141 PERIODIC MOTION
1. What is periodic motion ? Give some of its examples.

Periodic motion. Any motion that repeats itself over
and over again at regular intervals of time is called periodic
or harmonic motion. The smallest interval of time after
which the motion is repeated is called its time period.
The time period is denoted by T and its SI unit is
second.

Examples of periodic mdtion :

(1) The motion of any planet around the sun in an
elliptical orbit is periodic. The period of
revolution of Mercury is 87.97 days.

(if) The motion of the moon around the earth is
periodic. Its time period is 27.3 days.

(itf) The motion of Halley’s comet around the sun is
periodic. It appears on the earth after every
76 years.

(iv) The motion of the hands of a clock is periodic.

(v) The heart beats of a human being are periodic.

The periodic time is about 0.8 second for a normal
person.

14.2  OSCILLATORY OR HARMONIC

MOTION

2. What is oscillatory motion ? Give some of its
examples.

OSCILLATIONS

Oscillatory motion. If a body moves back and forth
repeatedly about its mean position, its motion is said to be
oscillatory or vibratory or harmonic motion. Such a motion
repeats itself over and over again about a mean position
such that it remains confined within well defined limits
(known as extreme positions) on either side of the
mean position.

Examples of oscillatory motion :

(i) The swinging motion of the pendulum of a wall
clock.

(11) The oscillations of a mass suspended from a
spring.

(1i1) The motion of the piston of an automobile engine.

(iv) The vibrations of the string of a guitar.

(v) When a freely suspended bar magnet is dis-
placed from its equilibrium position along north-

south line and released, it executes oscillatory
motion. :

PERIODIC MOTION VS.
OSCILLATORY MOTION

3. Every oscillatory motion is necessarily periodic but
every periodic motion need not be oscillatory. Justify.

Distinction between periodic and oscillatory
motions. Every oscillatory motion is necessarily
periodic because it is repeated at regular intervals of

14.1
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time. In addition, it is bounded abdut one mean
position. But every periodic motion need not be
- oscillatory. For example, the earth completes one
revolution around the sun in 1 year but it is not a to
and fro motion about any mean position. Hence its
motion is periodic but not oscillatory.

14.4 ' PERIODIC FUNCTIONS AND
FOURIER ANALYSIS

4. With suitable examples, explain the meaning of a
periodic function. Construct two infinite sets of periodic
functions with period T. Hence state Fourier theorem.

Periodic function. Any function that repeats itself at
regular intervals of its argument is called a periodic
function. Consider the function f () satisfying the
property,

f(8+T)=f(6)

This indicates that the value of the function f
remains same when the argument is increased or
" decreased by an integral multiple of T for all values of
0. A function f satisfying this property is said to be
periodic having a period T. For example, trigonometric
functions like sin 6 and cos 6 are periodic with a period
of 2« radians, because

sin(0+2n)=sin 0
cos (0 +27) = cos O

If the independent variable 6 stands for some
dimensional quantity such as time t, then we can
construct periodic functions with period T as follows :

fi (l!)=:5in2—;;—tt and g, (t)=cos%

We can check the periodicity by replacing t by t + T.
Thus

2n . (27t
t+T)=sin—(t+T)= —+2
f](+)smT(+)sm(T+1t)

. 2mt
=sm T - f®)

Similarly, g, (t+T)=g, (¢)

It can be easily seen that functions with period T / n,
where n=1,2, 3, .....also repeat their values after a time
T. Hence it is possible to construct two infinite sets of
periodic functions such as

£, ()= sin 2n nt

27 nt
g, (H)=cos " n=0,1,2,3,4, ...

In the set of cosine functions we have included the
constant function g, (t)=1

The constant function 1 is periodic for any value of
T and hence does not alter the periodicity of g, (t).

Fourier theorem. This theorem states that any arbitrary
function F () with period T can be expressed as the unique
combination of sine and cosine functions f_(t) and g, (t
with suitable coefficients. Mathematically, it can be
expressed as :

t
F(l‘)=bn+bl cos;?z;—t+b2 cos4—n-

=b0 + b1 cos ot + b2 cos 2wt + b3 cos 3wt + ...
+a, sin ot + ay sin 2 wt + ay sin 3ot + ...

or F(H)=by+ Zb, cosnawt+ La, sinn ot
n "

where w=2n/T.

The coefficients bo, b, by, ..., Ay, 8y, s, ..... are called
Fourier coefficients. These coefficients can be deter-
mined uniquely by a mathematical method called
Fourier analysis. Suppose all the Fourier coefficients
except a; and b, are zero, then

2t 2t
E(t)=a, sinl+b1 cos “1-
T T

This equation is a special periodic motion called

simple harmonic motion (S.H.M.).

14.5  PERIODIC, HARMONIC AND
NON-HARMONIC FUNCTIONS .
5. Distinguish between periodic, harmonic and
non-harmonic functions. Give examples of each.

Periodic, harmonic and non-harmonic functions.
Any function that repeats itself at regular intervals of its
argument is called a periodic function. The following sine
and cosine functions are periodic with period T :

f(t)=sin wt=sin¥

mt

2
and g(t)=cos mt=cos—-T—

Fig. 14.1. shows how these functions vary with time t.
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Fig. 14.1 Periodic functions which are harmonic.
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Obviously, these functions vary between a maximum
value + 1and minimum value —1 passing through zero
in between. The periodic functions which can be represented
by a sine or cosine curve are called harmonic functions.

All harmonic functions are necessarily periodic but all

periodic functions are not harmonic. The periodic functions .

which cannot be represented by single sine or cosine function
are called non-harmonic functions. Fig. 14.2 shows some
periodic functions which repeat themselves in a period
T but are not harmonic.

0 T 2T 3T 4T f‘
A

\/ t
A
F() /-\ /—'\
NN

Fig. 14.2 Some non-harmonic periodic functions.

0%

\J

Any non-harmonic periodic function can be
constructed from two or more harmonic functions.

One such function is : F (t)=a, sin of + a, sin 2wt
It can be easily checked that the functions tan ot
and cot wt are periodic with period T = n/ wwhile sec wt
and cosec ot are periodic with period T =2n/ @ Thus

tan{m(t+-7—[)} = tan (ot + n) = tan ot
[0}

@

sec {m(t + 35)} = sec (ot + 27n) = sec wt

But such functions take values between zero and
infinity. So these functions cannot be used to represent
displacement functions in periodic motions because
displacement always takes a finite value in any
physical situation.

Exaymfle.s Based on

2 .IW G OnE ﬁﬁﬁf‘_’j 5
ar [ ozl DINS:-
ind Harmonic Function

1. A function which can be represented by a single
sine or cosine function is a harmonic function
otherwise non-harmonic.

2. A periodic function can be expressed as the sum
of sine and cosine functions of different time

Concepts Usep

periods with suitable coefficients.

Examprr 1. On an average a lnunan heart is found to beat
75 tines in a minute. Calculate its beat frequency and
period. [NCERT]
Solution. Beat frequency of the heart,
~ No.of beats _ 75
¥~ Time taken 1min
75

/2 1255 ! =1.25 Hz.
60 s

Beat period, T = 1 = L =0.8s.

v 1255 !

Examprr 2. Which of the following functions of time
represent (a) periodic and (1) non-periodic motion ? Give the
period for each case of periodic motion. [w is any positive
constant). [INCERT]

(i) sin ot + cos 2wt + sin 4ot
(iv) log (wt).
x (t) =sin ot + cos ot

(i) sin ot + cos wf
(i) ¢

Solution. (/) Here
= Jf[sin wi cosl; + cos wf sin 2}

=+/2 sin (ot + n/4)
Moreover,

x(l+2—n)=ﬁ sin[w(t +271/w)+ /4]
®
=2 sin[wt+2n+z]
=ﬁsin[cot+ %):x(r).

Hence sin ot + cos ot is a periodic function with
time period equal to2n/ @
(if) Here x (t)=sin @t + cos 2wt + sin 4ot
sin wt is a periodic function with period
=2n/w=T

cos 2wt is a periodic function with period
=2n/20=n/w=T/2

sin 4@t is a periodic function with period
=2n/d4w=n/20=T/4

Clearly, the entire function x(t) repeats after a

minimum time T =27/ w. Hence the given function is
periodic.

(iif) The function e ©f decreases monotonically to
zero as t — . It is an exponential function with a
negative exponent of ¢ where e=2.71828. It never
repeats its value. So it is non-periodic.

(iv) The function log (wt) increases monotonically

with time. As t — o, log (wt) = . It never repeats its
value. So it is non-periodic.
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e e This equation defines S.H.M. Here k is a positive
® PROBLEMS FOR PRACTICE constant called force constant or spring factor and is
Which of the following functions of time represent defined as the restoring force produced per unit displace-
(a) simple harmonic motion, (b) periodic but not siiple  pient. The SI unit of k is Nm ™., The negative sign in the
harmonic and (c) non-periodic motion ? Find the period of  above equation shows that the restoring force F always

cach periodic motion. Here wis a positive real constant. acts in the opposite direction of the displacement x.
1. sin @l + cos wt. (Ans. Simple harmonic) Now, according to Newton's second law of motion,
2. sin nt + 2cos 2nt + 3sin 3. F=
(Ans. Periodic but not simple harmonic) . I,
3. cos (20t + w/3). (Ans. Simple harmonic) k '
4. sin® ot. (Ans. Periodic but not simple harmonic) o =" m * . v
5. cos wf + 2sin” wt. Hence simple harmonic motion may also be

tAns. Periodic but not simple harmonic) defined as follows :

% HINTS : A particle is said to possess simple harmonic motion if it
moves to and fro about a mean position under an acceleration
which is directly proportional to its displacement from the
mean position and is always directed towards that position.

1. sin @t + cos @t =+/2 sin (of + /4), T=2n/w
2. Each term represents S.H.M.

; . 2n
Period of sin nt, T = P 2s Examples of simple harmonic motion :

. ¢ 21 s 749 (1) Oscillations of a loaded spring.
veriod of Zos Jct = 2 =17 (i) Vibrations of a tuning fork.

Period of 3sin 31/ = ;_ﬂ 2. T/3 (11f) Vibrations of the balance wheel of a watch.
e

(iv) Oscillations of a freely suspended magnet in a
The sum is not simple harmonic but periodic with uniform magnetic field.

T=2s. 7. State some important features of simple harmonic
3. cos (2wt + n/ 3) represents S.H.M. with motion.

T=2n/20=n/w
4. sin? ot =1/2-(1/2)cos 20t

The function does not represent S.H.M. but is
periodic with T =2n /20 =/ .

Some important features of S.H.M.
(i) The motion of the particle is periodic.
(i) It is the oscillatory motion of simplest kind in

which the particle oscillates back and forth about

: S . . . ;
5. cos ot + 2sin” of =cos ot + 1~ cos 2ot 1ts mean position with constant amplitude and

=1+ cos wt - cos 2wt fixed frequency.
cos of represents S.H.M. with T =2n/ w. (itf) Restoring force acting on the particle is propor-
cos 2wt represents S.HM. with period tional to its displacement from the mean position.
=2n/2w=n/w=T/2 (iv) The force acting on the particle always opposes
The combined function does not represent S.H.M. the increase in its displacement.
but is periodic with T=2n/ @, (v) A simple harmonic motion can always be
E———— expressed in terms of a single harmonic
14.6 = SIMPLE HARMONIC MOTION function of sine or cosine.

6. What is meant by simple harmonic motion ? Give 14.7  DIFFERENTIAL EQUATION FOR S.H.M.
some examples. te d he di al ) SHM
Simple harmonic motion. A particle is said to execute Giv 8. . thteI g wn tHe U ei;etn t-m equatzsqn f 3: ) tf.m :
simple harmonic motion if it moves to and fro about a meqn 7'V 115 SOULION. fience obtain expression for €

position under the action of a restoring force which is P eriod of S.H.M.

directly proportional to its displacement from the niean Differential equation of S.HM. In SSH.M,, the
position and is always directed towards the mean position.  restoring force acting on the particle is proportional to
If the displacement of the oscillating body from the its displacement. Thus
mean position is small, then F=—kx.
Restoring force « Displacement The negative sign shows that F and x are oppo-

Fax or F=-kx sitely directed. Here k is spring factor or force constant.
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By Newton’s second law,
2
3
F=m—-——
dt= N
: . dsx ..
where m is the mass of the particle and —5 is its

dt=

acceleration.
2 2
d-x dx k
m—; =—kx  or — =X
dt- dt m
2y
Put LB then —2 =— 0’
m dt
dx
or —5 ¥ w’x =0 (1)
dt

This is the differential equation of S.H.M. Here wis
the angular frequency. Clearly, x should be such a
function whose second derivative is equal to the
function itself multiplied with a negative constant. So a
possible solution of equation (1) may be of the form

x = Acos (ot + ¢,)

Then %z—m/&sin((oﬂ-%) ,
dzx 2 2
and F=—w A cos (ot + ¢) =— 0°x
2
or ii—%€+u)'?’1c =0
dt

which is same as equation (1). Hence the solution of the
equation (1) is
x = A cos (ot + ¢;) -(2)
It gives displacement of the harmonic oscillator at
any instant t.

Here A is the amplitude of the oscillating particle.
¢ =t + ¢, is the phase of the oscillating particle.
¢, is the initial phase (at { =0) or epoch.

Time period of S.H.M. If we replace t by ¢ + % in

equation (2), we get

x = Acos [m(t+ 2—“)4— J
w

= Acos(of +2n+ ¢;)= A cos (wt + ;)

; . ) . 2n 2n
i.e., the motion repeats after time interval —. Hence —
® ®

B bl
W k/m ) m

o
k Spring factor

In general, mis called inertia factor and k the spring

factor. :

is the time period of S.H.M.
B 2_1t _ 2m

or

14.8 SOME IMPORTANT TERMS

CONNECTED WITH S.H.M.

9. Define the terms harmonic oscillator, displacement,
amplitude, cycle, time period, frequency, angular frequency,
phase and epoch with reference to oscillatory motion.

Some important terms connected with S.H.M.

(1) Harmonic oscillator. A particle executing simple
harmonic motion is called harmonic oscillator.

(if) Displacement. The distance of the oscillating
particle from its mean position at any instant is called its
displacement. It is denoted by x.

There can be other kind of displacement variables.
These can be voltage variations in time across a capacitor
in an a.c. circuit, pressure variations in time in the propa-
gation of a sound wave, the changing electric and
magnetic fields in the propagation of a light wave, etc.

(iii) Amplitude. The maximum displacement of the
oscillating particle on either side of its mean position is
called its amplitude. It is denoted by A. Thusx =+ A

max

(iv) Oscillation or cycle. One complete back and forth
motion of a particle starting and ending at the same point is
called a cycle or oscillation or vibration.

(v) Time period. The time taken by a particle to
complete one oscillation is called its time period. Or, it is the
smallest time interval after which the oscillatory motion
repeats. It is denoted by T.

(vi) Frequency. It is defined as the number of oscillations
completed per unit time by a particle. It is denoted by v (nu).
Frequency is equal to the reciprocal of time period.
That is, '

V==
T

Clearly, the unit of frequency is (second) ! ors™ L. Itis

also expressed as cycles per second (cps) or hertz (Hz).

SI unit of frequency =s ™' = cps = Hz.

(vii) Angular frequency. It is the quantity obtained by
multiplying frequency v by a factor of 21 It is denoted
by a

Thus, £r

W=27V=—

SI unit of angular frequency =rad s,

(viii) Phase. The phase of a vibrating particle at any
instant gives the state of the particle as regards its position
and the direction of motion at that instant. It is equal to the
argument of sine or cosine function occurring in the
displacement equation of the S.H.M. Suppose a simple
harmonic equation is represented by

x = A cos (of + ¢)
Then phase of the particle is : ¢ =t + ¢,
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Clearly, the phase ¢ is a function of time £ It is
usually expressed either as the fraction of the time
period T or fraction of angle 2x that has elapsed since
the vibrating particle last passed its mean position in
the positive direction.

3n/2| 2n
+ A

b= ot + ¢, 0
+ A 0

/2 id
- A 0

| x = Acos (ot + ¢,)

Thus the phase ¢ gives an idea about the position
and the direction of motion of the oscillating particle.

(ix) Initial phase or epoch. The phase of a vibrating
particle corresponding to time t =0 is called initial phase or
epoch.

Att=0, ¢=4¢,

The constant ¢ is called initial phase or epoch. It

tells about the initial state of motion of the vibrating
particle.

149  UNIFORM CIRCULAR MOTION

AND S.H.M.

10. Show that simple harmonic motion may be
regarded as the projection of uniform circular motion
along a diameter of the circle. Hence derive an expre-
ssion for the displacement of a particle in S.H.M.

Relation between S.H.M. and uniform circular
motion. As shown in Fig. 14.3, consider a particle P
- moving along a circle of radius A with uniform angular
velocity ®. Let N be the foot of the perpendicular
drawn from the point P to the diameter XX'. Then N is
called the projection of P on the diameter XX'. As P
moves along the circle from X to Y, Y to X', X' to Y’ and
Y'to X ; N moves from X to O, Oto X', X' to Oand Oto
X. Thus, as P revolves along the circumference of the
circle, N moves to and fro about the point O along the
diameter XX'. The motion of N about O is said to be
simple harmonic. Hence simple harmonic motion may
be defined as the projection of uniform circular motion upon
a diameter of a circle. The particle P is called reference
particle or generating particle and the circle along which
the particle P revolves is called circle of reference.

Y
\m
P

X' 0=wmt!

-—_\’—.{

Y

== T

sareEmad

Fig. 14.3 Reference circle.

Displacement in simple harmonic motion. As

~shown in Fig. 14.4, consider a particle moving in

anticlockwise direction with uniform angular velocity
w along a circle of radius A and centre O. Suppose at
time ! =0, the reference particle is at point A such that
£ZXO0A = §,. Atany time I, suppose the particle reaches
the point P such that ZAOP = wt. Draw PN 1 XX
Y

P

1

oL~
[

(@] N
— X —|

v
Fig. 14.4 Displacement in S.H.M., epoch (+ ¢;)
Clearly, displacement of projection N from centre O
at any instant t is x =ON.
In right-angled AONP,
ZPON = ot + ¢,

% = cos (of + d,)
X
or 2 = cos (ot + ¢p)

or x = A cos (ot + @)

This equation gives displacement of a particle in
S.HM. at any instant t. The quantity ot + ¢, is called
phase of the particle and ¢ is called initial phase or phase
constant or epoch of the particle. The quantity A is called
amplitude of the motion. It is a positive constant whose
value depends on how the motion is initially started. Thus

Phase
I 1
X = A cos (ot + bg)
ft fi ft fr
Displacement Amplitude  Angular Initial
frequency phase
Y ~.
r
X' ot X
0 ¢, N
B
'Y‘l
Fig. 14.5 Epoch (-¢,)
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As shown in Fig. 14.5, if the reference particle starts
motion from the point P such that ZBOX =¢, and
ZBOP = ot, then

ZPON = ot ¢,
x = Acos (of —d)
Here — ¢, is the initial phase of the 5.H.M.

11. Show that a linear combination of sine and
cosine functions like

x (t) = a sin wt + b cos wt

represents a simple harmonic motion. Determine its

amplitude and phase constant.
General expression for S.H.M. We are given
x =asin ot + b cos ot

(1)

Differentiating w.r.t. time f, we get

= wa cos ot — b sin of

Again, differentiating w.r.t. time {, we get

d*x 2 2
—2=—masmmf Db cos wt
dt
= - (a sin ot + b cos wt)
a'zx 2
. or - ==X
dt
ie., acceleration o displacement

Hence the equation (1) represents S.H.M.

To determine its amplitude and phase constant, we
put

a=Acos ¢ -(2)
and b= Asin ¢ -(3)
Then x = A cos ¢ sin of + A sin ¢ cos ot
= A (sin ot cos ¢ + cos wt sin ¢)
or x = Asin (of + ¢)

This again shows that equation (1) represents
S.H.M. of amplitude A and phase constant ¢

Squaring and adding (2) and (3), we get

a® + b% = A? (cos® o+ sin ¢)= A% x 1
- Amplitude, A=./a*+b?
Dividing (3) by (2), we get: —= Asing tan ¢
Acos ¢

1

ales 2T

Phase constant, ¢=tan”

14.10 VELOCITY IN S.H.M.

12. Deduce an expression for the velocity of a
particle executing S.H.M. When is the particle velocity
(i) maximum and (ii) minimum ?

Expression for the velocity of a particle executing
S.H.M. As shown in Fig. 14.6, consider a particle P
moving with uniform angular speed  in a circle of

radius A. Its velocity vector v is directed along the
tangent and the magnitude of this velocity vector is
v = Angular velocity x radius = ® A
v =mA
Y .

]

AP
R

ol + ¢,

y - - - -

@l + dy

|l
>~

< X
o Q@ unp

Y

Fig. 14.6 Velocity of a particle in S.H.M.

Draw PP and QQ perpendiculars to the diameter
XX'. The motion of P’ is simple harmonic. Clearly, the
instantaneous velocity of a particle executing S.H.M.
will be

v (t) = Velocity of the particle P’ at any instant f

= Projection of the velocity v of the
reference particle P

= PQ = PQ =—v sin (ot + ¢,)
or v(t)=—Asin (ot + ¢,).

The negative sign shows that the velocity of P’ is
directed towards left i.e., in the negative X-direction.

Moreover,

2 (f)= - A1 - cos’ oA X
= y1-cos” (ot + ¢p) =-wA,f1 =
or v(i‘):—a)‘f“lz—:rr2 [ x= A cos (ot + ¢,)]

Special cases. (i) When the particle is at the mean
position, then x =0, so

V() =—w A2 0> =—w A

This is the maximum velocity which a particle in
S.H.M. can execute and is called velocity amplitude,
denoted by v

max

v =wA= 2“A
T

max

(if) When the particle is at the extreme position, then

x=% A so
v=—m+ A% - A2 =0,

Thus the velocity of a particle in S.H.M. is zero at
either of its extreme positions.
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14.11  ACCELERATION OF A PARTICLE 1412 PHASE RELATIONSHIP BETWEEN
IN S.H.M. DISPLACEMENT, VELOCITY AND
13. Show that the acceleration of a particle in S.H.M. ACCELERATION
is proportional to its displacement from the mean position. 14. Draw displacement-time, velocity-time and

Hence write the expression for the time period of S.H.M. ~ acceleration-time graphs for a particle executing simple

Expression for the acceleration of a particle executing harmonic motz.on. Dfscuss their phas'e rela.nonsth.
S.H.M. As shown in Fig. 147, consider a particle P~ Inter-relationship between particle displacement,

moving with uniform angular speed © in a circle of Velocity and acceleration in SHM. If a particle
_ ) . . — executing S.H.M. passes through its positive extreme
radius A. The particle has the centripetal acceleration % position (x =+ A) at time ¢ =0, then its displacement

acting radially towards the centre O. The magnitude of equation can be written as

this acceleration is a, = A x()= A cos ot
1x .
Y =~ Velocity, v(t):‘d—tz—m/lsm wt

:mAcos(mr+E)
2

Acceleration, a(t)= % =— o’ A cos of

= o A cos (ot + 7).

Using the above relations, we determine the values of
displacement, velocity and acceleration at various
T — instant { for one complete cycle as illustrated below.
-7 Acceleration of a particle in S.H.M.

Fig. 14

T T 3r
Draw PP and QQ' perpendiculars to the diameter MRt g 4 2 | % | T
XX'. The motion of P’ is'simple harmon‘ic. Clearly, _the Phase angle,t = 2n 0 n . 3n -
instantaneous acceleration of a particle executing T 2 2
S.H.M. will be Displacement, x (1) + A 0 -A 0 + A
. ; y max. | min. | max. | min. | max.
a(t)= Accelerahon of particle P at any instant ¢ Velocity, o(1) p Y 0 caAl 0
= Projection of the acceleration a. of the min. | max. | min. | max. | min.
reference particle P Acceleration, a (H) -o?Al 0 [+w24| 0 |- ©?A
- . max. | min. | max. | min. ax.
= Projection of PQ on diameter XX’ 2 2 — 1 m
= PQ =—a_cos (of + b,) In Fig. 14.8, we have plotted separately the x versus ¢, v
§ 0 2 versus I and a versus ¢ curves for a simple harmonic motion.

or a(t)=-w’ Acos(wt+¢0):—mx

i : L . T | |
This equation expresses the acceleration of a particle = +A ! i 1
executing S.H.M. It shows that the acceleration of a £ —\ Co3Tyg
particle in S.H.M. is proportional to its displacement from E; 2 T/4 W 7 i
the mean position and acts in the opposite direction of the B -A | , :
displacement. a ; T :
Special cases. (i) When the particle is at the mean | @ |
position, then x =0, so, acceleration = — ? (0)=0. T Hod ! ' '
; oz ; 2 LT |
Hence the acceleration of a particle in S.H.M. is zero at- g 0 7 X ; s T t—
the mean position. 2 _ o4l ; _
(if) When the particle is at the extreme position, then ()

i ¥ —_—— 2
x = A, so, acceleration = - w*A oA }

This is the maximum value of acceleration which a

cceleration —
I
e
ry
o

T)2 3T/4 vj =
(c) '

particle in S.H.M. can possess and is called acceleration
amplitude, denoted by a___ .
2 LA 2 s Ao te S TAY S
2 2 T = s
fmax = A=(_T_J A Fig. 14.8 Relation between velocity, displacement

and acceleration in S.H.M.
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Conclusions. From the above graphs, we can draw
the following conclusions about simple harmonic motion :

(/) Displacement, velocity and acceleration, all
vary harmonically with time.

(i The \’LlOCll'\’ amplitude is w times ; and acceleration
amplitude is o times the displacement amplitude A.

(iif) Clearly, the velocity curve lies shifted to the left
of the displacement curve by an interval of T / 4. Thus
the particle velocity is ahead of its displacement by a phase
angle of n/2 rad. This means that whichever value
displacement attains at any instant, velocity attains a
similar value a T/4 time (a quarter of cycle) earlier.
When the particle velocity is maximum, the displace-
ment is minimum and vice versa.

(1v) Clearly, the acceleration curve lies shifted to the
left of the displacement curve by an interval of T /2.
Thus the particle acceleration is ahead of its displacement by
a phase angle of m rad. Or, acceleration is ahead of
velocity in phase by n/2 rad. When acceleration has
maximum positive value, displacement has maximum
negative value and vice versa. When the displacement
is zero, the acceleration is also zero.

Examples based on

‘F-:."""‘.
s

0 ""E:T‘l;gm‘{_:!

FormuLae Usep

1. Displacement, x = A cos (wt + ¢)

where A = amplitude, ® = angular frequency and
¢, = initial phase of particle in SHM.

2. Velocity, v =% =- Asin (of + ¢)

:—(::1f1"12—Jc2
=w A

3. Acceleration, a = % = — w?A cos (of + ¢g)=- @ x
(

Maximum velocity, v,

=0’ A
4. Restoring force, F= —kx = - m&* x

Maximum acceleration, a

where k = force constant and w? =k / m.
5. Angular frequency, ®=2nv=2n/T.

6. Time period, T = 2r m:hﬁ.

Acceleration
f_*
7. Time period, T = 2n Inertia factor (
\jSpnng factor
Units Usep

Displacement x and amplitude A are in m or cm,
force constant k in Nm™, frequency v in He,
angular frequency win rad s~

Exanmer 3. The following figures depict two circular
maotions. The radius of the circle, the period of revolution, the
initial position and the sense of revolution are indicated on
the figures. Obtain the simple harmonic motions of the

x-projection of the radius vector of the rotating particle P in
caclt case.

[NCERT)
Y pit=0)
0) T=30s
b
& X

Fig. 14.9

Solution. (a) As shown in Fig. 14.10(a), suppose the
particle moves in the anticlockwise sense from P to P’
in time t.

Angle swept by the radius vector,

2n 27

B=wt=—t="<1t [~ T=4¢]
T 4

N is the foot of perpendicular drawn from P on the
x-axis.

Displacement,

ON = OP cos (0 + n/4)
or x(t)za‘cos(z—nt+EJ
4 4

This represents S.H.M. of amplitude g, period 4 s
and an initial phase =/ 4 rad.

Y
P(t=0)
P(t=1)
ble /'« T=30s
b1
X_9
2~
o n~n |¥
x(f)
(a) (b)

L S AL AT NS TR

Fig. 14.10

(b) As shown in Fig. 14.10(b), suppose the particle
moves in the clockwise sense from P to P’ in time t.
Angle swept by the radius vector,
2n ¢ _2_1t b [
T 30

O=ont= s T=30s]
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Displacement,

ON = 0P cos(

-0

x(t)y=>b co:s(E = 2% !)
2 30

NI

2n 14
yv(t)=bcos| — t - = v cos(—0)=cos O
or x(t) :c0q[30 2][ (-0) ]

This represents S.H.M. of amplitude b, period 30 s
and an initial phase = - n/2 rad.
EEXAMPLE . A simple harmonic motion is represented by
x=10sin(20 t +0.5)

Write down its amplitude, angular frequency, frequency,
time period and initial phase, if displacement is measured in
metres and time in seconds. [Himachal 09C]

Solution. Given x =10 sin (20  +0.5)

Standard equation for displacement in SHM is
x = Asin (ot + ¢,)
Comparing the above two equations, we get
(i) Amplitude, A=10m.
[+ Aand x have same units]
(iiy Angular frequency, w=20rad s .
o 20 10

(1if) Frequency, v=—=—=—=318 Hz._
i 2n 2n &
; . . 2n 2n &
(iv) Time period, T=— =—=—=0.314s.
o 20 10

(v) Initial phase, ¢, = 0.5 rad.

ExampLr 5. A particle executes SHM with a time period of
2 s and amplitude 5 cm Find (i) displacement (ii) velocity

and (iii) acceleration, after 1/3 second ; starting from the -

mean position.

Solution. Here T=2s, A=5cm, t=1/3s
(1) For the particle starting from mean position,

Displacement, x = A sin ot = A sin 2—; t

=55in2—nxl=Ssin‘E=5x£=4.33cm.
R 3 3 2
dx 2nA 2=
ii) Velocity, =—=——+—cos —t
@, veloan it T T
=2’“‘5cos§=5x3.14xo.5=7.85cms".
2
(1if) Acceleration, a=d—v _an A sin Z—Et
dt T2 T
4x987x5 . &
=———5in —
4 3
3

=9.87 x 5 x 5 =42.77 em s 2.

Example 6. A body oscillates with SHM according to the
equation :

x(t)=5cos (2nt+n/4),
where b is in sec. and x in metres. Calculate
(a) Displacement at t =0 (b) Time period
() Initial velocity [Central Schools 08]
Solution. Given x(t)=5 cos(2nt +n/4)
We compare with standard equation,
x(t) = Acos(wt + ¢)
(@) Displacement at t =0,

#(0) = 5 cos s S
4 2

(b) Clearly, ®=2n or -2-—;=27t
. Time period, T =1s.
dx n
c) Velocity, ©v=-—=-5sin|2nt+— |x2
(©) Velocity, v=5% =Ssinf 2nt+ % Jx2x

Initial velocity at f =0,

|4 10~

v=-10nsin—=-——=m /s.
4 2

LExamrre 7. A body oscillates with SHM according to the
equation,

x=(5.0m)cos[(2mrad s~ ') t + m/ 4]
At t =155, calculate (a) displacement, (b) speed and

(c) acceleration of the body. . [NCERT]
Solution. Here @=2nrad s, T=2n/w=1s,
t=15s

(a) Displacement,
x=50cos(2nx1.5+n/4)=5.0cos(3n+ n/4)
=-5.0cos n/4=-5.0x0.707 = -3.535 m.

(b) Velocity,
dx d .
=—=—][5. 2 nt 4
v - dt[SOcos( s +.1t/ )]

=-5.0x2nsin(2nt + n/4)
=-5.0x2msin(2nx 1.5 + n/4)

=+ 5.0x 27tSiI\7t/4=5.0X2X§X0.707

=2222ms L
(c) Acceleration,
dv d
a=—=—|[-10nsin2nt + n/4
= [10nsin 21t + n/4)]

=—20n° cos (2nt + 1/ 4)

=—4n” [5.0 cos 2nx 1.5 + n/4)]
= —4x9.87 x (-3.535)

=139.56 m s\

[Using (a)]
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Examrre 8. The equation of a simple harmonic motion is
given by y =6 sin 10x £ +8 cos 107 t, where y is in cm and
F in sec. Deterniine the amplitude, period and initial phase.

.Solution. Given y=6sin10nt+8cos10nt (1)

The general equation of SHM is
y = asin (wf + ¢) = a sin of cos ¢+ a cos ot sin ¢

= (a cos ¢) sin wt + (a sin ¢) cos w! .(2)
Comparing equations (1) and (2), we get
acos p=6 -(3)
asin =8 ..(4)
and ot=10nt or ®=10n
2n_ 2nm

T=—=—"-=0.2s.
o 10n

.. Time period,
Squaring and adding (3) and (4), we get
a* (c052 o+ sin® $) =67 +8°
=36+64=100 or a* =100
- Amplitude, a=10 cm
Dividing (4) by (3), we get

tan ¢=% =1.3333

- Initial phase, ¢=tan™ ' (1.3333) =53°8".
EXAMPLE 9. A particle executes S.H.M. of amplitude 25 cm
and time period 3 s. What is the minimum time required for
the particle to move between two points 12.5 cm on either
side of the mean position ?

Solution. When the particle starts from mean
position, its displacement at instant ¢ is given by

y=Asinot
Given A=25cm, T=3s, y=125cm
=2—“=g—ﬂ‘rads‘1
3

125=25 sir123—1rt t

2m 125 1
Ol' —t:—:—
3 25 2
2nt o«
— = t=—s
3 6

.. Time taken by the particle to move between two
points 12.5 cm on either side of mean position is given by

2t=2xl=ls=0.55.
4 2

ExAMPLE 10. The shortest distance travelled by a particle
executing SHM from mean position in2 sis equal to(~/3/2)
times its amplitude. Determine its time period.

Solution. Here =25, y=(v3/2)A T=?

As y:Asinmt=Asin2—TT~tt

iE—A-:f-'lsinznx2

2

C4n B ¢ 4m
or sin — = — =sin — S ===

T 2 3 T 3
or T=12s.

ExAMPLE 11. The time-period of a simple pendulum is 2 s
and it can go to and fro from equilibrium position at @ maximum
distance of 5 cm. If at the start of the motion the pendulum is in
the position of maximum displacement towards the right of
the equilibrium position, then write the displacerent equation
of the pendulum.

Solution. The displacement in SHM is given by
y = Asin (ot + ¢)

GivenT=2s, A=5cm

_2n_2m

T
y=5sin(nt+4¢,)

At time t =0, displacement y =5 cm. Therefore,
5=>5sin(nx0+d¢,)

Gy=m/2

Hence displacement equation for the pendulum is

(61} =1 rad s~

or sin ¢, =1

y=>5si [nt+§)=5cosnh

EXAMPLE 12. A particle executes S.H.M. of time period
10 seconds. The displacement of particle at any instant is
given by : x =10 sin wt (in cm). Find (i) the velocity of body
2s after it passes through mean position (ii) the acceleration
2s after it passes the mean position.  [Central Schools 04]

Solution. Here T =105, x =10 sin ot cm

(1) Velocity, v =%‘:— =10 © cos ot cm s

=10 (E) cos o tems™!
T T
Velocity of the body 2s after it passes through the
mean position, '

v =10(2—n] 4203(2—1t X 2) cm s!
10 10

=2mcos72°=2 x 3.14x 0.309 =1.94 cm s .

(if) Acceleration of the body 2s after it passes
through the mean position,

2
a=—wx ____(Z_nJ x 10 sin[z—nt)
T T

47:2
10)?
__ 4x9.87x0.951

T _375cms A
10

x 10 sin 72°
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tixaverr 13. For a particle in SHM, the displacement x of
the particle as a function of time t is given as
x=Asin(2 nt)
Here x is in cm and t is in seconds.

Let the time taken by the particle to travel fron x =0 to
x=A/2bet, and the time taken to travel fron x = A/2 to

x=Abe t,. Find k /t?_ [Delhi 04]
Solution. Here x =0 at + =0.
2n
Also =—=27 L T="g
=5
At t=t, x=A/2. TV L
A 1
—=Asin (2nt )4 — =sin (2 nt
2 sin l) ( > ( 1)
s 1
271!1 =g I £ =Es

r 1
0 L+t,= —=
r 1 2 4 4
1 1 1
or bh=— - —=—35
-4 12 6
t
Hence —':'/—1%=l
b, 1/6 2

Exasirti 14, In a HCl molecule, we may treat CI to be of
imfinitc niass and H alone oscillating. If the oscillation of

HClmolecule shows frequency9 x 10% s, deduce the force
“~innt. The Avogadro number =6 x 10%° per kg-mole.

Solution. Frequency, v=9x10'% s !

Mass of a H-atom, m=M=—lé€ kg
i N 6x10
As v=i 5 or v2=—1—2.£
2n \m 4n* m
k = 4nmv?
22 1 13,2
=4 — | x ———x(9x 10
(7J 6 x 10% ( )
=533.4 Nm ™,

EXAMPLE 15. A particle is moving with SHM in a straight
line. When the distance of the particle from the equilibrium
position has values x, and x,, the corresponding values of
velocities are u; and u,. Show that the time period of oscillation

is given by
1/2
5 -5 }

2 2

W -

Solution. When x= X, v=u

T=2n:|:

When x= Xy V=1

As v =A% -x2
ul=m‘fA2—x12 or u12=m2(A2—x]2)

(1)
and u, = W A? —x% or ng =’ (A2 —x%) -2)
Subtracting (2) from (1), we get
ulz — ug = o’ (A® rxlz)—mz (A% —x‘.z!):m2 (xg —x})
1/2
u]Z —ug
or 0=|—5—7%
%3~ &
51/2
2_ .2
T=2%_oq 270
o Uy — U5

Exampri: 16, If the distance y of a point moving on a
straight line measured from a fixed origin on it and velocity
v are connected by the relation 4v* =25 — y>, then show that
the motion is simple harmonic and find its time period.

Solution. Given 472 =25 — y2

v=-21~‘f25—y2

Also velocity in SHM, v =,/ A% — y2

Comparing the above two equations, we find that
the given equation represents SHM of amplitude A=5
and ®=1/2 rad s,

or

T:2_1E=2nx2
®

=4ns.

Time-period,

EXAMPLE 17. A particle executing SHM along a straight
line has a velocity of 4 ms™ " when at a distance3 m from the
mean position and 3 ms™ ' when at a distance of 4 mfrom it.
Find the time it takes to travel 2.5 m from the positive extre-
mity of its oscillation.

Solution. When y, =3m, v, =4 ms™!

When. y, =4 m, v, =3 ms™!

As v=wAT-y2 - 4=0,A%-3?
or 16 = w? (A% -9) (1)
and 3=y A - 4% 0r9 =2 (A -16) ..(2)
Dividing (1) by (2), we get
6_85 16 A* -256 =9 A% -81
9 A’-16
or 7 A® =256 -81=175 or A?=25
A=y25=5m
From (1), 4= mﬁ:mx 4
or w=1rads™



OSCILLATIONS 14.13

When the particle is 25 m from the positive
extreme position, its displacement from the mean

position is
y=5-25=25m
When the time is noted from the extreme position,
we can write

y = A cos of

25=5cos(1xt)

or

Hence t=—=—"—"——=1.047s.

Ivavpn (8. A particle executing linear SHM has a
maximum velocity of 40 cm s ! and a maximum accele-
ration of 50 cms 2 "Find its amplitude and the period of
oscillation.

Solution. Maximum velocity,

_ _ -1
nax =nA=40cm s

Maximum acceleration,
-2
@ s —w? A=50cms

ma
Amax _ (.02 A _@
Vpax © A 40
or = E rad s~
4
Amplitude, A="max =202 _33 o
® B
Period of oscillation,
T=EE=E"_3i42_xf=5_035,
w

Examrre 19. The vertical motion of a huge piston in a
machine is approximately simple harmonic with a frequency
0f0.50 s~ '. A block of 10 kg is placed on the piston. What is
the maximum amplitude of the piston’s SHM for the block
and the piston to remain together ? ¢

Solution. Here v=05s"", g=98m 572

The maximum acceleration in SHM is given by
a_ =0 A=@2nv) A=4n’ Vv’ A

The block will remain in contact with the piston if
A S8 OF an*v? A<g

Hence the maximum amplitude of the piston will be

8 9.8
= - =099 m
Ama 4*v?  4n? (0.5)2

ExAMPLE 20. A block of mass one kg is fastened to a spring
with a spring constant 50 Nm~ 1. The block is pulled to a

distance x =10 cm from its equilibrium position at x =0on a
frictionless surface from rest at t =0. Write the expression for
its x (£) and v (1). [Central Schools 03]

Solution. Here m=1kg, k=50 Nm" L
A=10cm =0.10 m.

(0=J—£ = JS—G =7.07 rad s~
m 1

As the motion starts from the mean position, so the
displacement equation can be written as

x()=Asinwt  or x(£)=0.10sin 7.07 t

and v(t)= % =0.10 x 7.07 cos 7.07 t

or v (t)= 0.707 cos 7.07 ms .

Exanerr 21. A person normally weighing 60 kg stands on
a platform which oscillates up and down harmonically at a
frequency of 2.0 s~V and an amplitude 5.0 cm If a machine
on the platform gives the person's weight against time,
deduce the maximunt and minimum readings it will show.
Take g =10 ms™ %

Solution. The platform
vibrates between the posi- ¥ A
tions A and B about the
mean position O, as shown
in Fig. 14.11.

Given A =5.0 cm,
m=60kg v=2Hz

At A and B the accele-
ration is maximum and is

directed towards the mean
position. =+ B

Platform

| mg

10 cm

m—————
®]

ma

It is given by mg

Aoy = w® A
=4n’v? A
—4x987x(2)?x005=7.9 ms™

At A, both the weight mg and the restoring force F
are directed towards O. Therefore, the weight at A is
maximum and is given by

Fig. 14.11

W, =(mg + F)=(mg + ma . )=m(g+a_.)
=60 (10 +7.9)=60x 17.9 =1074 N

=%=%7)—4=107.4 kg f.

8
At B mgand F are opposed to each other so that the
weight is minimum. It is given by

W, =(mg - F)=(mng -ma_, )=m(g—a.,,.)
=60(10-7.9)=(60x21)N =126 N |

126 _1o6kgt.
10
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Exaamere 220 A body of mmass 0.1 kg is executing SHM
according to the equation

3
=05 cu.-:(l 00t + :ﬂ) metre

Find (i) the frequency of oscillation (if) initial phase (iii)
maximuon velocity (iv) maximum acceleration and (v) total
energy.

Solution. Given x =0.5 cos (100 f+ C%n) metre

For any SHM, x= A cos (of + by)
Comparing the above two equations, we get

A=05m, ©=100rads™, ¢, =34E rad

o 100 50
1) Frequency,v=—=— =" Hz.
0 quency 2 2m m

(i) Initial phase, by = 945 rad.

(iil) v =© A=100x0.5 =50 ms™".
(iv) a,,, =0* A=(100)* x 0.5 = 5000 ms 2,
(v) Total energy

1
=—m? =

1 2
5 Moy =5 X 01% (50)° =125 J.

pRu—

< PROBLEMS FOR PRACTICE

1. A simple harmonic oscillation is represented by the
equation, y=0.40sin (440t + 0.61)

Here y and t are in m and s respectively. What are

the values of (i) amplitude (ii) angular frequency

(iif) frequency of oscillations (iv) time period of
oscillations and (v) initial phase ?

[Ans. (i) 0.40 m (ii) 440 rad s~ (i) 70 Hz

(iv) 0.0143 s (v) 0.61 rad]

2. The periodic time of a body executing SHM is 2 s.
After how much time interval from f = 0, will its
displacement be half of its amplitude ?

(Ans. 1/65)

3. A particle executes SHM represented by the
equation : 10y = 0.1sin 50 n ¢, where the displacement
¥ 15 In metre and time t in second. Find the
amplitude and frequency of the particle.

(Ans. A=0.01m, v =25 Hz)

4. The displacement of a particle executing periodic
motion is given by y = 4 cos? (¢ / 2)sin (1000 ¢). Find
the independent constituent SHM's. [T 93]

[Ans. sin (1001t), sin (1000t ), sin (999 )]
5. A particle executing SHM completes 1200 oscilla-

tions per minute and passes through the mean
position with a velocity of 31.4 ms™'. Determine the

10.

11.

12.

13.

14.

15.

maximum displacement of the particle from the
mean position. Also obtain the displacement
equation of the particle if its displacement be zero
at the instant t = 0.

[Ans. A =0.025m, y=0.025sin (40mt ) metre)

The acceleration of a particle performing SHM is
12em s at a distance of 3 em from the mean
position. Calculate its time-period. (Ans. 3.142 s)

In a pendulum, the amplitude is 0.05 m and a
period of 2 s. Compute the maximum velocity.

(Ans. 0.1571 ms™ 1)

In what time after its motion begins, will a particle
oscillating according to the equation, y = 7sin 0.5 n ¢,
move from the mean position to maximum
displacement ? [Himachal 08C]  (Ans. 1s)

A particle executes SHM on a straight line path. The
amplitude of oscillation is 2 cm. When the displace-
ment of the particle from the mean position is 1 cm,
the magnitude of its acceleration is equal to its
velocity. Find the time period, maximum velocity
and maximum acceleration of SHM.

(Ans. 3.63s, 3.464 cms ™, 6cms ™ 2)

The velocity of a particle describing SHM is
16cm s~ at a distance of 8 cm from mean position
and 8cms™ at a distance of 12cm from mean
position. Calculate the amplitude of the motion.

(Ans. 13.06 cm)

A particle is executing SHM. If 4 and u, are the
speeds of the particle at distances x; and x, from the
equilibrium position, show that the frequency of

oscillation,
f=i[“12"’5)m.

2 _2
2n x5 — X

If a particle executes SHM of time period 4 s and
amplitude 2 cm, find its maximum velocity and that
at half its full displacement. Also find the
acceleration at the turning points and when the
displacement is 0.75 cm. (Ans. 3.14cm s,

272cms™, 493cm s, 1.85cm s72)

Show that if a particle is moving in SHM, its velo-
city at a distance V3 / 2 of its amplitude from the cen-
tral position is half its velocity in central position.
[Chandigarh 03 ; Central Schools 09]
A particle executes SHM of period 12 s. Two
seconds after it passes through the centre of
oscillation, the velocity is found to be 3.142cm s ™.
Find the amplitude and the length of the path.

(Ans. 12 cm, 24 cm)

A block lying on a horizontal table executes SHM of

period 1 second, horizontally. What is the maximum
: ) ‘
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16.

17.

18.

1.

amplitude for which the block does not slide ?
Coefficient of friction between block and surface is
0.4, n? = 10. (Ans, 9.8 cm)

A horizontal platform moves up and down simple
harmonically, the total vertical movement being
10 cm. What is the shortest period permissible, if
objects resting on the platform are to remain in
contact with it throughout the motion ? Take
g =980cm s> (Ans. 0.449 s)

In a gasoline engine, the motion of the piston is
simple harmonic. The piston has a mass of 2 kg and
stroke (twice the amplitude) of 10 cm. Find maxi-
mum acceleration and the maximum unbalanced
force on the piston, if it is making 50 complete
vibrations each minute. (Ans. 1.371 ms'z, 2.742 N)

A man stands on a weighing machine placed on a
horizontal platform. The machine reads 50 kg. By
means of a suitable mechanism the platform is
made to execute harmonic vibrations up and down
with a frequency of 2 vibrations per second. What
will be the effect on the reading of the weighing
machine ? The amplitude of vibration of the
platform is 5 cm. Take g = 10 ms 2.

(Ans. Max. reading = 89.5 kg f,
Min. reading = 10.5 kg f)

2 HINTS

Comparing y=0.40sin (440t + 0.61) with
y=Asin (ot + %), we get
() Amplitude, A =0.40 m.

(ify Angular frequency, © = 440 rad s !,
o 440x7

iii) F ,V=—= =70 Hz.
(111) Frequency, v - IxD
. ; p 1 1
(iv) Time period, T = — = — =0.0143 5.
v 70

(v) Initial phase, ¢, = 0.61 rad.
Here T=2s, y=A/2 t="?

As y=Asinmt=Asin2?nf
i=A.'sinEt=Asinrtt
2 2
. 1 . = T
or sinmt=—=sin— or nt{=—
2 6 6
t=1/6s.
y=4cos® (t /2)sin (1000¢)
=2(1+cost)sin (1000¢) [ 1+ cos20=2cos? @]

=2sin (1000¢) + 2sin (1000¢) cos ¢

=2sin (1000t) + [sin (1000 + t) + sin (1000t — 1))
[ 2sin Acos B=sin (A + B)+sin (A — B)]

= 2sin (1000t ) + sin (1001t ) + sin (999 t)

10.

Thus motion y is composed of three independent

SHMs which are sin (1000¢),sin (1001¢) and
sin (999 t).

12
Here V= % =20Hz, o, =3.14 ms !
But Vax =0A=21v A

v

A =-Thax — 3.14 =0.025 m.
2nv 2x3.14x20

As displacement is zero at t = (), so we can write

y=Asin ot = Asin (2nvt)=0.025 sin (40r t).

2

Herea=12cms™, y=3cm

m:F:JE=2radsﬁ]
Y 3

2 2x3.142

Time period, T=—= =3.142 s,
(O]

2n 2n
U ax =mA =? A:_f x 0.05
=3.142 x 0.05=0.1571 ms '.
Given y=7sin05nt

On comparing with the standard equation,
y=asinot, weget: a=70=05n

Let ¢ be the time taken by the particle in moving
from mean position to maximum displacement.

Then 7=7sin05nt orsinO.Snt=l=sin§
A ().51rtf=E or t= 1 =1s.
2 2x05

Here A =2cm. When displacement y = 1cm,
magnitude of velocity = magnitude of acceleration

or m\/Az—yz=m2y
or A.z—_|/2=mzy2

or 2 -P=0*x? or o= 3rads™
2 2n
.. Time period, T=—="==3.63s.
pe ® 3
Vpax =® A=3x2=1732x2=3.464 cm s\
a =m2A=3x2=6cms"2.

max

As v=0, Al -
In first case : 16 = A? — 82 (1)
In second case : 8= ,}Az - 122 «(2)

Dividing (1) by (2),

16 0 A’ -8 or oo |AT-64
8 o A?-122 T\ AT-144

3A2=512 or A?2=1706
or A =13.06 cm.

On solving
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12. Here T =45, A=2cm,

2 3.14 =

(|)=7n‘=—2—x -:]57 l‘adS !
T

Uy = @ A =157 x2=3.14 cm st

At y=A/2=1cm,

U= JA3__ y_z =1.57 \/22 ~1P=272ems.

At the turning points, acceleration is maximum
a  =w A=(157)x2=493cm s 2.

max

At y=0.75cm,
a=on" y=( 1.57)% x 0.75=1.85 cm s °.

13. Here }/=\[§/2_"___ — —
: z':m\b\: -y =0 \/A2_3/4AZ

1 1
= ~2wA =3 Vax:

14. Let y=Arvin wf

Then ©- dl"j:mﬂcosmt:2—“Acos?mﬂr
dt T T
", 3.142=wAcosEx2
12 12

¥4 =

or A =12cm and length of path =2A =24 cm.

15, ag. —w? A=np 8
Lhg _ngT?
w° 4n’
0.4 x9.8 x(1)?
0498 ()" _ 098 m = 9.8 cm.
4 x10
2 2n 2
16. Take a, =" A= T A=g.

17. Length of stroke =2 A =10cm.

18. Here m=50kg, v=2Hz,
A=5cm =0.05m =4x9.87 x2* x0.05=7.9 ms™>.
Arax = o> A=4n*v? A
Max. force on the man
=50(10 + 7.9)=8950 N = 89.5 kg f.
Min. force on the man
=m(g -a,,)="50(10-7.9)=1050 N =10.5 kg .

=m(g + D)

14.13  ENERGY IN S.H.M. : KINETIC AND

POTENTIAL ENERGIES

15. Derive expressions for the kinetic and potential
energies of a simple harmonic oscillator. Hence show
that the total energy is conserved in S.H.M. In which
positions of the oscillator, is the energy wholly kinetic or
wholly potent:al ?

Total energy in S.H.M. The energy of a harmonic

oscillator is partly kinetic and partly potential. When a
body is displaced from its equilibrium position by

doing work upon it, it acquires potential energy. When
the body is released, it begins to move back with a
velocity, thus acquiring kinetic energy.

(7) Kinetic energy. At any instagt, the displacement
of a particle executing S.H.M. is given by

x = A cos (ot + )

Velocity, v = % =-o Asin (o + ¢,)

Hence kinetic energy of the particle at any
displacement x is given by
1. .2, 2 ol o
K=—mv"=—- mo" A" sin” (ot +
5 5 (wf + ¢y)

But A?sin? (of + &) = A%[1-cos? (of + )]
= A% - A? cos? (of +¢) = A?—x?

K=% me® A sinz(mt + )
or Kzgmwz(Az—x2)=%k(A2—x2)

(if) Potential energy. When the displacement of a
particle from its equilibrium position is x, the restoring
force acting on it is

F=-kx
If we displace the particle further through a small
distance dx, then work done against the restoring force
is given by
dW =—Fdx=+k x dx

The total work done in moving the particle from
mean position (x =0) to displacement x is given by

- xzx 1
W=jdwzj kxde=k|2-| =2 kx?
A 2 |, 2

This work done against the restoring force is stored
as the potential energy of the particle. Hence potential
energy of a particle at displacement x is given by

u =l kx? = 1 ma’x? | mw® A? cos? (o + ¢).
2 2 2

(i) Total energy. At any displacement x, the total
energy of a harmonic oscillatory is given by

E=K+U=%k(A2-x2)+%kx2

or E:%kﬁ:%mmz A? =277 mv? A
’ [-w=2nv]
Thus the total mechanical energy of a harmonic
oscillator is independent of time or displacement.
Hence in the absence of any frictional force, the total energy

of a harmonic oscillator is conserved.
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Obviously, the total energy of particle in S.H.M. is
(i) directly proportional to the mass mof the particle,
(i) directly proportional to the square of its
frequency v, and
(iii) directly proportional to the square of its vibra-
tional amplitude A.

Graphical representation. At tlic mean position, x =0

Kinetic energy, K =1 k (A? -0%) =% kA?

Potential energy, U =—%— k (02) =0

Hence at the mean position, the energy is all kinetic.

At the extreme positions, x =1 A

- 2 _ a2
Kinetic energy, K =% k(A% - A%)=0
Potential energy, U =% kA*

Hence at the two extreme positions, the energy is
all potential.

Figure 14.12 shows the variations of kinetic energy
K, potential energy U and total energy E with displace-
ment x. The graphs for K and U are parabolic while
that for E is a straight line parallel to the displacement
axis. At x =0, the energy is all kinetic and for x =+ A
the energy is all potential.

1l Energy
(‘E=K+U
‘\ rl'u
\ ¢
‘g 2 \K
x=—A (@] x=+A

«—— Displacement —

Fig. 14.12 K, U and E as functions of displacement x
: for a harmonic oscillator.

Figure 14.13 shows the variations of energies K, u
and E of a harmonic oscillator with time ¢. Clearly, twice in
each cycle, both kinetic and potential energies assume
their peak values. Both of these energies are periodic
functions of time, the time period of each being T /2.

A
E=K+U
{
B | % L Jou
b N ' \ 1
: \ ] \ 1
1
.\ lJ ‘\ l‘
‘\\ ’l’ ‘\\ ,l‘ K
o T4 T)2 3114 T -
Time (1)

Fig. 14.13 K, U and E as functions of time ¢
for a harmonic oscillator.

Examples based on

FormuLAE Usep
1. P.E. at displacement y from the mean position,

1 1 5 2 1 2,2 .2
B, = = — C Yyt =— u £ f
E, 5 ky? 5N y =5 ma A”sin” ©

2. K.E. at displacement y from the mean position,

1 1 2
Ek=§k(f’l2~}lz)=“2‘”“”2(‘4 —]/2)
=% mo? A? cos” ot

3. Total energy at any point,
E :._'ll kAZ = % mo? A= 272 m A® v2

Units Usep
Energies E,, E; and Eare injoule, displacement in
metre, force constant k in Nm™' and angular
frequency @ in rad s

ExameLr 23. A block whose mass is 1 kg is fastened to a
spring. The spring has a spring constant of 50 N ni- ! The
block is pulled to a distance x =10 cm from its equilibrium
position at x =0 on a frictionless surface from rest at t =0.
Calculate the kinetic, potential and total energies of the block
when it is 5 cm away from the mean position.  [NCERT]
Solution. Here m=1kg, k=50N m™,
A=10cm=0.10m, y=5cm =0.05m
Kinetic energy,
E, = % k(A% -y?)=7%50 [(0.10)* - (0.05)*]
=0.1875 J.
Potential energy,
E, = Lky? =% x 50 x (0.05)* = 0.0625 J.
Total energy,
E=E +E, =0.1875 + 0.0625 = 0.25 J.
IxampLE 24. A body executes SHM of time period 8 s. If
its mass be0.1 kg, its velocity 1 second after it passes through

its mean position be 4 ms~ !, find its (i) kinetic energy
(ii) potential energy and (iii) total energy.

Solution. Here m=0.1kg, T =8s
o,:=2—ﬂ-=2—“—=E ads™
T 8 4
When t=15,u=4ms_1
But v = A cos ol
4=ExAcos[T—[x1]=ExAx —1—
4 4 4 2
or A=16‘Em
T
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Total energy,
2 2
E=lrrr(1)2A2=}—XO.lx(E) x M =1.61].
2 2 4 n
Kinetic energy,
1 5 1 2
E =—mv"=—x01x(4)*=0.81.
£~ 2 (4) ]

Potential energy,
Ep =E- E, =1.6-08=0.8].

EXANMPLL 25. A spring of force constant 800 Nni™ ! has an
extension of 5 cm. What is the work done in increasing the
extension from 5 cnito 15 e ? [AIEEE 02]

Solution. Here k =800 Nm™!, x; =5 cm =0.05 m,
X, =15cm =0.15 m
W = Increase in P.E. of the spring
=3 k(x] —x2)
= 2% 800 [(0.15) - (0.05)2] ]
=8].

EXAMPLE 20. A particle of mass 10 g is describing SHM
along a straight line with a period of 2 s and amplitude of
10 cn What is the kinetic energy when it is ()2 cm( i) 5 cm

from its equilibrium position ? How do you account for the
difference between its two values ?

Solution. Velocity at displacement yis

vzm\/Az—yz

Given A=10cm, T=2s
Angular frequency,

(1) When y =2 cm,
v=n 100 -4 =196 cm 57!
K.E.= l mo? = l x 10 x 1 x 96
2 2

=480 n® erg.
(i) When y =5 cm,
v=m.100 =25 =t 75 cm s~

K.E.= 1 mo*
2

=% x10x ©* x 75 = 375 2 erg,

The K.E. decreases when the particle moves from
y=2cmtoy=5cm. This is due to the increase in the
potential energy of the particle.

Exayrry 27, At a time when the displacement is half the
amplitude, what fraction of the total energy is kinetic and
what fraction is potential in S.H.M. ?

Solution,

Displacement =% amplitude or y =21 A

Total energy of SHM, E =% mo? A?

Kinetic energy of SHM, E, =% ma? (A2 -y?)

Potential energy of SHM,
2
1 22 1 2[ A J
E,=-mo’y" =~ me*| =
" mey > m >

1

2
=1.1mm2A2=—E.
42 4

Exameir 28, A particle is executing SHM of amplitude A.
At what displacement from the mean position, is the energy
half kinetic and half potential?

Solution. As Ex = E,

% ma? (A2 ~yh)= 21 mmzyz

or Az—yzz 2 or 2y% = A?
2
2 A A
or =—  or =t =
y 2 Y 2

Thus the energy will be half kinetic and half
potential at displacement ¥l on either side of the

mean position.

LXAMPLE 29. A particle executes simple harmonic motion
of amplitude A. (i) At what distance from the mean position
is its kinetic energy equal to its potential energy ? (ii) At
what points is its speed half the maximum speed ?

Solution. The potential energy and kinetic energy
of a particle at a displacement y are given by

_1, 2
Ep—Eky’

and

E, =%k(A2—y2) (1)

where A is the amplitude

and  k is the force constant.
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()As E =E,

o=tk or 2= A7
2 yi=3 "
or y=i%=i0.71A

= 0.71 times the amplitude on either side of
mean position.

(ii) Here, v = % Vinax

In general, kinetic energy
15 1 2 11
= E mv- = 5 m E- Uinax = Z . E "lvmax

1 . -
o x Maximum kinetic energy

1
or E = " * ( Ep )max (2)
From equation (1),

1 2 2

E =—k(A" -y~

kT 5 ( yo)

1,.2

(E )max =5kA [Put y =0]

Putting these values in equation (2), we get

1 o 1 1,0
Teazoy=1xlra
5 KAT=Y)=3%3

or fly2=3A2
or y=i—‘§—A=i0.86A

=0.86 times the amplitude on either side of
mean position.

¥ PrROBLEMS FOR PRACTICE

1. Abob of simple pendulum of mass 1 g is oscillating
with a frequency 5 vibrations per second and its
amplitude is 3 cm. Find the kinetic energy of the
bob in the lowest position. (Ans. 4441.5 erg)

2. A body weighing 10 g has a velocity of 6CI'I)IS_1
after one second of its starting from mean position.
If the time period is 6 seconds, find the kinetic
energy, potential energy and the total energy.

(Ans. 180 erg, 540 erg, 720 erg)

3. A particle executes SHM of period 8 seconds. After
what time of its passing through the mean position
will the energy be half kinetic and half potential ?

[Chandigarh 08]

(Ans. 1 s)

4. The total energy of a particle executing SHM of
period 2n seconds is 1.024 x 107 J. The displace-
ment of the particle at n/4sis 0.08v/2 m. Calculate
the amplitude of motion and mass of the particle.

(Ans. 0.16 m ; 0.08 kg)

5. A particle which is attached to a spring oscillates
horizontally with simple harmonic motion with a
frequency of 1/ = Hz and total energy of 10 J. If the
maximum speed of the particle is 0.4 ms~, what is
the force constant of the spring ? What will be the
maximum potential energy of the spring during the
motion ? (Ans. k = 500 Nm~, U, .x =107)

6. The length of a weightless spring increases by 2 cm
when a weight of 1.0 kg is suspended from it. The
weight is pulled down by 10 cm and released.
Determine the period of oscillation of the spring
and its kinetic energy of oscillation.

Take g =10 ms 2. (Ans. 0.285s,25])

® HINTS

1. At the lowest or the mean position, energy of the
bob is entirely kinetic and maximum.

1
(E)max = 5 ma® A
= % m(2n v)2 A? =2n? mv? AP

= 2x9.87 x1x5% x3% = 4415 erg,

2. Herem=10g, T=6s,
(0=E=E=Erads*]
T 6 3
When t =1s, v=6cm5_]
As wv=Awmcos ot
6=Ax-1£cos£x1=AxEc0560°
3 3 3
=Ax£x1=f— A=§§cm
3 2
1

Kinetic energy = % mv* = % x 10 x 6> =180 erg.

. Potential energy
= Total energy — Kinetic energy
= 720 - 180 = 540 erg.

3. As P.E.=KE.
1, 2 1, 42 2
L o—ky ==—k(AT -}
S Ky =5 ( y)
or yz =A? -y or y= %
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2

Now _1/=Asinmf=Asin7nr

iA—:AsinEr

V2 8
or sinnt-—i—sm7r

T4 2 4
t

or n—zlt or t=1s.

4 4

4. When r=§s, y=008V2 m

2
As y=Asinmt=Asin$t

2n 0w T
0.08+v2 =Asin — x— = Asin —
V2=Asin o x = Asin g

1
0 0.08\/5=A X —
) Np)
A=0.08+2 x+/2 =0.16 m.

1 1 (2r)?
Total energy = E mw® A =E m (?] A2

. 1.024x10°3 =1 m (35] 2 4 (0.16)%
2 2n

2x1.024 x10° 3
(0.16)

5. Here v=1/nHz, E=10], v

m

or m=

=0.08 kg.

=
ax =04 ms

Now U =0A=2nv A

=5m___0.4xn::0'2m
2nv 2nx1
As E=1yal
2
E 2x10 _
k=2 _2%19_ 500 Nm .
A% (02)

(E’,)max =E=10]J.
6. Here F=mg=1.0x10N, y=2cm =0.02 m
F 10x10 1
= m

T=2nﬁ=2x3.l4x1,£ =0.28 s.
k 500

E, = Work done in pulling the spring through

10cmor 0.1 m

kx* == x500 x(0.1)2 = 2.5 J.

N

1
2

T 2 T 2 e W T S TR,

14.14  OSCILLATIONS DUE TO A SPRING

16. Derive an expression for the time-period of the
horizontal oscillations of a massless loaded spring.

Horizontal oscillations of a body on a spring.
Consider a massless spring lying on a frictionless

horizontal table. Its one end is attached to a rigid
support and the other end to a body of mass m If the
body is pulled towards right through a small distance x
and released, it starts oscillating back and forth about
its equilibrium position under the action of the
restoring force of elasticity,

F=—kx

where k is the force constant (restoring force per unit
compression or extension) of the spring. The negative sign
indicates that the force is directed oppositely to x.

Equilibrium F=0

—000000000000— |[m

Stretched i F=-k«
:_x_.!

Compressed F=—kx

m

1
[
1
1
1
Il

f—x—
Fig. 14.14 Horizontal oscillations of a loaded spring.

If d’x / dt* is the acceleration of the body, then
2

X
m—- =—kx
dt*
A k 3
or —5 =-—X=-0%
dt m

This shows that the acceleration is proportional to
displacement x and acts opposite to it. Hence the body
executes simple harmonic motion. Its time period is
given by

or

Frequency of oscillation will be
1 1 [k

T 2n\Vm

Clearly, the time period T will be small or
frequency v large if the spring is stiff (high k) and
attached body is light (small m).

17. Deduce an expression for the time-period of the
vertical oscillations of a massless loaded spring. Does it
depend on acceleration due to gravity ?

Vertical oscillations of a body on a spring. If a
spring is suspended vertically from a rigid support
and a body of mass m is attached to its lower end, the
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spring gets stretched to a distance d due to the weight
mg of the body. Because of the elasticity of the spring, a
restoring force equal to kd begins to act in the upward
direction. Here k is the spring factor of the spring. In
the position of equilibrium,

mg =kd

If the body be pulled vertically downwards
through a small distance x from its equilibrium
position and then released, it begins to oscillate up and
down about this position. The weight mg of the body
acts vertically downwards while the restoring force
k(d+x) due to elasticity acts vertically upwards.
Therefore, the resultant force on the body is

F=mg—k(d+x)
=kd — kd - kx ['e mg = kd]
or F=-kx
:g:2 335 &
e 3 595 3
W 3 E S
=] =) =
°e &
£
......... s R -_1_.
d
L e dex
i 2]
4
nt
Fig. 14.15
If d°x / dt? is the acceleration of the body, then
d’x d*x k 2
m——=—kx or —m=-—X=-W0X
dt= dt m

Thus acceleration is proportional to displacement x
and is directed opposite to it. Hence the body executes
S.H.M. and its time period is

o

——— or T=2=n JE
o k/m k
Obviously, the force of gravity has no effect on the force
constant k and hence the time period of the oscillating mass.

14.15  OSCILLATIONS OF LOADED SPRING
COMBINATION

18. Fig. 14.16 shows four different spring arrange-
ments. If the mass of each arrangement is displaced
from its equilibrium position and released, what is the
resulting frequency of vibration in each case ? Neglect
the mass of each spring. INCERT]

i 2n

k| " K " ki
o000 | :
— 000000000 ™

(i
(@ m &
I
k, A @ m

W’mm\‘ n (d)

(c)
Fig. 14.16
Springs connected in parallel. Figs. 14.16(a) and (b)
show two springs connected in parallel. Let k, and k,
be their spring constants. Let y be the extension produced
in each spring. Restoring forces produced in the two
springs will be
FF=-kjy and F,=-k, y
The total restoring force is
F=F +FE=-(k;+k)y (1)
Let k ; be the force constant of the parallel combi-
nation. Then
F=-k,y
From (1) and (2),

(2)
kp = k‘! * kZ

Frequency of vibration of the parallel combination

is
Vv =.l &:l Mg
P~ 2a\m 22V m

Springs connected in series. Figs. 14.16(c) and (d)
represent two springs connected in series. Let x; and x,
be the extensions produced in the two springs. The
restoring force F acting in the two springs is same.

171
F F
or x,=—— and x,=—-—
k, k,
Total extension, x =x; + X, =— F_F
kl k2
k, +k
k, K kK,

-(3)

or F=- kiky x
k, +k,

Let ks be the force constant of the series combination.
Then

F=—k .(4)
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k. = kik, :
+k2

L

Frequency of oscillation of the series combination is

From (3) and (4),

VvV =— _— = — e e
* 2n\m 2n m(k, +k,)

7 5

- E__xamples based on

f‘“; Y s S [
_f_,.,_,;,_,, ity Ao e ioran i St

S P A T g S

FORMULAE USED

E
1. Spring factor or force constant, k = —
y

2. Period of oscillation of a mass m suspended from
massless spring of force constant k,

T=2n_[—

k

3. For two springs of springs factors k; and k,
connected in parallel, effective spring factor,

m
kg +k
4. For two springs connected in series, effective
spring factor k is given by
k
1.1,.21 ke tik2
Kk k otk

T—2m m(k +ky)
V' kK

5. When length of a spring is made n times, its
spring factor becomes 1/n times and hence time
period increases /n times.

T=2n

k=k +k,

or

6. When a spring is cut into n equal pieces, spring
factor of each part becomes k.

T=2n ,/ n
nk
Units Usep

Spring factors k, k;, k, are in Nm ™', mass mtis in kg
and time period T in second.

Examrri 30. The pan attached to a spring balance has a
mass of 1kg. A weight of 2 kg when placed on the pan
stretches the spring by 10 om What is the frequency with
which the empty pan will oscillate ?

Solution. Applied force,

F=2kgwt=2x98N=196N

Displacement, y=10cm =0.1m
..Force constant, k= —F— = 1{;9—6 =196 Nm™!
y 1

For the empty pan, m=1kg

Hence the frequency of oscillation of the empty pan

will be
f19
V=
27 \m 2n

:lx14=ZHz.

27 n

IExavene 31. A spring compressed by 0.2 m develops a
restoring force of 25 N. A body of mass 5 kg is placed over it.
Deduce :

(i) force constant of the spring

(i7) the depression of the spring under the weight of the
body and

(iif) the period of osc:[lahon if the body is dlsfurbed
Take g =10 N kg~ !

Solution. (i) Here y=02m, F=25N
..Force constant,
k= L =125 Nm
y 02
(i) Here F=5kgwt=5x10N=50N
. Displacement,
y= L 0.4 m.
k 125

(i) Here m=5kg k=125 Nm™
Time period,

T:Zn\/’—TI;?.n:Ji =Hs.
k 125 5

Examrre 32. A0.2 kg of mass hangs at the end of a spring.
When 0.02 kg more mass is added to the end of the spring, it
stretches 7 cm more. If the 0.02 kg mass is removed, what
will be the period of vibration of the system ?

[Central Schools 04]

Solution. When 0.02 kg mass is added, the spring

stretches by 7 cm.

As mg=kx

=8 _ 0.02 x 10 ZONm'l
x 7x107% 7

When 0.02 kg mass is removed, the period of
vibration will be

T z“ﬁ 0.2
20/7
21'cx2.645

"211:"
100 10

Examrrr 33. A body of mass 12 kg is suspended by a coil
spring of natuml length 50 cm and force constant
2.0 x 10° Nmi™ ', What is the stretched length of the spring ?

=1.66s.



OSCILLATIONS 14.23

If the body is pulled down further stretching the spring toalength — Calculate

of 59 cm and then released, what is the frequency of oscill- (i) the period of oscillation, (if) the maximum speed, and
atiort of the suspended mass ? (Neglech the nass of the spring). (iii) the maximum acceleration of the collar. -
Solution. Here m=12kg, k=2.0x 10* Nm ™! [NCERT ; Delhi 03C]
Natural length, /=50 em N Solution. Here m=5kg, k =500 Nm™ ',
Extensio;l pr’(:ﬁuce;lzill g\g spring due to 12 kg mass, A=10.0 cm =0.10 m
y=-— =198 - =277 _0,0588 m =588 cm (i) Period of oscillation,

Tk ko 20x10°
T2 M {
Stretched length of the spring ( 500
=1+ y=>50+ 5.88 =55.88 cm.

=2x314x —8—06285
When the loaded spring is further stretched, its fre- * 10

quency of oscillation does not change and is given by (if) The maximum speed of the collar,
3
v ko1 2X10 506 e, —0A= \f {500 0.10
2n¥Vm 2x3.14 12
EXAMPLE 3. An impulsive force gives an initial velocity of =10ms’
v n . -1 .. i . iy sy A
~1.0 ms™ " to the mass in the unstretched spring position (1if) The maximum acceleration of the collar,
L 1 (Q il ' 2 I ? t "
[see Fig. 14.‘17(:?)]. Whar is the nmphtu.dc ofmotmn ; G:yc X a4 = A= k A= 300 4 010=10m s
as a function of time t for the oscillating mass. Given nax m
_ -1
m=3 kg and k =1200 Nm" . Exanvivir 36. A small trolley of mass 2.0 kg resting on a

m horizontal turn table is connected by a light spring to the
centre of the table. When the turn table is set into rotation at
a speed of 300 rpm, the length of the stretched spring is

40 cm If the original length of the spring is 35 cm, determine

;ig. 1 4.17 ( ai the force constant of the spring.
Solution. Mass of trolley, m=2.0 kg

Solution. Here initial velocity in unstretched position,

__10 ms'] Frequency of rotation of turn table,
T 300
v=——=5r1ps
Clearly, wv_, =1.0ms" 60 P
1200 . Extension produced in the strin
Also, \/‘ ‘[ =20 rad ™! P &
y=40-35=5cm=5x10""m
Amplitude, A = Eho 10 _1 BB When the turn-table is set into rotation, the tension
(0 20 20 ’ (restoring force) in spring is equal to the centripetal
As the motion starts from the unstretched position, force. Thus
the expression for the displacement can be written as Restoring force = Centripetal force
x=Asinwt=5sin20t F=ky= mrmz=mr(21w)2
As initial impulse is negative, the displacement is or k = 4n? v2 mr
towards negative X-axis. So y

Sy sin 20t [r =length of stretched spring =40 cm]

Lixavierr 35. A5 kg collar is attached to a spring of force 4%9.87 x 52 x2.0x 40 x 10~ 2
constant 500 N ' It slides without friction on a hori- =

-2
zontal rod as shown in Fig. 14.17(b). The collar is displaced . 5x10
from its equilibrium position by 10.0 cm and released. =15795 Nm
25kg Exaverr g7, Two masses my =1.0 kg and m, =0.5 kg are
— suspended together by a massless spring of force constant,
Collar k =12.5 Nuwi . When they vy are in equilibrium position, my is

. gently removed. Calculate the angular fn’qm'm%l/ and the
Fig. 14.17 (b) amplitude of oscillation of m,. Given ¢ =10 ms
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Solution. Let y be the extension

in the length of the spring when

both m, and m, are suspended.
Then
F=(m +my)g=ky
mn, +n v
or y= (my + 1) 8

k

Let the extension be reduced to
¥ when m, is removed, then

1,

i

n, g =ky'
or v :ﬂi—g Fig. 14.18
, (my+m)g my g
YR Tk
m g
ok

This will be the amplitude of oscillation of m,.
ny g 1.0x10
k 12.5

- Amplitude, A= 0.8 m

Angular frequency,

= L = ‘12—'5=5rads'].
n, 0.5

Exavieer 38, Two identical springs, each of spring factor k,
may be connected in the following ways. Deduce the spring
factor of the oscillation of the body in each case.

Solution. For each spring,
F=—ky
where F = restoring force, k = spring factor, and

(1)

y = displacement of the spring.

k k k
n
k
n

Fig. 14.19

() In Fig. 14.19(a), let the mass m produce a
displacement y in each spring and F be the restoring

force in each spring. If k, be the spring factor of the
combined system, then

2F=-ky
k
F=—l (2
or -y @)
Comparing (1) and (2), we get
K =k or k, =2k
2

(1) In Fig. 14.19(b), as the length of the spring is
doubled, the mass m will produce double the displace-
ment (2y). If k, be the spring factor of the combined
system, then

F=-k, 2y)=-2ky -(3)

Comparing (1) and (3),
k
2k, =k or k,=—.
2 2 2
(1if) In Fig. 14.19(c), the mass n stretches the upper
spring and compresses the lower spring, each giving

rise to a restoring force F in the same direction. If k, be
the spring factor of the combined system, then

2F=-kyy
k
F=-3 (4
or > Y (4)
Comparing (1) and (4),
k
2=k or ky=2k

Examere 39. Two identical springs, each of force constant
k are connected in (a) series (b) parallel, and they support a
mass m Calculate the ratio of the time periods of the mass in
the two systems. [Central Schools 07]

Solution. (a) For series combination, the effective
force constant is

quk"sz
* k+k 2

T =2n ™ —op [
; k. \k/2

(b) For parallel combination, the effective force
constant is

k,=k+k=2k

V m m
T, =2n|—=2n—

Required ratio of the time periods,

T_[2k _,
T, Vk/2
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Exavrers go. A tray of mass 12 kg is supported by two
identical springs as shown in Fig. 14.20. When the tray is
¥ n

pressed down  slightly and

released, it executes SHM with
a time period of 1.5 s. What is
the force constant of each
spring? When a block of mass
M is placed on the tray, the
period of SHM changes to
3.0 s. What is the mass of the__ ... .
block ? Fig. 14.20

e

Solution. Let k be the force constant of each spring.
As the two springs are connected in parallel, so the
force constant of the combination is

k'=k+k=2k

Now T=2n \/"—;
k!
, 4n*m  4x (3.14)2 x 12
or K=——= =
T (1.5)
=210.34 Nm ™'

k=k'/2 =105.17 Nm .

When a block of mass M is placed in the tray, the
period of oscillation becomes

T'-2n {M+m
kl
Hence I—-z,’Mij or
T m
’M+12 M+1
or =2 =

12 12

M =48 -12 =36 kg.

Examrre 41. The identical springs of spring constant k are
attached to a block of mass m and to fixed supports as shown

below.
| k m k I
Show that when the mass is displaced from its equilibrium

Fig. 14.21

position on either side, it executes a simple harmonic motion.

Find the period of oscillations. [NCERT]
Solution. As shown in Fig. 14.22, suppose the mass

mis displaced by a small distance x to the right side of

the equilibrium position O. Then the left spring gets

elongated by length x and the right spring gets
compressed by the same length x.

Force exerted by the left spring,
F, =—kx, towards left

BE_ fM+12
1.5 12
2

4

Ap— i
, 1 Q

- X+

Fig. 14.22
Force exerted by the right spring,
F, = —kx, towards left
The net force acting on mass mis
F=F +F =-2kx
Thus the force acting on the mass mis proportional
to its displacement x and is directed towards its mean
position. Hence the motion of the mass m is simple
harmonic. Force constant is
k' =2k
The period of oscillation is

T=2n i =2n1’—’£.
foas 2k

Exavprr 42, A trolley of mass 3.0 kg is connected to two
identical springs each of force constant 600 Nm™ 1, as shown
in Fig, 14.23. If the trolley is displaced from its equilibrium
position by 5.0 cm and released, what is (i) the period of
ensuing oscillations, (ii) the maximum speed of the trolley ?
(iii) How much is the total energy dissipated as heat by the

&-time the trolley comes to rest due to damping forces ?

3.0kg

600 Nm™ ! 600 Nm™'
E O AN T T T SR A
Fig. 14.23

Solution. When the trolley is displaced from the
mean position, it stretches one spring and compresses
the other by the same amount. The restoring forces
developed in the two springs are in the same direction.
If the trolley is displaced through distance y, then total
restoring force is

F=F +F =-ky—ky=-2ky
If k' is the force constant of the combination, then

F=-k'y
Clearly, k'=2k =2 x600=1200 Nm™'
Also, m=3.0kg

amplitude, A=50%10"2m
(1) Period of oscillation,
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(ir)

Maximum speed,

kl
Vi =(0A=1’; x‘A
=,{1200 50x107°%2=1.0ms L.
3.0

(iif) Total energy dissipated as heat
= Initial maximum K.E. of the trolley
x3.0x (1.0)> =1.5].

2 1
=—mo_ . =—
max o

* PROBLEMS FOR PRACTICE

1. A spring compressed by 0.1 m develops a
restoring force of 10 N. A body of mass 4 kg is
placed on it. Deduce (i) the force constant of the
spring (if) the depression of the spring under the
weight of the body and (iii) the period of
oscillation, if the body is disturbed.

[Ans. (i) 100 Nm ™" (i) 0.4 m (iii) 1.26 s]

2. The period of oscillation of a mass m suspended by
an ideal spring is 2 s. If an additional mass of 2 kg
be suspended, the time period is increased by 1 s.
Find the value of m. (Ans. 1.6 kg)

3. An uncalibrated spring balance is found to have a
period of oscillation of 0.314 5, when a 1 kg weight
is suspended from it ? How does the spring
elongate, when a 1 kg weight is suspended from it ?
[Take m = 3.14] (Ans. 2.45 cm)

4. The frequency of oscillations of a mass m
suspended by a spring is v,. If the length of the
spring is cut to one-half, the same mass oscillates
with frequency v,. Determine the value of v, /v,.

[Chandigarh 03]

(Ans. +/2)

5. The periodic time of a mass suspended by a spring
(force constant k) is T. If the spring is cut in three
equal pieces, what will be the force constant of each
part ? If the same mass be suspended from one
piece, what will be the periodic time ?

(Ans. 3k, T/+/3)

6. The time period of a body suspended by a spring
be T. What will be the new period, if the spring is
cut into two equal parts and when (i) the body is
suspended from one part (ii) the body is suspended
from both the parts connected in parallel.

[Ans. (i) T/ /2 (ii) T/ 2]
7. Two ldenhcal springs have the same force constant

of 147 Nm~ 1. What elongation will be produced in
each spring in each case shown in Fig. 14.24 ?

Take g =9.8 ms ™2
[Ans. (@) 1/6 m (b) 1/3m, 1/3 m (c) 1/3 m]

2k
m
5kg
5
ke k k
5kg
(a) (b) (c)
Flg. 14 24 Flg. 14.25

8. Three springs are connected to a mass m as shown
in Fig. 14.25. When mass m oscillates, what is the
effective spring constant and time period of
vibration ? Given k =2 Nm ™' and m = 80g.

(Ans. 8 Nm™, 0.628 s)
9. Two springs are joined and connected to a mass m
as shown in Fig. 14.26. If the force constants of the

two springs are k; and k,, show that frequency of
oscillation of mass m is

e
(kg + k) m

G AT N

Fig. 14.26

* HINTS
1. () k=£-1%_ 100 Nm!
y 0.1
mg _4x10
=04 m
@ ¥==2" =00

(i) T = ?_11:\[m 2x—x" =1.26s.
2, AsT:ZnJ%

. In first case,

m 2 m
2=2n |— or 4=4n° x— (1
n"k P (1)
In second case,
’ 2 + 2
3=2n m;: or9=4n’2xmk (2)
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Dividing (2) by (1), we get
9 m+2

Z= or m=§=1.6 kg.
4 m 5

- Let k be the force constant of the full spring. Then
frequency of oscillation of mass m will be
1 |k
vy = — | —
2n \'m

When the spring is cut to one-half of its length, its
force constant is doubled (2k). Frequency of oscilla-
tion of mass m will be

vzz—l— g vzfvlzﬁ.
m

2n
. Time period of mass m when suspended from the
full spring is

" m

k

When the spring is cut into three equal parts, the force
constant of each part becomes 3k. Time period of
mass mwhen suspended from one such piece will be

m T
T'=2n | —=—F+.
V3

. For full spring, T =2n \/T

If the spring is cut into two equal parts, then the
force constant of each part becomes 2k.

() When the body is suspended from one part, its
period of oscillation is

T=2n

m T
T=2n | —=—.
2
(i) For the two parts connected in parallel, force
constant
=2k + 2k = 4k.
The period of oscillation becomes
e SN T
% 2

. Here k=147 Nm™". In Fig. 14.24(a), the effective
spring constant,

K=k+k=2=2x147=294Nm™!
. Elongation in the spring,
mg 5x98 1
—_— =—m
K 2949 6
In Fig. 14.24(b), the effective spring constant,
_kxk _k_147

=——Nm
k+k 2 2

W=

. Total elongation in the spring,
_9x92x2 2 -

= 3

. Elongation in each spring =% m.

In Fig. 14.24(c), the effective spring constant,
K=147Nm~!
5x98 1

. Elongation in the spring, y, =

m
147 3

8. The given arrangement is equivalent to the three

springs connected in parallel. The effective spring
constant is

K=k+2+k=4k=4x2=8Nm™}
Time period,

T=2n\/’—7n=2xgx‘/o'08=0.6285.
4k 7 8

9. Let a force F applied on the body produce
displacements x; and x, in the two springs. Then

—hx=-kx
X =—Epandx2= —P—

Total extension,

X=X +X,=— [l+i:l=-l:[——kl+k2]
1 2 k[ k2 klkz
or F=- kk,

bk

Clearly, force constant of the system, k = L

f kiky
Frequency, v= 2n\/j o  + kz)m

14.16 ~ SIMPLE PENDULUM

19. Show that for small oscillations the motion of a
simple pendulum is simple harmonic. Derive an expression
for its time period. Does it depend on the mass of the bob ?

Simple pendulum. An ideal simple pendulum consists
of a point-mass suspended by a flexible, inelastic and weightless
string from a rigid support of infinite mass. In practice, we
can neither have a point-mass nor a weightless string,

In practice, a simple pendulum is obtained by
suspending a small metal bob by a long and fine cotton
thread from a rigid support.

Expression for time period. In the equilibrium
position, the bob of a simple pendulum lies vertically
below the point of suspension. If the bob is slightly
displaced on either side and released, it begins to
oscillate about the mean position.

Suppose at any instant during oscillation, the bob
lies at position A when its displacement is OA = x and
the thread makes angle 8 with the vertical. The forces
acting on the bob are

(f) Weight mg of the bob acting vertically downwards
(i) Tension T along the string.
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Point of suspension

( -
mg cos 0

mg

Fig. 14.27 Force acting on the bob of a pendulum.

The force mg has two rectangular components
(1) the component mg cos 8 acting along the thread is
balanced by the tension T in the thread and (ii) the
tangential component mg sin 0 is the net force acting
on the bob and tends to bring it back to the mean
position. Thus, the restoring force is

3! b5l

2 gt
=—n:ge[1—e-+ 9 —J

3 5
F=—rngsin9=—mg(9—e—+9—— ..... ]

6 120

where 6 is in radians. Clearly, oscillations are not
simple harmonic because the restoring force F is not
proportional to the angular displacement 6.

However, if 6 is so small that its higher powers can
be neglected, then

F=-mg®
If I is the length of the simple pendulum, then

6 (rad) = ar‘c =Z
radius |
Fz-mng
or ma=—’—nf‘g-_x
or a=-3y=—ok

Thus, the acceleration of the bob is proportional to
its displacement x and is directed opposite to it. Hence
for small oscillations, the motion of the bob is simple
harmonic. Its time period is

"."*=2—“=—2L or T=2n L
o g/l g

Obviously, the time period of a simple pendulum
depends on its length / and acceleration due to gravity g
but is independent of the mass m of the bob.

. Examples based on

Formurae Usep
1. Time period,T:Zn‘/z
8

2. Frequency, v = —1- g
2n V1

Units Usep

Length | of the pendulum is in metre and
acceleration due to gravity g in ms 2,

Exasieir g3. What is the length of a simple pendulum,
which ticks seconds ? [NCERT ; Delhi 09]

Solution. The simple pendulum which ticks seconds
is a second pendulum whose time period is 2 s. Thus

T=2s g=98 ms™ 2

As T=2n‘F or T2=4n?l
g 8

_T%g _(2fx98

1 > :
4= 4 x987

=0.992 m.

Exayirri 44. A pendulum clock shows accurate time. If the
length increases by 0.1%, deduce the error in time per day.
[Delhi 95]
Solution. Correct number of seconds per day,
v =24 x 60 x 60 =86400.
Let error introduced per day = x seconds
Then incorrect number of seconds per day,
V' =86400 + x

If I is the original length of the pendulum, then its
new length will be

1’=l+0.1%of1=1+0'1“=(1+0.001)l
100

1 |g . 1

Now f; , v=— = e, -

ow Irequency, V ZRJ: L.e VOCJ.I-

g_\/z o B6400+x _ !
v \r 86400 (1+0.001)

or 1+——— =(1+0.001) "2
00
=1 ——zl-x 0.001 =1-0.0005
or X~ _0.0005
86400
or x =—0.0005 x 86400 = -43.2s.

The negative sign shows that the clock will run
slow and it will lose 43.2 seconds per day.
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Exavierr 45, Two pendulums of lengths 100 cm and
110.25 cmstart oscillating in phase. After how many oscilla-
tions will they again be in same phase ?

Solution. The two pendulums will be in same
phase again when large pendulum completes v oscilla-
tions and small pendulum completes (v + 1) oscillations.

For larger pendulum,

V_L\/i_i\] g
2n V1 2r V110.25

For smaller pendulum, v+1= 1 /8
27 V100
v+1 [110.25
v 100
[100 +10.25 ( 10.25 ]”2
= |————— = 1+ ——
V100 100
or l+1=1+lx%:1+0.05
v 2
1
or V=—=
0.05

Thus the two pendulums will be in same phase
when the larger pendulum completes 20 oscillations or
smaller pendulum completes 21 oscillations.

EXAMPLE 4£6. A second’s pendulum is taken in a carriage.
Find the period of oscillation when the carriage moves with
an acceleration of 4 ms™ 2 (i) vertically upwards (ii) verti-
cally downwards, and (iii) in a horizontal direction.

Solution. Time period of a pendulum,

T=21’r\/I
8

For second’s pendulum, T =2's

2=2:r:‘jz or 1=ﬂ:\/I
& 8

l !
or 1=n"— 2 :
8 n
(i) When the carriage moves up with an accele-
ration a =4 ms™ 2, the time period is

T:[=27[ l =2n T&.
g+a n (9.8 + 4)

2n 198 5, 0843 =1.69s.

n V138

(i) When the carriage moves down with an
acceleration a =4 ms™ %, the time period is

Y
g—a n“ (9.8 —4)
2 ‘fﬁ =2 x1.299 =2.595.
5.8

g
fi=s _
Tl:z

(1) When the carriage moves horizontally, both g
and a are at right angle to each other, hence the net
acceleration is

a'= g% +a* =(9.8) + (4)*

= /96.04 + 16 =+/112.04 =10.58 ms™*

Time period will be

73:211\/12211’ 29'8
a n“ x 10.58

=2x096=1.92s.

Lixayirrr: 47. The bottom of a dip on a road has a radius of
curvature R. A rickshaw of mass M left a little away from the
bottom oscillates about the dip. Deduce ar: expression for the
period of oscillation. [Chandigarh 02]

Solution. As shown in Fig. 14.28, let the rickshaw
of mass Mbe at position A at any instant and ZAOB = 6.

---0
[

D

) Road

o]

Fig. 14.28

Forces acting on the rickshaw at position A are
(i) Weight Mg acting vertically downwards.
(if) The normal reaction N of the road.
The weight Mg can be resolved into two
rectangular components :
(i) Mg cos 8 perpendicular to the road. It balances
the normal reaction N.

(i) Mg sin 0 tangential to the road. It is the only
unbalanced force acting on the rickshaw which
acts towards the mean position B. Hence the

restoring force is

=—Mgsin 6

. Arc _AB_y
For small 6, smO—O—Ra duos R R

p=__l%g-y ie, Foy
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Hence the motion of the rickshaw is simple
harmonic with force constant,
M
k==2
R

Time period,

T=2n Ezlln —M—=2n E
Vk Mg/ R Q

T T M T M Y 8 S, W T A SR R AT

* PrROBLEMS FOR PRACTICE

1. The time taken by a simple pendulum to perform
100 vibrations is 8 minutes 9 seconds in Bombay
and 8 minutes 20 seconds in Pune. Calculate the
ratio of acceleration due to gravity in Bombay and
Pune. (Ans. 1.0455)

2. Ifthe length of a pendulum is decreased by 2%, find
the gain or loss in time per day.

(Ans. Gain of 864 s)

3. Ifthe length of a second’s pendulum is increased by

1%, how many seconds will it lose or gain in a day ?

(Ans. Loss of 432 s)

4. If the length of a simple pendulum is increased by

45%, what is the percentage increase in its time

period ? (Ans. 22.5%)

5. What will be the time period of second’s pendulum

if its length is doubled ? (Ans. 2.828 s)

6. If the acceleration due to gravity on moon is one-sixth
of that on the earth, what will be the length of a
second pendulum there ? Take ¢ = 9.8 ms™ 2.

(Ans. 16.5 cm)

2 HINTS

1. Let g and g, be the values of acceleration due to
gravity in Bombay and Pune and T, and T, be the
values of the time-periods at the respective places.

Then
8 min 9
T{=M=@S=4.895
100 100
T2=8mi11205=5005=55
100 100
As  L2_ |8
T 82
T2 2
4 2 - OF g0,

g TP (4.89)°
2. Asv «1/4/l, so the number of seconds gained per
day on decreasing the length by 2%

_ LAl 86400= 1 « 2 86400 = 864 s.
! 2 100

4. AsT « 1, s0the percentage increase in time period
on increasing the length by 45%

=1£1 x]()O:l J:cE % 100 = 22.5%.
2 100

21
6. On the moon, g, = % = 9_68 ms™?, T=2s.
As T=2n ’L
gl’"
T? 22 x9.8
J=—Sm_ = 2% _165m =165 cm.
4n 4x987 x6

14.17  OTHER EXAMPLES OF S.H.M.

20. One end of a U-tube containing mercury is
connected to a suction pump and the other end is con-
nected to the atmosphere. A small pressure difference is
maintained between the two columns. Show that when
the suction pump is removed, the liquid in the U-tube
executes SHM. INCERT]

Oscillations of a liquid column in a U-tube.
Initially, suppose the U-tube of cross-section A contains
liquid of density p upto height h. Then mass of the
liquid in the U-tube is

m = Volume x density = Ax2hxp

Equilibrium
level 2y

1-

(/!
g

RS,

Fig. 14.29 Oscillations of a liquid column in a U-tube.

If the liquid in one arm is depressed by distance y, it
rises by the same amount in the other arm. If left to
itself, the liquid begins to oscillate under the restoring
force,

F = Weight of liquid column of height 2y
=-Ax2yxpxg=-2 Apgy
ie., Fey
Thus the force on the liquid is proportional to
displacement and acts in its opposite direction. Hence the
liquid in the U-tube executes SHM with force constant,

k=2 Apg
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The time-period of oscillation is

T=2n\}zn=2n Ax2hxp _, [
k 2Apg 8

If 1 is the length of the liquid column, then

1=2h and T=2n L
VZS

21. If the earth were a homogeneous sphere of
radius R and a straight hole bored in it through its
centre, show that a body dropped into the hole will
execute SHM and find its time period.

Oscillations of a body dropped in a tunnel along
the diameter of the earth. As shown in Fig. 14.30,
consider earth to be a sphere of radius R and centre O.
A straight tunnel is dug along the diameter of the
earth. Let g be the value of acceleration due to gravity
at the surface of the earth.

X

Earth

R CEEEEEEE-TEE TR O

Fig. 14.30 A body dropped in a tunnel along the
diameter of the earth.

Suppose a body of mass m is dropped into the
tunnel and it is at point Pie., ata depth d below the
surface of the earth at any instant. If g’ is acceleration
due to gravity at P, then

sl el

If y is distance of the body from the centre of the
earth (displacement from mean position), then

Vo
R-d= =g=
Y §=8%¢
Force acting on the body at point P is

mg .
=—mg =—— ie., F
g =—Y «y
Negative sign shows that the force F acts in the
opposite direction of displacement i.e., it acts towards
the mean position O. Thus the body will execute SHM
with force constant,
k=28
R

The period of oscillation of the body will be

T=2n\/E=2n m__on |R,
k mg/ R g

22. A cylindrical piece of cork of base area A and
height h floats in a liquid of density p,. The cork is
depressed slightly and then released. Show that the cork
oscillates up and down simple harmonically with a

period T =2n —hi where p is the density of cork.
P9

(Ignore damping due to viscosity of the liquid).
[NCERT]

Oscillations of a floating cylinder. In equilibrium,
weight of the cork is balanced by the upthrust of the
liquid.

-l - iV
quilibrium
0 position (___Push
1
TQ
’ {
P P Py

S row

Fig. 14.31 Osciltations of a floating cylinder.

Let the cork be slightly depressed through distance
y from the equilibrium position and left to itself. It
begins to oscillate under the restoring force,

F = Net upward force
= Weight of liquid column of height y
F=-Ayp,8=-4Ap,8Y
Negative sign shows that F and y are in opposite
directions. Hence the cork executes SHM with force
k=Ap, 8
Also, mass of cork =Ap h

or ie, Foy.

constant,

. Period of oscillation of the cork is

T=21EJE=21I Aph =2r p_h_
k \lAplg \fplg

23. An air chamber of volume V has a neck of area of
cross-section A into which a ball of mass m can move
without friction. Show that when the ball is pressed
down through some distance and released, the ball
executes SHM. Obtain the formula for the time period
of this SHM, assuming pressure-volume variations of
the air to be (i) isothermal and (ii) adiabatic.

[NCERT]

Oscillations of a ball in the neck of an air chamber.
Fig. 14.32 shows an air chamber of volume V, having a
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neck of area of cross-section —A

@
A and a ball of mass m
fitting smoothly in the ’"@ T
neck. If the ball be pressed
down a little and released, J
it starts oscillating up and @
Vv

down about the equili-
brium position.

If the ball be depressed
by distance y, then the
decrease in volume of air in
the chamber is AV = Ay.

Air

Fig. 14.32
A
. Volume strain = A_V = LVL’

If pressure P is applied to the ball, then hydrostatic
stress = P

Bulk modulus of elasticity of air,

P P EA
== ==- or P=——1y
AV IV AylV %
EA 2
Restoring force, F = pAz__vy A:—%

Thus F is proportional to y and acts in its opposite direc-
tion. Hence the ball executes SHM with force constant,
k= EA-
v
Period of oscillation of the ball is

T-ZHJEE=2n s =2anﬂ%
k EA2/V EA

(i) If the P-V variations are isothermal, then E = P,
mV

T=2n_ |—.
PA?
(if) If the P-V variations are adiabatic, then E =y P

T=2x sz'
y PA

24. Show that the angular oscillations of a balance
wheel of a watch are simple harmonic. Hence derive an
expression for its period of
oscillation.

Diamond
point

Oscillations of the
balance-wheel of a watch.
In a watch, a balance-wheel
controls the movement of
its hands. An axle passing
through its centre is held
between two diamond
points. A hair-spring con-
trols its oscillations.

P S VR M AT e S 2

Fig. 14.33

For an angular displacement 6, the hair-spring
develops a restoring torque C6, which tends to bring
back the wheel into its equilibrium position. Here C is
the restoring torque produced per unit angular
displacement. Now

Torque = Moment of inertia x angular acceleration

2
CG:».Uc-dL,,E
dar
2
or d—g=—£9=—m29
dt I

where I is the moment of inertia of the wheel about its

axis of rotation. Clearly, angular acceleration Z—g is
t
proportional to angular displacement 0 and acts in its

the

opposite  direction. Hence oscillations of
balance-wheel are simple harmonic.

Angular frequency, m:E

Period of oscillation, T = 27 =28 I

—on L.
o JC/1 ™

_ Examples based on

S M TN e WA, Ml

Formurae Usep

1. For a liquid of density p contained in a U-tube
upto heighth, T= ’lrtf—l
8

2. Forabody dropped in a tunnel along the diameter
of the earth,

T=2n F , where R =radius of the earth
8

3. For a cylinder of density p floating with length h
ph

g
4. For a ball of mass m oscillating in the neck of air

chamber of volume V, T=2x JLE"{%

where A = area of cross-section of the neck,
E = bulk modulus of elasticity of air

5. For a balance-wheel of a watch of moment of

submerged in a liquid of density p, T = 2r

inertia [ and torsional constant C, T =2 \[g
Units Usep

Here h and R are in metre, densities pand o in
kg m~®, bulk modulus E in Nm~ 2, moment of

inertia I in kg m?, torsional constant C in
Nm rad™".
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Ixanrre g8, A vertical U-tube of uniform cross-section A= 150m
contains water upto a height u_f2.4.‘5‘ cn If the water on one B Cy}ijﬂdu ~
side is depressed and then released, its up and down motion .
in tube is simple harmonic. Caleulate its tine period. Given
~ 2
=980 cm s~
1 -
Solution. Here h=245cm, g=980cm s~

[ ) 45 Co
T=2n /" =2n\/24ri —27x0.05 = 0.314 5. mI
Vg 980

Exavenr go. A test tube weighing 10 g and external  Fig. 14.34

diameter 2 cm is floated vertically in water by placing 10 g of Let the cylinder be depressed through a small
mercury at its bottom. The tube is depressed in water a little  distance y. Then

and then released. Find the time of oscillation. Take

_a Restoring force = Weight of water displaced
¢ =10 ms

) or F=Ayog
Solution. Total mass of test tube and mercury, St

m=10+10=20 g=0.02 kg

Force constant,

k=£=A0'g:15x]()"4x 10*x 9.8 =14.7 Nm ™

Area of cross-section of the test-tube, y
2 (1Y 2 14.7
A=nr2=—x(—] x 10 Fre uenc,v=—
7 \100) 7 GHERCY a 211\}028
Density of water, p =10> kg m > _7 « J575 =115 Hz.
44

Let the tube be depressed in water by a little

distance y and then released. Iixastrrs: 5t. The balance wheel of a watch has a noment of

inertia of 2 x 10™ 8 kg n® and the torsional constant of its

Spring factor, hair  spring is 9.8x 10" ® Nmrad™'. Calculate its

k= F_Ay.p.g_ Apg frequency.

y y Solution. Here 1=2x10"% kgm?,

-6 -1
=?£x10‘ ><103x10=.2£1\]m—1_ C=9.8x10"" Nm rad
! 7 Frequency,
Inertia factor, m=0.02 kg y :_L C _7x J10 _7x3.17 —
Toop M ZxEZ—x 0,02,(7_055 2n VI 2x3.14 2x314
k 7 22 o Exanprr 32. A sphere is hung with a wire. 30° rotation of

the sphere about the wire generates a restoring torque of

4.6 Nm. If the moment of inertia of the sphere is 0.082 kg nt,
deduce the frequency of angular oscillations.

Exavierr 50. A cylindrical wooden block of cross-section
R S - s .

15.0 e~ and mass 230 g is floated over water with an extra
weight of 50 ¢ attached to its bottom. The cylinder floats

vertically. From the state of equilibrium, it is slightly Solution. Here 0=30°=" rad, t=4.6 Nm,
depressed and released. If the specific gravity of wood is 0.30 6
and ¢ =9. 8 ms~ 2, deduce the frequency of the block, 1=0.082 kg m?
4
A=150 enf =15%107* nr". Restoring torque per unit angular displacement,
Solution. Area of cross-section of the block, _T_ 46
A=150cm?=15x10"* m? : 0 n/6
Total mass of the block, = %x—'] =8.78 Nm rad ™'
m =230 + 50 =280 g =0.28 kg
. . Frequency,
Density of water, 1 [C
=10 kgm™ Vo1

Density of wood, 7 8.78 165 H
=——— |——=1 z.
p =0.30 x 10° kg m =300 kg m~ | 2x22 V0.082
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* PROBLEMS FOR PRACTICE

1. 1f the earth were a homogeneous sphere and a straight
hole was bored in it through its centre, show that a
body dropped in the hole will execute SHM and cal-
culate the time period of its vibration. Radius of earth
is64x10° mand g =98ms % (Ans. 5077.6 s)

2. A weighted glass tube is floating in a liquid with
20 cm of its length immersed. It is pushed down
through a certain distance and then released. Show
that up and down motion executed by the glass
tube is SHM and find the time period of vibration.
Given, ¢ =980cm s~ 2, (Ans. 0.898 s)

3. A sphere is hung with a wire. 60° rotation of the
sphere about the wire produces a restoring torque
of 4.1 Nm. If the moment of inertia of the sphere is
0.082 kg m?, find the frequency of angular
oscillations. (Ans. 1.1 Hz)

4. A lactometer whose mass is 0.2 kg is floating
vertically in a liquid of relative density 0.9. Area of
cross-section of the marked portion of lactometer is
0.5x107* m? If it is dipped down in the liquid
slightly and released, what type of motion will it
execute ? What will be its time-period ?

(Ans. Motion is simple harmonic, 4.2 s)
=< HINTS

1. Here R=64x10°m, g=98ms ?

6.4 x 10°
T=2r F - Zn"% =21 x 808.1 = 5077.6 s.
g %

2. Here 1=20cm, g =980cm s>

T =202 :2::,/3)- = 27 x 0.143 = 0.898 s.
g 980

3. Restoring torque, t =4.1 Nm

Angular displacement, 8 = 60° = g rad

. 41x3
Torsion constant, C= = 1 i
0 n/3 n

Moment of inertia, | =0.082 kg m?

3 x4.1
Frequency, v = k. \/E L S 1.1 Hz.
2n VI 2n | n x0.082

4. When the lactometer is depressed through distance y,

Nm rad ™!

F = upthrust of the liquid =- Aypxg=—-Apgy
As F o« y, so motion of lactometer is SHM with

k=Apy
T=2KJE=2H e
k Apg
0.2

=2x3.14{ — . 3 =
\0.5x]0 x09 x10" x9.8

4.2 s.

14.18  FREE, DAMPED AND MAINTAINED
OSCILLATIONS
25. What are free, damped and maintained

oscillations ? Give examples.

(a) Free oscillations. If a body, capable of oscillation, is
slightly displaced from its position of equilibrium and left to
itself, it starts oscillating with a frequency of its own. Such
oscillations are called free oscillations. The frequency with
which a body oscillates freely is called natural
frequency and is given by

1 [k

Vy=—
O 27 Vm
Some important features of free oscillations are

(1) In the absence of dissipative forces, such a body
vibrates with a constant amplitude and fixed
frequency, as shown in Fig. 14.35. Such oscil-
lations are also called undamped oscillations.

(11) The amplitude of oscillation depends on the
energy supplied initially to the oscillator.

(1if) The natural frequency of an oscillator depends
on its mass, dimensions and restoring force i.e.,
on its inertial and elastic properties (mand k).

Constant amplitude

BT VIR EAESI M NAO T

Fig. 14.35 Free or undamped oscillations.

Examples. (i) The vibrations of the prongs of
tunning fork struck against a rubber pad.

(i1) The vibrations of the string of a sitar when
pulled aside and released.

(iif) The oscillations of the bob of a pendulum when
displaced from its mean position and released.

(b) Damped oscillations. The oscillations in which the
amplitude decreases gradually with the passage of time are
called damped oscillations.

In actual practice, most of the oscillations occur in
viscous media, such as air, water, etc. A part of the
energy of the oscillating system is lost in the form of
heat, in overcoming these resistive forces. As a result,
the amplitude of such oscillations decreases exponen-
tially with time, as shown in Fig. 14.36. Eventually,
these oscillations die out.
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In an oscillatory motion, friction produces three
effects :

(i) It changes the simple harmonic moton into
periodic motion.

It decreases the amplitude of oscillation.

It slightly reduces the frequency of oscillation.

(i)
(ifi)

tA q Ve Gradually falling amplitude

~
~

3 \m\l\m\w_
Ltk

x(t) =

~y

- Al”

Fig. 14.36 Damped oscillations.

Examples. (i) As shown in Fig. 14.37, consider a
block of mass m that oscillates vertically on a spring
with spring constant k. The block is connected to a
vane through a rod. The vane is submerged in a liquid.
As the block oscillates up and down, the vane also
oscillates in a similar manner inside the liquid. The
liquid exerts an opposing force of viscosity on the
vane. The energy of the oscillating system is lost in the
liquid as heat. The amplitude of oscillation decreases
continuously with time.

Scale Rigid support

Springiness, k

Mass, m

Vane
damping, b

L ]

ARSI 5 S0

Flg 14 37 A damped simple harmonic oscillator.

(if) The oscillations of a swing in air.

(iif) The oscillations of the bob of a pendulum in a
fluid.

(c) Maintained oscillations. If to an oscillating
system, energy is continuously supplied from outside at the
same rate at which the energy is lost by it, then its amplitude

can be maintained constant. Such oscillations are called
maintained oscillations. Here, the system oscillates with
its own natural frequency.

Examples. (i) The oscillations of the balance wheel
of a watch in which the main spring provides the
required energy.

(ii) An electrically maintained tuning fork.

(iif) A child’s swing in which energy is continuously
fed to maintain constant amplitude.

S C R

S -QJ

A\ Differential equation for damped osclllators and its
Solution. In a real oscillator, the damping force is
proportional to the velocity v of the oscillator.

F,=-bv
where b is damping constant which depends on the
characteristics of the fluid and the body that oscillates
in it. The negative sign indicates that the damping
force opposes the motion.

=T -y <
;}‘-__ i-‘,-‘.' 179 \‘LLE

Total restoring force = — kx — bv
2
or mi-fz—ﬁor—bE v=ix-}
di? dt dt
2 .
or md—f+b—di+k\'=0
dt® dt

This is the differential equation for damped S.H.M.

The solution of the equation is

x(=ae P cos (o't + ¢)

The amplitude of the damped S.H.M. is
a.'= ae” bt/2m

where a is amplitude of undamped S.H.M. Clearly, a

decreases exponentially with time.

The angular frequency of the damped oscillator is

w'= ko b

4m?
Time period, T'= i %
B 4m?

Clearly, damping i increases the time period (due to the
presence of the term b? /4 m® in the denominator).

The mechanical energy of the damped oscillator at
any instant { will be

E(f)_ ka.z %kaz e—bf/m

Obviously, the total energy decreases exponentially

with time.
As damping constant, b=F/v
-2
. Slunitof b= N_ ; _ke m_sl =kgs™!
ms ms

CGS unit of b=gs™!
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Lxaanr 53. For the damped oscillator shown in carlicr
Fig. 14.37, the mass m of the block is 200 ¢, k =90 Nur !
and the damping constant b is 40 g s~ Caleulate (a) the
period of oscillation, (b) time taken for its amplitude of
vibrations to drop to half of its initial value and (c) the tine
taken for its mechanical energy to drop to half its initial
value. INCERT]

Solution. (a) Here vkm = 90 % 0.200 = 4.24 kgs™!
Damping constant, b =40 gs!

As the damping constant, b << Vkm, is small, so the
time period T is given by

T=21t\/E=2n 02K 03,
k 90 Nm~

(b) The time, T}, for the amplitude to drop to half of
its initial value is given by

ﬂ = A e—(b'l?”z)/Zm
2

In(1/2) 0.693
T = == 2 %2005 =693
M2 i m - 4p - *eNs=693s

(c) The time, ¢, /2 for the mechanical energy to drop
to half its initial value is given by

E “1/1) = E (0) C_(h'”z)lm

or E(ty2)/ E(0)=exp (- bt,,, /[ m)
or 1/2 =exp (= bty , /m)
In(1/2)= —(b!hr2 /m)
0.693
or l‘,2=40gs_]><200g=3.45.
14.19 FORCED AND RESONANT

OSCILLATIONS

26. Distinguish between forced and resonant
oscillations. Give an experimental illustration in support
of your answer. Give examples.

Forced oscillations. When a body oscillates under the
influence of an external periodic force, not with its own
natural frequency but with the frequency of the external
periodic force, its oscillations are said to be forced oscil-
lations. The external agent which exerts the periodic
force is called the driver and the oscillating system
under consideration is called the driven body.

Examples. (i) When the stem of a vibrating tuning
fork is pressed against a table, a loud sound is heard.
This is because the particles of table are forced to
vibrate with the frequency of the tuning fork.

(if) When the free end of the string of a simple
pendulum is held in hand and the pendulum is made

—_—

to oscillate by giving jerks by the hand, the pendulum
executes forced oscillations. Its frequency is same as
that of the periodic force exerted by the hand.

(i) The sound boards of all stringed musical
instruments  like sitar, violin, etc. execute forced
oscillations and the frequency of oscillation is equal to
the natural frequency of the vibrating string.

Suppose an external periodic force of frequency v is
applied to an oscillator of natural frequency v,
Initially, the body tries to vibrate with its own natural
frequency, while the applied force tries to drive the
body with its own frequency. But soon the free
vibrations of the body die out and finally the body
vibrate a with a constant amplitude and with the
frequency of the driving force. In this steady state, the
rate of loss of energy through friction equals the rate at
which energy is fed to the oscillator by the driver.

Fig. 14.38 shows the variation of the amplitude of
forced oscillations as the frequency of the driver varies
from zero to a large value. Clearly, the amplitude of
forced oscillations is very small for v << voand v >>v,.
But when v=v,, the amplitude of the forced
oscillations becomes very large. In this condition, the
oscillator responds most favourably to the driving force
and draws maximum energy from it. The case v = v, is
called resonance and the oscillations are called resonant
oscillations. '

a—»

I
I
I
|
|
!
!
1
1

vy V=

Fig. 14.38 Amplitude a of a forced oscillator as a
function of the frequency v of the driver,

Resonant oscillations and resonance. It is a
particular case of forced oscillations in which the frequency
of the driving force is equal to the natural frequency of the
oscillator itself and the amplitude of oscillations is very
large. Such oscillations are called resonant oscillations and
phenomenon is called resonance.

Examples. (i) An aircraft passing near a building
shatters its window panes, if the natural frequency of
the window matches the frequency of the sound waves
sent by the aircraft’s engine.

(i) The air-column in a reasonance tube produces a
loud sound when its frequency matches the frequency
of the tuning fork.

(1if) A glass tumbler or a piece of china-ware on
shelf is set into resonant vibrations when some note is
sung or played.
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Experimental illustration. As shown in Fig. 14.39,
suspend four pendulums A, B, C and D from an elastic
string PQ. Set the pendulum A into oscillation. It
executes free oscillations. The energy from this
pendulum is transferred to other pendulums through
the elastic string. Initially, the motions of B Cand Dare
irregular. Bul all these pendulums start
oscillating with the frequency of A. The oscillations of
B,C and D are forced oscillations. But pendulums B
and D have small amplitudes. This is because the
frequency of Bis much larger than that of A (due to
shorter length) and the frequency of D is much smaller
than that of A (due to larger length). The pendulum C
which has same length as the pendulum A (and hence
the same frequency) oscillates with largest amplitude.
Hence the oscillations of C are resonant oscillations.

soon

Elastic string

Q

6
D

Fig. 14.39 Illustrating free, forced and resonant
oscillations.
27. Briefly explain the principle underlying the
tuning of a radio receiver.

Principle of tuning of a radio receiver. Tuning of
the radio receiver is based on the principle of
resonance. Waves from all stations are present around
the antenna. When we tune our radio to a particular
station, we produce a frequency of the radio circuit
which matches with the frequency of that station.
When this condition of resonance is achieved, the radio
receives and responds selectively to the incoming
waves from that station and thus gets tuned to that
station.

14.20 COUPLED OSCILLATIONS

28. What are coupled oscillations ? Give examples.

Coupled oscillations. A system of two or more oscil-
lators linked together in such a way that there is mutual
exchange of energy between them is called a coupled oscillator.
The oscillations of such a systen are called coupled oscillations.

Examples. (i) Two masses attached to each other by
three springs between two rigid supports. The middle
spring provides the coupling between the driver and
the driven system [Fig. 14.40(a)].

(ii) Two simple pendulums coupled by a spring
(Fig. 14.40(D)].

(iii) Two LC-circuits placed close to each other. The
circuits are linked by each other through the magnetic
lines of force [Fig. 14.40(c)].

k k k

m M

(b) (©)

Fig. 14.40 Coupled oscillators.

When two identical oscillators are coupled together,
the general motion of such a system is complex. It is
periodic but not simple harmonic. It can be viewed as
the superposition of two independent simple harmonic
motions, called normal modes having angular
frequencies ®, and ®,. The constituent oscillators
execute fast oscillations of average angular frequency,
®,, =(0; + ©,)/2. The amplitude of either oscillator
varies with an angular frequency (@, —®,). This
phenomenon of variation of amplitudes is known as
beats and the frequency (o, — v, )is called beat frequency.

Very Short Answer Conceptual Problems

Problem 1. Can a motion be periodic and not
oscillatory ?

Solution. Yes. For example, uniform circular motion is
periodic but not oscillatory.

Problem 2. Can a motion be oscillatory but not
simple harmonic ? If your answer is yes, give an
example and if not, explain why.

Solution. Yes; when a ball is dropped from a height on
a perfectly elastic surface, the motion is oscillatory but not
simple harmonic as restoring force F = mg = constant and
not F o — x, which is an essential condition for S.HM.

Problem 3. Every simple harmonic motion is
periodic motion, but every periodic motion need not be
simple harmonic motion. Do you agree ? Give one
example to justify your statement.
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Solution. Yes, every periodic motion need not be
simple harmonic motion. For example, the motion of the
carth round the sun is a periodic motion, but not simple
harmonic motion as the back and forth motion is not
taking place.

Problem 4. The rotation of the earth about its axis is
periodic but not simple harmonic. Justify.

Solution. The earth takes 24 hours to complete its
rotation about its axis, but the concept of to and fro
motion is absent, and hence the rotation of the earth is
periodic and not simple harmonic.

Problem 5. What is the basic condition for the
motion of a particle to be S.H.M.? [Delhi 02]

Solution. The motion of a particle will necessarily be
simple harmonic if the restoring force acting on it is
proportional to its displacement from the mean position

F=-kx.
Problem 6. Which of the following conditions is not
sufficient for simple harmonic motion and why ?

Le.,

(i) acceleration x displacement,
(i7) restoring force « displacement.

Solution. Condition (i) is not sufficient because it does
not mention the direction of acceleration. In S.H.M. the
acceleration is always in a direction opposite to that of the
displacement.

Problem 7. Are the functions tan ot and cot wt
periodic ? Are they harmonic ?

Solution. Both tan ot and cot wt are periodic
functions each with period T = n/ o, because

tan [m (f + EJJ = tan (ot + ) =tan of
®

s
and cot [(u [r + —)] = cot (wt + 1) =cot wt

o

But these functions are not harmonic because they can
take any value between 0 and .

Problem 8. What provides the restoring force for
simple harmonic oscillations in the following cases :

(1) Simple pendulum (ii) Spring

(iii) Column of Hg in U-tube ?

Solution. (i) Gravity (ii) Elasticity (iii) Weight of
difference column.

Problem 9. When are the displacement and velocity
in the same direction in S.H.M. ?

Solution. When a particle moves from mean position
to extreme position, its displacement and velocity are in
the same direction.

Problem 10. When are the velocity and acceleration
in the same direction in S.H.M. ?

Solution. When a particle moves from extreme
position to mean position, its velocity and acceleration are
in the same direction.

Problem 11. Can displacement and acceleration be in
the same direction in S.H.M. ?
Solution. No. In S.H.M,, acceleration is always in the
opposite direction of displacement.
Problem 12. The relation between the acceleration a
and displacement x of a particle executing S.H.M. is
=—(p/q) y, where p and g are constants. What will be
the time period T of the particle ?

n=—£y:—m2y, where o= (£

q

Solution. Here
. . 2n q
Time period, T=— =2n |-+.
© p

Problem 13. The maximum acceleration of a simple
harmonic oscillator is @, and the maximum velocity is

[Delhi 99]

Solution. Let A be the displacement amplitude and o
be the angular frequency of S.H.M. Then

v,- What is the displacement amplitude ?

Maximum velocity, Uy = A 0=1, /A
o, )2 o2
Maximum acceleration, ag = WA= (—9—] A=2L
A A
2
Displacement amplitude, A=-2
a
0

Problem 14. The time period of an oscillating body is
given by T=2p /m/adg . What would be the force
equation for the body ?

Solution. On comparing the given equation
T =2 \/m/ adg with the standard equation T = 2 & \/m/ k,
we getk = adg, which gives the force equation F = — adg (y).

Problem 15. Two simple pendulums of unequal

length meet each other at mean position while
oscillating. What is their phase difference ?

Solution. If both pendulums are moving in the same
direction, then ¢ = 0°and if they are moving in opposite
directions, then ¢ = 180° or =« radian.

Problem 16. Velocity and displacement of a body
executing S.H.M. are out of phase by n/2. How ?

Solution. Displacement, x =a cos wf

: dx .
Velocity, v=d—t:—masm wt =wacos (wt +n/2)

Clearly, velocity leads the displacement by n/ 2 rad.

Problem 17. A particle executes S.H.M. of amplitude
A . At what positions of its displacement (x), will its
(1) velocity be zero and maximum and (i7) acceleration be
zero and maximum ?

Solution. (i) Zero velocity at x = + A, maximum
velocity at x =0."

(i1) Zero acceleration at x = (, maximum acceleration at
x=A
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Problem 18. At what points along the path of a
simple pendulum is the tension in the string (i) maximum
and (if) minimum ?

Solution. (/) The tension is maximum at the mean
position and is equal to mg, where m is the mass of the
bob.

(i) The tension is minimum at either extreme position
and is equal to mg cos 0, where 0 is the angle through
which the string gets displaced to reach the extreme
position.

Problem 19. Is the statement “the bob of a simple
pendulum moves faster at the lowest position for larger
amplitude” true ? Justify your answer.

Solution. We know that velocity of a simple
pendulum is maximum at the lowest position (mean
position) and is given by
= wA.

i.c. for larger amplitude (A), the bob of simple pendulum
would move faster.

ré)
max

Problem 20. Can we use a pendulum watch in an
artificial satellite ?

Solution. No. In an artificial satellite, a body is in a
state of weightlessness, i.e. g =0.

T=2ng=cn
8

Inside the satellite, the pendulum does not oscillate.
Hence a pendulum watch cannot be used in an artificial
satellite.

Problem 21. A girl is swinging in the sitting position.
How will the period of the swing change if she stands
up ? [AIEEE 02 ; Central Schools 09]

Solution. The girl and the swing together constitute a
pendulum of time period,

T=21tJT
8

As the girl stands up, her C.G. is raised. The distance
between the point of suspension and the C.G. decreases
i.e., length | decreases. Hence the time period T decreases.

Problem 22. Will a pendulum clock lose or gain time
when taken to the top of a mountain ?  [Himachal 04]

Solution. On the top of the mountain, the value of g is
less than that on the surface of the earth. The decrease in
the value of g increases the time period of the pendulum
on the top of the mountain. So the pendulum clock loses
time,

Problem 23. What will be the period of oscillation, if
the length of a second’s pendulum is halved ?

! 2
Solution. 1 =L e =2><22
L T 12 T
or T22=7- or ’1"2=J§5.

Problem 24. The length of a second’s pendulum on
the surface of earth is 1 m. What will be the length of a
second’s pendulum on the surface of moon ?

Solution. T=2n\/"4
8

In both the cases, T is same so that
lecg
On the moon, the value of acceleration due to gravity
is one-sixth of that on the surface of earth. So the length of

1
second’s pendulum is P

Problem 25. The bob of a simple pendulum is made
of wood. What will be the effect on the time period if the
wooden bob is replaced by an identical bob of iron ?

Solution. There will be no effect because the time
period does not depend upon the nature of material of the
bob.

Problem 26. If a hollow pipe passes across the centre
of gravity of the earth, then what changes would take
place in the velocity and acceleration of a ball dropped
in the pipe ?

Solution. The ball will execute S.H.M. to and fro about
the centre of the earth. At the centre, the velocity of the
ball will be maximum (acceleration zero) and at the earth’s
surface the velocity will be zero (acceleration maximum).

Problem 27. The bob of a simple pendulum of
length [ is negatively charged. A positively-charged metal
plate is placed just below the bob and the pendulum is
made to oscillate. What will be the effect on the time-
period of the pendulum ?

Solution. The positively charged metal plate attracts
the negatively charged bob. This increases the effective
value of g. Hence the time period will decrease.

Problem 28. A simple pendulum of length [ and with
a bob of mass m is moving along a circular arc of angle 6
in a vertical plane. A sphere of mass m is placed at the
end of the circle. What momentum will be given to the
sphere by the moving bob ?

Solution. Zero. This is because the velocity of the bob
at the end of the arc will be zero.

Problem 29. A body moves along a straight lineOAB
simple harmonically. It has at zero velocity at the points
A and B which are at distances a and b respectively from
O and has velocity v when half way between them. Find
the period of S.H.M.

Solution. Clearly, Cis the mean position of S.H.M.,, as
shown in Fig. 14.41

b = 2

O+ 7
™4
=]

Fig. 14.41
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The amplitude of SSH.M. is

- AB b —u
l“:AC:LB=37= 2

The velocity at the mean position C will be

2n b—-a
v=wA=—.
T 2
n{b—a)

T=
v

Problem 30. When a 2.0 kg body is suspended by a
spring, the spring is stretched. If the body is pulled
down slightly and released, it oscillates up and down.
What force is applied on the body by the spring when it
passes through the mean position? (g = 9.8 newton/kg).

Solution. There is no acceleration in the body at the
mean position, hence the resultant force applied by the
spring will be exactly equal to the weight of the body i.c.,
2 x9.8 or 19.6 newton.

Problem 31. A spring having a force constant k is
divided into three equal parts. What would be the force
constant for each individual part ?

. , F
Solution. Force constant of the spring k = — , where F
X

is the restoring force. When the spring is divided into
three parts, the displacement for the same force reduces to
x [ 3, therefore, the force constant for each individual part

is
k'='F:3(fJ = 3k
x/3 X

Problem 32. How would the time period of a spring
mass system change, when it is made to oscillate
horizontally, and then vertically ? [Himachal 04]

Solution. Time period will remain the same for both
the cases.

Problem 33. Alcohol in a U-tube executes S.H.M. of
time period T. Now, alcohol is replaced by water up to
the same height in the U-tube. What will be the effect on
the time period ?

Solution. The time period T remains same. This is
because the period of oscillation of a liquid in a U-tube
does not depend on the density of the liquid.

Problem 34. There are two springs, one delicate and
another stiffer one. Which spring will have a greater
frequency of oscillation for a given load ?

Solution. Frequency, v = L

2n Vo

Force constant k is larger for the stiffer spring, so its
frequency of oscillation will be greater than that of
delicate spring.

Problem 35. What is the ratio between the potential
energy and the total energy of a particle executing
S.H.M., when its displacement is half of its amplitude ?

. 1 2.2
P{)tentlaluncrgy A Mo™ Yy

Solution. s - A
: Total energy ; me? a2
::1,5_(41/2)2 -__1 =1:4
a* a® 4 '

Problem 36. What fraction of the total energy is
kinetic when the displacement of a simple harmonic
oscillator is half of its amplitude ?

A2
4 J

% naw? (/\2 -

1 2 42
me A

Problem 37. Why is restoring force necessary for a
body to execute S.H.M. ?

Solution. A body in 5.H.M. oscillates about its mean
position. At the mean position, it possesses kinetic energy
because of which it moves from mean position to extreme
position. Then the body can return to the mean position
only if it is acted upon by a restoring force.

Problem 38. What would happen to the motion of the
oscillating system if the sign of the force term in the
equation F = - kx is changed ?

Kinetic energy

Solution. 3 .
4

Total energy

Solution. The force will not be the restoring nature.
The back and forth nature of the motion is lost. The body
will continue to move in a particular sense.

Problem 39. What determines the natural frequency
of a body ?

Solution. Natural frequency of a body depends upon
(i) elastic properties of the material of the body and
(i) dimensions of the body.

Problem 40. Why does the amplitude of an
oscillating pendulum go on decreasing ?

Solution. Due to frictional resistance between air and
bob, the amplitude of oscillations of the pendulum
gradually decreases and finally the bob stops.

Problem 41. Why are army troops not allowed to
march in steps while crossing a bridge ? [Himachal 05]

Solution. Army troops are not allowed to march in
steps while crossing a bridge because it is quite likely that
the frequency of the foot steps may match with the natural
frequency of the bridge, and due to resonance the bridge
may pick up large amplitude and break.

Problem 42. A passing aeroplane sometimes causes
the rattling of the windows of a house. Why ?

Solution. When the frequency of the sound waves
from the engine of an aeroplane matches with the natural
frequency of a window, resonance takes place which
causes the rattling of window.

Problem 43. How can earthquakes cause disaster
sometimes ? ' [Himachal 05C]

Solution. The resonance may cause disaster during
the earthquake, if the frequency of oscillations present
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within the earth per chance coincides with the natural fre-
quency of some building, which may start vibrating with
large amplitude due to resonance and may get damaged.

Problem 44. Sometimes a wine glass is broken by the
powerful voice of a celebrated singer. Why ?

Solution. When the natural frequency of the wine
glass becomes equal to that of the singer’s voice, the
resulling resonance due to the powerful voice of the
singer may break the glass.

Problem 45. Glass windows may be broken by a far
away explosion. Explain why.

[Himachal 05 ; Central Schools 08]

Solution. A distant explosion sends out sound waves
of large amplitude in all directions. As these sound waves
strike the glass windows, they set them into forced oscilla-
tions. Since glass is brittle, so the glass windows break as
soon as they start oscillating due to forced oscillations.

Problem 46. The body of a bus begins to rattle
sometimes, when the bus- picks up a certain speed.
Why ? [Himachal 05]

Solution. At a particular speed, the frequency of the
engine of the bus becomes equal to the natural frequency
of the body of the bus. The frame of the bus begins to
vibrate strongly due to resonance.

Problem 47. What will be the change in time period
of a loaded spring, when taken to moon ? [Himachal 03]

Solution. Time period of a loaded spring,

T=2n |2
k

As T is independent of g, it will not be affected when
the loaded spring is taken to the moon.

Short Answer Conceptual Problems

Problem 1. Justify the following statements :

(/) The motion of an artificial satellite around the
earth cannot be taken as S.H.M.

(1) The time period of a simple pendulum will get
doubled if its length is increased four times.

[Himachal 06]

Solution. (i) The motion of an artificial satellite

around the earth is periodic as it repeats after a regular

interval of time. But it cannot be taken as S.H.M. because
it is not a to-and-fro motion about any mean position.

(i) Time period of simple pendulum,
T——-ZHJI ie., T o /1.
8

Clearly, if the length is increased four times, the time
period gets doubled.

Problem 48. A spring of force constant k is cut into
two pieces, such that one piece is double the length of
the other. What is the force constant of the longer piece
of the spring ? [IIT 99]

Solution. Force constant,

k=1
x

The length of longer part is 2x/3. So its force

constant is
pet _-3F_ 35
/3 2x 2

Problem 49. In forced oscillation of a particle, the

amplitude is maximum for a frequency o, of the force,

while the energy is maximum for a frequency w, of the
force. What is relation between o, and , ? [AJEEF 04]
Solution. Only in case of resonance, both amplitude

and energy of oscillation are maximum. In the condition
of resonance,

W) = Gy
Problem 50. The maximum velocity of a particle,
executing simple harmonic motion with an amplitude of
7 mm, is 4.4 m s™'. What is the period of oscillation ?
[AIEEE 06]

Solution. v | =wA = 2—; A

_ 2nA

)
zrn.)x

T

2x22x7x107°

=0.01s.
7x44

Problem 2. (i) What is meant by simple harmonic
motion (S.H.M.) ?

(i) At what points is the energy entirely kinetic and
potential in S.H.M. ?

(iif) What is the total distance travelled by a body
executing S.H.M. in a time equal to its time period, if its
amplitude is A ? [Delhi 09]

Solution. (i) Refer to point 5 of Glimpses.

(i1) The energy is entirely kinetic at mean position i.e.,
at y=0. The energy is entirely potential at extreme
positions, i.e.,

y=*A
(i1i) Total distance travelled in time period T
=2A+2A =4A.
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Problem 3. A simple pendulum consisting of an
inextensible length /| and mass m is oscillating in a
stationary lift. The lift then accelerates upwards with a
constant acceleration of 4.5 m/s* . Write expression for
the time period of'simple pendulum in two cases. Does
the time period increase, decrease or remain the same,
when lift is accelerated upwards ?  [Central Schools 08]

Solution. When the lift is stationary,

T=2n [i
Ve

(i) When the lift accelerates upwards with an accele-

ration of 4.5 m /s,
T =2n ! =2n !
g+a g+45

Clearly, the time period decreases when the lift
accelerates upwards.

Problem 4. What is meant by restoring force ? Give
one example.

Solution. The force which tends to bring a vibrating
body from its displaced position to the equilibrium
position is called restoring force. When the bob of a
simple pendulum is displaced through an 6 from the
vertical, a restoring force equal to mg sin 0 due to gravity
acts on it.

Problem 5. Two particles execute simple harmonic
motions of the same amplitude and frequency along the
same straight line. They cross one another when going
in opposite directions. What is the phase difference
between them when their displacements are half of
their amplitudes ?

* Solution. The general equation for S.HM. is
y= Asin (ot + ¢)

As the displacement is half of the amplitude
(y=A/2) so

Al2= Asin (ot + ¢))
or sin(mt+¢b)=§1
of + ¢, =30° or 150°.

As the two particles are going in opposite directions,
the phase of one is 30° and that of the other 150°.

Hence the phase difference between the two particles
=150 - 30 =120°.

Problem 6. A simple pendulum is hung in a

stationary lift and its periodic time is T. What will be the
effect on its periodic time T if
(i) the lift goes up with uniform velocity v,
(if) the lift goes up with uniform acceleration a, and
(if7) the lift comes down with uniform acceleration a ?
Solution. (1) When the lift goes up [Fig. 14.42(a)] with
uniform velocity v, tension in the string, T =mg.
The value of g remains unaffected.

The period T remains same as that in stationary lift,

Le.,
T=2n \ﬁ
8

1" pr

Qa0 Ol Pl

v
mg mg

A 4
mg
Fig. 14.42
(i) When the lift goes up with acceleration a
[Fig. 14.42(b)], the net upward force on the bob is
T —mg = ma
T'=m(g +a)
The effective value of g is (g + @) and time period is
I
g+a

Clearly, T, < T i.e,, time period decreases.

(i) When lift comes down with acceleration a
[Fig. 14.42(c)], the net downward force on the bob is

mg —T'= ma T'=m(g —a)
The effective value of g becomes (g —a) and time
period is
l
g-a
i.e., time period increases.

T2=2n

Clearly, T,>T

Problem 7. The bob of a vibrating pendulum is made
of ice. How will the time period change when the ice
starts melting ? .

Solution. If the ice bob-is of very small size, the
position of its C.G. will remain same as the ice melts.
Hence its time period will remain same.

If the size of the ice bob is large, then
2
L +1
51

g

As ice melts, the radius r and hence the time period T
will decrease. The pendulum will oscillate faster.

Problem 8. The amplitude of a simple harmonic
oscillator is doubled. How does this affect (i) periodic
time, (i7) maximum velocity, (ii{) maximum acceleration
and (iv) maximum energy ? [Chandigarh 03]

T=2n
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Solution.

' 1
() T=2n | . e —
\ Acceleration per unit displacement
As the acceleration per unit displacement is a constant

quantity, T is not affected on changing the amplitude.
(1) oy = A
When amplitude is doubled, maximum velocity is
also doubled.
max = (l)zA
When amplitude is doubled, the maximum
acceleration is also doubled. '
E=2n* mv? A% ie, EoxA?
When amplitude is doubled, the energy of the
oscillator becomes four times.

(i) a
(iv)

Problem 9. You have a light spring, a metre scale and
a known mass. How will you find the time period of
oscillation of mass without the use of a clock ?

Solution. Suspend the known mass n form the spring
and note the extension [ of the spring with the metre scale.
If k is the force constant of the spring, then in equilibrium

kI=mg or n_t

kg
Time period of the loaded spring, T =2n J% =2n \F
J 8

So by knowing the value of extension /, time period T
can be determined.

Problem 10. A man is standing on a platform which
oscillates up and down simple harmonically. How will
the weight of the man change as recorded by a weighing
machine on the platform ?

Solution. As the platform moves from the mean
position to the upper extreme position or from upper
extreme position to mean position, the acceleration of the
oscillating system acts vertically downwards and hence
weight of the man will decrease.

On the other hand, as the platform moves from mean
position to lower extreme position and then back to mean
position, the acceleration acts vertically upwards. Hence
weight of the man increases. -

Problem 11. The frequency of oscillations of a mass
m suspended by a spring is v,. If the length of the spring

is cut to one-half, the same mass oscillates with
frequency v,. Determine the value of v, /v,.
[Chandigarh 03]
Solution. Let k be the force constant of the full spring.
Then frequency of oscillation of mass m will be
1 |k
N
2n \'m
When the spring is cut to one-half of its length, its
force constant is doubled (2k).

Frequency of oscillation of mass m will be

1 (2
Vy = — -
< 2n\m
vy /\'I =42,

Problem 12. All trigonometric functions are periodic,
but only sine or cosine functions are used to define
S.HM. Why ? [Central Schools 03]

Solution. All trigonometric functions are periodic.
The sine and cosine functions can take value between — 1
and + lonly. So they can be used to represent a bounded
motion like S.H.M. But the functions such as tangent,
cotangent, secant and cosecant can take value between 0
and = (both positive and negative). So those functions
cannot be used to represent bounded motion like S.H.M.

Problem 13. A simple harmonic motion is repre-
2

sented by % +ax=0 What is its time period ?
at 2 [AIEEE 05]
Solution. Clearly, IIT)Z: =-ox Oor A=-ox
4

X X 2n
T=2n\/:=2n e
a ax  Jo

Problem 14. Does the function y = sin” ot represent

Time period,

a periodic or a simple harmonic motion ? What is the
period of the motion ? [AIEEE 05]

Solution. Displacement, y=sin> wt

Velocity,

d .
t==d—f =2sin ot xcos of x
=wmsin 2 ot
} dv
Acceleration, a = i =m xcos 2ot x 2w

=2w° cos 20t

As the acceleration a is not proportional to displace-
ment y, the given function does not represent SHM. It
represents a periodic motion of angular frequency 2a

Time period,
2n 2t =

" Angular frequency 20 o

Problem 15. The length of a simple pendulum
executing SHM is increased by 21%. What is the
percentage increase in the time period of the pendulum
of increased length. [AIEEE 03]

Solution. Time period,

'1":21\'(\/I ie., T o 12
8

The percentage increase in time period is given by
AT 1 Al

— x100=—=— x 100
T 21

= % x 21% =10.5%
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HOTS

Problem 1. Two simple harmonic wmotions are
represented by the equations :
vy =5sin(2nt+n/4) x, =52 (sin2nt+ cos2 nt)
[Roorkee 96]
A =5

What is the ratio of their amplitudes ?
Solution. x; =5 sin (2nt + 1/ 4)

Xy =52 (sin 2t + cos 2 ntt)
=10 sin (sin2nt cos /4 + cos 2n t sin 1t/ 4)

or X, =10 sin 2nt + 1t/ 4)
A, =10 '
Hence ‘1= _1:2
10

Problem 2. The bob of a simple pendulum is a hollow
sphere filled with water. How will the period of oscillation
change if the water begins to drain out of the hollow sphere
from a fine hole at its bottom ?

Or

The bob of a simple penduluom is a spherical hallow ball
filled with water. A plugged hole near the bottom of the
oscilalting body gets suddenly unplugged. How would the
time period of oscillation of the pendulum change, till water
is coming out ? [AIEEE 05]

Solution. Time period, T =2n ‘/I
8

As water flows out of the sphere, the time period
first increases and then decreases. Initially when the
sphere is completely filled with water, its C.G. lies at
its centre. As water flows out, the C.G. begins to shift
below the centre of the sphere. The effective length of
the pendulum increases and hence its time period
increases.

When the sphere becomes more than half empty, its
C.G. begins to rise up. The effective length of the
pendulum increases and time period T decreases.

When the entire water is drained out of the sphere,
the C.G. is once again shifted to centre of the sphere
and the time period T attains its initial value.

Problem 3. The period of vibration of a mass m
suspended by a spring is T. The spring is cut into n equal
parts and the body is again suspended by one of the pieces.
Find the time period of oscillation of the mass. [AIEEE 02]

Solution. The force constant is inversely propor-
tional to the length. If k is the force constant of the
original spring, then the force constant of each part will
be nk.

T=2n\/% and T' =2n

Hence T' = l .

n

Problem 4. Two simple harmonic motions are repre-
sented by the equations :

Y, =0.15in (100 nt + n/3) and y,=0.1 cos nt

What is the phase difference of the velocity of the particle
1 with respect to the velocity of particle 2 ? [AIEEE 05]

Solution. Velocity of particle 1,

= dﬂ—mcos(wom /3)»100
L T - "

=10 n cos (100 nt + t/3)

Velocity of particle 2,
_dy, . _ .
v, = Tt =0.1(-sin nt)x 1 =-0.1 n sin nt

=0.1cos(nt+n/2)

Phase difference of the velocity of particle 1 with
respect to the velocity of particle 2 is

A¢=¢1_¢2:n T T

32 6
Problem 5. A particle of mass m is attached to a spring
(of spring constant k) and has a natural angular frequency
- An external force,
f(t) « cos ot wy)

is applied to the oscillator. How does the time displacement
of oscillator vary ? [AIEEE 04]

(0=

Solution. With natural angular frequency w, the
acceleration of the particle at displacement y is
ay=— 0y y
The external force F(t)cx cos @t has an angular

frequency « The acceleration produced by this force at
displacement y is

a= mzy
The net acceleration of the particle at displacement
yis
a=a,+a =—m§y+ w2y=—(u)(2) —mz)y
The resultant force on the particle at displacement y is

F
F=ma=—m( 2-mz)y or y=-———--
) m(m(:;_mz)
Clearly, o ——
early, vy m(mg—mz}
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Problem 6. A simple pendulum has tine period T, . The
point of suspension is now moved upward according to the

- 2 - . .
relation y=Kt= (K=1ms %), where y is the vertical
displacement. The time period now becomes T,. What is the

ratio T{"/T:: ? Given g =10 ms™* (11T 05]
Solution. In first case,
T, =2n [i (1)
V8
In second case, displacement y = Kt*
d
Upward velocity, v= d_lt/ =2 Kt

Upward acceleration, a=2 K=2 x Ims =2 ms™2

T2=2TEJ I =21r\/ ! .(2)
g+a g+2
Hence Iﬁ:‘l“z] §+2
T22 by 4n’l
_g+2_10+2_6
T ¢ 10 5

Problem 7. The bob of simple pendulum executes SHM
in water with a period t, while the period of oscillation of the
bob is t in air. Neglecting frictional force of water and given

that the density of the bob is g kg ni>, find the

relationship between t and t, ? [AIEEE 04]

Solution. In air, {,=2n \F
8

Let V be the volume of the bob. Then
Apparent weight of bob in water
= Weight of bob in air — Upthrust
Vpg'= Vpg - Vog

g’=[l—3)s
P

Density of bob, p= ?;E kg m™

or

Density of water, o= 1000 kg m™

1000x3) ¢
==———" |g=2
g ( 4000 )g 4

Time period of the pendulum in water,

t=2n i=21t -L-=2><21t i=2to.
g g/4 g

Problem 8. A mass M is suspended from a spring of
negligible mass. The spring is pulled a little and then
released so that the mass executes SHM of time period T.If
the mass is increased by m, the time period becomes 5T/3.
What is the ratio m/M ? [AIEEE 03]

Solution. With mass M, the time period of the

spring is
T=2n /M
k

With mass M + i, the time period becomes
1:21: JM+m
3 k
o ExZn 'M=2n M+m
3 k k
or géM=M«t-m or EM=m
9 9
m 16
or —m—,
M 9

Problem 9. Two bodies M and N of equal masses are
suspended from two separate massless springs of spring cons-
tants k, and k, respectively. If the two bodies oscillate vertically,
such that their maximum velocities are equal, then find the
ratio of the amplitude of M to that of N. [AIEEE 03]

Solution. The maximum velocity of body in SHM

is given by
Vax = A0= ’En ['.‘m2=%]
Given Voax (M)=12_ . (N)
or A]\/% = @J% [my, =my, =m]
or

ﬁz\jg -
A ko

Problem 10. A particle at the end of a spring executes
simple harmonic motion with a period t,, while the
corresponding period for another spring is t,. What is the
period of oscillation when the two springs are connected in
series ? [AIEEE 04]

Solution. If a force F applied to the series
combination produces displacements ¢, and f, in the
two springs, then

F=—-kx, =—k,x,
gt wd =l

ky 2
Total extension,

1 1 k, +k,
x=x +x2=-Fl—+—]=—F[
. k, k kik,

2
kiky
k1 + kz

or F=-

. Force constant of the series combination,
= Kk
s
k, +k,
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Period of oscillation for the series combination,

f (k) [
m oy J_’”(’lt +§2) :2?{\/:‘ + ,’:L'
1 2

\!k~ kik,
or  T?- -lnz[‘,m + m]=[2n\/~7{1] +(2nJﬁ]
n'l .’\'2 kI k2

2 2 2
or T = !l‘+ k5.

T=2n

Problem 11. A particle executes simple harmonic
motion between x = — Aand x =+ A. The tinte taken for it to
go from O to A/2is T, and to go from A/2 to A is T,. Then
how are Ty and T, related ? [IIT Screening 01]

Solution. The displacement equation for S.H.M. is
X = Asin wt

At 1=T, x=A/2

"-1 = Asin T, or l =sin oT,
2 2
or T, = x or T, =
6 6w
At t = Tl + TZ, x=A

A=Asino(T, +T,) or 1=sin o(T] + L)

T, +T, =

T
or o(l, +T,)=—- or
(' 2) 2 = 2w

T T WM T

T =-—- 1=

= 2w
Problem 127 @0 simple harmonic iotions are

represented by the cquations :

y;=10 5"”5 (121+1), y,=5 (sin3nt++3 cos3n t)

Find the ratio of their amplitudes. What are time periods
of the two motions ? [IIT 86 ; MNREC 90]

Solution. y, 10 sin 2(12: +1)

=10 sin(3m‘+g) (1)

y2=5(sin31tt+w/§c053n t)

=10[sin3ntx%+c053ntx-\2§]

=10(sin3ntcos§+ cos?mts‘mg)

or Yy, =10 sin (31: t+ gJ w(2)
The general equation for SHM is

y=A sin(mt+¢0)=Asin(2?ﬂt+ db] N ()]

Comparing equations (1) and (2) with (3), we get

2n 2n
A, =10, A, =10, ?=—=3n

1 2

Problem 13. A point particle of mass 0.1 kg is executing
SHM of amplitude 0.1 m. When the particle passes through
the mean position, its kinetic energy is 8 x 10~ J. Obtain
the equation of motion of the particle if the initial phase of
oscillation is 45°. [Roorkee 91]

Solution. Here m=01kg A=01m, E=8x10"%]
b
=45°=—rad
g 4

K.E. at the mean position =(E,),_ .. =% mo® A%

. 8x1073 =%x0.1x o x (01)?

w=4rads™!
The equation of motion for the particle is
y=Asin ot =0.1sin (4 t+ n/ 4).

Problem 14. A simple harmonic motion has an
amplitude A and time period T. What is the time taken to
travel from x=Atox=A/27? [REC 92]

Solution. Displacement from mean position

=A-——:_
2 2

When the motion starts from the positive extreme
position,

or o’ =16 or

y=ACOS(t)t é=Ac052_ﬂf
2 T
2n 1 n 2n b1
or COs — t=—=cos — or —t=—
T 2 3 T 3
T,
6

Problem 15. A block is resting on a piston which is
moving vertically with simple harmonic motion of period
1.0 second. At what amplitude of motion will the block and
piston separate ? What is the maximum velocity of the piston
at this amplitude ? [Roorkee 85]

Solution. The block and piston will just separate
when

Amax =&

2 21!2
A: —_ A:
or (T] £

48T 2 9.8x (1.0)?

=0.248 m
inr®  4x9.87
Maximum velocity of the block,
Umax = @A = 2?1'-' A= 23‘(3—142 x 0.248 =1.56 ms .
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Problem 16. A block is kept on a horizontal table. The
table is undergoing simple harmonic motion of frequency
3 Hz in a horizontal plane. The coefficient of static friction
between the block and the table surface is 0.72. Find the
maximum amplitude of the table at which the block does not

slip on the surface. Take g =10 ms [Roorkee 96]

Solution. Maximum acceleration of the block,
amnx = ('OZA
2. Maximum force on the block, F = ma max = M o A
Frictional force on the block =y mg
The block will not slip on the surface of the table if
mo? A=p mg
.. Amplitude,
pg 072x10 072 x 10
A= —2 = 2 = 3 = .
® (2mv) (2x314x3)

Problem 17. Springs of spring constants k, 2k, 4k, 8k, ...
are connected in series. A mass m kg is attached to the lower
end of the last spring and the system is allowed to vibrate.
What is the time period of oscillations ?

Given m=40 g and k=2.0 Nom™!
Solution. Here m=40 g =004 kg,
k=20Nem™ ' =20x100 Nm™*

The effective spring constant k of the series
combination is given by

1 1 1 1 1 1|: 1 1 1 ]
—_——e et ——+—t ==l ==+ =+ ...
k' k 2k 4k 8k k 2 4 8
11 122 (Sum of finite GP. = 2]
k{1-1/2| k 1-r
or k'=k/2

T=2nﬁ=2ﬂ1{@

k' k
22 2 x 004
=2X—X |————
7 20 x 100

=0.126s.

Problem 18. A uniform spring whose unstretched
length is | has a force constant k. The spring is cut into two
pieces of unstretched lengths 1, and 1,, where I, = nl, and nis
an integer. What are the corresponding force constants k,

and k, in terms of n and k ? What is the ratio k, [k, ?

l
Solution.Here!/ =1, +1, and I, =nl, or l-p
-

2
As k=%g
k=28 and k,=2%
! L

k
Hence Jzﬂx-l_zi=’1+12=1+r_2=1+l
ll mg 11 l ll n
. k1=("+1}k
n
k
Als _2=ﬂxizi_ll+l2__l_+1:"+1
k 12 mg 1, l, S
or ky=(m+1) k.
Clearly, —1=1,
, N

Problem 19. A lorizontal spring block system of mass
M executes simple harmonic motion. When the block is
passing through its equilibrium position, an object of mass m
is put on it and the two move together. Find the new
amplitude and frequency of vibration. [Roorkee 88]

Solution. Original frequency,
1 |k

ViE—
2n VM
Let A = Initial amplitude of oscillation
v =Velocity of mass M when passing through
mean position

Maximum K.E. = Total energy
1 1

or ~ Mv? == kA?
2 2
D= i A
M

When mass m is put on the system, total mass
=(M+ m). If v' is the velocity of the combination in
equilibrium position, then by the conservation of linear
momentum,

Mo=(M+m)v" or v= Mo
M+m
If A’ is the new amplitude, then
l(M+ m)v’zzlkA'2
2 2
or A,=JM+m.U,=JM+m>< Mv
k k M+m
= ’M-‘-mx M thT—A=’ M A
k M+m M M+m
1 k
New f A = .
ew frequency o\ Mam

Problem 20. The bob of pendulum of length 1 is pulled
aside from its equilibrium position through an angle © and
then released. Find the speed v with which the bob passes
through the equilibrium position. [Kurukshetra CEE 96]
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Solution. The situation is shown in Fig. 14.43.

Fig. 14.43

~"uidelines to NCERT Exercises

o /
e

s
S
-

14.1. Which of the following examples represent periodic
motion ?
(1) A swimmer completing one (return) trip from one bank
of a river to the other and back.
(if) A freely suspended bar magnet displaced from its N - S
direction and released.
(1i1) A hydrogen molecule rotating about its center of mass.

(iv) An arrow released from a bow. (v) Halley's comet.

Ans. (i) Not periodic. Because the motion of the
swimmer is not repeated over and over again after any
fixed time interval.

(i) Periodic. As the magnet is released from its
displaced position, it oscillates about the N—§
direction with a definite time period.

(i) Periodic. The motion of the hydrogen molecule
rotating about its centre of mass repeats after a
fixed time interval.

(iv) Not periodic. The motion of the arrow does not
repeat itself after a fixed time interval.

(v) Periodic. Halley’s comet appears after every 76 years.

14.2. Which of the following examples represent (nearly)
stmple harmonic motion and which represent periodic but not
simple harmonic motion ?

(i) The rotation of earth about its axis.

(i) Motion of an oscillating mercury column in a U-tube,

(iit) Motion of a ball bearing inside a smooth curved bowl,

when released from a point slightly above the lower
most point.

(iv) General vibrations of a polyatomic molecule about its
equilibrium position.

Ans. (i) Periodic but not simple harmonic. The motion
of the earth about its axis repeats after every 24 hours but
it is not a to and fro motion.

Clearly, h=0B=05-BS=1-1cos9

=1(1 - cos 0)

Let v and v' be the velocities of the bob at position O
and A respectively. Then by the conservation of

energy,

1 1
= mv? == mo'?
2

+ mgh
5 8

v = \f'uz -2¢h

= \/vz ~2gl (1-cos 0)

or

(if) Simple harmonic. The restoring force is propor-
tional to the displacement of the mercury column from the
equilibrium level.

(iif) Simple harmonic. The motion of the ball bearing is
to and fro about the lower most point and the restoring
force is proportional to its displacement from that point.

(iv) Periodic but not simple karmonic. A polyatomic
molecule has a number of natural frequencies. In general,
its vibration is a superposition of SHM's of a number of
different frequencies. This superposition is periodic but
not simple harmonic.

14.3. Fig. 14.44 depicts four x-t plots for linear motion ofa
particle. Which of the plots represent periodic motion ? What is
the period of motion (in case of periodic motion) ?

X

#(s) >

AN
VIV

1 7 0 13 16

DA

-3 f(s)=

Fig. 14.44
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Ans. (i) Plot (a) does not represent periodic motion
because the motion is not repeated after a fixed interval.
(ii) Plot (b) represents periodic motion with T' = 2s.

(iii) Plot (c) does not represent periodic motion. The
repetition of merely one position is not enough for the
motion to be periodic. The entire motion during one
period must be repeated successively.

(iv) Plot (d) represents periodic motion with T = 2s.

14.4. Which of the following functions of time represent
(a) simple harmonic, (b) periodic but not simple harmonic, and
(¢) non-periodic motion ? Give period for each case of periodic
motion [w is any positive constant )

(i) sin ot — cos wt (11) sin® ot
(iii) 3 cos(m/4-2wt) (iv) cos of + cos 3wt + cos Swt
(v) exp (- w’?) (i) 1+ of + o’t™
Anms.
(i) Here x (t) = sin ot —cos wt
=2 (sin ot cos n/ 4 —cos wt sin n/ 4)
= J2sin (ot -/ 4)
Moreover,
x(t + 2n/ @) =2sin[o(t +2n/w)-n/4
= J2sin (ot + 2n -7/ 4)
=+/2sin (of —n/4)=x(t)
Hence the given function represents a simple harmonic
motion with T =2n/and phase angle = - n/4or 7n/ 4
(if) x (1‘)=sin3 ot = % (3sin wf —sin 3wt)
[ 5in 30 =3 sin O — 4 sin” 0]
It represents two separate simple harmonic motions
but their combination does not represent SHM.

Period of § sin wf = E =
(O]

Period of l sin 3ot = 2—“ = I
4 3o 3

Thus the minimum time after which the combined
function repeats is T = 2/ o Hence the given function is
periodic but not simple harmonic.

(iify Here  x (t)=3cos (n/4 - 2wt)

=3cos [- (2wt - n/4)]
=3cos (2ot —n/4)
[ cos (- 8)=cos 0]

It represents S.H.M. with period T = % ‘

20 ©

(1v) x (t) =cos wt + cos 3wt + cos St

cos wt represents S.H.M. with period = & T
w
. . 2n T
cos 3wt represents S.H.M. with period = 303
: . 2n T
cos 5wt represents S.H.M. with period = "5
©

The minimum time after which the combined function
repeats ils value is T. The given function is periodic but
not simple harmonic.

(v) x(I)=exp(- 02 2) = w? 12

It is an exponential function. It decreases mono-
tonically to zero ast — «. It never repeats its value. [tis a
non-periodic function.

@) x(1)=1+ of + o’t’

As ! increases, x () increases monotonically. Again, as
t — o, x (t)— «. The function never repeats its value. So

x (t) is non-periodic.

145. A particle is in linear simple harmonic motion
between two points, A and B, 10 cm apart. Take the direction
from A to B as the positive direction and give the signs of
velocity, acceleration and force on the particle when it is

(a) at the end A, (b) at the end B,

(¢) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A.

(e) at 3 em away from A going towards B, and
(f) at 4 cm away from A going towards A.

Ans.
Positive direction —
Zero
—5cm l +5¢cm
A D 0 cC B
| -
3cm —-1 D
4 cm
Fig. 14.45
Position Velocity Acceleration Force

(a) At A 0 (at extreme | + ve (acts + ve (acts

position) from Ato Q) | from A toO)
(b) At B 0 (at extreme | — ve (acts - ve (acts

position) from B to O) | from B to O)
(c) At - ve and 0 (at mid- 0 (at mid-
midpoint O, | maximum point) point)
going (acts from O
towards A to A)
(d) AtC, - ve (acts — ve (acts - ve (acts
going fromCto Q) | fromCto Q) | from CtoO)
towards A
(¢) At D, + ve (acts + ve (acts + ve (acts
going from Dto O) | from D to O) | from D to O)
towards B
(f) At E, —ve (acts + ve (acts + ve (acts
going from E to A) | from E to O) | from E to O)
towards A

14.6. Which of the following relationships between the
acceleration a and the displacement x of a particle involve
simple harmonic motion ?

(@a =07x (b)a =—200x> (c)a =-10x (d)a = 100x>.
Ans. Only (c) represents S.H.M. because here a «x

and a acts in the opposition direction of x.
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14.7. (a) A particle in SHM is described by the displacement

function,

x(t)= Acos (ot + ¢), m=2—;.

If the initial (t = 0) position of the particle is 1 cm and its
initial velocity is m cms™ 1, what are its amplitude and initial
phase angle ? The angular frequency of the particle is ts™ .

(b) A particle in SHM is described by the displacement

function,

x (t)= Bsin(wt +a), m=2~Fn.

If the initial (t = 0) position of the particle is 1 cm and its
initial velocity is © cms™", what are its amplitude and initial
phase angle ? The angular frequency of the particle is 7 s~ I,

Ans. (a) At t =0, x=1cm and v=ncms™'. Also,
w=mns"! ‘

In SHM, displacement at any time ¢ is given by

x = Acos (of + ¢)
Since, att =0, x = 1, therefore
1=Acos(wox0+ ¢)
or Acos =1 ..(1)
Now velocity, ‘
dx d
u=~tg=d—’[z‘lcos(mlL + )]
= — A osin (of + ¢)
Againatf =0, v=ncm s, so we have
n=—A(n)sin (0x0+ ¢)
or "Asin ¢=-1 (i)
Squaring and adding equations (i) and (ii), we get

A?cos? ¢+ A%sin? p=12 + (- 1)

or A? (cos? p+sin® ¢)=2 or A2(1)=2
A=42 em.
Dividing equation (ii) by (i), we get
A5m¢= —_—1 or tan ¢=—-1
Acos ¢ 1
3n Tn
or ¢=—or—.
4 4
(b)) At t =0, x=1cm and v=ncm s
Also, w=ms"!

Given x = Bsin(of + a)
Since, att =0, x = 1, therefore
1=Bsin (0 x0+ a)
or Bsina =1 ' (i)
Now velocity,
dx
v=—
dt
Again, atf =0, v=mncms™, so we have
n=B(n)cos (wx0+ o)
or Beosa =1

=:T{Bsm(mt+a)]=— B wcos (ot + o)

1

()

Squaring and adding equations (i) and (ii), we get

B%sin? a + Bzcosza=12+120r B*=2

or B=v2 em.
Dividing equation (i) by (ii), we get
Bsina 1
=— or tana=1
Becosa 1
or a=21 or 2
4

14.8. A spring balance has a scale that reads from 0to 50 kg.

The length of the scale is 20 cm. A body suspended from this
spring, when displaced and released, oscillates with a period of
0.60 s. What is the weight of the body ?
Ans. The 20 cm length of the scale reads upto 50 kg, so
F=mg=50x98N, y=20cm =0.20m

x 9.8
Force constant, k = £ = M

Yy

Suppose the spring oscillatés with time period of 0.60 s
when loaded with a mass of M kg. Then

= 2450 Nm !

'I'=2ﬂ:M
k
or 'I"":=41t2—,‘4
ko
2k (0.60)
Mo TE Q807 20
4n 4x(3.14)

Weight = Mg = 22.36 x 9.8 = 219.13 N.
14.9. A spring of force constant 1200 Nmi™' is mounted

horizontally on a horizontal table. A mass of 3.0 kg is attached
to the free end of the spring, pulled sideways to a distance of
2.0 cm and released. (i) What is the frequency of oscillation of
the mass ? (ii) What is the maximum acceleration of the mass ?
(iii) What is the maximum speed of the mass ?

| m
Fig. 14.46

Ans. Here k=1200Nm™"!, m=3.0kg,
A=20cm =20x10"?m

(1) Frequency of oscillation of the mass,

. _1_ E a 1 leOO
2n V\m 2x3.14 YV 3.0
1 -1
= X 20 = 3-2 s .
2x3.14

(if) Angular frequency,

W= JE: :lz_OQ=205"]_
m U 3.0
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.. Maximum acceleration of the mass
= @ A=(20)2 x2.0x1072
= 8.0 ms >,

(iif) Maximum speed of the mass
—wA=20x20x10"7

— 0.40 ms .

14.10. In Excrcise 14.9, let us take the position of the mass,
when the spring is unstretched, as x = 0, and the direction from
left to right as the positive direction of X-axis. Give x as a
function of time t for the oscillating mass, if at the moment we
start the stop watch (t = 0), the mass is (i) at the mean position
(i) at the maximum stretched pesition (iii) at the maximum
compressed position.

In what do these different functions of SHM differ ? Frequency,
amplitude or initial phase ?

Ans. When the mass starts motion from mean
position, the displacement of SHM is given by

x = Asin of

And, when the mass starts motion from extreme

position, the displacement of SHM is given by
x =% Acos ot
From above exercise, we have

W= \/E = ‘P—ZUQ =20rads”’
m 3

(i) Att = 0, when the mass is at mean position
.. Displacement is given by
x = Asin ot =2 sin 20f.

(if) Att = 0, when the mass is at the maximum stretched
position. The motion starts from positive extreme position,
thus

x =+ Acos ot =2cos20t.

(iif) At t =0, when the mass is at the maximum
compressed position. The mass starts its motion from
negative extreme position, thus

x =- Acos ot =-2cos20t.

14.11. Fig. 14.47 corresponds to two circular motions. The
radius of the circle, the period of revolution, the initial position,
and the sense of revolution (i.e., clockwise or an ti-clockwise) are
indicated on each figure.

LY

Y
{ \:45
T=2s
- »>X - . 2w : X
\Bm -

v P(t=0) /

Y
(a) (b)

Pec S Eon RS S Srakes Sa ST

Fig. 14.47

Obtain the corresponding simple harmonic motions of the
x-projection of the radius vector of the revolving particle P, in
each case.

Ans.

T=4s

(@)
Fig. 14.48
(1) As shown in Fig. 14.48(a), suppose the particle
moves from Pto P'in timef.
Angle swept by the radius vector,
2n 2n

ot ==—t=—1I =nt rad
T 2

e:

Displacement,

ON = OP' cos (’2—‘ - e) - OP'sin 0

or —x(t)=3sin0
[Displacement being to the left O]
or x(t)=—-3sin nt

(b) As shown in Fig. 14.48(b), suppose the particle
moves from Pto P'in timef.

Angle swept by the radius vector,

0= mt :E.Et =—2—nl’= it rad
T 4 2
Displacement,
ON = OP'cos 0
or —.r(f)=2cosﬂ—f [ OP'=2m,9=Ef_}
. 2 2
or x(!)=—2cos£2t-.

14.12. Plot the corresponding reference circle for each of the
following simple harmonic motions. Indicate the itial (£ = 0)
position of the particle, the radius of the circle, and the angular
speed of the rotating particle. For simplicity, the sense of
rotation may be fixed to be anticlockwise in every case (x is in
cm and t is in s).

(i) x=—2sin(3t + n/3)
(iii) x =3sin(2nt + n/4)

(ifyx =cos(n/6-1t)
(iv) x = 2 cos nt.

Ans. (i) x =—2sin (3t + 7/ 3)
=2cos (3t +n/3+m/2)
or x =2cos (3t + 5n/6) .[—sin0=cos(1r/2+0)]
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Compnring with x = A cos (wf + ) it follows that
A=2cm, 0=3rads !, ¢y =5n/ 6 rad

The reference circle is shown in Fig. 14.49(a).
y

4
P w =3 rad/s
(t=0) |_5m/6
N L
\ 2cm ‘
(;?) (b)
A

o = 2n rad/s Y
Jcm

() (d)

Tom WSO 3y

Fig. 14.49

() x=cos(n/6-t)=cos [=(t - n/6)]
or X =cos (t -n/6) [ cos (- 0) =cos 0]
Comparing with x = A cos (ot + ¢y), it follows that
A=1cm, ¢g=-mn/6rad.
The reference circle is shown in Fig. 14.49(b).

w=1rad s'l,

(rif) x =3sin (2nt + n/4)=—3cos(2nt +§—+ g)

or x =—3cos (2nt + 3n/4)

The negative sign shows that the motion starts on the
negative side of x-axis.

Here A=3cm, w=2nrads™}, ¢ =3n/4rad

The reference circle is shown in Fig. 14.49(c).

(iv) x = 2 cos mt

Comparing with x = A cos (ot + ¢ ) it follows that

A=2cm, 0=mnrads’!, ¢ =0.
The reference circle is shown in Fig. 14.49(d).

14.13. Fig. 14.50(a) shows a spring of force constant k
clamped rigidly at one end and a mass m attached to its freeend.
The spring is stretched by a force F at its free end. Fig. 14.50(b)
shows the same spring with both ends free and attached to a
mass m at either end. Each end of the spring in Fig. 14.50(b) is
stretched by the same force F.

k 1 m k n

F

FF
(@) )

R WY S NN T STRAR A ek

Fig. 14.50

-_—
—_—

(i) What is the maximum extension of the spring in the hwo
cases 7 (ii) If the mass in (a) and the two masses in (b) are
released free, what is the period of oscillation in each case ?

Ans. (i) Maximum extension of the spring. In case (b), the
force at either end of the spring is F and they act in
opposite directions. In case (a), the force of reaction at the
clamped end is also F, so both systems are identical. The
maximum extension in each case is given by

F

.'/=E-

(ii) In case (a), the period of oscillation is given by

T= 27:‘/?—7
k

In case (b), the spring can be considered to be divided
into two equal halves and its centre can be regarded to be
fixed as it does not move. Let k' be the force constant of
each half and x' be the extension produced in each half.
Then

, F

x'= =

kr
Total extension, x = 2x’ )
: F F
or — =2, —
k k'

k'= 2k

Hence the period of oscillation in case (b) is

T=21r‘/E=2n‘[E—.
k' 2k

14.14. The piston in the cylinder head of a locomotive has a
stroke (twice the amplitude) of 1.0 m. If the piston moves with
simple harmonic motion with an angular frequency of 200 rev/min,
what is its maximum speed ?

Ans. Here A :51 m, @ = 200 rev / min

Ui =mA=200x%=100 m / min.

14.15. The acceleration due to gravity on the surface of the
moon is 1.7 ms™ 2. What is the time period cf a simple pendulum
o the moon if its time period on the earth is 3.5 s ? Given gon
earth = 9.8 ms™ 2, [Delhi 06]

Ans. For the moon : g = 1.7 ms™ 2, T, =?

For the earth : 8, =98 ms” 2 T =3.5s

€

f I
But T =2n —and'I;"=2n: —
g{’ grn
Tu_ |8
T Vs,
or T,= 3 xT,
Sl"
=28 35-84s.
1.7
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14.16. Answer the following questions :

(@) Time period of a particle in SHM depends o the force
constant k and mass m of the particle :

T=2n \E A simple pendulum execules SHM approxi-

mately. Why then is the time period of a pendulim independent
of the mass of the pendulum ? [Delhi 12]

(b) The motion of a simple pendulum is approximately
simple harmonic for small angle oscillations. For larger angles
of oscillation, a more involved analysis shows that T is greater

than 2n_(— . Think of a qualitative argument to appreciate this

result.

(c) A man with a wristwatch on his hand falls from the top
of a tower. Does the watch give correct time during the free fall ?

(d) What is the frequency of oscillation of a simple pendulun
mounted in a cabin that is freely falling under gravity ?

Ans. (a) For simple pendulum, force constant

mg .
k=—l‘\ i.e,

T=2T[JE=ZTC iz =21t\/I
k \}mg/l g

Thus m cancels out. Hence time period of a simple
pendulum is independent of mass.

kocm

(b) The acceleration of the bob of a simple pendulum is
given by
a=-gsin.
If 0 is small, then
sin@=0 and a=-g0

If 0 is large, then sin 8 <6, so that there is effective
decrease in the value of g for large angles. Hence the time
period, T =2n J1/ g increases.

(¢) Yes, the wrist watch will give correct time because
the working of a wrist watch depends on its spring action
(i.e., the P.E. stored in the wound spring) and is indepen-
dent of the gravity.

(d) Inside a cabin falling freely under gravity, g =0.

Hence the frequency, v =2i ‘377 of a simple pendulum
n

mounted in the cabin will be zero.

14.17. A simple pendulum of length | and having a bob of
mass M is suspended in a car. The car is moving on a circular
track of radius Rwith a uniform speed v. If the pendulum makes
small oscillations in a radial direction about its equilibrium
position, what will be its time period ?

Ans. The bob of the pendulum has two accelerations :
2

(i) Centripetal acceleration, a_= L, acting horizontally

(if) Acceleration due to gravity = g, acting vertically
downwards.

The effective acceleration due to gravity,

2 2 2 U4
=VET A =487+

Time period,

T 1
8 Jg?+ ot R
14.18. A cylindrical piece of cork of base area A and height
h floats in a liquid of density p,. The cork is depressed slightly
and then released. Show that the cork oscillates up and down
hp

P8
density of cork. (Ignore damping due to viscosity of the liquid).

T=2n

simple harmonically with a period T = 2n . where p is the

Ans. Refer answer to Q. 22 on page 14.31.

14.19. One end of a U-tube containing mercury is
connected to a suction pump and the other end is connected to
the atmosphere. A small pressure difference ts maintained
between the two columns. Show that when the suction pump is
removed, the liguid in the U-tube executes SHM.

Ans. Refer answer to Q. 20 on page 14.30.

14.20. An air chamber of volume V has a neck of area of
cross-section A into which a ball of mass m can move without
friction. Show that when the ball is pressed down through some
distance and released, the ball executes SHM. Obtain the formula
for the time period of this SHM, assuming pressure- volume
variations of the air to be (i) isothermal and (ii) adiabatic.

Ans. Refer answer to Q. 23 on page 14.31.

14.21. You are riding in an automobile of mass 3000 kg.
Assuming that you are examining the oscillation characteristics
of its suspension system. The suspension sags 15 cm when the
entire automobile is placed on it. Also, the amplitude of
oscillation decreases by 50% during one complete oscillation.
Estimate the values of (a) the spring constant and (b) the
damping constant b for the spring and shock absorber system of
one wheel, assuming that each wheel supports 750 kg.

Ans. (a) Here m=3000kg, x=0.15m

If k is the spring constant of each spring, then the spring
constant of the four springs connected in parallel will be 4k.

4kx = mg
- _mg _ 3000 x 10 —5x10* Nm™.
4x  4x01
(b) As A'= Ae” bt/ 2m
é_= Ae” bt/2m or 2= ebl/ZHr
2
2ml
or log, 2= b—f logl, e= -?—n p="" og{
But =2 ‘/T*z 22 [ 3000 W
7 4x5x10
2 x750 x 0.693
Hence b="""""""""_1350.4 kgs™.
H
70V2
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14.22. Show that for a particle in lincar SHM, the average
kinetic energy over a period of oscillation equals the average
potential energy over the same period.

Ans. Suppose a particle of mass m executes SHM of
period T. The displacement of the parlicle atany instant |
is givenby vy = Asin of

dy

s Velocity, v= F =w Acos wf.
§

Kinetic energy, A? cos® wt.

E —%nw —% "
2

Potential energy, E, 751

. Average K.E. over a period of oscillation,

m w? Y -%m ot A?sin? of.

1 1¢ 1
E =_I E*dt=—j‘ S mw? A% cos® ot dt
av. T 3 T 3 2

T
1 2wk

:,_]_,”mz Az‘[ ﬂwdt

T 2

T
in2ot
=iwrm2 A? r+———sm ©
4T 2o |,

1 2 2
=—maw® AX(T mm A (1
aT (T)= (1)
Average P.E. over a penod of oscillation,
T
E -—-1] E dt =—_f ~ma* A?sin? ot dt
Pav T 0
1-cos2wmt
_-__-_1._ '"mz A?‘j (__C?q__L)d!
T
T
9 i t
:i mm- Az t _M_
4T 2w "
= L mw? A (T)= L mw? A% (2)
4T 4

Clearly, from equations (1) and (2), EL E

14.23. A circular disc of mass 10 kg is suspended b Y a wire

attached to its centre. The wire is twisted by rotating the disc
and released. The period of torsional oscillation is found to be
1.5s. The radius of the disc is 15 cm. Determine the torsional
spring constant of the wire.

Ans. Period of torsional oscillations is given by

2
T=2n \/I or T? = ind
C c
2
. Torsidnal spring constant, C= %{

But I=1 MR?, M=10kg, R=15cm =0.15m,
T=15s
4u2x%MR2
_2x(314)" x1 E
x( fx 0x(0.15) =2,0Nm rad™’

(15)°

14.24. A body describes simple harmonic motion with an
amplitude of 5 cnt and a period of 0.2 s. Find the acceleration
and wvelocity of the body when the displacement is (a) 5 cm,
(b) 3 em, (c) 0 cm.

Ans. Here A=5¢em, T=0.25s

Velocity and acceleration at any displacement x are

given by
v-—-m\IAZ —? =2—_;t\fA2—x2
2 471'2
n=—-0m J.’=—Fx

(1) When x =5cm,
z;:% 52 — 52 =0,
2

= -500 % cm s
(b) When x =3 cm,
2n

~0—2- ,sz -3 cms?
—40nmems 2 =040 ms L.
47[2 -2

a=- 5 x3cm s
(0.2)

or

2 __57%2 ms2.

U=

=-300ntcms 2 =-3n® ms.

(c) When x =0cm,

2 -
v="" /52 -0 ems”!
0.2 .
=050 ms .
42
a=——0 5 x0=0.
(0.2)

14.25. A mass attached to a spring is free to oscillate, with
angular velocity w, in a horizontal plane without friction or
damping. It is pulled to a distance x,, and pushed towards the
centre with a velocity v, at time t = 0. Determine the amplitude
of the resulting oscillations in terms of the parameters , x,
and v,

=50nems !

Ans. By conservation of energy,
(K.E. + P.E.) at distance x,
= Total energy at the extreme position

1 1 _1 2
or 2mvo kx kA
m
or —vz+.~:2-A2
k o o
2
v k
or —02+12=A2 (l)zz—-
) n
2
v
A=,-5+x
()
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Text Based Exercises

oW N

@

Type A Very Short Answear Questions

[Himachal 04]
[Himachal 04, 05C]

What is periodic motion ?
What is oscillatory motion ?
What are harmonic functions ?

What is the period of each of the functions sec wf
and cosec ot ?

Justify that sin 0 and cos 0 are periodic functions.

6. Define force constant. Give its Sl unit.

7. Write the values of oscillation—amplitude and

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

frequency from the equation y = A sin of of S.H.M.

Write the relation between acceleration, dis-
placement and frequency of a particle executing
S.HM.

The equation of motion of a particle executing
S.H.M. is a = — bx, where a is the acceleration of the
particle, x is the displacement from the mean
position and b is a constant. What is the time period
of the particle ?

Write the relation between time period T, displace-
ment x and acceleration @ of a particle in 5.H.M.

Is spring constant a dimensional or non-dimen-
sional constant ?

What is meant by phase of an oscillating particle ?
What is initial phase or epoch. Give a unit for its
measurement.

Two simple pendulums of same length are crossing
at their mean positions, what is phase difference
between them ?

What is the phase relationship between particle
displacement, velocity and acceleration in S.H.M. ?
What is phase difference between the displacement
and acceleration of a particle executing S.H.M. ?
What is a second’s pendulum ? What is its length ?

[Himachal 95C]
A simple pendulum moves from one end to the
other in 1/4 second. What is its frequency ?

Write the values of amplitude and angulér
frequency for the following simple harmonic
motion.

y=02sin(99¢t + 0.36)

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

1 Mark Each

Write the displacement equation representing the
following conditions obtained in a simple harmonic
motion :

Amplitude = 0.01 m,
Frequency =600 Hz,

Initial phase =/ 6. [Delhi 06]

How will the time period of a simple pendulum
change if its length is doubled ? [Delhi 98]

What would be the effect on the time period, if the
amplitude of a simple pendulum increases ?

How will a simple pendulum behave if it is taken to
the moon ?

A pendulum clock is thrown out of an aeroplane.
How will it behave during its free fall in air ?

If on going up a hill, the value of g decreases by 10%,
then what change must be made in the length of a
pendulum clock in order to obtain accurate time ?

Which quantity is conserved during the oscillation
of a simple pendulum ?

A girl is sitting in a swing. Another girl sits by her
side. What will be the effect on the periodic time of
the swing ?

What is the frequency of a second pendulum in an
elevator rising up with an acceleration equalto g / 2?

Two identical springs of force constant k each are
connected in series. What will be the equivalent
spring constant ?

Two identical springs of force constant k each are
connected in parallel. What will be the equivalent
spring constant ?

The time period of a body executing S.H.M. is 0.05 s
and the amplitude of vibration is 4 cm. What is the
maximum velocity of the body ?

A particle executes S.H.M. of 2 cm. At the extreme
position, the force is 4 N. What is the force at a point
midway between mean and extreme positions ?

The potential energy of a particle in S.H.M. varies
periodically. If v is the frequency of oscillation of
the particle, then what is the frequency of variation
of potential energy ?
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34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

When will the motion of a simple pendulum be
simple harmonic ?

When is the potential energy and kinetic energy of a
harmonic oscillator maximum ? What are these
maximum values ?

On what factors does the energy of a harmonic
oscillator depend ?

What would be the time period of a simple
pendulum at the centre of the earth ?

Can an ideal simple pendulum be realised in
practice ? Is the motion of a simple pendulum-
linear simple harmonic or
harmonic ?

angular simple

A simple harmonic motion of acceleration @ and
displacement x is represented by

a+4n’x =0,
What is the time period of SH.M ?
State force law for a simple harmonic motion.
[Delhi 03]
Give the general expression for displacement of a

particle undergoing S.H.M. [Central Schools 03]

What are the two basic characteristics of an
oscillating system ? [Delhi 97]

What is the frequency of oscillation of a simple
pendulum mounted in a cabin that is freely falling
under gravity ? [Delhi 97)

Answers

1.

The motion which repeats itself over and over

again after a fixed interval of time is called a
periodic motion.

The motion which repeats itself over and over
again about a mean position such that it remains
confined within well defined limits (known as
extreme positions) on either side of the mean
position is called oscillatory motion.

The functions which can be represented by a sine or
cosine curve are called harmonic functions.

Period of sec wf or cosec ot =2n/

Both sin 8 and cos @ are the periodic functions of 0
because,

sin (6 + 2nn) =sin © and cos (0 + 2nn) = cos 0,
where n=1,2,3....
The restoring force produced per unit displacement

of an oscillating body is called force constant or
spring factor (k). Its SI unit is Nm ™!,

44.

45,
46.

47.
48,

49.
50.

51.

52.

53.

54.

55.

10.

11.

The amplitudes of oscillations of two simple
pendulums similar in all respects are 2 cm and 5 cm
respectively. Find the ratio of their energies of
oscillations. [Delhi 96]

[Delhi 96]

What is the main difference between forced
oscillations and resonance ? [Delhi 02]

What is meant by SHM ? [Himachal 05]

Define periodic time. Give its S1 unit.

What is meant by the displacement of a particle
executing SHM ? [Himachal 05]

Define amplitude of SHM. [Himachal 05]

Define force constant and give its dimensional
formula. [Himachal 03]

List any two characteristics of simple harmonic
motion. [Delhi 04]
What is the time period of second’s pendulum ?
[Himachal 03, 04]
A pendulum is making one oscillation in every two
seconds. What is the frequency of oscillation ?
[Delhi 04]
A simple pendulum is inside a space craft. What
should be its time period of vibration ?
[Central Schools 05]
What is the condition to be satisfied by a
mathematical relation between time
displacement to describe a periodic motion ?
[Central Schools 08]

and

Amplitude = A,
frequency =w/2n.
Acceleration,

a=- (02;/ == 4n2v2y.

Here a=—bx=—m2x,
where = /b.
2t 2n
T=—="—+.
o Jb

T=211’JE.
a

Spring constant,

. F _ Restoring force

x  Displacement

_IMLT?) _
(L]

Hence spring constant is a dimensional constant.

[MLOT?]
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12.

13.

14.
15.

16.
17.

18.
19.

20.

21.

22,

24,

25.

26.
27.

28.

The phase of an oscillating particle at any instant
gives the state of the particle as regards to ils
position and the direction of motion at that instant.

The phase of a vibrating particle corresponding to
the time ¢ = 0 is called initial phase or epoch. It is
measured in radian.

180° or n radian.

In S.HM., the particle velocity leads the
displacement in phase by n /2 rad and acceleration
leads the velocity in phase by n/ 2 rad.

180° or n radian.

A simple pendulum whose time period is 2 seconds
is called a second’s pendulum. Its length is 99.3 cm.

2 Hz
Amplitude A = 0.2 m, angular frequency w = 99 Hz.

y=asin (2nvt + ;) = 0.01sin (1200 nt+ %) .

AsT=2n ‘/I , so when the length is doubled,
8

the time period will be increased by V2 times.

The time period of the simple pendulum will
remain the same, because time period is inde-
pendent of its amplitude.

On the moon, the simple pendulum will oscillate
/6 times slower than that it does on the surface of

the earth because the value of ¢ on the moon is
1/ 6th of that on the earth.

During its free fall in air, the pendulum clock isin a
state of weightlessness i.e., ¢ = 0. Hence

T=2ng=co
8

The pendulum clock will not oscillate at all.

The length of the pendulum clock should be
decreased by 10%. '

Total mechanical energy of the bob is conserved.

The periodic time remains unchanged because the
length of the pendulum does not change when the
second girl sits besides the first girl and T is
independent of the mass of oscillating bob.

Frequency of a second pendulum, v = % 51

The effective value of g in the elevator,

g'=g+a=9+g/2=3¢/2

As v=-—1—\{g ie., voc\[g_r
2n N I

Y—=‘/£=F=1.225
v g 2

Hence v'=1.225v =1.225 x%

=0.612 Hz

29, k - Kxk _k

kv k 2
30. k,=k+k=2k ‘

2n 2n 4
31. vmn:? =T05x1_0—6
=1.6m ms ™.

32. 2N, because F o x.
33. 2wv. ’
34. When the displacement of the bob from the mean

35.

36.

37.

38.

39.

40.

41.
42,

43,

44.

45.

position is so small thatsin 0 = 8, the oscillations of
the pendulum will be simple harmonic.

Potential energy of a harmonic oscillator is
maximum at extreme position and minimum at
extreme position, while kinetic energy is maximum
at mean position.

Max. value of K.E. = Max. value of P.E. = ~21- ma® A%

The energy of a harmonic oscillator depends on its

(1) mass m (ii) frequency v and (iii) amplitude A.
E=2n% mv? A?

At the centre of the earth, g =0, so

T=2n,/l/g =wm.
No. The motion of simple pendulum is angular
simple harmonic.

a=—4n’x =— mzx, where w=2n

2 _2n_

T 1s

® 2n
The force acting in S.H.M. is proportional to the

displacement and is always directed towards the
mean position. Hence the force law for S.H.M. is

F=—kx.
x(t)= Acos (ot + ¢g)or x (t) =acos ot + bsin wt.

The oscillations of a system result from its two basic
characteristics, namely, elasticity and inertia.

In a freely falling cabin, g = 0, therefore

=1JE=0_
2r V1

2 2
i:[ﬁ-} =[2) =4:25
E 4 5
The smallest interval of time after which a motion

repeats itself over and over again is called its periodic
time. The SI unit of periodic time is second (s).

v
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46.

47,
48.
49.
50.

51.

10.

In forced oscillations the frequency of the external
from the natural
two

periodic force is different
frequency of the oscillator while

frequencies are equal in resonant oscillations.

these

Refer to point 5 of Glimpses.
Refer to point 7 of Glimpses.
Refer to point 8 of Glimpses.

The restoring force produced per unit displacement
of an oscillating body is called force constant. Its
dimensional formula is [ML'T 2]

Characteristics of SHM :

(1) Itis the simplest kind of oscillatory motion of
constant amplitude and fixed frequency.

L

Tyope B : Short Answer Quastions

Giving examples of each type, distinguish between
periodic, harmonic and non-harmonic functions.

What is simple harmonic motion ? State its
characteristics. [Delhi 98]

Write down the differential equation for S.H.M.
Give its solution. Hence obtain expression for the
time period of S.H.M.

Prove that the displacement equation
x (t)=acos ot + bsin wt

represents a simple harmonic motion. Determine
its amplitude and phase constant.
[Central Schools 05]

Write expression for the particle velocity and
acceleration during simple harmonic motion as
function of time. [Delhi 03C]

Derive an expression for the instantaneous velocity
and acceleration of a particle executing S.H.M.
[Himachal 01, 04, 05]

Obtain an expression for the velocity of a particle
executing SHM. When is this velocity
(f) maximum and (/i) minimum ?

What is S HM. ? Show that the acceleration of a
particle in S.HM. is proportional to its displace-
ment. Also write expression for the time-period in
terms of acceleration. [Central Schools 04]

Show that in simple harmonic motion (S.H.M.), the
acceleration is directly proportional to its displace-
ment at the given instant. [Delhi 08]

The relation between the acceleration s and
displacement x of a particle executing SHM is

52,
53.
54.

55.

11

12,

13.

14.

15.

16.

17.

18.

(if) Restoring force is proportional to the
displacement of the particle from its mean
position.

2s.

v=1/2cps.

Inside a spacecraft, g=0.

Therefore,

T=2n L:ZR\/Imn.
g 0
A periodic motion repeats after a definite time

interval T. So
y(t)=y(t + T) = y(t +2T), etc.

2 or 3 Marks Each

a=- [EJ y; where p and g are constants.
q

What will be the time period T of the particle ?

Find an expression for the total energy of a particle
executing S.H.M.
[Delhi 02 ; Himachal 05 ; Central Schools 05]

Show that the total energy of a body executing
S.H.M. is constant. [Central Schools 07]

Show that the total energy of a particle executing simple
harmonic motion is directly proportional to the
square of amplitude and frequency.

[Himachal 05C]

A body is executing simple harmonic motion. At
what distance from its mean position, its energy is
half kinetic and half potential ? [Delhi 96]

Show that the horizontal oscillations of a massless
loaded spring are simple harmonic. Deduce an
expression for its time period.

Show that when a body is suspended from a spring
and is pulled down a little and released, it executes
S.H.M. Also find an expression for its time period.
Does it depend on acceleration due to gravity ?
[Himachal 05 C]

What is an ideal simple pendulum ? Derive- an
expression for its time period.
[Himachal 05C ; Chandigarh 07]
What is a simple pendulum ? Show that motion
executed by the bob of the pendulum is S.HM.
Derive an expression for its time period.
[Himachal 06 ; Chandigarh 08 ; Central Schools 12]
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19.

20.

21.

22,

Show that for small oscillations the motion of a
simple pendulum is simple harmonic. Derive an
expression for its time period. Does it depend on

the mass of the bob ? [Himachal 04 ; Delhi 08, 11]

Prove that if a liquid taken in a U-tube is disturbed
from the state of equilibrium, it will oscillate harmo-
nically. Find expressions for the angular frequency
and time period.

A ball of mass m fits smoothly in the cylindrical
neck of an air chamber of volume V. The neck area
is A. Show that the oscillations of the ball in the
neck of the air chamber are simple harmonic.
Calculate the time-period.

Show that the angular oscillations of the balance-
wheel of a watch are simple harmonic. Hence deduce
an expression for the time-period of its oscillations.

A cylindrical piece of cork of base area A and
height /i floats in a liquid of density p,. The cork is
depressed slightly and then released. Show that the
cork oscillates up and down simple harmonically

Answers

AU A

N

Refer answer to Q. 5 on page 14.2.

Refer answer to Q. 6 and Q. 7 on page 14.4.
Refer answer to Q. 8 on page 14.4.

Refer answer to Q. 11 on page 14.7.

Refer answer to Q. 14 on page 14.8.

Refer to solution of Q. 12 on page 14.7 and Q. 13 on
page 14.8.

Refer answer to Q. 12 on page 14.7.

8. Displacement, x = A cos wf

Velocity, v=£§- =—w Asin of

Acceleration,

dv
a-—=—m Acos of =

dt

. Therefore, acceleration o displacement.

(IJZI

Magnitude of acceleration in S.H.M. is

d=(02}.’

or o’
21t 2n

re a / x
. ( ’Dlsplaoement
Acceleration

Refer answer to the above question.

=alx

24,

25.

26.

27.
28.

29.

10.

11.

13.
14.
15.
16.
17.
18.
19.
20.

26.
27.
28.

29,

/
il , where p is the

Py 8

with a time period T =2n

density of the cork. [Delhi 03]

What are free, damped and maintained oscillations ?
Give examples.

With the help of examples, differentiate between free
oscillations and forced oscillations. [Delhi 03]

Briefly explain the principle underlying the tuning
of a radio receiver.

What are coupled oscillations ? Give examples.

Show that in a S.H.M. the phase difference between
displacement and velocity is n/2 and between
displacement and acceleration it is m. [Delhi 06]

Draw the graphical representation of simple harmonic
motion, showing the

(@) displacement-time curve.
(b) velocity-time curve and

(¢) acceleration-time curve. [Chandigarh 07]

q

2'rt q

=21 |+
Jp/

Refer answer to Q. 15 on page 14.16.

T=

Refer answer to Q. 15. on page 14.16.
Refer answer to Q. 15 on page 14.16.
Refer to the solution of Example 28 on page 14.18.
Refer answer to Q. 16 on page 14.20.
Refer answer to Q. 17 on page 14.20.
Refer answer to Q. 19 on page 14.27.
Refer answer to Q. 19 on page 14.27.
Refer answer to Q. 19.on page 19.27.
Refer answer to Q. 20 on page 14.30.
Refer answer to Q. 23 on page 14.31.
Refer answer to Q. 24 on page 14.32.
Refer answer to Q. 22 on page 14.31.
Refer answer to Q. 25 on page 14.34.
Refer answer to Q. 26 on page 14.36.
Refer answer to Q. 27 on page 14.37.
Refer answer to Q. 28 on page 14.37.
Refer answer to Q. 14 on page 14.8.

Refer answer to Q. 14 on page 14.8.
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Type C: Long Answer Questions

. With suitable examples, explain the meaning of a

periodic fungtion. Construct two infinite sets of
periodic functions with period T. Hence state
Fourier theorem.

Define the terms harmonic oscillator, displacement,
amplitude, cycle, time period, frequency, angular
frequency, phase and epoch with reference to an
oscillatory system.

Show that simple harmonic motion may be regarded
as the projection of uniform circular motion along a
diameter of the circle. Hence derive an expression
for the displacement of a particle in S.H.M.

Explain the relation in phase between displace-
ment, velocity and acceleration in SHM, graphi-
cally as well as theoretically. [Chandigarh 04]

Derive expressions for the kinetic and potential
energies of a harmonic oscillator. Hence show that
total energy is conserved in S.H.M. [Delhi 12]

Answers

A Sl

Refer answer to Q. 4 on page 14.2.
Refer answer to Q. 9 on page 14.4.
Refer answer to Q. 10 on page 14.6.
Refer answer to Q. 14 on page 14.8.
Refer answer to Q. 15 on page 14.16.

5 Marks Each

6. Tind the total energy of the particle executing

6.
7.

8.

S.HM. and show graphically the variation of P.E.
and K.E. with time in S.H.M. What is the frequency
of these energies with respect to the frequency of
the particle executing S.H.M ? [Delhi 05]

Show that for a particle in linear SH.M., the average
kinetic energy over a period of oscillation is equal
to the average potential energy over the same period.

At what distance from the mean position is the
kinetic energy in simple harmonic oscillator equal
potential energy ? [Delhi 06]

What is a spring factor ? Derive the expression for
resultant spring constant when two springs having
constants k; and k, are connected in

(i) parallel, and (ii) in series.
[Chandigarh 04 ; Central Schools 05]

Refer answer to Q. 15 on page 14.16.

Refer to the solution on NCERT Exercise 14.22 on
page 14.54 and Example 28 on page 14.18.

Refer answer to Q. 18 on page 14.21.
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Oscillations

GLIMPSES

Periodic motion. A motion which repeats itself
over and over again atler a regular interval of time
is called a periodic motion.

Oscillatory motion. A motion in which a body
moves back and forth repeatedly about a tixed
point (called mean position) is called oscillatory or
vibratory motion.

Periodic function. Any function thal repeats its
value at regular intervals of its argument is called
a periodic function. The following sine and cosine
functions are periodic with period T.

2nt 2nt
t)y=sin— and g (t)=cos —
f(t)=sin T 8i(t) =rcos’g

The periodic functions which can be represented
by a sine or cosine curve are called harmonic
functions. All harmonic functions are necessarily
periodic but all periodic functions are not harmonic.

The periodic tunctions which cannot be repre-
sented by single sine or cosine function are called
non-harmonic functions.

Fourier theorem. Two infinite sets of periodic
functions with period T are

f"(t)=sin—2—1;"—t, 0=1,2,3, 4, .

g"(t)zcoszn—;t, n=0,123...

Fourier theorem states that any periodic function
F (t) with period T can be expressed as the unique
combination of sine and cosine functions f (t)and
g, (t) with suitable coefficients. Mathematically,
Et)=b; + T b, cos nwt + I a, sin n ot
where ©=2n/T. The coefficients by, b, b,, .....;
a, dy, Ay, e are called Fourier coefficients. The
special case of Fourier theorem in which only g
and b are non-zero represents simple harmonic
motion (S.H.M.).
2nt

2m+blcos——-.

F(t)=a15mT =

10.

Simple harmonic motion. A particle is said to
execute simple harmonic motion if it moves to and
fro about a mean position under the action of a
restoring force which is directly proportional to its
displacement from the mean position and is
always directed towards the mean position. If the
displacement of the oscillating particle from the
mean position is small, then

Restoring force = Displacement
or Fox
or F=-kx
where k is a positive constant called force constant
or spring factor and is defined as the restoring force
produced per unit displacement. The negative
sign shows that the restoring force always acts in

“the opposite direction of displacement x. The

above equation defines SHM.

Oscillation or cycle. One complete back and forth
motion of a particle is called cycle or vibration or
oscillation.

Displacement. It is the distance of the oscillating
particle from the mean position at any instant. It is
denoted by x.

Amplitude (A). The maximum displacement of
the oscillating particle on either side of its mean
position is called its amplitude. Thus x_ =+ A.
Time period. It is the time taken by a particle to
complete one oscillation about its mean position. It
is denoted by T. .
Frequency. It is the number of oscillations
completed per second by a particle about its mean
position. It is denoted by v and is equal to the

1
reciprocal of time period. Thus v = w

Frequency is measured in hertz.
1 hertz =1 Hz =1 oscillation per second = s
L
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11.

14.

16.

Angular frequency. 1t is the quantity obtained by
multiplying frequency v by a factor ol 2r I is
denoted by .

. 2n

Thus = 2nv = 7

Sl unit of w=rad s ',

Phase. The phase of vibrating particle at any
instant gives the state of the particle as regards its
position and the direction of motion at that instant.
It is denoted by ¢ .

Initial phase or epoch. The phase of a vibrating
particle corresponding to lime t = 0is called initial
phase or epoch. It is denoted by ¢, .

Phase difference. The phase difference between
two vibrating particles tells the lack of harmony in
the vibrating stales of the two particles al any
instant.

Relation between SHM and uniform circular
motion. Simple harmonic motion is the projection
of unitorm circular motion upon a diameter of a
circle. This circle is called the reference circle and the
particle which revolves along it is called reference
particle or generating particle.
Displacement in SHM. In a simple harmonic
motion, the displacement of a particle from its
equilibrium position at any instant t is given by

x ()= Acos (o + ¢U)
Here A is amplitude of the displacement, the
quantity (wf + ¢, )is the phase of the motion and b,
is the initial phase.
When the time is measured from the mean
position,

x(t)= Asin wt
When the time is measured from the extreme
position,

x(t)= Acos wt
The angular frequency «, frequency v and time
period T of the motion are given by

JF k
w= _[— or w= [—
X m
_1_1fa

T 2r\x

T=2n [Dlsplacement o J'i
Acceleration a
7
or T=on [ner. ia factor _ L X \/1_75 '
Spring factor k

Velocity in SHM. It is the rate of change of
displacement of the particle at any instant. It is
given by

v

18.

19.

20.

21.

dx d
= ke 7 [Acos (mf + )]
2

= —oAsin(of + ¢;) =~ (-)‘/A2 -x°

The maximum value of velocity is called velocity
amplitude v, of the motion.

Thus 0, = mwA= -215 A

At the mean position, particle velocity = v, = wA
At the extreme position, particle velocity = 0.
Acceleration in SHM. It is the rate of change of

velocity of the particle at any instant. It is given by
. dv d
i = T =

dr dt
=— mzAcos(mf +¢g) =-— w’x

[~ @A sin (of + ¢,)]

e, ao«x
The maximum value of acceleration of particle is
called acceleration amplitude . Thus

i, = w* A
At the mean position, particle acceleration = 0
At the extreme position, particle acceleration,

2

a, =" A
Phase relationship between displacement, velocity
and acceleration. In SHM, the particle velocity is
ahead of displacement by n/2 rad while accele-
ration is ahead of displacement by « rad.
Energy of SHM. If a particle of mass m executes

SHM, then at a displacement x from mean position,

the particle possesses potential and kinetic energy.
At any displacement x,

2.2

Potential energy, U= % mw x° = % kx?

Kinetic energy, K= % ma’ (A% - x?)

1 )
—k(A" =

3 ( x7)
Total energy,

E=U+ K:%mm2 A% =212 mv? A%

If there is no friction, the total mechanical energy,
E= K+ U, of the system always remains constant
even though Kand U change.

Motion of a massless loaded spring. When a mass
m is attached to a massless spring and pulled
downwards, it executes SHM. If | is extension in
the spring on attaching mass m and k is its force
constant, then time period of SHM executed by the

spring

T=21‘L’JI=ZTI:JE
8 k
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24,

26.

27.

28.

29.

Spring cut into parts. If we divide the spring of
spring constant &k into n equal parts, the spring
constant of each part becomes k. Hence the time
period when the same mass nis suspended from
cach part is

Teon |
\nk
Springs connected in series. If two springs of
spring constants k and k, are connected in series,
then the spring constant k of the combination is
given by

or k=12

1 1
_+_
bk,

e

T =92 [m(kl + k)
V' Ak

Springs connected in parallel. It two springs of
spring constants k and k, are connected in
parallel, then the spring constant k of combination
is

n
Vh +

Simple pendulum. A simple pendulum is a heavy
point mass suspended by a weightless, inexten-
sible and a perfectly flexible string from a rigid
support about which it can vibrate freely. The
distance between the point of suspension and the
peint of oscillation is called length of the pendulum
(/) When the metallic bob is displaced from mean
position, it executes SHM.

Time period, T=2n JT
8

Second’s pendulum. A second’s pendulum is a
pendulum whose time period is two seconds. Its
length is 99.3 cm.

Motion of a liquid in a U-tube. When a liquid of
density p and contained in a U-tube upto height I
is depressed, it executes SHM of time period,

T=21t\/E
&

Motion of a body dropped in a tunnel dug along
the diameter of earth. When a body is dropped in
a tunnel dug along the diameter of the earth, it
executes SHM. If R is radius of the earth, then its
time period is

T=21t\[E
8

Motion of a body floating in a liquid. When a
body made of material of density p and total
vertical length Lfloats in a liquid of density p, such

T=2n

k=k +k

30.

32.

33.

34.

that its length /i is submerged in the liquid, it
executes SHM on being pushed into the liquid.

T=2n { PL_ 2n ] E
Veg Vg
Free oscillations. If a body, capable of oscillation,
is slightly displaced from its position of
equilibrium and then released, it starts vscillating
with a frequency of its own. Such oscillations are
called free oscillations. The frequency with which
a body oscillates is called natural frequency and is
given by
1 |k

Vo =

O 2 Vm
Here a body continues to oscillate with constant
amplitude and fixed frequency.

Damped oscillations. The oscillations in which
amplitude decreases gradually with the passage of
time are called damped oscillations.

The energy of a real oscillator decreases because a
part of its mechanical energy is used in doing work
against the frictional forces and is lost as heat. If
the damping force is given by F, = - by, where v is
the velocity of the oscillator and b is a damping
constant, then the displacement of the oscillator is
given by,

x(t)= Ae” " cos (@'t + ¢)

where ', the angular frequency of the damped
oscillator, is given by

, Jk =
W =4—=—
m  4nr

If the damping constant is small then o' = w, where
w is the angular frequency of the undamped
oscillator. The mechanical energy E of the oscillator
is given by

E(t)= _1 I\'.AZ & b!lm.

2
Forced oscillations. When a body oscillates under
the influence of an external periodic force, not with
its own natural frequency but the frequency of the
external periodic force, its oscillations are said to
be forced oscillations.
Resonant oscillations. It is a particular case of
forced oscillations in which the frequency of the
driving force is equal to the natural frequency of
the oscillator itself and the amplitude of oscilla-
tions is greatest. Such oscillations are called resonant
oscillations and phenomenon is called resonance.

Coupled oscillations. A system of two or more
oscillators linked together in such a way that there
is mutual exchange of energy between them is
called a coupled oscillator. The oscillations of such
a system are called coupled oscillations.
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ENE BEORERECST ANSWIER

L. A particle exccutes simple harmonic motion
between v =~ Aand x = + A The time taken for it to Bo
fromOto A/2isT, and to go from A/2 to Ais T,. Then

()T, <T, T, >T,

(T =T, (d) T, =2T,

2. For a particle executing SHM the displacement x
is given by x=Acoswt. Identify the graph which
represents the variation of potential energy (PE) as a
function of time t and displacement x

ll’ " APr
PE 1
0 A 0 A
(1) (i)
(@) 1, 1M by 11, 1v
(c) I, 111 (d) 1, 1V [IIT 03)

3. A particle free to move along the x-axis has
potential energy given by U(x)=k[1 —cxp(—x}zl for
—® Sx S+, where k is a positive constant of appro-
priate dimensions. Then

(1) at points away from the origin, the particle is in

unstable equilibrium

(b) for any finite nonzero value of x, there is a force

directed away from the origin

(v) if its total mechanical energy is k /2, it has its

minimum kinetic energy at the origin

(d) for small displacements from x =0, the motion

is simple harmonic. [IIT 99]

4. A spring of force constant k is cut into two pieces,
such that one piece is double the length of the other.
Then, the long piece will have a force constant of

2 3
—k by =k
(")3 ()2’\

(¢) 3k (d) 6k

5. Two bodies M and N of equal masses are
suspended from two separate massless springs of
spring constants k; and k, respectively. If the two
bodies oscillate vertically such that their maximum

(11T 99]

[T 01] -

velocities are equal, the ratio of the amplitude of
vibration of M to that of N is

k
@' () K, 7%,
sk Ik
©F @

(1T 93]
6. An object of mass 0.2 kg executes simple
harmonic motion along the x-axis with a frequency of
(25/m) Hz. At the position x = 0.04, the object has
kinetic energy of 0.5 J and potential energy 0.4 J. The
amplitude of oscillations is
(0) 4 cm
(d') 2.cm

7. A simple pendulum has a time period T, when

(@) 6 cm

(c) 8 cm [T 94

on the earth’s surface ; and T, when taken to a height R
above the earth’s surface (R is the radius of the earth).
The value of T/T, is
(a) 1
(c) 4

(b) V2

(d) 2
8. The period of oscillation of a simple pendulum of

length L suspended from the roof of a vehicle which

moves without fricion down an inclined plane of
inclination «, is given by

[IIT 01)

(a)2m ’ki— (b)2n .L
\ ycosa gsinua

(0)2 nﬁ (d)2m L
g ytana

[T 2K]
9. A simple pendulum has time period T,. The point

of suspension is now moved upward according to the

relation y = Kt*, (K =1m/s) where y is the vertical

displacement. The time period now becomes T,. The
b 2

ratio of —-L., (¢=10m/ 51) is
2

5 6
a) > b °
() 6 (b) 5
4

g1 () 5 (IIT 05]

10. A simple pendulum is oscillating without
damping. When the displacement of the bob is less
than maximum, its acceleration vector is @’ correctly

shown in
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() (d)

Y
SN

11. The x-t graph of a particle undergoing simple
harmonic motion is shown below. The acceleration of
the particle at t =4/3 is

[T 02)

4\/3 TR

2
~

(b) :3;_ - cm/s?

e ] -
- cm/s”

V3
@ =

-

- - 3 5 2
(c) gz cm/s” (d) —%é - cm/s”

(1T 09

12. The mass M shown in the figure oscillates in
simple harmonic motion with amplitude A. The
amplitude of the point P is

k, ks
M
P

k. A k,A
(a) - (b) =

ky ky

k A k,A
(c) E ! - (d) —= P

115 ky +k, (11T 09]

12. A uniform rod of length L and mass M is
pivoted at the centre. Its two ends are attached to two
springs of equal constants k. The springs are fixed to

#0000

rigid supports as shown in the figure, and the rod is
free to oscillate in the horizontal plane. The rod is
gently pushed through a small angle 8 in one direction
and released. The frequency of oscillation is

2k 1 k
”zn\/M B M

)1 [6k 1 [k
(L)Zn\/M (d)er\/M

14. A uniform cylinder of length L and mass M
having cross-sectional area A is suspended, with its
length vertical, from a fixed point by a massless spring,
such that it is half-submerged in a liquid of density p at
equilibrium position. When the cylinder is given a

[1IT 09]

small downward push and released it starts oscillating
vertically with small amplitude. If the force constant of
the spring is k, the frequency of oscillation of the
cylinder is

1(k-Apg 12 k+ Apg 12
(a) — (b )ﬁ
2n M M
@ (g L% 2t
2l M 2n\. M [ITT 90]

15. One end of a long metallic wire of length Lis
tied to the ceiling. The other end is tied to a massless
spring of spring constant k. A mass mhangs freely from
the free end of the spring. The area of cross-section and
the Young's modulus of the wire are A and Y
respectively. If the mass is slightly pulled down and
released, it will oscillate with a time period T equal to

, YA +kL)
2 n(m/ k) by 2 | TRYA+D)

(@) 2m(m/ k) (b) 2= YAk

(©)2n(mYA/ kL)'  (d)2n(mL/ YA)'? [IT 93]

16. A highly rigid cubical block A of small mass M
and side Lis fixed rigidly onto another cubical block B
of the same dimensions and of low modulus of rigidity
n such that the lower face of A completely covers the
upper face of B. The lower face of Bis rigidly held on a
horizontal surface. A small force F is applied perpen-
dicular to one of the side faces of A. After the force is
withdrawn, block A executes small oscillations, the
time period of which is given by

p——

Mn

(a)2my MnL (b)2m ——E

(6)211\/—@‘ (d)ZHJA;i
n nL

[T 92)
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17. A point mass is subjected to two simultancous
sinusoidal displacements in x-direction, v, (1) = Asinml

/ il
and x,(f) = Asian! + "':} . Adding a third sinusoidal
displacement x5(1) = Bsin(w! + ¢) brings the mass to a
complete rest. The values of B and ¢ are

4n
() A —

e

3z
(M) V2.4 °
4

S5n T
YVIA ) A
(c) = (d) 5

(11T 2011)
N NULTIPLE CHOIGE HIUESTIDONSG WITH

ONE TR MORE THAN ONE CORREGT

ANGSWER

18.The function ¥ = Asin® mf + Beos™ mt + Csinof coso!
represents simple harmonic motion for which of the
option (s) ?

(a) for all values of A, Band C (C = 0)

(b) A=B C=2B

(c) A=-B C=2B

(d) A=DB C=0. [1IT 06]

19. Three simple harmonic motions in the same
direction having the same amplitude @ and same
period are suspended. It each ditfers in phase from the
next by 45° then

(a) the resultant amplitude is (1+ 2 )a

(b) the phase of the resultant relative to the first is 90°

(c) the energy associated with the resulting motion
is (3 +2+/2 ) times the energy associated with any
single motion

(d) the resulting motion is not simple harmonic.

[1IT 99]

20. A particle executss simple harmonic motion
with a frequency f. The frequency with which its
kinetic energy oscillates is

f ;
(@ () f
©)2f ) 4f (1T 87)

21. A linear harmonic oscillator of force constant
2x10° N/m and amplitude 0.01 m has a total
mechanical energy of 160 J. Its

(a) maximum potential energy is 100 ]
(b) maximum kinetic energy is 100 ]
(c) maximum potential energy is 160 ]

(d) maximum potential energy is zero. [1IT 89)

22. A particle of mass m is execuling oscillations
about the origin on the x-axis. Its potential energy is
U(.\')rkl.\'l", where k is a positive conslant. If the
amplitude of oscillation is «, then its time period T
is

(1) proportional to 1/ Va
(0) independent of 7

(¢) proportional to va

/2

(d) proportional to a’ [T 98]

23. A simple pendulum of length Land mass (bob)
M is oscillating in a plane about a vertical line
between angular limits —¢ and +¢ For an angular
displacement 0(101< ¢), the tension in the string and
the velocity of the bob are T and » respectively. The
following relations hold good under the above
conditions :

(a) Tcos® = Mg

gy

Muw

() T-MgcosO = T

(c) The magnitude of the tangenial acceleration of
the bob la.|= gsin6

(d) T = Mg cosb. [ITT 86]

24.A metal rod of length L and mass 1 is pivoted at
one end. A thin disc of mass M and radius R(< L) is
attached at its centre to the free end of the rod.
Consider two ways the disc is attached : (case A). The
disc is not free to rotate about its centre and (case B) the
disc is free to rotate about its centre. The rod-disc
system performs SHM in vertical plane after being
released from the same displaced position. Which of
the following statement (s) is/are true ?

(a) restoring torque in case A = restoring torque in
case B

(b) restoring torque in case A < restoring torque in
case B

(¢) angular  frequency for case A>angular
frequency for case B

(d) angular  frequency for case A< angular

frequency for case B.
(LT 2011)
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N COMPREHMENSION BASED WUESTIOMS

PARAGRAPH FOR RUESTIONS 25 TO 27

When a particle of mass m maves on the x-axis in a
potential of the form V(x)= kx?, it performs  simple
The corresponding time  period is

harmonic  motion.

. fm . . . )
proportional to T as can be seen easily using dimensional

analysis. However, the motion of a particle can be periodic
even when its potential energy increases on both sides of
x =0 in a way different from kx* and its total energy is such
that the particle does not escape to infinity. Consider a
particle of mass m
moving on the x-axis.
Its potential energy is
Vix)=axt(@>0) for
lx| near the origin and

becomes a  constant

I 5 A
equal to V, for Ix12 X
(see figure).

25. 1f the total energy of the particle is E, it will
perform periodic motion only if

(a) E<0 (b E>0

() V,>E>0 () E>V,

26. For periodic motion of small amplitude A, the
time period T of this particle is proportional to

(@ A\/E ®-, F
o
(c) A‘/% (d)A‘j'—n

27. The acceleration of this particle for xI> X, is

(1T 2010]

(11T 2010]

(a) proportional to V,,

V
(b) proportional to -
mX,

VU
an

(c) proportional to

(d) zero [LIT 2010)

PARAGRAPH FOR QUESTION 28 TOo 30

Phase space diagrams are useful tools in analyzing all
kinds of dynamical problems. They are especially uscful in
studying the changes in motion as initial position and
momentunt are changed. Here we consider some simple
dynamical systems in one-dimension. For such system,
phase space is a plane in which position is plotted along

horizontal axis and momentum is plotted along vertical axis.
The phase space diagram is x(t) vs p(t) curve in this plane.
The arrow on the curve indicates the time flow. For example,
the phase space diagram for a
particle moving with constant
velocity is a straight line as shown
in the figure. We use the sign
convention in which position or
momentun upwards (or to right)
is positive and downewards (or to
left) is negative.

Momentum —

Position —

28. The phase space diagram for a ball thrown
vertically up from ground is

(a) (b)
Momentum Momentum A
o ’ Position
2 l Posi tion -
y
(c) (d) '
m% Momentum
\4 I’oqlhon h -
Position
[IIT 2011]

- 29.The phase space diagram for simple harmonic
motion is a circle centered at the origin. In the figure,
the two circles represent the same oscillator but for
different initial conditions, and E, and E, are the total
mechanical energies respectively. Then

Momentum A

A
N

o
-

Position

A

(@) E, =2 E,
(c) E, =4E,

() E, =2 E,

(d) E, =16 E, (1T 2011
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30.Consider the spring mass system, with the mass (c) (d)
submerged in water, as shown in the figure. The phase

space diagram for one cycle of this system is Momentum 4 Momentum 4

Position \—/Po;tion

% ] Y
(11T 2010]
AN smEsiER TreE ANSwER

31. A 0.1 kg mass is suspended from a wire of

(@) ") negligible mass. The length of tl‘;c wire is 1 m and its
cross-sectional area is 4.9x10 " m?” If the mass is

pulled a little in the vertically downward direction and
released, it performs simple harmonic motion of

angular frequency 140 rad s~ . If the Young's modulus
& ) of the material of the wire is nx10°Nm™2, find the
Position Position -
[IIT 2010]
\

Momentum Momentum 4

A

value of n.

N el aeTEns - RlaTRY T

32. Column 1 describes some situations in which a small object moves. Column Il describes some

characteristics of these motions. Match the situations in column I with the characteristics in column IL
[TIT 07

Column I Column I

The object executes a simple

(@)  The object moves on the x-axis under a conservative force in such | (P
harmonic motion.

a way that its speed and position satisfy v = 4/c, -x%, where q
and ¢, are Positive constants.

The object does not change its

(b)  The object moves on the x-axis in such a way that its velocity and | ()
direction.

its displacement from the origin satisfy v=—kx, where k is a
positive constant.

The kinetic energy of the

(c)  The object is attached to one end of a massless spring of a given | (r)
objects keeps on decreasing.

spring constant.

The other end of the spring is attached to the ceiling of an
elevator. Initially everything is at rest. The elevator starts going
upwards with a constant acceleration a. The motion of the object
is observed from the elevator during the period it maintains this
acceleration.

The object can change its

(d)  The object is projected from the carth’s surface vertically | ()
direction only once.

upwards with a speed 2,/GM, / R., where M, is the mass of the
earth and R, is the radius of the earth. Neglect forces from objects
other than the earth.
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Anewers and Explanations

1. (1) x = Asinof
For x = f‘ , sin mT] = -l
2 2
or mT] S o or T[ e
(‘\ 6rn
Forx=A, sino(T,+T,)=1
or o(T, +T,) = X
2
n
or T +T,=—
172790
TN n

=2T,.

27 20 6m B 3m
2. (1) At t=0, x= Acos0= A. The particle is at

extreme position and its P.E. must be maximum.
Hence the correct options are 1 and 111

-

3. (d) U@)=k(1-¢ ")
E= _ﬂ =-2kxe - -2kx(1 —3t +...)
dx
For small x, F=-2 kx.

This shows that the force is directed towards the
origin and for smaller x, F « x. Hence the mation is
simple harmonic.

4. (b)Force constant, k = L
X

The length of the long piece is 2x/3.

So, its force constant is
v F _3F_3 K

T2x/3 2x 2
Umm ( A) = vmax( B)
m,AI =(-JZ-/‘{2

k, \/’k;

214 = (22

Jm ! "IA2
A [k

5. (d)

e
T

6. (1) Total energy,
E =2n%mv’ A

0.5+0.4=2n2xn.zx[?§) A2

it
» 09
0.4x(25)
3 3

A= =" m=6cm.
2x25 50

7. (d) R:(_R.) =1
Q R+ R

T e ,,‘,],,

Je

L ﬁ:\/E:z
Tl 4 1

8. (1) The effective value of g will be equal to the

As

component of ¢ normal to the inclined plane which is

¢ = gcosa
T.—-Zn\/r—fj =2nJ- L
< gcosa
9. (b) y=kt*
Velocity Ay =2kt
dt
dy

2

Acceleration = - = =2k=2x1=2 ms 2

&H=8+2=10+2=12 ms 2

T=2nJ—T
8

T _ & _12_6

T, g 10 5

10. (c) When the displace-
ment of the bob is less than
maximum, there will two com-
ponent accelerations of the bob :

or T l—

V8

Transverse component = a;

Centripetal or radial component =4

4

The resultant acceleration @ will be along the
diagonal of the parallelogram.
11. (4) From the x-t graph,

T=8s
“):%E=2—IE=E d’ f:is
8 3
m!:I—rxi:Emd
4 3 3
n= - mQASin-(n!
=—[E x Ix sin—
4 %
= -2 7% emls.
3
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GOHPETITION

,...-,': S =24

12. (d) Here Xy x, = A

As internal forees in the wo springs are the same,

kl"'l = I\':J':
or ""I"'l :k.,(f\——.\‘ )
k A
or X, =
L |R

13. (¢) Restoring torque about O,

T= "L(A 0] L— kl{n
2 2 2

M8
2
Angular acceleration,
k20
T2
a=-= =
I M-
12
or o =—(—‘£0‘-mzﬂ
M
w1 6k
f- [— .
T Ton 2\ M

14. (b) Suppose the cylinder is given a downward
push through a small distance y. Then

Restoring upward force set up in the spring = — ky

Additional upward force of buoyancy = - Ayp g

Total upward restoring force,

F=—(kyt Aypg)=-(k+ Apg)y

Clearly, Foy and it acts towards equilibrium
position. Hence motion of the cylinder is simple
harmonic. Here spring factor =k + Ap ¢

Inertia factor = Mass of eylinder = M

~ Frequency of oscillation of the cylinder,

. 1 f‘%prm;., factor

2 \ Inertia factor

i oM
2n\k+ Apg

15. (b) Young's modulus of wire,
y - F _ L
A AL
;:=}y1AP

. Stretching force,

Force constani of wire,

As the wire and the spring are connected in series,
their effective force constant is

Ky k(YALL)

Ktk ke(VA/L)

kYA
kL + YA

K =

. Time period,

T-2n \/m

16. (d) When the force F is applied, the upper face of
block A gets displaced through distance x.

m(A! u YA)
kYA

R
—> A 0/ _Il_
B
Modulus of rigidity,
n=- Fu/._l_4_
0
_F_ F F
A0 E(YJ Lx
L
Restoring force,
F=-nlx e, Fox

Hence the motion of A is simple harmonic with
k=nL

Time period of oscillation,

T=2n\/y=2n M .
k nL

17. (b) Displacements v,(f)and x,(t)have amplitude

A each, and phase difference %E The third

displacement x,(t) brings the mass to complete rest.
For this, x;(f) must have amplitude A and phase
difference 47/3 with x,(t) as shown in the figure.




18. (). (1), (0)

v - f\-:in“mf i Beos™ ol 1 U sinmleos of

1 cos2ml W
}

/ 1 cos2ol ]t ("sin2wml
'ﬂ_

T 2 2

“

or Bt .-\L

(M TFor A0, Bt n sin2 mf

Ihis represents SHM. Henee option (a) is correct.
(" For A=H
This represents SHM of amplitude B

C=28B x=B+ Bsin2wmf

Hence oplion (1) is correct.
(¢) For A==B C=21

v BeosZol - bsin2o

iy 13
=2 ?SmLme 1 \
4

This represents SHM. Hence option (¢) is correct.
(d) For A=B C=0, v= A
This does not represent SHM.
19. (a), (¢) Using the principle of superposition,
Y=ttt
— asin(om! + 45°) + asinmt + asin(ot —457)
= afsin(ef + 45 )+ sin(of - 4537) [+ asinof
= 2asinoml cos 45 +asin el
= J2asinot + asin!
v =(1+2)asinwl
(1) Amplitude of resullant motion = (1 + V2 ).
Hence oplion (a) is correct.

(b) Option (D) is incorrect because the phase of
resultant motion relative to the first is 457

not 90"
(c) L~ (nmpliludc):
Eresumane _ (14 "b:): ”:,
single :72
=3+242
Eroutiont = @ +2V2)E

Hence option (¢) is correcl.
(d) Option () is incorrect as the resultant motion is
simple harmonic.
20. (¢) In one oscillation, the energy of an oscillalor
becomes twice kinetic and twice potential,

- Frequency of oscillation of KUL. = 2f.

OSCILLATIONS  14.71

21. (1), (¢) Energy of oscillation of the particle,

bt = ea a0t .oy
2 2

r A

100

Different energics al mean and extreme positions

are shown below :

x=tA
K=0]
LI = 160 | = Maximum
[ = 160 ] = Constant.

x=0

K =100 ] = Maximum
LI =60 ] = Minimum
[ =160 ] = Conslant

22. (a) LI(x)=k IxTI'
[u _(MLT
E R
T o (mass)' (amplitude)” (k)
[MOLYT] = ML) ML T2
— [MEHYLET 2:I
Equating the powers, we get
z=-1/2
y=z=-1/2

[k] vty

2z=1 or
y-z=0 or
T = (amplitude)

or T = l—

\/IT.

23. (b), (c) As shown in the figure, T - Mgsin®

provides the centripetal force.

ny cos o

T- Mgsin0 = ME_

Mysint
Also, ;\,. = '\';1
= gsind

Hence options (I1) and (¢) are correct.
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= \v-: :‘__. _':_- )
DT EEITR e e
1 - d
et il Ll )]

24, (7). () We use 1 = la
For case A : T\ = I‘_\ o,

i > MR?
or mg[_:.-:inﬂ)a /\’1‘q(lsinn):["; 4 MK

-

Forcase B: t

n o Iy

or mg(zl sin 0] + Mg(Isin®) =[ %: + M ]ntn

~

As and IA > "B' SO

TA=Tp

ﬁ.q\/ﬂ = m

I a <O

I

25. (¢) For motion to be periodic, it must reverse its
path i.e., K.E. should become zero for a finite value of .
E=K+U = K=E-U
Knin = E-V,

Now

Given U = Y

The particle will escape if Kiin >0
E-V,<0 = E< Vi

Also, E=K+U>0

26. (b) As V = a?

= la]= MET " iy
» 1/2
Hence, l‘/m = 1_{}\4"__4
AVa LLML T -
=M°L°T

27. (i) For lxI> Xy potential energy = V0 (constant)
dv

—0_p
dx

Hence acceleration is zero for x| > XD

F=-

28. (d) The momentum is initially positive as the
ball moves up, becomes zero at the highest position
and then becomes negative as the ball moves down.
E _(2aY_, E =4
= || =% = E =4E,

a

29. (c)
30. (h) Amplitude of the mass oscillating in water

should decrease with time. So options (¢) and (d) are
ruled out.

When the position of the mass is at one extreme end
in the positive side (the topmost point), the
momentum is zero. As the mass moves towards the

mean position the momeitum increases in the
negative direction.
= Only option (b) is correct.
31
0101014
Young's modulus,
_F 1
A Al
Fl F F
Elongation, Al= — - - *
p AY AY T}
, L
-
0= |—=_|—
m ml
Y - w ml _140x140x0.1x 1 —4x10°

A 49%x10~7
= 1x10°Nm™2 = n=4

.a-p; bsgr; cop dorg

AIEEE

1. The function sin® wt represents

(a) a periodic but not simple harmonic motion with
a period 2n/m

(b) a periodic, but not simple harmonic motion
with a period n/ o

(c) a simple harmonic motion with a period 21/ o

(d) a simple harmonic motion with a period n/m
(AIEEE 05

2. Two simple harmonic motions are represented

by the equations
¥, =0.1sin(100 ntt + m/3)
and V> =0.Jcosnt

The phase difference of the velocity of particle 1
with respect to the velocity of particle 2 is
(1) -n/6 (b)ym/3

(c) -n/3 (d) n/e6. |AIEEE 05]
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3. The displacement of an object attached 1o a
spring and executing S.H.M. is given by
x=2x10"*cosmt (in m)
The time at which the maximum speed first occurs is
(@)05s (0) 0.75 s
(¢) 0.125 s (1) 0.25 s [ATEEE 07)
4. A point mass oscillates along the X-axis
according to the relation
X = x,cos(wt —n/4)
If acceleration of the particle is written as
a = a,cos(ot +3),
then
(a) a, =xn(nz ;0=-n/4
(b) 4y = x w0 ; 3=n/4
(©) a4y = .\‘Umz ;0=-n/4
(d) a, =x 0" ; $=3n/4. |AIEEE 07]
5. The maximum velocity of a particle, executing
simple harmonic motion with an amplitude 7 mm, is
4.4 m 5!, The period of oscillation is

(a) 0.01 s (b)yo.1s
(©)10s (d) 100 s [ATEEE 06]
6. If a simple harmonic motion is represented by
dzf +oav =0,
dt=
its time period is
(@)2n/a 0y 2n/Ju

(c) 2nu (d) 2nvu [AIEEE 05)

7. If x, v and a denote the displacement, the velocity
and the acceleration ot a particle executing simple
harmonic motion of time period T, then which of the

following does not change with time ?
(@) a°T? + 4n*0® (b) aT [ x
(c) aT +2m () al /o [AIEEE 09]
8. A cuin is placed on a horizontal plattorm, which
undergoes vertical simple harmonic motion of angular
frequency w The amplitude of oscillation is gradually
increased. The coin will
platform for the first time

leave contact with the
(a) for an amplitude of ¢* / o’

(b) for an amplitude of g / v

(c) at the highest position of the platform

(d) at the mean position of the platform.
[AIEEE 06]

9. 1If a spring has time period T and is cut into n
equal parts, then the time period of cach part will be

(M) Tn ()T /n

(c) nT ()T

10. A mass M is suspended from a spring of
negligible mass. The spring is pulled a little and then
released so that the mass executes SSH.M. of time
period T. If the mass is increased by m, the time
becomes 5T /3. Then the ratio of m/ M is

(@)3/5 (I 25/9
()16/9 (d)5/3.
11. A particle at the end of a spring executes simple

harmonic motion with a period /,, while the corres-

ponding period for another spring is £,. If the period of

[ATEEE 02]

|AIEEE 03]

oscillation with the two springs in series is 1, then
@T=t +1 ) 1% =17+ 13

R A DS R 1) & A B

[AIEEE 04]
12. Two springs of force constant k; and k, are
connected to a mass nras shown in the figure.

The frequency of oscillation of the mass is v. If both
k i and kz are made four times their original values, the
frequency of oscillution becomes

(@) v/2 (v/4

(c) 4v (d) 2v

[AIEEE 07]

13. Two bodies M and N ot equal masses are
suspended from two separate massless springs of
spring constants k| and k, respectively. It the two
bodies oscillate vertically, such that their maximum
velocities are equal, then the ratio of the amplitude of
M to that of N is

() k, [k,

() Jk, 7k,

(©) Ky /K, () Jky /K,
[AIEEE 03 ; IIT 88]
14. A child swinging on a swing in sitting position
stands up. Then the time period of the swing will
(a) increase
(b) decrease
(c) remain the same

(d) increase, if the child is long and decrease, if the
child is short. [DPMT 04 ; AIEEE 02]
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15. The length of a simple pendulum execuling
simple: harmonic motion s increased by 21%. The
percentage increase in the time period of the pendu-
lum of increased length is

(@) 50% ) 21%

() 30% () 10%.

[AIEEE 03 ; AFMC 01 ; AlIMS 01]

16. The bob of a simple pendulum is a spherical
hollow ball filled with water. A plugged hole near the
bottom of the oscillating bob gets suddenly unplugged.
During observation, till water is coming out, the time
period of oscillation would

(@) first increase and then decrease to the original
value
(b) first decreases and then increase lo the original
value

(¢) remain unchanged

(d)

17. The bob of a simple pendulum executes simple
harmonic motion in water with a period t, while the
period of oscillation of the bob is 1 in air. Neglecting
frictional force of water and given that the density of
the bob is 4000/3 kg m ™, what relationship between t
and £, is true ?

(a) t=t, (b) t=t,/2

(c) t =21, (d) t=4t,

18. The total energy of a particle executing simple
harmonic motion is

(a) - x (by =x*

(¢) independent of x  (d) xx'/?

increase towards a saturation value. [AIEEE 05]

[AIEEE 04]

[AIEEE 04]
19. In a simple harmonic oscillator, at the mean
position
(a) kinetic energy is minimum, potential energy is
maximum
(b) both kinetic and potential energies are maximum
(c) kinetic energy is maximum, potential energy is

minimum
(d) both kinetic and potential energies are
minimum, [AIEEE 02)

20. A body executes simple harmonic motion. The
potential energy (P.E.), the kinetic energy (K.E.) and
total energy (T.E.) are measured as function of displace-
ment x. Which of the following statements is true ?

(a) K.E. is maximum, when x =0

(b) T.E. is zero, when x =0

(c) K.E. is maximum, when x is maximum

(d) P.E. is maximum, when x =0. [AIEEE 03]

21. A spring of force constant 800 N m ™" has an
extension of 5 em. The work done in extending it from
S5cmto 15 cm is

(1) 8

(c)24]

(h) 16 |
(d) 32].

22. A spring of spring constant 510> Nm™ is

[AIEEE 02]

stretched initially by 5 ¢m from the unstretched
position. Then the work done to stretch it further by
another 5 cm is

(7) 6.25 N m (b) 1250 N m
(c) 18.75 N m (d) 25.00 N m
23. A particle of mass i executes S.H.M. with

amplitude @ and frequency v. The average kinetic
energy during its motion from the position of

[ATEEE 03]

equilibrium 1o the end is

1 3 2
() mav? (W] 4 ma

(0) 4t mav: («d) 2 1 ma v’ [AIEEE 07)
24. Starting from the origin, a body oscillates simple
harmonically with a period of 2 5. After what time will
its Kinetic energy be 75% of the total energy ?
() 1/12 s ) 1/6s
(c)1/4s (d) 1/3 s.
25. A particle of mass m is attached to a spring (of
spring constant k) and has a natural angular frequency
wy-  An  external F(t) proportional to
coswi(w+ w,) is applied to the oscillator. The time

displacement of the oscillator will be proportional to

[AIEEE 06]

force

m 1
@) ——= (B) ——5——"
Wy — m(wy —w”)
1 n
Vs Vqa
0 e TR [AIEEE 04]

26. In forced oscillation of a particle, the amplitude
is maximum for a frequency w, of the force, while the
energy is maximum for a frequency w, of the force.
Then

(1) 0, = o,

(b) @, > w,

(c) w, <w,, when damping is small and o, >,

when damping is large

(d) w, <w, [AIEEE 04

27. Two particles are executing simple harmonic
motion of the same amplitude A and frequency walong
the x-axis. Their mean position is separated by distance



OSCILLATIONS 14.75

Ny (X, > A) I the maximum separation between them
is(.\'o + A), the phase difference between their motions
is

(@)

— =2 A

(©) .
[AIEEE 2011

28. A mass M, attached to a horizontal spring,
executes SHM with amplitude A;. When the mass M

Answers and
1. (b) sin? ot =%—(%)ms 2wt

The function does not represent SHM but it is
periodic with
=21 o
2w w
Refer to the solution of Problem 14 on page 14.43.
2. (a) Refer to the solution of Problem 4 on
page 14.44.
3. (@) Displacement, x =2 x 1072 cosnt

Velocity, v= ‘;—: =-2x10 *msinnt

Velocity becomes maximum when

sinmt =1
n
or nt=—
2
or t=0.5s.

4. (d) x=x,cos(wt—n/4)

v= % = —xgwsin(wt —n/4)
a= % =—-x0m2 cos(wt —n/4)

= :rum2 cos[n+(wt—m/4)]

or a=x, w’ cos(wt +3n/4)
Given: a=a,cos(ot+3)
On comparing,
2 3n
a,=x0, d=—:-.
0~ "0 a
5. (a) vmax=mA=2—nA
T
" -3
T=2nA =._x22x7><10 —0.01s.

v 7x4.4

max

passes through its mean position then a smaller mass m
is placed over it and both of them move together with

A
amplitude A,. The ratio of ! ]is
B L
M+ m
1) —— I —
(@) M+ m ) M
M ']”2 ( M+ m\'?
. A { oL
(l)(M+m. (l)‘. M J

[AIEEE 2011]

Explanations

6. (b) Refer to the solution of Problem 13 on
page 14.43. '

T_ohT 47
7. (b) ”\,‘ 3 “_:i . ,7“ e

"

4n
= — = c¢onstant.
T

8. () The coin will remain in contact with the

platform if a _ does not exceed g re., a4 is at the

most equal to g.

ﬂ:nnx =S
2
or aw” =g
2
or a=g/w

9.(b) T =T /n.
Refer to the solution of Problem 3 on page 14.44.

10. (¢) Refer to the solution of Problem 8 on
Page 14.45.

11. (b) Refer to the solution of Problem 10 on
Page 14.45.

12. (d) Initial frequency,
1 [ktky
2\ M

\

When both k, and k, are made four times their
original values,

vo L fM=zv_
2n M

A
13.(d) L =_|-=.
@ 2=

-

-

Refer to the solution of Problem 9 on Page 14.45.
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14. (b) Refer to the solution of Problem 21 on
Page 14.39.

15. (d) Refer to the solution of Problem 15 on
Page 14.43.

16. (1) Refer to the solution of Problem 2 on
Page 14.44.

17.(c) + =21. Reter to the solution of Problem 7 on
Page 14.45.

18. (0) E=22%mv?A?

Clearly, the total energy is independent  of
displacement x.

19. (c) At the mean position, the kinetic energy is
maximum and potential energy is minimum.

20. (@) The K.E. of a simple harmonic oscillator is
maximum when x = (.

21.(n) At x, =50,

L
u, = —kxj

“

:7' x 800 x (0.05)7 = 1 |

At X, = 15 ¢,

t,

Il

o = ; X800 (0.15) = 9.

W=U,-U =9-1

.

Ly o 2
w '—'5’\'(.\‘2 '.1'1)

22, (c)

d %A 5x 107 x [(0.10)° —(U05)’]

=18.75 Nm.

23. (@) K.E. of a simple harmonic vscillator at any
instant f,

| 21 % T
K~ -~ nurrw™sin~ wt
2
. . |
The average value of sin”w! over a cycle is 5

K = 11!1'1112(1)2>< l
2 2

Uy

1 - 2
= 2 ma”(2nv)” = i ma®2,

24.(b) K.E.=75% of total energy

1 2 2 _75 1_3
3 Y = g o

a2 3:
i =2,
’ 4
2_1 5
Y ="n
4
or =9
Y 2

For a budy starting from mean pusition,

y = asinwt
I} .
or — = usinwmwt
2
. 1
=sinwl = —
2
or wl = L
)
2n n
or —t=—
T 6
T 2 1
ur t=—=—"1= -
12 12 6
1
25. (b) Y e
m(w; —w")

Refer to the solution of Problem 5 on Page 14.44.

26. (@) Only in case of resonance, both the
amplitude and energy of oscillation are maximum.
Hence, ) = W,

27. (@) When the maximum separation is X, + A,

one particle is at mean pusition and the other is at the
extreme position. So phase difference = /2

— X,tA ——
A A

A

- .
L —

A A

—y

L I'N)

Y

— X, —

28.(d) Energy of the simple harmonic oscillator is
constant,

%Mm/‘&l2 = zl(M + m)c.nzA.‘z2

- A_lz_M+m
A M

- ﬁ_(M"'mJUZ
A UM



