropy. We can use the integrated statement of these laws to obtain an 

expression for entropy difference for any process. This is illustrated in the  

next section. 

9.3.1 The Combined Form of the First and Second Laws 

The first law of thermodynamics establishes the existence of internal energy 

(U) as a function of state. Similarly, the second law introduces entropy (S) as 

a state function. You may now ask: Can we relate these functions? You may 

recall from Unit 7 that for any change of state, the change in internal energy   

is given by  

  WQdU −=  (9.7) 

Similarly, for an infinitesimal reversible process between two equilibrium 

states, the second law of thermodynamics tells us that 

  
T

Q
dS


=  (9.8) 

These equations may be combined to obtain mathematical expression for the 

combined form of the first and the second laws of thermodynamics: 

  WdUTdS +=  (9.9) 

This is one of the most important thermodynamic relations. In the next unit, 

you will use it to derive many useful thermodynamic relations. 

Proceeding further, we note that for a gaseous system, pdVW = so that                

Eq. (9.9) takes the form 

  pdVdUTdS +=  (9.10) 

Note that this equation relates all five thermodynamic variables that you have 

learnt so far. 

When an isolated system undergoes a change, its entropy cannot 

decrease; it increases or remains constant. 
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Using the results obtained in Unit 8, we can rewrite Eq. (9.10) in three 

equivalent forms: 

  pdVdTnCTdS V +=  (9.11a) 

   VdpdTnCTdS P −=   (9.11b) 

and  ( )VdpCpdVC
R

TdS VP +=
1

 (9.11c) 

where PC  and ,VC respectively, denote molar thermal capacities at constant 

pressure and constant volume. Note that dS  denotes change in molar 

entropy. 

Before proceeding further, you may like to answer the following SAQ. 

 

 

 

Before proceeding further, we recapitulate the important results of this section. 

   

 

 

 

 

 

 

We now use Eqs. (9.11a, b, c) to obtain expressions for changes in entropy 

for an ideal gas under different physical conditions. 

9.4   ENTROPY CHANGE OF AN IDEAL GAS 

Consider n moles of an ideal gas at temperature T in a cylinder fitted with a 

frictionless piston. Depending on the physical conditions, we can use one of 

the relations given in Eqs. (9.11a, b, c) to obtain an expression for change in 

entropy. Suppose that the gas is given an infinitesimal amount of heat, which 

induces changes in temperature and volume. We can describe such a change 

by Eq. (9.11a). On dividing throughout by T and substituting for p from the 

equation of state ),( nRTpV =  we get 

  
V

dV
nR

T

dT
nCdS V +=   (9.12) 

SAQ 2  –  First and second law of thermodynamics 

Write the combined mathematical forms of the first and second laws of 

thermodynamics for a i) stretched wire, ii) surface film, and iii) paramagnetic 

substance.  

 

ENTROPY AND THE FIRST AND SECOND LAWS  

• The second law of thermodynamics states that when an isolated 

system undergoes a change, its entropy either increases or 

remains constant. 

• In the most general form, the combined form of the first and the 

second laws of thermodynamics can be mathematically expressed 

as 

  WdUTdS +=  
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Let us now suppose that the initial and final states are characterized by the 

thermodynamic variables ),( 11 TV and 2 2( , ),V T respectively. If we assume that 

VC  is independent of temperature, we can readily integrate Eq. (9.12) to 

obtain the same result as given in Eq. (9.2): 

  







+








=

1

2

1

2 lnln
V

V
nR

T

T
nCS V  (9.13) 

You should study the following example to learn how to apply this result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting from Eq. (9.11b), you can easily convince yourself that the entropy 

change between states defined by ( 11,pT ) and ( ), 22 pT is given by 

  







−








=

1

2

1

2 lnln
p

p
nR

T

T
nCS P  (9.14) 

Similarly, if reference states are defined by ( ), 11 Vp and ( ), 22 Vp , the entropy 

change is given by 

  







−








=

1

2

1

2 lnln
p

p
nC

V

V
nCS VP  (9.15)                                                    

 

Calculate the increase in entropy of 1 g of hydrogen when its temperature 

is raised from −173C to 27C and its volume becomes four times. It is 

given that 1111 Kmol cal 01.2,Kg cal43.2 −−−− == RCv  and molecular 

weight is .molg2 1−  

SOLUTION ◼   For n moles of an ideal gas, the entropy change is 

calculated using Eq. (9.13). However, for 1g of the gas, you have to 

replace VnC  by VC and nR by r = R / mol. weight: 

 11

1

11

Kg cal005.1
mol g2

Kmol cal01.2 −−

−

−−

==r  

From Eq. (9.13) we recall that change in entropy is given by 

 ( ) 















+








= −−

1

2
10

11

1

2
10 logKg cal005.1log303.2

V

V

T

T
CS V  

Here ,K300K)27327(,K100K)273173( 21 =+==+−= TT and                   

.Kg cal43.2 11 −−=VC  On inserting the given values, we get 

       ]4log)Kg cal005.1(3log)Kg cal43.2[(303.2 10
11

10
11 += −−−−S  

             11Kg cal)6021.0005.14771.043.2(303.2 −−+=  

             .Kg cal062.4 11 −−=     

 

 

XAMPLE 9.3:  CHANGE IN ENTROPY  
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A gas may be made to expand or compress isothermally. When n moles of an 

ideal gas are made to undergo isothermal changes, Eqs. (9.13) and (9.14) 

predict that entropy changes are, respectively, given by 

  







=

1

2ln
V

V
nRST  (9.16a) 

and   TS 







=

2

1ln
p

p
R  (9.16b) 

The subscript T  in TS  signifies that temperature remains constant. That is, 

when an ideal gas undergoes an isothermal expansion defined by   

( = TppVV ;, 2112 constant), its entropy increases. When a gas undergoes 

isothermal compression, entropy will decrease. 

For isobaric changes, Eqs. (9.14) and (9.15) predict that 

  







=

1

2ln
T

T
nCS PP  (9.17a) 

and  







=

1

2ln
V

V
nCS PP   (9.17b) 

These results tell us that when either temperature or volume increases during 

an isobaric process, the entropy increases and vice versa. 

Now you should go through the following example carefully. 

 

 

 

 

 

 

 

 

You may like to answer the following SAQ before studying further. 

 

 

 

 

 

One mole of an ideal gas expands isothermally to four times its initial 

volume. Calculate the entropy change in terms of the gas constant. 

SOLUTION ◼  For one mole of an ideal gas, Eq. (9.16) implies that 

  ( ) )/(log303.2/ln 121012 VVVV
R

ST ==


 

Since ,4/ 12 =VV the entropy change during isothermal expansion, in terms 

of gas constant, is given by 

  4log303.2 10=


R

ST  

          386.16020.0303.2 ==  

XAMPLE 9.4:  ENTROPY CHANGE IN TERMS OF R  

 

 

 

SAQ 3  –  Increase in entropy 

Calculate the increase in entropy of one mole of argon heated from 300K to 

600K at constant volume. 
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9.4.1   Entropy of Mixing 

Refer to Fig. 9.2. Suppose that the hollow circles depict 1n moles of oxygen 

and solid circles denote 2n moles of nitrogen in two separate containers at 

constant temeprature T and pressure p . The gases are separated by means 

of a stopcock. We assume that these gases behave as an ideal gas. You may 

now like to know: What happens when the stopcock is opened and these 

gases mix? To answer this question, let us assume that partial pressures of 

oxygen and nitrogen in the mixture are 1p and 2,p respectively.  

 

 

 

 

 

Fig. 9.2: Intermixing of two gases. 

The entropy of mixing is equal to the sum of the entropy changes for each  

gas as it expands from its initial pressure to its partial pressure in the mixture. 

The changes in entropies  1S  and  2S  for the two gases when mixing takes 

place at constant T can be obtained using Eq. (9.14): 

  







=








−=

1
1

1
11 lnln

p

p
Rn

p

p
RnS  

and  







=

2
22 ln

p

p
RnS  

Hence, when the gases have mixed, the entropy of mixing is given by 

  







+








=+=

2
2

1
121 lnln

p

p
Rn

p

p
RnSSSmix   (9.18) 

From your school curriculum in chemistry, you may recall that the partial 

pressures can be expressed in terms of total pressure as pxp 11 =  and 

=2 2 ,p x p where 1x  and 2x  are mole fractions of two gases. On substituting 

these values of 1p  and 2p in Eq. (9.18), we obtain 

  







+








=

px

p
Rn

px

p
RnSmix

2
2

1
1 lnln  

             2211 lnln xRnxRn −−=  (9.19) 

Now suppose you have to compute the entropy of mixing per mole of the 

mixture. You can do so easily by dividing both sides of Eq. (9.19) by 21 nn + . 

This gives 

  








+
+

+
−=

+


2

21

2
1

21

1

21

lnln x
nn

n
x

nn

n
R

nn

Smix  



   

41 

 

 Unit 9                            Entropy and the Laws of Thermodynamics 

The ratios 
21

1

nn

n

+
 and 

21

2

nn

n

+
 define the mole fractions of two gases. 

Hence, the entropy of mixing per mole of mixture is 

    2211 lnln xxxxRSmix +−=  (9.20) 

Note that a negative sign occurs in the expression for entropy of mixing. Does 

this mean that entropy decreases in the process of mixing of two gases? If 

you think so, you are not correct. 

Since 1x and 2x are less than one, the entropy of mixing will be always 

positive. Note that we have derived Eq. (9.20) for ideal gases. But it holds for 

liquids also where intermolecular forces between the components are uniform. 

The concept developed in this section is illustrated in the following example. 

 

 

 

 

 

 

 

We know that matter can change its state from solid to liquid (ice to water) and 

liquid to gas (water to steam) or solid to gas (dry ice, i.e., solid carbon dioxide 

to 2CO  gas) under appropriate conditions of temperature and pressure. Such 

a transformation is called phase transition. Conversion of ice to water is an 

example of first order phase transition.You will now learn to obtain 

expressions for entropy changes accompanying a phase transition. 

9.4.2   Entropy Change of Phase Transition 

We know that at atmospheric pressure, water boils at 100C. But on hill 

stations, boiling begins below 100C. In a physics laboratory also, you can 

make water boil below 100C through a simple activity. Put some boiling water 

in a flask and allow it to cool. Then pour some water over the flask. You will 

observe that water begins to boil again even though it is below 100C. It 

means that phase transition is determined by pressure. However, it is 

accompanied by absorption or evolution of heat. For an isobaric-isothermal 

process, the quantity of heat evolved or absorbed by a system defines 

enthalpy, H. Hence, the entropy change for an isothermal-isobaric process 

can be calculated using the relation 

 

 

Equal volumes of two gases are mixed under same temperature and 

pressure. The pressure remains unchanged but the total volume is 

doubled. Calculate the entropy of mixing for one mole of the mixture. 

SOLUTION ◼  Since the gases are initially at the same temperature and 

pressure, Avogadro’s hypothesis tells us that equal volume will have equal 

number of molecules, i.e., ,21 nnn == say. Therefore, the mole fraction of 

each gas in one mole of the mixture is 0.5. Hence, the entropy of mixing is 

given by 

         2211 lnln xxxxRSmix +−=  

            1111 mol JK 5.760.5]ln5.05.0ln5.0[)molJK 31.8( −−−− =+−=  

XAMPLE 9.5:  ENTROPY OF MIXING  
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T

H

T

Q
S rev 

=


=  (9.21) 

You can use this result to compute the entropy change accompanying the 

transition of a solid to a liquid or a liquid to a vapour and vice versa.  

When n mole of a solid melts to the liquid phase, the entropy of fusion is given 

by 

  
fusion

fusion
fusion

T

H
S


=  (9.22) 

where fusionH  is molar enthalpy of fusion and fusionT  is the melting point. 

Similarly, for n mole of a substance, the entropy of evaporation is given by 

  
evap

evap
evap

T

H
S


=  (9.23) 

where evapH is molar enthalpy of vaporisation and evapT is the boiling point. 

In the following example, we have illustrated the use of some of these 

relations to compute entropy changes. 

 

 

 

 

 

 

 

 

 

 

We would now like you to solve an SAQ.  

 

 

 

 

The enthalpy of vaporisation of ethanol is 43.5 kJ mol−1 at its normal boiling 

point of 351.5K. Compute the entropy of vaporisation. The enthalpy of 

fusion of ethanol is 4.6 kJ mol−1 at its normal melting point of 156 K. 

Calculate the entropy of fusion. 

SOLUTION ◼  From Eq. (9.23), we recall that entropy of vaporisation is 

given by 

  
evap

evap
evap

T

H
S


= 11

1

molJK124
K5.351

mol J43500 −−
−

==  

Fron Eq. (9.22), we note that entropy of fusion is given by 

  
fusion

fusion
fusion

T

H
S


= 11

1
molJK5.29

K156

mol J4600 −−
−

==  

You will note that fusionevap SS  . This difference shows that entropy 

increases as a system becomes less restricted. When a solid melts, its 

atoms become less ordered in their locations and motion. When a liquid 

vaporises, molecules gain considerably greater freedom of movement. 

XAMPLE 9.6:  ENTROPY OF VAPORISATION  

 

 

 

SAQ 3  –  Entropy of solidification 

The melting point of water at 1 atm pressure is 273.16 K and the specific 

latent heat of melting is .Jg 4.334 1−  Calculate the entropy of solidification for 

one mole of water. 
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Adiabat 

Isotherm 

S 

Before proceeding further, we would like you to recapitulate what you have 

learnt in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having established that entropy is a thermodynamic property of a system, we 

now discuss its significance in various reversible processes and draw 

corresponding T-S diagrams. These diagrams are often useful in engineering. 

As you know, the simplest and the most important reversible cycle is the 

Carnot cycle. You have learnt how to obtain an expression for the efficiency 

of a Carnot engine in Unit 8. Here we will show how the same result can be 

obtained more elegantly using a T-S diagram. 

9.5 REPRESENTATION OF CARNOT CYCLE ON 
ENTROPY-TEMPERATURE DIAGRAM 

Refer to Fig. 9.3. It is a schematic representation of the Carnot cycle on the  

T-S diagram. 

 

 

 

 

 

 

Fig. 9.3: Representation of Carnot cycle on T-S diagram. 

ENTROPY CHANGE, ENTROPIES OF MIXING,                  
FUSION AND EVAPORATION 

• When n moles of an ideal gas undergo an isothermal transformation, 

the change in entropy is given by: 

 







=








=

2

1

1

2 lnln
p

p
nR

V

V
nRST  

• For an isobaric process, change in entropy of a gas made up of n 

moles is given by: 

    







=








=

1

2

1

2 lnln
T

T
nC

V

V
nCS PPP  

• The entropy of mixing per mole of mixture of two gases is always 

positive: 

           2211 lnln xxxxRSmix +−=  

 where 1x and 2x  are mole fractions. 

• For one mole of a substance, the entropy of fusion is given by: 

    
fusion

fusion
fusion

T

H
S


=  

   and the  entropy of evaporation is:  
evap

evap
evap

T

H
S


= . 
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You will recall that Carnot cycle consists of four reversible processes: 

i) isothermal expansion, ii) adiabatic expansion, iii) isothermal compression, 

and iv) adiabatic compression. 

You will note that the isotherms are horizontal straight lines for a given 

temperature, whereas the adiabats are vertical straight lines corresponding to 

constant S  ( dSQ == 0 ). So, Carnot cycle is a rectangle on the T-S diagram. 

To obtain the expression for net entropy change in one cycle, let us consider n 

moles of an ideal gas is enclosed in a cylinder. 

Step I: The gas absorbs heat 1Q  reversibly at temperature 1T  and expands 

isothermally. (The pressure decreases from 1p  to 2p .) Using Eq. (9.3), we 

can write the increase in entropy of the gas as  

  
1

1
1

T

Q
S =  (9.24a) 

Step II: The gas expands adiabatically (but pressure falls from 2p  to 3p ).  

We know that no heat exchange takes place between the system and its 

surroundings in an adiabatic process. Therefore, according to the first law of 

thermodynamics, expansion occurs at the expense of internal energy of the 

system. This, in turn, implies drop in temperature of the gas. Suppose that 

temperature drops from 1T  to 2T . Since no heat transfer occurs, entropy does 

not change and we can write 

  02 =S  (9.24b) 

Step III: The gas at temperature 2T  is now compressed isothermally. In this 

process, work is done on the gas and it gives up heat 2Q  to the environment. 

Then change in entropy is given by 

  
2

2
3

T

Q
S −=  (9.24c) 

Step IV: Finally, the gas is compressed adiabatically to its original volume 

and pressure. As a result, the gas attains its state and its entropy is  

conserved during the process: 

  04 =S  (9.24d) 

Since Carnot cycle is reversible, there will be no net change in its entropy,  

i.e., 0=s and we can write 

  04321 =+++= SSSSS  

On using Eqs. (9.24a to d), we get 

  000
2

2

1

1 =+−+
T

Q

T

Q
 

or  
2

1

2

1

T

T

Q

Q
=  (9.25) 

This result shows that the ratio of the heat absorbed to the heat given out in a 

reversible cycle is equal to the ratio of the temperatures of the source and the 

sink. Since efficiency is ratio of work done and heat absorbed, we can write: 
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  1

21

1 Q

QQ

Q

W −
==

  

Using Eq. (9.25) we can write: 

  1

21
T

T
−=

 (9.26)

 

Note that the expression for efficiency of Carnot engine has been obtained 

more conveniently using T-S diagram as compared to the indicator diagram.   

9.6 ENTROPY AT ABSOLUTE ZERO: THIRD LAW 
OF THERMODYNAMICS    

From experience we know that the basic difficulty with all cooling processes is 

that it becomes gradually more difficult to achieve and maintain lower and 

lower temperatures. For example, the cooler a liquid is, the harder it becomes 

to maintain its temperature or pump it out to produce further cooling. 

Suppose that temperature 1fT , say 10% of the initial temperature iT  is 

achieved in one mechanical step. The second step will produce a temperature 

2fT  which is approximately 10% of 1fT . This means that even by an infinite 

number of adiabatic processes, it would not be possible to attain absolute 

zero. From this we may conclude that 

 

 

Like the second law, the third law can also be stated in terms of entropy. But 

before giving that statement, we would like you to relook at Eq. (8.5). It can be 

re-written as 

  


+=

f

n

rev
n

T

Q
SS    where f is the final state. 

It helps us to determine the change in entropy of a system during a reversible 

process. But absolute entropy remains indeterminate because of the presence 

of an additive constant ( )nS . You may now ask: Can we determine this 

constant? The answer to this question constitutes another statement of the 

third law. It defines the entropy of a system as its temprature tends to absolute 

zero. 

Nernst observed that at low temperatures entropy change of a system is very 

small when we go from one equilibrium state to another. It is because near 

absolute zero, all systems are highly ordered and the entropy of all states (of 

every substance) is almost constant. This prompted Nernst to state the third 

law as follows: 

 

 

 

Mathematically, this is expressed as: 

The entropy changes associated with any reversible isothermal 

process tend to zero as temperature approaches absolute zero. 

The absolute zero is not attainable by any number of mechanical 

processes. 
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→

 →
0

lim 0
T

S  (9.27) 

This fact beautifully manifests in the case of liquid helium-II and 

superconductors. To understand this, we recall Clausius-Clapeyron equation: 

  
V

S

dT

dp




=   

You will recognise that 
dT

dp
 defines the slope of the melting curve. Eq. (9.27) 

predicts that the curve should become horizontal (S = 0) as T → 0.  

In 1912, Planck extended this idea by proposing that near absolute zero, 

entropy of every substance is so small that it can be  taken as essentially 

zero. He stated the third law of thermodynamics as follows: 

 

 

Mathematically, this is expressed as: 

  
→

→
0

lim 0
T

S  (9.28) 

Today, this law is supported by ample experimental evidences and finds wide 

applications in low temperature physics. We now discuss some important 

consequences of the third law.  

9.6.1   Consequences of the Third Law 

i) Behaviour of thermodynamic potentials 

We know that TSHG −= and TSUF −= . According to the third law of 

thermodynamics, as 0,0 →→ ST  so that the product .0→TS That is, 

when temperature approaches absolute zero, Gibbs potential equals 

enthalpy and Helmholtz potential equals internal energy. Physically, it 

means that there is perfect order and entire energy is available for work. 

ii) Iso-thermal volume and pressure expansion coefficients 

The changes in entropy of a system due to small changes in pressure 

during a process near absolute zero may be expressed as 

   











= dT

p

S
S

T

 (9.29) 

But according to the third law of thermodynamics, as 0,0 →→ ST . So 

we can say that 

  
→

 
→ 

 0
lim 0

T T

S

p
 

  Using Maxwell’s relation 
pT

T

V

p

S












−=












, we can write: 

The entropy of every substance is zero at the absolute zero. 
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→

 
→ 

 0
lim 0

T p

V

T
 (9.30) 

By definition, 
pT

V

V











1
 is the coefficient of volume expansivity, . So, 

   
→

→
0

lim 0
T

 (9.31) 

Similarly, you can convince yourself that 

  
→

 
= 

 0
lim 0

T V

p

T
 (9.32) 

iii) Heat capacities near absolute zero 

Recall that specific heat capacity at constant pressure is defined as 

  
p

p
T

S
TC 












=  

Hence, at constant pressure, we can take 

  
T

dTC
dS

p
=  

By integrating it between finite temperature limits, we can write 

  ( ) ( ) =−

1

1

T

T

p

T

dTC
TSTS  (9.33) 

In the limit ,0→T the third law implies that the integral on the right hand 

side of Eq. (9.33) should be finite. That is, it should not diverge as 0→T . 

Thus, we must have 

  
→

=
0

lim 0p
T

C  (9.34) 

Similarly, it can be shown that as 0→T  

  
→

=
0

lim 0V
T

C  (9.35) 

It shows that in the limit 0→T ,  the specific heat capacites attain the 

same value.  This prediction of the third law is borne out by experiments 

rather well. Let us recapitulate what you have learnt in this section 

 

 

 

 

Let us now summarise what you have learnt in this unit. 

Entropy of a system at absolute zero is zero and the system is in perfect 

order. It essentially implies non-attainability of absolute zero temperature. 

THIRD LAW OF THERMODYNAMICS 
 



  

48  

Block 3                          Second and Third Laws of Thermodynamics 

9.7 SUMMARY 

9.8   TERMINAL QUESTIONS 

1. A huge copper block at 1000K is joined to another huge copper block at 

500K by a copper rod. The rate of heat conduction is .Js 10 14 −  Calculate 

the increase in entropy of the universe due to this process. 

2. Eddington proposed that entropy is the arrow of time. Comment. 

3. m g of water at temperature 1T  is mixed with an equal mass of water at 

temperature .2T  Show that the change in entropy is  

   
 
 
 
 1 2

2 ln av
P

T
mC

T T
 where 

2

21 TT
Tav

+
=  is average temperature.  

4. 20 g of ice at 0C is converted into water at the same temperature.   

Calculate the change in entropy. [Given: Latent heat of fusion 
g/cal80)( =L ]. 

Concept Description 

 Entropy                          
◼ Entropy is defined through the relation 

           
T

Q
dS rev

=  

Entropy is an extensive variable and a state function. 

◼ . 

Entropy is an extensive variable and a state function. 

◼  

◼  

                  

 

 

 

 

Second law of 

thermodynamics in 

terms of entropy  

◼ Entropy is a measure of disorder in the system; more chaotic the 

system, greater will be its entropy. 

◼ The second law of thermodynamics is essentially the principle of 

increase of entropy. It states that, when a closed system undergoes a 

change, its entropy cannot decrease; it either increases or remains 

constant, Mathematically, it may be expressed as 

◼  

◼   

◼   

◼   

◼ constant. Mathematically, it may be expressed as 

•    

◼   

                 

◼ At absolute zero temperature, gas molecules are devoid of all motion. 

 

 

 

Entropy change of an 

ideal gas 

                   0S  

◼ The entropy change of an ideal gas made up of n moles can be 

calculated using the relations 

               = lnVS nC 







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                   =  lnPnC 
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
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






1

2

p

p
 

                   







=

1

2ln
T

T
nCP 








−

1

2ln
p

p
nR                  

 

 

Third law of 

thermodynamics 

◼ Third law of thermodynamics states that equilibrium entropies of all 

systems and the entropy changes in all reversible isothermal 

processes tend to zero as temperature approaches absolute zero.   
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5. Calculate the change in entropy when 10 g of ice at 0C is converted into 
steam. [Given: latent heat of fusion of ice ;g/cal80=  latent heat of fusion 

of steam g/cal540= ]. 

6.  Write the third law of thermodynamics in terms of entropy differences. 

9.9   SOLUTIONS AND ANSWERS 

Self-assessment Questions 

1. The change in entropy when 1 kg water is heated from 27C (= 300K) to  

80C (= 353K) is given by 

   







==  300

353
ln

353

300

mc
T

mcdT
s  

 On substituting the given values, we get 

   







= −−

300

353
ln)KgJk102.4()kg1( 113s  

                 1113 JK163.0)KJkg102.4( −−− =   12JK1084.6 −=   

2. a)      = − ;TdS dU Fdl      b)  dAdUTdS −=   and  c)  BdMdUTdS −=  

3. lnVV nCS = 










1

2

T

T
 2lnVC=  

 Since  ,
2

3
RCV =  we find that  

           111 JK 64.82ln)mol JK 314.8(
2

3 −−− == VS  

4. = meltS  
meltT

m 
 

K16.273

Jg334.4g18 1−
=

K16.273

J2.6019
= = 22 JK−1 

Terminal Questions 

1. By carrying out the heat transfer reversibly, we can calculate that 

  S = (q /T1) − (q /T2) = 104 Js−1 [(1 / 500K) − (1 / 1000K)] = 10 JK−1s−1 

 Thus, the entropy of the universe increases by 10 JK−1 per second.  

2. The statement is justified. If you calculate entropy of the universe at two 

different times, the point of higher entropy would correspond to the point of 

later time. This statement is further justified by the fact that the universe 

has been expanding uniformly ever since its creation. Even if one 

observed the motion of galaxies, these are found receding with respect to 

any point of observation. This means that the entropy of the universe is 

increasing continuously, as does time. 

3. Since the masses of water being mixed are equal, the temperature of the 

 mixture will be the arithmetic mean of T1 and T2: 

   avT
TT

T =
+

=
2

21
mix  
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 Since the process is isobaric, the change in entropy of water sample 

whose temperature rises from T1 to Tav is given by: 

   
T

Q
S


= 1 








=

1

ln
T

T
Cm av

P  (i) 

 Similarly, the change in entropy of water sample whose temperature falls 

from 2T  to avT  is: 

   







=

2
2 ln

T

T
CmS av

P   (ii) 

 Hence, the net change in entropy is: 

      21 SSS += 
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 Since ln a + ln b  = ln (ab), you can write it as 



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
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


=

TT

T
Cm av

P 







=

21

ln2
TT

T
Cm av

P  since .lnln xnxn =  (iv) 

In (iii), avT  is the arithmetic mean. 21TT is geometric mean of 1T  and .2T  

We know that the arithmetic mean of two unequal positive numbers is 

greater than their geometric mean. So, the argument of logarithmic 

function is greater than one and the entropy of the system increases: 

   S > 0 (v) 

You will recognise that entropy change is not necessarily accompanied by 

heat flow. That is why, entropy increases in free expansion, intermixing of 

gases and so on. 

4.  Total heat is cal16008020 === mLdQ  and .K273C0 ==T  

     The increase in entropy K/cal86.5
273

1600
===

T

dQ
dS  

5.  It is given that latent heat of fusion of ice = 80 cal/g, and   

 Latent heat of fusion of steam = 540 cal/g.  

 Step I: Ice changes into water at 0C (isothermal change) 

   K/cal93.2K/cal
273

8010

1

1
1 =


==

T

mL
S  

 Step II: Water changes its temperature from 0C to 100C. 

   cal/K 12.3
273

373
ln110

273

373
ln

373

273

2 =







=








==  mc

T

mcdT
S  

 Step III: Water at 100C changes into steam at 100C. 

   K/cal48.14
373

54010
3 =


=S  

  Net change in entropy K/cal53.2048.1412.393.2 =++=  

6.    In terms of entropy, third law of thermodynamics can be expressed as 

  
→

→
0

lim 0
T

S  
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         UNIT 10 

THE THERMODYNAMIC 
POTENTIALS 

Structure 
 

10.1 Introduction 

Expected Learning Outcomes 

10.2 Thermodynamic Potentials  

10.3 Maxwell’s Relations 

10.4 Deductions from Maxwell’s Relations  

TdS-Equations 

Energy Equations 

Clausius-Clapeyron Equation 

 

STUDY GUIDE           

 

10.5 Joule-Thomson Effect 

10.6     Summary 

10.7 Terminal Questions 

10.8 Solutions and Answers 

 

In Unit 9, you have learnt the concept of entropy and used it to state the second law of 

thermodynamics, which emphasises that entropy increases in all natural processes. In this unit, you 

will learn that a change in a thermodynamic system under specific constraints requires a new 

function, called free energy. We will introduce the concept of Helmholtz free energy, F and Gibbs 

free energy, G. In deriving various thermodynamic relations, we shall make extensive use of partial 

differentiation. Therefore, you should refresh your previous knowledge of this topic. We firmly believe 

that you must not memorise thermodynamic relations. Instead, you should learn how to obtain these 

based on mnemonic diagrams. This will make your learning an enjoyable experience. Quite a few 

numerical problems, solved examples and SAQs based on Maxwell’s relations have been given in 

the unit. Do practice solving these for better understanding. In case, you are not able to solve on 

your own, read the section again before looking for the solutions provided at the end of the Unit. 

“Thermodynamic irreversibility is due to cosmological 

expansion.” 

 

Peter T. 
Landeberg 

 

 

A pressure cooker cooks vegetables 
faster at high altitude. (Picture source:  

https://pixabay.com/photos/nature-landscape-

mountains-4408716/  

https://pixabay.com/photos/nature-landscape-mountains-4408716/
https://pixabay.com/photos/nature-landscape-mountains-4408716/
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10.1   INTRODUCTION 

So far, we have discussed three thermodynamic functions − temperature (T), 

internal energy (U), and entropy (S). You may recall that temperature helped 

us in formulating the equation of state of a thermodynamic system and  

internal energy enabled us to develop a mathematical formulation of the first 

law of thermodynamics. The concept of entropy was used to mathematically 

formulate second law of thermodynamics, which emphasises that entropy 

increases in all natural processes. From experience, we know that every 

system has an inherent tendency to approach equilibrium and the first and 

second laws of thermodynamics do not provide us any information about this. 

This suggests that there is a need to supplement these laws when we wish to 

get information about the condition of thermodynamic equilibrium of a system. 

In Sec. 10.2, you will learn that a change under specific constraints requires a 

new function, called free energy, which is a function of state. We introduce 

enthalpy, H; Helmholtz free energy, F and Gibbs free energy, G. The  

functions U, H, F and G are collectively called thermodynamic potentials or 

free energies. You will note that each free energy has its own pair of natural 

variables. Moreover, these carry a treasure trove of information about the 

system.  

Thermodynamic potentials are very handy in obtaining Maxwell’s relations, 

which are used to derive all important thermodynamic relations. Their 

usefulness lies in the fact that they frequently relate quantities which seem 

unrelated. As a result, these relations enable us to link experimental data 

obtained in different ways or replace a difficult measurement by an easier one. 

We can also use these to obtain values of one property, which may be 

straightforward, from calculations or measurement of another property. In 

brief, these relations are very general and extremely useful as they 

enormously simplify thermodynamic analysis. You will learn how to derive 

Maxwell’s relations in Sec. 10.3. You will also learn how to obtain                          

TdS-equations and energy equations using Maxwell’s relations. We have also 

discussed applications of Maxwell’s relations to derive Clausius-Clapeyron 

equation in Sec. 10.4. In Sec.10.5, you will learn about Joule-Thomson effect 

which is used to produce low temperatures. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

❖ define thermodynamic potentials; 

❖ derive Maxwell’s relations from thermodynamic potentials; 

❖ apply Maxwell’ relations to obtain the TdS-equations and energy 

equations; 

❖ obtain Clausius-Clapeyron equation from Maxwell’s relations; 

❖ discuss Joule-Thomson effect and how it can be used to produce low 

temperatures; and 

❖ define inversion temperature and discuss its importance for liquefaction 

of gases. 

Helmholtz free energy 

is also denoted by the 

symbol A in literature. 
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10.2  THERMODYNAMIC POTENTIALS 

Consider a gas contained in a cylinder fitted with frictionless piston. The 

thermodynamic behaviour of this gas can be described in terms of any two 

variables out of p, V and T; the third one is automatically fixed in view of the 

equation of state. Such a system is said to be a two-coordinate system. But 

even for description of such a system, we need several functions of state: p, 

V, T, S, U and H. (Of these, U and H have dimensions of energy.) In principle, 

we can construct several functions of state by combining these functions. 

However, only a few of these may have physical significance. In particular, we 

define Helmholtz and Gibbs free energies, which also have dimensions of 

energy like internal energy and enthalpy. As you proceed, you will learn that 

knowledge of the behaviour of two-coordinate system can be obtained from 

any one of these four free energies. These are defined as follows: 

• Internal energy          : U  

• Enthalpy                    :   pVUH +=  

• Helmholtz energy      : TSpVHTSUF −−=−=     

• Gibbs energy             : pVFpVTSUG +=+−=  

It is interesting to mention here that U, H, F and G are collectively referred to 

as thermodynamic potentials or free energies. Of these, Helmholtz energy is 

particularly important as it provides a vital connection between 

thermodynamics and statistical mechanics. That is, it provides a bridge 

between macroscopic and microscopic viewpoints. You will know these details 

in Block 4 of this course. Gibbs free energy finds wide applications in the 

study of phase transitions. 

The physical significance of thermodynamic potentials becomes clearer from 

their differential forms. You will learn about these now. 

Differentials of Potential Functions 

Let us consider a gaseous system undergoing an infinitesimal reversible 

process. From Eq. (9.10), you would recall that change in internal energy can 

be written as 

  pdVTdSdU −=  (10.2) 

Also, a small change in enthalpy, defined as ,pVUH +=  can be written in 

terms of changes in internal energy, volume and pressure as 

  dpVdVpdUdH ++=  

On combining this result with Eq. (10.2), we can write 

  dpVTdSdH +=  (10.3)  

Likewise, using the definition of Helmholtz free energy )( TSUF −= , we can 

write 

  )( SdTTdSdUdF +−=  

(10.1) 
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On combining this result with Eq. (10.2), we get 

  dVpdTSdF −−=  (10.4) 

This equation defines the dependence of F on independent variations of 

T and .V These thermodynamic variables, therefore, constitute the natural  

pair for Helmholtz energy and we can write ),( VTFF = . Note that the              

right-hand side of Eq. (10.4) comprises two terms and each of these terms 

consists of a pair of thermodynamic variables such that their product has 

dimensions of energy.  

It readily follows from Eq. (10.4) that entropy and pressure, respectively, of 

constant V and constant T  systems are given by 

  
VT

F
S 












−=                                  (10.5a) 

and 
TV

F
p 












−=                                  (10.5b) 

These relations show that once F  is known for a system under consideration, 

we can obtain complete information about its thermal properties. Further,              

Eq. (10.5a) shows that the Helmholtz energy decreases with rise in 

temperature, since entropy of any substance is always positive definite. The 

higher the entropy of a substance, greater would be the rate of decrease of       

F. That is why at higher temperatures, the rate of fall of F with temperature is 

maximum for gases and minimum for solids. Similarly, Eq. (10.5b) shows that 

an increase in volume decreases Helmholtz energy; the rate of fall being 

greater at higher pressures. 

Starting from the definition of Gibbs energy )( pVFG +=  and using                   

Eq. (10.4), you can easily convince yourself that an infinitesimal change in G  

is given by (SAQ 1): 

  VdpdTSdG +−=  (10.6) 

Note that T and p constitute the pair of natural variables for Gibbs energy and 

we can write ),( pTGG = . Further, we can write 

  
pT

G
S 












−=  (10.7a) 

and  

T
p

G
V 












=  (10.7b) 

You should now solve an SAQ before proceeding further. 

 

 

 

SAQ 1  –  Gibbs energy 

Derive Eq. (10.6). 
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Proceeding further, let us suppose that only one of the free energies is known 

explicitly. You may then logically ask: Can we get complete information about 

the system from it? The answer to this question is in the affirmative. We 

illustrate this by considering the Helmholtz free energy. 

To express HU, and G in terms ofF , we have to start from their respective 

definitions. For example, by substituting for S from Eq. (10.5a), the internal 

energy can be expressed as 

 
( )
( )

VVV T

TF

T

F

T
T

T

F
TFTSFU 












=




















−=












−=+=

/1

/2  (10.8) 

since .
11

2
dT

TTdT

d
−=








 

Eq. (10.8) is known as the Gibbs-Helmholtz equation. It finds great use in 

thermo-chemistry. 

Similarly, on substituting for S and p from Eqs. (10.5a) and (10.5b) 

respectively, you can write 

   
TV V

F
V

T

F
TFpVTSFH 












−












−=++=  (10.9) 

and   











=




















−=












−=+=

)/1(

)/(2

V

VF

V

F

V
V

V

F
VFpVFG

TT

 (10.10) 

Eqs. (10.8), (10.9) and (10.10) clearly show that the entire information about a 

thermodynamic system can be obtained once we know Helmholtz free energy. 

You may now logically ask: Can we say the same for other thermodynamic 

potentials? The answer to this question is in affirmative. However, we will not 

establish this result. To convince yourself, you should answer the following 

SAQ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

SAQ 2  –  Thermodynamic potentials 

a) Obtain first order derivatives of H  and G which justify the following 

statements: 

i) At constant entropy, the rate of increase of enthalpy with pressure is 

greater for a gas than that for a solid. 

ii) Under isothermal conditions, the Gibbs energy increases more rapidly 

with pressure for a gas than for a liquid or a solid. 

b) Prove that 

 i) 
TT V

S
T

V

U
p 












+












−=

 

ii) 
( )
( )

p
T

TG
H 












=

/1

/
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Before proceeding further, let us recapitulate what you have learnt in this unit 

so far. 

  

  

 

 

 

 

 

 

 

 

Now that you have learnt about free energies, you can use these to obtain 

several thermodynamic relations. We first illustrate it by deriving Maxwell’s 

relations. As you proceed, you will learn that these relations derive their 

usefulness from the fact that they frequently relate quantities, which 

apparently seem unrelated. Moreover, Maxwell’s relations simplify 

thermodynamic analysis considerably without compromising with elegance. 

10.3 MAXWELL’S RELATIONS 

You have read about exact differentials in Block 2. We will now use this 

concept for deriving Maxwell’s relations, which connect the partial derivatives 

of TVp ,, and S for a simple compressible substance. These are extremely 

useful relations. These can be readily applied to determine the changes in a 

property that cannot be measured directly, by simply measuring the changes 

in Vp, and T .        

Suppose z is a function of state which depends on two independent state 

variables x and y and we can write ),( yxzz = . Then an infinitesimal change 

dz  in z due to changes in x and y can be expressed as 

  d y
y

z
x

x

z
z

xy

dd 











+












=  

       dydx NM +=                                                 (10.11a) 

where we have put 
yx

z
M 












= and 

 
=  

 
.

x

z
N

y
 If we differentiate M with 

respect to y, keeping x fixed, and N with respect to x, keeping y fixed, we get 

  

xyx
x

z

yy

M






























=












 

and 

• The behaviour of any pVT system can be explained in terms of four 

thermodynamic free energies: 

➢ Internal energy, U 

➢ Enthalpy, H = U + pV 

➢ Helmholtz energy, F = U – TS 

➢ Gibbs energy, G = F + pV 

• Each thermodynamic free energy is associated with a natural pair of 

variables: 

 U = U(S,V); H = H(S,p); F = F(T,V) and G = G(T,p)  

THERMODYNAMIC FREE ENERGIES 
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yxy y

z

xx

N































=












 

We know that the order of differentiation does not affect the value of a perfect 

differential, that is =






























xyx

z

y

   
      

.
x y

z

x y
 So, we can write 

  =












x
y

M

yx

N












                                      (10.11b) 

We are now in a position to use Eqs. (10.11a) and (10.11b) to obtain Maxwell 

relations from thermodynamic potentials. But before doing so, let us 

summarise what you have learnt in this section. 

 

 

 

 

 

 

To obtain Maxwell’s relations using thermodynamic free energies, you can 

choose any one of the free energies as a function of any two thermodynamic 

variables out of , ,p V S  and .T  Let us first choose T and V as independent 

variables. Recall that the free energy associated with these variables is F. It 

means that we have to refer to Eq. (10.4) and compare it with Eq. (10.11a). 

You will note that these equations have exactly the same form. In fact, these 

will be identical if you identify F  with ,z  −S  with ,M  −p  with ,N  T  with x  

and V  with .y  (This means that SF,  and p  are now functions of T  and .V ) 

Therefore, using Eq. (10.11b), we can write:  

  
VT T

p

V

S












−=












−  

 or                 
VT T

p

V

S












=












      (10.12a) 

Similarly, if we choose T and p as independent variables, we have to consider 

Gibbs free energy and refer to Eq. (10.6). Then on comparing it with              

Eq. (10.11a), we note that these equations will become identical if we replace 

G with z, −S with M, and V with N. Moreover, T is identified with x and p with 

y. Then using Eq. (10.11b), you will obtain 

   
pT

T

V

p

S












=












−                 (10.12b) 

Similarly, if we choose S and V and S and p as independent variables, we 

have to work with Eqs. (10.2) and (10.3), respectively.  

If dz  is an exact differential 

   dyNdxMdz +=                                                 

 where Mz, and N are functions of x and y , then 

  
yx

x

N

y

M












=












                                             

 Maxwell’s relations can 

be written from the 

following statement: 

    

( )

( )

( )

( )yx

ST

yx

Vp

,

,

,

,




=




 

where x and y can be 

pairs out of 

  
),(),,(),,( VSpTVT    

and ).,( pS  

The variables occurring 

at exactly the same 

position in the 

numerator as well as 

the denominator are 

cancelled out and put 

as suffix but if they 

occur in crossed 

positions, we put a 

negative sign while 

cancelling them. 
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Following the procedure outlined above, you can easily convince yourself that  

  
VS S

p

V

T












−=












 (10.12c) 

 and   
pS

S

V

p

T












=












 (10.12d) 

From Maxwell’s relations, you will note that: 

i) Cross multiplication of the variables involved in the partial derivatives 

always gives the form: (TS ) = ( pV ), which has the dimensions of energy. 

ii) The independent variable of the partial differentiation on the left-hand side 

appears as a constant on the right-hand side and vice-versa. 

iii) The sign is positive if T appears with p  in a partial derivative (remember 

‘ p ’ for positive).  

iv) We can study pressure and volume variation of entropy in terms of partial 

derivatives involving extensive and intensive thermodynamic variables 

A detailed study of Maxwell’s relations leads to a satisfactory explanation of 

many interesting physical phenomena. For example, let us consider the first 

Maxwell relation. It can be used to explain the co-existence of two phases of a 

substance in equilibrium. Similarly, the second relation can be used to explain 

anomalous expansion of water when it is heated from 0C to 4C.  

You can perform a very simple activity. Take Indian rubber and stretch it 

before touching with your lips. Do you experience some heat? We can seek 

explanation of this and such other phenomena in Maxwell’s relations. You will 

learn about these a little later.  

Before you go over to the next section, you should learn how to apply 

Maxwell’s relations. We explain it by solving an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate the pressure at which water would boil at 160C, if the change in 

specific volume when 1 g of water converted into steam is 1676 cc. Given 
267 cm dyne10atm 1erg,104.2cal 1 −==  and specific latent heat of 

vaporization of steam is .g cal 540 1−  

SOLUTION ◼  From Maxwell’s first relation [Eq. (10.12a)], we can write 

  
VT T

p

V

S












=












 

Multiplying both sides by ,T  we get  
VT T

p
T

V

S
T 












=












 

XAMPLE 10.1:  MAXWELL’S RELATIONS 
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We now summarise the important results of Maxwell’s relations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the Study Guide of this unit, we emphasized that you should not memorise 

any thermodynamic relation. We now illustrate how you can conveniently write 

these down based on a simple sentence. 

Do not forget what we have explained in the box ahead. 

 

But we know that TdSQ =  

  
VT T

p
T

V

Q












=












 

Here cal 540== mlQ  erg, 102.4540 7=   

K, 373C1001 ==T =2T 160°C = (160 + 273) K = 433 K,                          

ΔT = (433 − 373) K = 60 K and .cm 1675cm )11676( 33 =−=V  

Substituting these values in the above relation, we get 

 
3

7

cm1675K373

erg102.4540K60




=












=

V

Q

T

T
p       

                         atm177.2cmdyne10177.2 26 == −  

Therefore, the required pressure at which water would boil at 

 = + =160 C 2.177 1 3.177atm.  

This is the working principle of a pressure cooker. 

• Maxwell’s relations help us to study variation of entropy with volume 

and pressure in terms of partial derivatives involving extensive and 

intensive variables. 

• Four important Maxwell’s relations are: 

VT T

p

V

S












=













 

pT T

V

p

S












−=













 

VS S

p

V

T












−=













 

and  
pS S

V

p

T












=













  

MAXWELL’S RELATIONS 
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Memorise the sentence: Good Physicists Have Studied Under Very Fine 

Teachers.  

Note that the first letter of each word in this sentence highlights a 

thermodynamic variable or free energy. 

So, we draw a rectangle called mnemonic diagram, whose upper right and 

lower left corners have been clipped.  

Starting from the upper left corner in the figure, place the first letter of 

each word successively proceeding clockwise, as shown in Fig. 10.1. 

Note that each energy function is flanked by its respective set of natural 

variables.  

To write expressions for dG, dH, dU and dF in terms of changes in their 

natural variables, we choose the energy corner as origin and note the 

position of natural variables.  

If a variable Is below or to the left of the origin, a negative sign precedes it. 

Thus, we can write 

  dG = ( ) dp – ( ) dT 

The variable in the brackets is chosen such that it ensures dimensions of 

energy for the product. So, in the instant case, we can write 

                  dG = Vdp – SdT 

You should practice writing expressions for other free energies. Once you 

have written using the analogy with the relations 

           dz = Mdx + Ndy 

and        =












x
y

M

yx

N













 

You can obtain Maxwell’s relations in the sequence given in the text by 

working with (T,V); (T,p); (S,V) and (S, p) with their respective free 

energies. 

 

  

 

G 

T F 

V 
U 

S H 

p 

 

Fig. 10.1: Mnemonic diagram. 
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10.4 DEDUCTIONS FROM MAXWELL’S 
RELATIONS 

The heat transfer in an infinitesimal reversible process is given by TdSQ = . 

Let us see how Maxwell’s relations enable us to calculate heat transfer under 

different physical conditions. 

10.4.1   TdS-Equations 

TdS-equations enable us to relate the entropy of a substance with directly 

measurable quantities, provided its equation of state and heat capacities are 

known. Depending on the choice of independent variables, we obtain three 

TdS-equations. To derive the first TdS-equation, let us take T and V as 

independent variables and express entropy of a substance as  

  ),( VTSS =  

An infinitesimal change in T and/or V may induce a corresponding change in 

entropy. We can mathematically express it as 

  dV
V

S
dT

T

S
dS

TV













+












=  

Mutiplying throughout by ,T  we get 

  dV
V

S
TdT

T

S
TTdS

TV













+












=   

You would recall that for a gas made up of n moles, V
V

nC
T

S
T =












.  

Further, using Eq. (10.12a) we  replace 
TV

S












by .

VT

p












 This gives 

  dV
T

p
TdTnCTdS

V
V 












+=  (10.13a) 

Eq. (10.13a) is called the first TdS-equation. Note that  

i) all quantities occurring on the right-hand side of Eq. (10.13a) can be 

measured, and 

ii) the second term defines pressure variation with temperature for an 

isochoric process.  

So, once we know the equation of state, we can easily determine the pressure 

variation with temperature at constant volume. (This is explained for a van der 

Waals’ gas in Example 10.2.) However, we can express it as a ratio of two 

measurable quantities: isothermal compressibility and volume expansivity. We 

illustrate it now: 

Recall that volume expansivity 
pT

V

V












=

1
 and isothermal compressibility 
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T
T

p

V

V 











−=

1
so that  

Tp

T

p

T V

p

T

V

p

V

T

V

























−=



























−=



.  

Using the cyclic relation between thermodynamic variables (p, V, T) we can 

write 

  
VT T

p












=




 

On combining this result with Eq. (10.13a), we can rewrite the first TdS 

equation as 

  dVTdTnCTdS
T

V



+=  (10.13b) 

Note that Eqs. (10.13a, b) express variation in entropy in terms of physically 

measurable quantities. We now illustrate the use of the first TdS equation 

through an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To obtain the second TdS-equation, we take entropy as a function of T and .p
  

The cyclic relation between 

variables (p,V,T) is  

1−=




































VTp p

T

V

p

T

V

 

 

 

 

One mole of a van der Waals’ gas undergoes a reversible isothermal 

expansion from a volume iv to a volume fv . Calculate the amount of heat 

transferred in this process. 

SOLUTION ◼  For one mole, we can write the first TdS equation as 

  dv
T

p
TdTCTdS

v
v 












+=  (i) 

where vCS, and V, respectively, denote molar entropy, molar heat capacity 

at constant volume, and molar volume of the gas. or one mole of a van der 

Waals’ gas, we can write the equation of state as: 

   
2V

a

bV

RT
p −

−
=  (ii) 

From this, you can easily write:  
bV

R

T

p

V −
=












 (iii) 

Using this result in (i), we get:    dV
bV

RT
dTCTds v

−
+=  (iv) 

Since the gas undergoes an isothermal expansion, 0=dT . Therefore, the 

first term on the right-hand side of Eq. (iv) drops out. Further, we know that 

the heat transferred TdsQ = . Hence on integrating (iv) over volume 

between given initial and final values, we get 

 








−

−
=

−
=  bV

bV
RT

bV

dV
RTQ

i

f
v

v

f

i

ln       (v) 

XAMPLE 10.2:  APPLICATION OF MAXWELL’S RELATION 
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Then we can write: 

  dp
p

S
TdT

T

S
TTdS

Tp












+












=  

In terms of heat capacity at constant pressure, we can write 

         dp
p

S
TdTnCTdS

T
p 












+=                               

 If we now use Eq. (10.12b), we get  

  
 

= −  
 

dp
p

V
TdS nC T T dp

T
 

 (10.14a) 

This is the second TdS-equation. In terms of volume expansivity  , we can 

rewrite it as 

  = − pTdS nC dT TV dp   (10.14b) 

Similarly, by taking p  and V as independent variables and writing = ( , ),S S p V  

we  get 

  
    

= +   
    pV

S S
T dS T dp T dV

p V
 

To put it in a more meaningful form, we split the bracketed terms on the RHS 

of this equation and rewrite it as 

  
         

= +      
         V p pV

S T S T
T dS T dp T dV

T p T V
 

For n moles of the gas, we can write 

  
    

= +   
   

V p
pV

T T
T dS nC dp nC dV

p V
                (10.15) 

This is the third TdS-equation. You may now like to work out an SAQ on           

TdS-equations. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

SAQ 3  –  TdS-equations 

The pressure on 0.015 litre of mercury at 0C is increased reversibly 

isochorically and isothermally from one to 1001 atm. Use Eq. (10.14b) to 

calculate the heat transfer. It is given that  for mercury .K10178 16 −−=  

Take .Nm10atm1 25 −=  (Assume that V remains constant.) 

 

 

 

Write TdS equation for a surface film defined by AUST d dd −= . 

SOLUTION ◼  By comparing the TdS equation for surface film with for a 

hydrostatic system, we note that p and V have been replaced by −  and 

,A  respectively.  

XAMPLE 10.3:  APPLICATION OF TdS-EQUATIONS 
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Before proceeding further, let us recapitulate what you have learnt in this 

section so far. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

10.4.2   Energy Equations 

Just as Maxwell’s relations enable us to know heat transfer, we can also use 

these to study how internal energy changes with volume, temperature or 

pressure. The resulting relations are known as energy equations. To derive 

first of these, we divide Eq. (10.2) by dV .  

Using these variables in the first and second TdS-equations, we can write 

  
 

= −  
 

A
A

TdS C dT T dA
T

 

and 


 
= +  

 

A
TdS C dT T d

T
 

Here AC  and C are heat capacities of the film at constant area and at 

constant surface tension, respectively. 

If the film is stretched isothermally and the area increases by Ad , the heat 

transferred to the film is 

  
 

 = = −  
 

T
A

Q TdS T dA
T

 

It is an experimentally established fact that surface tension is a function of 

temperature only. Therefore, we can write 

  


 = −T
d

Q T dA
dT  

Since 
d

dA
 is negative for liquids, TQ  will be positive if  0dA . 

• A TdS-equation helps us to relate changes in entropy in terms of molar 

heat capacities, volume expansivity and compressibility. 

• For a hydrostatic system, the TdS-equations are 

dV
T

p
TdTnCTdS

V
V 












+=

 

 
= −  

 
p

p

V
T dS nC dT T dp

T
 

    
= +   

   
V p

pV

T T
T dS nC dp nC dV

p V
 

TdS-EQUATIONS 
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This gives   p
dV

dS
T

dV

dU
−=

 
 

If T  is held constant, the derivatives in the above equation will have to be 

treated as partial derivatives, so that you can write 

  p
V

S
T

V

U

TT

−











=












 

Using first Maxwell’s relation (Eq. (10.12a)), we get  

  p
T

p
T

V

U

VT

−











=












 (10.16) 

Eq. (10.16) is the so-called first energy equation. 

To illustrate its use, we consider a simple example. For an ideal gas, we know 

that 

  
V

nRT
p =  and 

V

nR

T

p

V

=











 

Substituting this in Eq. (10.16), we have 

  0=−=











p

V

nRT

V

U

T

 

This result shows that internal energy of an ideal gas is independent of its 

volume. So we may say that for an ideal gas U depends on only .T But, in 

general, U  is a function of both T  and V. You will understand this by solving 

the following SAQ. 

 

 

 

 

The pressure dependence of internal energy can be obtained by dividing     

Eq. (10.2) by dp and using Eq.(10.12b). The result is the so-called second 

energy equation:  

  
TpT p

V
p

T

V
T

p

U












−












−=












 (10.17) 

Before proceeding further, we would like you to work out an SAQ. 

 

 

 

SAQ 4  –  Energy equation 

Using Eq. (10.16), show that for one mole of a van der Waals’ gas, 

.
2V

a

V

U

T

=











 

 

SAQ 5  –  Energy equation 

Obtain Eq. (10.17) and show that for on ideal gas, internal energy is 

independent of pressure that U is independent of p. 

 



  

66  

Block 3                                     Second and Third Laws of Thermodynamics 

10.4.3   Clausius-Clapeyron Equation 

From the first Maxwell’s relation (Eq. (10.12a)) we  recall that in isothermal 

expansion, the heat absorbed per unit volume is equal to the product of the 

absolute temperature and the rate of increase of pressure with temperature in 

an isochoric process. Now, let us consider a cylinder which contains a liquid  

in equilibrium with some of its vapour. (The pressure is called the saturated 

vapour pressure. It does not depend on the quantities of liquid and vapour 

present.) If we allow the system to expand at constant temperature, the 

vapour pressure will stay constant but liquid will evaporate to fill the extra 

space with vapour. Then we can write dmQ = , where  is specific latent 

heat of evaporation. The change in volume will be equal to dmvv liqvap )( −  

where vapv  and liqv  are the specific volumes for the vapour and the liquid, 

respectively. So, we can rewrite Eq. (10.12a) as 

                  
VT T

p

V

Q

T












=











1

 

(10.18a) 

or  
VliqvapT T

p
T

vvV

Q












=

−
=











 

 

(10.18b) 

Alternatively, if we hold the volume constant and increase the temperature by 

dT, the liquid will evaporate till the mixture reaches a new equilibrium state 

and hence a new saturated vapour pressure. Then we may identify 

  
satV T

p

T

p












=












 

On combining this result with Eq. (10.18b), we can write 

  
][ liqvapsat vvTT

p

−
=











 

 

(10.19) 

This is known as Clausius-Clapeyron equation. It is one of the most important 

formulae in thermodynamics and gives the rate at which vapour pressure      

must change with temperature for two phases to coexist in equilibrium. 

(Inversely, you can study the effect of pressure on the boiling point of a     

liquid.) We can also obtain Eq. (10.19) from the equality of Gibbs Free 

energies in two co-existing phases. Since liqvap vv   always, ( satTp )/  will 

be positive implying that increase in pressure raises boiling point and vice 

versa. This explains why vegetables cook faster in a pressure cooker. This 

also explains why it is difficult to cook food at high altitudes than at the sea 

level. To give you a feel for the numbers, we may mention that at the top of 

the Mount Everest, an altitude of about 8 km above the sea level, water boils 

at about 80C.  

Though we have derived Eq. (10.19) for the evaporation process, the 

arguments can be extended to any phase change (solid-liquid, liquid-vapour 

and solid-vapour transition) involving latent heat. That is, Eq. (10.19) applies 

to all first order phase changes in which entropy and volume are 

First order phase 

transition involves 

change of phase of 

the matter 

accompanied by 

absorption or release 

of latent heat at 

constant temperature. 
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discontinuous at the transition temperature. (You will get an opportunity to 

arrive at the Clausius-Clapeyron equation based on Gibbs energy in TQ 6.) 

The phase diagrams for 2CO  and OH2  are shown in Figs. 10.2a and b, 

respectively. These curves represent a unique relationship which must hold 

for two phases to coexist. Note that the three curves intersect at one point. 

The point (on p-T diagram) where all three phases coexist is known as the 

Triple Point. For 2CO ,  −= 6.56tpT C or 216.4 K and = 5.11tpp atm whereas 

for water, the triple point is defined by = 0.0075tpT C or 273.0075 K and 

= 4.58tpp atm.  

 

 

 

 

 

 

 

      Fig.10.2: The phase diagrams for (a) carbon-di-oxide, and (b) water. 

From Fig. 10.2(a) we note that the slope of the solid-liquid curve is positive. 

This means that most substances expand on melting and dTdp / is positive. 

So melting point of such materials will increase when pressure is raised. On 

the other hand, the solid-liquid curve for water (Fig. 10.2b) has a negative 

slope implying that water expands on freezing and its melting point decreases 

when pressure increases. Note that water is an exception in that at the triple 

point, it passes from vapour → solid → liquid phase when pressure is 

increased. 

It may be remarked here that the Clausius-Clapeyron equation is obeyed by 

systems to a high degree of accuracy and over a wide range of experimental 

conditions. This constitutes strong evidence in favour of the second law of 

thermodynamics. 

Now you should study the following example carefully. 

 

 

 

 

 

 

 

 

 

 

 

Calculate the change in the melting point of ice at 0 C when pressure is 

increased by 2 atm. How much pressure is required to lower the melting 

point by 1 C? Given, latent heat of fusion is 79.6 cal g−1 and the specific 

volumes of water and ice are 1.001 cm3 and 1.0908 cm3, respectively. 

SOLUTION ◼  From Eq. (10.19), we can write 

  
]sat [

icewater
vvTT

p

−
=











 
 

 

XAMPLE 10.4:  CLAUSIUS-CLAYPERON EQUATION 
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10.5   JOULE-THOMSON EFFECT 

From the discussion of van der Waals’ equation in Block 1, you may recall  

that in arriving at his equation, van der Waals assumed that gas molecules 

have finite size and experience molecular attraction. To verify these 

assumptions, Joule performed a simple experiment wherein he allowed a gas 

to undergo free expansion. He argued that if intermolecular forces do exist, 

some work will be done against these when a gas expands. And since this 

work can only be done at the expense of the internal energy of the gas, its 

temperature should drop producing a cooling effect. However, he could 

observe no cooling effect. 

Soon after, Joule carried out a series of experiments in collaboration with 

Thomson. They made a gas to expand adiabatically through a porous  

plug from a constant higher pressure to a constant lower pressure. They 

showed that when temperature of the gas was below a certain temperature, 

known as inversion temperature, it did show cooling effect. This is known as 

Joule-Thomson effect. The findings of Joule-Thomson experiment are 

summarized below: 

• All gases showed a change in temperature after passing through the 

porous plug.  

• At ordinary temperatures, all gases, except hydrogen and helium, showed 

cooling effect. In fact, these gases showed slight heating, which was 

completely unexpected.  

• At low enough temperatures, all gases showed cooling effect.  

• The fall in temperature was directly proportional to the pressure difference 

on the two sides of the porous plug. However, for a given difference of 

On substituting   = 79.6  4.186  107 erg g−1, waterv = 1.0001 cm3,  

icev = 1.0908 cm3 and T = 273.16 K, we get 

 
3

17

cm1.0908)-(1.0001K)16.273(

gerg10186.46.79




=

−

dT

dp
 =− 13.45  107 dyne cm−2 K−1 

Since ,cm dyne 102.026atm 2 26 −==dp  the change in melting point is 

given by 

  C015.0 K  015.0
Kcm dyne 1045.13

cm dyne10026.2
d

127

26

−=−=



−=

−−

−

T  

This result shows that the melting point of ice decreases with pressure; the 

drop per atmosphere being 0.0075 C. Thus, when enough pressure is 

applied, ice melts. This fact is of significance in the game of ice skating as 

well as in the study of glaciers.  

The increase in pressure required to lower the melting point of ice by 1C 

is 1K / 0.0075 133  atm. 
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pressure, the drop in temperature was more if the initial temperature of the 

gas was less. 

• For every gas, no change in temperature was observed when it was made 

to expand at the temperature of inversion, denoted as .iT When the initial 

temperature of a gas was below the temperature of inversion, it cooled 

after adiabatic expansion through the porous plug. 

Joule-Thomson coefficient is defined as 

            


=



T

p
 (10.20) 

Without going into details, we will just quote the result for a van der Waals’ 

gas: 

  
 

= − 
 


1 2

p

a
b

C RT
  (10.21) 

We know that p  is greater than zero since gas is made to expand from a 

constant higher pressure to a constant lower pressure. So, Eq. (10.21) 

suggests that cooling or heating in Joule-Thomson expansion will be 

determined by the competition between terms characterizing intermolecular 

forces represented by a and finite size of gas molecules represented by b.               

If intermolecular forces are strong, i.e.  ,a b  then 
 

−  
 

2
0

a
b

RT
.  

Hence,   0T and the gas will cool and vice versa. However, there will be 

neither cooling nor heating if  

  =
2

i

a
b

RT
                                                               (10.22)  

iT  is referred to as inversion temperature. It signifies that when a gas 

undergoes Joule-Thomson expansion below its inversion temperature, it will 

cool down. But if the temperature before expansion is above its inversion 

temperature, it will warm up.  

The inversion temperatures for some typical gases are given in Table 10.1. 

Table 10.1: Inversion temperatures of some gases 

 

Gas He H2 N2 A O2 CO2 Air 

Ti(K) 23.6 195 621 723 893 1500 603 

 

Note that for H2 and He, iT  is well below the room temperature (273K) and 

that is why they show warming at ordinary temperatures. 

From Eq. (10.21) we further note that for a perfect gas, a = b = 0. It means 

that Joule-Thomson coefficient for a perfect gas would be zero. 

We now sum up what you have learnt in this unit. 
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10.6   SUMMARY 

Concept Description 

Thermodynamic 

potentials                          

◼ When a system can be subjected to work by pressure only, there exist 

four thermodynamic potential functions: internal energy U ; enthalpy 

;pVUH +=  Helmholtz function ;TSUF −=  and Gibbs function                 

.pVTSUG +−=  

◼ Infinitesimal changes in thermodynamic potentials are given by 

  VdpTdSdHpdVTdSdU +=−= ,  

  VdpSdTdGpdVSdTdF +−=−−= ,  

 Maxwell’s relations  ◼ The four Maxwell’s relations are 

 
VS S

p

V

T












−=












 

 
pS

S

V

p

T












=












 

 
VT T

p

V

S












=












 

 
pT

T

V

p

S












−=












 

 
TdS-equations ◼ Three TdS -equations relate changes in entropy to change in 

temperature, volume or pressure: 

              TdTnCTdS V +=
VT

p












dV  

               TdTnCTdS p −=
pT

V












dV   

                    VnCTdS =

V
p

T












pnCdp +

pV

T












dV  

Energy equations 

 

 

 

 

 

 

 

 

 

 

 

◼ Energy equations specify the variation of internal energy with volume 

and pressure: 

               p
T

p
T

V

U

VT

−











=












 

               

TpT
p

V
p

T

V
T

p

U












−












−=












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10.7   TERMINAL QUESTIONS 

1. For a magnetic system, the infinitesimal change in internal energy may be 

expressed as 

  dU = TdS + VB dM 

 Here B is the applied magnetic field and M is the intensity of 

magnetisation. If 
V

m
M


=  where m is the magnetic moment, you can write 

  dU = TdS + B dm 

 Now, starting from the above equation, write for the magnetic system 

 a) the four Maxwell’s relations, 

 b) the second TdS-equation. 

2. A gas obeys the equation p (V – b) = RT, where b is constant. Show that 

 a) U is a function of only T,  

 b) − )( bVp  = constant for the gas undergoing a reversible adiabatic  

 process. 

3. For an ideal gas show that  

 i) coefficient of volume expansion is a function of only temperature. 

 ii) the isothermal compressibility is a function of only pressure. 

4. Water boils at a temperature of 101C at a pressure of 78.8 cm of Hg. If    

1 g of water occupies 3cm 1601  on evaporation, calculate the latent heat 

of steam. Given .s cm 980g  and  erg102.4cal 1 27 −==  

5. Calculate the specific volume of solid sulphur from the following data: 

Melting point of sulphur = 115C; latent heat of fusion of sulphur 

,g cal 3.9 1−=  volume of 1 g of liquid sulphur ;cm 513.0 3= rate of change 

of melting point with pressure is 0.025C atm−1. (1 atm = 106 dyne cm−2) 

6.  When two phases of a substance co-exist in equilibrium at constant 

temperature and pressure, their specific Gibbs free energies are equal. 

Using this fact, obtain Clausius-Clapeyron equation. 

10.8   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. We know that pVFG +=  

Joule-Thomson 

coefficient 

◼ Joule-Thomson coefficient is defined as 

  
  

= = − 
  


1 2

p

T a
b

p C RT

 
= − 

 
1i

p

Tb

C T
 

where =
2

i
a

T
Rb

 is the temperature of inversion of the gas. Every gas 

undergoing Joule-Thomson expansion at a temperature below the 

inversion temperature cools down and vice versa. 
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   VdppdVpdVSdTVdppdVdFdG ++−−=++=  

  or VdpSdTdG +−= , which is Eq. (10.6). 

2. a) i) From Eq. (10.3), we can write 

S
p

H
V 












=  

   For a fixed mass, a gas occupies more space (volume) than a 

solid. So, at constant entropy, the rate of increase of enthalpy with 

pressure is greater for a gas than a solid. 

  ii) From Eq. (10.7b), we recall that 

T
p

G
V 












=  

   As explained above, we can say that at constant temperature, 

Gibbs energy increases with pressure more rapidly for a gas than 

that for a liquid or a solid. 

 b) i) From Eq. (10.5b), we know that 
TV

F
p 












−=  

   On substituting for F from Eq. (10.1), we get 

    ( )
TTT V

S
T

V

U
TSU

V
p 












+












−=








−




−=  

    This relation signifies that pressure exerted by a system arises out 

of two contributions: isothermal variations of internal energy and 

entropy with volume. While the first term dominates in case of 

solids, the second term is more prominent in elastic polymers such 

as rubber. The variation of entropy of a system with volume may 

also contribute to pressure when its energy remains constant. This 

is exactly what happens in the case of an ideal gas at constant 

temperature. 

  ii) We know that TSHG −= and 
pT

G
S 












−= . Therefore, we can 

invert this relation to write 
pT

G
TGH 












−=  

            On multiplying and dividing by 2T , we rewrite it as 

         

pp

p

T

G

T
T

T

G

TT

G
T

T

T

G
TG

T 



















−=


























−=
































−

= 2

2

2

2

2 1
 

    But 
2

11

TTT
p

−=



















.  Hence, we get the desired result:         

       

p
T

TG
H 












=

)/1(

)/(

 

 

3. Since the process is reversible and isothermal (dT = 0), from Eq. (10.14) 

we have  
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   Q = TdS = −T dpTVdp
T

V

p

−=












 

(i) 

    −=−= dpVTdpTVQ        ( T is a constant)  

 Since V and   remain constant during the process, we can write  

    ( )if ppTVdpTVQ −−=−=   
(ii) 

 where pi and pf are the initial and the final pressures. 

 We are given that T = (0 + 273)K = 273K, V = 0.015 litre,                                    

  = 178  10−6K−1, pf = 1001 atm, and pi = 1 atm,  

 On substituting these values in Eq. (ii), we get   

   Q = − (273K)  (0.015 litre)  (178  10−6K−1)  (1000 atm)  

     = − 0.729 litre atm 

 Since1 litre = 10−3 m3, and 1 atm = 105 Nm−2 we can express this result as 

   Q = −0.729  (10−3 m3)  105 Nm−2  = −72.9 Nm = 
1-cal4.2J

J
9.72−  

       = −17.4 cal  

 The negative sign signifies that heat flows out of the system during the 

above process. 

4. For one mole of a van der Waals’ gas, we have 
2V

a

bV

RT
p −

−
=  

 and 
bV

R

T

p

p −
=












 

 From Eq. (10.12), we have p
T

p
T

V

U

VT

−



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






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 On substituting for p and (p / T)v, we get 

   
2V

a

bV

RT

bV

RT

V

U

T

+
−

−
−
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


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2V

a
=  

5. From Eq. (10.2) we recall that dU = TdS – pdV  

 Dividing both sides by dp, we can write for constant T  

   

TTT
p

V
p
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U
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 On using Eq. (10.13), we get 
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 For an ideal gas,  

   pV = nRT 

 or  ,
p

nRT
V =  so that 

2
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   0
2

=






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
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
−−−=


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nRT
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 This result shows that internal energy of an ideal gas is independent of 

pressure. 

Terminal Questions 

1. a) We have mBdTdSdU +=   

If we compare this with Eq. (10.2a), we see that p has been replaced 

by B and V by .m−  Using this idea, we may write the analogues of          

Eq. (10.2) for magnetic system as follows: 

  dU = T dS + B dm 

  dH = T dS – m dB 

  dF = −S dT + B dm 

  dG = −S dT – m dB 

Now applying the conditions (10.13), we have the following four 

Maxwell’s relations 

  
mS S

B

m

T














=












 

  
BS S

m

B

T












−=












 

  
mT T

B

m

S














−=












 

  
BT T

m

B

S












=












 

 b) The TdS-equation may also be obtained by replacing p by B and V by 

– m. Thus, from Eq. (10.14a), we have T dS = V CBdT + T 
BT

m




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






dB 

2. a) p (V – b) = RT  and so, 
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  We know from Eq. (10.16), that 
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  So, u is a function of only T. 

 b) We know from Eqs. (10.13 and 10.14) that dV
T

p
TdTCTdS

V
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  For a reversible adiabatic process, TdS = 0 

   dV
T

p
TdTC

V
V 












−=

   

 and    dp
T

V
TdTC

p
p 












=  



   

75  

 Unit 10                                                                 Thermodynamic Potentials 

  or 
bV

RT
dTCV

−
−=

   

 and    dp
p

RT
dTCp =

 

  Hence,  =
−

−=

−
−

=
dV

dp

p

bV

dV
bV

RT

dp
p

RT

dTC

dTC

V

p
  

  so that 
p

dp

bV

dV
=

−
−   

  On integrating both sides, we can write 

    KpbV +=−−  ln)ln(  

  where K is constant of integration. We can rewrite it as 

    KbVp =−  ))((ln  

  On taking antilog of both sides, we get  KbVp =− )(  

3. i) The coefficient of volume expansion or volume expansivity is given as 

   
 

 =  
 

1
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V T
 

For an ideal gas, RTpV =   

         
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T p
   

Tp
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That is coefficient of volume expansion of an ideal gas is an inverse 

function of temperature only. 

 ii)  The expression for thermal compressibility is written as 

    
pp
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 This shows that the isothermal compressibility of an ideal gas is a 

function of pressure only. 

4.  From Clausius Clapeyron equation, we know that  

      
)( 12 vvTdT

dp

−
=



   

   
dT

dp
vvT )( 12 −=  

  Here  T = 373K, 13
12 gcm1600 −=− vv  

  )s cm 980()cm g (13.6cm )0.768.78( 23 −− −=dp 2cm dyne 37318 −=           

  and    C11 == KdT  

  
K1

)cmdyne37318()gcm1600)373( 213 −− 
=

K
  19 gerg1027.22 −=      

     =
17

19

calerg102.4

gerg1027.22

−

−




 1gcal2.530 −=  

5.      From Clausius-Clapeyron equation, we know that  

               =
−2 1( )

dp

dT T v v
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  or  − =2 1( )
dT

v v
T dp

 

  Here K388andgcal3.9,atm025.0 11 === −− TK
dp

dT
  

     =−
−

K388

gcal3.9
)(

1

12 vv 1atmK025.0 −    = 0.252 3cm  

  Since the volume of liquid sulphur is ,cm 513.0 3
2 =v  the volume of 

solid sulphur is given by 

           3
1 cm)252.0513.0( −= sVv   = 0.261 3cm . 

6.  The specific Gibbs free energy of two phases must always be equal for 

 coexistence of first order phase transitions:       =1 2g g    (i) 

  If we change the temperature and pressure by T and  ,p respectively, 

there will be a corresponding change in specific Gibbs free energies as 

well. But the condition for two phases to co-exist and be stable is given by 

                       + 1 1g g = + 2 2g g  (ii) 

 From Eqs. (i) and (ii), we can write  1g =  2g .  

 That is, the change in the specific Gibbs free energy of one phase in 

 equilibrium with another phase is equal to the change in specific Gibbs 

 free energy of the other phase. For one-component system, which can 

 exist in two phases, the specific Gibbs energy is given by                              

dg = − sdT + vdp. So, on substituting for  1g  and  2g , we get 

                        − 1 1v p s T =  − 2 2v p s T  

   or              
− 

= =
 − 

2 1

2 1

s sp s

T v v v
      

  where s and  ,v respectively, denote changes in specific entropy and 

specific volume when the system goes from one phase to another. If the 

specific latent heat (absorbed) required to accomplish change from            

phase 1 to phase 2 is l, we can write  

                             − =2 1s s
T

  

  Hence, the required relation for changes in pressure and temperature in 

 stable phase equilibrium is  

                              =
−2 1( )

dp

dT T v v
  

 This is the Clausius-Clapeyron equation.  It gives the rate at which 

 pressure must change with temperature for two phases to remain in 

 equilibrium.  

 (Note: For details about the phase transitions, you should consult books 

 mentioned in Further Readings at the end of this block.) 
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The blackbody radiation presented huge challenge to theoretical physicists of late nineteenth and early 

twentieth century. Lord Rutherford described it as one of the two darkest clouds on the horizon of 

theoretical physics. All efforts based on classical theory assumed that the energy of a system could be 

taken as continuous variable but these failed to explain the experimental results in entirety. It required 

the genius of Planck to provide satisfactory explanation of observed results for all wavelengths. He 

made a drastic deviation from classical concept about energy of a system in that it should not be 

treated as a continuous variable. He proposed that energy can change only in concrete steps in units 

of what is now known as Planck’s constant. You will learn to obtain expression for Planck’s formula 

and show that all other laws of radiation are contained in it. 

The derivations given in this unit require good knowledge of geometrical series, calculus and 

acquaintance with special functions. So, you are advised to re-read Block 1 on kinetic theory of gases 

before studying this unit. To make the unit self-contained and for completeness, we have given all 

mathematical steps. But you will enjoy the subject more if you solve these steps by yourself. 

Therefore, keep a pen/pencil as well as a notebook ready with you. Also, answer SAQs and solve TQs 

or other numerical problems to gain greater proficiency. 

“An experiment is a question which science poses to Nature 

and a measurement is the recording of Nature’s answer.”  Max Planck 
 

 

A typical black body.  
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11.1   INTRODUCTION 

In your school physics, you have learnt that all bodies emit thermal radiation. 

And the intensity, wavelength and rate of emission depend on temperature. 

For instance, at room temperature, most of the energy is radiated in the far 

infra-red region, whereas at 6000K, which corresponds to the temperature of 

the outer surface of the Sun, it lies in the visible region. You have also learnt 

that the mode of energy transmission from the Sun to the Earth is radiation. 

In fact, radiation is the main mechanism for energy transfer in our solar 

system, interstellar space and the galaxies. It implies that energy transfer by 

radiation does not require intervening medium to participate actively. 

It is now well accepted that thermal radiations are electromagnetic in nature. 

Moreover, these produce a sensation of warmth. An enclosure maintained at  

a constant temperature can be imagined to be filled with electromagnetic 

radiation, which is in thermal equilibrium with its walls. The electromagnetic 

radiation in a cavity is called blackbody radiation corresponding to a                  

well-defined temperature. In the beginning, the laws of thermodynamics in 

conjunction with the law of equipartition of energy were used to study the 

behaviour of blackbody radiation. However, these efforts proved only partly 

successful.   

In this unit, you will get the correct insight into the nature of blackbody 

radiation and its spectral distribution. We begin by discussing some important 

terms and concepts related to blackbody radiation in Sec. 11.2. This is 

followed by a discussion of spectral distribution of radiant energy in Sec. 11.3. 

Planck proposed the concept of quanta as carriers of energy in emission or 

absorption of blackbody radiation and explained all observed results available 

then rather well. In Sec. 11.4, you will learn how to derive Planck’s formula of 

blackbody radiation following the approach used by Planck. (For the number 

of modes per unit volume in the frequency range   to +d, he used the 

expression obtained by Rayleigh and Jeans.) In Sec. 11.5, you will learn that 

all other laws of radiation (Wien’s law, Rayleigh-Jeans law and Stefan-

Boltzmann’s law) are contained in Planck’s law. 

Expected Learning Outcomes 

After studying this unit, you should be able to: 

❖ explain the concepts of blackbody radiation, spectral distribution and 

energy density; 

❖ discuss Planck’s theory of black body radiation; 

❖ obtain Planck’s formula for spectral distribution of black body radiation; 

and 

❖ derive Rayleigh-Jeans law, Wien’s law and Stefan’s law from Planck’s 

law. 
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11.2 DEFINITIONS AND CONCEPTS 

To discuss distribution of energies in blackbody radiation, we have to 

introduce some basic definitions:  

Spectral energy density ( u ) is defined with respect to a particular 

wavelength  as a measure of the energy per unit volume per unit range of 

wavelength. It means that  u d denotes the energy per unit volume in the 

wavelength range from  to  + .d  Therefore, a sum of spectral energy 

densities for all wavelengths from 0 to  per unit volume gives the total energy 

density: 

  


= 
0

u u d    (11.1) 

Note that the total energy density is measured in units of .Jm 3−   

Spectral emissive power ( e ) of a body corresponding to wavelength   is a 

measure of energy radiated per second per unit surface area per unit 

wavelength. Therefore,  e d
 
denotes the energy emitted by unit area in one 

second in the wavelength range from  to  + .d  A sum of spectral emissive 

powers for all wavelengths from 0 to  gives total emissivity:   

  


= 
0

e e d    (11.2) 

Note that emissivity is measured in 12 sJm −−  or .Wm 2−      

Spectral absorptivity )( a  denotes the fraction of incident energy of a 

particular wavelength absorbed by unit surface area of a body in one second.  

If a body absorbs all radiations incident on it,
  = 1,a then the body is said to 

be a perfect blackbody. This nomenclature is based on the colour that we 

see due to selective absorption of light. Do you know that the text of this unit 

appears black because letters in it absorb all light falling on them? Why does 

a flower have colour or why does the paper of your unit appear white?  

Note that e and e characterise the properties of a body as emitter whereas 

a describes the properties of the body as an absorber of radiation. However, 

these three physical quantities depend on temperature and the nature of the 

surface of the body. 

When radiation of a particular wavelength   is incident on a body, it may be 

partially reflected, partially absorbed and partially transmitted. But a blackbody 

absorbs all radiations incident on it. Then we can write 

    + + = 1r a t   

where ,r a and ,t respectively, characterise energy reflection, absorption 

and transmission coefficients of the body corresponding to wavelength  . If 

,0==  tr  then 1=a . That is, the body is perfectly black for a given 

wavelength. In practice, no surface or body satisfies this ideal definition 

strictly. Even lamp black and platinum black respectively absorb nearly 96%  

and 98% of visible light. So, a is always less than unity. 
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11.3 SPECTRAL DISTRIBUTION OF RADIANT 
ENERGY 

In your school physics, you have learnt Stefan’s law of blackbody radiation. It 

states that the rate of emission of radiant energy by unit area of a perfect 

blackbody is directly proportional to the fourth power of its absolute 

temperature. Mathematically, we express it as 

  4TE =      (11.3) 

where  is called Stefan’s constant and has value 
− − − − 8 2 4 15.672 10 Jm K s . Stefan’s law in the above form refers to the amount 

of heat emitted by the body by virtue of its temperature, irrespective of what it 

receives from the surroundings. Therefore, it is natural to extend the scope of 

this law to represent the exchange of heat and be stated as follows: 

For a blackbody at absolute temperature T surrounded by another blackbody 

at absolute temperature T0, the amount of net heat lost by the blackbody at 

higher temperature per unit time can be expressed as 

  )( 4
0

4 TTE −=                      (11.4) 

This law is known as Stefan-Boltzmann law. 

Note that Stefan-Boltzmann law relates total energy density of black body 

radiation with temperature; it does not give any information about the 

distribution of energy in different parts of the spectrum.  

Now refer to Fig. 11.1, which shows observed results of spectral energy 

density of a black body at different temperatures.  

 

 

 

 

 

 

 

 

 

 

Fig. 11.1: Plot of spectral energy density of a black body with wavelength   

at different temperatures. 

You will note in Fig. 11.1 that: 

• For a given wavelength , u increases with temperature. 

• For each temperature, the spectral energy density plot shows a maximum. 

It shifts to shorter wavelengths with increase in temperature.  
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• The spectral energy density becomes zero as wavelength tends to either 

zero or infinity. 

To explain experimental results, Wien and Rayleigh and Jeans used 

thermodynamic reasoning with the principle of equipartition of energy, wherein 

energy is considered a continuous variable. However, they could not explain 

the results satisfactorily in the entire range of the spectrum. In fact, their 

efforts succeeded either in the higher or in the lower energy regions. This 

raised doubts about the applicability/utility of the principle of equipartition of 

energy to understand the physics of blackbody radiation. 

Planck then conjectured, albeit heuristically, that emission and absorption of 

radiation is a discontinuous process. To derive Planck’s formula, we have 

preferred discussion of developments in chronological order as this approach 

is more informative and learner-friendly. It will give you a feel of how scientists 

handle difficult unknown situations, particularly when their results do not 

conform to experimental results. (This law was later derived by Indian 

physicist Prof. S.N. Bose by treating radiation as an assembly of photons, 

which obey Bose-Einstein statistics. You will learn about it in Block 4.) 

11.4 PLANCK’S LAW  

Planck presented the following formula for energy density empirically to fit the 

experimental results on blackbody spectrum:  

 

  
 =  

 − 

2

3

8

exp( / ) 1B

h
u d d

h k Tc
 

(11.5) 

We can rewrite it as: 

 
  

 
 =   = 

2

3

8
du d n d

c
 (11.6) 

where 

 










−


=

1)/exp( Tkh

h

B  

(11.6a) 

is the average energy of an oscillator, and        

 



 = 

2

3

8
n d d

c  
(11.6b) 

defines the number of modes per unit volume in the frequency range   to 

 + d . (The calculation of the number of modes is given in Appendix 11A) 

Eq. (11.6b) can also be written as 

 
 

 = 
2

3

8 V
N d d

c
 (11.6c) 

to define the number of modes in volume V in the frequency range   to 

 + .d  

You should now go through the following example. 
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By substituting TkB=  in Eq. (11.6), you will obtain Rayleigh-Jeans law, 

which was derived by them based on the law of equipartition. (It suggests 

that   is the average energy of a mode of oscillation in Planck’s theory.) But 

Planck was convinced about the inappropriateness of the classical theories 

and he made a drastic deviation. He postulated that  

• the exchange of energy between matter (walls) and radiation (cavity)   

could take place only in bundles of a certain size; and 

• the quantum of exchange is directly proportional to its frequency. That is, 

the energy of an oscillator having frequency   could only be an integral 

multiple of h , where h is a constant.   

These postulates marked a fundamental departure from the contemporary 

ideas. The constant h is now known as Planck’s constant. Its value is 
341062618.6 − Js. (Planck was awarded Nobel Prize in Physics in 1918 for 

his work on blackbody radiation.)  

Before proceeding further, it would be appropriate to clarify the significance of 

Planck’s postulates with an example. Suppose two litre of milk is to be 

distributed between two persons. Since milk is an infinitely indivisible entity, 

you can divide it between two persons in an infinite number of ways. Next you 

are asked to distribute milk in units of a litre. Now both the persons can 

receive either 0, 1 or 2 litre meaning thereby that the number of ways reduces 

to three. The number of ways will be five if the unit (quantum) of distribution is 

half-a-litre. From this example, you can convince yourself how discretisation 

introduces a drastic change. Planck achieved similar result in the case of 

blackbody radiation by introducing the concept of energy quanta in energy 

exchange. 

Planck argued that blackbody radiation chamber be considered to be filled up 

not only with radiation but also with a perfect gas, whose molecules 

exchanged energy via resonators of molecular dimensions. (Matter-radiation 

interaction was necessary to introduce the notion of temperature.)  The 

resonators were assumed to absorb energy from the radiation and transfer the 

same wholly or partially to gas molecules when they collided with them. This 

helped to establish thermodynamic equilibrium. (You may think that the 

 

Calculate the number of modes of oscillations in a chamber of volume        
3100cm in the frequency range  144.02 10 Hz  to  144.03 10 Hz.  

SOLUTION ◼  It is given that −= =  = 3 4 3 14100 cm 10 m , 4.02 10 Hz,V  

 =  140.01 10 Hzd  and −=  8 13 10 ms .c  On substituting these values in 

the expression given in Eq. (11.6c), we get 

−

 −

     
 =



14 2 4 3 14

8 1 3

8 3.14 (4.02 10 Hz) (10 m ) (0.01 10 Hz)

(3 10 ms )
N d =  131.5 10  

            

XAMPLE 11.1:  Calculation of Number of Modes 
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process is somewhat roundabout but this was the only one possible and 

consistent with accepted ideas at that time.) 

Let us now suppose that the total number of Planck resonators is N and their 

total energy is E. The average energy of Planck resonators is given by 

]1)/[exp( −



Tkh

h

B  

rather than TkB .  

Before proceeding further, go through the following example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You should now answer an SAQ. 

 

 

  

While answering SAQ 1 you have noted that in the limit  → 0, the mean 

energy of a Planck’s oscillator is .Bk T  The implication of this result is that 

 

An oscillator vibrates with frequency  141.51 10 Hz  at T = 1800 K. 

Compare the values of its average energy by treating it as (a) a classical 

oscillator and (b) Planck’s oscillator. Take ,Js1062.6 134 −−=h and 

.JK1038.1 123
B

−−=k  

SOLUTION ◼  (a) The average energy of a classical oscillator is given by 

  K) 1800()JK1038.1( 123
B == −−Tk  

      J1048.2 20−=  

(b) The average energy of Planck’s oscillator is given by 

   
1

)/(

1 BB /

BB

/
−

=
−

=
TkhvTkhv

e

TkhvTk

e

hv
 

We note that 
− −

− −

  
=

 

34 14 1

23 1
B

(6.62 10 Js) (1.51 10 s )

(1.38 10 JK ) (1800 K)

hv

k T
 

              
−

−


= =



20

20

9.99 10 J
4.03

2.48 10 J
 

Hence,  
− 

 =
−

20

4.03

(2.48 10 J) (4.03)

1e
 

−
=

209.99 10 J

53.6

−=  201.81 10 J  

Note that the average energy of Planck’s oscillator is less than that of a 

classical oscillator. 

 

XAMPLE 11.2:  MEAN ENERGY 

 

 

 

SAQ 1  –  Mean energy 

Obtain expression for mean energy of a Planck’s oscillator in the limit  → 0. 
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  

u  

when h is small compared to ,Bk T  the discrete nature of energy does not 

show up.  

In terms of wavelength, we can express Planck’s formula using the relation 

= /c  in Eq. (11.5). Note that  = − 
2

c
d d   and we use the fact that 

 u d  corresponds to  u d . Hence, Planck’s law in terms of wavelength can 

be expressed as 

  

   
 = −   

  −   

3

3 2

8 1

exp( / ) 1B

h c c
u d d

hc k Tc
    

           =
 

 
 −  

5

8 1

exp( / ) 1B

hc
d

hc k T
 

(11.7) 

Now refer to Fig. 11.2. It shows a plot of Planck’s law based on Eq. (11.7).  

Since Planck’s law explained the observed results of blackbody radiation for 

all wavelengths available then, the validity of the concept of discreteness of 

energy was established. In fact, this revolutionary idea, led to the birth of a 

new branch of physics known as quantum mechanics. 

 

 

 

 

 

 

 

 

11.2: Plot of Planck’s law based on Eq. (11.7).  

11.5 DEDUCTIONS FROM PLANCK’S LAW  

We now show that Planck’s law provides us with the most general description 

of blackbody radiation. That is, you are justified to think that all other laws of 

blackbody radiation are its special cases. We first show that Rayleigh-Jeans 

law and Wien’s law are its limiting cases in the region of longer and shorter 

wavelengths, respectively. 

11.5.1 Rayleigh-Jeans Law 

To begin with, we obtain the expression for Rayleigh-Jeans law. For 

  B/ ,hc k T the exponential term in Eq. (11.7) can be approximated as 
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  )/exp( Tkhc B ...1 +


+
Tk

hc

B

 

so that  )/exp( Tkhc B
Tk

hc

B
=− 1  

Hence, for Tkhc B/ , Eq. (11.7) reduces to  

  


   
 =   =  

  

B
5 4

88 Bk T k Thc
u d d d

hc
  

(11.8) 

This is Rayleigh-Jeans law. 

11.5.2  Wien’s Law 

For   B/ ,hc k T  the exponential term in Eq. (11.7) will be significantly 

greater than unity. Therefore, we can ignore 1 in comparison to the 

exponential in Eq. (11.7). Then Eq. (11.7) reduces to 

  


 
 = −   

 
5

8
exp( / )  B

hc
u d hc k T d  (11.9) 

This is Wien’s law. 

11.5.3  Stefan’s Law 

By integrating Eq. (11.7) for photons of all wavelengths, we obtain the 

expression for total energy density: 

  

 




=  =  
  −5

0 0

( ) 8
[exp( / ) 1]B

d
u T u d hc

hc k T
 (11.10) 

To evaluate this integral, we introduce a change of variable and define 

Tk

hc
x

B
=  so that 

Txk

hc

B

=  and  = −
2

B

hc
d dx

x k T
. Note that the limits of 

integration will change as −  to 0 . Using these results in Eq. (11.10), we get 

  


−

−























−

=

0

5

2

]1)[exp(

8)(

x
Txk

hc

dx

Tkx

hc

hcTu

B

B
 

If we now change the limits of integration as 0 to  , the negative sign will be 

automatically absorbed. Hence, we can write                                     

  



−


=

0

3

33

44

1)exp(

8
)(

x

dxx

hc

Tk
Tu B  

The procedure to solve the integral in this expression is quite involved.  
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You should just remember that it has the value   = 4(4) (4) / 15.  (Here 

 =(4) 6  is gamma function of order 4 and  = 4(4) / 90  is zeta function of 

order 4.) So, we can write the expression for total energy density at 

temperature T as 

   

4

33

4
B

5

15

8
)( T

ch

k
Tu


=  

 or        = 4( )u T aT   (11.11) 

where .K Jm 1056.7
15

8
4316

33

4
B

5
−−−=


=

ch

k
a  

The interior of the Sun can be assumed to consist of photon gas at constant 

temperature 
6

103  K. It means that the energy density radiated by the Sun  

is given by  

  
464316 K)103()K Jm1056.7( = −−−u  

     
310

Jm101.6
−

=  

The volume of the Sun is known to be nearly equal to  27 31.4 10  m . It     

means that the total energy of photons inside the Sun is 

   J 106.8
37

== uVE  

If photons are assumed to effuse through a small cavity-like opening in the 

surface of the Sun, the net rate of flow of radiation per unit area of the opening 

will be given by 

   

4

23

4
B

5

15

2

4

1
T

ch

k
cuR


==  

We can rewrite it as 

   
4

TR =     (11.12) 

where − − − −
 = = 

5 4
8 2 4 1B

3 2

2
5.672 10  Jm  K s

15

k

h c
 is Stefan’s constant. 

There is another law of radiation: Wien’s displacement law:
 

mK 10897.2 6
max

−= T . We can use it to calculate the temperature of the 

surface of celestial bodies.  

Though obtaining this expression from Planck’s law involves cumbersome 

mathematics, we have put it as a TQ. You should try to obtain this expression 

rather than looking at the solution at the first attempt itself.
 

Let us now summarise what you have learnt in this unit. 
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11.6 SUMMARY  

Concept  Description 

 Blackbody                         ◼ A blackbody absorbs all radiations incident on it, regardless of their 

frequency. A small hole in a large enclosure or cavity is a practical 

approximation to an ideal black body.   

 

Entropy is an extensive variable and a state function. 

•  

•  

                  

 

 

Spectroscopic 

analysis of blackbody 

radiation 

◼ Spectroscopic analysis of black body radiation shows that 

• for a given wavelength , u increases with temperature; 

• for each temperature, the spectral energy density versus 

wavelength curve shows a maximum, which shifts to shorter 

wavelengths as temperature increases; and  

• the energy density goes to zero as 0→  or as .→  

Planck’s hypothesis ◼ According to Planck:  

• The exchange of energy between matter (walls) and radiation 

(cavity) takes place in bundles of a certain size; and 

• The quantum of exchange is directly proportional to its frequency. 

That is, the energy of an oscillator having frequency  is an integral 

multiple of h , where h is a constant. It is now referred to as 

Planck’s constant and its value is Js1067.6 34− .  

 
Planck’s law 

 

 

 

 

 

 

Wien’s law 

 

Rayleigh-Jeans law 

◼ According to Planck’s law, the energy density of blackbody radiation is 

given by  

     

  
 =  

 − 

2

3

8

exp( / ) 1B

h
u d d

h k Tc
 

  In terms of wavelength, we can express it as 

   

 
 =  

 −  
5

8 1

exp( / ) 1B

hc
u d d

hc k T
  

◼ For ,/ Tkhc B  Planck’s law reduces to Wien’s law: 

              
 

 = −   
 

5

8
exp( / )  B

hc
u d hc k T d  

◼ For   / ,Bhc k T Planck’s law reduces to Rayleigh-Jeans law: 

  


   
 =   =  

  

B
5 4

88 Bk T k Thc
u d d d

hc
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11.7 TERMINAL QUESTIONS 

1. Calculate the number of modes in a chamber of volume 3m1  in the 

frequency range Hz106.0 14  to Hz1061.0
14

 . 

2. Calculate the average energy of a Planck oscillator of frequency 

Hz106.0
14

  at 2000 K. How does it compare with the energy of a 

classical oscillator? 

3. Calculate the number of modes of vibration in a 100 cm3 chamber in the 

wavelength region (a) 500.0 nm − 500.2 nm and (b) frequency range 

Hz105.1 14  to Hz.1051.1 14  

4. Calculate the number of photons in 1 cm3 cavity containing black-body 

radiation at 1000 K. 

5. Using (Eq. 11.7), obtain Wien’s displacement law. 

11.8 SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. In the limit ,0→  the Planck factor reduces to TkB : 

=











−+


−


→

−



1...1
]1)/[exp(

Tk

h

h

Tkh

h

B

B

  TkB . 

Terminal Questions 

1. Using Eq. (11.6a), we can write   

   Stefan’s law ◼ Stefan’s law gives total energy density of all photons in blackbody 

spectrum.

 

It states that total rate of emission of radiant energy per unit 

area is related to energy density as fourth power of temperature: 

    
4

TE =   

 where   is known as Stefan’s constant. Its value is 

.sKJm10672.5 1428 −−−−  

Stefan-Boltzmann law states that when a blackbody at absolute 

temperature T is surrounded by another blackbody at absolute 

temperature T0, the amount of net heat lost by the blackbody at higher 

temperature per unit time can be expressed as 

  )( 4
0

4 TTE −=  .                  
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


= d
c

V
dN 2

3

8
 

Hz106.0;m1 143 ==V .ms103Hz101.0 1814 −== cd  

 )101.0()106.0(
)103(

114.38 14214
38





=dN  

           
24

1428

1027

1001.01036.012.25




=   

          


=


42

24

0.090432 10

27 10
 

           


=
1590.432 10

27
  

           151035.3 =  

2. We recall that average energy of photons is  

 


=
 

− 
 B

exp 1

h

h

k T

 

    
−

−

−

  
=

   
− 

   

34 14

34 14

23

6.6 10 0.6 10

6.6 10 0.6 10
exp 1

1.3 10 2000

 

     
1

1096.3

1
106.2

1096.3
exp

1096.3
523.1

20

20

20

20

−


=

−













=

−

−

−

−

e
 

 J1010.1
59.3

1096.3

159.4

1096.3 20
2020

−
−−




=
−


=  

The energy of a classical oscillator is 

   20001038.1 23
B == −Tk  

   J1076.2 20−=  

  The energy of a Planck’s oscillator is nearly half of classical oscillator. 

3. a) The number of modes per unit volume in the wavelength region  to     

   + d is given by  

     



= d

V
N

4

8
)(  
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Therefore, the number of modes within wavelength range  to  + d  

in a chamber of volume V is 

   cm)102(

cm)105(

)cm 100(14.38
)(

8

45

3
−

−





=N  

                 
20

6

10625

1024.50
−

−




=  

           =  128.014 10  

b) The number of modes in the frequency range  to  + d in chamber of 

volume V is given by   

   


= d
c

VN
3

28
)(  

 Here  = 1.5  1014 Hz, d = 0.01  1014 Hz, c = 3  1010cm s−1 and     

V = 100 cm3. Hence on substituting the values, we get 

  )s1001.0(
)cms103(

)s105.1()cm 100(14.38
)( 114

3110

21143
−

−

−





=N  

      
3330

3342

scm1027

scm1052.56
−

−




=    

      =  122.09 10  

4. According to Planck, the energy density of the radiation in the frequency 

range  and  + d is given by 

   
−


= d

Tkhc

h
du

)1/(exp

8

B

3

3
 

 Since hdu =  dn , the number density of photons in the frequency 

range  and  + d is 

   
  

=
 

− 
 

2

3

B

8

exp 1

d
dn

hc

k T

 

To obtain the expression of the total number density of photons, we 

integrate this expression to get 

   
−









 


=

1exp

8

B

2

3

Tk

h

d

c
n  (i) 

 We now put .
B

x
Tk

h
=


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Then Eq. (i) can be rewritten as 

   



=

−








=

0
33

323
B

3

)()3(16

1

8

hc

Tk

e

dxx

h

Tk

c
n B

x
 

 The Riemann Zeta function 202.1)3( = .  

 On substituting the given values 

  18 ms 103 −=c , Js 106.6 34−=h , 123 JK 1038.1 −−=Bk  and  

  K 1000=T , we get 

   
−

−

−

   
= = 

 

23 3 3 3
16 3

8 3 34 3

16 1.202 (1.38 10 ) (10 )
2.0456 10 m

(3 10 ) (6.6 10 )
n  

5. The wavelength at which maximum occurs can be obtained from                

Eq. (11.7) using the condition 

     0

max

=












=

u
  

 This leads to   

  














−






=



 −


1)/exp(
8

5

Tkhc
hc

u

B  

           

( )

( )























−

















−−−−

=

−−

2

2

56

1)/exp(

)/exp(1)/exp(5

8
Tkhc

Tkhc
Tk

hc
Tkhc

hc

B

B

B

B

 

          
( ) ( )









−




+


−

−


=

1)/exp(

)/exp(5

1)/exp(

18
25 Tkhc

Tkhc

Tk

hc

Tkhc

hc

B

B

BB

 

          = u
( )









−




+


−

1)/exp(

)/exp(5
2 Tkhc

Tkhc

Tk

hc

B

B

B

 

Suppose the value of u is maximum for max= .  

Therefore, we equate the right-hand side of the above expression equal to 

zero and put max= . This gives 

  
( )

0
1)/exp(

)/exp(5

max

max
2
maxmax

=








−




+


−

Tkhc

Tkhc

Tk

hc

B

B

B  
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or  
 

5
1)/exp(

)/exp(

max

max

max

=
−



 Tkhc

Tkhc

Tk

hc

B

B

B  

(i) 

We now introduce a new variable by defining Tkhcx Bmax/ = . Then we can 

rewrite Eq. (i) in an elegant form: 

  5
1)exp(

)exp(
=

−x

x
x

      

or  )e1(5 xx −−=    (ii) 

This is a transcendental equation and can be solved either graphically or 

numerically. The exact value of x is 4.965.  

Hence, we can write 

  965.4
max

=


=
Tk

hc
x

B

  

or  
965.4

max


==
Bk

hc
bT  (iii) 

This is Wien’s displacement law. On substituting for ch,  and Bk , we get 

  
mK 10897.2 6

max
−= T

 



   

93  

 Unit 11                                                       Theory of Radiation 

APPENDIX 11A: NUMBER OF ALLOWED MODES OF 
STANDING WAVES IN AN ENCLOSURE  

Rayleigh considered blackbody radiation in an enclosure, a hollow cubical box 

of side L, say, to consist of a number of electromagnetic waves which 

travelled in all possible directions. As a result, these made multiple reflections 

at the walls of the enclosure. Their subsequent superposition led to formation 

of standing waves and the walls of the enclosure acted as nodes. 

The standing waves in such a system are described by the wave equation 

 
 

  =


2
2

2

1 ( , , , )
( , , , )

x y z t
x y z t

v t
 (11A.1) 

where v is velocity of the standing waves. 

Since the walls of the enclosure act as nodal points, we can say that the 

amplitude  of the waves will be zero at x, y, z = 0 and x, y, z = L. Then we  

take the solution of Eq. (11A.1) to be of the form 

 
       

 = −       
     

( , , , ) exp( )sin sin sin
m x n y z

x y z t C i t
L L L

 (11A.2) 

where ),,( nm  are integers and  is the angular frequency of the wave. Note 

that each combination of ),,( nm  defines a mode of oscillation of the waves in 

the enclosure. 

On combining Eqs. (11A.1) and (11A.2) and simplifying the resultant 

expression, we get 

 
2

2
222

2

2

)(
v

nm
L


=++


  

or 
22

2

2

2

2
222 22

. 









=







 
=




=++

L

v

L

v

L
nm   (11A.3) 

where = /v  defines the wavelength of the standing waves of frequency . 

It may be remarked here that Eq. (11A.3) gives the number of allowed modes 

of vibration inside the enclosure for different, positive and integral values of 

nm,  and .  The total number of modes of vibration will be specified by the 

total number of possible sets ).,,( nm  

If we now put ,
2

p
L

=


 Eq. (11A.3) can be rewritten as 

 2222 pnm =++   (11A.4) 

Geometrically, this result suggests that p is the radius of a sphere in ),,( nm  

space and the number of allowed modes can be obtained by plotting ,,nm  

and counting the number of points corresponding to positive integral values. 

These will lie in the positive octant of a sphere of radius p, as shown in                    

Fig. 11A.1. (In other octants, at least one value, either nm,  or   will be 
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negative.) Note that in Fig. 11A.1, the allowed set of values of nm,  and   

form a mesh of small cubes.  

 

Fig. 11A.1: Calculation of the number of allowed modes of standing waves in an 

enclosure filled with blackbody radiation. 

For sufficiently large values of p, each point will correspond in one unit cube in 

this octant. Therefore, the total number of allowed modes of vibration will be 

equal to the volume of the octant and we can write 

 
3

33
3

3

42

38

41

3

4

8

1




=















=







 
=

LL
pN  

Hence, the number of modes of wavelengths between  and  + d is 

obtained by differentiating this expression for total number of modes. Thus, 

 



=−


= −

 d
V

d
V

dN
4

4 4
)3(

3

4
 (11A.5) 

Here V = L3 is volume of the enclosure. 

You may recall that we are dealing with electromagnetic waves, which are 

transverse in nature and for a given value of wave vector, there will be two 

independent polarisation states. We, therefore, have to multiply Eq. (11A.5) by 

two. That is, the correct number of allowed modes will be twice as many: 

 



= d

V
dN

4

8
 (11A.6) 

You can easily convince yourself that for blackbody radiation, the number of 
modes in the frequency range   and  + d  can be expressed as  

            


 =  2
3

8 V
N d d

c
 (11A.7) 

 

 

The fact that the 

number of allowed 

modes was to be 

multiplied by two was 

pointed out by Jeans.  


