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BLOCK 4 : STATISTICAL MECHANICS 

So far you have learnt how to describe the properties of matter on the basis of 

thermodynamics and kinetic theory of gases. You must have realized that thermodynamics is 

essentially an empirical science based on everyday experiences. You will agree that these 

laws give us no information about the processes at work at the microscopic level. But the 

kinetic theory of gases, discussed in Block 1, was the first attempt to understand the 

properties of macroscopic systems from the microscopic point of view. Did you note that 

some very elegant laws stemmed out of the molecular chaos? 

Statistical mechanics is a more profound and realistic approach for understanding the 

observed behaviour of matter (or radiation). The laws of mechanics are coupled with 

statistical methods. So, to enable you to master the techniques of statistical mechanics, we 

have discussed key probabilistic concepts in Unit 12. The concept of phase space, entropy 

and its statistical interpretation have also been introduced here.  

In Unit 13, we use the definition of the equilibrium state of an isolated system as the most 

probable state and derive the expression for the thermodynamic probability. From it, we 

derive the expression for the Maxwell-Boltzmann distribution function. We introduce the 

concept of the partition function and study how all thermodynamic functions may be derived 

from it. 

Classical statistics fails to explain the behaviour of an assembly of photons or liquid helium or 

conduction electrons in metals, particularly at low temperatures. Specifically, the existence of 

zero point energy and Bose-Einstein condensation – two remarkable phenomena – remain 

completely unexplained in the tenets of classical physics. These are quantum effects and the 

likes of Bose, Einstein, Fermi, Dirac, Fowler and Planck have immensely contributed to 

explain these. In Unit 14, you will study the methods of quantum statistics and their 

applications. 

We hope that you will enjoy studying this block. 

We wish you success. 
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 UNIT12 
BASIC CONCEPTS OF 

 STATISTICAL MECHANICS 
Structure 
 

12.1 Introduction 

Expected Learning Outcomes 

12.2 Elementary Probability Theory 

Basic Terminology 

Permutations and Combinations 

Distribution of Random Variables  
 

  

 

 

STUDY GUIDE           

 

 

12.3 Description of a System in Equilibrium               

Basic Concepts               

12.4 Entropy and Probability 

Statistical Interpretation of Entropy 

12.5 Summary 

12.6 Terminal Questions 

12.7 Solutions and Answers 

 

In this unit, you will learn how to use methods of statistics to understand the probable behaviour of a 

physical system. For this, a clear understanding of the basic concepts of probability is extremely 

important. You may be familiar with some of these concepts from your school mathematics 

curriculum. We strongly advise you to refresh your knowledge of probability and statistics before you 

start studying this block.  However, for the sake of completeness, we have also included some 

important concepts here.  

You will also be using differential calculus and at times you may find some mathematical steps 

somewhat involved. But do not worry; we give you enough time to grasp the ideas. Moreover, several 

examples and SAQs given in the text should help you maintain an easy pace. We hope you will enjoy 

studying this unit, which is a prelude to core statistical mechanics. 

 

“Statistical physics and thermodynamics together form a unit. 

All the concepts and quantities of thermodynamics follow most 

naturally, simply and rigorously from the concepts of statistical 

physics.”  

 

Lev Landau 
 

 

 

Which of these systems do you 

think would have greater 

entropy? This unit will help you 

answer this question.  

Liquid Water Ice 
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12.1   INTRODUCTION 

In the preceding two blocks, you have learnt how to describe the properties of 

matter on the basis of thermodynamics. You must have realised that the laws 

of thermodynamics provide us with extremely powerful methods to develop 

meaningful relations between macroscopic variables, such as pressure, 

volume, internal energy, entropy and temperature of a system. In this block   

on Statistical Mechanics, we will deal with directly observable macroscopic 

properties without any reference to microscopic structure of the constituents   

of the system. 

Statistical mechanics uses the concepts of probability theory and therefore, a 

clear understanding of the basic concepts of probability is extremely important.  

For brevity and completeness, we have introduced elementary concepts of 

probability theory in Sec. 12.2. To describe the behaviour of a system of a 

large number of particles elegantly, we use the concepts of phase space, 

macrostate, microstate and thermodynamic probability. These are discussed 

in Sec. 12.3. In Sec.12.4, you will learn how to establish Boltzmann relation. It 

tells us that the entropy of a system is proportional to logarithm of its 

thermodynamic probability, where the proportionality constant is called the 

Boltzmann constant. This has fundamental significance and provides a 

connection between thermodynamics and statistical mechanics.  

Expected Learning Outcomes 
After studying this unit, you should be able to: 

❖ explain the terms phase space, macrostate and microstate; 

❖ establish Boltzmann entropy relation WkS lnB= ; and 

❖ discuss the statistical interpretation of entropy. 

12.2 ELEMENTARY PROBABILITY THEORY 

The idea of probability is very common in our daily life. Suppose we have to 

organise a cricket match on a particular day, say in July, which falls in the 

rainy season in India. We wonder if it will rain on that day. Similarly, the 

enthusiasts would guess whether their team will win. We can say that there is 

a chance of shower on that day or there is little chance of a better team, say 

A, to lose. What do we mean by chance in these cases?  

If we examine the meteorological data for 93 days of July spread over three 

years, and it has rained on 65 days, then we can say that there is a 65 out of 

93 chance of rain on a July day. Mathematically, the probability of rain on a 

July day is 65/93, which is nearly 0.7. We could get better estimates of 

probability if we could study the data for more days, say 500 or 1000. In fact, 

in statistical mechanics, which deals with systems having very large number  

of particles, we calculate the average of a physical quantity of interest and 

connect it with the experimentally observed value. So, to refresh your 
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knowledge of basic concepts of probability theory, we start by discussing 

basic terminology. 

12.2.1 Basic Terminology 

In the example considered above, ‘rain on a July day (R)’ and ‘no rain on a 

July day (NR)’ are two possible weather conditions and represent two events. 

We denote the probabilities of their occurring as )(RP  and )(NRP . Suppose 

that an event E can occur with N  possible outcomes that are mutually 

exclusive and equally likely. Let n of these outcomes be favourable to the 

event. Then, the probability that event E will occur is NnEP /)( = . It also 

means that the event does not occur at nN −  times and the probability of the 

event not occurring P(E ) is 

  )(1)( EP
N

nN
EP −=

−
=  

Note that 1)()( =+ EPEP . That is, either E or E   would occur and the sum 

of the probabilities of an event occurring and not occurring is unity. The 

probability of an event which is certain is one.  

To illustrate this point further, let us consider that we roll a dice. Obviously, the 

probability of getting 1 is 1/6 and the probability of not getting 1 is 5/6. This 

clearly shows that the sum of the probabilities of getting 1 and not getting 1 is 

unity. 

Now suppose that 1E  and 2E are two events. The probability that 2E occurs, 

given that 1E has occurred already is called conditional probability of 2E for 

given 1E . It is written as 2(EP I ).1E However, if the occurrence (or                  

non-occurrence) of 1E does not influence the occurrence of 2E , then 

2(EP I )() 21 EPE = ; and we say that 1E  and 2E are independent events.             

If 1E  denotes dense fog on a route and 2E denotes a train on that route running 

late, then occurrence of 1E does influence the occurrence of 2E  and these 

events are said to be dependent. 

The probability of two events 1E  and 2E happening together is called 

compound probability. It is denoted as ),( 21 EEP for the compound event 

),( 21 EE . When 1E  and 2E  are unrelated, )()(),( 2121 EPEPEEP = . 

Multiplication rule: If an event can occur in m ways and another independent 

event can occur in n  ways, then the events can occur jointly in nm  ways. 

This is illustrated in the following examples. 

 

 

 

 

 

 

When a coin is tossed, there is equal chance of getting a head (H) or a tail 

(T). If we toss two coins, calculate the probability of getting (a) two heads; 

and  (b) at least one head. 

SOLUTION ◼  Tossing the first coin can have two possible outcomes, a  

 

                 

 

XAMPLE 12.1:  PROBABILITY OF INDEPENDENT EVENTS 
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Two events are said to be mutually exclusive when the occurrence of one 

excludes the other. For instance, ‘rain on a July day’ and ‘no rain on a July 

day’ are mutually exclusive. 

12.2.2 Permutations and Combinations 

A permutation is an arrangement of a number of distinguishable objects 

chosen from a group in a definite order. For example, suppose three persons 

BA, and C  are to be seated on two chairs. The chairs can be occupied in six 

ways as CBBCCAACBAAB ,,,,, . Each of these ways is a permutation.  

The number of permutations of n  objects taken r at a time is .
)!(

! 

rn

n

−
  

It is denoted by the symbol r
nP .  

A combination is an arrangement of distinguishable objects out of a group, 

without regards to the order of selection. Two persons can be selected 

from BA, and C  in only three ways: BCAB, and CA . Each of these is a 

combination.  

The number of combinations of r  objects chosen out of n  is .
!)!(

! 

rrn

n

−
  

We denote this as r
nC . 

head or a tail. Tossing the second coin will also have the same two 

outcomes. Moreover, these two events are independent. So, we can say 

that four possible outcomes – HH, HT, TH and TT – can occur with equal 

probability.  

a) Note that two heads appear only in the first outcome. So, the 

probability of getting two heads is 







=

2

1

2

1

4

1
. 

b) At least one head appears in three outcomes. Therefore, the 

probability of getting at least one head is 













+








+








=

4

1

4

1

4

1

4

3
. 

 

When a fair dice is rolled, there is equal chance of getting any one of its six 

faces. When two fair dice are rolled, calculate the probability that both will 

show six. 

SOLUTION ◼  Since a fair dice has equal chances of having one, two, 

three, four, five or six dots on the top, the probability that the first dice will 

show six is 
6

1
. Similarly, the probability of the second dice showing six is 

6

1
.  Since these two events are unrelated, the compound probability that 

both dice will show six is .
36

1

6

1

6

1
=  

                 

 

 

 

 

 

 

XAMPLE 12.2:  MULTIPLICATION RULE 

 

 

)2)(1(! −−= nnnn

1.2.3)...3( −n  and 

should be read as n 
factorial. 
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These are binomial coefficients and occur in the expansion 

 n
n

nnnnnnnn yCyxCyxCxCyx ++++=+ −− ....)( 22
2

1
10  

                       
=

−=
n

r

rrn
r

n yxC
0

 (12.1) 

where n  and r  are integers. 

We would now like you to go through the following examples. 

  

 

 

 

 

 

 

 

 

 

 

 

12.2.3 Distribution of Random Variables  

When a variable associated with a statistical experiment can assume a 

number of values, each with a distinct probability, it is called a random 

variable. In a statistical experiment of throwing two dice, the sum of the 

numbers of dots shown on top of the dice is a random variable. The number  

of combinations giving rise to sums of 2, 3, 4, …,12, etc. are, respectively, 1, 

2, 3, 4, 5, 6, 5, 4, 3, 2 and 1 giving a total of 36 combinations. These are  

listed in Table 12.1. The probabilities of getting 2, 3, 4 etc. are therefore,         

1/36, 1/18, 1/12, 1/9, 5/36, 1/6, 5/36, 1/9, 1/12, 1/18 and 1/36, respectively.  

In general, if a variable x takes values nxxxx ...,, 321  with probabilities 

1 2 3( ), ( ), ( ),..., ( ),nf x f x f x f x  i.e., if 1),()( === ixfxxP ii  to n, then )(xf  is 

called the probability distribution of x. It satisfies the following properties: 

i)  0 ( ) 1,if x  i.e., )(xf  lies between 0 and 1, and (12.2a) 

ii)  =
n

ixf

1

,1)(  which is the normalisation condition. (12.2b) 

 

In a classroom six vacant chairs with numbers are available and eight 

students want to attend a class. If only one student sits in each chair, in 

how many ways can the chairs be occupied by the students? 

SOLUTION ◼  The required number is  

 20160
! 2

! 8

)!68(

! 8
6

8 ==
−

=P  

                 

 

 

 

 

 

 

XAMPLE 12.3:  PERMUTATIONS 

 

 

Table 12.1: Outcomes of 

throw of two dice 

Sum Combinations 

2 (1,1) 

3 (1.2) (2.1) 

4 (1,3), (3,1),(2,2) 

5 (1,4), (4,1),(2,3) 

(3,2) 

6 (1,5), (5,1),(2,4) 

(4,2) (3,3) 

7 (1,6), (6,1),(2,5) 

(5,2) (3,4) (4,3) 

8 (2,6), (6,2),(3,5) 

(5,3) (4,4) 

9 (3,6), (6,3),(4,5) 

(5,4)  

10 (4,6), (6,4),(5,5)  

11 (5,6) (6,5) 

12 (6,6) 

 

 

In a party, the host asks four guests out of a total of ten to sit at her table. 

In how many ways can she choose the four? 

SOLUTION ◼  The required number is  

 210
1234

78910

 ! 4  ! 6

! 10

! 4  ! )410(

! 10
4

10 =



==

−
=C  

                 

 

 

 

 

 

 

XAMPLE 12.4:  COMBINATIONS 
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The summation sign in condition (ii) above is valid only for discrete 

distributions pertaining to the events having distinct resultant values. For 

example, sum of number of dots shown by two dice will refer to integer values 

only between 2 and 12. 

Now consider the distribution of weights of students in a school class. Here, 

the value of weight can be any number in a certain range, say, a to b, and will 

follow a continuous distribution. In the case of continuous distribution, the 

normalisation condition takes the following form: 

    =

b

a

dxxf 1)(  (12.3) 

when x can have any value between a and b. If there is no fixed range of 

values taken by the variable, the integration is carried out between − and 

+. 

Once we know the distribution function of the variables in a system, we can 

use it to determine values of system parameters like average, standard 

deviation and variance. Let us now quickly review the relations representing 

these parameters. 

Suppose that the variable x takes the set of values nxxxx ,...,, 321 with 

probabilities ),()...(),(),( 321 nxfxfxfxf respectively. Let xi be the value of the 

variable of ith element of this distribution. Then the average value or 

expectation value of that variable is given by 

  
=

==
n

i

ii xfxxx

1

)(  (12.4) 

For a continuous variable, the average is defined as 

  


−

== dxxxfxx )(  (12.5) 

The square of the deviation of the value of the variable from the expectation 

value is expressed as the variance of the system and is defined as   

  ( ) 2222  2)(
2

xxxxxxxxxVar −=+−=−=  (12.6) 

where 
=

=
n

i

ii xfxx

1

22 )( . 

The positive value of the square root of variance is termed as standard 

deviation. This parameter is important because it gives us an estimate of the 

width of distribution.  

It may be mentioned here that though probability theory arose out of simple 

dice games, its applications span a wide variety of situations and disciplines 

like physics, medicine, agriculture, biology, military, industrial engineering and 

other walks of life. For example, it is widely used in insurance sector. Have 

you ever thought how life insurance companies fix the premium to be paid by 



   

109  

 Unit 12                             Basic Concepts of Statistical Mechanics 

the policy holders? They collect data on the average life expectancy of 

different age-groups in a country and use probability theory before fixing the 

premium. Similarly, predictions of poll surveys also use principles of 

probability theory. 

In physics, we can use probability theory to predict the behaviour of a system. 

From the kinetic theory of gases, you know that when a system consists of a 

large number of identical particles, the observed behaviour of an individual 

element can be used to predict the behaviour of the entire system. In 

statistical mechanics, the probable behaviour of individual elements can be 

obtained from the observed properties of the entire system.  

In the following sections, we elaborate upon this vital link between the 

behaviour of the elements of a physical system and the properties of the 

system as a whole. But before proceeding further, you may like to attempt an 

SAQ. 

  

 

 

Let us now summarise the basic terminology used in statistics and discussed 

in this section. 

 

 

 

 

 

 

 

BASIC TERMINOLOGY IN STATISTICS 

 

 • Permutation represents the number of ways in which we can make 

ordered choices of r out of n distinguishable objects: 
)!(

! 

rn

n
Pr

n

−
=  

• Combination represents the number of ways in which we can make 

choices of r out of n distinguishable objects without bothering about 

their order:    
! )!(

! 

rrn

n
Cr

n

−
=  

• Probability distribution of a random variable x satisfies the conditions: 

          0 ( ) 1if x    and    =
n

ixf

1

1)(  

• Expectation values of x for discrete and continuous distributions are 

given by, respectively,  


=

==
n

i

ii xfxxx

1

)(    and   


−

== dxxxfxx )(  

• Variance of x is defined as: ( ) 22 )()(
2

xxxxxVar −=−=  

 

SAQ 1  –  Expectation value 

The velocities of gas molecules enclosed in a container follow the function  
22)( veAvvf −= . Obtain the expectation value of velocity, if v varies from                  

0 to  . 
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12.3 DESCRIPTION OF A SYSTEM IN 
 EQUILIBRIUM 

Consider a gas of N molecules occupying volume V at a temperature T. 

Suppose that we know the positions and velocities of all the particles at a 

given instant of time. Then by solving Newton’s equations of motion for all 

particles individually, it should be possible to determine how the system 

evolves. But N is a very large number (~ 1026 for one kmol). Hence, 

calculations, though possible in principle, will be extremely cumbersome. Even 

the present-day supercomputing machines will take time to solve them.  

Due to such complications we prefer to give thermodynamic description of a 

system at macroscopic level, without referring to its microscopic details. A 

major advance in this direction was made by Gibbs (1839-1903). He coined 

the name statistical mechanics for the branch of physics which deals 

statistically with systems consisting of a large number of particles. Instead of 

looking at each individual molecule, we treat the collection as a whole and try 

to compute average properties. Statistical mechanics is not just restricted to 

molecules but can also be applied to quantum particles like photons. 

We begin by discussing how a system can be described mathematically. 

12.3.1 Basic Concepts   

We know that the position of an object in a plane, such as an ant on a table, 

can be specified completely by giving its Cartesian coordinates (x, y) with 

respect to a set of Cartesian axes. (It is like specifying the latitude and 

longitude of a place on a map.) Similarly, the position of an object in space, 

like a bird flying in a garden, can be described by the (x, y, z) coordinates. 

Let us consider the motion of a particle along a straight line (Fig. 12.1a). The 

mechanical state of the particle at any instant is given by its position x  from a 

fixed point O on the straight line and its velocity =xv
dt

dx
 at that instant. 

 

 

 

 

Fig. 12.1: a) Motion of a particle along a straight line; b) phase space for                    

one- dimensional motion.  

However, it is more desirable to work with momentum )( xx mvp =  instead of 

velocity (see margin remark). And the state of the particle at any instant is 

completely specified classically at a particular instant if its position and 

momentum are known. It may be represented by a point P on a two 

dimensional hypothetical space, whose coordinate axes are x  and xp              

(Fig. 12.1b). The space so defined is called the phase space of the system,   

P is called the phase point and such a representation is called a phase space 

O x 

x 

px 

P(x,px) 

O 

In your higher classes 

you will study in 

Classical Mechanics 

that the position and 

momentum of an 

object form a pair of 

canonically conjugate 

variables. 
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diagram. With the passage of time, the point P  traces out a certain trajectory 

in the phase space. In the phase space diagram, the state of the particle is 

referred to as the phase, and the trajectory as the phase path. 

When a particle moves in space, we need three position coordinates ),,( zyx  

and three components of momentum ),,( zyx ppp . In other words, we require 

six numerical quantities ),,,,,( zyx pppzyx  to specify the state of a particle in 

space at a particular instant and we have to define a 6-D phase space.              

(Fig. 12.2 only gives a symbolic representation of such a space.) It is referred 

to as the μ-space. The state of translational motion of a molecule at any 

instant is completely specified by a representative point in this hypothetical 

space.  

If we divide the phase space into small six-dimensional cells of sides 

zyx pppzyx  ,,,,, , the volume of each of these cells is 

  =H zyx pppzyx   (12.7) 

These considerations can be easily extended to a N particles such as 

molecules of a gas moving in space. To specify the state of these molecules 

in 6-D space, we need N6 coordinates; N3  for positions and N3 for momenta:  

),,...,,,,,( 222111 NNN zyxzyxzyx  and ),,...,,,,,( 222111 NzNyNxzyxzyx ppppppppp  

However, for ease in writing, it is customary to use generalised coordinates,  

(q1, q2, …, q3N ) and (p1, p2, …, p3N ) to denote positions and momenta, 

respectively. Then the state of the system is given by a point                                 

(q1, q2, …, q3N, p1, p2, …, p3N) in 6N-dimensional phase space. Note that 

position and momentum change with time. So, all these points may undergo 

extremely complicated motions in this space.  

Note that the notion of phase space provides geometrical framework to 

statistical mechanics and helps to minimise abstraction. You will agree that it 

is not possible to draw such a space and for this reason, phase space should 

be considered a purely mathematical concept. 

 

 

 

 

 

 

Suppose that this N-particle system is confined to a volume V and the total 

internal energy of the system is U. By describing the system in terms of the 

macroscopic quantities N, V, U we are giving what is known as a                   

coarse-grained description of the system. In other words, the triplet (N, V, U) 

defines a macrostate of the system. But in statistical mechanics, we intend to 

derive the macroscopic properties from the knowledge of the constituents of 

the system. To achieve this end, we proceed as follows: 

We divide the phase space into small elements or ‘cells’ of volume (refer to 

Fig. 12.3): 

Fig. 12.2: Symbolic   

representation of        

μ-space. 

px 

py 

pz 

z 

x 

y 

-space 

When we consider the 

phase space for entire 

system (comprising N 

particles) this 6N- 

dimensional space is 

referred to as gamma 

() space. 

 

SAQ 2  –  Phase space 

Suppose that N molecules of hydrogen are free to move in free space. 

These molecules have two rotational degrees of freedom also. What will be 

the dimensions of the phase space?  
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 ==
N

i

iiNN pqpppqqq
3

321321 ...            (12.8) 

where the symbol 
N

i

3

signifies product of all terms from 1=i  to Ni 3= . 

For the simple case of a single particle moving in a straight line, we can write 

.pq= This is shown in Fig. 12.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.3: Two-dimensional phase space divided into cells of ‘volume’ Δq Δp. • is 

the phase point representing a particle 

Imagine the cells to be numbered 1, 2, … and let n1, n2, … denote the 

populations of the various cells. In other words, there are n1 phase points 

occupying cell 1, n2 occupying cell 2, and so on. Any phase point will lie in one 

of the cells. If we specify the number of phase points in each cell, we define a 

macrostate of the system. But specification of exactly which particles are in 

which particular cell, defines a microstate. Obviously, many different 

microstates can correspond to the same macrostate. We illustrate this by a 

simple example. 

 

 

 

 

 

 

 

 

 

p 

 

q 

 

Δq 

 

Δp 

 
 

 

Suppose there are three cells in phase space labelled 1, 2, 3, and two 

particles, A and B. Enumerate the different macrostates and the 

microstates corresponding to each of them. 

SOLUTION ◼  There are six possible macrostates:  

cells (i) (ii) (iii) (iv) (v) (vi) 

1 AB 0 0 0 A A 

2 0 AB 0 A 0 B 

3 0 0 AB B B 0 

 

                 

 

XAMPLE 12.5:  MACROSTATES AND MICROSTATES 
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You may now like to answer an SAQ. 

 

 

 

Before proceeding further, let us revise what you have learnt in this section. 

 

 

 

 

 

 

 

 

In statistical mechanics, we always seek the number of microstates 

corresponding to a given macrostate (N, V, U). It is called thermodynamic 

probability or statistical weight of the macrostate and is denoted by            

W (N, V, U). You will agree that W can assume a very large value; the 

minimum value being one. The question now arises: Is it related to any 

thermodynamic variable? In fact, yes, and the variable is entropy. You will 

observe that the relation between the entropy S and the thermodynamic 

probability W provides a bridge between microscopic and macroscopic view 

points and forms the basis of entire statistical mechanics. You will now learn 

how to establish this relation. 

For macrostate (i), there is only one possible microstate, viz  

  

 A B • 

 

• 

 1 2 3 
 

Similar remarks apply to macrostate (ii) and (iii).  

Corresponding to macrostate (iv), two microstates are possible: 

 
 

• A B • 

 

B A 

1 2 3 1 2 3 
 

Similarly, two microstates correspond to each of macrostate (v) and (vi). 

Hence, in all we have 9 microstates when particles are distinguishable. 

You can check yourself that if the particles were indistinguishable, there 

would be only 6 microstates. 

 

 

                 

 

 

 

 

 

 

SAQ 3  –  Macrostates and microstates 

Suppose two indistinguishable particles are to be placed in four cells. 

Enumerate the possible macrostates and the corresponding microstates. 
 

MACROSTATES AND MICROSTATES 

 

 • Phase space is a hypothetical space depicting the position and 

momentum of a particle. For an N particle system, the phase space has 

6N dimensions. It provides a geometrical framework to statistical 

mechanics. 

• Macrostate can be described by specifying the quantities determined 

by macroscopic measurements. 

• Microstate of a system describes the minute details about the particles 

occupying the cells in phase space. 
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12.4 ENTROPY AND PROBABILITY 

In Unit 9, you have learnt that entropy characterises disorder in a system. 

Since equilibrium is the most disordered state (because we lose all 

information about the initial conditions, except the conserved variables), the 

entropy of a system in equilibrium is maximum. From the discussion so far,  

we can also say that equilibrium is the most probable state. That is, at 

equilibrium both entropy and thermodynamic probability tend to be maximum 

and there seems to exist some connection between them. Mathematically, we 

express it as 

  )(WfS =  (12.9) 

The nature of the function f is unknown at this stage but we shall soon 

establish it. Let us now consider two completely independent systems having 

entropies 1S  and 2S . We know that entropy is an extensive (additive) 

quantity. This means that the entropy of the combined system will be the sum 

of the entropies of individual systems: 

  21 SSS +=  (12.10) 

On the other hand, if 1W  and 2W  are probabilities of the individual systems, 

the probability of the combined system is equal to the product of probabilities 

of individual systems, since these are independent. Then we can write 

  21 WWW =  (12.11) 

Physically, we can say that for every microstate of one system, the other 

system can exist in any one of its possible microstates.  

We now determine the form of the function f using the information provided by 

Eqs. (12.10) and (12.11). We expect the function f to be such that S  

increases with W and translates a product into a sum. Mathematically, we can 

write 

  )()()( 212121 WWfWfWfSS =+=+  (12.12) 

Proceeding further, we take partial derivatives of both sides of Eq. (12.12)     

with respect to 1W  keeping 2W  fixed: 

  +












21

1)(

WW

Wf

21

2)(

WW

Wf












=

21

21 )(

WW

WWf












  (12.13) 

Since )( 1Wf is a function of only 1,W its partial derivative with respect to 1W  

will be equal to its total derivative. Therefore, the first term on the left-hand 

side of Eq. (12.13) can be expressed as 

  
 

= 
 

2

1 1

1 1

( ) ( )

W

f W df W

W dW
 (12.14) 

The partial derivative of )( 2Wf with respect to 1W  is zero, since it does not 

depend on 1W . Therefore, the second term on the left-hand side of Eq.(12.14) 

drops out.  

The partial derivative of )( 21WWf with respect to ,1W  is equal to the total 

derivative of )( 21WWf  with respect to its argument, multiplied by the partial 
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derivative of its argument with respect to 1W , which is simply the constant 2.W  

Thus, we can write  

 
  

= = = 
  

2

1 2 1 2 1 2 1 2
2 2 1 2

1 1 2 1 1 2

( , ) ( , ) ( ) ( )
( )

( ) ( )
W

f W W df W W W W df W W
W W f W W

W d W W W d W W
 

  (12.15) 

where we have denoted the derivative of )( 21WWf with respect to its 

argument 21WW  by )( 21WWf  .On combining Eqs. (12.14) and (12.15) with  

Eq. (12.13), we get 

  =1
2 1 2

1

( )
( )

df W
W f W W

dW
 (12.16) 

Similarly, we differentiate Eq. (12.12) with respect to 2W , keeping 1W  fixed. 

Following the same line of reasoning, we can show that 

  =2
1 1 2

2

( )
( )

df W
W f W W

dW
 (12.17) 

We now multiply Eq. (12.16) by ,1W and Eq. (12.17) by 2W . This gives 

  = =1 2
1 2 1 2 1 2

1 2

( ) ( )
( )

df W df W
W W W W f W W

dW dW
  

Note that in this expression, the first term is a function of only 1W  and the 

second term is a function of only 2.W Hence, we can write 

  = =1 2
1 2

1 2

( ) ( )df W df W
W W

dW dW
constant, say k (12.18) 

We can readily integrate it to obtain 

  111 ln)( CWkWf +=  (12.19a) 

and 222 ln)( CWkWf +=  (12.19b) 

where 1C  and 2C are constants of integration. In general, we can write 

  CWkSWf +== ln)(   (12.20) 

Note that the function f is logarithmic and constant k  is same for all systems. 

This relation was derived by Boltzmann but he did not determine the nature of 

the constants k and .C Subsequently, Planck used the fact that at absolute 

zero, the entropy is zero and 1=W  so that the constant C can be taken to be 

zero. Moreover, he identified W as thermodynamic probability. The constant 

k was identified as Boltzmann constant B,k which has value 123JK1038.1 −− . 

Hence, Eq. (12.20) can now be rewritten as 

 = B lnS k W  (12.21) 

Eq. (12.21) is called Boltzmann relation and is one of the most fundamental 

relations of statistical mechanics. It states that the entropy of a system is 

proportional to the logarithm of its thermodynamic probability. Statistically 

speaking, the universe always tends to change towards a more probable 

 
 

 

 

 

 

 

 

 

Ludwig Eduard 

Boltzmann (1844 –

1906), an Austrian 

physicist, was famous 

for his contributions to 

the field of statistical 

mechanics; the most 

significant being 

applications of 

probability theory to 

understand the 

behaviour of molecular 

systems. He was one 

of the most important 

advocates of atomic 

theory when it was still 

in its nascent stages. 

The relation 

WkS ln=   is 

engraved on his 

resting place in the 

central cemetery in 

Vienna, Austria.   

(Picture source: 

https://commons.wikimedia.o

rg/wiki/File:Boltzmann_1056

6.jpg.) 
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state. It may be mentioned here that Eq. (12.21) opened the way for a more 

direct and elegant application of the techniques of probability theory to study 

widely diverse systems and obtain their thermodynamic properties. You may 

now like to answer an SAQ. 

 

 

 

  

 

Let us summarise the important result of this section. 

 

 

 

 

12.4.1 Statistical Interpretation of Entropy 

Statistically speaking, the entropy of a system consisting of a very large 

number of particles is proportional to the natural logarithm of the total number 

of microstates available to the system. Therefore, if only one microstate is 

available to an assembly, we have ,1=W  and = =ln 0 .W S The state of each 

particle can be uniquely specified and the system is said to be perfectly 

ordered. However, if more than one energy states become available to the 

system, 1W  and  0.S It means that the system has become disordered 

and we cannot specify the state of each particle uniquely. Therefore, 

thermodynamic probability (or entropy) of a system may be construed as a 

measure of disorder in the system.  

The statistical interpretation of entropy helps us to gain greater insight into the 

meaning of absolute zero. In Unit 10, you have learnt Planck’s statement of 

the third law of thermodynamics. It states that the equilibrium entropies of all 

systems tend to zero as temperature approaches absolute zero, i. e., 0→S  

as 0→T . Therefore, we can say that a system in equilibrium is perfectly 

ordered at absolute zero. Let us now summarize what you have learnt in this 

unit. 

12.5 SUMMARY 

Concept Description 

Phase space                          ◼ Phase space is a purely mathematical device, which provides some 

sort of geometrical framework to statistical mechanics and minimises 

abstraction. 

 

SAQ 4  –  Thermodynamic probability and entropy 

Two systems have thermodynamic probabilities of 28105.1   and 

 272.0 10 ,  respectively. Calculate the total thermodynamic probability, 

when these two systems interact with each other. Also calculate the 

entropies of individual systems as well as their composite system and 

verify Boltzmann relation. 

. 
 

 

The relation WkS lnB=  connects thermodynamic probability and 

entropy. Effectively, it correlates statistical mechanics with 
thermodynamics 

 

BOLTZMANN RELATION 
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12.6 TERMINAL QUESTIONS 

1.   Draw the phase space for a linear harmonic oscillator. 

2. Draw the phase space for a particle having energy E and constrained to 

move in one dimension in the range [0, L]. 

12.7 SOLUTIONS AND ANSWERS   

Self-Assessment Questions 

1. It is given that   ( )
22 veAvvf −=  

 Expectation value is 


=

0

)( dvvvfv  (i) 

 Substituting the expression for f(v) in Eq. (i), we get, 

  


−=

0

3 2
dveAvv v  (ii) 

 If we substitute xv =2 and  dxvdv =2  in Eq. (ii), we get   

  


−= =  =
0

(2) 1xv A xe dx  (read the margin remark) 

  Hence,  .Av =  

2. The total number of degrees of freedom for a particle moving in space and 

having two rotational degrees of freedom will be 3+2=5. Therefore, the 

phase space will be 10N dimensional.  

3. The possible macrostates are:                   

 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii (ix) (x) 

n1 2 0 0 0 1 1 0 1 0 0 

n2 0 2 0 0 1 0 0 0 1 1 

n3 0 0 2 0 0 1 1 0 1 0 

n4 0 0 0 2 0 0 1 1 0 1 

For the above listed 10 macrostates, there is only one microstate 

associated with each macrostate. 

4. Thermodynamic probability of first system, 28
1 105.1 =W  

 Thermodynamic probability of second system, 27
2 100.2 =W  

Macrostate ◼ The macrostate of a system is that state which can be described by 

specifying only those quantities which can be determined by 

macroscopic measurement, without any reference whatsoever to the 

microscopic details. 

 Microstate ◼ Microstate of a system describes the minutest details of the cells 

occupied by the constituent particles. 

 Boltzmann relation ◼ Entropy and thermodynamic probability are connected through 

Boltzmann relation WkS lnB= , where Bk is Boltzmann constant. 

The gamma 

function is defined 

as follows: 

=


−−

0

1)( dxexn xn  

        )!1( −= n  
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 The thermodynamic probability of the composite system, 

  552728
21 100.3100.2105 === WWW  

 Now, entropy of the first system,  

  110B1B1 log303.2ln WkWkS ==  

              =    =28
B 10 B2.303 log (1.5 10 ) 64.88k k  

 Similarly, entropy of the second system,  

  210B2B2 log303.2ln WkWkS ==  

              =    =27
B 10 B2.303 log (2.0 10 ) 62.86k k  

Entropy of the composite system,  

  WkWkS 10BB0 log303.2ln ==  

              =    =55
B 10 B2.303 log (3.0 10 ) 127.74k k  

 Also, = + = + =0 1 2 B B B64.88 62.86 127.74S S S k k k  

 So, we discover that Boltzmann’s relation is verified. 

Terminal Questions 

1. We know that the equation of motion of a linear harmonic oscillator is 

    kq
dt

qd
−=

2

2
 

 where k is the spring constant. The solutions of this equation are: 

   ),cos( += tAq  (i) 

 where A is the amplitude, ,
m

k
=  m being the mass and  being the 

phase. The total energy .
2

1 22AmE =  

 Also,  p = m
dt

dq
 = − mA  sin (t + )  (ii) 

 From (i) and (ii), we have  1
222

2

2

2
=


+

Am

p

A

q
  

 or 1
22

2

2

2
=+












mE

p

m

E

q
 (iii) 

 Hence, the phase space is an ellipse with area = 


 =
2

2 2
2

E E
mE

m
          

This is shown in Fig. 12.4.    

2  Let us consider a particle moving in one dimension and confined to the 

interval [0, L]. Its energy is given by 

   
m

p
E

2

2
=        

 where p is the momentum. If E is fixed, p can have values mE2  and 

.2mE−  In practice, a system is never completely isolated. Then the 

energy may lie between E and E + dE and p would lie in a small range 

around  2 ,mE as shown in Fig.12.5. 

Fig. 12.4: Phase space 

of a linear harmonic 

oscillator. 

q 

p 

mE2  

2
/2 mE  

Fig. 12.5: Phase space 

of a particle moving in 

x direction. 

px 

L 
0 

 

mE2−  

mE2  
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Evaluation of Lagrange Multipliers: 

The Partition Function 

Expressing Thermodynamic Variables  

in Terms of Partition Function 
 

  

 

 

STUDY GUIDE           
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Single-Particle Partition Function               

Degeneracy Parameter 

N-particle Partition Function 

13.4 Summary 

13.5 Terminal Questions 

13.6 Solutions and Answers 

Appendix 13A: Method of Lagrange Multipliers 

 

 

In this unit, you will learn how to use methods of statistics to understand the probable behaviour of the 

elements of a physical system. For this, you will also be required to use differential and integral 

calculus. Though some mathematical steps would be somewhat involved, you need not worry; we 

have solved all steps and given enough time to grasp the ideas to help you progress through the unit. 

However, if you work these out yourself, you will appreciate the subject better. Moreover, you will gain 

greater confidence in your analytical capacities and satisfaction in your learning. We, therefore, advise 

you to revise your prior knowledge of integral and differential calculus. Moreover, solved examples and 

SAQs given in the unit should help you learn it better. We believe that you will enjoy this unit more, if 

you answer SAQs and TQs on your own. 

 

“The whole is simpler than the sum of its parts.” 

 

J. W. Gibbs 

The Maxwell-Boltzmann 

distribution function can be used 

to derive the distribution of 

speeds in an ideal gas. Here you 

see the distribution of particle 

speeds for 106 oxygen particles 

at −100, 20 and 600ºC. 
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13.1   INTRODUCTION 

From Unit 9, you may recall that the equilibrium state of a system is a state of 

maximum entropy. Statistically speaking, it is the most probable state of an 

isolated system. Using this correlation, we derive an expression for 

thermodynamic probability, W in Sec. 13.2. Then we maximise W to obtain 

expression for Maxwell-Boltzmann distribution function for an equilibrium 

state. You will discover that the distribution function contains two unknown 

constants. To determine these constants, we perform sum over all states and 

introduce what we call the partition function, Z. 

The partition function is just a mathematical device and it derives its 

importance from the fact that all thermodynamic functions − pressure, internal 

energy, entropy, Helmholtz and Gibbs free energies − of a system obeying           

Maxwell-Boltzmann statistics can be expressed in terms of Z or its partial 

derivatives. You will therefore agree that to apply the methods of statistics to   

a system of interest, it is important to learn to evaluate Z . We illustrate this in 

Sec 13.3 for a monatomic gas of non-interacting particles. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

❖ obtain thermodynamic probability for a system obeying                            

Maxwell-Boltzmann statistics; 

❖ maximise thermodynamic probability to obtain the expression for 

distribution function; 

❖ express the thermodynamic functions of a gas in terms of the partition 

function; 

❖ evaluate single particle partition function and establish                              

Maxwell-Boltzmann distribution law; and 

❖ obtain expressions for thermodynamic functions of a gas. 

13.2 MAXWELL-BOLTZMANN DISTRIBUTION  
  FUNCTION 

Consider an ideal monatomic gas made up of N particles enclosed in volume 

V and having total internal energy U. The state of the system at any time t is 

represented by a point in a 6N-dimensional phase space. This means that 

every particle is associated with six-dimensional phase space, also called the 

-space. ( stands for the first letter of molecule.) The particles are moving 

independent of each other and the contributions of individual particles remain 

separate. 

To give a microscopic description of the system, we divide the -space into 

cells of volume h3. Recall that in classical statistics, we can choose h as small 

as we like. Each particle will be found to occupy a cell in this network.  
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Suppose the cells are numbered 1, 2, … Let the energy of a particle in the ith 

cell be denoted by i  and the number of particles in the ith cell be .in  Then, 

we have 

  N = 
i

in  (13.1a) 

and  U = i

i

in   (13.1b) 

The macrostate defined by (N, V, U) can be realised in a number of different 

ways. In order to proceed with our argument, we advance the hypothesis that 

all microstates are equally probable. In other words, equal phase elements in 

phase space are associated with equal probabilities. It corresponds to the 

assumption that the faces of a dice are equally probable. This hypothesis is 

known as the postulate of equal a priori probabilities. 

The thermodynamic probability W is simply the number of ways of placing N 

distinguishable objects in cells such that there are n1 objects in the first cell,   

n2 in the second, and so on. This number is given by 

  
!

!

...!!

!

1
21 i

i
n

N

nn

N
W

=


==  (13.2) 

where !
1

i
i

n
=
  denotes the product of !in  for all values of .i  

We can easily prove this result by noting that there are 
1n

N C number of ways 

of choosing n1 objects that are to be placed in the first cell. Then we will be left 

with (N – n1) objects. Out of these (N – n1) objects, there are 
2

1 n
nN C−  ways of 

choosing n2 objects to be placed in the second cell. We can continue in this 

fashion till all objects are placed in given cells. Then the total number of ways 

 =W
1n
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Symbolically, we write this as 














..., 21 nn

N
 and call it a multi-nominal 

coefficient. 

We know that equilibrium corresponds to the maximum of the thermodynamic 

probability W. Since ,lnB WkS =  it is more appropriate to work with ln W 

rather than W itself. (Since ln W is monotonically increasing function of W, its 

extreme points will coincide with those of W.) Then, Eq. (13.2) gives 

  −=

i

inNW !ln! lnln  (13.3) 

For most systems of practical interest, N is a very large number. By the same 

reasoning, most of the ni’s will be sufficiently large so that we can simplify   

Eq. 13.3 relation using Stirling’s formula: 

  )1(ln!ln −= xxx  
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For small ,in ln !in  will be small and hence not of any consequence. 

Proceeding further, we insert Stirling’s formula in Eq. (13.3). This gives 

   ( ) −−−=

i

iii nnnNNNW ln)ln(ln  

       −=

i

ii nnNN lnln  

since  =

i

i Nn .  

You would recall that we set our goal to determine the set )( in  which 

maximises ln W. The condition for maximum probability is 

  ln W = 0 

We now calculate a small change in ln W and equate it to zero. This gives 

  ( ) = −  −  = ln (ln ) ln 0i i i i
i i

W n n n n  (13.4) 

This expression has been derived by assuming that N and U are constant. So, 

we can write 

  0== 
i

inN  (13.5a) 

and  0== 
i

ii nU  (13.5b) 

Eq. (13.5a) implies that the first term on the R.H.S. of Eq. (13.4) is zero: 

  ( ) ( ) 0/1ln === 
i

i

i

iii

i

ii nnnnnn  

Then Eq. (13.4) reduces to 

  0ln =
i

ii nn  (13.6) 

To accommodate the condition embodied in Eqs. (13.5a and b), we employ 

the method of Lagrange multipliers (study the Appendix 13A to this unit). We 

multiply Eq. (13.5a) by  and Eq. (13.5b) by . The result so obtained is 

added to Eq. (13.6). This leads to the relation 

  ( ) 0ln =++
i

iii nn  (13.7) 

Since the variations in  are arbitrary, this relation will hold only if the 

coefficient of each term vanishes. Hence, we must have 

  0ln =++ iin  

By re-arranging terms in this expression and then taking antilog of both 

sides, we can write  

  
−− − −

−
= = =

1

1
i i i

in e Ae e
A

 (13.8) 

where = − exp( )A  (13.9) 
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A is known as the degeneracy parameter. It determines the extent to which 

the behaviour of a system deviates from that of an ideal gas. You will discover 
in the next section that  1A  corresponds to classical regime. 

Eq. (13.8) constitutes what is called the Maxwell-Boltzmann distribution. 

Note that the distribution given by Eq. (13.8) contains two unknown Lagrange 

multipliers  and . To derive meaningful physics, we must evaluate these in 

terms of known quantities. 

13.2.1 Evaluation of Lagrange Multipliers: The Partition 
Function 

The constant  (or A) is determined using the normalization condition. The 

probability that the cell corresponding to energy i  is occupied is given by     

Eq. (13.8) with A defined by Eq. (13.9). Since ,Nn

i

i =  we can write 

  − −−= = =  i i
i

i i i

n N e e A e  

or  
−

= 1i

i

A
e

N
 

If we now define the sum ( ) −

i

i ,exp  as the single-particle partition 

function and denote it by Z, then we can write 

   −=

i

ieZ  (13.10) 

the Lagrange multiplier  or degeneracy parameter A can be expressed as 

  −  = =exp( )
N

A
Z

 (13.11) 

It may be mentioned here that the nomenclature partition function is due to 

Darwin and Fowler. Planck called  −

i

ie  Zustandssumme (sum over states) 

and denoted it by Z. (We shall follow Planck’s notation here.)  

It is pertinent to mention here that partition function occupies a pivotal position 

in statistical mechanics as all thermodynamic functions can be written in terms 

of it. But before we do so, it is important to realise that partition function is 

characteristic of a discrete spectrum, though energy is taken to be continuous 

in classical physics. However, when energy levels are very closely spaced, 

even the discrete sum becomes a continuum and it is possible to replace 

summation by integration.  

In terms of the partition function, we can rewrite Eq. (13.8) as  

  
− −

−
= =

1

1
i i

i
N

n e e
Z A

 (13.12) 

Note that so far, we have not evaluated constant .  

To this end, we substitute for in from Eq. (13.12) in Eq. (13.3). This gives 
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  −= NNW lnln ( )i

i

i ZNn −− lnln  

          UZNNNNN ++−= lnlnln  

The first two terms on the right-hand side of this expression cancel out and it 

simplifies to 

  UZNW += lnln  (13.13) 

Now using Boltzmann entropy relation, we can write 

  UkZNkWkS BBB lnln +==  (13.14) 

We use this relation to introduce the concept of temperature by relating 

entropy and internal energy of a system: 

  BBB
ln1

k
U

Uk
U

Z
Nk

U

S

T VVV

+



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




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


=












=  

On carrying out the partial differentiation in the first term, we get 

  
VV U

Ukk
U

Z

Z

Nk

T












++












= BB

B1
 

We rewrite the first term on the right-hand side as a product of two terms. 

Then this expression takes the form 

                   
VVV U

Ukk
U

Z

Z

Nk

T












++
























= BB

B1
 (13.15) 

Using Eq. (13.10), we can write 

   −−=












i

ii
V

Z
)exp(  (13.16) 

On substituting for in from Eq. (13.12) in Eq. (13.1b), we get 

   −==

i

ii

i

ii
Z

N
nU )exp(  

so that 
N

UZ

i

ii =− )exp(  

On combining this result with Eq. (13.16), we get 

  
N

UZZ

V

−=











                                                          (13.17) 

On substituting this result in Eq. (13.15), we get 

  
VV U

Ukk
UN

UZ

Z

Nk

T












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
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


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Note that the first and the third terms on the RHS of this expression cancel out 

and we get  

  
TkB

1
=  (13.18) 

Now that we have evaluated both Lagrange multipliers, we can rewrite         

Eq. (13.8) describing Maxwell-Boltzmann distribution as 
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]/)exp[(

1

)exp(

1

BTk
n

ii

i
−

=
+

=   (13.19) 

Where the chemical potential  is defined in terms of the degeneracy 

parameter A  through the relation ( )
 

= −  =  
 B

exp exp .A
k T

Before 

proceeding further, you may like to recapitulate important results obtained in 

this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A plot of in versus Tki B/)( − is shown in Fig. 13.1. As may be noted, the 

distribution function approaches zero at higher energies. This is in conformity 

with the pattern obtained using kinetic theory of gases. 

 

 

 

 

 

 

 

Fig. 13.1: Plot of Maxwell-Boltzmann distribution function as a function of   

 − ( ) / .i Bk T         

MAXWELL-BOLTZMANN DISTRIBUTION 

 

 • In Maxwell-Boltzmann statistics, we distribute distinguishable non-

interacting/weakly interacting particles in various cells. 

• There is no limit on the number of particles that can occupy a particular 

cell. 

• The thermodynamic probability W is simply the number of ways of 

placing N distinguishable objects in cells such that there are n1 objects 

in the first cell, n2 in the second, and so on: 

 
!
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!

1
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i
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nn
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• The Maxwell-Boltzmann distribution law is 

 ]/)exp[(

1

)exp(

1

BTk
n

ii
i

−
=

+
=

  

where the chemical potential    is defined from ( )=  Bexp / .A k T  

in
 

Tk

i

B

)( −
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To illustrate the utility of the partition function in understanding the 

thermodynamic behaviour of a system, we now express thermodynamic 

functions in terms of Z. 

13.2.2 Expressing Thermodynamic Variables in Terms  
of Partition Function 

To express thermodynamic quantities in terms of partition function, we begin 

by considering Eq. (13.14). On substituting the value of  in terms of 

temperature, we can express entropy as  

  
T

U
ZNkS += lnB             (13.21) 

Now, we express internal energy U in terms of Z. For this, we calculate the 

partial derivative of the partition function with respect to temperature at 

constant volume and write 

  
VVV T

Z
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On substituting for 
V

Z












from Eq. (13,17) and noting that 

2
B

1

TkT V

−=











, 

we get 
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Hence, the expression for internal energy of a system in terms of the single 

particle partition function is obtained by inverting this relation: 

  Z
T

TNk
T

Z

Z
TNkU

V

ln
1 2

B
2

B



=












=  (13.22) 

We now express the Helmholtz free energy F in terms of the partition function. 

For this, we invert Eq. (13.21) for entropy: 

  ZTNkTSUF lnB−=−=  (13.23) 

In Unit 10 you have learnt that for an isothermal process, the pressure exerted 

by a gas is related to the Helmholtz free energy (Eq. (10.5)): 

  
TT V

Z

Z

TNk

V

F
p 












=












−= B  (13.24) 

You now know how thermodynamic functions are related to the partition 

function Z. To illustrate the utility of partition function in understanding the 

thermodynamic behaviour of a system, we now evaluate it for a monatomic 

gas and then express thermodynamic functions in terms of it. 

13.3 PARTITION FUNCTION OF A MONATOMIC 
 GAS 

Consider an ideal monatomic gas consisting of N  identical particles, each of 

mass m , occupying a volume V and moving randomly. As such, these 

particles should be treated as indistinguishable.   
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We now obtain the partition function of this system. Since molecules of an 

ideal monatomic gas do not interact among themselves, except at the instant 

of collision, it is reasonable to assume that 

• there is no potential energy due to inter-atomic interactions; and 

• at moderate temperatures, we have to consider only translational motion of 

molecules. 

Let us first consider single particle partition function. 

13.3.1 Single-Particle Partition Function 

The energy of a particle in the ith cell is given by 

  
m

pi
i

2

2

=  (13.25a) 

and the single-particle partition function is given by 

    











 
−==

−

i i

i

m

p
eZ i

2
exp

2

1  (13.25b) 

Note that the subscript 1 with Z signifies that we are considering single particle 

partition function. 

Since the particle has only translational degrees of freedom, classically 

speaking, energy can be treated as a continuous variable. Then we can 

replace summation by integration in Eq. (13.25b) and rewrite it as 

  dp
m

p
Z  







 
−=

2
exp

2

1  (13.26) 

The probability that a molecule has momentum between p and dpp + is equal 

to the number of cells in 6-D phase space within which such a molecule may 

exist. If each cell has volume ,H  the single particle partition function can be 

written as 

 
 

= − + +   
 

2 2 2
1

1
exp ( )

2
x y z x y zZ dxdydz p p p dp dp dp

H m
 (13.27) 

Note that the limits of integration over momentum coordinates vary from             

−   to  .  

Proceeding further, we note that integration over space variables gives V so 

that the expression for single particle partition function simplifies to 

 
  

− − −

 
= − + +    

 

2 2 2
1 exp (

2
x y z x y z

V
Z dp dp dp p p p

H m
 (13.28) 

Note that all the three integrals are identical and it will be sufficient to evaluate 

only one of them.  

Let us, therefore, consider 

  


−

 
= −   
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2
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2
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We rewrite it as 

  


−

    
= − + −       
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2 20

0

exp exp
2 2

x x
x x x

p p
I dp dp

m m
    (13.29) 

If we now put qpx −= in the first integral. Then dqdpx −=  and the limits of 

integration change to ( , 0). We absorb the minus sign in changing the limits 

of integration to (0, ). So, you can easily convince yourself that both the 

integrals in Eq. (13.29) will be identical and we can write 

  
  

= −   
 

2

0

2 exp
2

x
x x

p
I dp

m
                                        (13.30) 

To evaluate this integral, we introduce a change of variable by defining 

m

px

2

2


=  so that = 


x x
m

p dp d  and −=  


1/2

2
x

m
dp d . Hence, the integral 

in Eq. (13.30) takes the form 
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0

2
exp( )x

m
I d                            (13.31) 

This is a standard gamma function integral of order )2/1(  (see Unit 1) and has 

the value   so that 

  


−

  
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        (13.32) 

We will obtain the same values for integrals over ydp and .zdp On using these 

results in Eq. (13.28), we get a compact expression for single-particle partition 

function: 

  2/3
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V
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
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


=  

If we take volume of a cell ,3hH =  the expression for partition function takes 

the form 

  2/3
B

3
1 )2( Tkm

h

V
ZZ ==                 (13.33) 

This equation gives the partition function for a single particle in -space.  

Before proceeding further, you may like to answer an SAQ to test your 

understanding. 

  

 

 

While deriving expression for Maxwell-Boltzmann distribution function, we 

introduced the concept of degeneracy parameter A . Let us now discover its 

physical meaning and significance. 

SAQ 1  –  Thermodynamic functions for single particle 

Using the expression for single-particle partition function, derive 

expressions for entropy and pressure. 
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13.3.2 Degeneracy Parameter 

The degeneracy parameter A  is defined as 

  = −  =exp( )
N

A
Z

                                              

On substituting for Z from Eq. (13.33) for a single particle, we get 

  
( )

=


3

3/2
B2

nh
A

mk T
                             (13.34)  

where ./VNn =  Note that in this expression, T occurs in the denominator and 

n  occurs in the numerator. It means that at high temperatures and/or low 

densities, A  will be small. A system for which deneracy parameter is low is 

said to be non-degenerate. Let us now relate degeneracy parameter to 

physically measurable quantities − deBroglie wavelength dB and                   

inter-particle distance − by noting that =dB
p

h
. Since ,

2
B

2
Tk

m

p
=  the 

deBroglie wavelength can be expressed as 

         dB =
Tmk

h

B2
                   (13.35) 

Also, we can express mean inter-particle distance 0r  as 
31

3/1

0
1

nN

V
r =








= . 

On combining Eqs. (13.34) and (13.35), we get  

  −  
=   

 

3
3 2

0

dBA
r

 (13.36) 

Note that degeneracy parameter is directly proportional to the third power of 

deBroglie wavelength and inversely proportional to  the third power of                   

inter-particle distance. So when deBroglie wavelength is very small compared 

to inter-particle distance 0r  or  3 1dBn , we will get  1.A  The               

Maxwell-Boltzmann statistics is then said to hold good. It means that A 

essentially signifies deviation of a system from an classical behaviour. 

Let us recapitulate the important results obtained in this section. 

 

 

 

 

 

 

 

 
 

SINGLE-PARTICLE PARTITION FUNCTION 

 
• The single-particle partition function confined in volume V is given by 

 2/3
B31 )2( Tkm

h

V
Z =  

• In terms of temperature and number density, the degeneracy 

parameter is given by 
( )

=


3

3/2
B

.
2

nh
A

mk T
 

In terms of de Broglie wavelength and inter-particle distance, we can write 

−  
=   

 

3
3 2

0

dBA
r

. When   0dB r  or  3 1dBn ,  1A  and we are 

working in the classical regime. And results based on Maxwell-Boltzmann 

statistics will hold good. 
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The N-particle partition 
function is given by 
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....21 NjE ++=  

In expanded form, we can 
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Within the framework of 

classical statistics, we 

assume that these 

particles are 

distinguishable and 

independent. So, we can 

rewrite it in a compact 

form as 

  N

N

i
N ZeZ i == 
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13.3.3 N-particle Partition Function 

We know that Eq. (13.33) gives us single particle partition function. For a 

monatomic gas made up of N  distinguishable and non-interacting particles, 

we can write partition function as (see Margin Remark): 
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==                                               (13.37) 

We now use this expression for the partition function for an ideal gas made up 

of N-particles to obtain various thermodynamic functions. You will recall that 

all thermodynamic functions can be expressed in terms of the partition 

function. [Refer to Eqs. (13.21 to 13.24). In these equations, Z refers to       

single-particle partition function. However, when we use Eq. (13.37), we have 

to drop N occurring with single particle expressions.]  

Proceeding with the calculation of thermodynamic functions, we take natural 

log on both sides of Eq. (13.37). This gives 
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If we now define 
 
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T
 We note that the first two terms on the 

right-hand side of Eq. (13.38) are independent of T and will not contribute to 

the expression of internal energy. Hence, for an N -particle gaseous system 

we can write: 
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where n  denotes the number of moles of the gas and R  is universal gas 

constant. 

The energy per molecule is given by 

  Tk
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3
==   

This result agrees with that obtained on the basis of kinetic theory for a 

monatomic gas having three degrees of translational freedom. At K,300  the 

average energy of an ideal gas molecule is 

   eV 0.039J106.21K300)JK1038.1(
2

3 21123 === −−−  

The heat capacity at constant volume is, by definition 
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Using Eq. (13.39), we can write 

  B
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3
NkCV = nR

2

3
=                                                     (13.40) 

In Block 1, you have learnt that the heat capacity of a monatomic gas is 

independent of temperature as well as the nature of the gas.  

Similarly, pressure in terms of N -particle partition function is defined as:  
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Hence, from Eq. (13.38), it readily follows that 
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And the expression for pressure takes the form 

  
V

TNk
p B=   (13.41)   

Do you recognise this equation? It is the equation of state of an ideal gas. It is 

important to note here that neither thermodynamics nor kinetic theory of gases 

enabled us to establish its exact form. It means that a natural explanation of 

molecular chaos lies in statistical arguments, which are more profound. 

On combining this result with Eq. (13.39), we can write 

  
V

U
p

3

2
=                                         (13.42) 

That is, the average pressure is two-third of energy density. 

Similarly, Helmholtz free energy is given by 
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The entropy and the partition function of an N-particle system are connected 

by the relation: 

  
T

U
ZkS N += lnB  

On substituting for ln NZ and U  from Eqs. (13.38) and (13.39), respectively, 

we get 
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In your higher classes, you will learn that this expression for entropy leads to 

Gibbs paradox:  

The entropy of a system does not behave as an extensive variable and is not 

a function of the thermodynamic state alone.  

That is, we can manage to change entropy of a system by extraneous factors. 
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Sackur and Tetrode showed that Gibbs paradox arises because within the 

framework of classical statistics, identical particles were treated as 

distinguishable. 

We summarise important results of this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us now summarise what you have learnt in this unit. 

13.4 SUMMARY 

Concept Description 

Thermodynamic 

probability of 

distribution in various 

energy groups 

 

                   

◼ The thermodynamic probability of distributing N  distinguishable 

particles into various energy groups is given by 

             


=

i

in

N
W

!

!
 

 
Most probable state 

 

Most probable 

distribution 

◼ For determining the most probable state, Wln rather than W is 

maximised, since the latter is a very large number and inconvenient    

to handle. 

◼ The most probable distribution of particles among various energy 

levels of a Maxwellian system is given by 

 

THERMODYNAMIC VARIABLES OF A GAS 

• nRTTNkU
2

3

2

3
B ==  

• 





−=−= 2/3

B
3

BB )2(lnln Tmk
h

V
TNkZTkF N  

• B
2

3
NkCV = nR

2

3
=  

• 
V

TNk
p B=  

• B
2

B
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B
2

32
ln

2

3
)(ln

2

3
)(ln),,( Nk

h

m
kVTNkNVTS +












 
++=  

For a system obeying Maxwell-Boltzmann statistics, entropy of 

mixing for self-diffusion shows the same increase in entropy as for 

inter-mixing of two different gases. This unrealistic situation is 

referred to as Gibb’s Paradox. It arises because in classical statistics, 

gas molecules are considered distinguishable.  

GIBB’S PARADOX 
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13.5 TERMINAL QUESTIONS 

1. Consider a system of N particles and a phase space consisting of only two 

levels with energies 0 and  ( > 0), respectively. Calculate the partition 

function and the internal energy. 

2. Show that  

 
 

]/)exp[(

1

BTk
n

i
i

−
=  

where  is known as the chemical potential. 

 Single-particle 

partition function 

◼ Single-particle partition function for a system of N distinguishable 

particles distributed in non-degenerate levels is given by 

 
=

−=
N

i

iZ

1

)exp(  

 Degeneracy parameter ◼ The degeneracy parameter A is given by 

                


= =
B

exp( )
N

A
Z k t

  

 Thermodynamic 

parameters and 

partition function 

◼ For a non-degenerate thermodynamic system made up of N        

identical and non-interacting particles enclosed in volume V, the 

thermodynamic parameters are related to Z as 

            )(ln2
B Z

T
TNkU




=  

 
T

U
ZNkS += lnB  

  ZTNkF lnB−=  

and 
TV

Z

Z

TNk
p 












= B  

 

 

Partition function of 

an ideal monatomic 

gas 

◼ The partition function of an ideal monatomic gas made up of N 

identical particles is given by 

 2/3
B3

)2( N
N

N

N Tkm
h

V
Z =  

The internal energy RTnU
2

3
=  and heat capacity nRCV

2

3
= . 

 Entropy of an ideal 

monatomic gas 

◼ The entropy of an ideal monatomic gas is given by 

 















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
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2

B
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h
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 i) 























+














=

NTNV V

Z

T

ZN
H

,, ln

ln

ln

ln
 and 

 ii) 

























−=

NTV

ZN
G

,ln

ln
-lnZ  

3. N particles obey the Maxwell-Boltzmann (M-B) distribution. They are 

distributed among three states with energies 

= = =B B1 2 30,    and  3 .E E k T E k T If the equilibrium energy of the system is 

B2000 ,k T calculate the total number of particles, N. 

4. Consider a system of N classical linear harmonic oscillators. Calculate         

(i) the partition function, (ii) the free energy, (iii) entropy, (iv) VC and .pC  

5. Consider a classical ideal gas consisting of N particles. The energy  of a 

particle is given by ,cp=  where c is a constant and p is the magnitude of 

the momentum. Calculate (i) the partition function of the system,             

(ii) internal energy, and (iii) .VC  

6. Consider a classical linear oscillator with 

    ,
2

4
2

bx
m

p
+=  

 where b is a constant. Assuming that the oscillator is in thermal equilibrium 

with a heat reservoir at temperature T, calculate (i) the mean kinetic 

energy, (ii) the mean potential energy, and (iii) VC  for an assembly of N 

such oscillators. 

13.6 SOLUTIONS AND ANSWERS   

Self-Assessment Questions 

1. For single particle, we can write from Eq. (13.21): 

       
T

U
ZkS += lnB     with    Z

T
TkU ln2

B



=  

On substituting the value of Z from Eq. (13.33), we get 

  ( )
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      ( )
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 Similarly, from Eq. (13.24), we recall that  
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Z

Z
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p 





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


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 On substituting the value of Z from Eq. (14.33) as before, we get 
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Terminal Questions 

1. It is given that   =2E  and 01 =E .  

 We have T

i

TkE eeZ Bi // 1 −− +==   with  .
Bk


=   

      The occupation numbers are  

    
Te

N

Z

N
n
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2
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e
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EnEnU
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/

2211
1 −
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+


=+=  

 For very low temperature (T << ), and we have n1  N, n2 = 0. At very 

high temperatures (T >> ), and hence, n1  ,
2

N
 n2  .

2

N
 You will note 

that for normal temperatures 

    1/

1

2 = − Te
n

n
 

2. i) In Unit 10 you have learnt that the enthalpy H can be expressed in 

terms of thermodynamic properties as: 

   pVUH +=  

      From Eq. (13.43) we have Z
T

TNkU ln2
B


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=  

     Rewriting 
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    we can express the internal energy as 
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   From Eq. (13.24), we have    
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    Hence,  
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 ii) Gibbs free energy pVFpVTSUG +=+−=  

         From Eq. (13.40) we have Z
N

ZTNkTSUF lnlnB


−=−=−=  
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        and we know that 
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3. We have 321 NNNN ++=   and  332211 ENENENE ++=  
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     Hence, the total number of particles .5483=N  

4. The partition function is given by  


=


1
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 Assuming the oscillators to be indistinguishable, we have 
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5. We have 

   zyx
cp dpdpdpe

h

V
Z  −=

3
 

 In terms of spherical polar coordinates, we can rewrite the volume element 

 as (see the margin remark for evaluation of the integral): 
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6. The mean kinetic energy is: 
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 We have 
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To evaluate the integral 

in the expression for Z, 

we introduce a new 

variable by defining 
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APPENDIX 13A: THE METHOD OF LAGRANGE 
MULTIPLIERS 

You are familiar with the problem of finding maxima and minima of functions. 

Many a time, we are required to obtain these extreme values subject to    

certain conditions or constraints. We came across this problem in Sec. 13.2, 

where we had to maximise thermodynamic probability subject to the 

conditions that the number of particles and energy are fixed. This problem is 

solved using an elegant technique called the method of undetermined 

multipliers due to French analyst Lagrange. 

Suppose we wish to know the extrema of the function f (x, y). For this, we 

have to simultaneously solve equations 

  0=




x

f
 and 0=





y

f
 (13A.1) 

The resulting pair (or pairs) of values of x and y specify the point (or points)                 

at which f has a maximum, minimum, or point of inflection. Now suppose that 

there is an auxiliary condition 

  g (x, y) = 0 (13A.2) 

In principle, we can eliminate one of the variables. However, in practice, this 

may not always be possible. So, we proceed as follows: 

Eq. (13A.1) gives us  0=











+












dy

y

f
dx

x

f

xy

 (13A.3) 

From Eq. (13A.2), we can write 
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 (13A.4) 

Multiplying Eq. (13A.4) by  and adding to Eq. (13A.3) yields 
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where we have dropped subscripts x and y. 

Since x and y are independent, we have 
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and 0=
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 (13A.5) 

These equations are solved simultaneously to know the values of x, y and . 
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 UNIT14 
QUANTUM 
 STATISTICS 

Structure 
 

14.1 Introduction 

Expected Learning Outcomes  

14.2 Need for Quantum Statistics  

Blackbody Radiation 

Heat Capacity of Solids 

Classification of Particles  

14.3 Bose-Einstein Distribution Function 

14.4 Fermi-Dirac Distribution Function  

14.5 Comparison of Different Distributions  

 

  

STUDY GUIDE           

 

 

14.6 Applications of Bose-Einstein Statistics 

Bose’s Derivation of Planck’s Law               

14.7 Applications of Fermi-Dirac Statistics  

Fermi Energy 

 Electronic Heat Capacity               

14.8 Summary 

14.9 Terminal Questions 

14.10 Solutions and Answers 

 

 

In Unit 13, you have learnt how to evaluate the partition function and thermodynamic functions of a 

monatomic gas obeying Maxwell-Boltzmann statistics. This exercise required knowledge of 

elementary differential and integral calculus. However, in this unit, you will apply the basic knowledge 

of permutations and combinations (Unit 12) to establish distribution functions for Bose-Einstein and 

Fermi-Dirac systems. You will then study the behaviour of a photon gas using Bose-Einstein statistics.  

The behaviour of Fermi-Dirac systems at low temperatures will be discussed with particular reference 

to zero point energy and electronic heat capacity in metals. The mathematics in this unit is somewhat 

involved and you are advised to refresh your earlier knowledge before starting this unit. Keep 

pen/pencil with you to solve intermediate steps yourself.  Phase out your study and go section by 

section. Then you will enjoy learning it. 

 

“To see something which nobody else has seen before is 

thrilling and deeply satisfying. These are the moments when 

you want to be a scientist.”  

 

Wolfgang 
Ketterle 

 

A gas of particles with integer 

spins obeying Bose-Einstein 

statistics, when cooled to a very 

low temperature becomes a 

Bose-Einstein Condensate. 
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14.1   INTRODUCTION 

In the previous units of this block, you have learnt how to apply statistical 

methods to study thermodynamic behaviour of systems made up of large 

number of non-interacting particles. But classical statistics failed to resolve the 

problem of blackbody radiation. 

Also, satisfactory explanation of temperature variation of heat capacity of 

solids eluded it. Moreover, the concept of zero point energy was completely 

alien to classical statistics. Similarly, to understand the behaviour of 

conduction electrons in metals, we have to resort to quantum statistics. 

Therefore, we begin by discussing need for quantum statistics in Sec. 14.2. 

In quantum statistics, we deal with two types of statistics: Bose-Einstein (B-E) 

statistics and Fermi-Dirac (F-D) statistics depending on the spin of the 

particles making up the system. Particles with integral spin are called bosons 

and those with half-integral spins are known as fermions. While fermions obey 

Pauli Exclusion Principle, no such restriction applies to bosons. Conforming to 

this condition, we have obtained expressions for distribution functions for B-E 

and F-D systems in Sec. 14.3 and 14.4, respectively.  

You will note that in spite of fundamental difference, the expressions for 

distribution functions show remarkable similarity. Further, as compared to 

Maxwell-Boltzmann distribution (Sec. 13.5), the distribution of bosons is 

skewed towards lower energy states whereas the distribution of fermions is 

skewed towards higher energy states.  

In Sec. 14.6, we have applied B-E statistics to blackbody radiation. We give 

Bose’s derivation of Planck’s law, without any reference whatsoever to 

classical ideas.  

In Sec. 14.7, we have discussed applications of F-D statistics. You will learn 

that an F-D system is quite alive even at absolute zero. We have obtained 

expression for Fermi energy and given a brief account of temperature 

variation of heat capacity of metals based on F-D statistics. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

❖ point out inadequacies of classical statistics and discuss need for 

quantum statistics; 

❖ obtain expressions for the Bose-Einstein and Fermi-Dirac distribution 

functions; 

❖ starting from BE distribution function, obtain expression for Planck’s 

law; 

❖ explain the concept of zero point energy; and 

❖ obtain an expression for heat capacity of electrons at low 

temperatures. 
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14.2 NEED FOR QUANTUM STATISTICS 

In classical statistics, we assume that it is possible to simultaneously 

determine the position and momentum coordinates of a gaseous particle as 

precisely as we like. It means that these particles are distinguishable and can 

be labelled. But this is not true in practice. Heisenberg’s uncertainty principle 

forbids determination of the position (q) and the momentum (p) of a particle 

simultaneously with infinite precision. If the uncertainties in the measurements 

of q and p are q and p, respectively, the product q p cannot be made 

less than 2/ : 

  2/ pq  (14.1) 

where = 2/h  and Js)1062.6( 34−=h  is Planck’s constant. It implies that 

when we study the behaviour of an assembly of identical particles statistically, 

we should treat it as a collection of indistinguishable particles. Further, 

blackbody radiation deserves a unique place in physics because it gave birth 

to quantum theory. You have learnt about it in detail in Unit 11. But here we 

will recapitulate some important ideas/results. 

14.2.1 Blackbody Radiation 

We know that when a body is heated, it emits electromagnetic waves from its 

surface in all directions. The spectrum of radiated frequencies ranges from              

0 to  . When such thermal radiation is contained inside a hollow cavity 

whose walls are opaque to it and maintained at a constant temperature, we 

expect that in the interior, radiation will have exactly the same spectral 

distribution as that of blackbody radiation. In other words, the energy 

distribution over various wavelengths should be a function of temperature, 

independent of the shape and size of the cavity (Fig. 14.1a). A small opening 

in one of the walls enables us to experimentally study the nature of emerging 

radiation. In fact, such experiments were carried out by a large number of 

scientists in the period of 1895-1900. We may make particular mention of 

Rubens and Kurlbaum. The results of their experiments established beyond 

doubt the inability of classical theories to reproduce experimental results. 

Fig.14.1b shows the experimental curves for the energy density u  at three 

different temperatures. 

 

 

 

 

 

 

 

 

                        

(a) (b) 

   Fig. 14.1: a) The electromagnetic radiation inside an oven is treated as a photon 

gas in equilibrium with the oven walls; b) Spectral distribution of energy 

in blackbody radiation. 
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As discussed in Unit 11, Lord Rayleigh and Sir James Jeans studied the 

problem using the ideas of classical physics and arrived at Rayleigh-Jeans 

law for du  [Eq. (11.8)]. 

You may recall that for small values of ,  it reproduced the experimental 

curves rather well. However, for → , Rayleigh-Jeans law showed a serious 

flaw; it predicted that the total energy density would be infinite. This unphysical 

situation was termed ultraviolet catastrophe by P. Ehrenfest (Fig. 14.2).   

Wien carried out thermodynamic analysis of blackbody radiation spectrum. 

and successfully explained the qualitative features of experimental results at 

high frequencies (Fig. 14.2). Though it seemed acceptable, it proved 

completely inadequate at low frequencies. That is, classical theories failed to 

explain the observed spectrum of blackbody radiation satisfactorily for all 

frequencies and serious doubts were expressed about the applicability of the 

principle of equipartition of energy to blackbody radiation.  

At this stage, Max Planck rejected classical theories and conjectured that 

emission and absorption of radiation are discontinuous processes. On 

December 14,1900, he declared in a paper presented to the German Physical 

Society that the only way to derive the correct blackbody radiation formula 

was to postulate that  

• exchange of energy between matter (walls) and radiation (cavity) could 

take place only in bundles of a certain quantity of energy; and 

• the quantum of exchange is directly proportional to its frequency. That is, 

the energy of an oscillator having frequency   could only be an integral 

multiple of h , where h  is a constant.  

These postulates marked a fundamental departure from then existing ideas. 

On the basis of his hypothesis that each oscillator can possess only                 

discrete energies;  0, ,  2 ,...h h  and oscillators of energy n at a temperature 

T and by assuming that Maxwell-Boltzmann statistics holds good, Planck 

arrived at his law of blackbody radiation: 

  


=
 

− 
 

 




3

3

B

8

exp 1

h d
u d

hc

k T

 (14.2) 

It reproduced experimental curves of Fig.14.1b beautifully. It is pertinent to 

mention here that Planck’s hypothesis of quantisation of energy gave birth to 

a new branch of physics − Quantum Physics. However, Planck’s law is said to 

be semi-classical. Do you know the reason? It is because he used Rayleigh’s 

results for calculating the number of modes and Maxwell-Boltzmann statistics 

for distribution of energies. 

14.2.2 Heat Capacity of Solids 

You have studied that solids behave as a collection of independent harmonic 

oscillators and energy associated with one mole of a substance is equal to 

Planck 

(b) (a) (c) 

Fig. 14.2 

 
 
 
 

 
 
 
 
 
 

 

Max Karl Ernst 

Ludwig Planck, (1858 

− 1947) was a German 

theoretical physicist. 

He is regarded as the 

originator of the 

quantum theory which 

revolutionized our 

understanding of 
atomic and subatomic 

processes. The Nobel 

Prize in Physics was 

conferred on him in 

1918 for postulating 

energy quanta, which 

helped in explaining 

the black body 

radiation. 
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TkN BA3 , where AN is Avogadro’s number. From the definition of constant 

volume heat capacity, we can write 

  11
BA Kmol J 9.2433 −−===












= RkN

T

U
C

V
V  (14.3a) 

In other words, constant volume heat capacity is constant (= 3R) for all 

substances and at all temperatures. This is the famous Dulong and Petit’s 

law.  

Now refer to Fig. 14.3. You will note that experimental data is at complete 

variance with this law and deviations, particularly in the low temperature 

region, are very striking.  

 

 

 

 

 

 

Fig. 14.3: Temperature variation of constant volume heat capacity of a solid. 

A qualitative theoretical explanation of experimental results was attempted by 

Einstein using Planck’s ideas on quantisation of energy. That is, following 

Planck, Einstein discarded the law of equipartition of energy. Instead, he 

assumed that each atom vibrates with the same angular frequency E and the 

motion of any atom is independent of the motion of its neighbours.  

He obtained the following expression for the heat capacity:                   

  
( )

( )  2
E

E
2

E

  1/exp

/exp
3

−









 
=

T

T

T
RCV  (14.3b) 

Here E  is Einstein’s frequency and  = E E B/ k  is known as Einstein 

temperature. Einstein could reproduce only the general features of the 

experimentally observed curve (Fig. 14.4). However, there was disagreement 

in details, particularly at low temperatures. 

Debye (1912) refined Einstein’s model and suggested that it would be more 

appropriate to consider a spectrum of vibration frequencies, particularly at low 

temperatures. In this way, he showed that at low temperatures, the constant 

volume heat capacity varies as third power of temperature. This is known as 

Debye 3T - law. His results were in excellent agreement with experiments in 

the entire temperature range. 

You may now like to revise important results obtained in this section. 

C
V
/ 
3
R
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14.2.3 Classification of Particles 

You will recall that according to Heisenberg’s uncertainty principle, the 

particles making up a system should not be treated as distinguishable. The 

detailed consequences of this concept can be understood fully only after a 

thorough understanding of the principles of quantum mechanics, which you 

will study in detail in the fifth semester of this programme. For the present, it is 

sufficient to know that: 

a) Simultaneous determination of position and momentum of a particle 

cannot be accomplished to infinite precision. Instead, uncertainties p and 

q in these quantities are subject to q p ~ h. That is, the volume of a 

cell in phase space cannot be arbitrarily small. In fact, the smallest 

volume of a cell should be taken as .3h  

b) In quantum statistics, identical particles are treated as indistinguishable. It 

means that permutation of particles does not lead to a different state. This 

has profound consequences. 

c) All known elementary particles can be classified into two categories on the 

basis of their spin:  

i) Particles having integral spin (0, ħ, 2ħ, …) obey Bose-Einstein statistics 

and are termed bosons. This applies to photons, pions, 4He, etc. The 

number of bosons that can occupy a given quantum-state has no 

restriction. 

ii) Particles with half-integral spin ...,
2

3
,

2


 are termed fermions and 

obey the Fermi-Dirac statistics. Particles like electrons, protons, 

neutrons, muons, etc. belong to this category.  

 The number of fermions in a quantum state is determined by Pauli’s 

Exclusion Principle. For example, there cannot be more than two 

electrons in the same quantum state having all four quantum numbers 

the same. You are familiar with the implications of this principle in 

TOWARDS QUANTUM THEORY 

 
• Indistinguishability of particles and uncertainty in the simultaneous 

determination of position and momentum are basic premises of 

quantum statistics. 

• Spectral distribution of blackbody radiation and temperature 

dependence of constant volume heat capacity, particularly at low 

temperatures, cannot be explained on the basis of classical ideas. 

• Planck postulated that exchange of energy between matter and 

radiation takes place only in bundles of a certain quantity of energy and 

the quantum of exchange is directly proportional to frequency. 

• Einstein and Debye used quantisation of vibrational energy to explain 

the behaviour of heat capacity of solids at low temperatures. 

Fermions tend to avoid 
one another! 
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electronic configuration of elements in the Periodic Table. In general, 

the number of fermions in a quantum state is limited to (2s + 1), where 

s   is the spin angular momentum of the fermion. 

You should now test your understanding by answering the following SAQ. 

 

 

 

 

To illustrate the consequences of indistinguishability, let us consider the 

following simple example. 

Suppose we have a system consisting of only two particles A and B and three 

quantum states, i = 1, 2, 3. According to Maxwell-Boltzmann statistics, these 

can be distributed in nine ways, which are tabulated below: 

                      States → 

Distribution  

         

1 2 3 

1 AB − − 

2 − AB − 

3 − − AB 

4 A B − 

5 B A − 

6 A − B 

7 B − A 

8 − A B 

9 − B A 

That is, we have 23  possibilities. It is straightforward to show that if we have 

iN  particles to be distributed among ig  states, the total number of ways is 

.iN
i

g  (It is pertinent to mention here that for convenience, we considered 

1=ig  for M-B statistics.) 

In the case of quantum statistics, we cannot distinguish A from B. However, in 

Bose-Einstein distribution, there is no restriction on the number of particles 

that can occupy a given state. So, there are only six possibilities: 

                      States → 

Distribution  

         

1 

2 3 

1 AA − − 

2 − AA − 

3 − − AA 

4 A A − 

5 A − A 

6 − A A 

SAQ 1  –  Classification of particles 

Helium has two isotopes, viz., He3  and He.4  Classify these as fermions 

and bosons. Justify your conclusion. 
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In general, the result is ( )
i

ii N
gN C1−+ . This can be proved in several ways. We 

shall do it using a simple, yet interesting method. 

Suppose we want to distribute iN  indistinguishable particles among ig  cells. 

Imagine the −iN particles, denoted by dots and arranged in a row, as shown 

in Fig. 14.4a. The cell boundaries are denoted by ( ig + 1) vertical bars. For 

example, when 5=ig  and ,10=iN  a typical distribution is shown in               

Fig. 14.4b. 

  

                                (a)                                                          (b) 

Fig. 14.4: a) iN  particles arranged along a line; b) a possible distribution for 

10=iN  and .5=ig  

There is one particle in the first cell, three in the second, none in the third, four 

in the fourth, and two in the fifth. The total number of dots and bars is             

).1( ii Ng ++  Since the two end positions in such a diagram would always be 

occupied by bars, the required number of distributions W is equal to the 

number of ways of choosing Ni positions for the particles from 

),21( −++ ii gN   i.e. )1( −+ ii gN  positions. Hence, 

  ( )
i

ii N
gN CW 1 −+=  (14.4) 

If we now put 2=iN  and 3=ig , we get 2
4CW = = 6, which reproduces the 

earlier result. 

In the case of Fermi-Dirac statistics, there can, at best, be only one particle 

per cell and we necessarily have .ii gn   Of course, for particles of spin s , 

the number of possibilities has to be multiplied by the factor (2s + 1). For the 

system under consideration, we have just three possibilities as shown below: 

                      States → 

Distribution  

         

1 2 3 

1 A A − 

2 A − A 

3 − A A 

If we now define a parameter r as 

  
states different in  found are particles the thaty Probabilit

state same the in  found are particles two thaty Probabilit
=r  

we have  ,1
6/3

6/3
  ,

2

1

9/6

9/3
BEMB ==== rr  and 0FD =r  

These values of r illustrate a striking difference between these three statistics. 

You should note that 0FD =r  because of the Pauli’s principle. On the other 

hand, BEr is greater than .MBr It signifies that bosons have a greater tendency 

to bunch together; even more than the classical particles. 

 •   •   •   •   •   •   •   •   •   •           •  •   •   • •   •   •   •  •   •  
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Before proceeding further, we will like you to know about Prof. S. N. Bose, 

who is best known for his work on radiation theory.  

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are now equipped with necessary tools to theoretically understand the 

behavior of quantum particles. The first step in this is to obtain distribution 

functions for them. You will now learn to obtain expressions for Bose-Einstein 

distribution function. 

14.3 BOSE-EINSTEIN DISTRIBUTION FUNCTION 

Consider a system of N non-interacting bosons occupying volume V and 

sharing energy U. Suppose that the energy levels of the system are very 

closely spaced so that we can bracket them into groups. We will refer to these 

as energy cells. This is depicted schematically in Fig. 14.5. 

We assume that the number of levels )( ig  in the ith cell is significantly greater 

than one ( ig >> 1). It is still reasonable to talk about the energy of the levels in 

the ith cell as ,i  since they are very close to each other. Let iW  denote the 

number of ways in which iN  particles can be distributed amongst the ig  

levels of the ith cell. This number is available to us from Eq. (14.4). 

Prof. Satyendra Nath Bose (1894-1974) was born on 1st 

January 1894 in Calcutta (now Kolkata). After 

matriculation in 1909, he joined Presidency College, 

Calcutta. He topped his B.Sc. and M. Sc. examinations 

with specializations in mixed (applied) mathematics. After 

completing his M.Sc., Bose joined the University of 

Calcutta, as a research scholar in 1916 and started his  

studies in the theory of relativity and got interested in the work of Albert Einstein. 

Since many of his papers were in German, Bose took up to translate them to 

English for the benefit of all. He was well versed in Bengali, English, French, 

German and Sanskrit. Apart from science, his interests ranged from poetry to 

classical music. 

In 1924, Bose derived Planck's law of quantum radiation without any reference to 

classical physics. This was a very fundamental work in the field of quantum 

statistics. He sent the manuscript of this paper to Einstein, who immediately 

recognized the importance of his work. Einstein translated this paper in German 

and sent it for publication to the prestigious Zeitschrift für Physik journal on behalf 

of Bose. Subsequently, Einstein extended the work of Bose to material particles. 

This led to the birth of Bose-Einstein (B-E) statistics. The particles obeying this 

statistics are called bosons. This name was coined by renowned scientist Paul 

Dirac to commemorate the great contribution of Bose to the field of quantum 

statistics.  

Bose was nominated National Professor by the Government of India in 1958. In 

the same year, he was also elected the Fellow of Royal Society.  

In 2012, a new particle, popularly known as God particle and responsible for 

attributing mass to matter, was named Higgs Boson. It was produced in the Large 

Hadron Collider near Geneva, Switzerland. It is expected to answer how the 

universe was formed.  

 

Fig. 14.5: Energy 

levels of a system 

bracketed into cells. 

ith cell 

gi, Ni, i    

1st cell 

g1, N1, 1    
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Note that this formalism bears close resemblance to M-B statistics but now we 

have to deal with identical particles. So, rules for counting the states change. 

In the instant case, we can write 

  ( )
i

ii N
gN

i CW 1 −+=
( )

( )!1!

!1

−

−+
=

ii

ii

gN

Ng
  (14.5) 

Recall that the number of ways in which we can put 1N  particles in 1g  levels, 

2N  particles in 2g  levels, …, iN  particles in ig  levels defines thermodynamic 

probability. Let us denote it by }).({...),,...,( 2,1 NWNNNW i =  Then we can 

write 

  
( )

( ) ! 1!

! 1
}][{

−

−+
==

ii

ii

i
i

i gN

Ng
WNW  (14.6) 

To obtain the expression for distribution function, we have to maximise W 

subject to the conditions that total number of particles and total energy of the 

system are constant: 

  NN

i

i =  (14.7a) 

and  UN i

i

i =  (14.7b) 

Following the arguments mentioned in Unit 13, we maximise lnW rather 

than .W  So, we rewrite Eq. (14.6) as 

  ( ) ( )  −−−−+=

i

iiii NgNgW !ln ! 1ln ! 1lnln  

To extract meaningful information from this expression, we use Stirling’s 

formula and write: 

  ( ) ( ) ( ) −+−−+−+=

i

iiiiii NgNgNgW 11ln 1ln  

                              ( ) ( ) iiiiii NNNggg +−−+−−− ln11ln )1(  

Note that second term on the RHS cancels out with the fourth and sixth terms. 

On simplification, this expression reduces to 

         ( ) ( ) ( ) ( )  −−−−−+−+=

i

iiiiiiii NNggNgNgW ln1ln 11ln 1ln  

Since iN  and ig  are much greater than one, we can ignore one from all the 

three terms in the RHS of above expression and write         

  ( ) ( )  −−++=

i

iiiiiiii NNggNgNgW lnlnln ln  (14.8) 

To maximise ,lnW we put  ( ) =ln 0.W  Note that ig is a constant. On using 

this condition, Eq. (14.8) takes the form 

( )
( )

( ) ( )
 

 = +  + +  −  −  = 
+ 

1 1
ln ln ln 0i i i i i i i i i i

i i i i

W g N N g N N N N N N
g N N
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Note that the first and third terms on the RHS cancel out and this equation 

takes a compact form: 

  ( ) − +  = ln ln 0i i i i
i

N g N N  (14.9) 

Recall that Eq. (14.9) is subject to the constraints that N and U are fixed. We 

can, therefore, rewrite Eqs. (14.7a and b) as 

  0== 
i

iNN  (14.10a) 

and  0== 
i

ii NU  (14.10b) 

To incorporate the conditions embedded in Eqs. (14.10 a and b) into                    

Eq. (14.9), we use Lagrange’s method of undetermined multipliers. As before, 

we multiply Eqs. (14.10a and b) by  and , respectively, and add to                     

Eq. (14.9). This leads us to the expression 

  ( ) − + +  +  = ln ln 0i i i i i
i

N g N N  (14.11) 

As in classical statistics, we use the fact that variations Ni are arbitrary and 

cannot be zero. Therefore, for Eq. (14.11) to be satisfied, the coefficient of 

each term in this equation must vanish identically. Hence, we must have 

 
= − −  = − −  =  + − 

+  +

1
ln exp( ) exp( ) 1

1

i i
i i i

ii i i

i

N g

gg N N

N

       

or  =
 + −

1

exp( ) 1
i

i i

N

g
 (14.12) 

As before, we put −e equal to ,A the degeneracy parameter. Then                  

Eq. (14.12) can be written as 

  
( ) 1 exp

1
1 −

=
−

ii

i

Ag

N
 (14.13) 

Recall that chemical potential )(  is defined through the relation  

  − = =A e e  (14.14)  

In terms of chemical potential, we can rewrite Eq. (14.12) as 

  
( )

=  =
   −  − 

BE
1

( )
exp 1

i
i

i ι

N
f

g
 (14.15) 

If we treat energy as a continuous variable, the number of particles with 

energy  will be given by 

  
( )


  =

    − − 
BE

( ) 1
( )

( ) exp  1

N
f

g
 (14.16) 

This relation is known as Bose-Einstein distribution function.  

We now summarise the important results of this section. 
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We now proceed to obtain the Fermi-Dirac distribution function. 

14.4 FERMI-DIRAC DISTRIBUTION FUNCTION 

To obtain expression for Fermi-Dirac distribution function, we note that 

fermions obey Pauli’s principle and not more than one particle (ignoring spin) 

can occupy the same energy level. Hence, the number of ways in which we 

can distribute iN  particles into ig  levels is given by 
i

i N
g C  with .ii gN   The 

total number of ways in which we can put N particles into various levels are 

  
( ) !! 

!
}][{

iii

i

i
N

g

i NNg

g
CNW

i
i

−
==  (14.17) 

As in the case of Bose-Einstein statistics, this distribution is also subject to the 

conditions that total number of particles in the system and the energy of the 

system remain constant. That is, 

   == 0iNN  (14.18a) 

and  0==  iiNU  (14.18b) 

As before, we maximise Wln  and set 0ln = W . So on taking logarithm of 

both sides of Eq. (14.17), we obtain 

  ( )  −−−=

i

iiii NNggW  !ln! ln!ln  ln  (14.19) 

Using Stirling’s approximation, we write 

( ) ( ) ( ) −+−−−−=

i

iiiiiiiii NgNgNggggW ln  ln ln  

  ln iii NNN +−  ( ) ( ) = − − − −    ln ln ln  i i i i i i i i
i

g g g N g N N N  

BOSE-EINSTEIN DISTRIBUTION FUNCTION 

• In Bose-Einstein distribution, there is no restriction on the number of 

particles that can occupy a given state. 

• The ways in which N particles can be distributed in M cells is 

 
( )

( ) ! 1!

! 1
][

1 −

−+
== 

= ii

ii

i
i

M

i gN

Ng
WNW  

where thi  cell contains iN  particles distributed in ig  levels. 

• The Bose-Einstein distribution function for the particles with energy  is 

given by 

 
( )  1    exp

1
)(BE

−−
=f  

where  denotes chemical potential. 
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Note that ig  are constant. Therefore, while differentiating this expression, we 

get 

          ( )
( )

( ) ( ) 



−+−

−
−=

i

iiii
ii

ii NgNN
Ng

gNW ln
1

ln  

                 



−− iii

i
i NNN

N
N ln

1
 

Note that the first and the third terms on the RHS of this expression cancel 

out. Then it simplifies to 

  ( ) ( )  = − −  ln ln lni i i i
i

W g N N N  

On equating Wln  to zero, we can write 

  ( ) ( ) − −  = ln ln 0i i i i
i

N g N N  (14.20) 

This expression is subject to the conditions specified in Eqs. (14.18a and b). 

To incorporate these and obtain a general expression for most probable 

distribution, we use Lagrange’s method of undetermined multipliers. 

Therefore, we multiply Eq. (14.18a) by , Eq. (14.18b) by  and add to         

Eq. (14.20). This gives 

  ( ) ( ) − − +  +  = ln ln 0i i i i i
i

N g N N  

Since iN  are arbitrary and can be varied independently, we can set the 

coefficient of each  iN equal to zero. This gives

 

 
= − −  = − −  =  + + 
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   −

  = = =
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FD 1

1 1 1
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i
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i i ii

N
f

g A
 

    (14.21) 

where   defines chemical potential with − = = .A e e  Eq. (14.21) is the 

desired expression for Fermi-Dirac distribution function. For continuous 

distribution, the Fermi-Dirac distribution function )(FD f  can be expressed as 

   
( )  1exp

1
)(FD

+−
=f  (14.22) 

Note that at =  = 0 ( ),T  the exponent in Eq. (14.22) becomes − for  < , 

whereas for  > , the exponent becomes +. We can, therefore, rewrite it as  

  =)(FDf  










  for0

  for1
 (14.23) 
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Mathematically speaking, )(FD f  defines a step-function. Physically, it implies 

that at absolute zero, all levels are occupied up to certain energy, but energy 

states above it, are empty. This energy is known as Fermi energy. We denote 

it as F. This is shown in curve (i) of Fig. 14.6. Curve (ii) shows the effect of 

raising the temperature. The curve develops a tail, which is symmetrical about 

 = F.Moreover, at F,  =FD( ) 0.5.f   

 

 

 

 

 

    Fig. 14.6: Plot of Fermi function versus energy at different temperatures. 

At a finite temperature )0( T , fermions shift to higher energies. However, the 

width of this region is of the order of TkB . Normally deviations observed from 

the step-function are important only for those values of  for which [( − )] is 

of the order of unity. At higher energies, the exponential term dominates and 

the F-D distribution function is given by Eq. (14.23).  

On the basis of this discussion, we can say that thermal reshuffling of the 

particles is confined to TkB  around  = F.  This means that the number of 

electrons which contribute to thermal properties is proportional to linear power 

of temperature. Even at room temperature, the product TkB  is quite small; 

and hence, the major proportion of distribution is not influenced significantly    

by rise in temperature. Let us sum up important points of this section. 

 

 

 

 

 

 

 

 

 

 

 

 

FERMI-DIRAC DISTRIBUTION FUNCTION 

• In F-D statistics, the number of levels gi is always greater than the 

number of particles .iN  

• The ways in which N particles can be distributed in M cells is 

 
( ) ! !

! 
][

1 iii

i

i
i

M

i NgN

g
WNW

−
== 

=

 

where thi  cell contains iN  particles distributed in ig  levels. 

• The Fermi-Dirac distribution function for particles with energy  is: 

 
( )  1    exp

1
)(FD

+−
=f  

where  denotes chemical potential. 

• At absolute zero, F-D distribution is a step-function. At higher 

temperature, fermions shift to higher energy in the range of TkB  

around Fermi energy F  with  =FD F( ) 0.5.f  
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Before proceeding further, you may like to answer an SAQ. 

 

 

 

Now that we have obtained distribution functions for classical as well as 

quantum systems, it would be instructive to compare these and get an idea 

about how particles obeying different statistics behave. 

14.5 COMPARISON OF DIFFERENT 
 DISTRIBUTIONS 

To compare how different statistics behave, we re-write the expressions for   

M-B, B-E and F-D distribution functions: 

  
( ) −

=
 exp

1
)(MBf  

  
( )  1 exp

1
)(BE

−−
=f  

  
( )  1 exp

1
)(FD

+−
=f  

A closer examination of these expressions reveals that in spite of the vast 

differences in the assumptions used to arrive at these expressions, they have 

deceptively similar appearance. In fact, you can combine them into just one 

expression as 

  
( )  +−

=
 exp

1
)(f  (14.24) 

where   = 












−

+

ondistributi E-B1

ondistributi D-F1

ondistributi B-M0   

 

This logically raises the question: What is the significance of the constant  in 

describing the behaviour of a system?  

To learn about the enormous consequences of , refer to Fig. 14.7, which 

depicts the distribution functions corresponding to M-B, F-D and B-E statistics.  

Note that as compared to M-B distribution, the distribution of bosons is 

skewed towards lower energy states, whereas fermions are skewed towards 

higher energy states.  

It means that bosons prefer to occupy lower energy states, i.e., live together. 

SAQ 2  –  Limiting case of B-E and F-D distributions 

Show that in the high energy range, Bose- Einstein as well as Fermi-Dirac 

distribution reduce to Maxwell-Boltzmann distribution. 
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Fig. 14.7: Plot of B-E, F-D and M-B distribution functions as a function 

of TkB/)( − . Each system is at the same temperature and has the 

same number of particles.  

In the next two sections, we study some applications of B-E and F-D statistics. 

14.6 APPLICATIONS OF BOSE-EINSTEIN 
 STATISTICS 

You now know that the spectral distribution of blackbody radiation was first 

successfully explained by Planck. Though Planck was not convinced of the 

physical basis of his derivation, Bose derived Planck’s law of radiation on the 

basis of quantum statistics. Einstein extended his ideas to the case of material 

particles obeying Bose statistics. We begin our discussion with Bose’s 

derivation of Planck’s law. 

14.6.1 Bose’s Derivation of Planck’s Law 

To begin with, we assume that electromagnetic radiation is enclosed in a 

cavity of volume V at temperature T. From quantum mechanical point of view, 

radiation in the cavity can be considered as a collection of photons of different 

frequencies moving randomly with speed of light. Note that photons of same 

frequency are indistinguishable and behave as a system of non-interacting 

particles. 

The energy of a photon of frequency   is taken to be .h  Moreover, photons 

have zero rest mass and spin  . Further, atoms can emit or absorb photons 

and the total number of photons is not constant. It means that an assembly of 

photons is subject to only one constraint, namely constant.=U  This 

essentially means that in Eq. (14.15), we need only one Lagrange multiplier , 

i.e.,  = 0 or A = 1. Then Eq. (14.15) can be written as 

  







=
−

1

1h

N

g e
  (14.25) 

Let  g d  denote the number of quantum states between frequencies   and 

+ .d We can derive the expression for  g d  using the principles of 

quantum mechanics. However, we can obtain the same result using a simple 
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argument as well. Let us first calculate the number of quantum states in the 

momentum range p  to dpp + and denote it as dpgp . The volume of phase 

space occupied by a particle in a box of volume V and having momentum 

between p  and dpp +  is pVd3 . In spherical polar coordinates, 

( )= dddpppd sin23  and integration over   and   gives 4 . If each cell 

has volume ,3h  we get 

  V
h

dpp
dpgp 3

24
=                                                        (14.26a) 

From de Broglie’s relation between momentum and frequency (or 

wavelength), we have = =


h h
p

c
 and 

 
= 
 

 
3

2 2 .
h

p dp d
c

 

On substituting this result in Eq. (14.26a), we can write the number of 

quantum states in the frequency range  to + d as 

  


=  2
3

4 V
g d d

c
  (14.26b) 

Since photons can have two types of polarization, we multiply this by a factor 

of 2 to obtain 

  


=  2
3

8 V
g d d

c
 (14.27) 

On using this result in Eq. (14.25), we get the expression for the number of 

particles in the frequency range  to + d : 

   
 


=

−

 2

3

8

1h

V d
N

c e
 (14.28) 

If  E d  denotes the energy corresponding to the frequency range  to 

+ ,d  we can write 

  
  


= =

−

 
 

3

3

8

1h

hV d
E d N h

c e
 

Note that  E d  is a function of volume and therefore depends on the size of 

the cavity.  

So, instead of total energy corresponding to a particular range of frequencies, 

we prefer energy density. If we represent energy density by  ,u d  we can 

write 

  



= =

 −

  


3

3
B

8

exp( / ) 1

E d h d
u d

V h k Tc
 (14.29) 

Do you recognise this equation? It is identical to Eq. (14.2) and is a 

mathematical statement of Planck’s law. Note that Bose treated 

electromagnetic radiation as a system of indistinguishable particles and used 

methods of statistics to understand their behaviour.  
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Before proceeding further, let us recapitulate the important result obtained in 

this section. 

 

 

 

 

 

 

14.7 APPLICATIONS OF FERMI-DIRAC 
 STATISTICS 

The energy of an F-D system at absolute zero is called Fermi energy. As 

such, it signifies the highest energy level occupied by a fermion at absolute 

zero. You will now learn how to obtain an expression for Fermi energy. 

14.7.1 Fermi Energy 

Consider a system of N fermions enclosed in a volume V. According to Pauli’s 

exclusion principle, only one fermion can be accommodated in a given state. 

You have already learnt that the highest energy possessed by a fermion at 

absolute zero is known as Fermi energy. We will denote it by the symbol F.   

To derive an expression for F,  we must first know the density of quantum 

states of a particle with momentum in the interval p


 and p p


d+ . From        

Eq. (14.26a,), we recall that this number is dpp
h

V 2
3

4
. Since an electron has 

two independent spin states, the multiplicity factor (= 2s + 1) will be equal to    

2, since s = 1/2. So the required density of quantum states is  dpp
h

V 2
3

8
. 

Hence, the total number of particles is given by 

  



=

0

FD3

8
dppf

h

V
N 2  (14.30) 

From Eq. (14.23) we recall that 

  =)(FDf  










  for0

  for1
 

We denote the highest momentum at T = 0 corresponding to =  by Fp . 

Then, the upper limit of integration in the integral in Eq. (14.30) changes from 

 to Fp  and we can write 

   


=

F

0
3

8
p

2dpp
h

V
N  (14.31a) 

QUANTUM MECHANICAL DERIVATION OF PLANCK’S 

LAW 

By treating electromagnetic radiation as a system of indistinguishable 

particles, Bose derived the expression for the energy density as 

 
1)/exp(

8

B

3

3 −


=

Tkh

d

c

h
du  
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3

8 3
F

3

p

h

V
=  (14.31b) 

We invert this relation to obtain the expression for Fermi momentum, Fp : 

  =Fp  h
V

N
3/1

8

3










 (14.32) 

This result implies that if we draw a sphere with radius Fp , all the particles will 

be inside the sphere at absolute zero.  

This defines the Fermi surface. In the case of alkali and noble atoms, the 

surface is spherical in shape. In other cases, the shape can be quite 

complicated.  

The energy corresponding to the highest occupied energy level at absolute 

zero is called Fermi energy. It is given by 

  =F

3/222
F 3

82










=

V

N

m

h

m

p
 (14.33) 

Now we define Fermi temperature, FT , through the relation 

  
B

F
F

k
T


=  (14.34) 

In Table 14.1, we have listed values of Fermi energy as well as Fermi 

temperature for some typical metals.  

Note that F  varies from 1.58 eV to 14.3 eV; being minimum for cesium and 

maximum for berylium.  

The corresponding Fermi tempratures are of  the order 104K − 105K.  

Table 14.1: Values of Fermi energy and Fermi temperature for typical 

metals 

Metal Fermi energy (eV) Fermi Temperature 

410  (K) 

            Cesium 1.58 1.84 

           Sodium 3.24 3.77 

          Calcium 4.69 5.44 

           Lithium 4.74 5.51 

           Silver 5.49 6.38 

           Gold 5.53 6.42 

           Copper 7.00 8.16 

           Iron 11.1 13.0 

           Aluminium 11.7 13.6 

          Beryllium 14.3 16.6 
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You should now go through the following example carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To get some practice and test your numerical skills, you should solve an SAQ.  

 

a)  21102.4  electrons are confined in a box of volume .cm 1 3  Calculate 

their Fermi wavelength and Fermi energy. 

b) The electrons in the box are replaced by neutrons. How will Fermi 

wavelength and Fermi energy change? Take 28101.9 −=em  g, 

 g 1067.1 24−=nm and −=  276.62 10  erg s. h  

SOLUTION ◼  a) From Eq. (14.33), we know that Fermi energy of 

electrons is given by: 

   
3/222

F
F

3

82










==

V

N

m

h

m

p
  

3/22
2
F

3

4










=

V

Nh
p  

On raising the power of both sides by 3/2, we can write: 

  









=

V

Nh
p

3

8

3
3
F

 

Now, Fermi wavelength can be expressed as: 

  
3/1

F
F

3

8







 
==

N

V

p

h
  

Note that Fermi wavelength is independent of mass of the fermions. 

On substituting the given values, we get 

3/1

21

3

F
102.43

cm 11417.38












= ( ) cm10995.1

3/121−= cm1026.1 7−=  

The Fermi energy of electrons can be expressed in terms of Fermi 

wavelength as 

 

2

7

27

28

2

F

2
F

F
cm1026.1

s erg1062.6

g)101.92(

1

m 2

1

m 2 













=










==

−

−

−

hp
 

                            erg1052.1 12−=  

b) Since Fermi wavelength is independent of mass of the particles        

making up the system, it is not affected when electrons are replaced by 

neutrons. However, Fermi energy will be equal to  

  =







F

n

e

m

m
erg1052.1

g1067.1

g101.9
)( 12

24

28

neutronF
−

−

−













=  

                                   erg1028.8 16−= eV1018.5 4−=  

 

 

 

XAMPLE 14.1 :  FERMI ENERGY 
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Zero Point Energy 

When a fermion system is in the ground state, all the energy states below the 

Fermi energy are occupied whereas all the states above Fermi energy are 

empty. In such a case, the zero point energy of a fermion system is obtained 

by using the relation 

       







==

m

p
NNE

2

2

0   

On substituting for N from Eq. (14.31a) and integrating the resultant 

expression in the range 0 to Fp  in the momentum space, we get    

  
m

p

h

V
dpp

m

p

h

V
E

p

2

10

8

2

8 5
F

3
0

2

30

F


=


=   

   F
3
F35

8



= p

h

V
 

On combining this result with Eq. (14.31b), we obtain the expression for zero 
point energy of a fermion system: 

  F0
5

3
= NE  (14.35) 

The mean energy per fermion at absolute zero is given by 

  F
0

5

3
==

N

E
 (14.36) 

For conduction electrons in copper 

  ( )eV0.7
5

3
= 2.4= eV 

This energy corresponds to several thousand kelvin to which an electron, if 

treated classically, would have to be raised. This shows that unlike a classical 

particle, a fermion has appreciable energy even at absolute zero!  

This justifies our statement that a fermion system is quite alive even at 

absolute zero.  

This is a quantum effect arising out of the Pauli’s exclusion principle and 

brings out the inadequacy of classical statistics in describing the behaviour of 

electrons at temperatures far below their Fermi temperature ).( FTT   

Now you may ask: Is it true for pressure also? To learn the answer to this 

question, you should solve the following SAQ. 

SAQ 3  –  Fermi energy 

Calculate F for copper, if −=  22 38.53 10  electrons cm .
N

V
 Take the mass 

of electron g101.9 28−=  and  s. erg 1062.6 27−=h  
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On working out SAQ 4, you will realise that the pressure exerted by electrons 

in a copper wire comes out to be huge; of the order of 
510 atm. Do we feel 

such an enormous pressure when we hold a copper wire in our hand?  If not, 

why?  It is because this pressure is counter-balanced by Coulomb attraction  

of electrons by ions. 

Before proceeding further, let us recapitulate what we have learnt in this 

section. 

 

 

 

 

 

 

 

 

 

We have so far considered an F-D system at absolute zero. Such a system is 

said to be completely degenerate. You may like to know how thermodynamic 

properties such as heat capacity and entropy of a F-D system vary with 

temperature. For simplicity, we confine our discussion to the behaviour of 

electrons. You will recall that for FTT  , FDf does not differ much from the 

value at 0=T K. Now, for conduction electrons in metals, FT  is of the order     

of 410  to 510 K. This means that conduction electrons are in extremely 

degenerate state even under normal conditions and very few of them are free 

to move. As such, most of the electrons in a metal are tightly bound in low 

lying states and do not contribute to conduction.  

We will refrain from discussing the behaviour of electrons in metals in detail. 

However, very simple arguments can be used to understand the heat capacity 

of metals. You will learn it now. 

14.7.2 Electronic Heat Capacity 

In Sec 14.2, you have learnt that in the classical regime, the correct 

explanation of temperature variation of heat capacity of metals, particularly at 

low values, puzzled physicists for quite some time. The underlying reason is 

SAQ 4  –  Pressure exerted by a fermion system  

The pressure exerted by a fermion system at absolute zero is equal to 

.
5

2
F









V

N
 Using the data obtained in SAQ 3, calculate the pressure 

exerted by the electrons in a copper wire. 

 

FERMI ENERGY 

• The maximum energy possessed by fermions at absolute zero is 

known as Fermi energy. It is given by 

 
3/22

F
8

3

2










=

V

N

m

h
 

• Typical values of Fermi energy of metals range from 2 to 15 eV. The 

corresponding Fermi temperatures are about 410  to 510 K. 

• Electron gas in a metal exerts extremely high pressure ( 510~ atm), 

which is balanced by the Coulomb forces within the material. 
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that electrons are fermions and obey F-D statistics. The electronic heat 

capacity varies linearly at low temperatures. In fact, heat capacity of a metal is 

a sum of two parts: (i) an electronic contribution, which is proportional to 

T and dominates at low temperatures and (ii) the lattice contribution, which is 

proportional to 3T and dominates at room temperature and above: 

  3bTaTCV +=  (14.37) 

Experiments show that the contribution of electronic heat capacity is about 1% 

of the total.  

Let us now summarise what you have learnt in this unit.    

14.8 SUMMARY  

Concept Description 

Bose-Einstein 

distribution function 

 

                   

◼ The Bose-Einstein distribution function is given by 

    
( )  1exp

1

−−
=

ii

i

g

N
 

  For continuous distribution, we can write 

   
( )

( ) ( )  1exp

1
BE

−−
=




=

g

N
f  

 Fermi-Dirac 

distribution function 

 

 

◼ The Fermi-Dirac distribution function is given by 

   
( )  1exp

1

+−
=

ii

i

g

N
 

 For continuous distribution, we can write 

   ( )
( )  1exp

1
FD

+−
=f  

 

◼ The most probable distribution of particles among various energy 

levels of a Maxwellian system is given by 

 

Spectral energy 

density as per 

Planck’s law for 

blackbody radiation 

◼ According to Planck’s law of blackbody radiation, the spectral energy 

density is given by 

    

−






 









 
= d

Tk

hc

h
du

1exp

8

B

3

3
 

 
Fermi energy 

◼ The Fermi energy of a fermion is given by: 

                   
3/22

F
8

3

2










=

V

N

m

h
 

 Pressure exerted by     

F-D gas at T = 0 K 

◼ The pressure exerted by F-D gas at T = 0 K is: 

   FF
5

2









=

V

N
p  

◼  
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14.9 TERMINAL QUESTIONS 

1. Explain on the basis of statistical mechanics the reason for different 

properties observed in case of liquid He3 and liquid He.4  

2. Estimate the deviation in the value of heat capacity CV from the value 

predicted by the Dulong-Petit’s law for a metallic sample kept at its 

Einstein temperature. 

3. Three particles are to be distributed in 4 states. Calculate the number of 

ways this distribution can be done if the particles obey (i) M-B, (ii) B-E and 

(iii) F-D statistics. 

4. Calculate the Fermi energy and Fermi temperature for: 

i) liquid He3 assuming that each atom occupies 63 Å3 volume and      

mass of He3 is equivalent to mass of 3 protons; and 

ii) electrons in a white dwarf star consisting of completely ionized He 

      atoms with density 37 cm g10 −= and number density 3010  electrons 

per .cm3    

5. The number density of gold atoms is 28109.5  atoms .m 3− Each atom 

contributes one free electron for conduction.  Examine, whether the 

electron gas is strongly degenerate at room temperature. 

14.10 SOLUTIONS AND ANSWERS  

Self-Assessment Questions 

1. A particle consisting of an odd number of Fermi particles is a fermion and 

a particle consisting of an even number of Fermi particles is a boson. He3  

consists of two protons, one neutron, and two electrons. Hence, it consists 

of five particles of spin ½, and is a fermion. He4 consists of two protons, 

two neutrons and two electrons. Hence, it consists of six fermions and is a 

boson. 

 
2. In the high energy region, we can write ,   so that 1)( −  and 

then we can ignore unity in comparison to the exponential function in            

[Eqs. (14.16) and (14.22)]. Then Bose-Einstein as well as Femi-Dirac 

distribution functions reduce to Maxwell-Boltzmann distribution function. 

3. We have  

    
3/22

F
8

3

2










=

V

N

m

h
   

 On substituting the given values in the expression of F , we get 

Electronic heat 

capacity  

◼ The electronic contribution to the heat capacity of a metal is given by 

           3bTaTCV +=   
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3/2

3-22
28

227

F cm 1053.8
8

3

g101.92

s) erg1062.6(













=

−

−

 erg1031.11 12−=     

By using the relation ,eV106.24  erg  1 11=  we can express the Fermi 

energy in the units of electron volts as 7.1 eV. 

4.  From SAQ 3, we know that for copper, 281053.8 =
V

N
 electrons 3m−  and 

J 1031.11 19
F

−= . Substituting these values in the given expression, we 

get atm 1086.3m N 1086.3
5

2
pressure 52-10

F ==







=

V

N
. 

Terminal Questions 

1. He3 and He,4  the two stable isotopes of helium, have markedly different 

behaviour at low temperatures. The He4 atom (comprising of two protons, 

two neutrons and two electrons) has integral spin and is governed by 

Bose-Einstein statistics. At about 2.18 K and p ~ 1 atm, it undergoes                    

λ-transition, which was explained by F. London as Bose-Einstein 

condensation. Above the λ-transition temperature, it behaves like a 

regular, “normal” fluid However, below the λ-transition temperature, helium 

behaves as a super-fluid characterized by zero viscosity.  

2. For ,E=T  Eq. (14.3b) implies that 

    

( )

( )

( ) ( )
( )

  
=  

    −   

= = =
− −

2
E EE

2
E E E

2 2

exp /
3

exp / 1  

2.718
       3 3 3 0.92

1 2.718 1

VC R

e
R R R

e

 

         Hence, the deviation from the value predicted by Dulong-Petit’s law  

         is  ( ) RRCV 24.092.013 =−=  

3. i) For M-B statistics, the particles are distinguishable. Hence, the       

  number of ways are 64.43 =    

 ii) For B-E statistics, the particles are indistinguishable and any number     

  of them can occupy the same state.  

  Hence, the number of ways they can be distributed are:         

  20
! 3 ! 3

! 6
3

143 ==−+ C   

      iii) For F-D statistics, the particles are indistinguishable and maximum 

only one particle can occupy any state. The number of ways are: 

           4
! 1 ! 3

! 4
3

4 ==C  

4. We have  

                      
3/22

F
8

3

2










=

V

N

m

h
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  and 
3/2

B

2

B

F
F

8

3

2










=


=

V

N

km

h

k
T  

 i) For liquid 3He,  63=
N

V
Å3 13241 atom cm 1063atom −−− =  

    322
24

cm atom 1059,1
63

10 −==
V

N
  

    m = 3  mass of proton = 3  1.67  10−24g =  5.01  10−24g 

  
3/2

3-21
24

227

F cm 109.15
8

3

g1001.52

s) erg1062.6(













=

−

−
 

         

meV 0.42eV 1024.61071.6

erg1071.6

1116

16

==

=

−

−

 

  This yields, K 9.4
K erg1038.1

erg1071.6
1-16

16

B

F
F =




=


=

−

−

k
T  

 ii) For white dwarfs  = 107g cm−3 and 3-30 cm 10=
V

N
 

   
2/3

3-30
28

227

F cm 10
8

3

g101.92

s) erg1063.6(













=

−

−
 

              MeV 0.36
eV erg 101.6

erg1084.5
  erg1084.5

1-12-

7
7 =




==

−
−  

 and Fermi temperature = K1023.4
K  erg 1038.1

erg1085.5 9

1-16

7

=



=

−

−

  

5. To obtain the Fermi temperature, we first calculate the Fermi energy of 

gold. 

            
3/22

F
8

3

2










=

V

N

m

h
 

 Substituting the values of the various terms,  

     
3/2

3-26
31

234

F m 109.5
8

3

kg 101.92

s) J1062.6(













=

−

−

 

  eV) 5.53( J 1085.8       19 == −  

 Now, the Fermi temperature is related to Fermi energy with the relation  

            
B

F
F

k
T


=  

                      K 1041.6
K J 1038.1

J 1085.8 4
1-23

19
=




=

−

−

 

 Since the Fermi temperature for gold is far greater than the room 

temperature, the electron gas in the gold sample is strongly degenerate. 
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Symbol Quantity Value 

c Speed of light in vacuum 8 13.00 10 ms−  

0  Permeability of free 

space 

6 21.26 10 NA− −  

0  Permittivity of free space 12 2 1 28.85 10 C N m− − −  

01/ 4   9 2 28.99 10 Nm C−   

e  Charge of the proton 191.60 10 C−  

− e Charge of the electron 191.60 10 C−−   

h Planck’s constant 346.63 10 Js−  

  h / 2 341.05 10 Js−  

em  Electron rest mass 319.11 10 kg−  

− / ee m  Electron charge to mass 

ratio 

11 11.76 10 Ckg−−   

pm  Proton rest mass 271.67 10 kg−  (1 amu) 

nm  Neutron rest mass 271.68 10 kg−  

0a  Bohr radius 115.29 10 m−  

AN  Avogadro constant 23 16.02 10 mol−  

R Universal gas constant 1 18.31 Jmol K− −   

Bk  Boltzmann constant 23 11.38 10 J K− −  

G Universal gravitational 

constant 

11 2 26.67 10 Nm kg− −  

TABLE OF PHYSICAL CONSTANTS 
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BLOCK 1: KINETIC THEORY OF GASES 

Unit 1  Ideal and Real Gases  

Unit 2  Molecular Velocity Distribution Function  

Unit 3  Mean Free Path and Transport Phenomena  

Unit 4 Brownian Motion  

BLOCK 2: THE ZEROTH AND THE FIRST LAWS OF  
  THERMODYNAMICS 

Unit 5  Thermodynamic Description of a System  

Unit 6  The Zeroth Law 

Unit 7  The First Law and its Applications 

BLOCK 3: SECOND AND THIRD LAWS OF THERMODYNAMICS 

Unit 8  Carnot Cycle  

Unit 9  Entropy and the Laws of Thermodynamics 

Unit 10 The Thermodynamic Potentials 

Unit 11 Theory of Radiation 

BLOCK 4: STATISTICAL MECHANICS  

Unit 12 Basic Concepts of Statistical Mechanics 

Unit 13 Classical Statistics  

Unit 14 Quantum Statistics 

LIST OF BLOCKS AND UNITS: BPHCT-135 
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SYLLABUS: THERMAL PHYSICS AND STATISTICAL MECHANICS  
 (BPHCT-135)                         4 Credits 

Kinetic Theory of Gases: Expression for pressure (no derivation), kinetic 

interpretation of temperature and derivation of gas laws, real gases (van der Waals 

equation, qualitative discussion). Derivation of Maxwell’s law of distribution of velocities 
and its experimental verification, expression for average speed ),(v  most probable 

speed ),( pv  and root mean square )( rmsv , law of equipartition of energy (no derivation) 

and its applications to specific heat of gases, monoatomic and diatomic gases. Mean 

free path (zeroth order). Transport phenomena, viscosity, conduction and diffusion 

(discussion of physical implications only, no derivation). Brownian motion (no 

derivation) and its significance, sedimentation, Perrin’s experiment. 

The Zeroth Law and The First Law of Thermodynamics: Boundaries, variables, 

processes (reversible and irreversible), graphical description. Statement of zeroth law, 

introduction of concept of temperature, applications of the zeroth law. Compressibility 

and expansion coefficient. First law of thermodynamics, statement, parametric form, 

mathematical form (integral and differential), relation between cp and cv, work done 

during isothermal and adiabatic processes, velocity of sound. 

The Second and Third Law of Thermodynamics: Heat engines, conversion of heat 

into work, Carnot cycle, efficiency of a Carnot engine, Carnot theorem, Kelvin-Planck 

and Clausius statements of second law of thermodynamics, equivalence of Kelvin-

Planck and Clausius statements. Entropy, second law and entropy, entropy changes in 

reversible and irreversible processes, entropy-temperature diagram, statement and 

consequences of the third law of thermodynamics (unattainability of absolute zero 

temperature, etc.). Thermodynamic potentials, enthalpy, Gibbs, Helmholtz and internal 

energy functions, Maxwell’s relations and their applications, Clausius-Clapeyron 

equation, Joule Thomson effect, TdS equations. Black body radiation, spectral 

distribution, concept of energy density, derivation of Planck’s law, deduction of laws of 

radiation (Wien’s distribution law, Rayleigh-Jeans law, Stefan Boltzmann law and 

Wien’s displacement law). 

Statistical Mechanics: Phase space, macrostate and microstate, entropy and 

thermodynamics probability, distribution function. Maxwell-Boltzmann law, partition 

function of a monoatomic gas and deduction of thermodynamic functions. Need for 

quantum statistics, Bose-Einstein distribution function, Bose-Einstein photon gas, 

Fermi-Dirac distribution function, strongly degenerate Fermi system, Fermi energy, 

electronic heat capacity, comparison of the three statistics. 


