SYSTEMS OF PARTICLES &
ROTATIONAL MOTION

7.1 ¥ INTRODUCTORY CONCEPTS

Mt is meant by a particle, a system and internal
d external forces ?

Particle. A particle is defined as an object whose mass is
finite but whose size and internal structure can be neglected.

System. A system is a collection of a very large number
of particles which mutually interact with one another. A
body of finite size can be regarded as a system because
it is composed of a large number of particles
interacting with one another.

Internal forces. The mutual forces exerted by the
particles of a system on one another are called internal forces.
These forces are responsible for holding together the
particles as a single object.

External forces. The outside force exerted on an object
by any external agency is called an external force. Such a
force changes the velocity of an object.

7.2 ¥ CENTRE OF MASS
\___2. What do you mean by centre of mass of a system ?
How does it differ from centre of gravity ?

Centre of mass. Newton's laws of motion are

applicable to point objects. The introduction of the
concept of centre of mass enables us to apply them

~

equally well to the motion of finite or extended objects.
The centre of mass of a body is a point where the whole mass
of the body is supposed to be concentrated for describing its
translatory motion.

The centre of mass of a system of particles is that single
point which moves in the same way in which a single particle
having the total mass of the system and acted upon by the
same external force would move.

If a single force acts on a body and the line of action
of the force passes through the centre of mass, the body
will have only linear acceleration and no angular
acceleration. For example, consider a hammer resting

Centre of

mass
== :]-( ------ .t-

(a)
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on a plane surface. If a force P is applied on the
hammer in such a way that its line of action passes
through the centre of mass of the hammer, then the
hammer moves along a straight line path, as shown in
Fig. 7.1(a). But when a force R is applied along a line
not passing through its centre of mass, then the
hammer rotates about its centre of mass, as shown in
Fig. 7.1(b).

Centre of mass vs. centre of gravity. The centre of
mass of body is point where whole mass of the body
may be assumed to be concentrated for describing its
translatory motion. On the other hand, the centre of
gravity is a point at which the resultant of the
gravitational forces on all the particles of the body acts
i.e., a point where whole weight may be assumed to
act. In a uniform gravitational field such as that of the
earth on a small body, the centre of gravity coincides
with the centre of mass. But in the case of Mount
Everest, the centre of gravity lies a httle below its
centre of mass because the gravitational force
decreases with altitude.

7.3 CENTRE OF MASS OF A
TWO-PARTICLE SYSTEM

3. Write an expression for the location of centre of
‘mass of a two particle system. Discuss the result.

Centre of mass of a two particle-system. Consider
a system of two particles P, and P, of masses ny and n,.

Let :_'1’ and gbe their position vectors with respect to
the origin O, as shown in Fig. 7.2.
Yﬂi

0 »X

Fig. 7.2 Centre of mass of a two-particle system.

_)
The position vector Ry of the centre of mass C of
the two-particle system is given by

- —
E - Ttme
My ¥y

Discussion. (i) The above equation shows that the
position vector of a system of particles is the weighted
average of the position vectors of the particles making the
system, each particle making a contribution proportional
to its mass.

(if) We can write the above equation as

> — -
(my, +my) RCM =mn+mn
Thus the product of the total mass of the system and the
pusition vector of its centre of mass is equal to the sum of the
products of individual masses and their respective position
vectors.
(if) If my = n, = m (say), then
-+ =

- nthn

2y 5
Thus the centre of mass of two equal masses lies exactly
at the centre of the line joining the two masses.
(iv) If (x,, y,) and (x,, y,) are the coordinates of the

locations of the two particles, the coordinates of their
centre of mass are given by

L Mxy
CM NLl + "I:,_
1 y + 'n)y
and Yerg = H————n]m: = m; 2
7.4 CENTRE OF MASS OF A TWO

PARTICLE SYSTEM FROM ab-initio
4. Derive an expression for the centre of mass of a
‘two particle system from ab-initio.
Derivation of expression for the centre of mass of
a two-particle system. Consider a system of two
particles P, and P, of masses m, and m,. Let ;1’ and ;; be

their position vectors at any instant t with respect to
the origin O, as shown in Fig. 7.3.

=

Y A F1m

o

Fig. 7.3 Equations of motion of a

two-particle system.

The velocity and acceleration vectors of the two
particles are

S dr 2
dt 1 dt dtZ

- dr, 5 2

Uz = ‘—2 and a2 = d—vz— = -——d )‘2 (1)
dt dt t2
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—
Total force F| acting on particle P, is the sum of the

- —' —’ 3
internal force F12 due to P2 and external force F]”"on it.
Thus

l? E +P""t

12
Similarly, total force acting on particle P, is given by

-—’
— L
ﬁ;— I:;l +B”

According to Newton’s second law of motion, the
equations of motion for the two particles can be
written as

m ‘?1 = 1_5: = I_Z:Z + _;""" (2)
may =B =F + B -(3)

On adding equations (2) and (3), we get
mla1+ mz.rz2 1—-" _ﬁ + F"”“+ F""'

According to Newton's third law, the internal
forces mutually exerted by the two particles are equal

and opposite, i.e., J
—p —* e
F,=-F, or F,+kE =0

2
F (4

et

- —»
ma, +ma, =

where F = F“'

on the system.

Suppose the total mass of the two-particle system is
M. Then

Text .
+ Ey™ is the total external force acting

M=m +m,
Let us assume that the total external force F acting

. -
on the system of mass M produces acceleration dgy,.

Then according to Newton’s second law,
Magy = F (5)
From equations (4) anc (5), we get

M;CM"'"HE;*”'z“;

2y d'n _
N —dem—2  (Using (1)
‘Eti(”‘l"l"’mz'z)
- 1 d? - -
of bom =35 7 P A TR Y)
2-—-) -+ -
or d_hzd_z rn]r]‘f"&fz [.-.M=m +rnzl
> dt*| m o+ m, !

»
The acceleration e 15 called the acceleration

—
vector of the centre of mass of the system and R, is

called the pusiliun vector of the centre of mass.

- . -
= n m, r-
Clearly, R, = %& (6)

This equation defines the position of the centre of
mass of a system of two particles of masses m; and m,

3 age - -+ 3
and having position vectors 1, and r,. Here the entire

mass of the two-particle system may be supposed to be
concentrated. Clearly, Newton’s second law, as
applied to the individual particles of the system, also
holds for the entire system provided the external force
acts at the centre of mass as defined by the above
equation. Newton'’s third law helps us to get rid of the
mutual internal forces between the particles. Hence
while applying Newton'’s second law to the motion of the
centre of mass, we need to consider only the external forces
acting on the system.

7.5  CENTRE OF MASS OF n-PARTICLE
SYSTEM

5. Write an expression for the position vector of the
centre of mass of n-particle system. Also write the
equations of motion which govern the motion of the
centre of mass.

Centre of mass of n-particle system. Consider a
system of n particles having masses "‘1' My, My, cveesy T,

ey = =¥ =p .
and position vectors 7,5, %, .. r" relative to the
origin O, as shown in Fig. 7.4.

YA

z

PR Sk P SRR S ST AT

Fig. 7.4 Centre of mass of n-particle system.
The total mass of the system is
my + iy Myt +m =M (say)
The position vector ECM of the centre of mass C can be
obtained by adding the products my ;1’ mn, ;;, ..... L
and dividing it by the total mass of the system

-
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Thus
» - »
= ML+ Gt +mr
W =2
1 my+ o, A +m,
" = " s
X mr E omr
— =1 1t i=1 ‘i
ar Rep=——== '3 (1)

—
Clearly, R, is the weighted average of the position

vectors of all the particles of the system, the contribution of
each particle being proportional to its mass.

Cartesnan coordinates of the centre of mass. If 7o

Yo and 3 Zoa are the cartesian coordinates of the centre
of mass of the n-particle system, then

MXS + MLXy + .. tmx ¥ x .

Xy = el Bl i T L2200

My + o+ +m, M
! MY, + My, + ... tmy, Imy i)
JCA N B =
M IR TR R M

- - Ay -
L R o R LT _Tmz 2iii)
M My et M

Equations of motion for the centre of mass. Let :E;,

R E

particles of masses my, My, My,

) I?:, be the external forces acting on the
,»m, respectively. Let

IE; , be the vector sum of all these external forces acting

= % % F N
on the system. If 4., is the acceleration of the centre of

mass of the system, then the motion of the centre of
mass is govemed by the equatiun

3-8 SN
or Mc_z-(’:M = f;". ~(3)
d*R
where “gw = jRgM——

The equation (3) shows that the centre of mass of the
systemt nwves as if the entire mass of the system is
concentrated at this point and the total external force acts on
this point. The internal forces between various par-
ticles cancel out in pairs in accordance with Newton’s
third law of motion. The definition of centre of mass
given by equation (1) holds even though there may not
be any actual matter present at the centre of mass.

¢/ m In case of a body with a continuous mass
distribution, we can replace the summations in equations
(2) by the following integrals :

Tmx > I x dm

S my— j y dm
Y mz— j zdm

Then the coordinates of the centre of mass of a body of
mass M will be

1

Xom = o _[ x dimn,
1

Yem = M I ydm,

:CM=—A%I zdm

The equivalent vector representation for the centre of
mass will be
- 1 -
RCM = H I T dm
It we choose, the centre of mass as the origin of vur
coordinate system, then

l\i.M (x,y,2)=0
or I r dm=0
or dem:jydmzj:dﬂ:=

7.6 MOMENTUM CONSERVATION AND

CENTRE OF MASS MOTION

g 6. Show that in the absence of any external force, the
o cuy of the centre of mass remains constant.

Velocity of CM is constant in the absence of

-
external force. Suppose an external force F,, acts on a

system of mass M and produces an acceleration Ay I
its centre of mass. Then

Ftul‘ = MdCM
_’
In the absence of any external force, F, =0, so
-
50 Mag,, =0
—
or ey =0
dv,
or M
dt
As the derivative of a constant is zery, so
—

Uopy = constant

- . -
where v, is the velocity of the centre of mass. Hence

in the absence of any external force, the centre of mass of
system moves with a uniform velocity. This is Newton's
first law of motion.
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The position vector of the centre of mass at any Exam les based on

instant f is given by ke ' i s centre n_'u“ass" iy 4 _‘
- - -
_ Ry () = Ropg (0) + vy t FormuLAt Usep
7. Show that the total linear momentum of a system 1. For a system of N particles, the position vector of
~_ of particles is conserved in the absence of any external centre mass is
rce. Also show that total linear momentum of the s ! i
system is equal to the product of the total mass of the ﬁ’c g tmn +a tmyny Q=1 !
system and the velocity of its centre of mass. M A Y M
l\flomentut.n conservation and .centre,-of-mass 2. The position vector of the centre mass of a two
motion. Consider a system of n particles of masses particle system is
my, My, My n,. Suppose the forces f-;, }?2, ? e 4 4 iy 71 +m, 72
exerted on them produce accelerations al, a,, E;, ,&; M= mo+m,
respectively. In the absence of any external force, 3. The Cartesian co-ordinates of the centre of mass
E!,at -0 are given by 3
or a+€+?3+...+ﬁ:=0 J[=mlxl+mz:c‘.£+....+mNJrN:,"1_:1"1"'3‘1"
- Pg P — ny, +m, +..+m M
or m A+ a,+ mag+ .. 4ma, =0 Ml T N &
L omy
dv;,  dv;  do; dv, Yy bt oy 1
or m—L+m—%+m, % 4. m —1 =0 y="2h*" % VN 3=1
dt dt dt dt m o+ my o+ my M
c ( U, 4 ML, + MO+t ) 0 4
or —(m v v L mz
dt nll m?.Z m33 rrrl _"ﬁz]+"!zzz+----+mNzN__i=1m'z'
— - - - zZ= =
or m v + MU, + MU, +.. + m, v, = constant : m oty 4+ my M
o B = ;',’ + ; 4 ; b ; o — 4. For a continuous mass distribution,
B - n i AN
= g ; Rey = —I r dm
where P is the total linear momentum of the system. M
Hence if no net external force acts on a system, the total ' where dm is the mass of small element located at
linear momentum of the system is conserved. This is the law position 7 . ]
of conservation of linear momentum. ‘ i ;
Now the position vector of the centre of mass of Also xqy, = ﬁj xdm, Yo = —] ydm,
n-particle system is given by ! M
o Zeyy = —I zdm
RCM mlr+mzr+m3r s + L ™M~ M
m +n, + ’"3 tootm 5. The algebraic sum of the moments of masses of
2 1 - various particles of a system about its centre of
=y, AT, + +ot
Rem M(m1 177 n13r3 T ) mass is zero,
Differentiating both sides w.r.t. time t,.we get 6. Velocity of CM of a two particle system is’
— - - — —
dRy 1 dr, dr, dr, dr, = TR Y o S By
— M= m—L+m—Lm 3+ +m 1 Yem =
dt M| °dt dt dt "m it
1, o 5 o 5 Ur:ms Usep
M (1 0y + 1,0, + My 03 + ..+ 0, Masses of various particles of a system are in kg
15 o o - and their distances from the axis of rotation are in
“E(P1+P2+P3+---+Pn) . metre.

EXAMPLE 1, Find the centre of mass of a triangular lamina.

‘ . ‘ ' [NCERT]
This equation shows that the total linear momentum

of a system of particles is equal to the product of the total
mass of the system and the velocity of its centre of mass.

Solution. As shown in Fig. 7.5, divide the lamina
(A LMN)into narrow strips, each parallel to the base MN.
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M/"'

RCETENE TR

Fig. 7.5

By symmetry, the CM of each strip lies at its
mid-point. By joining these midpoints, we get the
median LP. The CM of triangular lamina must lie on
the median LP.

By similar arguments as above, we can say that the
CM of lamina (ALMN) lies on the medians MQand NR.
This means that CM lies on the point of concurrence of
the medians i.e., on the centroid G of the triangle.

Exanppre 2. Three masses 3,4 and 5 kg are located at the
corners of an equilateral triangle of side 1m Locate the
centre of mass of the system.

Solution. Suppose the equilateral triangle lies in
the XY-plane with mass 3 kg at the origin. Let (x, y) be
the co-ordinates of CM.

AY

icr 0 A B

Fig. 7.6

2 ;
Clearly, AB=,/OB? - 0AZ =J12 _G) :? m

Now x; =0, x,=1m, x;=0A=05m
my =3kg, m,=4kg m=5kg
4 = k%1 TRE, T Xy

Myt
_3x0+4x1+5x05 =ﬁ=0.54m.
3+4+5 12
V3

Again, y, =0, y,=0, y, =AB=—2—
MY+ MYyt MY,

Loy=
"h ¥ Mk 1,
3
_3x0+4x0+5x(3/2) 5x+B .
3+4+5 2x12

Thus the co-ordinates of CM are (0.54 m, 0.36 m).

ExampLr 3. Two particles of masses 100 g and 300 g at a

given  time have positions 21 + 5;‘\+13f and

—6i+4 f -2k m respectively and velocities 10 (-7 ]A -3k

:md?.? -9 )"\ + 61? ms~ ! respectively. Determine the instan-
taneous position and velocity of CM.
m, =100 g =0.1 kg,

m, =300 g=0.3 kg,

Solution. Here

- A A A
n=21+5] +13k m,

- A I A
n=-6i+4j -2k m

The position of CM will be
- —
ECM _mnt+tmn
my +m,
C01Qi+5] +13K)+0.3(-6i +4] -2k )
01+03
~161 417} +7k

Again, v,=101-7] -3k ms™},

v,=71-9] +6K.ms

The velocity of CM will be
v Mmoo,
> Bty
my o+ m,
_0.1(10{-7] -3k )+03(7{ 9] +6k )
0.1+03

31{-347+15k _ _,
= ms .
4
EXAMPLE 4. If three point masses m, , m, and my are situated

at the vertices of an equilateral triangle of side a, then what
will be the co-ordinates of the centre of mass of this system ?

Solution. Let the point mass m, lie at the origin of

the co-ordinate system, as shown in Fig. 7.7.

Ay
Baf2 |-------- W B
1
1
1
|
a : a
:
|
A
0 - X
my aj2 my

Fig. 7.7
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Then
Co-ordinates of m; : x; =0, y, =0
Co-ordinates of m, : x, =a,y, =0

Co-ordinates of Myt Xy =§ Yy =? a
Xo O X UL X T Xy
LTl St
_mx0+ma+m(a/2)
"y b B o+ My
_ mza+ﬁ(a/2)
iy iy
My tmy, vy,
Wy S,
_m x0+n12x0+7713(J§a/2)
i T
__ mBa
C2(my 4y 4 m)”
EXAMPLE 5. Find the position of the centre of mass of the
T-shaped plate from O in Fig, 7.8.

and

Yem

e 8m =4

Q
ox?l Z-I-n
—1-1 3m —

P—3m—_ &
CM1
]

!
Oz? 6m

I
)
]
1
I
- i

=2 m—

Fig. 7.8

Solution. Let mass per unit area of the plate be o.
Mass of horizontal portion =8x2 c=16¢
Mass of vertical portion =6x20=120

The centres O; and O, of these portions lie at
distances 1 m and 2 +3 =5 m from the point O. The
CM of the T-shaped plate will lie at distance y from the

point O which is given by
=16 ox1+12 ox5=76o=2'71m‘
l6c+12 ¢ 280

EXAMPLE 6. Find the centre of mass of a uniform L-shaped
lamina (a thin flat plate) with dimensions as shown in
Fig. 7.9. The mass of lamina is 3 kg. [NCERT]

YA
e 2m {
F(0,2) E(1,2)
. Cy
D, 1) B(21)
G, ' e G |1m
: J
< - > X
0(0, 0) A2,0)
]

- Fig. 7.9

Solution. We divide the L-shaped lamina into three
squares each of length 1 m, as shown in Fig. 7.9. As the
lamina is uniform, the mass of each square is 1 kg. By
symmetry, the centres of mass of the three squares lie
at their geometric centres C;, C, and C,. Their
coordinates are as follows :

¢, C, ¢,
1 v 3 1
* 2 2 2
1 1 3
Y 2 2 2

The coordinates of the centre of mass of the
Lrshaped lamina can be obtained as follows*:

=%+ ks +nnx,

m+m+m,
_1a/2)+1@/2)+1(1/2) |5
- 1+1+1 6
_ My, + my, + my,

my + m, + my
_1x(1/2)+1(1/2)+1(3/2) _5
B 1+1+1 6

Xem

Yem

Clearly, the centre of mass lies on the line of

symmetry OD.
ExAMPLE 7. A circular plate of uniform thickness has a
diameter of 56 cm. A circular portion of diameter 42 cm is
removed from one edge of the plate. Find CM of the
remaining portion,

Solution. The situation is shown in Fig. 7.10. Let O
be CM of the original circular plate, O, that of the
circular portion removed and O, that of the remaining
shaded portion. Let m be the mass per unit area of the
plate.

Mass of original plate,
M=r(28)*m
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28 cm
21 ecm

0,0 0

Fig. 7.10

Mass of the circular portion removed,
my = (21)* m
Mass of the shaded part,
m, = M—m =n[(28) -(21)* ] m=343 n m
Masses m; and m, may be assumed to be concen-
trated at O, and O, respectively and O is their CM.
.. Moment of m, about O = Moment of m, about O

or m x 0,0=m,x 0, 0
or 0,0="1x0,0
"
LSl RM, o218
343 tm

EXAMPLE 8. A square of side 4 cmand uniform thickness is
divided intc four equal squares, as shown in Fig. 7.11. If one
of the squares is cut off, find the position of the centre of mass
of the remaining portion from O.

A B
~ 02
T ~Jo
'R
\ W
3m * 40,
F
D moe

Fig. 7.11

Solution. Let miass of each small square be m. Total
mass of the square will be 4m which acts at its centre of
mass O. Let O, be CM of cut off square (shaded square
of mass m) and O, be CM of the remaining unshaded
portion of mass 3 m.

AC=\|AB+ BC? = \[#* + 42 =42 em

OC—EAC—i—ZJ—cm

Now

ool=%oc=2—22-=ﬁm

number of co-axial discs.

Moment of unshaded portion about O
= Moment of shaded portion about O
3mx 00, = mx 00,
&

ooz_;xoo .. J‘__cm

EXAMPLE 9. Show that the centre of mass of a uniform rod
of mass M and length L lies at the middle point of the rod.

Solution. As shown in Fig. 7.12, suppose the rod is
placed along X-axis with its left end at the origin O.
Consider a small element of thickness dx at distance x
from O.

p—Xx '*—*d—x"
ol =T |
b L 4

Fig. 7.12

Mass of the small element = ML .dx

Position of the centre of mass is given by

EXAMPLE 10. Determine the position of the centre of mass
of a hemisphere of radius R.

Solution. Let p be the
density of the material of
the hemisphere. Take its
centre O as the origin. The
hemisphere can be assumed
to be made of up a large »X

Consider one such elemen-

tary disc of radius y and )
thickness dx at a distance x _—
from the origin. Fig. 7.13

Mass of the elementary disc = Volume x density
dm= nyz dxxp=mn(R*-x%)dx.p

The coordinates of the centré of mass of the
hemisphere can be determined as follows :

R
xCM MI xdm= —Ixn(Rz—xz)pdx
0
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2 41k i R2 (h -
_anR(Rzr xﬂ)dx—ﬂpl:sz z } L/ I 4 _—I = y)
= e Y — .0 &2 M = ydm y.mp
0
M M 2 4 8 h*
4 pd 4
_mw|RT_R|_mp R = Mlz ]y(h y)* dy
M| 2 4 M| 4 0
p FLd R2 i 2
E_p_[ﬂ_}s [+ M2 o] =2 [y + 7 -2k dy
nR3p 4 8 3 U;
np R?
Similarly, = ;hz [ y+y®=2ny?)dy
0
Yem =I ydm=0 and z, =I zdm=0 , AR o it 5 |
Hence the coordinates of the centre of mass of the . R AR Y| _on Yy
hemisphere are (% R, 0, 0] Mh? I 20 14l 3 1o
27 14 14 4 2T 14
ExAMPLE 11. Determine the coordinates of the centre of =28 Iz il +h_ A ]: £p Rz [L }
mass of a right circular solid cone of base radius R and Mh® [ 2 4 3 M | 1
height h. B xpR> Wk Mol
Solution. Let p be the density of the material of the 1 aR% i p x b 12 4 ' "3 P
cone. Take centre of base O as the origin. The cone can 3
be assumed to be made up of a large number of circular Similarly,
discs of different radii and mass. Consider one such 1
elementary disc of radius x and mass dm at a height y ™M= I zdm =0 [ z=0]
from the base.
AY Hence the coordinates of the centre of mass of the

right circular solid cone are (0, 2—, 0].

¥ PROBLEMS FOR PRACTICE

1. Two bodies of masses 1 kg and 2 kg are located at(1, 2)
and (- 1, 3) respectively. Calculate the co-ordinates
of the centre of mass. [Central Schools 04, 08]

el 1]

2. The distance between the centres of carbon and oxy-
gen atoms in the carbon monoxide gas molecule is
1.13 A. Locate the centre of mass of the gas molecule
relative to the carbon atom. [Central Schools 11]

Fin; 7'.14_ . D (Ans. 0.6457 A from C-atom)
g sm'ula;; tnangles “au ;n Bl S8R b 3. Three blocks of uniform thickness and masses m, m
(h—y) .

——=— 0or X=——-— and 2 m are placed at three corners of a triangle
h-y x h having co-ordinates (2.5, 15) (35,15) and (3,3)

Mass of elementary disc is respectively. Find the centre of mass of the system.
dm= Volume x density [Delhi 061 [Ans. (3, 2.25)]
R (h - ) 4. Find the centre of mass of three particles at the
= x* dyxp=mnp y vertices of an equilateral triangle. The masses of the

particles are 100 g, 150 g and 200 g respectively.

The coordinates of the centre of mass can be Each side of the equilateral triangle is 0.5 m long.
determined as follows : ; [NCERT]

1 5 1
Xem =EI xdm=0 [ x=0] (AHS-E ™37 m)
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5. Three particles each of mass m are placed at three
corners of an equilateral triangle of length [. Find
the position of centre of mass in terms of
coordinates. [Chandigarh 02]

i3]

6. Three point masses of 1 kg, 2 kg and 3 kg lie at
(1 2), (0, -1) and (2, -3) respectively. Calculate the
coordinates of the centre of mass of the system.

[Central Schools 12]

7 =3
I:Ans. E,ZJ

7. Two bodies of masses 10 kg and 2 kg are moving with
velocities 2 -~ 7] + 3k and - 101 + 35 -3¢ ms™!
respectively. Find the velocity of the centre of mass
of the system. (Ans. 2k ms™1)

8. Three particles of masses 0.50 kg, 1.0 kg and 1.5 kg

are placed at the corners of a right angle triangle, as
shown in Fig. 7.15. Locate the centre of mass of the

system. (Ans. 1.33 cm, 1.5 cm)
Y
15kg
50cm
3.0can
0.5kg 40 am 1.0kg
Fig. 7.15

9. Four particles of masses m, m, 2 m.and 2 m are
placed at the four corners of a square of side a. Find
the centre of mass of the system.

[Ans. (g , g aJ with first mass mat the origin]
10. Four particles of masses m, 2m, 3m and 4m

respectively are placed at the corners of a square of
side a, as shown in Fig. 7.16. Locate the centre of

mass. [ Ans, ( a Zz_)

2 10
Y
4m 2 s 3m
a
m it X
A B a
Fig. 7.16 Fig. 7.17

11. From a square sheet of uniform density, a portion is
removed shown shaded in Fig. 7.17. Find the centre
of mass of the remaining portion if the side of the

: 7 a
square is a. e, =
[Ans [18 a 2):‘

12. The centre of mass of three particles of masses 1 kg,
2 kg and 3 kg lies at the point (3 m, 3 m, 3 m). Where
should a fourth particle of mass 4 kg be positioned
so that the centre of mass of the four particle system
lies at the point (1 m, 1m, 1 m) ?

[Ans. (-2m,-2m, -2 m]

% HINTS
2. J(CM=ml:r1+mzx2:12><0+16><l.l3=0.6457A
m + m, 12 + 16
m(2.5) + m(3.5) + 2m(3)
3. Xop = =3
m+m+ 2m
m(1.5) + m(1.5) + 2m(3)
= =2-25.
Yem m+m+ 2m

4. The position coordinates for the three particles are
shown in Fig. 7.18. !

AY
200 g A B(0.25, 0.2543)
5 1
C(la'ﬂi)
_ 100g 150 g
0(0, 0) (0.25,0)  A(05,0)
Fig. 7.18
_ 100(0) + 150(0.5) + 200(0.25) _ 5
100 + 150 + 200 T
_ 100(0) + 150(0) + 200(0.2513)
™ 100 + 150 + 200 Y
s m0)+m(l)+ m(1/2) 1
. xw= ==
m+m+m 2
y _mO+mO+mB1/2)
™ m+m+m 23
g mx0+mxn+2mxa+2mx0 3ma a
.ICM= = ==
m+m+ 2m+ 2m ém 2
mx0+mx0+2mxa+ 2mxa dma 2
Yem = = =38
m+m+ 2m+ 2m ém 3
mx0+2mxa+3mxa+4mx0 a
10. ICM= ==
m+ 2m+ 3m+ 4m 2
5 =mx0+2mx0+3mxa+4mxa 7a
™ m+ 2m+ 3m + 4m T10°
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12. Suppose the 4 kg mass be placed at point (x, y, z).
Then the centre of mass of 6 kg (1 kg + 2 kg + 3 kg)
mass and 4 kg mass must lie at the point (1 m, 1m,

1 m).
6x3+4x
xCM=—~——£=1n'ﬁ"or x=-2m
6+4 a
6x3+4xy i o 9
=—— <~ =1m or y=-2m
Yem 6+ 4 y
6x3+4xz
ZCMZ—_6—+4_=1I'H or z=-2m.

EXAMPLES OF BINARY SYSTEMS
/IN NATURE

7.7

8. Discuss the motion of the centre of mass of the’

““following binary systems in nature : (1) Binary stars,
(ii) Diatomic molecules, and (iii) Earth-moon system.
(i) Binary stars. Two stars bound to each other by the
gravitational force and orbiting around their common centre
of mass are called binary stars. Fig. 7.19(a) shows binary
stars 5, and S, of equal mass moving in circular orbits
around their common centre of mass, which is at rest.

Sl 51—’-
-®

5
(a)

4——51

(&)

Fig. 7.19 Orbits of binary stars of equal mass, when
their (a) CM is at rest, (b) CM is in uniform motion.

When no external force acts on the system, the
centre of mass of the double star moves like a free
particle. The orbits of the two stars are slightly
complicated, as shown in Fig. 7.19(b). But these are just
the combination of two motions : (i) the uniform
motion of the centre of mass CM in a straight line and
(ii) the circular orbits of the two stars around their CM.
However, the two stars always remain on the opposite
sides of the CM.

(i) Diatomic molecule. A symmetric diatomic
molecule like O, is also an example of binary system.
The internal binding force between the two oxygen
atoms is due to the chemical bond which can be
regarded as a spring. When there is no external force
(i.e., no collisions between the molecules themselves or
with the walls of the vessel), the centre of mass of the
molecule moves with uniform velocity in a straight
line, as shown in Fig. 7.19(c). The molecule can also
have vibrational and rotational motions again due to
the internal forces. Even then the centre of mass moves
like a free particle.

TR PTG SNES S5 SI T

Fig. 7.19. (c) Uniform motion of the CM of moving,
vibrating symmetric diatomic molecule O, .

(iif) Earth-moon system. The moon moves around
the earth in a circular orbit and the earth moves around
the sun in an elliptical orbit. It will be more correct to
say that the centre of mass of the earth-moon system
moves around the sun in an elliptical orbit, not the
earth and moon themselves. As the mass of the earth is
nearly 80 times the mass of the moon, so the centre of
mass divides the earth-moon (E-M) line in the ratio
1: 80. In fact, this point lies inside the earth, as shown
in Fig. 7.19(d).

system

[

Fig. 7.19. (d) Motion of CM of the earth-moon
system in an elliptical orbit.

Here the mutual forces of gravitation between the
earth and moon are internal forces while the Sun’s attrac-
tion of both earth and moon are the external forces
acting on the centre of mass of the earth-moon system.

7.8~ SOME OTHER EXAMPLES OF THE
CM MOTION

9. Discuss the trajectory of the motion of the centre
of mass of a fire cracker that explodes in air.

Motion of the CM of fire crackers exploding in
air. Initially, a fire cracker moves along a parabolic
path. It explodes in flight. Each fragment will follow its

it

Parabolas of
fragments

T ‘,Centre of mass

‘\/an_tinuation of
s, initial parabola

X

Initial parabola

z

a2 P LUNEY MRTSTTI ORI S e a5

Fig. 7.20 Trajectory of the centre of mass of
exploding cracker.
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own parabolic path. Since the explosion is caused by
internal forces only, the centre of mass of all the frag-
ments will continue to move along the same parabolic
path of the cracker as before explosion.

7.9 RIGID BODIES
10. What is a rigid body ? Give examples.
~ Rigid body. A body is said to be rigid if it does not undergo
any change in its size and shape, however large the external
force may be acting on it. More appropriately, a rigid body

is one whose constituent particles retain their relative positions
even when they move under the action of an external force.

A rigid body cannot be deformed. If the body under-
goes some displacement, every particle in it suffers the
same displacement. If the body rotates through a
certain angle, every particle of it rotates through the
same angle about the axis of rotation. No body can be
perfectly rigid. In practice, solid bodies of steel, glass
etc. ; can be regarded as rigid for moderate forces.

7.10  CENTRE OF MASS OF A RIGID BODY
11. State the factors on which the position of the
_centre of mass of a rigid body depends.

Centre of mass of a rigid body. The centre of mass of
a rigid body is a point at a fixed position with respect to the
body as a whole.

The position of centre of mass of a rigid body
depends on two factors : (i) The geometrical shape of
the body. (i7) The distribution of mass in the body.

12. How can we locate the centre of mass of rigid
bodies of regular geometrical shape and having uniform
mass distribution ? Give examples.

Centre of mass of regular bodies. For bodies having
regular geometrical shape and uniform mass (or density)

—= () ©

Disc
Thin rod

Rectangular Cubical block Cylinder
lamina .I—
h
S
Sphere Triangular lamina Right circular cone

s e T

Fig. 7.21 Centres (C) of mass of some regular bodies.

distribution, the centre of mass lies at their geometrical
centre. Fig. 7.21 shows the positions of the centre of
mass of some regular bodies.

t,al:'e 7.1 Centres of mass of some regu/ar bodies

sl
No.

1. | Long thin rod
2. | Thin circular ring

Shape of body | Position of centre of mass

Middle point of the rod

Geometrical centre of the
ring

Geometrical centre of the
disc

3. | Circular disc

Point of intersection of
diagonals

4. | Rectangular
lamina

5. | Rectangular Point of intersection of

cubical block diagonals

6. | Cylinder Middle point of the axis

7. | Solid or hollow Geometrical centre of the
sphere sphere

Point of intersection of the
medians

8. | Triangular lamina

9. | Right circular
cone

A point on its axis at a
distance of i from its base,

h = height of the cone

711 ROTATIONAL MOTION OF

A RIGID BODY

137 What do you mean by rotational motion of a
=
rigid body ?

Rotational motion of a rigid body. A body is said to
possess rotational motion if all its particles move along
circles in parallel planes. The centres of these circles lie on a
fixed line perpendicular to the parallel planes and this line is
called the axis of rotation.

Az
._”—-"\\
e b
/ ) \
/,_’ ':P ,. w
” rf
o .- P b
0., 7
Rigid body

X

......

Fig. 7.22 Rotational motion about Z-axis.
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Fig. 7.22 shows a rigid body being rotated anti-
clockwise about Z-axis of an inertial frame of reference.

Let P be any particle of the body and r beits position

vector. As the body rotates, the particle P moves along
a circle of radius r whose centre lies on the axis of

rotation. The radius vector 7’ sweeps out an angle 6 in
certain time f. Similarly, all other particles of body
move along circles with their centres on Z-axis and
their radius vectors sweep the same angle 8 in time £.
This implies that all the particles have the same angular
velocity @(=0/t) which is also the angular velocity of
the body.

7.12 ¥ EQUATIONS OF ROTATIONAL MOTION

14, Derive the three equations of rotational motion
‘_nder constant angular acceleration from first principles.

Derivation of first equation of motion. Consider a
rigid body rotating about a fixed axis with constant

angular acceleration a. By definition,
dwm

dt
or do= a dt (1)
Att=0, let w=0,
Att=t let o=o

Integrating equation (1) within the above limits of
time and angu]ar velocity, we get

Idm Iadt aIdt

or [m]zo =20k [t]u
or w-0,=a(t-0)
or W=, +af .(2)

Derivation of second equation of motion. Let wbe
the angular velocity of a rigid body at any instant t. By
definition,

_ do
Tt
or do = wdt ..(3)
Att=0, let 6=0
Att=t let 6=0

Integrating equation (3) within the above limits of
time and angular displacement, we get

8 ] t
[ ao=] wdt = (w0, + at)dt  [Using (2)]
0 0 0

=m0j;dt+a_[; tdt

2 f
.or [0]90 =y [t]’D +a [t—}
2
t]
or G—O=m0(r—0)+;(t2—0)
or 0=c,t+ % at? (%)

Derivation of third equation of motion. The
angular acceleration a may be expressed as
do do d6 do
Tdt dedt de’
or wdo=a db ..(5)
At t=0, 0=0and o=, (initial angular velocity)
Att=t 8=0and o= w/(final angular velocity)
Integrating equation (5) within the above limits of 8
and o, we get

w 0 2]
I mdm=j adezaj d0
0

wg 0
2 w
(0] 3]
or [?j, =a[8],
i
2 2
or Y -2 - o(e=D)
2 2
or w’ -mé =2ab
Examples

based on T

: ? ELL}::_,

Formurae Usep

For a body in rotational motion under constant
angular acceleration, the equations of motion can
be written as

1. w=mo+at

1442

2. B=m0t+2

3. m2~m§=2at

Units Usep

Angular displacement 6 is in rad, initial angular
veloc:ll'y w, and fmal angular velocity w are in
rad s}, angular acceleration « in rad s =,

Examrre 12. On the application of a constant torque, a
wheel is turned from rest through 400 radians in 10 s.
(1) Find angular acceleration. (i) If same torque continues to
act, what will be angular velocity of the wheel after 20 s from
start ?

Solution. (i) Here 0 =400 rad, 0, =0,t=10s,a =?
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As 0=qyt+3ot?
400 =0 + 1 a (10
2 x 400
a=
100
(i) Here w, =0, a =8 rads™2, t=205 w="

or =8rads 2

m=m0+at=0+8x20=]60rads;1.

ExamprLy 13. The angular speed of a motor wheel is
increased from 1200 rpm to 3120 rpm in 16 seconds.
(i) What is its angular acceleration, assuming the accele-
ration to be uniform ? (if) How many revolutions does the
wheel make during this time ? [NCERT]

Solution. Here

v =1200 rpm = 12% =20 rps

v =3120 rpm L 52 rps
60
wy=2mv,=2nx20=40n rads™!

0=2nv=2nx52=104 nrads”’
(1) Angular acceleration,
_w-w; 104n-40n
ot 16
(if) The angular displacement in time ¢,

a

B=m0 t+%ut2
=40n><16+%><41rx(16)2

=(640n + 512n) rad =1152 = rad.

Number of revolutions completed in 16 s
_ 6 _1S2x 576
2n  2nm

EXAMPLE 14. A constant torque is acting on a wheel. If
starting from rest, the wheel makes n rotations in t second,

show that the angular acceleration is given by

4nn _
o= rad s2.
t2

Solution. Initial angular velocity, o, =0

Number of rotations completed in t second =n

~.Angular displacement in t second, 8 =2nn

- 1 2
As 9—(:)0t+50'.t
21tn=0+%at2
or =4—,;"—mds'2.
t

EXAMPLE 15. The radius of a wheel of a car is 0.4 m. The car
is accelerated from rest by an angular acceleration of
1.5 rad s~ 2 for 20 5. How much distance the wheel covers in
this time interval and what will be its linear velocity ?

Solution. Here r=04m, w, =0,

a=15rads 2, t=20s

Angular displacement,

_ 1 2
9—m0f+§af

=0+ _21 x 1.5 x (20)* =300 rad

Distance covered by the wheel,

s=r0=0.4x300=120 m.

After 20 s, angular velocity of the wheel is

®=0, +ot=0+15x20=30rad s

~.Linear velocity of the wheel is

v=ro=04x30=12ms %

=4nrad s>

¥ PROBLEMS FOR PRACTICE

1. A gridstone has a constant acceleration of 4 rad s~ .

Starting from rest, calculate the angular speed of
the grindstone 2.5 s later. (Ans. 10 rad 5—1)

. The speed of a motor increases from 600 ‘rpm to

1200 rpm in 20 s. What is its angular acceleration
and how many revolutions does it make during this
time ? (Ans. 7 rad 572, 300)

. On the application of a constant torque, a wheel

is turned from rest through an angle of 200 rad in
8 s. (i) What is its angular acceleration ? (ii) If the
same torque continues to act, what will be the
angular velocity of the wheel after 16 s from the
start ? [Ans. (i) 6.25 rad s~ 2 (ii) 100 rad s ]

. The motor of an engine is rotating about its axis with

an angular velocity of 100 rpm. It comes to restin 15 s
after being switched off. Assuming constant angular
deceleration, calculate the number of revolutions
made by it before coming to rest. (Ans. 12.5)

A car is moving at a speed of 72kmh™'. The

diameter of its wheels is 0.50 m. If the wheels are
stopped in 20 rotations by applying brakes,
calculate the angular retardation produced by the
brakes. (Ans. - 255rad s™ %)

. A flywheel rotating at 420 rpm slows down at a

constant rate of 2 rad s~ 2. What time is required to
stop the flywheel ? [Central Schols 12]

¥ HINTS

4. Here v, =100 rpm = 16%) Ips

i mﬂ=21w0=2:rtxﬂ]=m—n-ra‘ds'1
60
w=0, t=15s
- - 2
a:w m0=0 10n/3=__nrads_2
t 15
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2
Now8=opt+ 2o t? =207 15 1, 2" (150
2 9

=25 rad
Number of revolutions completed before coming to
rest

25
LY )
2n 2m

_72x5

5. Herey, =72 kmh™! = =20ms ', r=025m

Yy 20

Angular speed, o, = =80rads™’
r

Angular displacement in 20 rotations,
0=2nn=2nx20=40 x rad

Also, final angular velocity, ®=0

As o* - mg =2a6

5 0-(80°=2a x40n

__(80)?

= =-255rad s>,
80n

or
6. v, =420 rpm =7 rps
w, =21V, =2><2—72 x7=44rads?,

w=0 a=-2rads?
f:m_mu =0—44=22 S.

o

7.13 ¥ MOMENT OF FORCE OR TORQUE

) 15:// On what factors does the turning effect of a force
-depend ? What is the turning effect of force called ?

Turmning effect of force. To open a door, we apply a
force on its handle. The door turns on its hinges. The
larger the force, the more is its turning effect. Also, we can

“easily notice that it is easier to open a door by applying

a force near the end than near the hinges. This is
because the turning effect of the same force is larger
when its distance from the axis of rotation is more.

This turning effect of force is called moment of
force or torque. It depends on two factors :

(i) The magnitude of the force.
(i) The perpendicular distance of the line of action

of the force from the axis of rotation. It is called
lever arm or moment arm.

Thus, greater the magnitude of the force, or greater
the perpendicular distance between the line of action
of the force and the axis of rotation, the greater is the
moment _qf force, or greater is the turning effect.

Q{/l - Define the term torque or moment of force. Give
its units and dimensions.

Torque or moment of force. The torque or moment of
force is the turning effect of the force about the axis of

rotation. It is measured as the product of the magnitude of
the force and the perpendicular distance between the line of
action of the force and the axis of rotation.

Axis of
rotation

Point of application
of force

Line of action
of force

Fig. 7.23 Torque or moment of force.

Fig. 7.23 shows a body free to rotate about a vertical
axis through O. A horizontal force F applied on it at
point P rotates it about this axis. If d is the perpen-
dicular distance of the line of action of the force from
the axis of rotation, then the torque or moment of force
F about the axis of rotation is

t=Fx ON
or t=Fxd
or Torque = Force x Lever arm

Dimensions of torque. As
Torque = Force x distance,
[t]=[MLT ?][L]=[ML*T"2},

Units of torque. The SI unit of torque is newton
metre (Nm) and its CGS unit is dyne cm.

SO

Sign convention. The moment of force is taken
positive if the turning tendency of the force is
anticlockwise and negative if it is clockwise.

7.14 . ROTATIONAL EQUILIBRIUM AND
THE PRINCIPLE OF MOMENTS

| 17.-State and explain the principle of moments of
rotational equilibrium.

Principle of moments. When a body is in rotational
equilibrium, the sum of the clockwise moments about any point
is equal to the sum of the anticlockwise moments about that
point or the algebraic sum of moments about any point is zero.

As shown in Fig. 7.24, consider a uniform rod free

to rotate on a pivot O. Two weights W, and W, are
hung from it at distances 4, and d, from the pivot O.

ety ——sp—d, —|
L1 [ [ ] 1
A

\g 7

Fi=mg=W,

J

[
L)

Fo=m8=W,

Fig. 7.24 Pririciple of moments.
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Anticlockwise moment about O = F1 x d, =Wl X dl
=szd2=W2xd2

According to the principle of moments, the rod will
be horizontal or in rotational equilibrium if

Clockwise moment about O

Anticlockwise moment = Clockwise moment

or led1=F2xd2
or W1><d1=W2xd2
1e., Load x load arm = Effort x effort arm

This is sometimes called the lever principle.

o 18. What is a couple ? What effect does it have on a
“-body ? Show that the moment of couple is same
irrespective of the point of rotation of a body.

Couple. A pair of equal and opposite forces acting on a
body along two different lines of action constitute a couple.
A couple has a turning effect, but no resultant force acts
on a body. So it cannot produce translational motion.
When we steer a bicycle round a bend with our both
hands on the handle-bars, we apply a couple.

Moment of a couple. The moment of couple can be
found by taking the moments of the two forces about
any point and then adding them.

In Fig. 7.25, two opposite forces, each of magnitude
F act at two points A and Bof a rigid body, which can
rotate about point O. The turning tendency of the two
forces is anticlockwise.

— hF
A O
- B
d —]
FY —

Fig. 7.25 Moment of couple.
Moment or torque of the couple about O is
t=Fx AO+ Fx OB
=F(AO+ OB)=Fx AB
1=Fd
Moment of a couple = Force
x perpendicular distance between (\w foices

Hence the moment of a couple is equal to Ihe product of
either of the forces and the perpendicular distance, callcd the
arm of the couple, between their lines of action. Note hat the
torque exerted by couple about O does not depend on
the position of O. Hence torque or moment of a couple is . 11de-
pendent of the choice of the fulcrum or the point of rotatic

or i AB=d, say]

Notably, a couple can only be balanced by an equal
and opposite couple.

970t

197 Obtain an expression for the work done by a
torque. Hence write the expression for power.

Work done by a torque. As shown in Fig. 7.26,
suppose a body undergoes an angular displacement A8
under the action of a tangential force F.

Axis of rotation

TR Y SR T T IO

Fig. 7.26 Work done by a torgue.

The work done in the rotational motion of the body
or the work done by the torque is

AW = F x distance along the arc PQ

But AB = Arc =Arc: PQ
Radius r
Arc PQ=r A8
Hence AW = Fr A
or AW =1 AB

i.e., Work done by a torque
= Torque x angular displacement

In case the torque applied is not constant, but
variable, the total work done by the torque is given by

E'2
W=[ tdo
4
Power delivered by a torque. We know that

AW =1 A8

Dividing both sides by At, we get
AW _ 80
At At

or P=1»

Le., Power =Torque x Angular velocity.

. 20. Explain how torque can be expressed as a vector
product of two vectors. How is the direction of torque
determined ?

Torque acting on a particle. Consider a particle P
- . .. =2 —*
in the X-Y plane. Suppose its position vector is OP = r
with respect to the origin O of an inertial frame, as

-
shown in Fig. 7.27. Let F be the force acting on the
particle. The torque acting on the particle is defined as the
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vector product of position and force vectors. Thus the

torque of ? about O is defined as

- =
T=rx

#F

'
+ Force vector
a{ displaced to O

-

Xﬁ

Fig. 7.27 Torque as the vector product of 7’ and F .

Torque T is a vector quantity. Its magnitude is
given by
t=rFsin®

The direction of torque T is perpendicular to the

plane containing vectors 7 and F and its sense is
determined by right hand rule. If we curl the fingers of
our right hand in the direction in which vector * must

be rotated to move into the position of vector F
through the smaller angle between them, then the
extended thumb gives the sense of torque 7. In the
present case, T acts along Z-axis.

Special cases. ({) When 0 =0° or 180° the line of
action of the force passes through the origin. In this
case sin 0 =0, so that t=0. n

(if) When 6=90° = Fr sin 90° = Fr and is maxi-
mum. This explains why it is easier to open or close a

door when we apply force perpendicular to the door at
its outer or free edge.

(i) When r is maximum, torque due to the force is
maximum. This explains why we can open or close a
door easily by applying force near the outer edge of the
door (at maximum distance from the hinges). For this
reason, a handle or knob is provided near the free edge
of the door.

21. Show that the magnitude of torque = magnitude
of force x moment arm. Also show that only the angular
component of the force is responsible for producing
torque.

Dependence of torque on moment arm. Consider

a particle capable of rotation in the X-Y plane about the

origin O. Suppose the force vector makes an angle 8

with the position vector r of the particle, as shown in
Fig. 7.28.

Y

i
@

4N

Fig. 7.28 Dependence of torgue on moment arm.

Draw ON perpendicular to the line of action of the
force. Then from the right angled AONP, we have
ON _ . d

— _=s5in® or —=sinf® or
oP r

d=rsin 0

This is the perpendicular distance of the line of
action of force from the axis of rotation through the
point O and is called moment arm or lever arm of the
force.

The magnitude of the torque of force F is given by
t=rFsin®=F(rsin 8)= Fd

ie., Torque = Magnitude of force x moment arm

Now the force F can be resolved into two
rectangular components :
1. Radial component F along the direction of

sa —
position vector r .

tangential

2. Angular  or component  E

perpendicular to r.

Clearly, F = Fcos@and F;=Fsin® 3

; t=Fsin®.r=Fr
ie. Torque = Angular component of the force

x its distance from the axis of rotation

Hence torque due to a force is only due to its angular
component.

The radial component of the force does not
contribute to the torque.

| 22 “Write an expression for torque in three-
dimensional motion. Hence write the expressions for the
rectangular components of torque.

Rectangular components of torque. For three

-
dimensional motion, the position vector 7, and torque
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—
vector © can be written in terms of their rectangular

components as follows :
?:xx"\+yf+zl€
= A o A
F=F;,t+Fy]+sz
- A A A
and TET AT ] 4Tk
Now T =r x
=(x?+yf+zk)x(;‘,.+Fyf+in?)
S A ¢
=lx y z
E. F, FE

or Txf+‘tyj +1,k
=f(ypz—zpy)+j“(zFx—sz)+;€(xFy ~yE,)

Comparing the coefficients of i , f and k on the two
sides of the above equation, we get the rectangular

—’
components of torque t as follows :

1, =xF, -—sz Py =zF -xF; 1, =’xFy ~yE,.

7.15¥ ANGULAR MOMENTUM

. 23. Define the term angular momentum. Give its
units and dimensions.

Angular momentum. In linear motion, the linear
momentum of a body gives a measure of its translatory
motion. Analogous to it in rotational motion, the angular
momentum gives a measure of the turning motion of
the body.

The angular momentum of a particle rotating about an
axis is defined as the moment of the linear momentum of the
particle about that axis. It is measured as the product of
linear momentum and the perpendicular distance of its
line of action from the axis of rotation.

Angular momentum
= Linear momentum x its perpendicular
distance from the axis of rotation.

L= pd
Dimensions of angular momentum
=Lx MLT ! =[ML2T]

SI unit of angular momentum is kg m%s™".

2.1

CGS unit of angular momentum is g cm“s™".
~24. Explain how angular momentum can be
expressed as the vector product of two vectors. How Is its

direction determined ?

Angular momentum of a particle. Consider a
particle P of mass mrotating about an axis through Oin
the X-Y plane. Suppose the particle has linear

momentum ;7 which makes angle 8 with its position

- -3 -
vector OP=r. The angular momentum L of the
particle about the origin O is defined as the vector
— —
product of the vectors r and p. Thus
-

-+ =

L=rxp

/
X

Fig. 7.29 Angular momentum as the vector
product of 7 and p'.

Angular momentum is a vector quantity. Its magni-
tude is given by
L=rpsin 8

-

The direction of angular momentum L is

perpendicular to the plane of vectors ¥ and ; in the
sense given by right hand rule. Thus in the present case,
_’

L points in Z-direction.

Special cases. (i) If 6 =0° or 180°, sin 8 =0

L=rpx0=0
Hence the angular momentum is zero if the line of

Aaction of linear momentum passes throwgh the -point of

rotation.
(if) If 8 =90°, sin 90° =1
L=rpx1=rp=maximum
Hence the angular momentum is maximum and is equal

to rp or mor, if the line of action of the linear momentum is
perpendicular to the position vector.

25, Show that the angular momentum of a particle is
the product of its linear momentum and the moment
arm. Also show that the angular momentum is produced
only by the angular component of linear momentum.

Physical meaning of angular momentum. Consider
a particle P of mass mwhose position vector relative to
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- -
the origin Qs r . Suppose the momentum vector p of

the particle makes angle 8 with the position vector ?,
as shown in Fig. 7.30.

AY ,5'
Pen [N
0 _»p,
P
r 07
O - »X
4y
N
Fig. 7.30 Physical meaning of angular momentum.

Draw ON perpendicular to the line of action of
linear momentum ;_; From right angled AONP, we get

— =—=8in0 d =rsin 0.

OP r

This is the perpendicular distance of the line of
action of linear momentum from the point of rotation O
and is called moment arm of the momentum.

The magnitude of the angular momentum about
the point O is

or

L=rpsin8=p(rsin 8)=pd
Angular momentum = Linear momentum
x moment arm

1e.,

This is the physical meaning of angular momen-
tum. According to it, angular momentum is the moment of
linear momentum and is a measure of the turning motion of
the object. In contrast to it, we know that

Torque = Force x moment arm

Thus torque is the moment of force and is a measure of
the turning effect of force.

Moreover, as shown in Fig. 7.30, the momentum
vector ; can be resolved into fwo rectangular
components :

1. Radial component, p, along the direction of

e -
position vector r .

2. Angular or tangential component, p, perpen-
dicularto 7.

Clearly, p, =pcos® and p,=psinb
L=(psin8)r=p, r
Angular momentum

= Angular component of linear momentum
x its distance from the axis of rotation.

or

Hence only the angular component and not the radial
component of the linear momentum contributes towards the
angular momentum.

26. Express angular momentum in terms of the
rectangular components of linear momentum and
position vectors.

Angular momentum in terms of rectangular
components. For motion in three dimensions, the

— . -
position vector r and linear momentum vector p can

be written in terms of their rectangular components as
follows :

and

and;,so
T=7x 7
=(xf\+yf+zl?)x(pr+p’]+pz£)
i ] K
=lx y z
Px Py P

or L i+ Lyf+ Ltig
=i (yp, —2p,)+ | (2P, —xp,)+ K (xp, —yp,)
Comparing the coefficients of i, f and k on the two

sides of the above equation, we obtain the rectangular
components of vector L as follows :

L=yp,~2p, ; L, =2p, —xp,and L =xp, —yp, .
7.16 ¥ RELATION BETWEEN TORQUE AND

ANGULAR MOMENTUM

~ 27. Deduce the relation between torque and angular
momentum.

Relation between torque and ang'ular momentum,
We know that

- -
Torque, t© =r x
Angular momentum, L=rx F
Differentiating both sides w.r.t. time ¢, we get
dL d(? —+) d?x->+;> d;
—_— i — — W —
at ar TP TP dt
-+
=t_)'><;;+?x? [ jdi=l_:']
dt
=0+7 [ ;x;=;xmv =0]
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—5
- L
T =—
dt
Thus the torque acting on a particle is equal to its rate of
change of angular momentum. This equation is the rota-
tional analogue of Newton's second law of linear motion
which states that the rate of change of linear momen-
tum of a particle is equal to the force acting on it i.e.,
_’
FirL.
dt
7.17 7 GEOMETRICAL MEANING OF
ANGULAR MOMENTUM

28. Prove that the angular momentum of a particle
Lis equal to twice the product of its mass and areal
velocity. How does it lead to Kepler's second law of
planetary motion ?
Geometrical meaning of angular momentum.
Consider a particle of mass mrotating in the X-Y plane

about the origin O. Let r and ( o+ A?) be the position
vectors of the particle at instants t and (f+ Af)
respectively, as shown in Fig. 7.31. The displacement
of the particle in small time At is

s - - = —

PQ=(r +Ar)-r =Ar

Z

A

—

A —omAA
L=2m At

Fig. 7.31 Geometrical meaning of angular momentum.

If v is the velocity of the particle at point P, then the

small displacement covered in time At may be
expressed as

AT =0 At
Complete the parallelogram OPQR. Then
— = —
OR=PQ=Ar

Area of the parallelogram OPQR = T x AT

Area of AOPQ=1 (7' x A7)

The shaded area of AOP(Q) represents the area swept
by the position vector in time At. By right hand rule, its
direction is along Z-axis. If this area is represented by

Az—i’,then
AR =1 xar)=1("x v Ap

If F is the linear momentum of the particle, then

—¥
— - g -+ p
p =mv or B =—
m
1 —P
- —
AR =7 x L at
2 m
3
or Ad 1 (?x_’)
At 2m P

But 7 x ; =L, the angular momentum of the

particle about Z-axis, so we have
s

—_
9_A_ = L :l x Angular momentum per unit mass
At 2m 2
|
or f =2mﬁ
At

The quantity AA /At is the area swept out by the

position vector per unit time and is called the areal velocity
of the particle. Thus

Angular momentum =2 x Mass x areal velocity

This is the geometrical meaning of angular momen-
tum. So geometrically, the angular momentum of a particle
is equal to twice the product of its mass and areal velocity.
Equivalently, we can say that the areal velocity of a
particle is just half its angular momentum per unit mass.

Kepler's second law of planetary motion. A planet
revolves around the sun under the influence of gravita-
tional force which acts towards the sun i.e., the force is
purely radial and angular component F, of the force is
zero.

As torque, t=rFy,

therefore =0 or —=0
dt
or L= constant
AA ;
or 2m. e = constant [.© L=2mx areal velocity]
AA ‘ X
or Vi constant [ m of planet is constant]

This means that the areal velocity of a planet is
constant. This is Kepler's second law of planetary motion
which states that the line joining the planet to the sun

sweeps out equal areas in equal intervals of time.
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7.18 YTORQUE AND ANGULAR MOMENTUM Examples based on _
FOR A SYSTEM OF PARTICLES Torque, Power of a Torgue, Work
29. Prove that the rate of change of total angular <" dol 1 To nd -

momentum of a system of particles about a reference
point is equal to the total torque acting on the system.

Torque and angular momentum for a system of

FormuLAe Usep "

. ) o5 ok 1. Torque = Force xits perpendicular distance
particles. Consider a system of n particles. Let L, L, from the axis of rotation

-—’ —
L,, .... be the angular momenta of the various particles or|| %=Fd

about the origin O of a reference frame. The total 2. Torque, T=rFsin @ or © =7 x ;-:
angular momentum of the system about the point O is 3
given by the vector sum of angular momenta of all the
individual particles. Thus :

» Power of a torque = Torque x Angular velocity
or P=10
- 4. Work done by a torque

= -
L=L+L+...
L+l + L = Torque x Angular displacement
- =5 9 o -
SHXP ALY Pt X p or W =10
- 5. Angular momentum = Linear momentum x its
or L=ZXZ L=Z% rxp / y . ;
i=1 ' j=1 VA perpendicular distance from the axis of rotation
Similarly, the total torque acting on the system is or L=pd
equal to the vector sum of the torques of all the Al =

6. Angular momentum, L= rpsin 0 TPl
particles about the origin O. Thus gular momentum, L=rpsin 6 or rxp

H

oy > 5 7. For a particle of mass m moving with uniform
TI=+T 441, speed v along a circle of radius r, L=mor.
= ;; x i‘i + ;;;x i; ttr xF 8. Torame —™-' " -YWange of angular momentum
n n ™,
™
no_, no_, A
or Tl- § =% r;.x?. %
=1

i=1 b

The total torque acting on the system is due
sources : (i) Torques exerted on the particles
system by mutual internal forces between the r
(if) Torques exerted on the individual partir
system by the external forces.

According to Newton’s third law,
torque on the system due to internal f.
because the forces between any two partic:
and opposite and directed along the line
two particles. Hence the total torque is due .
forces only. So we have

Dot _ Dext _ 'E1 et
i=
This is in accordance with the common experience —
bodies do not start spinning on their own without
external forces acting on them. Hence if the angular
momentum of a system changes with time, this change £
can be due to the torques produced by external forces Sl

only. So we can write 60
> rea

eyt _dL cre

Thus the rate of change of total angular momentum of a
system of particles about a fixed point is equal to the total pos
external torque acting on the system about that point. gra
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centre of the rod and the weight W, is suspended at
point P.Let R, and R, be the reactions of the support at

the edges.
)

| In
A g,

Fig. 7.32
Here AB=70cm, AG=35cm, AP=30cm,
PG=5cm, AK,=BK,=10cm, K,G= KQG=25 cm
W = Weight of rod =4.00 kg wt =4g N
W, = Weight of suspended mass
=6.00 kgwt=6 g N

Clearly, the reactions R, and R, act vertically
upward. For translational equilibrium of the rod,

R+ R, =W, +W =4¢ +6g=10g
=10x9.8 =98 N
For rotational equilibrium of the rod,

(1)

Clockwise moment = Anticlockwise moment

Rl X KIG= W] x P°
or R! x 0.2
or R1 -P
or
&1 s
K

3. Reaction force F, of the floor. This force can be
resolved into two components : the normal
reaction N and the force of friction f. This
friction prevents the ladder sliding away from
the wall and hence acts towards the wall.

For translational equilibrium, balancing the forces
in the vertical direction,

N=W
Balancing the forces in the horizontal direction,
f=F

For rotational equilibrium, we consider the
moments about the point A

Clockwise moment = Anticlockwise moment
F x BC=W x AE

or F % 242 =W x %
But W =20g=20x9.8=196.0N
N=W=19.0N
W 1960
F=—==—02 =346 N
Y42 42
f=F=346N
and Ey =2+ N?=346% +196? =199.0 N

"“ the force F, makes angle a with the horizontal,

\tan a = % =42 =56568
\

Y = 80°

W particle of mass m is released from point P
-axis from origin O and falls vertically
‘as shown in Fig. 7.34.

f— Xp —]
o < M
]
4 ®
/ Direction of
' torque
/ o M
YY f=mg

Fig. 7.34

(1) Find the torque t acting on the particle at a time t
when it is at point (Q with respect to O.

(i) Find the angular momentum L of the particle about
O at this time t.

(#i1) Show that t= 4L in this example.
dt [NCERT]
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Solution. (i) The force of gravity, F =mg produces

the torque t. Let ¥ be the position vector of Q. Then the

magnitude of the torque is given by

t=rFsin @
= -Ji)-: 0 8l B:x—u
rX Mg X =" =gy [ sin ;

The direction of the torque is directed into the plane
of paper and perpendicular to it, as shown by ®.

(i7) The magnitude of the angular momentum is
L= rpsin 0 =rmv sin 6

But the velocity v at point Q is given by
v=u+at=0+gt=gt

Yo
L=rmgt. —=mgx, t
r

The direction of angular momentum is the same as
that of torque.

(iff) Now L= mgx,t

Differentiating both sides with respect to t, we get

ﬂ'=£(m X t)=mgx, =1
@t ar )=

Hence the relation © = % holds in this example.

EXAMPLE 20. An electron of mass 9 x 107" kg revolves in
a circle of radius 0.53 Aaround the nucleus of hydrogen with
a velocity of 2.2x 108 ms™ ). Show that its angular
momentum is equal to h /2, where h is Planck’s constant of
value 6.6 x 107" Js. [NCERT]

Solution. Here m=9x 10~ kg,
r=053 A=053x10""m,
0=22x10°ms !}, h=66x10"*Js
Angular momentum,
L= mur
—9x10" 1 x22 x10°x0.53x 10" 1°
=1.0494 x 10" Js

=34
Also, 80107 1050310 s
2 2x3.142
Hence L=—h—.
2n

EXAMPLE 21. Show that the angular momentum of a
satellite of mass M, revolving around the earth having mass
M, in an orbit of radius r is

L=,GM, M.
Solution. Let the satellite revolve around the earth
with orbital speed v. Then

Centripetal force = Gravitational force between
on the satellite the earth and the satellite

2 )
- M, v :GM" M,
r r?'

M
2=——G Loor v=
r r

GM

e

or (4

As satellite is considered a point mass, its angular
momentum is

M —
L=M or=M, [ ;- [GM, MZ .
: L

¥ PROBLEMS FOR PRACTICE

1. Determine the angular momentum of a car of mass
1500 kg moving in a circular track of radius 50 m
with a speed of 40 ms~ . (Ans. 3 x 10° kgm® s~ h

2. Mass of an electron is 9.0 x10” *' kg. It revolves
around the nucleus of an atom in a circular orbit of

radius 40A with a speed of 6.0x10°ms™.

Calculate the angular momentum of the electron.
(Ans.2.16 x 10~ % kgm® s

7.19  EQUILIBRIUM OF RIGID BODIES

300 ‘Define a rigid body. Name two kinds of motion
which a rigid body can execute. What is meant by the
term equilibrium ? For the equilibrium of bodies, two
conditions need to be satisfied. State them.

Equilibrium of rigid bodies. A rigid body is one
for which the distances between different particles do
not change, even though they move. Under the
influence of an external force, a rigid body can execute
two kinds of motion : (i) translational motion in which
all particles move with the same velocity and
(i) rotational motion about an axis. The word ‘equili-
brium’ is related to the Latin word ‘Libra” which means
equilibrium.

A rigid body is said to be in equilibrium if both the linear
momentum and angular momentum of the rigid body
remain constant with time. Hence for a body in
equilibrium, the linear acceleration of its centre of mass
would be zero and also the angular acceleration of the
rigid body about any axis would be zero.

A body under the action of several forces will be in
equilibrium, if it possesses the following two equilibria
simultaneously :

(i) Translational equilibrium. The resultant of all the
external forces acting on the body must be zero, otherwise
they would produce linear acceleration. Hence for
translation equilibrium,

$E,=0

ext

or LF =0, ZFy=0 and IF =0
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Applying Newton's second law,

*F

ext

_’
deM

= Magy, =M =0

-
d Uy -0
dt

This implies that a body in translational equili-
brium will be either at rest (v =0) or in uniform motion
(v = constant). If the body is at rest, it is said to be in
static equilibrium. It the body is in uniform motion
along a straight path, it is in dynamic equilibrium.

(1) Rotational equilibrium. The resultant of torques
due to all the forces acting on the body about any point must
be zero, otherwise they would produce angular accele-
ration. Hence for rotational equilibrium,

Y
or or Uy = constant.

- -
- ext _
Etex!_zr;' fo' =0

For rotational equilibrium, the choice of the point of
rotation (or fixed point) is unimportant. If the total
torque is zero about any point, then it will be zero
about any other point when the body is in equilibrium.

) 31. Obtain an expression for the work done on a rigid

\body executing both translational and rotational motions.

Hence deduce the condition for the equilibrium of the
rigid body.

Expression for work done in combined rota-
tional and translational motions. A rigid body can
have only two kinds of motion : translational and rota-
tional. In translational motion, all the particles of the rigid
body move with the same velocity v, without rotating.

In small time interval Af, each particle covers a dis-
placement given by

- =
As =voAt

In rotational motion, every particle of the rigid
body rotates about the axis of rotation with the same

Ps

Fig. 7.35 Rotational motion of any partide of a rigid body.

angular velocity E; . As shown in Fig. 7.35, we choose
the origin O on the axis of rotation. Clearly, the particle
velocity v has magnitude,

v=r W= wrsin 6

where r, =rsin 8 is the perpendicular distance of the
particle from the axis of rotation and 8 is the angle

- . N
between r and the axis of rotation. In vector notation,

-+ =+ =
VvV =0Xr

—r -
The direction of v is perpendicular to both ® and

r. The direction of @ is determined by right hand rule.

If we curl the fingers of our right in the direction of
rotation of the particle, then the extended thumb gives

the direction of the angular velocity vector @.

Displacement covered by the rotating particle in
small time interval At

- - — — = -
=vAt=wx rAt=(0 At)xr =Ad xr
- = .

where A¢ = At =the small angular displacement.

So when a rigid body rotates with angular veiocity

o and translates with velocity 5[;, the displacement of
any point of 7 of the rigid body is given by
A?=%At+aAtx?=A?+A$x ?
Thi work done by an external force F acting on
point r is given by
AW =F . A7 =F.(AS +A3x T)
-F.AS+F . (A0 x7)
As the scalar triple product is cyclic, so
F.(00x7)=7 . (Fx4$)=4%.(F x F)
-

- = .
where T =7 x F, is the torque acting on the particle.
AW = ?.AE’+?.A$’
When a number of forces ﬁ act on different points

—rl.’ of the rigid body, the total work done on the rigid
body will be

W =(ZE).As+(27). AP

For the rigid body to be in equilibrium, the work
done in this displacement plus rotation should be zero
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<5 - z
for all choices of As and A¢ . We therefore obtain the ({‘3
P Axis of 0
condition : m:‘;:ign‘\—ﬂ Rigid body
z f—‘: =0 and I 1_': =0
Hence for a rigid body in equilibrium, the sum of the
* forces acting on it must be zero and the suyt of the torques ~ \ \ G

acting on it must be zero.

32. Distinguish between stable, unstable and neutral Y

equilibria of a body.

(1) Stable equilibrium. A body is said to be in stable

equilibrium if it tends to regain its equilibrium position after
being slightly displaced and released. In stable equili-
brium, a body has minimum potential energy and its centre
of mass goes higher when it is slightly displaced.

(if) Unstable equilibrium. A body is said to be in
unstable equilibrium if it gets further displaced from its
equilibrium position after being slightly displaced and
released. In unstable equilibrium, a body possesses
maximum potential energy and its centre of mass goes
lower on being slightly displaced.

(i) Neutral equilibrium. If a body stays in
equilibrium position even after being slightly displaced and
released, it is said to be in neutral equilibrium. When a
body isslightly displaced from its position of neutral
equilibrium, its centre of mass is neither raised nor
lowered and its potential energy remains constant.

7.20 ¥ MOMENT OF INERTIA AND ITS
PHYSICAL SIGNIFICANCE

“ Define moment of inertia of a body. Give its
nits and dimensions. Explain the physical significance
of moment of inertia.

Moment of inertia. According to Newton's first
law of motion, every body continues in its state of rest
or of uniform linear motion, unless an external force
acts on it to change that state. This inability of a body to
change by itself its state of rest or of linear uniform
motion is called inertia. Similarly, a body rotating
about a given axis tends to maintain its state of
uniform rotation, unless an external torque is applied
on it to change that state. This property of a body by
virtue of which it opposes the torque tending to change
its state of rest or of uniform rotation about an axis is
called rotational inertia or moment of inertia.

The moment of inertia of a rigid body about a fixed axis is
defined as the sum of the products of the masses of the
particles constituting the body and the squares of their
respective distances from the axis of rotation.

Consider a rigid body rotating with uniform
angular velocity w about a vertical axis through O, as
shown in Fig. 7.36. Suppose the body consists of n
particles of masses m.,m,ny,..,m situated at

Fig. 7.36 M.I. and rotational K.E. of a rigid body.

distances 1, 1,15, , 1, respectively from the axis of
rotation. The momient of inertia of the body about the
axis OZ is given by

I=ml r2+mz-r22+m3r2+ A m, 1;12

or f'= ).T. " rz
j=
The dimensional formula of moment of merha is
[ML2T °]. The SI umt of moment of inertia is kg m 2 and
its CGS unit is g cm?

Physical sxgmﬁcance of moment of inertia. The
mass of a body resists a change in its state of linear
motion, it is a measure of its inertia in linear motion.
Similarly, the moment of inertia of a body about an
axis of rotation resists a change in its rotational motion.
The greater the moment of inertia of a body, the greater
is the torque required to change its state of rotation.
Thus moment of inertia of a body can be regarded as
the measure of rotational inertia of the body. The
moment of inertia of a body plays the same role in the
rotational motion as the mass plays in linear motion.
That is why moment of inertia is called the rotational
analogue of mass in linear motion.

\ 34. State the factors on which the moment of inertia
of a body depends.

Factors on which the moment of inertia depends.
The moment of inertia of a body is the measure of the
manner in which its different parts are distributed at
different distances from the axis of rotation. Unlike
mass, it is not a fixed quantity as it depends on the
position and orientation of the axis of rotation with
respect to the body as a whole.

The moment of inertia of a body depends on
(i) Mass of the body
(if) Size and shape of the body.
(1if) Distribution of mass about the axis of rotation.

(iv) Position and orientation of the axis of rotation
w.r.t. the body.
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35. Mention some practical applications which make
use of the property of moment of inertia.

Practical applications of moment of inertia. (i) A
heavy wheel, called flywhieel, is attached to the shaft of
steam engine, automobile engine, etc. Because of its large
moment of inertia, the flywheel opposes the sudden
increase or decrease of the speed of the vehicle. It allows
a gradual change in the speed and prevents jerky motions
and hence ensures smooth ride for the passengers.

(i) In a bicycle, bullock-cart, etc., the moment of
inertia is increased by concentrating most of the mass
at the rim of the wheel and connecting the rim to the
axle through the spokes. Even after we stop paddling,
the wheels of a bicycle continue to rotate for some time
due to their large moment of inertia.

7.21 RELATION BETWEEN ROTATIONAL K.E.
~AND MOMENT OF INERTIA

« A body is rotating with uniform angular velocity
® about an axis. Establish the formula for its kinetic
energy of rotation. Define moment of inertia of the body
with respect to the axis of rotation on this basis.

Relation between rotational kinetic energy and
moment of inertia. As shown in Fig. 7.36, consider a
rigid body rotating about an axis OZ with uniform
angular velocity @ The body may be assumed to
consist of 1 particles of masses My, iy, My, ey,
situated at distances 1,7, n,..,r, from the axis of

rotation. As the angular velocity o of all the n particles
is same, so their linear velocities are

VY SH, Uy=hHho V=Ko, U, =f 0
Hence the total kinetic energy of rotation of the

body about the axis OZ is
Rotational K.E.
2

1l 2al, 2.1, o 1
—Emlvl+§n1202+§n1303+....+2m” 'U”

! 241 2.1 2 1 2
“5"‘1"12“’ + 2mlr.fm +21113r3203 AR L o

nn

-1 2 2y 2
—i(m]r12+n&r2’+maréz+...+m ) w

non

=%(2 mr*) w*

But Z mr” = I, the moment of inertia of the body
~about the axis of rotation.

. Rotational K.E. =% I w*

When w=1, rotational KE. =21

1
2

or I =2 x Rotational K.E.

Hence the moment of inertia of a rigid body about an axis
of rotation is numerically equal to twice the rotational
kinetic energy of the body when it is rotating with unit
angular velocity about that axis,

7.22 " RADIUS OF GYRATION

: r",‘l?:’ﬂeﬁne radius of gyration of a body rotating
about an axis. Derive an expression for it. On what
factors does it depend ?

Radius of gyration. For any body capable of
rotation about a given axis, it is possible to find a radial
distance from the axis where, if whole mass of the
body is concentrated, its moment of inertia will remain
unchanged. This radial distance is called radius of
gyration and is denoted by k.

The radius of gyration of a body about its axis of rotation
may be defined as the distance from the axis of rotation at
which, if the whole mass of the body were concentrated, its
moment of inertia about the given axis would be the same as
with the actual distribution of mass.

The radius of gyration k is a geometrical property
of the body and the axis of rotation. It gives a measure
of the manner in which the mass of a rotating body is
distributed with respect to the axis of rotation.

k has the dimensions of length Land is measured in
metre or cm.

Expression for k. Suppose a rigid body consists of n
particles of mass m each, situated at distances
ity Ty, oo, from the axis of rotation AB.

A
g1
m,
]
’
2 —e 1,
.
— m,
B Axis of rotation

B e L T A AL RN A i s F X

Fig. 7.37 Radius of gyration.

The moment of inertia of the body about the axis
ABis

I=mr12+mr22+ mr32+...+ mrf
= 2 2
=m(rl+ 5+ 4.+ 1)
2
(T +5+5+.+17)

1

=mxn

:M(rlz+r§+r32+...+rf)
n
where M=mx n= total mass of the body.

If k is the radius of gyration about the axis AB then
I= Mk?

or I
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Mk = M r]?' + rz2 + :f + sua r;lz Moment of inertia of whole lamina about Z-axis is
- n I,=% mrr =% m(y2 + xz)
T _ 2 2
: (,iz+r2+,.32+ +,;12 =X my" +Zmx
or =
\ n or L=1+1
= Root mean square distance This proves the theorem of perpendicular axes.

Hence the radius of gyration of a body about an axis of 39. State and prove the theorem of parallel axes.
rotation may also be defined as the root nean square distance L

of its particles from the axis of rotation. ‘
Factors on which radius of gyration of a body
depends :
(i) Position and direction of the axis of rotation.

Theorem of parallel axes. The moment of inertia of a
body about any axis is cqual to its moment of inertia about a
parallel axis through its centre of mass plus the product of
the mass of the body and the square of the perpendicular

distance between the two parallel axes.

i) Distribution of bout the axis of rotation. .
(] ThstvibticnaLma SomE IR PR gRiyasen Proof. Let I be the moment of inertia of a body of

7.23 THEOREMS OF PARALLEL AND mass M about an axis PQ. Let RS be a parallel axis
PERPENDICULAR AXES passing through the centre of mass C of the body and

; at distance d from PQ. Let I, be the moment of inertia
,&:6' State and prove the theorem of perpendicular of the body about the axis RS.

Consider a particle P of mass m at distance x from

Theorem of perpendicular axes. The moment of !
RS and so at distance (x + d) from PQ.

inertia of a plane lamina about an axis perpendicular to its
plane is equal to the sum of the moments of inertia of the
lamina about any two mutually perpendicular axes in its
own plane and intersecting each other at the point where the
perpendicular axis passes through the lamina,

Proof. Consider a plane lamina lying in the XOY
plane. It can be assumed to be made up of large
number of particles. Consider one such particle of
mass m situated at point P(x, y). Clearly, the distances
of the particle from X-, Y- and Z-axes are y, x and r
respectively such that

2

r2=y2+x

A T A MO

Fig. 7.39 Theorem of parallel axes.

Moment of inertia of the particle about axis PQ

= m(x + d)’
e . Moment of inertia of the whole body about the
- axis PQ is
%Py, y) [=Sm(x+d)f =L m(x* +d* +2xd)

=% mx? + Emd® + £2 mxd
Now Z mx® = ICM

Bt T S B e

Fig. 7.38 Theorem of perpendicular axes. ¥ md? = (T m) d? = Md?
Moment inertia of the particle about X-axis 32 mxd=2d L mx=2dx0=0
2
= "‘]y

This is because a body can balance itself about its
centre of mass, so the algebraic sum of moments (Z mx
of masses of all its particles about the axis RS is zero.

. Moment of inertia of whole lamina about X-axis is
2
I, =X my
Moment of inertia of whole lamina about Y-axis is

Hence I=1., +Md?
- 2 . CM
Iy =Z mx

This proves the theorem of parallel axes.
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7.24 ¥ MOMENT OF INERTIA OF A
~FHIN CIRCULAR RING

i 40. Derive an expression for the moment of inertia of
\athin uniform circular ring about (a) an axis through
its centre and perpendicular to its plane (b) its diameter

(c) a tangent in its plane (d) a tangent perpendicular to
its plane.

(7) M.L of a ring about an axis through its centre
and perpendicular to its plane. Consider a thin
uniform circular ring of radius R and mass M. As
shown in Fig. 7.40, we wish to determine its moment of
inertia [ about an axis YY' passing through its centre O
and perpendicular to it. The ring can be imagined to be
made of a large number of small elements. Consider
one such element of length dx.

Y

bl

Y
R T R Ty
Fig. 7.40 M.l. of a ring about central axis.

Length of the ring = circumference =2 7R
M
M er unit length of ring = ——
ass per unit leng ng 7R

Mass of the small element = —A/I— dx
2n R

Moment of inertia of the small element about the

axis YY',
dr:[ﬂ dx] R2-MR .
2nR 2n

The small elements lie along the entire circum-
ference of the ring i.e., from x =0to x =2 R. Hence the
moment of inertia of the whole ring about the axis YY '
will be

2 xR 2nR
I= | @dx:ﬂ’ij dx
0 2n 2n 0

MR amR MR
=228 =" (2nR -0
2n [x]o 2n @n )
or I= MR?,

(b) ML of a ring about any diameter. Accordin gto
the theorem of perpendicular axes, the moment of
inertia about an axis YY" through O and perpendicular
to the ring is equal to sum of its moments of inertia

Fig. 7.41 M.I. of a ring about any diameter.

about two perpendicular diameters AB and CD, as
shown in Fig. 7.41
Lig + Icp = Iy
2
Ip + I, = MR
sl 2
Ip =% MR".
Here I}, is the MLL. of the ring about any diameter.

(c) ML of a ring about a tangent in its plane, Refer
to Fig. 7.42. Let I be the moment of inertia of the ring
about the tangent EBF. Applying the theorem of
parallel axes, we get

I = M.1 about diameter CD + MR?2
=2 MR? + MR?
-3 MR?

I =3 MR%.

or

or

C DI

Fig. 7.42 M.l.of a ring about a tangent in its plane.

(d) MLL of a ring about a tangent perpendicular to
its plane. Let I be the moment of inertia of the ring

Y P

Ppry

7

Y Q

Fig. 7.43 M.I. of a ring about a tangent
perpendicular to its plane,
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about Fhe axis PAQ tangent to the plane of the ring. Moment of inertia of the concentric ring about the
Applying the theorem of parallel axes, axis YY'

Iin=1.. 2 34
pQ = lyy:+ MR dI=mx2=2Mx2dxxx2:2Mx2 x
= MR?* + MR? R R
oF -2 MR2 The moment of inertia of the whole disc about the
b =2 MR axis YY' can be obtained by integrating the above

JVETE We can determine the radius of gyration (k) expression between the limits 0 to R.
of the ring about any axis by equating its M.I. about R

: 2MPdx 2M f
that axis to Mk®. For example, the radius of gyration of I'= _[ R2 = R I x* dx
a thin ring about any diameter is given by 0 d
Io=1 MR? = Mk? «*
D=7 =&f"_ =2_A§[R4_o]=_MvaR4
or k=R/2. R™| 4 o 4R 2R
7.25 7 MOMENT OF INERTIA OF A UNIFORM or =% MR?

,FIRCULAR DISC (b) M.l.hof a disc about any diameter. In Fig. 7.45,

. Derive an expression for the moment of inertia of ABand CD are two mutually perpendicular diameters
a disc about (a) an axis through the centre and perpen- in the plane of the disc. Applying the theorem of
dicular to its plane, (b) its diameter, (c) a tangent in its perpendicular axes, we get

own plane, (d) a tangent ndicular to its plane. -
plane, (d) a tangent perpendicular to its p L+ o=l

(a) MLI. of a circular disc about an axis through its
centre and perpendicular to its plane. As shown in ©f
Fig. 7.44, consider a uniform disc of mass M and radius
R. Suppose YY" is an axis passing through the centre O
of the disc and perpendicular to its plane.

Area of the disc = nR?

or

Mass per unit area of the disc = %
T

Yl

Fig. 7.45 M. of disc about any diameter.

(c) ML of a disc about a tangent in its plane. Let L,

the moment of inertia of the disc about a tangent EBF
in the plane of the disc. This tangent is parallel to the
diameter CD of the disc. Applying the theorem of parallel
axes, we get

L. = Moment of inertia of disc about CD + MR?

Fig. 7.44 M.I. of a disc about a central axis.

We can imagine the disc to be made up of a large

number of concentric rings, whose radii vary from Oto or = % MR? + MR* =% MR?*

R. Let us consider one such concentric ring of radius x C E

and width dx. dbRN

Area of the ring \

: = Circumference x Width =2 mx x dx A S
Mass of the concentric ring, /

m=[—M—2)2nxdx=—2M€dx D F

— ¥ Fig. 7.46 M.I. of a disc about a tangent in its plane.
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(d) M.L. of a disc about a tangent perpendicular to Moment of inertia of the small element about YY",
its plane. In Fig. 7.47, let I.." be the moment of inertia of

disc about the tangent PAQ perpendicular to the plane
of the disc. Applying the theorem of parallel axes, we

M
dl-= Mass  (distance)” = T dx x x2

The moment of inertia of the whole rod about the

o axis YY' can be obtained by integrating the above
Ipg = Iyy. + MR? 2% MR? + MR? expression between the limits x =— L/2 and x =+ L/2.
or ' L'=3 MR? +L/2
T2 [:J’dlzj M2 i
\ L \
Y P -L/2
I L2
Oy ML ml2T
R P 1 Y
? L L= J-L/2
o! A 3 -
_ ORE
_/ 3L|\2 2
Q 3 3 s
Y _M {5 L} M T
Fig. 7.47 M.I. of a disc about a tangent 3L| 8 8 3L 4
perpendicular to its plane. MI?
or =—
Moreover, the radius of gyration (k) in this case is 12 :
given by Radius of gyration. Let k be the radius of gyration
5 3 5 3 of the rod about the axis YY'. Then
Mk* = E MR or k= i R. I= Mk2
- it = M gL
7.26 MOMENT OF INERTIA OF A " T 12 or 12
_. THIN UNIFORM ROD L L
A or =—=.
42. Derive an expression for the moment of inertia of 243

= a thin uniform rod about an axis through its centre and
perpendicular to its length. Also determine the radius of
gyration about the same axis.

Thus, the radius of gyration of a uniform thin rod
rotating about an axis passing through its centre and
perpendicular to its length is L/2~/3,

43. Derive an expression for the moment of inertia of
a thin uniform rod about an axis passing through its one
end and perpendicular to its length. Also determine its
radius of gyration about the same axis.

M.L of a thin uniform rod about a perpendicular
axis through its centre. Consider a thin uniform rod
AB of length L and mass M, free to rotate about an axis
YY' through its centre O and perpendicular to its

length.
gth . M ML.L of a thin uniform rod about a perpendicular
*. Mass per unit length of rod = T axis through its one end. Consider a thin uniform rod

_ ABof length Land mass M, free to rotate about an axis
_ Consider a small mass element of length dx at a -y« passing through its one end A and perpendicular
distance x from O. to its length, as shown in Fig. 7.49.

Mass of the small element = % dx

Y
Y
1
QW! N ]
x=-L/2 X x=+1Lp 4 -
Al 0 [[ s = i n B
-, |- dx
| L L dx ' L
2 y = Y
Fig. 7.48 M.1. of a rod about an axis through Fig. 7.49 M.L of a rod about an axis through

its centre. _ its one end.
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Mass per unit length of the rod = Ag

Consider a small element of length dx of the rod at a
distance x from the end A

Mass of the small element = % dx

Moment of inertia of the small element about the
axis YY',
dl = Mass x (distance)2 =r"g dx . x*

The moment of inertia of the whole rod about the
axis YY' can be obtained by integrating the above
expression between the limits x=0and x =L
L

L
I=Id!=jo A—fdx.x2=—hgfo x% dx

L
. M| M M MP
L|3 3L 3L 3L

_MP
=

Radius of gyration. Let k be the radius of gyration
of the rod about the axis YY". Then

or I

2
ﬂ’&:Mkz
3
2
or k2=£
3
L
or k=—
3

Thus the radius of gyration of the rod about an axis
passing through its one end and perpendicular to its length

is L/ /3.

7.27° MOMENT OF INERTIA OF A CYLINDER

_ 4. Write an expression for the moment of inertia of
2 hollow cylinder of mass M and radius R about its own
axis. '

M.L of a hollow cylinder about q) I
its own axis. Consider a hollow
cylinder of mass M and radius R.
As shown in Fig. 750, every
element of the cylinder is at the
same perpendicular distance R
from its axis. Hence the moment of
inertia of the hollow cylinder
about its own axis is

1=[r2dm=j R? dm
=R2jdm=R2xM
[= MR?.

B

-~

o3

Fig. 7.50 M.I. of a
hollow cylinder
about its own axis.

or

-t

(A5 Derive an expression for the moment of inertia of
a uniform solid cylinder about its own axis.

Moment of inertia of uniform solid cylinder
about its own axis, Consider a solid cylinder of mass
M, radius R and length L. We wish to determine its
moment of inertia about its own axis YY".

Volume of the cylinder

=nR*L

Mass per unit volume of

the cylinder, ]
M
P mR?L L
We can imagine the
cylinder to be made of a large
number of coaxial cylindrical =

shells. Consider one such
cylindrical shell of inner radius
x and outer radius x + dx, as =
shown in Fig, 7.51. The cross- Fig. 7.51 M.I of a
section of the shell is a ring of Solid cylinder about
radius x and thickness dx. its own axis.
-.Cross-sectional area of the cylindrical shell
= Circumference x thickness =2nx dx
Volume of the cylindrical shell

= Cross-sectional area x length =2mx dx x L

Mass of the cylindrical shell,
M _2M
aR2L  R2
As the mass of the shell is distributed at the same
distance x from its axis, so its moment of inertia about

the axis YY" is

= Volume x p =2 mxLdx x x dx

2 2 _2M 3
_z.x

dl = mx =¥xdxxx = dx

R

The moment of inertia of the solid cylinder can be
obtained by integrating the above expression between

the limits x =0 and x = R.

R
I=Id[=_[ %xadx
0
IM oM 2m
=_2f'|' Idez?[T} = 2[R4_0]
R* %, o R
or l:%MRZ.

Obviously, the moment of inertia of a cylinder
about its own axis does not depend on its length.

\Lﬁ_&.‘ﬂeﬂve an expression for the moment of inertia of
a uniform solid cylinder about an axis passing through
its centre and perpendicular to its length.
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M.I. of a solid cylinder about an axis through its
centre and perpendicular to its axis. Consider a uniform
solid cylinder of mass M, radius R and length L. We wish
to determine its moment of inertia about an axis YY'
passing through its centre O and perpendicular to its

length.

Mass per unit length =—

We can imagine the cylinder to be made up of a
large number of thin circular discs placed perpen-
dicular to the axis of the cylinder. As shown in Fig, 7.52,
consider one such thin disc of thickness dx and at
distance x from the centre O.

P a
it T
N L) e
I\
—= ” L—y

Fig. 7.52 M.IL of a cylinder about an axis through
its centre and perpendicular to its axis.

Mass of the elementary disc = A—f dx

Radius of the elementary disc = R?

Moment of inertia of the elementary disc about the
diameter AB

MR?

M dx
L

——dxszz
L

-1 ing2 =1
-4Massx radius e

Applying the theorem of parallel axes, the moment
of inertia of the elementary disc about the axis YY',
dl = M.1. about the diameter AB+ Mass x x*

2 2
= dx+de x x2 2 M 5r+x dx
L L L{ 4
The moment of inertia of the cylinder about the axis
YY’ can be obtained by integrating the above expression

between the limits x =0 and x = L/2 and multiplying
the result by 2 to cover both halves of the cylinder.

L/2

I= zj'dl 2]’ —[RTz+x2de

M2 L/2 L/
2M RzI dx+_"212dx}

Thus

L4~ 3

[ L/2
M| R e | 2
L| 4

_2M|R? L T
L4 2 24
2 2
or I=M R—+£
4 12

7 MOMENT OF INERTIA OF
A SOLID SPHERE

47. Derive an expression for the moment of inertia of
a uniform solid sphere about its any diameter. Hence
write the expression for its moment of inertia about its
tangent.

Moment of inertia of a solid sphere about its
diameter. Consider a uniform solid sphere of mass M
and radius R. We wish to determine its moment of
inertia about diameter AB.

7.28

Volume of the sphere =% nR3
. 3M
Mass per unit volume, p =
J P 4nR?
We can imagine the
sphere to be made up of a ‘li R7-+
large number of thin slices 4 B
placed perpendicular to I,
the diameter AB. Consider
one such slice of thickness i

dx placed at distance x Fjg, 7,53 M.I of a
from the centre O. sphere about a diameter.

Radius of the elementary slice =/ R* - x*

Volume of the elementary s}ice
= Area x thickness

:n(\/Rz-—xz )zxdxzn(Rz—xz)dx

Mass of the elementary slice
3IM

4nR3

= Volume x p =nt(R? - x?) dx x

_3M(R®-x%)dx
4R’
Moment of inertia of the thin slice about the axis AB
passing through its centre and perpendicular to its plane,
dl = —1- Mass x (radius)?
1 3M(R? - x%) dx
T2 4R3
_3M(R? - x%)? dx
8R?

-x%)

(R
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The moment of inertia of the whole sphere about
the diameter AB can be obtained by integrating the
above expression between the limits x =0 and x =R
and multiplying the result by 2 to include both halves
of the sphere.

B 3M(R? - x%)? dx

1=2|dl =2
R
\2X3MI (Rz_xz)zdx
8R® °,
am R
=——] (R* =2 R%? —x*) dx
4R 0
R R R
=§£ R‘I dx—Zsz xzdx+j xéde
4R® L o 0 0
i 3 R 5 (R
=ﬂ RYxR-2R?| 2| &1
4R? 3 b 5 0

_3M| (R R
RSI:R (R-0)- 2R(3 0J+(5 oﬂ

5
3M s 25, R J_IM 8 gs
T 4R 3 5| 4R® 15
or 1=2 MR2.
5

Moment of inertia of the solid sphere about a
tangent. Applying the theorem of parallel axes, the
moment of inertia of a solid sphere about a tangent is
given by

L. = M.1. about a diameter + Mass x (radius)?

=§ MR2 + MR?
=1 MR?.

Examples based on
Moment of Inertia, Radius of
Gyration and Rotational K. E.

or L

Fomum Usep

1. Moment of inertia of a body about the given axis
of rotation,
Temy i +myg + 4 mn.r,f= z
| i
2. Radius of gyrahon K is given by

I= MKzor K= I

When all the particles are of same mass,

Keril+r22+...+y;2 f
n

3. Theorem of parallel axes: I, = I + Iy
4. Theorem of perpendicular axes, I = I, + Md?

5. M.I of a circular ring about an axis thmugh its
centre and perpendicular to its plane, [ = MR?

6. MLL of a thin ring about any diameter, I = 1 MR?

7. M. of a thin ring about any tangent in its plane,
=3 MR?
8. M.L of a circular dlSC about an axis through its
centre and perpendicular to its plane, I =5 MR2
9. M.L of a circular disc about any d:ameter,
=1 MR?
10. M.L of a circular disc about a tangent in its plane,
=2 MR? |
11. M.I of a thin rod about an axis through its middle
point and pérpendicular torod, I = r MI?

12. M. of a thin rod about an axis throulgh its one end
and perpendicular to rod, I = 3 ML

13. M.L of a rectangular lamina of sniés [ 'and b about
an axis through its centre and perpendicular to its

plane,
2,12
I-M I“+b
12

14. ML of a right circular solid cylinder about its
symmetry axis,
1=1 MR2. |
15. M.L of aright cnrcular hollow cylinder about its axis
| 1= MR~
16. ML of a solid sphere about an axis thmugh‘itS
centre, i .

1=2 2 MR?,
M.I ' of a solid sphere about any tangent,
1=1 MR?
18. M.L of a hollow sphere about an axis through its
centre,

I | | | I ALl % ‘MRZ

19. M.L of a hollow sphere about any tangent,
I=32 MR?

20. Rotational KEE. = 1 Iw?

Total K. E. = Rotanonal K.E. + Translational K.E.
t I 1 Io? + —1- My?

I ‘
Units Usep ‘

Mass Mi iy in kg, radlus Rin m, moment of inertia I
' in kg m? and radius of gyration K in metre,
rotational K.E. in joule and angular velocity o in

rads”
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Examprr: 22, A wheel of mass 8 kg and radius of gyration
25 cm is rotating at 300 rpm. What is its moment of inertia ?

Solution. Here M =8 kg, K=25ecm=0.25m
1=MK?* =8 x(0.25)* = 0.5 kgm 2.

ExampLE 23. Three mass points my, my and n, are located
at the vertices of an equilateral triangle of length a. What is
the moment of inertia of the system about an axis along the
altitude of the triangle passing through m, ?

Solution. As shown in Fig. 7.54, the axis of rotation
passes through m,. The distances of m,, m, and m, from
the axis of rotation are 0, /2 and a/2 respectively.

, Axis of
| rotation

m,

Fig. 7.54
- M. of the system about the altitude through m, is

I=m1r12+mzr22+n13r32

2 2
_ 2 a q
=m (0) +"’2(2J "’"’3(2J
2
I=T(mz+ma).

EXAMPLE 24. Three balls of masses 1, 2 and 3 kg respec-
tively are arranged at the corners of an equilateral triangle of
side 1 m What will be the moment of inertia of the system
about an axis through the centroid and perpendicular to the
plane of the triangle ?

Solution.
Median AD =/ AR - BD? = [1 - (0.5)® = 0.75
AG= BG=CG =-§- AD =-§- J0.75

or

Fig. 7.55

M.L of the system about an axis through centroid G
and perpendicular to the plane of the triangle is

[=1x AG? +2 x BG? +3x CG>

2
=(1+2+3)x(§«/0.—75)
=6>(4;0'75=2kg 2,

Examprre: 25. Four particles of masses 4 kg, 2 kg, 3 kg and
5 kg are respectively located at the four corners A, B, C and
D of a square of side 1 m as shown in Fig. 7.56. Calculate the
moment of inertia of the system about

(1) an axis passing through the point of intersection of
the diagonals and perpendicular to the plane of the
square,

(i) the side AB, and (iii) the diagonal BD.

4 kg 1m S5kg
A D
1m (8] 1m
B C
2kg 1m 3kg

Fig. 7.56

Solution. Here AB=BC=CD=DA=1m
OA=0B=0C=0D=1 2 2-L
2 V2
(1) MLL of the system about an axis through O and
perpendicular to the plane of the square,
I=4(0A) +2 (OB*)+3(OC) + 5 (OD)?

2
1 1
=(4+2+3+5)x| —| =14x - =7kgm?2
( RS (ﬁ) X 2 gm
(i7) M.L. of the system about the side AB,
=3(BC)* +5(AD) =3x1+5x1=8kgm?
(it) ML of the system about the diagonal BD,
I =4 (0A)* +3(0C)>
=4x %+3x%=3.5kgm2.

ExAMPLE 26. The moment of inertia of a uniform circular
disc about its diameter is 100 g cn®. What is its moment of

inertia (i) about its tangent (ii) about an axis perpendicular
to its plane ?

Solution. M.I. of disc about its diameter,

I =% MR? =100 g cm?
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(i) By theorem of parallel axes, M.I. about a tangent
parallel to the diameter,
I=1,+ MR? =1 MR? + MR? =2 MR?
4 4 4
~ 5x100 =500 g cm?.
(if) By theorem of perpendicular axes, M.L. of the
disc about an axis perpendicular to its plane,

[ = Sum of the moments of inertia about
two perpendicular diameters

=1, + 1, =2x1 MR? =2 x 100 =200 g cm”.

ExamprE 27, Calculate the moment of inertia of a cylinder
of length 1.5 m, radius 0.05 m and density 8 x 10% kg ni?
about the axis of the cylinder.

Solution. Here R=0.05m,!/=1.5m,
p=8x10° kgm™ >
Mass of cylinder,
M = Volumex density = aR*l.p
=314x (0.057 x 1.5x8x10° =94.2 kg

M.L of the cylinder about its own axis,
I= % MR? =1x942 x (0.05)
=0.1175 kg m™.

ExAMPLE 28. Calculate the moment of inertia of the earth
about its diameter, taking it to be a sphere of 10% kg and
diameter 12800 km

Solution. Here M =10% kg,
R =6400 km =6.4x 10° m
M.L of the earth about its diameter
1=% MR? =% % 10% x (6.4 x 106)2
=1.64 x 10%® kg m?.

ExAMPLE 29. Four spheres of diameter 2a and mass M each
are placed with their centres on the four corners of a square of
side b. Calculate the moment of inertia of the system about
one side of the square taken as its axis.

Solution. The situation is shown in Fig. 7.57. Let us
calculate the moment of inertia of the system about the
side CD.

i b a,
L/ P
b b

ﬁ ['a

Fig. 7.57 b C

[ =M.L of A about CD + M.I. of B about CD
+ M.L of C about CD + M.I. of D about CD

= gMﬂz+Mlﬂz)+(E Ma? + Mb? +z Maz-t-gMa2
5 = 5 5 5

=% Ma? +2 Mb? =§ M (aa® + 5b%).

ExampLE 30. Two point masses of 2 kg and 10 kg are
connected by a weightless rod of length 1.2 m Calculate the
M.L of the system about an axis passing through the centre
of mass and perpendicular to the system.
m, =2kg, m, =10kg,
length of rod =1.2m

Suppose the centre of mass lies at distance x from

mass m;. Then

Solution. Here

myx = m, (1.2 - x)
: 2x=10% (1.2 - x)
As the rod is weightless, its moment of inertia
about any axis is zero.
M.L of m; about CM
=m ¥ =2x(1) =2 kg m?
M.I. of m, about CM
= my(12 - x)? =10% (12 ~1)* =0.4 kgm’
- Total ML =2 + 04 =24kgm?
ExamPLE 31. Find the moment of inertia of a rectangular
bar magnet about an axis passing through its centre and

parallel to its thickness. Mass of the magnet is100 g, length
is 12 cm, breadth is 3 cmand thickness is 2 cm

Solution. Here M=100g [=12cm, b=3 cm,

or or x=1m

t=2cm
M.L of the bar magnet about the axis through its
centre and parallel to its thickness is

2 2 2 2
I=M[l 1+25 J=100{12 +3 ]=100x153

12 12

=1275g cm .

ExampLE 32. Calculate the ratio of radii of gyration of a
circular ring and a disc of the same radius about the axis
passing through their centres and perpendicular to their planes.

Solution. Let K; and K, be the radii of gyration of

the ring and the disc about the axis passing through
their centres and perpendicular to their planes. Then

M.L of the ring = MR* = MK or K, =R
1 1
ML of the disc =~ MR? = MK} =—R
5 K or K, 7
K

R
__l.=___— v
K2 R/ = 2-1-
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Examprr: 33. Find (i) the radius of gyration and (ii) the
moment of inertia of a rod of mass 100 g and length 100 cm
about an axis passing through its centre and perpendicular
to its length. [Delhi 12]

Solution. (f) Here M =100 g =0.1 kg,
[=100cm=1m, K=7 [=?

M.L of the rod about an axis through its centre and
perpendicular to its length is

2 2
1=ﬂ=m<2 or K==L
12 12
K=—t_-1M _0280m
V12 3464 :
2 2
(i0) 1=% =°'1—;‘2(1)— ~0.0083 kg m?.

EXAMPLE 34. A wheel is rotating at a rate of 1000 rpmand
its kinetic energy is 10° ]. Determine the moment of inertia

of the wheel about its axis of rotation.
1000 50

Solution. Here v =1000 rpm = o0 Tps = 3 Ips,

w=2nv= e rad s~ !
As rotational K.E. =% Il

2
106=lx IX( 1007! ]
2 3
6
or I=2X102 29:200)(9:182.4 kg m?,
(100)* 9.87

ExamPLE 35. Calculate the kinetic energy of rotation of a
circular disc of mass 1 kg and radius 0.2 mrotating about an
axis passing through its centre and perpendicular to its
plane. The disc is making 30 / n rotations per minute.

Solution. Here M=1kg, R=02m

wo=2nv=2nx —=1rads!
2n

M.L of the disc about an axis through its centre and
perpendicular to its plane,
" 1= MR?=1x1x(02)? =0.02 kgm?
. Rotational K.E.

=1’ = 1% 0.02x (12 =0.01).

EXAMPLE 36. Energy of 484 | is spent in increasing the
speed of a flywheel from 60 rpmto 360 rpm Find the moment
of inertia of the wheel.

Solution. Energy spent =484 ]
v, =60 rpm =11ps, v, =360 rpm =6 rps
o, =2nv1 =2nrads™, w, =21rv2 =12 rrad s}

Let I be the moment of inertia of the wheel.
Initial K.E. of rotation

=lio}=lix@n?=221
Final K.E. of rotation
= -21 Im§_=% Ix (12m)* =727°1
Ir}crease in K.E. of rotation of wheel
= Energy spent on the wheel
72 n% I-2n* [ =484
- 484 _ 484x7x7
70 70x22x22

=0.7 kg mZ

or

Exampre 37. Calculate the rotational K.E. of the earth
about its own axis, Mass of the earth =6 x 10%* kg and
radius of the earth =6400 km.

Solution. Here R =6400 km =6.4x 10° m,

M=6x10% kg,

M.L of the earth about its own axis,

1=§MR2 =%x6x 10% x (6.4 x 105)?

=9.83 x 10 kg m?

Angular velocity of the earth,
_2n_2nrad 2 rrad
" T 1day 24x60x60s

Rotational K.E. of the earth

e Lo =lx9.83x' 10% x
2 2

= 2.6x 10% J,

EXAMPLE 38. A metre scale AB is held vertically with its
one end A on the floor and is then allowed to fall. Find the
speed of the other end B when it strikes the floor, assuming
that the end on the floor does not slip.

Solution. Let M be the mass and b be the length of

the metre scale. When the upper end of the rod strikes
the floor, its centre of gravity falls through height L/2.

2n ?
24 x 60 x 60

2. Lossin P.E. = Mg. 2£

Fig. 7.58
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M.I. of the scale about the lower end A,
I =M. of the scale about the parallel axis
through C.G. + Md?
ME MPE MPE [ L ]
+ = v d==
12 4 3 2

:;0+Mdz=

v v
N=—=—
r L

Gain in rotational K.E,

Also,

MUZ - L 2

v=3gL=3x98x1=54ms.

EXAMPLE 39. A uniform circular disc of mass m is set
rolling on'a smooth horizontal table with a uniform linear
velocity v. Find the total K.E. of the disc.

Solution. M.I. of the disc about its own axis,

or

=1
I—zmr2
2 v?
As v=re S o =—
1;2_1_1 v2 1 2
Rotational KE. =1 Iw =§ximrzx—=zmv

Translational K.E. =% mv?

Total K.E. = Rotational K.E. + Translational K.E.
=1 2.1 2_3
= —4- mv- + 'i mv- = 4 mvz.

EXAMPLE 40. A solid sphere is rolling on a frictionless
plane surface about its axis of symmetry. Find the rotational
energy and the ratio of its rotational energy to its total energy.

Solution. Suppose the sphere has mass M and rolls
with a uniform speed v.

M.L of the sphere, I =—-% MR?
Angular velocity, a= %

Rotational K.E.
2
=}- Im2=lx 3 MR? x 3-=1 Mv2,
2 2 5 R® 5
Total energy
= Translational K.E. + Rotational K.E.
= My? +1Mv2=1 Mv?
2 5 10

Rotational K.E. % Mv?
Total energy .7 Myp?

Examrrr 41. A wheel of mass 5 kg and radius 0.40 m is
rolling on a road without sliding with angular velocity
10 rad s~ *. The moment of inertia of the wheel about the axis
of rotation is 0.65 kgni®. What is the percentage of kinetic
energy of rotation in the total kinetic energy of the wheel ?

Solution. Here M=5kg, R =0.40 m,

w=10 rad s_l, [=0.65kg m?
Linear velocity, ‘-
v=Ro=040x10=4.0ms !

Translational K.E.
=% Mvz=-%x5x16=40]

Rotational K.E.

T

=% x 0.65x 100 =32.5]

B |

Total K.E. =Translational K.E. + Rotational K.E.

=40+325=725]

Rotational K.E. 325
Total K.E. 72.5
ExampLi 42, A solid cylinder rolls down an inclined plane.
Its mass is 2 kg and radius 0.1 m If the height of the inclined
plane is 4 m, what is its rotational K.E. when it reaches the
foot of the plane ? INCERT]

Solution. Here M=2kg, R=0.1m

Height of inclined plane, h =4 m

At the top of the inclined plane, the cylinder has
P.E. =mgh

At the bottom of the inclined plane, the cylinder
has translational K.E. (=—%— Mvz) and rotational
1752
K.E. (ﬁ 1o )

By conservation of energy,

= 0.448 = 44.8%.

1 mp? +% Io? = Mgh

2
|
But v = Ro and I=£MR
2 M(Ray? + 2 x L MR? o = Mg
2 2 2
or 3 M o’ = Mgh or mz:_‘lgf;
4 3R
Rotational K.E.=11m2=lx L Msz‘i_gF; :
2 2 3R
_ N;gh =2x 9'8x4=26.13].

EXAMPLE 43. A bucket of mass 8 kg is supported by a light
rope wound around a solid wooden cylinder of mass 12 kg _
and radius 20 cmfree to rotate about its axis. A man holding
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the free end of the rope, with the bucket and the cylinder at
rest initially, lets go the bucket freely downwards in a well
50 mdeep. Neglecting friction, obtain the speed of the bucket
and the angular speed of the czh‘nder Just before the bucket
enters water. Take g =10 ms™*.

Solution. Mass of bucket, m, =8 kg.

Mass of cylinder, m, =12 kg.
Radius of the cylinder, R =20 cm =0.20 m.
When the bucket just enters water,

P.E. lost by bucket = Linear K.E. of the bucket
+ Rotational K.E. of the cylinder

or mygh =3 mv* + 3 lo*
~dmet e} (4mp) &
o]
=%v2 (m1 +%mz)=%v2(8+6)=7v2_

v_\/mlgh _\/sxloxso
Y7 7

or

4000

7

The angular speed of cylinder before the bucket
touches water,

=239 ms .,

= 23—9 =119.5 rads ™.

®£ PrROBLEMS FOR PRACTICE

1. A body of mass 50 g is revolving about an axis in a
circular path. The distance of the ¢. atre of mass of
the body from the axis of rotation is 50 cm. Find the
moment of inertia of the body.

(Ans. 0.0125 kg m?)

2. Find the moment of inertia of the hydrogen
molecule about an axis passing through its centre of
mass and perpendicular to the internuclear axis.
Given mass of H-atom = 1.7 x 10~ % kg, interatomic
distance =4 x10 " m. (Ans. 13.6 x10" ¥ kg m?)

3. Three particles, each of 10 g are located at the
corners of an equilateral triangle of side 5 cm.
Determine the moment of inertia of this system
about an axis passing through one corner of the
triangle and perpendicular to the plane of the
triangle. (Ans. 5x10™° kgm?)

4. Four point masses of 20 g each are placed at the
corners of a square ABCD of side 5 cm, as shown in
Fig. 7.59. Find the moment of inertia of the system

(7) about an axis coinciding with the side BC and
(i) about an axis through A and perpendicular to
the plane of the square.

[Ans. (i) 1000 g cm? (ii) 2000 g cm?]

A dign D
5cm 5cm
B 5em C

Fig. 7.59

5. The point masses of 0.3 kg, 0.2 kg and 0.1 kg are
placed at the corners of a right angled A ABC, as
shown in Fig. 7.60. Find
the moment of inertia of
the system (i) about an
axis through A and
perpendicular to the
plane of the diagram
and (ii) about an axis 03kg
along BC. A 03

[Ans. (i) 0.043 kg m?
(i) 0.027 kg m?]

6. Three particles, each of mass m, are situated at the
vertices of an equilateral A ABC of side L, as shown
in Fig. 7.61. Find the moment of inertia of the
system about the line AX perpendicular to AB and
in the plane of A ABC. [ Ans. > mLz]

C
0.1kg
04m

0.2kg
m B

Fig. 7.60

4
X

Fig. 7.61

7. Four particles each of mass m are kept at the four
corners of a square of edge 4. Find the moment of
inertia of the system about an axis perpendicular to
the plane of the system and passing through the
centre of the square. (Ans. 2 ma?)

8. What is the moment of inertia of a ring of mass 2 kg
and radius 50 cm about an axis passing through its
centre and perpendicular to its plane ? Also find the
moment of inertia about a parallel axis through its
edge. (Ans. 0.5 kgm?, 1.0 kgm?)



SYSTEMS OF PARTICLES & ROTATIONAL MOTION 7.39

10.

11.

12,

13.

Calculate the moment of inertia of uniform circular

disc of mass 500 g, radius 10 cm about (i) diameter

of the disc (if) the axis tangent to the disc and

parallel to its diameter and (iif) the axis through the
centre of the disc and perpendicular to its plane.

[Ans. (i) 12500 g cm? (i) 62500 g cm?

(ifi) 25000 g cm?]

Calculate moment of inertia of a circular disc of

radius 10 cm, thickness 5 mm and uniform density

8g cm ™, about a transverse axis through the centre
of the disc. (Ans. 6.28 x 10* gem?)

The radius of a sphere is 5 cm. Calculate the radius
of gyration about (i) its diameter and (i) about any
tangent. [Ans. (i) 3.16 cm (ii) 5.915 cm]
Calculate the radius of gyration of a cylindrical rod
of mass M and length L about an axis of rotation
perpendicular to its length and passing through its
centre. [MNREC 96]

(Ans. K= L/12)

Two masses of 3 kg and 5 kg are placed at 30 cm
and 70 cm marks respectively on a light wooden
metre scale, as shown in Fig. 7.62. What will the
moment of inertia of the system about an axis
through () 0 cm mark and (ii) 100 cm mark, and
perpendicular to the metre scale ?

[Ans. (i) 2.72 kg m? (i) 1.92 kg mz]

3kg 5kg

100 cm

Fig. 7.62

14.

Calculate the moment of inertia of a rod of mass
2 kg and length 0.5 m in each of the following cases,
as shown in Fig. 7.63.

[Ans. (i) 0.042 kg m? (ii) 0.166 kg m?]

1 1
P— 05m -;—-I P 05m .
 Ea vy 1 | ]
1 1
:Axis of : Axis of
'rotation ' rotation
(0] (i)
1
Fig. 7.63

‘415 A body of mass 2 kg is revolving in a horizontal

circle of radius 2 m at the rate.of 2 revolutions per.
second. Determine (/) moment of inertia of the body
and (if) the rotational kinetic energy of the body.

- (Ans. 8 kgm?, 63165 )

-16.

17.

18.

19,

5

A flywheel of mass 500 kg and diameter 1 m makes
500 rpm. Assuming the mass to be concentrated
along the rim, calculate (i) angular velocity
(if) moment of inertia and (iii) rotational K.E. of the
flywheel. [Ans. (i) 52.38 rad s (ii) 125 kg m?

(iii) 1.715x 10° J]
A rod revolving 60 times in a minute about an axis
passing through an end at right angles to the
length, has kinetic energy of 400 ]. Find the moment
of inertia of the rod. (Ans. 20.26 kg m?)

A thin metal hoop of radius 0.25 m and mass 2 kg
starts from rest and rolls down an inclined plane. If
its linear velocity on reaching the foot of the plane
is 2 ms™!, what is its rotation K.E. at that instant ?

(Ans. 47])

The earth has a mass of 6 x 10°* kg and a radius of
6.4 x 10° m. Calculate the amount of work in joules
that must be done if its rotation were to be slowed
down so that the duration of the day becomes 30
hours instead of 24 hours. Moment of inertia of
earth =§ MR2, (Ans. 9.36 x 10% ])

024

X HINTS
1.

Here m=50g = 0.05kg, r = 50cm = 0.50 m
I=mr* =0.05x(0.50)* = 0.0125 kgm?2.
Mass of each H-atom, m=1.7 x 10" ¥ kg
Distance of each H-atom from the axis of rotation
=2x10"m
I=mr? +mr =2mr*
=2x17x10"% x(2x10710)?
=13.6 x10" Y7 kg.
(i) M.L. about BC is
[ =20(AB)? + 20( BB)? + 20(CC)? + 20( DC)?
=20(5)% + 20(0)* + 20(0)* + 20(5)
=1000 g cm?.

(if) CA=4/5% + 5% =52 cm

M.I. about an axis through A and perpendicular to
the plane of the square is

I=20(AA)? + 20(BA)? + 20(CA)? + 20 ( DA)?
= 20(0)? + 20(5)* + 20(5v2)* + 20(5)
=2000g em?.

(i) I, =02(AB)* + 0.1(AC)?
=0.2 x(0.3)? + 0.1 x(0.5)
=0.018 + 0.025 = 0.043 kg m?.

(i) Ipe =03 x(AB)? = 0.3 x(0.3)?
=0.027 kg m?.



7.40 PHYSICS-XI

a
7. Distance of each particle from centre = —
B 72
a2
M.I. of each particle=m| — | =—ma
. [JEJ

Total M.I. of the system =4 x% ma? =2 ma?.

8. Here M =2kg, R=50cm =0.50m

(1) M.L of the ring about an axis through its centre
and perpendicular to its plane,

I = MR® =2 x(0.50)* = 0.5 kg m?.
(1) M.L about a parallel axis through its edge,
= I+ MR? = MR? + MR? = 2MR?
= 2x05=1.0 kgm?.
9. (i) M.L of the disc about any diameter,

1 1
L=, MR? =, %500 x(10)* =12500 g cm?

(r'i)-By theorem of parallel axes, M.I. of the disc
about a tangent parallel to the diameter of the

disc,

5

I=1,+ MR? =3 MR® =§ % 500 % (10)2

= 62500 g cm i
(iify ML of the disc about an axis through its centre
and perpendicular to its plane,
1

=2 MR? = X « 500 x(10)2
2 2
= ZSDOOgcmz.
10. Radius, R=10cm,

Thickness, t =5 mm =0.5cm

Density, p=8g em™3

Mass of disc, M = Area x thickness " density

—n thp=¥x(10) xOSxB—Mg

M.L of the disc about a transverse axis through its

centre,

fi= 1 MR 8900 x (10)?
2 2 7

= 6.28 x10* g em?.

, 2MR?
11. (1) Idiameter % 5

K=\E.R=x/0.4 x5

=0.632 x5=3.16 cm.
7 MR?

= MK?

(1) Liangent = = MK?

K=\/E.R
5

=+v1.4 R=1.183 x5=5.915 cm.

15. Here m=2kg, r=2m,v=2r1ps
w=2nv=2nx2=4xrads

(i) Moment of inertia, I = mr® =2 x(2)> =8 kg m?.

(ii) Rotational K.E. =~ Ja? = % « B x(4 )’

| et

=% x 8 x 16 x 9.87 = 631.65 .
16. Here M =500 kg, R=%m

25
V= 500rpm—5—£09rps=—rps

(ow=2nv= 2x314x%-5238 rad s!

(if) As the mass of flywheel is concentrated at its
rim, it can be regarded as a ring.

2
& I=MR2=500x[—;) =125 kg m>.

(iii) Rotational K.E.=% Io? =% x 125 x(52.38)%

=1715x10° ]
17. Herev=60rpm = 1rps, @ =2nv =2nrads™

Rotational K.E. =% Io?

400=%x[x(21t)2

_ 400 200
T2 987
18. Here R=025m, M=2kg,v= 2ms !

or =20.26 kgm

. 1 2 1 2 v 2
Rotational K.E. = - Im =— MR* x E

=%MU2——x2x4 4].

19. Here M =6x10* kg, R=6.4x10° m,

Tl =24 h, T2 =30h
Work done = Increase in rotational K.E.

_ 4x9.87 x6x10% x(6.4 x10°)°
5

3 1 . 1
(36 x 3600)* (24 x 3600)°
=-936x10%]
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7.29 © RELATION BETWEEN TORQUE AND

MOMENT OF INERTIA

k «Derive a relation between torque applied and
arfular acceleration produced in a rigid body and hence
define moment of inertia. .

Relation between torque and moment of inertia.
When a torque acts on a body capable of rotation'abput
an axis, it produces an angular acceleration in the
body. If the angular velocity of each particle is @ then
the angular acceleration, o = dw/ dt will be same for all
particles of the body. The linear acceleration will
depend on their distances T Boa: s T from the axis of
rotation,

As shown in Fig. 7.36, consider a particle P of mass
m, at a distance r, from the axis of rotation. Let its linear
velocity be v,.

Linear acceleration of the first particle, a, =r, a

Force acting on the first particle, F, =m, r, a

Moment of force F, about the axis rotation is

T, =En=m rlza
Total torque acting on the rigid body is

T=TI+TZ+13+....+T"

5
=??l] ?120.4-"12 l‘22(1+7"31§a+...+7?l rzu

nn
=(m rI2 + 1y rf,_z + 1113'32 ot m 1P

) )
={Z% mrz)a .

But £ mr* = I, moment of inertia of the body about
the given axis

1=1a
Torque = Moment of inertia x Angular acceleration
When

Thus the moment of inertia of a rigid body about an axis
of rotation is numerically equal to the external torque
required to produce unit angular acceleration in the body
about that axis.

7.30 RELATION BETWEEN ANGULAR
_MOMENTUM AND MOMENT OF INERTIA

. Derive a relation between angular momentum,
moment of inertia and angular velocity of a rigid body.

Relation between angular momentum, moment of
inertia and angular velocity. As shown in Fig. 7.36,
consider a rigid body rotating about a fixed axis with
uniform angular velocity @ The body consists of n
particles of masses my,m, m,,...,m ; situated at
distance 7, n, .., r, from the axis of rotation. The
angular velocity wof all the n particles will be same but
their linear velocities will be different and are given by

a=1, =1

Ui =R O =W Uy =F O Uy Sh @

Linear momentum of first particle,
"’I = Hll Ul = ”,l ."l m
Moment of linear momentum of the first particle
about the axis YY",
L=pn=mno \
The angular momentum of a rigid body about an

axis is the sum of moments of linear momenta of all its
particles about that axis. Thus

L:Ll+lz+L3+...+ L,

m r]2 o+ m, rzzm+ M O+t m"rf o)

(m "12 + Jvuzrz2 + 1:13(32 + ..+ mnrnl) (0]
=(Z mrz) 0]
But £ mr” = I, moment of inertia of the body about
the given axis
L= Io
Angular momentum =M.I. x Angular velocity
When w=1, L=1

I

Thus the moment of inertia of a body about an axis is
nunierically equal to the angular momentum of the rigid
body when rotating with unit angular velocity about that
axis.

gRe o \
{1 PrORNiaTE g
.'I

F 275 h{"
E2 < 157";{&-. h.v;ai-.«ir =

FormuLae Usep

1. Torque = M.L. xangular acceleration
or t=la
2. Work done by a torque, W =10
3. Angular momentum = M.L. x angular velocity
or L=lo
Units Usep

Torque t is in Nm, moment of inertia I in kgm?

and angular momentum Lin kgm? ™.

EXAMPLE 44. A torque of 2.0x10™% Nm is applied to
produce an angular acceleration of 4 rad s™ 2 in a rotating
body. What is the moment of inertia of the body ?

Solution. Here t=2.0x 10" * Nm,

a=4rads?, I=?

As t=1la
-4
= 2200 s 107t kgm?
o 4

ExAMPLE 45. An automobile moves on a road with a speed
of 54 kmh™ . The radius of its wheels is 0.35 m. What is the
average negative torque transmitted by its brakes to a wheel
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if the vehicle is brought to rest in 15 s ? The moment of to bring it to rest in 20 s ? If the torque is due to a force

inertia of the wheel about the axis of rotation is 3 kgmz. applied tangentially on the rim of the flywheel, what is the
INCERT] magnitude of the force ? INCERT]
Solution. Here u =54 kmh’ = 15ms™ 1 Solution. M=25kg, R=0.2m, Vo =240 rpm=4rps
/ R=0.35 “1"5 t=15s, I =3 kg m? wy=2nv,=2nx 4=8nrads’,w=0,t=20s
L -1
=R 035 s, =0 As 0=w,+ ot
Average angular acceleration, 0=8x+ax20
15 8 1Y 2 _2 -
O or a=——=-"mnrads
a= . 035 =- rad s &
t 15 0.35 M.L of the flywheel about its own axis,
Average torque trans;@tted by the brakes, I =% MR2 =% x 25 x (0.2) =% kg m?
- — — 2 2
t=la=-3x 035 8.57 kgm ™ 5. Torque acting on the flywheel,
n
ExampLE 46. A flywheel of mass 25 kg has a radius of t=la =‘%" % 7‘=‘§ Nm
0.2 m. What force should be applied tangentially to the rim of el .
the flywheel so that it acquires an angular acceleration of The negative sign indicates that the torque is of
2rads2? retarding nature.
~ Solution. Here M =25 kg, R=02m,a=2rads? Now  Torque =Force x perpendicular distance
M.L of the flywheel about its axis, % i ix . n
1 2 _ 2 2 F=—= =nN.

I'=35 MR -—%XZE‘X(O.Z) =0.5kgm R 5x02 "
Astorque,1=F.R=]a EXAMPLE 50. A cord is wound around the circumference of
-Force, Folo_05x2 5N a wheel of diameter 0.3 m. The axis of the wheel is horizontal.
N ' R 02 T A mass of 0.5 kg is attached at the end of the cord and it is

allowed to fall from rest. If the weight falls 1.5 m in 4 s, what

B 2 47. At 10Nm i ed t h
LXAMPLE 47: A torque of m i5:applicd 0 Ggyzahee] o) 1 the angular acceleration of the wheel ? Also find out the

mass 10 kg and radius of gyration 50 cm. What is the

resulting angular acceleration ? moment of inertia of the wheel. INCERT]
Soiuﬁon- Here ' Solution. Radius of the wheel, R = 02—3 =0.15m
©=10 Nm, A==10 kzg. g ~Uadn, a=? For the attached mass :
As t=I(:=MK a10 m=05kg u=0,s=15m,t=4s
i MKZ = 10 % (0.50)2 =4rads™ Let a be the linear acceleration of the attached mass.
. A = ut + 1 at?
EXAMPLE 48. A grindstone has a moment of inertia of 6 kg nt’. ° s=Htve®
A constant torque is applied and the grindstone is found to 15=0x4+ % ax (4)?
have a speed of 150 rpm, 10 seconds after starting from rest.
Calculate the torque. [Central Schools 071 of a= %5_ = 1_36 ms™ 2
2

Solution. Here =6 kg m°, t=10s, «,=0

v=150rpm=1‘%0rp5=§rps a= Ro
m_va—anE—Snrads R 16x0.15 m
" w_, Wy _ Srlc;O :23 rad 52 Torque applied by the attached mass,

t=Fx R=mgR =0.5x 9.8x 0.15 Nm
Torque, t=Ila= 6x2£=3n: Nm. '

Now t=la
EXAMPLE 49. A flywheel of mass 25 kg has a radius of [=X _05x98x0.15 - 0588 kg m>.
0.2 m. It is making 240 r.p.m. What is the torque necessary o 1.25
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ExAMPLE 51. A cord of negligible mass is wound round the
rim of a fly wheel of mass 20 kg and radius 20 cm. A steady
pull of 25 N is applied on the cord as shown in Fig. 7.64. The
flywheel is mounted on a horizontal axle with frictionless
bearings. '
(a) Compute the angular
acceleration of the wheel.
(b) Find the work done by
the pull, when 2 m of the

cord is unwound.

(c) Find also the kinetic

energy of the wheel at ~ M=20kg
this point. Assume that R=20cm
the wheel starts from F= 25N
rest. L
(d) Compare answers to
parts (b) and (c). Fig. 7.64
[NCERT]
Solution. (@) Torque, t= FR =25 Nx 0.20 m
=5.0Nm
Moment of inertia of the wheel about its axis,
2 2
= MR” _20x (0.20) 0.4 kgm?
2 2
As 1= la
Angular acceleration,
= l = _5&‘]12 = 12.5 rad S_z.
I 04kgm

(b) Work done by the pull unwinding 2 m of the cord
=25Nx2m=50]J.

(¢) Angular displacement of the wheel,

_ Length of unwound string

Radius of the wheel
2m

~020m
As the wheel starts from rest, o, =0
Final angular velocity ois given by
o =) +200=0+2x125x 10
=250 (rads')?
». KE. gained =1 Io? =1x 04x250 =50]. -
(d) The answers are the same, i.e., the kinetic energy

gained by the wheel = work done by the force. There is
no loss of energy due to friction.

6

=10 rad

EXAMPLE 52. A body whose moment of inertia is 3 kgml, is
at rest. It is rotated for 20 s with a moment of force 6 Nm.
Find the angular displacement of the body. Also calculate the
work done,

Solution. Here I =3 kg m?, t=20s, t=6 Nm, =2,
W=1?
As t=1a
1.5

a===-=2rads™?

Angular displacement in 20 s is
0=m0t+%at2=0+%x2x(20)2

= 400 rad
Work done,
W =16=6x 400 =2400].
ExampLE 53. How much tangential force would be needed
to stop the earth in one year, ?’ it were rotating with angular
velocity of 7.3 x 107 5 rad s~ ' ? Given the moment of inertia
of the earth =9.3 x 10 kg n? and radius of the earth
=6.4%10% m

Solution. Here I =9.3 x 107 kg m?, R =6.4 x 10° m,
wy =7.5% 1077 rad 57",
t =1 year =365 x 24 x 3600 s

As o=o;+at
o-w, 0-73x107"
o= =
t 365 x 24 x 3600
73x107° _2
=———————rads
365 x 24 x 3600
-5
Torque, 1:=Ia=9.3x1037x—7§x—10—
365 x 24 x 3600

[Omitting ~ve sign]
Let F be the tangential force needed to stop the
earth. Then

1= FR 5
1 93x107x73x107°
R 365 x 24 x 3600 x 6.4 x 10°

=3.363x 1017 N.

or F

ExamrLE 54. The angular momentum of a body is 31.4 |s
and its rate of revolution is 10 cycles per second. Calculate
the moment of inertia of the body about the axis of rotation.

Solution. Here L=31.4]s, v=10rps,
@=2nv=2x3.14x10 rad™
As L

o

L 31.4 .
Lo 2% _05kgm?
© 2x3.14x10 gm

1

EXAMPLE 55. A 40 kg flywheel in the form of a uniform
circular disc of 1 m radius is making 120 rpm. Calculate the

angular momentum.

|
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Solution. Here M=40kg, R=1m,
120
v=120 rpm =—— rps =2 rps
P 50 P P
I=1 MR? =1 x 40 x (1)* =20 kg m*

and @=2rv=2nx2=4nrads’
Angular momentum,
L=Tw=20x 4n=80x3.14
=2512kgm%s",
EXAMPLE 56. A ring of diameter 0.4 m and of mass 10 kg 1s
rotating about its axis at the rate of 2100 rpm. Find (i) moment
of inertia (it) angular momentum and (iii) rotational K.E. of
the ring. [Delhi 03]

Solution. Here R = % -02m, M=10kg

v =2100 rpm =2—;g—0 rps =355

w=21v =2 x g;x35=220 rad s~

(1) MLI. of the ring about its axis,
I=MR*=10x(0.2)* =0.4 kg m?.
(i1) Angular momentum,
L= Io=0.4x220=88 kg m%".
(1i1) Rotational K.E.
=1 1o =1x0.4 x (220)* = 9680 J.
-EXAMPLE 57. Calculate the angular momentum of the earth
rotating about its own axis. Mass of the earth

=5.98 x 10% kg, mean radius of the earth =6.37 x 10° m,
ML of the earth =& MR,

Solution. Here M =5.98x 10** kg,
R=637x10°m
I=2 MR? = 2x 598 x 10* x (6.37x 10°)?
=2.1x 10* kgm?

m=2_1t_ 2n 2n
T 1day 24x60x60

Angular momentum,
L=lo=2.1x10% x

rad s~

2n
24 x 60 x 60

=1.53x 10* kgm? s7%.

Exanipii 58. A cylinder of mass 5 kg and radius 30 cm
and free to rotate about its axis, receives an angular impulse
of 3 kg nt s~ ! initially followed by a similar impulse after
every 4 s. What is the angular speed of the cylinder 30 s after
the initial impulse ? The cylinder is at rest initially.

Solution. Here M=5kg, R=30cm=0.30 m, =0,

w="?

Angular impulse = Change in angular momentum

3=1(w, - 0)=1 MR? (0~ &)

or 3=%x 5 x (0.30) (@ —0)
Ix2 40 -1
= =—rads
or ©=5%x009 3
Now m=o)0+at
4—0=0+¢3n'<4 or ctzgrads-2
3 3

The angular impulse is imparted after every
4 seconds. So the pulses are imparted at ¢ =0, 4, 8, 12,
16, 20, 24 and 28 s. But last impulse continues to act
upto 32 s, before the next impulse is imparted. So

m=m0+at=0+%x32

=106.67 rad s ..

# PrRoOBLEMS FOR PRACTICE

1. The moment of inertia of a flywheel is 4 kg m?. What
angular acceleration will be produced in it by applying
a torque of 10 Nm on it ? (Ans. 2.5 rad s ™)

2. The moment of inertia of a body is 2.5 kg m?.
Calculate the torque required to produce an
angular acceleration of 18 rad s in the body.
(Ans. 45 Nm)
A cylinder of length 20 cm and radius 10 cm is
rotating about its central axis at an angular speed of
100 rad/s. What tangential force will stop the
cylinder at a uniform rate in 10 seconds 7 The
moment of inertia of the cylinder about its axis of
rotation is 0.8 kg m?, [Delhi 04] (Ans. 80 N)

4. A flywheel of moment of inertia 10 g cm? is rotating
at a speed of 120 rotations per minute. Find the
constant breaking torque required to stop the wheel
in 5 rotations. (Ans. 2.513 x 10’ dyne cm)

5. If a constant torque of 500 Nm turns a wheel of
moment of inertia 100 kg m? about an axis through
its centre, find the gain in angular velocity in 2 s.

(Ans. 10 rad s™)

6. A sphere of mass 2 kg and radius 5 cm is rotating at
the rate of 300 rpm. Calgulate the torque required to
stop it in 6.28 revolutions. Moment of inertia of the
sphere about any diameter =~§- MR?,

(Ans. 2.542 x 10”2 Nm)
7. A body of mass 1.0 kg is rotating on a circular path

of diameter 2.0 m at the rate of 10 rotations in 31.4 s.

Calculate (i) angular momentum of the body and
(i1) rotational kinetic energy.

[Ans. (i) 2.0kgm?s~! (i) 2.0 ]

W
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8. A circular ring of diameter 40 cm and mass 1 kg is
rotating about an axis normal to its plane and
passing through the centre with a frequency of 10
rotations per second. Calculate the angular
momentum about its axis of rotation.

(Ans. 0.8 t kgm?s™)

s HINTS
— 0-
3. a=m @ _ 100:-‘lOrads’z.
T 10
t=FR=1I1.a
F=1’&:0.8kgm2 x(—IOrads'2)=_80N.
R 0.1m

7 Here m=1.0kg,r=l.0m,v=L0-s
31.4

w=2nv=2x314x 10 =2rads’’
31.4

I=mr?=10x(1.07%=1.0kg m?
L=Io=10x2=20kgm?s .

Rotational K.E. = % Iw? =% x1.0x(2)%=2.0].

8. Here m=1kg, R=20cm =02m,v =10 rps
m=21cv=21r><10=201trads'1
I = MR? =1x(0.2)? = 0.04 kgm?

: 1

L= lo=004x20n =08 kg m? s7".

7.31 ¥ CONSERVATION OF ANGULAR
MOMENTUM

-.g./fSﬂ."'.S"tate the law of conservation of angular
momentum. Give some illustrations of this law.

Law of conservation of angular momentum.
Suppose the external torque acting on a rigid body due
to external forces is zero. Then

dt

Hence, L= constant.

So when the total external torque acting on a rigid body
is zero, the total angular momentum of the body 1s
conserved, This is the law of conservation of angular
momentunt.

t =0, L= o= constant
Lho=ha,

This means that when no external torque is acting,
the angular velocity w of the body can be increased or

decreased by decreasing or increasing the moment of
inertia of the body.

Clearly, when

or

Illustrations of the law of conservation of angular
momentum :

(i) Planetary motion. The angular velocity of a
planet revolving in an elliptical orbit around the sun
increases, when it comes closer to the sun because its
moment of inertia about the axis through the sun
decreases. When it goes far away from the sun, its
moment of inertia increases and hence angular velocity
decreases so as to conserve angular momentum.

(ii) A man carrying heavy weights in his hands and
standing on a rotating turn-table can change the
angular speed of the turn-table. As shown in Fig. 7.65,
if a person stands on a turn-table with some heavy
weights in his hands stretched out and the table is
rotated slowly, his angular speed at once increases, as
he draws his hands to his chest. The moment of inertia
of man and weights taken together decreases, as he
draws his arms inward. As moment of inertia
decreases, the angular speed increases so as to
conserve total angular momentum.

ARSI TORES

Fig. 7.65 The man begins to rotate faster as
he draws his arms inwards.

(ii) A diver jumping from a spring board exhibits
somersaults in air before touching the water surface.
After leaving the spring board, a diver curls his body
by pulling his arms and legs towards the centre of his
body. This decreases his moment of inertia and he
spins fast in midair. Just before hitting the water
surface, he stretches out his arms. This decreases his
moment of inertia and the diver enters water at a
gentle speed.
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Water

Fig. 7.66 A diver performing somersaults.

_ (iv) An ice-skater or a ballet dancer can increase her
angular velocity by folding her arms and bringing the
stretched leg close to the other leg. When she stretches
her hands and a leg outward [Fig. 7.67(a)], her moment
of inertia increases and hence angular speed decreases
to conserve angular momentum. When she folds her
arms and brings the stretched leg close to the other leg
[Fig. 7.67(b)], her moment of inertia decreases and
hence angular speed increases.

Fig. 7.67 A ballet dancer increases o by changing
to a posture of smaller M.1.

(v) The speed of the inner layers of the whirlwind in
a tarnado is alarmingly high. The angular velocity of
air in a tarnado increases as it goes towards the centre.
This is because as the air moves towards the centre, its
moment of inertia (I) decreases and to conserve angular
momentum (L= lo), the angular velocity wincreases.

les based on -
Law of Conservation of . ©

Exam

Angular Momentum
Formurae Usep

In the absence of any external torque,

L= 1 &=a constant
I, oy =I2 W, or II.E=I
I

2

or 5 -
T
2

Unirs Usep
Moment of inertia I is in kg m? and angular

velocity @ in rad g7

ExAmrLE 59. A small block is rotating in a horizontal circle
at the end of a thread which passes down through a hole at
the centre of table top. If the system is rotating at 2.5 rps in a
circle of 30 cm radius, what will be the speed of rotation
when the thread is pulled inwards to decrease the radius to

10 cm ? Neglect friction.
Solution. Here v, =2.5rps, 1 =30cm,
rn=10cm, v,=?
By law of conservation of angular momentum,
Li=L, or o,=ho,
mrl2 2mv, = mrzZ 2TV,
y v, 30x30x25
2 10x 10
EXAMPLE 60. A star of mass twice the solar mass and
radius 10° kmrotates about its axis with an angular speed of
107 % rad s~ 1. What is the angular speed of the star when it

collapses (due to inward gravitational force) to a radius of
10* km ? Solar mass 1.99 x 10° kg.

Solution. During collapse, the total angular
momentum of an isolated star is conserved, hence

or

=225 1ps.

’ _11“’1=22‘°2 5
or = MR?w, =< MR? [ I=—MR2}
5 i Ry o, 5
2
or Rle =R} =—1lgp
19 @, Gy Rzz 1
But R, =10°km, R, =10 km, o, =10"%s .
642
- gg 4;2 x 10~ % =0.01rad s~

ExampLe 61. If the earth were to suddenly contract to half
of its present radius (without any external torque on it), by
what duration would the day be decreased ? Assume earth to
be a perfect solid sphere of moment of inertia % MR?,

Solution. Present radius of the earth, R, =R

New radius of the earth after contraction,

R,=R/2
T,=24h, T, =7
By conservation of angular momentum,
hoy=5L%
ar EMRIZ_E_Ezg MR,?E
5 T, 5 T
R 2
or I,= == T1=(R—/2) x24=1x24=6h
R, R 4

. Decrease in the duration of the day
=24-6=18h.
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ExamrLi 62. What will be the duration of the day, if earth
suddenly shrinks to 1/64 of its original volume, mass
remaining the same ?

Solution. Original volume of the earth,

Vi= 4 nR3
3
Volume of the earth after shrinking,
, vV
V'=—
64
or E1tR'3=i><EnR3
3 64 3
or R'= E
4
By conservation of angular momentum,
I'dd= I
or EMR’ZxE=g-MR2x2—H
5 T" 5
2 2
or 'I"=[£] .T:(M) x 24
R R
-Liu-15n
16

ExampLE 63. The maximum and minimum distances of a
comet from the sun are 14 x 10" mand 7 x 10" m. If its
velocity nearest to the sun is 6 x 10% ms™ !, what is the
velocity in the farthest position ? Assume that path of the
comet in both the instantaneous positions is circular.
Solution. At minimum distance, r =7 x 10" m;
velocity, v; =6 x 10* ms™!
At maximum distance, 7, =1.4 x 10" m;
velocity, v, =7

By conservation of angular momentum,

Lo=5hLao
or mrlzxﬁ:mrzz.ﬁ
' T
1 2
or v1r1=vzr2
v.r 6x10*x7x10"
or vy = (8X10 X7X10 " _ 3500 gt
rz 1.4)(10

EXAMPLE 64. A horizontal disc rotating about a vertical
axis passing through its centre makes 180 rpm. A small
piece of wax of mass 10 g falls vertically on the disc and
adheres to it at a distance of 8 cm from its axis. If the
frequency is thus reduced to 150 rpm, calculate the moment
of inertia of the disc.

Solution. Here v, =180 rpm=3rps,

150 5
v, =150 = ==
2 =150 rpm == rps = - 1ps

w, =2nv, =27 x 3 =6n rad s,
W, =2mX ; =5nrads™
Let I be the M.I. of the disc about the given axis and

Iz be the M.I. when mass m sticks to it at distance r.
Then

I,=1+mr*
By conservation of angular momentum,
Loy=1 o
Ix6rn=(I+ mr?). 5n
or 61=5I+5mr
or I=5mP =5x10x10"3x (8x 10~ %)
=3.2x10"% kgm?

* PROBLEMS FOR PRACTICE

1. An ice skater spins with arms outstretched at 1.9 rps.
Her moment of inertia at this instant is 1.33 kg m?,
She pulls in her arms to increase her rate of spin. If
the moment of inertia is 0.48 kg m? after she pulls in
her arms, what is her new rate of rotation ?

(Ans. 5.26 rps)

2. A mass of 2 kg is rotating on a circular path of
radius 0.8 m with angular velocity of 44 rad s . If
the radius of the path becomes 1.0 m, what will
be the value of angular velocity ?

(Ans. 28.16 rad s')

3. A ball ted to a string takes 4s to complete
revolution along a horizontal circle. If, by pulling
the cord, the radius of the circle is reduced to half of
the previous value, then how much time the ball
will take in one revolution ? (Ans. 15s)

4. The sun rotates round itself once in 27 days. What
will be period of revolution if the sun were to
expand to twice its present radius ? Assume the sun
to be a sphere of uniform density. (Ans. 108 days)

5. If the earth suddenly contracts by one-fourth of its
present radius, by how much would the day be
shortened ? (Ans. 10.5 h)

6. Prove that for an earth satellite, the ratio of its
velocity at apogee (when farthest from the earth) to
its velocity at perigee (when nearest to the earth) is
the inverse ratio of its distances from apogee and
perigee.

7. A uniform disc rotating freely about a vertical axis
makes 90 revolutions per minute. A small piece of wax
of mass m gram falls vertically on the disc and sticks
to it at a distance of r cm from the axis. If the number
of rotations per minute reduces to 60, find the
moment of inertia of the disc.  (Ans. mr* g cmz)
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# HINTS
3. By conservation of angular momentum,
Lo=1w,
2 (1‘)2 2n
or mrt.—=m|=| .—
1 & h
1
L==T
2 4 1
“c xd4=1s
4
4. lo=1Io
or 2 MR2x2" =2 M@2R) x 2E
5 T T'
or T'=4T =4x27
=108 days.

6. By conservation of angular momentum,
Angular momentum of satellite at apogee

= Angular momentum of satellite at perigee

mu, r,=mu, [+ L=mur]
Y _ E
v, T

or

7.32 ANALOGY BETWEEN TRANSLATIONAL
AND ROTATIONAL MOTIONS

51. Give the analogy between various quantities that
describe linear and rotational motions.

Analogy between translational and rotational
motions. Table 7.1 summarises the analogy between
the quantities that describe linear motion and the corres-
ponding quantities that describe rotational motion.

t,oHe 7.1 Ana/ogy between Linear and Rotational Motions.

Linear motion

Rotational motion

Quantities :
displacement s angular displacement 0
velocity v angular velocity 0
acceleration a angular acceleration o or ay
force F torque T
mass m moment of inertia !
Expressions :
velocity o= ds angular velocity = a6

dt dt
acceleration = dv angular acceleration Ams do

dt dt
force F=ma="L (m) torque pom T et [

dt dt

work done W = Fs work done W=180
linear K.E. E= 1 ot rotational K.E. E =51 T2

2
power P=Fv power P=10
linear momentum p=mv angular momentum L= Iw
impulse F At = mv — mu angular impulse tAt=lop - lo;

Equations of motion :

v=u+at (@i)s=ut+Iat? (i) o? =205 | () o=wy+at (i) 0=0yf +dat? (i) 0 -, =208
Dimensions :

velocity (LT angular velocity (T

acceleration [LT?] angular acceleration [T™]

mass [M] moment of inertia I =% mr? | [ML?)

force [MLT? torque t = Fr [ML*T?)

linear K.E. ML2T ) rotational K.E. [ML*T?

momentum [MLT™ angular momentum [ML2T ]

power [ML*T?] power [ML2T
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7.33" ROLLING MOTION

\l _52;11??%& is rolling motion ? Discuss the motion of a
disc rolling without slipping on a level surface. Hence
find the condition for rolling without slipping.

Ans. Rolling motion. Rolling motion can be regarded
as the combination of pure rotation and pure translation.
The wheels of all vehicles running on a road have
rolling motion. Consider a disc of radius R, rolling on a
level surface without slipping. This means that at any
instant of time the bottom of the disc which is in
contact with the surface is at rest.

The rolling motion of the disc has two simultaneous
motions :

(1) Translational motion. The translational velocity
of the disc is the velocity?)CM of its centre of mass. As
the centre of mass of the rolling disc lies at its

. —+ » - .
geometric centre C, so 7, is the velocity of C. It is

parallel to the level surface as shown in Fig. 7.68.

vtrans = vCM

Rolling motion (without slipping) of
a disc on a level surface.

Fig. 7.68

(ii) Rotational motion. The disc rotates with
angular velocity @ about its symmetry axis through C.
The linear velocity of a particle P at distance r from the
axis due to the rotational motion is v, =r®

The velocity _z:m is directed perpendicular to the

radius vector CP as shown in Fig. 7.68.
The effective linear velocity 17 of particle P is the
resultant of the velocities_r;r o and ;CM. It can be shown

that v is perpendicular to the line AP. Therefore, the

line passing through the bottom point B and parallel to
the axis through C is called the instantaneous axis of
rotation.

At the bottom point B, the linear velocity_t; due

rot’
to rotation, is directed exactly opposite to the

i n = ;
translational velocity v,,. Also, v, = Ro at the point

B. The point B will be instantaneously at rest if
Uepy = Ro . Hence for the disc the condition for rolling
without slipping is Ury, = Ro

At the top point A of the disc, the linear velocity R
due to rotational motion and the translational velocity
vcy are in the same direction, parallel to level surface.
Therefore,

v, = Ro+ Uem = Pem + Vem =2vCM

top

7 .’ﬁ:tain the expression for the linear acceleration
of a cylinder rolling down an inclined plane and hence find
the condition for the cylinder to roll down without slipping.

Solid cylinder rolling down an inclined plane
without slipping. Consider a solid cylinder of mass M
and radius R rolling down a plane inclined at an angle
8 to the horizontal, as shown in Fig. 7.69. Suppose the
cylinder rolls down without slipping. The condition for
rolling without slipping is that at each instant the line of
contact of the cylinder with the surface at P is momen-
tarily at rest and the cylinder rotates about this line as
axis. The centre of mass of the cylinder moves in a
straight line parallel to the inclined plane. Notably, it is
the friction which prevents slipping.

Fig. 7.69 Cylinder rolling without slipping.

The external forces acting on the cylinder are

(1) The weight Mg of the cylinder acting vertically
downwards through the centre of mass of the
cylinder.

(if) The normal reaction N of the inclined plane
acting perpendicular to the plane at P.

(1i1) The frictional force f acting upwards and parallel
to the inclined plane.

The weight Mg can be resolved into two
rectangular components :

(1) Mg cos 6 perpendicular to the inclined plane.
(i) Mg sin 6 acting down the inclined plane.
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As there is no motion in a direction normal to the
inclined plane, so
N = Mg cos 0

Applying Newton’s second law to the linear
motion of the centre of mass, the net force on the
cylinder rolling down the inclined plane is

F=Ma=Mgsin0- f (1)
It is only the force of friction f which exerts torque t
on the cylinder and makes it rotate with angular

acceleration a. It acts tangentially at the point of
contact P and has lever arm equal to R.

8 1= Forcex forcearm= f.R
Also,

t = M.L.x angular acceleration = la
f R=Ia
lo. Ia I: a }
or =—=— va=—
‘ R R R

Putting the value of f in equation (1), we get
Ma = Mg sin 8 - —I%
R
Ia
a=gsinf-——
¥ MR?

Ia .
or a+W=g5m6
I .
or a[l+WJ=gsm9
gsin®

a=—=—
1+ i

MR?
Moment of inertia of the solid cylinder about its
axis =3 MR’
g sin 6

T IMmR?
1+ 2 )

or a=§gsin8

Clearly, the linear acceleration a of solid cylinder
rolling down an inclined plane is less than the
acceleration due to gravity g(a<g) The linear
acceleration of the cylinder is constant for a given
inclined plane (or given 6) and is independent of its
mass M and radius R. However, for a hollow cylinder,
I = MR?, the value of 2 would decrease to % g sin 6.

From equation (1), the value of force of friction is
f=Mgsin 6 - Ma
=Mgsin®@-M.2gsin6=1 Mgsin®

If n, is the coefficient of friction between the
cylinder and the inclined plane, then
f %Mg sin@ 1

=—tan 6

Hs=N T Mgcos® 3

To prevent slipping, the coefficient of static friction
must be equal to or greater than the above value.
That is

‘__,p.sz%tane or

. _54./’ Write an expression for the kinetic energy of a

body rolling without slipping.

Kinetic energy of rolling motion. The kinetic
energy of a body rolling without slipping is the sum of
kinetic energies of translation and rotation.

K = K.E. of the translational motion of CM
+ K.E. of rotational motion of CM

tan® <3 p..

1 2 1.4
=— mug, +— lo
2 MG

where v, is the velocity of CM and [ is the moment of
inertia about the symmetry axis of the rolling body. If
R is the radius and k the radius of gyration of the
rolling body, then

UCM=RG) and I=mk?

I(—lmv2 +lmk2 vﬂz
p =4 R

2
or K=%mvéM[l+%]

Examples based on
Motion of a Cylinder Rolling without

Slipping on an Inclined Plane
Formuiae Usep

For a cylinder of mass M and radius R rolling
without slipping down plane inclined at angle @
with the horizontal,

1. Force of friction between the plane and cylinder,

f=%MgsihB

2. Linear acceleration, a = % gsin 6

3. Condition for rolling without slipping is
10
M > E tan 6
Units Usep

Accelerations 4 and g are in ms’ 2 and coefficient
of friction p, has no units,
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EXAMPLE 65. A cylinder of mass 5 kg and radius 30 cm is
rolling down an inclined plane at an angle of 45° with the
horizontal. Calculate (i) force of friction, (ii) acceleration
with which the cylinder rolls down and (iii) the minimum
value of static friction so that cylinder does not slip while
rolling down the plane.

kZ = R2
2gh
vring: 1+1 =\/g_h

For a solid cylinder,
K= R?/2

For a ring,

Solution. Here
6 =45°
(1) Force of friction,

=%Mgsin9=%x5x9.85in45°=11.55 N.

M=5kg, R=30cm=030m,

o = |_28h :\/igﬁ
olindes 41 L 1/2 3

For a solid sphere,
k*=2R?/5

v |_28h _\/lﬂgh
shere “114+2/5 | 7

Clearly, among the three bodies the sphere has the
greatest and the ring has the least velocity of the centre
of mass at the bottom of the inclined plane.

(1) Acceleration,

=2gsinB8=2x98sin45°=4.62ms 2,

(iif) Minimum value of coefficient of static friction,

ps=—;—tan9=-:1§tan45°=%.

EXAMPLE 66. Three bodies, a ring, a solid cylinder and a
solid sphere roll down the same inclined plane without
slipping. They start from rest. The radii of the bodies are
identical. Which of the bodies reaches the ground with
maximum velocity ? [NCERT]

EXAMPLE 67. A solid cylinder of radius 4 cm and mass
250 g rolls down an inclined plane (1 in 10). Calculate the
acceleration and the total energy of the cylinder after 5 s.

Solution. Here M =250 g=0.25 kg,

Solution. Suppose a body of mass m starting from
rest rolls down an inclined plane. We assume there is
no loss of energy due to friction.

R=4cm=0.04m, sinﬁ=%, t=5s

Acceleration with which the cylinder rolls down,

_ 8§sin®  gsin®
I+——I2 1 %MRz
-+
MR MR2 4

= 2—gsin 6=2x98x - =0653msZ
3 3 10
Using first equation of motion,
v=u+at=0+0.653x5=3.26 ms™ '
Total K.E. of the cylinder
= Translational K.E. + Rotational K.E.

Fig. 7.70 A body rolling down an inclined plane.
By conservation of energy,

; . 1
P.E. lost by the body in rolling down the inclined =21 Mo? + = Je?
plane 4 g
= K.E. gained by the body =%M02+lx_ MRZXU_Z
= Translational K.E. + Rotational K.E. 3 R
2 == Mv® == x 0.25x (3.26)> =2.0.
=%mvz+-%fmz=—%mvz+%mk2.(£J 4 3.28) }
R
B ; K2 % PROBLEMS FOR PRACTICE
or mgh=—mv"|1+— :
2 R 1. A solid cylinder of mass 10 kg is rolling perfectly on

a plane of inclination 30°. Find the force of friction
between the cylinder and the surface of the inclined
plane. (Ans. 16.33 N)
A solid cylinder of mass 8 kg and radius 50 cm is
rolling down a plane inclined at an angle of 30° with
the horizontal. Calculate (i) force of friction,

1+k%/R?

Clearly, the velocity v attained by the rolling body 2.
at the bottom of the inclined plane is independent of its
mass.



7.52 PHYSICS-XI

(if) acceleration with which the cylinder rolls down
and (ifi) the minimum value of coefficient of friction
so that cylinder does not slip while rolling down
the plane,

[Ans. (i) 13.06 N (ii) 3.267 ms ™2 (iif) 0.192]

3. If a sphere rolls (starting from rest) in 5.3 s along a
plane 1 m in length of which the upper end is raised
0.01 m above the lower, find the acceleration due to
gravity. (Ans. 9.97 ms )

X HINTS

3. Here u=0 =535 s=1m, sin8=— =001
100

As s=ur+%at2 1:0+%.a><(5..’;’;)2
or  a=—2"1 _00712ms 2
53x5.3
But a= gsin@ _ gsin 0 —égsina
I 2 MR?2 7 \
M MR2
.0712
7 RO =9.97 ms 2.

8=5sn0  5x001

7.34 - MASS POINT ON STRING WOUND
ON A CYLINDER

55. A light string is wound round a cylinder and
carries a mass tied to it at the free end. When the -mass
is released, calculate (a) the linear acceleration of the
descending mass and (b) the angular acceleration of
the cylinder and (c) the tension in the string. Show that
the acceleration of mass is less than 'g".

Motion of a mass point attached to a string wound
on a cylinder. As shown in Fig. 7.71 consider a solid
cylinder of mass m and radius R. It is mounted on a
frictionless horizontal axle so that it can freely rotate
about its axis. A light string is wound round the
cylinder and mass m is suspended from it. When the
mass m is released from rest, it moves down with
acceleration a. Let T be the tension in the string.

Axis of R

—== O GLEEEE -

o al

mg

Fig. 7.71 String wound on a cylinder and carrying
a point mass.

(a) Linear acceleration of the point mass. The forces
acting on the point mass are

(i) Its weight mg acting vertically downwards.
(i) Tension T in the string acting upwards.
According to Newton's second law, the net down-
ward force on the point mass is
ma=mg—T (1)
The tension T in the string acts tangentially on the
cylinder and produces a torque t given by
1= Forcex leverarm =T . R ..(2)

If I is the moment of inertia of the cylinder and a,
the angular acceleration produced in it, then

T= I(}[ ...(3)
From equations (2) and (3),
TR=1a
I In a
o =—a=— Voa=— (4
' R R [ . R] ®
From equation (1), we have
_ Ia
ma=mg — =
In _
or ma + o mg
or ma (1 + —I—) =mg
mR? _
or a=—2 i .(5)
1§ —=—=
mR

This gives the linear downward acceleration of the
point mass.

(b) Angular acceleration of the point mass. As
I, mand R are positive quantities, so a is always less
than ‘g".

Angular acceleration,

a g/R
A=—=— ...(6)
R 1+L2
mR

(c) Tension in the string. From equations (4) and (5),
we have

=12 _ I8 :
R R2[1+—2]
mR
_ Ig
- 2
2 12 mR +1
mR I
mg
or T =
oY) (7)
1+T

Clearly, T is less than the weight mg of the point mass.
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Exaypre_68. A body of mass 5kg is attached to a
weightless string wound round a cylinder of mass 8 kg and
radius 0.3 m The body is allowed to fall. Calculate (i) tension
in the string (ii) acceleration with which the body falls and
(i1i) the angular acceleration of the cylinder.

Solution. Here m=5kg, M=8kg, R=03m
(1) MLL. of the cylinder,

r=1 Mmr?

2
. Tension in the string,
T= mg _ mg _ mg
mR ? 2mR? q,2m
1+ 1+ M
I MR?
_5x98 90 _, 7N

142%5 225

(i) Linear acceleration,

% 8 g
1+—I——
mR*?

(ifi) Angular acceleration,
a 54
to==—=—
R 03

=18.13 rad s}

Very Short Answer Conceptual Problems

Problem 1. What is the advantage of the concept
of centre of mass ?

Solution. Centre of mass helps us to describe the
behaviour of a macroscopic body in terms of the laws
developed for the microscopic bodies. If we are not
concerned with the internal motion and structure of a
system, the gross motion of the system can be analysed by
applying Newton’s laws of motion to the CM of the
system which is a point where the entire mass of the
system may be assumed to be concentrated and where all
the external forces are assumed to apply.

Problem 2. Should the centre of mass of a body
necessarily lie inside the body ?  [Himachal, 01, 03, 04]

Solution. Not necessarily. For example, the CM of a
ring lies in its hollow portion.

Problem 3. Does the centre of mass of a solid
necessarily lie within the body ? If not, give an example.

Solution. No. For example, the CM of L-shaped rod
lies in the region outside the rod.

Problem 4. Is centre of mass a reality ?

Solution. No. The centre of mass of a system is a
hypothetical point which acts as a single mass particle of
the system for an external force.

Problem 5. Is it correct to say that the centre of mass
of a system of n particles is always given by the average
position vectors of the constituent particles ? If not,
when is this statement true ?

Solution. No. This is true when all the particles of the
system are of same mass.

Problem 6. If two particles of masses m, and m, move

with velocities v, and v, towards each other on a smooth

horizontal table, what is the velocity of their centre of
mass 7
= % —He%

g & i

Problem 7. Name the physical quantity that corres-
ponds to the moment of force. On what factors does it
depend ?

Solution. The moment of force is called torque. It
depends on

(i) the magnitude of force.
(i) the perpendicular distance of the line of action
of force from the axis of rotation.

Problem 8. What happens to the moment of force
about a point, if the line of action of the force moves
towards the point ?

Solution. Moment of force

= Force xthe perpendicular distance of the line of
action of force “from” the axis of rotation.

Hence the moment of force about a point decreases if
the line of action of the force moves towards that point.

Problem 9. A body is in rotational motion. Is it
necessary that a torque be acting on it ? [Delhi 12]

Solution. No, torque is required only for angular
acceleration.

Problem 10. Why do we prefer to use a wrench of
longer arm ? [Central Schools 05]

Solution. The torque applied on the nut by the wrench
is equal to the force multiplied by the perpendicular
distance from the axis of rotation. Hence to increase
torque a wrench of longer arm is preferred.

Solution. v,
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Problem 11. Why in hand driven grinding machine,

handle is put near the circumference of the stone or
wheel 7

Solution. For a given force, torque can be increased if
the perpendicular distance of the point of application of
the force from the axis of rotation is increased. Hence the
handle put near the circumference produces maximum
torque.

Problem 12. It is difficult to open the door by
pushing it or pulling it at the hinge. Why ?

Solution. When the force is applied at the hinges, the
line of action of the force passes through the axis of
rotation i.e., =0, so 1=rFsin 8 =0 So we cannot open
the door by pushing or pulling it at the hinges.

Problem 13. Why a force is applied at right angles to
the heavy door at the outer edge while closing or
opening it ?

Solution. Torque, t = rFsin 6. For a force applied at

right angle to the outer edge of the door both
sin 0 (=sin 90° = 1) and r are maximum. Hence the torque
produced is maximum.

Problem 14. A man climbs a tall, old step ladder that
has a tendency to sway. He feels much more unstable
when standing near the top than when near the bottom.
Why ?

Solution. When the man stands at the top of step
ladder it increases its distance from the point of contact,
the point about which it can slip (rotate). The torque
exerted is equal of rF. Hence larger the r, more are the
chances to sway away.

Problem 15. Why it is easier to open a tap with two
fingers than with one finger ?

Solution. With two fingers, we applv 3 couple whose
moment is equal to the product oi the force and
perpendicular distance between the two fingers (which is
equal to the length of the handle of the tap). When we
apply force with one finger, an equal and opposite force of
reaction acts at the axis of rotation. This results in a couple
of smaller arm and hence lesser moment. So it is easier to
open a tap with two fingers than with one finger.

Problem 16. A faulty balance with unequal arms has
its beam horizontal. Are the weights of the two pans
equal ?

Solution. They are of unequal mass. Their masses are
in the inverse ratio of the arms of the balance.

Problem 17. Can the couple acting on a rigid body
produce translatory motion ?

Solution. No, the couple acting on a rigid body cannot
produce translatory motion ; it can cause only rotatory
motion as the resultant force is zero.

Problem 18. A labourer standing near the top of an
old wooden step ladder feels unstable. Why ?

Solution. The ladder can rotate about the point of
contact of the ladder with the ground. When the labourer
is at the top of the ladder, the lever arm of the force is
large. Hence the turning effect on the ladder will be large.

Problem 19. Which physical quantities are expressed
by the following :

(1) the rate of change of angular momentum, and

(i{) moment of linear momentum ?
[Himachal 06 ; Central Schools 08]

(if) Angular momentum.

Problem 20. If no external torque acts on a body, will
its angular velocity remain conserved ?

Solution. No. Angular velocity is not conserved but
angular momentum is conserved.

Problem 21. When a labourer cuts down a tree, he
makes a cut on the side facing the direction in which he
wants it to fall. Why ?

Solution. The weight of tree exerts a torque about the
point where the cut is made. This causes rotation of the
tree about the cut.

Problem 22. Define the term angular impulse.

Solution. The angular impulse acting on a body is the
change of angular momentum of the body about a given
axis.

Solution. (i) Torque.

Problem 23. Which component of linear momentum
does not contribute to angular momentum ?

Solution. The radial component of linear momentum
does not contribute to angular momentum.

Problem 24. A particle revolves uniformly along
a circular path, on a smooth horizontal table, by means
of a string connected to it. Does its angular momentum
change, if the string is suddenly cut ?

Solution. No. The angular momentum remains
unaltered when the string is cut.

Problem 25. A heavenly body (such as a comet)
revolves around a massive star in a highly elliptical
orbit. Is its angular momentum constant over the entire
orbit ? (Ignore any mass loss of the comet when it comes
too close to the star).

Solution. The heavenly body revolves around the
massive star under the effect of gravitational force, which
is purely radial. The torque exerted by such a force is zero.
Hence the angular momentum of the heavenly body
remains constant over its entire orbit.

Problem 26. A projectile acquires angular momen-
tum about the point of projection during its flight. Does
it violate the conservation of angular mémentum ?

Solution. A - projectile will not acquire angular
momentum, if no external force acts on it. However
during its flight, the projectile is acted upon by the force of
gravity and acquires angular momentum.
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Problem 27. Is a body in circular motion in equili-
brium ? ‘

Solution. No. A body in circular motion has a
centripetal acceleration @’ directed towards the centre of

the circle. Since @ # 0, the body is not in equilibrium.

Problem 28. When is a body lying in a gravitation
field in stable equilibrium ?

Solution. A body in a gravitation field will be in stable
equilibrium if the vertical line through its centre of gravity
passes through the base of the body.

Problem 29. Can a body in equilibrium while in
motion ? If yes, give an example.

Solution. Yes. A body in motion will be in equilibrium
if it has no linear and angular accelerations. Hence a body
moving with uniform velocity along a straight line will be
in equilibrium.

Problem 30. The bottom of a ship is made heavy.
Why ?

Solution. The bottom of a ship is made heavy so that
its centre of gravity remains low. This ensures the stability
of its equilibrium.

Problem 31. Why does a girl lean towards right while
carrying a bag in her left hand ?

Solution. When the girl carries a bag in her left hand,
her CG shifts towards left. In order to bring it in the
middle (for stability of equilibrium), the girl has to lean
towards her right.

Problem 32. Some heavy boxes are to be loaded
along with some empty boxes on a cart. Which boxes
should be put on the cart first and why ?

Solution. The heavy boxes should be loaded first so
that the CG of the loaded cart remains in the lowest
position. This ensures stability of equilibrium.

Problem 33. Standing is not allowed in a double
decker bus. Why ?

Solution. When the passengers stand in the upper
deck, the CG of the loaded bus is raised which makes it
less stable.

Problem 34. Why we cannot rise from a chair without
bending a little forward ?

Solution. Our weight exerts a torque about our feet.
This makes difficult for us to rise from the chair. When we
bend forward, the CG of our body comes above our feet.
The torque due to our weight becomes zero and we can
easily rise from the chair.

Problem 35. A system is in stable equilibrium. What
can we say about its potential energy ?

Solution. The potential energy of the system is
minimum.

Problem 36. Why is moment of inertia also called
rotational inertia ?

Solution. The moment of inertia gives a measure of
inertia in rotational motion. So it is also called rotational
inertia,

Problem 37. Give the physical significance of
moment of inertia.

Solution. The moment of inertia plays the same role in
rotatory motion as the mass does in translatory motion. It
gives a measure of inertia in rotational motion,

Problem 38. Does moment of inertia of a body
change with the change of the axis of rotation ?

Solution. Yes. The moment of inertia of a body
changes with the change in position and orientation of the
axis of rotation.

Problem 39. Does the moment of inertia of a rigid
body change with the speed of rotation ? [Himachal 08]

Solution. No, because the moment of inertia depends
upon the axis of rotation and the distribution of mass.

Problem 40. About which axis, the moment of inertia
of a body is minimum ?

Solution. The moment of inertia of a body is mini-
mum about an axis passing through its centre of mass.

Problem 41. Can the mass of body be taken to be
concentrated at its centre of mass for the purpose of
calculating its rotational inertia ?

Solution. No. The moment of inertia greatly depends
on the distribution of mass about the axis of rotation.

Problem 42. About which axis would a uniform cube
have a minimum rotational inertia ?

Solution. About a diagonal, because the mass is more
concentrated about a diagonal.

Problem 43. Is radius of gyration a constant quantity ?

[Himachal 01, 04]

Solution. No. It changes with the change in position of
the axis of rotation.

Problem 44. Does the radius of gyration depend
upon the speed of rotation of the body ?

Solution. No, it depends only on the distribution of
mass of the body.

Problem 45. Two lenses of same mass and same
radius are given. One is convex and other is concave.
Which one will have greater moment of inertia, when
rotating about an axis perpendicular to the plane and
passing through the centre ?

Solution. The concave lens will have greater moment
of inertia because the concave lens is thin at its centre and
its mass is more concentrated at the outer edge.

Problem 46. A disc is recast into a thin walled
cylinder of same radius. Which will have large moment
of inertia ?

Solution. Hollow cylinder will have larger moment of
inertia because most of its mass is located at compa-
ratively larger distance from the axis of rotation.
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Problem 47. Two solid spheres of the same mass are
made of metals of different densities. Which of them
has a larger moment of inertia about the diameter ?
Why ? [Dethi 10]

Solution. The sphere with small density will have
larger radius and hence large moment of inertia.

Problem 48. What is the advantage of the flywheel ?

Solution. In case of a flywheel, the whole mass is
practically near the rim which is situated far away from
the axis of rotation. This is done to increase the moment of
inertia of the wheel, thereby making the motion smooth
and less jerky.

Problem 49. Why spokes are provided in a bicycle
wheel ?

Solution. By connecting to the rim of wheel to the axle
through the spokes, the mass of the wheel gets
concentrated at its rim. This increases its moment of
inertia. This ensures its uniform speed.

Problem 50. Will two spheres of equal masses, one
solid and the other hollow have equal moments of
inertia ? Give reason.

Solution. The hollow sphere will have a greater
moment of inertia because its entire mass is concentrated
at the boundary of the sphere i.e, at maximum distance
from the axis of rotation.

Problem 51. Why is it more difficult to revolve a
stone tied to a large string than a stone tied to a smaller
string 7 [Chandigarh 04]

Solution. The length of the string increases the
distance of rotating mass from the axis of rotation and
hence moment of inertia of the system is increased. Now,
t=]a thus a system with large moment of inertia
requires large torque for its rotation.

Problem 52. Two satellites of equal masses, which
can be considered as particles are orbiting the earth at
different heights ? Will their moments of inertia be
same or different ? [Himachal 06]

Solution. M L. of a satellite, [ = Mr? ie, I r?

Hence the two satellites orbiting the earth at different
heights will have different moments of inertia. The
satellite orbiting at a larger height will have a larger
moment of inertia.

Problem 53. What is the use of flywheel in railway
engine ?

Solution. In a flywheel, most of the mass is concen-
trated at its rim. So it has a large moment of inertia. Any
change of angular momentum imparted to the wheel by
the piston results in a lesser change of angular velocity
(L=l or = L/ I). Moreover, a flywheel stores a large

amount of rotational energy (% Io?). This helps the wheel
fly off the dead point.

Problem 54. There is a stick half of which is wooden
and half is of steel. It is pivoted at the wooden end and a
force is applied at the steel end at right angles to its
length. Next, it is pivoted at the steel end and the same
force is applied at the wooden end. In which case is the
angular acceleration more and why ?

Solution. The distribution of mass is farther from the
axis of rotation in the first case than in the second case. So
the moment of inertia is more in first case than in second
case, but the applied torque 1 is same in both cases. As
1= [ a ora =1/l so the angular acceleration o is less in
first case than in second case.

Problem 55. Is the angular momentum of a system
always conserved ? If not, under what condition is it
conserved ?

Solution. No, angular momentum of a system is not
always conserved. It is conserved only when no external
torque acts on the system.

Problem 56. A flywheel is revolving with a constant
angular velocity. A chip of its rim breaks and flies away.
What will be the effect on its angular velocity ?

Solution. Due to the decrease in its mass, the moment
of inertia of the flywheel will decrease. To conserve

angular momentum, the angular velocity of the flywheel
will increase.

Problem 57. A cat is able to land on its feet after a
fall. Why ? [Himachal 05, 07C, 08C]

Solution. When a cat falls to ground from a height, it
stretches its body along with the tail so that its moment of
inertia becomes high. Since I wis to remain constant, the
value of angular speed wdecreases and therefore the catis
able to land on the ground gently.

Problem 58. Why there are two propellers in a
helicopter ?

Solution. If there were only one propeller in the heli-
copter then, due to conservation of angular momentum,

the helicopter itself would have turmed in the opposite
direction.

Problem 59. The speed of a whirl wind in a tornado is
alarmingly high. Why ?
[Himachal 07C, 08 ; Central Schools 04 ]

Solution. In a whirl wind, the air from nearby region
gets concentrated in a small space thereby decreasing the
value of moment of inertia considerably. Since, [ w=
constant, due to decrease in moment of inertia, the
angular speed becomes quite high.

Problem 60. If earth contracts to half its radiqs, what
would be the length of the day ? [Himachal 08]

Solution. The moment of inertia (I =% MR?) of the

earth about its own axis will become one fourth and so its
angular velocity will become four times (L=lw=
constant). Hence the time period will reduce to one fourth
(T =2n/ w)ie., 6 hours.
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Problem 61. Two boys of the same weight sit at the
opposite ends of a diameter of a rotating circular table.
What happens to the speed of rotation if they move
nearer to the axis of rotation ?

Solution. The moment of inertia of the system
(circular table + two boys) decreases. To conserve angular
momentum (L= I o = constant), the speed of rotation of
the circular table increases.

Problem 62. A thin wheel can stay up right on its rim
for a considerable length of time when rolled with a
considerable velocity, while it falls from its upright
position at the slightest disturbance when stationary.
Give reason.

Solution. When the wheel is rolling upright, it has
angular momentum in the horizontal direction i.e., along
the axis of the wheel. Because the angular momentum is
to remain conserved, the wheel does not fall from its
upright position because that would change the direction
of angular momentum. The wheel falls only when it loses
its angular velocity due to friction.

Problem 63. A person is standing on a rotating table
with metal spheres in his hands. If he withdraws his
hands to his chest, what will be the effect on his angular
velocity 7 [Himachal 08]

Solution. When the person withdraws his hands to
his chest, his moment of inertia decreases. No external
torque is acting on the system. So to conserve angular
momentum, the angular velocity increases.

Problem 64. A circular turn table rotates at constant
angular velocity about a vertical axis. There is no
friction and no driving torque. An ice pan containing ice
also rotates with it. The ice melts but none of the water
escapes from the pan. Is the velocity now greater, the
same or less than the original velocity ? Give reason.

Solution. Due to accumulation of water near the edge,
the moment of inertia of the system increases. To conserve
angular momentum, the angular velocity of the system
decreases.

Problem 65. Many rivers flow towards the equator.
What effect does the sediment they carry to the seas
have on the rotation of the earth ?

Solution. The rivers carry sediments away from the
axis of rotation of the earth. This increases the rotational
inertia of the earth. To conserve angular momentum, the
rotational speed of the earth decreases.

Problem 66. The moments of inertia of two rotating
bodies A and Barel, and I (I, >I;)and their angular
momenta are equal. Which one has a greater kinetic
energy ? [Central Schools 2010]

Solution. Angular momentum,

L=1]lw
2. 2 2
K.E. of rotation, K:l I o 1w _1r
2 2 1 21

Ko

For constant L, ;

As IA>1'n

E K,< Kz or Kg>K,.
So body B has a greater rotational K.E.

Problem 67. If angular momentum is conserved in a
system whose moment of inertia is decreased, will its
rotational kinetic energy be conserved ?

[Himaehal 06 ; Chandigarh 08]

Solutfon. Here L= [ w=constant

Rotational K.E. is given by

I w? =

2
K= )
I

For constant I, K

— - N

So when the moment of inertia decreases, the rota-
tional K.E. increases. Hence rotational K.E. is not conserved.
Problem 68. How does an ice-skater, a ballet dancer
or an acrobat take advantage of the principle of
conservation of angular momentum ? [Himachal 08]

Or

How does a ballet dancer vary her angular speed by
oustretcing her arms and legs ? [Central Schools 08]

Solution. An ice-skater, a ballet dancer or an acrobat is
able to change his angular speed during the course of the
performance. When the performer stretches out his hands
and legs, his moment of inertia increases and the angular
speed decreases. On the other hand, when he folds his
hands and the legs near his body, the moment of inertia
decreases and he is able to increase the angular speed.

Problem 69. If earth were to shrink suddenly, what
would happen to the length of the day ?

[Chandigarh 04 ; Central Schools 05]

Solution. When the earth shrinks, the moment of

. , 2 : :
inertia [[ = E Msz decreases about its own axis due to

the decrease in radius R To conserve angular momentum.

2
(L=Ilo=1. 7;), the time period T decreases. That is, the

length of the day decreases.

Problem 70. A body A of mass M while falling
vertically downwards under gravity breaks into two
parts ; abody B of mass M/3 and a bodyC of mass 2 M/ 3,
How does the centre of mass of bodies B and C taken
together shift compared to that of A ? [AIEEE 05]

Solution. The centre of mass of bodies Band Cdoes not
shift compared to body A. It continues to move vertically
downwards under the effect of gravity. This is because
there is no new external force acting on the system.
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Problem 71. Two identical particles move towards
each other with velocity 2 v and v respectively. What is
the velocity of the centre of mass ? [AIEEE 02]

Solution. Here my =m, =m; v =2vandv,=-v

_muy +mp,  mx 2v+m(-v) _v

%

m+ m m+ m 2

Problem 72. A particle moves in a circular path with

decreasing speed. What happens to its angular momen-

tum ? [IIT 05 ; Chandigarh 08]
Solution. The angular momentum of a particle of
mass m moving with velocity v along a circular path of

radius r is given by

= 3 =

s —
L=rxp=rxmv

When the speed vdecreases, the magnitude of angular
momentum decreases. But the direction of angular
momentum remains unchanged.

Problem 73. A particle performing uniform circular
motion has angular momentum L. What will be the new
angular momentum, if its angular frequency is doubled
and its kinetic energy halved ? [AIEEE 03)

Solution. Rotational K.E,,

K=1 12 I= ¥
2 @
Angular momentum,
Lm t0=2K 22K
w [}

When angular frequency is. doubled and kinetic
“energy is halved, the angular momentum becomes,

po2K/D) 12K L
20 4 o 4

Problem 74. The angular velocity of the earth around

the sun increases, when it comes closer to the sun. Why ?

[Himachal 09 ; Delhi 01]

Short Answer Conceptual Problems

Problem 1. “Newton’s laws of motion are applicable
to individual particles”. How would you explain the
motion of a large body ?

Solution. A large body can be considered as made of a
number of mass particles and all mass particles interact
with each other. The vector sum of all these internal forces
is zero. Therefore for a large body, it can be replaced by a
single mass particle whose mass is supposed to be
situated at its centre of mass and the Newton’s laws can
be applied.

Solution. When the earth comes closer to the sun, its
moment of inertia about the axis through the sun
decreases. To conserve angular momentum (L= o), the
angular velocity of the earth increases.

Problem 75. Why are we not able to rotate a wheel by
pulling or pushing along its radius ? [Central Schools 08]

Solution. This is because radial component of the
applied force cannot produce torque.
t=rFsin@=0xFsin8=0
Problem 76. Two solid spheres of the same mass are
made of metals of different densities. Which of them has
larger moment of inertia about its diameter ?
[Central Schools 09]

Solution. The sphere of metal with smaller density,
will have larger size and hence it will have larger moment
of inertia than the other sphere.

Problem 77. A planet revolves around a massive star
in a highly elliptical orbit. Is the angular momentum
constant over the entire orbit ? [Himachal 06]

Solution. A planet revolves around a star under the
effect of the gravitational force, which is purely radial in
nature. As radial component of a force does not contribute
to torque, so the angular momentum of the planet remains
unaffected.

As 1= %‘ =0, so L=constant.

Problem 78. If no external torque acts on a body, will
its angular velocity remain constant ? Give reason.

[Himachal 05C, 06]

Solution. When no external torque acts on a body, its
angular momentum remains constant. But
L=Iw
Clearly, the angular velocity  will remain constant

only so long as the moment of inertia I of the body
remains constant.

Problem 2. If an external force can change the state of
motion of CM of a body, how does the internal force of
the brakes bring a car to rest ?

Solution. Actually, it is not the external force which
brings the car to rest. The internal force of the brakes on
the wheel locks the wheel. Now a large frictional force
comes into play between the wheels and the ground.
This force is external to the system and brings the car to
rest.
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Problem 3. Two men stand facing each other on two
boats floating on still water at a distance apart. A rope is
held at its ends by both. The two boats are found to meet
always at the same point, whether each man pulls
separately or both pull together, why ? Will the time
taken be different in the two cases ? Neglect friction.

Solution. The men on the two boats floating on water
constitute a single system. So the forces applied by the
two men are internal forces. Whether each man pulls
separately or both pull together, the centre of mass of the
system of boats remains fixed due to the absence of any
external force, Consequently, the two boats meet ata fixed
point, which is the centre of mass of the system.

Problem 4. Prove that the centre of mass of two
particles divides the line joining the particles in the
inverse ratio of their masses.

Solution. As shown in Fig. 7.72, consider a system of
two particles of masses ny and m, situated at points A and
B respectively. Suppose the origin O of the frame of
reference coincides with their centre of mass.

N

moon r my

o . >0

A (8] B
Fig. 7.72

If ;;and ;;are the position vectors of masses m and rm,

with respect to the centre of mass, then

M+ myn = (m +m) 0 =0

— —
or q=—ﬂ2—r2
m
— —
- 151="2|7
m
I
or iz—n_z
Lo om

Hence the centre of mass of two particles divides the
line joining the two particles in the inverse ratio of their
masses.

Problem 5. Two balls of mass m each are placed at
the two vertices of an equilateral triangle. Another ball
of mass 2m is placed at the third vertex of the triangle.
Locate the centre of mass of the system.

Solution. As shown in Fig. 7.73 , the centre of mass of

the two balls placed at A and B lies at the midpoint D of
2m
L 18]
m m
Fig. 7.73 A D B

the side AB. Now we have the system of two masses, each
of mass 2m at the points C and D on the perpendicular
bisector CD of side AB. Hence the centre of mass of the
system lies at the midpoint Oof the perpendicular bisector
CD.

Problem 6. What is the difference between centre of
gravity and centre of mass ? [Himachal 05C]

Solution. Centre of mass is a point at which whole of
the mass of the body may be assumed to be concentrated
to describe its motion as a particle. Centre of gravity is a
point at which resultant of the gravitational forces on all
particles of the body acts. For bodies of normal dimensions,
centre of mass and centre of gravity coincide. But centre of
mass and centre of gravity relate to two different
concepts. Even if the world were devoid of gravitational
force, the centre of mass would still have a meaning.

Problem 7. There are 100 passengers in a stationary
railway compartment. A physical fight starts between
the passengers over some difference of opinion. (i) Will
the position of CM of the compartment change ? (ii) Will
the position of CM of system (compartment +100
passengers) change ? Give reason.

Solution. (i) The position of the CM of the
compartment will change because the passengers are
external bodies for the compartment.

(i) The position of CM of the system will not change
as no external force is acting on the system.

Problem 8. Show that moment of a couple does not
depend on the point about which you take the moments.

[NCERT]
Solution. Fig. 7.74 shows a couple acting on a rigid

body. The forces - F and F act at points Aand B

respectively. Let ?; and gbe the position vectors of these

points with respect to origin O.

-F

PR LY ST P T i Wl

Fig. 7.74
We consider the moments of the forces about the
origin O.
Moment of the couple = Sum of the moments
of the two forces
- — — !
=;1'><(— F)+?2’x F=;2’x F——;;x F

[ %+ AB=7]

— -
(m-7)x E=ABxF
Clearly, this moment is independent of the point O

about which we have considered the moments of the
forces.
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Problem 9. Show that the angular momentum about
any point of a single particle moving with constant
velocity remains constant throughout the motion. Is
there any external torque on the particle ? [NCERT]

Solution. As shown in Fig. 7.75, suppose a particle has
velocity v at point P at some instant f. Its angular

momentum about any arbitrary point Ois

2 S —
I =r xmv

Y

rsin 0

e

Fig. 7.75
The magnitude of angular momentum is
I = morsin 6
where @ is the angle between 7 and . Now the particle

has a constant velocity. Although the position of the
particle changes with time, the line of direction of velocity
-

v remains same and hence OM =rsin 0 is a constant.
Consequently, the magnitude / remains constant.

Further, the direction of T is perpendicular to the
plane of 7 and 7. It is into the plane of the paper. This
direction does not change with time.

Thus, Tremains the same in magnitude and direction
and is therefore conserved.

As the velocity of the particle remains constant, so no
external force and hence no external torque is acting on
the particle.

Problem 10. A rod of weight W is supported by two
parallel edges A and B and is in equilibrium in horizontal
position. The knives are at a distance d from each other.
The centre of mass of the rod is at distance x from A.
Find the normal reactions at the knife edges A and B.

Solution. As shown in Fig. 7.76, let R 4 and Ry be the
normal reactions at the edges.

A |

éf A C

B
Fa\ JA\)
b x 41»11—:'4

w

/

Fig. 7.76

Since the rod is in equilibrium, the sum of moments of
the forces about either knife edge must be zero.

Taking moments of forces about point 4, we get
R, x0+Wxx—-Ryxd=0
x
Rp==.W
B a
Taking moments of forces about point B, we get
Ry xd-Wx(d-x)+ Ry x0=0
d-x
d
Problem 11. Torque and work are both equal to force
times distance. Then how do they differ ?

Solution. (i) Work is a scalar quantity while torque is a
vector quantity.

RA = .W.

(i) Work is measured as the product of the applied
force and the distance moved by the body in the direction
of the force. Torque is measured as the product of the
force and its perpendicular distance from the axis of
rotation.

Problem 12. When is a rigid body said to be in
equilibrium ? State the necessary conditions for a body
to be in equilibrium.

Solution. A rigid body is said to be in equilibrium
when its linear acceleration and angular acceleration are
zero.

(1) For translation equilibrium of a rigid body, the sum
of all the external forces acting on it must be zero.

ZE=0

(if) For rotational equilibrium of a rigid body, the sum

of torques due to all forces acting on it must be zero.
T,=0

Problem 13. Define moment of inertia. On what
factors does it depend ?

Solution. The moment of inertia of a rigid body about
an axis is the sum of the products of the masses of its
various particles and squares of their perpendicular
distances from the axis of rotation.

I=Zm 1;.2
The moment of inertia of a body depends on
(1) Mass of the body.
(17) Size and shape of the body.
(1) Distribution of mass about the axis of rotation.
(iv) Position and orientation of the axis of rotation
with respect to the body.

Problem 14. How will you distinguish between a hard

boiled egg and a raw egg by spinning it on a table top 7

Solution. Hard boiled egg acts just like a rigid body
while rotating while it is not the case in a raw egg because
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of liquid matter present in it. In case of a raw egg, the
liquid matter tries to go away from the centre, thereby
increasing its moment of inertia. As moment of inertia is
more, the raw egg will spin with less angular acceleration
provided same torque is applied in both the cases. Thus,
hard boiled egg will spin faster.

Problem 15. If two circular discs of the same mass
and thickness are made from metals of different
densities, which disc will have the larger moment of
inertia about its central axis ? Explain.

2

Solution. I, =% rmi2 and I =§1 mr

L "12
L n
Also, m= mizt py = nrfr Py
2
i _Pa2
’22 P1
Hence i = P2 re, [oc—
L p P

Thus the disc with greater density will have less
moment of inertia.

Problem 16. Which one is easier to turn—a log or a
bench of equal weight and length ? The two have the
same coefficient of friction with the ground. Explain.

Solution. In the case of a log, the force of friction is
distributed along its entire length and so it is effective
midway between the end where the force is applied and
the centre of the log, but in the case of a bench, the force of
friction is at the end. So to turn the log, the torque
required is equal top mg [/ 2, while to turn the bench, the
torque required is equal to p mg I. Hence it is easier to
turn a log than a bench of equal weight and length.

Problem 17. The Moment of inertia of a disc about an
axis passing through its centre and perpendicular to its
plane is 1/2MR?. Derive the values of moment of
inertia of the disc about its diameter and about an axis
tangential to the disc lying on its plane ?

[Central Schools 12]

Solution. Refer answer to Q. 41(b) and (c) on page 7.29.

Problem 18. What is the moment of inertia of a rod of
mass M, length ! about an axis perpendicular to it
through one end ? Given the moment of inertia about

th tre of is L M2
e centre of mass is 35 M1\ -r o1 contral Schools 03]

Solution. By using theorem of parallel axes,

Lg=1 +M(1J2—1M12+3M12—1M12
e on 2) 12 4 3

Problem 19. What is the moment of inertia of a ring
about a tangent to the circle of the ring ? [NCERT]

Solution. Refer answer to Q. 40(c) on page 7.28.

Problem 20. What is the moment of inertia of a
uniform circular disc of radius R and mass M about an
axis passing through its centre and normal to the disc ?
The moment of inertia of the disc about any of its
diameters is given to be (1/4) MR?. [Himachal 06]

Solution. M.1. of the disc about any diameter,
1 2
I,=— MR".
D™y

By the theorem of perpendicular axes,
M.L of the disc about an axis through the centre and

normal to disc = M.I. about any diameter
+ M.L about perpendicular diameter

I=1Ip+ ID=2xTiMR2
or I=1MR2.
2

Problem 21. The moment of inertia of a solid sphere
about a tangent is ; MR?, where M is mass and R is

radius of the sphere. Find the M.1. of the sphere about
its diameter.

Solution. Here I =§ MR,

Now diameter of sphere is an axis passing through its
centre of mass. By using theorem of parallel axes,
I = Iy + MR?
_ 2_5 \p2 2_2,m02
Iepg = I = MR —gMR - MR -EMR .

Problem 22. The moment of inertia of a uniform

circular disc about a tangent in its own plane is g MR?Z,

where M is mass and R is the radius of the disc. Find its
moment of inertia about an axis through its centre and
perpendicular to its plane.

Solution. If I, is the M.I. of the disc about its
diameter, then from the theorem of parallel axes,
Iy = I+ MR?
or ID=1T-MR2=§
By the theorem of perpendicular axes, the M.1. about
an axis through the centre and perpendicular to the plane
of the disc,

MR? - MR? =i MR?

I = Sum of moments of inertia about two
perpendicular diameters

= Ip+ Ip=2x7 MR?
1.2
or IzaMR.

Problem 23. Using expressions for power and kinetic
energy of rotational motion, derive the relation. 1 =Ia,

where letters have their usual meanings.
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Solution. Power in rotational motion,

Rotational K.E.,, K = % Io?

P=to

Work done in rotational motion,
W = Energy stored as rotational K.E. =—21— lo®

P=ﬂ=i[l tm2]=1.1xzmd—“’
it dt

2 2 dt
B
or 0= loa w2 =
dt
= lo.

Problem 24. Explain if the ice on the polar caps of the
earth melts, how will it affect the duration of the day ?

[Himachal 05, 07C, 08 ; Central Schools 09]

Solution. If the ice on the polar caps of the earth melts,
the water so formed will spread on the surface of earth.
This increases the moment of inertia (I) of the earth about
its own axis (due to change in the distribution of mass of
the particles of water going away from the axis of
rotation). To conserve angular momentum (= Ilw) ©
(angular velocity of earth about its own axis) will
decrease. As T = 2n/ o, hence due to decrease in the value
of w, T i.e, the duration of the day will increase.

Problem 25. Two identical cylinders ‘run a race’
starting from rest at the top of an inclined plane, one
slides without rolling and other rolls without slipping.
Assuming that no mechanical energy is dissipated as
heat, which one will win ?

Solution. When the cylinder slides without rolling,
2E

E= 1 my? o v= ==
2 m
When the cylinder rolls without slipping,

1w+ 1( 1 mr? ) o?
my +2(2mr )m

1,2 1 5.2_
E—zmv +21m >

=%mv2+—1—mvz=

2. 4E
1 &

muv v=

Wl

3m

As v' >y, therefore sliding cylinder will win the race.

Problem 1. An isolated particle of mass m is moving in
a horizontal plane (x-y), along the x-axis at a certain height
above the ground. It suddenly explodes into two fragments of
masses m/4 and 3m/4. At instant later, the smaller fragment
isaty = + 15 cm.What is the position of larger fragment at
this instant ? [1IT 97]

Solution. As the isolated particle is initially moving
along x-axis, so there is no motion along y-axis. The
centre of mass should remain stationary along y-axis
even after explosion.

Problem 26. A uniform circular disc of radius R is
rolling on a horizontal surface. Determine the tangential
velocity (i) at the upper most point, (i) at the centre of
mass and (iii) at the point of contact.

Solution. Rolling can be regarded as the combination
of pure rotation and pure translation. As shown in
Fig. 7.77 (a), in case of pure rotation the, velocity of CM is
zero and the tangential velocity at points A and B is
v4 =vg = Rw. As shown in Fig. 7.77(b), in case of pure
translation, v A =Vp =V = Ro=v(say).

1 Yem 4 Yem
Uem
Vem v

B B M
(a) (b)

f‘ » 20

CM? Vens

1

i

B UB = 0

_
~
—

Fig. 7.77 (a) Pure rotation. (b) Pure translation,
(¢) Rolling.

As shown in Fig. 7.77(c), in case of rolling, the
tangential velocity at any given point is the vector sum of
the velocities in (a) and (b) at that point.

Hence v, =200, Yoy =v=Rw and vg=0.

It may be noted that in case of rolling the instan-
taneous velocity at the point of contact B with surface is
zero, because the body is not slipping.

Kiee Yoy = LI Y
m+

But Yep =0

b m y1+n12y2=0

=M
or Y, m, Y
_ M s 5 em

3m/4

Thus the larger fragment will be at y =—5 cm.
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Problem 2. A small sphere of radius R is held against
the inner surface of a larger sphere of radius 6R [Fig. 7.78].
The masses of large and small spheres are 4M and M,
respectively. This arrangement is placed on a horizontal
table. There is no friction between any surfaces of contact.
The small sphere is now released. Find the co-ordinates of the
centre of the larger sphere when the smaller sphere reaches

the other extreme position. (10T 96]
AY
4M
6R
N
»X
0 (L, O)
F=5R

Fig. 7.78

Solution. Initial position of the centre of mass of
the system is given by
_4M(L)+ M(L+5R) _
= = =

L+ R

Xem

When the smaller sphere reaches the other extreme
[Fig. 7.79], the larger sphere moves to the right so that

AY
4M
6R
RN
> X
o (x, 0)
b~ 5R-

Fig. 7.79

position of CM of the system remains unchanged (as
no external force is acting in the system). New position
of the CM of the system is

¥ _4AM(x)+ M(x—SR):x

e 5M R
But xCM=x&M
or L+ R=x-R
or x=L+2R

.. Centre of larger sphere will lie at (L+ 2R, 0).

Problem 3. A boat of 90 kg is floating in still water. A
boy of mass 30 kg walks from the stern to the bow. The
Length of the boat is 3 m. Calculate the distance through
which the boat will move. [REC 92]

Solution. As shown in Fig. 7.80, let C,, C,and Cbe

the centres of mass of the boy, boat and the system
(boy and boat) respectively. Let x; and x, be the
distances of C, and C, from the shore. Then the centre
of mass will be at a distance,

o 30x1 + S'O:c2
M~ 30+90
ch « e A&
X2 +
Xem
X
c,g 'C G
—d $ 3-d '
Shore
Fig. 7.80

As the boy C; moves from the stern to the bow, the
boat moves backward through a distance d so that
position of the centre of mass of the system remains
unchanged.

_30[x; —(3-4d)]+90(x, +d)

gM 30 +90
As x'CM = Xem
30 (x, -3 +d)+90(x, +d) 30x, +90x,
120 120
or -90+30d+90d=0
or d=0.75 m.

Problem 4. From a uniform circular disc of diameter D,
a circular disc or hole of diameter D/6 and having its centre
at a distance of D/4 from the centre of the disc is scooped out.
Determine the centre of mass of the remaining portion.

Solution. Let mass per unit area of the disc =m

2 2
. Total mass of the disc, M = n(g) m= gl

4

Mass of the scooped out portion of the disc,

[ D Jz n mD?
=n| — | m=
12 144

We take the centre O of the
disc as the origin. The masses
M and M’ can be supposed to
be concentrated at the centres
of the disc and scooped out
portion respectively. The mass
M' of the removed portion is
taken negative.

Fig. 7.81
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Then x-coordinate of the CM of the remaining
portion of the disc will be

_ Mx;-Mx, Mx0-M(D/4)

XA =
M M-M n mD? om mD?
4 144
MD 144
= * 2
4  35mwmD
amD* D 144 D

== X — X = A
144 4 35xmD* 140
Thus, the centre of mass of the remaining portion
lies at a distance of D/140 towards the left of the centre
O of the disc.

Problem 5. A tube of length L is filled completely with
an incompressible liquid of mass M and closed at both the
ends. The tube is then rotated in a horizontal plane about one
of its ends with a uniform angular velocity w. Determine the
force exerted by the liquid at the other end. [T 92]

Solution. Consider a small element of the liquid of
length dx at a distance x from one end.

QDo

l

dx

Fig. 7.82

Mass of the small element =% dx
Centripetal force associated with the element
dF = (% dx] x o [+ F=mro?]

Force exerted by the liquid =Total centripetal force
at the other end

T M M of x? t
F=IdF=I—w2xdx=— A=
o L L 12],

M 2{_,2 1
=— @ —=—
L 2 2

Mo L.

Problem 6. A particle describes a horizontal circle on
the smooth surface of an inverted cone. The height of the
plane of the circle above the vertex is 9.8 cm. Find the speed
of the particle. Take g =98 ms™ 2. [MNREC 92]

Solution. As shown in Fig. 7.83, suppose the
particle describes a circle of radius r with speed v.
Various forces acting on the particle are

(1) its weight mg acting vertically downwards,

(if) normal reaction R of the smooth surface of the

cone.

Fig. 7.83

Let the reaction R make angle 8 with the vertical.
Resolving R into vertical and horizontal components,
we get

R cos 8 = mg (1)
2
(1)

L muv
Rsin®=—
r

Dividing (if) by (i), we get
2

tan 6= v
rg
From Fig. 7.83,
tan 6 = ﬂ
r
v _h
rg r

or v=[gh=198x98x10"2 =0.98 ms ",

Problem 7. Point masses m_and m, are placed at the

ends of a rigid rod of length L and negligible mass. The rod is
to be set rotating about an axis perpendicular to its length.
Locate a point on the rod through which the axis of rotation
should pass in order that the work required to set the rod
rotating with angular velocity «, is minimum.  [REC 96]

Solution. As shown in Fig. 7.84, let the axis of
rotation be at a distance x from mass m. Then moment
of inertia of the system about this axis of rotation is

I'=m, ;v:‘?+1'r5(L~:c)2

=
=
ra

+ 4

m,
p—— x

Fig. 7.84
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Work done to set the rod rotating with angular
velocity m, =Increase in rotational K.E.

Lo 1 2 242
W‘Ek"u =—2-[m]x +m, (L—x)"]
ForWtobeminimum,M=0

or %[Zmlx+2mz(L—x)(—l)]mﬂz=0

or m x—m,(L-x)=0 [ @, #0]
or (m +m)x=m, L
or x= L ‘

"y th,

Problem 8. A uniform bar of length 6a and mass 8m lies
on a smooth horizontal table. Two point-masses m and 2m
moving in the same horizontal plane with speeds 2v and v
respectively strike the bar as shown in Fig. 7.85, and stick to
the bar after collision.

ZMI
”: b2 —

| 8m

}-a+—2n—-!

IZU
m
Fig. 7.85

Determine (i) velocity of the centre of mass (ii) angular
velocity about centre of mass and (ii) total kinetic energy just
after collision. [T 91]

Solution. (i) Let v_ be the velocity of the centre of
mass.

By conservation of linear momentum,

(Bm+m+2m)v, =2mx (-v)+ mx2v +8mx0
or v.=0.

(if) MLL. of the bar about the centre of mass C,
MI* 8 mx (6a)*
12 12

By conservation of angular momentum,

Moy + myvyh =(l + L + ) o
or 2mxvxa+mx2vx2a
=[2mx a® + mx (2a)* + 24 ma*] ©

=24 ma*

I, =

or 6 mva =30 ma* ©
_ 6 mva v

or w= 2=—.
30 ma* BSa

(iif) As the system has no translatory motion, it has
only rotational K.E.

.. Total K.E.
= Rotational K.E.
2
=1 Iw? =lx30mnzx(1) =§mv2.
2 2 5a 5

Problem 9. A carpet of mass M made of inextensible
material is rolled along its length in the form of a cylinder of
radius R and is kept on a rough floor. The carpet starts
unrolling without sliding on the floor when a negligibly
small push is given to it. Calculate the horizontal velocity of
the axis of the cylindrical part of the carpet when its radius
reduces to R/2. [1IT 90]

Solution. Let | be the length of the cylinder and p its
density.

Mass of carpet, ~M=nR*Ixp

When the carpet unrolls to half the radius, its mass

becomes,
2
M= R(E) Ixp= E
2 4

Initially, mass is M and CG lies at R.
Finally, mass is M/4 and CG lies at R/2.

Let v be horizontal velocity of the axis of the
cylindrical part of the carpet. Then

Decrease in P.E. = Gain in translational K.E.
+ Gain in rotational K.E.

4 2 2 2
' 2 2
or ZMgR:—l—M-UZ.'.l lM(EJ v
8 2 4 212 2 R/2
2 2
or ZM3R=_1.MUZ+1.£.R_.§”_2
8 8 4 4 4 R
7 v* v? 3
8 8 16 16

14
— o Rl
or v " 3 g

Problem 10. Consider a body, shown in Fig. 7.86,
consisting of two identical balls, each of mass M connected by
a light rigid rod. If an impulse | = MV is imparted to the body
at one of its ends, what would be its angular velocity ?

[IIT Screening 03]

L —

e
™

Me- M

Fig. 7.86
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Solution. Applying conservation of angular
momentum about the centre of the rod,

L
ICMm_]'E

2
or 2 x M(E) szV.-E'
2 2

or w=V/L.

Problem 11. A cubical block of side L rests on a rough
horizontal surface with coefficient of friction p. A horizontal
force F is applied on the block as shown in Fig. 7.87. If the
coefficient of friction is sufficiently high so that the block does
not slide before toppling, what is the minimum force required

to topple the block ? [IIT Screening 2000)
F > T
L

|

Fig. 7.87

Solution. When F is applied, the normal reaction
(N) of the floor moves to the right. The cube topples
when N reaches its edge.

AN

mg

Fig. 7.88

Here, N=mg and the force of friction = f=F,
Taking torque about the centre C,

Fx£+fx£=Nx£'
2 2 2
or F+f=N
or F+ F=mg
or F=mg/2

Problem 12. One quarter sector I
is cut from a uniform circular disc of
radius R. This sector has mass M. It
is made to rotate about a line
perpendicular to its plane and
passing through the centre of the
original disc. What is its moment of
inertia about the axis of rotation ?

[IIT Screening 2001]

Fig. 7.89

Solution. Mass of the entire disc from which the
section has been cut =4 M.

Its moment of inertia of the given axis = % (4M) R?
Moment of inertia of the quarter section about
the same axis
L amyre =) mr2,
4 2 2
Problem 13. A thin wire of
length L and uniform linear
mass density p is bent into a
circular loop with centre at O
as shown in Fig. 7.90. What is
the moment of inertia of the
loop about the axis XX' ?
[IIT Screening z000] Fig. 7.90

Solution. Let mand r be the mass and radius of the
loop.

90°1
i

‘o

Then, m=pL and L=2nr or r=2—L-.
n

Moment of inertia of the loop about an axis through
Oand perpendicular to its plane = mr?.

By the theorem of perpendicular axes, its moment
of inertia about a diameter parallel to XX’ =% mr*.

By the theorem of parallel axes, its moment of
inertia about XX’

L SR B .
2 2
3 LY 3pL’
-s0n(52) =25
2 2n 81

Problem 14. A long horizontal rod has a bead which can
slidc along its length and is initially placed at a distance L
from one end A of the rod. The rod is set in angular motion
about A with a constant angular acceleration, a. If the
coefficient of friction between the rod and the bead is u, and
gravity is neglected then, find the time after which the bead

starts slipping. [IIT Screening 2000]

©
Al |B>
Fig. 7.91

——
Solution. Linear acceleration of the bead =a = La.

Reaction force on the bead due to the rod
= N =ma=mLa.
After time f, the angular velocity of the bead
=w=ak
. Centripetal acceleration of the bead
=o’L=a?L
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Centripetal force on the bead
= ma?t?L

.. Force of friction at limiting position
=puN =pumlLa.

For slipping,
mea=ma2t2L or t=\/ﬁl_a.
Problem 15. Initial angular velocity of a circular disc of
mass M is @,. Then two small spheres of mass m are attached

gently to two diametrically opposite points on the edge of the

disc. What is the final angular velocity of the disc ?
[AIEEE 02]

Solution. Let R be the radius of the circular disc.
Then initial angular momentum of the disc is

L, = Lo =% MRz(nl
When two small spheres are attached on the edge

of the disc, the moment of inertia becomes

Iz——-%MR2+mR2+mR2=%MR2[1+%"J

If @, is the final angular velocity, then the final
angular momentum will be

o =L mr2(14 2M
L =L, ZMR (1+MJ“‘Z

By conservation of angular momentum in the
absence of any external torque,

L,=1L,
or 11\/1}{*’{”““"""’sz=1MRZm1
2 M 2
or =( M J
(“2 M +4m ml'

Problem 16. A T-shaped object with dimensions shown

in Fig. 7.92, is lying on a smooth floor. A force Fis applied
at the point P parallel to AB, such that the object has only the
translational motion without rotation. Find the location of P

with respect to C. [AIEEE 05]
p— 1 — o
Al 1B AC——B

D D

— —+ I
F—||P F—||P

I-x

21 Q
d C 2 - C

Fig. 7.92 Fig. 7.93

Solution. As shown in Fig. 7.93, let O be the CM of
part AB and Q) that of CD. Let M be the mass per unit
length of the parts AB and CD.

As no rotation is set up about point P, so
Moment of part = Moment of part

AB about P CD about P
or (ml)x =(2 ml)(I - x)
or x=2[-2x
or x=21/3.

Distance of P from the end C=21-21/3=41/3.

Problem 17. From a circular disc of radius R and mass
9 M, a small disc of radius R /3 is removed from the disc, as
shown in Fig. 7.94. Find the moment of inertia of the
remaining disc about an axis perpendicular to the plane of
the disc and passing through the point O. [1IT 05]

R/3

2R/3

Fig. 7.94
Solution. Total mass of the disc =9 M
Radius of the disc = R
M.L of the disc about a perpendicular axis through
Ois
1 . 2
I = Ex Mass x radius

-1 omx R =2 MR?
2 2

Mass of small disc removed
9 2
= —Azd- x 1'[[5) = M
nR 3
By the theorem of parallel axes, the M.1. of the small
disc about the axis through O,
2 2
I, _1 M[E) e M(E) =3 MR?
2 3 3 2
M.L of the remaining disc about a perpendicular
axis through O,

1

9 MR2—§ MR?

I=1 -1 ==
1 2 2

=4 MR2
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Problem 18. A rod of length L g
and mass M is hinged at point O. T
A small bullet of mass m hits the ml L
rod with velocity v, as shown in
Fig. 7.95. The bullet gets embedded 2 l
in the rod. Find the angular '
velocity of the system just after the — mocmesmsm s s
impact. mros) Fig. 7.95

Solution. Before impact, the bullet is moving. The
initial angular momentum of the system about O is

L,=mvx L=moL

After the bullet gets embedded in the rod, suppose
the system attains angular velocity .

The moment of inertia of the bullet + rod system
about the axis through O s

I'= (M.L of bullet + M.I. of rod)
about the axis through O

=ml* + :—: MP = Mgm E
Final angular momentum of the system is
Lf=Im= M+3mL2m

By conservation of angular momentum,

M+3m ,
or 3 Fw=movL

3mv
or 0= —,
(M+3m) L

uidelines to NCERT Exercises

7.1. Give the location of the centre of mass of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of
uniform mass density. Does the centre of mass of a body
necessarily lie inside the body ?

Ans. (1) Geometrical centre.

(i) Centre of its axis of symmetry.

(i1i) Centre of the ring.

(iv) Point of intersection of the diagonals.

No, itis not necessary that centre of mass of a body lies
inside the body. For example, in a ring, hollow sphere, in a
tumbler etc., the centre of mass lies inside their hollow
portion.

7.2. In the HCl molecule, the separation between the nuclei
of the two atoms is about 1.27 A (1A =107 m). Find the
approximate location of the CM of the molecule, given that the
chlorine atom is about 35.5 times as massive as a hydrogen atom
and nearly all the mass of an atom is concentrated in all its nucleus.

Ans. As shown in Fig. 7.96, suppose the H nucleus is
located at the origin. Then

x =0, x,=1274,

m =1, m, =355
y
x—f
Cl
CM
H + “' )—»x
x=0
x,=127 A

Fig. 7.96

The position of the CM of HCI molecule is
- R
e
_1x0+355x1.27
© 14355

Thus the CM of HCl is located on the line joining H
and Cl nuclei at a distance 0f 1.235 A from the H nucleus.

7.3. A child sits stationary at one end of a long trolley
moving uniformly with speed v on a smooth horizontal floor. If
the child gets up and runs about on the trolley in any manner,
then what is the effect of the speed of the centre of mass of the
(trolley + child) system ?

Ans, The forces involved in the given problem are the
internal forces of the system. No external force acts on the
system when the child runs. So, there will be no change in
the speed of the centre of mass of the (trolley + child)
system.

7.4. Show that the area of the triangle contained between the

vectors @ and b is one half of the magnitude of a xb.

=1235A.

Ans. Area of a triangle. Suppose two vectors 2 and b

are represented by the sides OP and OQ of APOQ, as
shown in Fig. 7.97.

Fig. 7.97
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Let £ POQ 6. Draw QN L OP. The magmtude of the
vector product @ xb is

]a xb |=absan6
=(OP)(OQ)sin 6

=(OP)(QN)
=2x1(OP)(QN)
=2 x Area of APOQ

or AreaofAPQQ=%|¢?xl?l.

Hence the area of the triangle contained between the

vectors 2. and 5’ is one half of the magnitude of a % r‘.—r' ;

7.5. Show that @ (B x ) is equal in magnitude to the

volume of the parallelopiped formed on the three vectors,

- o >
a,bandc.

Ans. Volume of a parallelopiped. As shown in Fig. 7.98,

consider a parallelopiped having the three non-coplanar

vectors @ ,b and ¢ as edges meeting at a point O. Let

OA =4, 0B =b and OC =c.

Fig. 7.98 Volume of a parallelopiped.
Then, b xc is a vector perpendicular to the plane of b
and c. Let 0 be the angle between 2 and b xc. Clearly,

7 @ lcos Bis the henght of the paralleloplped orthogonal to it
its base.
Now,
Z.(b xc)=|a ||k xc |cos®
=|b xc||a |cos @
= Base area of the parallelopiped
x height of the parallelopiped .
on this base
= Volume of the parallelopxped having
the vectors 2, b c along edges
meeting at a point.
7.6, Find the components along the x,y, z axes of the

— . .
angular momentum | of a particle, whose position vector is r

. . = .
with components x, y, z and momentum is p with components’
Pxs Py And p,. Show that if the particle moves only in the x-y
plane, the angular momentum has only a z-component.

[ QN =0Qsin 0]

Ans. We can write
- A 2 n
=11 +Iy; +1.k

= & A P
r=xi +yj +zk
and ;?=pxi+pyj+pzk
But r=?xﬁ’
(xf+yf+z§)x(pxx+py;+pz£)
{ ] k
=lx y z
Pr Py P:
or I:.i+1yj+lzk

=1 (yp, ~2p,)+ | (zp ~ 2.} K (o, ~vpy)

Comparing the coefficients of 0 ; and k on the two -
sides, we get the components of I as follows :,

L=yp, -2, |, =2p, - xp, and 1  =XP, -y:*'%r

If the particle is constrained to move only in the xy
plane, then z =0 and p, =0. Hence

I~k (p,-p)
As 6nly the unit vector k corresponding to z-direction
survives, the angular momentum I’ has only az-component.

7.7. Two particles, each of mass m and speed v, travel in
opposite directions along parallel lines separated by a distance d.

' Show that the vector angular momentum of the two particle

system is the same whatever be the pomt about which the angular
momentum is taken.

Ans: As shown in Fig. 7.99, suppose the two particles
move parallel to the yaxis. ‘

AY
3 J "
(9] % d P X
Y l
.
Fig. 7.99
Total angular momentum of the two particle system
-about Ois
. - = - — -

'_ I =ll-,|-l2=r{;':-<pl+1'.2)<;‘2

"= x(—mv)f +(x+d)rc x(mv)f

=(-mvx)f x] +(mvx + mod)§ x|
_ =(—muvx + mvx + mvd) kﬁ

= mvd k o [ 1

b 2
x
~s
L}
s
—
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Clearly, r does not depend on x and hence on the

origin O. Thus the angular momentum of the two particle
system is same whatever be point about which the
angular momentum is taken.

7.8. A non-uniform bar of weight W is suspended at rest by
two strings of negligible weights as shown in Fig. 7.100. The
angles made by the strings with the vertical are 36.9° and 53.1°
respectively. The bar is 2 m long. Calculate the distance d of the
centre of gravity of the bar from its left end.

e AT

Fig. 7.100

Ans. Let T} and T, be the tensions in the two strings, as
shown in Fig. 7.101.

Fig. 7.101
For translational equilibrium, on balancing the
vertical components of forces, we get
Lcos O+ Tcos =W
On balancing the horizontal components, we get
T sin 6= T, sin ¢ -(2)

For rotational equilibrium, we balance the torques
about the CG of the bar.

Clockwise.torque = Anticlockwise torque
LcosOxd=T,cos ¢ x(2~d)
Dividing (3) by (2), we get
dcot 0=(2-d)cot ¢

(1)

-(3)

or d cot 36.9°= (2 — d) cot 53.1°

or d cot 36.9°= (2 - d) tan 36.9°

or d><%=(2~d)><§4

or 16d = 18 - 9d

or d=18/25=072m =72 cm.

7.9. A car weighs 1800 kg. The distance between its front
and back axles is 1.8 m. Its centre of gravity is 1.05 m behind the
front axle. Determine the force exerted by the level ground on
each front wheel and each back wheel.

Ans. Let N, and N be the total reaction forces exerted

by the level ground on front and back wheels respec-
tively. The situation is shown in Fig. 7.102.

Ny Ny
A
1.8m
f——1.05m ——1—0.75 m —|
w
Fig. 7.102

For translational equilibrium of the car,
Np+ Np=W=1800x98N
or Np + Ny =17640 N
For rotational equilibrium of the car,
1.05 N. =075 N,

or 105N =075(17640 - N;)

or 1.8 N, = 13230

or N, =13230/1.8=7350 N
and N = 17640 — 7350 = 10290 N

Force on each front wheel = 7350/ 2 = 3675 N.
Force on each back wheel = 10290/ 2 = 5145 N.

7.10. (a) Find the moment of inertia of a sphere about a tan-
gent to the sphere, given the moment of inertia of the sphere about
any of its diameters to be 2 MR*/5, where M is the mass of the
sphere and R is the radius of the sphere. [Central Schools 11]

(k) Given the moment of inertia of a disc of mass M and
radius R about any of its diameters to be MR%/4, find its

moment of inertia about an axis normal to the disc and passing
through a point on its edge.

Ans. (a) Here I = % MR?

The tangent EF is C E
parallel to the diameter CD. Py
By the theorem of parallel R
axes, , P B

| EF = ICD + MR /
Iy= 2 MR? + MR?
5 D F
7 2 = BN Y B ADTASNA S b R g
=3 MR". Fig. 7.103

(b) By the theorem of parallel axes, M.I. about an axis
passing through an edge point and normal to disc

= M.I. about central normal axis + MR?

=1 Mr? + MR? = 3 MR2,
2 2
7.11. Torques of equal magnitude are applied to a hollow
cylinder and a solid sphere, both having the same mass and
radius. The cylinder is free to rotate about its standard axis of
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symmetry, and the sphere is free to rotate about an axis passing
through its centre. Which of the two will acquire a greater
angular speed after a given time ?

Ans. Let M and R be mass and radius of the hollow
cylinder and the solid sphere. Then

M.I. of hollow cylinder about its axis of symmetry,

I, = MR?
M.I. of solid sphere about an axis through its centre,
5=;MW
5

Let a, and a, be angular accelerations produced in
the rotational motion of the cylinder and the sphere on
applying a torque t in each case. Then

a == 2
L MR
T T T
d @,=—=5——=25-—"=25a
n T ImR T MR '

As a, > a; and ® = w; + uf, so the solid sphere will
acquire a greater angular speed afler a given time.

7.12 A solid cylinder of mass 20 kg rotates about its axis
with angular speed 100 rad s™'. The radius of the cylinder is
0.25 m. What is the kinetic energy associated with the rotation
of the cylinder ? What is the magnitude of angular momentum
of the cylinder about its axis ?

Ans. Here M=20kg, w=100rads™ ', R=025m

M.L of the cylinder about its own axis,
1=1 MR? = 20 x(0.25)* = 0.625 kgm

Rotational K.E.

2 _ 1 2 _
= % lo? = 3 x0.625 x(100)? = 3125 J.
Angular momentum,
L= lo=0.625x100=625kgm? s
7.13 (1) A child stands at the centre of turntable with his two
arms out stretched. The turntable is set rotating with an
angular speed of 40 rpm. How much is the angular speed of the
child if he folds his hands back and thereby reduces his moment
of inertia to 2/3 times the initial value ? Assume that the

turntable rotates without friction.

(ii) Show that the child’s new kinetic energy of rotation is
more than the initial kinetic energy of rotation. How do you
account for this increase in kinetic energy ?

Ans. Here o, =40 rpm, [, =§ L
By the principle of conservation of angular momentum,
Lo=1Iw or le40=§11 0,
or @, =100 rpm.
(i7) Initial kinetic energy of rotation
=3 hof =3 1, (407 =800 ],

New kinetic energy of rotation

1 2 1.2 2 _
=512(02 =§X-§Il X(IOO) —2000'1

New K.E. _ 2000 ],
Initial K.E. 800 [,

=2.5.

Thus the child’s new kinetic energy of rotation is 2.5
times its initial kinetic energy of rotation. This increase in
kinetic energy is due to the internal energy of the child
which he uses in folding his hands back from the out
stretched position.

7.14. A rope of negligible mass is wound round a hollow
cylinder of mass 3 kg and radius 40 cm. What is angular
acceleration of the cylinder if the rope is pulled with a force of
30 N ? What is the linear acceleration of the rope ? Assume that
there is no slipping.

Ans. Here M=3kg, R=40cm =040m, F=30N

Torque, t=FxR=30x040=12Nm
M.I. of the hollow cylinder about its own axis,

1= MR? = 3 x(0.40)* = 0.48 kg m*
Angular acceleration,

o =E=£=25rads'z.

I 048
Linear acceleration,
= Ra =0.40x25=10 ms 2.

7.15. To maintain a rotor at a uniform angular speed of
200 rad 5™, an engine needs to transmit a torque of 180 Nm.
What is the power required by the engine ? Assume that the
engine is 100% efficient.

Ans, Here ©=200tad s, t = 180 Nm

. Power, P=1w=180x200=36000W =36 kW.

7.16. From a uniform disc of radius R, a circular hole of
radius R [ 21is cut out. The centre of the hole is at R/ 2 from the
centre of the original disc. Locate the centre of gravity of the
resulting flat body.

Ans. The situation is shown in Fig. 7.104. Let Obe the
CM of the original circular portion, G, that of the circular
hole cut out and O, that of the remaining shaded portion.
Let m be the mass per unit area of the disc.

Fig. 7.104
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Mass of the oﬁgina] disc,
M= rtRzm‘
Mass of the circular hole cut,

R\? n
m =1r(3) m=z R*m
Mass of the remaining portion,
m, =ftR2m_—%Rzn.1=%‘an2m |
Masses m and m, may be assumed to be concentrated
at G and O, respectively and Ois their CM.
. Moment of m, about O

_ = Moment of m, about O
or xqo my, xQ,0
or lZ Rzmx§=gnRzmx020
- R
‘ O0=—
or Q 5

] Tﬁus the CM of the resulting portion lies at R / 6 from
the centre of the original discin a dn'echon opposite to the
centre of the cut out portion.

7.17. A metre stick is balanced on a knife edge at its centre
When two coins, each of mass 5 g are put one on top of the other
at the 12.0 cm mark, the stick is found to be balanced at 45.0 cm.
What is the mass of the metre stick ?

Ans. As the metre stick balances at 50 0 cm mark, its
CG must lie at this mark.

The 45.0 cm mark is theCGofthe metresuck+ 2coms
. system.
Let m be the mass of the metre stick.
Distance between 50.0 cm mark and new CG
=500-450=50ecm . !
Distance between 12.0 cm mark and-new CG
' =450-120=330cm
* From the principle of momer:s (for equilibrium),
mg x5.0=(2x5)xg x33.0-
2x5x33.0
or . m———50 —66.03.

7.18..A solid sphere rolls down two different inclined planes
of the same héights but different angles of inclination. (a) Will it
reach the bottom with the same speed in each case ? (b) Will it
take longer to roll down one plane than the ofher ? (c) If so,
which one and why ?

Ans Acceleration of the rollmg sphere,
gsin-@

T(1+K R

Velocity of the sphere at the bottom of the mchned .

Plane,

ggh .
(1+ k*/ R?

)

" (a) Yes, the sphere will reach the bottom with the
same speed v because his same in both cases.

(b) Yes, the sphere will take longer time to roll down
one plane than the other.

(¢) The sphere will take lafger time in case of the
plane with smaller inclination because ‘ the
acceleration, a acsin 6.

7.19. A hoop of radius 2 m weighs 100 kg. It rolls along a
horizontal floor-so that its centre of mass has a speed of 20 cm/s.
How much work has to be done to stop it ?

Ans. Here R=2m, M =100kg,

U =020ms"~
‘Work required to stop the hoop*
= Total K.E. of the hoop
= Rotational K.E. + Translational K.E.

=20 cms™

= Mv?, =100 %(0.20)* =4 J.'

7.20: The oxygen molecule has a mass of 5.30 x 10 %6 kg and a
moment of inertia of 1.94 x10™ % kg m® about an axis through
its centre perpendicular to the line joining the two atoms.
Suppose the mean speed of such a molecule in a gas is 500 m /s
and that its kinetic energy of rotation is two thirds of its kinetic

energy of translation. Find the average angular veloczf_y of the
molecule..

Ans Rotatxonal K. E —g Translational K.E.

o or }- 2_1",_02'
| 2 3 2

2%530x10"%
x _—
3x194x10" %

- =500 x/1.82 x 102
- =500%135x10" rad 5! =6.75x 162 rad 5.

‘7.21. A solid cylinder rolls up an.inclined plane of angle of
inclination 30° At the bottom of the inclined plane the centre of
mass of the cylinder has a speed of 5 m/s..

(a) How far will the cylinder go up the plane ?°

(b) How long will it take to return to the bottom ?

Ans. (a) Total initial kinetic energy of the cylinder,

=1 1, .2
K‘“iM"cz:M*iICM‘?’

2m
or (ﬂvx—

R
2
=-%Mv(2:M +-%x~:_1;MR a%
MvCM +d M, =3 Moy,
Initial pqtenhal energy, ul =0 '

' Final kinetic énergy, K}'. =0
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Final potential energy,
: N
U, = Mgh= Mgssm 30 =% Mgs
where s is the distance travelled up the incline and h is
the vertical height covered above the bottom.
Gain in P.E. = Loss in K.E.

(b) Using equation of motlon for the motion up the
incline, we get .

0=vqy +at or 'a:—v—tc’—”—‘-
Also, OZ—UZCM=2as '
or a=_vzﬂ.
2s
om _ Tom
t 2s
or t=.£=_2ﬂ=1_55
' ' Uem 5 |
Total time taken in returning to the boﬁom
.=2x15=30s. ’

7.22. As shown in Fig. 7.105, the two sides of a step ladder
BAand CAare 1.6 m long and hinged at A. A rope DE 0.5 m s
tied half way up. A weight 40 kg is suspended from a point F,
1.2 m from B along the ladder BA. Assuming the floor to be

[frictionless and neglectmg the weight of the ladder, find the
tension in the rope and forces exerted by the floor on the ladder.
(Take g = 9.8 m/ s).

Fig. 7.105 :
~ Ans. As shown in Fig. 7.106, let N; and N, be the
" normal reactipns of the floor at Band Crespéctively and T
be the tension in the rope DE Then )
Ny + No=W=40x98N
 Ny+N.=392N (1)

Consider the portion AC of the ladder. Balancmg
torques about A, we get )

N xLC TxAG

or

P

Fig. 7.106

From the geometry of the figure, we get '
' LC=2GE=DE=05m
or GE=0.25m

AG = | AE? — GE? = /(0.8 - (0.25)*
= 05775 =076 m

Hence N x05=T x0.76 or T=0.66 Ng (2)
Now consider the portion AB of the ladder. Balancmg

" the torques about A, we get

Ng xBL-W x JL=T x AG

Bt JL=y DE=x05=0125m,
[ BL=DE=05m, W=392N
s N x0.5-392 0125 = T x0.76
or ©  Npx05-392x0.125= 0.66 N x0.76
: - [using )]
or Ny —98= N _
or N, - N = 98 (3)

On solving (1) and (3), we get’
Ny =245N, N.=245-98=147N,
and T=0.66 N, =0.66 x147 =97 N.
7.23. A man stands on a rotating platform, with his arms

- stretched horizontally holding a 5 kg weight in each hand. The

angular speed of the platform is 30 revolutions per minute. The
man then brings his arms close to his body with the distance of
each weight from the axis changing from 90 cm to 20 cm. The
moment of inertia of the man_together with the platform may be
taken to be constant and equal to 76 kg
(a) What is his new angular speed ? (Negléct friction)
(b) Is kinetic energy conserved in the process\? If not, from
where does the change come about ?
Ans. (a) Total initial moment of inertia,
I, = M.L. of man and platform
+ M.l of two 5 kg weights
=76+ 2x5x(090)* =76+ 81
=15.7 kg m?
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Initial angular speed,
®, = 30 rpm
Total final moment of inertia,
I, =76+ 2x5x(020) =76+ 0.4
= 8.0kg m?
By the principle of conservation of angular momentum,
hoy = Lo,
or 15.7 x30 = 8.0 x 0,

15.7 x 30
or =—

o, =58.875 =59 rpm.

Final KE. 5 ho]  80x(59? _

(b) — = = =
Initial K_E. %;2 w2 157 x(30)*

1.97.

Thus the final K.E. is about twice the initial K.E. i..,
K.E. is not conserved in the process. The increase in K.E. is
due to the internal energy the man uses in bringing his
arms closer to his body.

7.24. A bullet of mass 10 g and speed 500 m/ s is fired into a
door and gets embedded exactly at the centre of the door. The
door is 1.0 m wide and weighs 12 kg. It is hinged at one end and
rotates about a vertical axis practically without friction. Find
the angular speed of the door just after the bullet embeds into it.

(Hint. The moment of inertia of the door about the vertical
axis at ane end is MI* / 3)

Ans. By the principle of conservation of angular
momentum,

Initial angular momentum of the bullet
= Final angular momentum of the door

or pr=la
55 3mur
or mor = X0 or o=—->
ML
Here m=10g=10"2kg, v=500ms"',
1.0

r=;2=0.5m, L=10m, M=12kg

3x10" 2 x500% 0.5
w= 5
12x(1.0)

=0.625rads!.

7.25. Two discs of moments of incrtia I, and 1, about their

respective axes (normal to the disc and passing through the
centre), and rotating with angular speed o and w, are brought
into contact face to face with their axes of rotation coincident.
(i) What is the angular speed of the two-disc system ? (ii) Show
that the kinetic energy of the combined system is less than the
sum of the initial kinetic energies of the two discs. How do you
account for this loss in energy ? Take o, # w,.

Ans. (i) Let © be the angular speed of the two-disc
system. Then by conservation of angular momentum,

(h+ L)w=1I o + I, o,
Lo+, 0,
T+

or [0]

(i7) Initial K.E. of the two discs,
1 2 1
KISEII“’I +512(u2
Final K.E. of the two-disc system,

1
K2=EU1 +1"2)m2

2
PP L
2 \ L+
Lossinl(.E.:Kl—K2
1 2 2 1 2
= -i(ll(n] + Izmz)" m(]l(l)l -+ 12(')2)

“12“’12 + 1 12m§ + ’2‘°|2 " ’22"’%

EIUERS
~(I of + ol + 21 I, o, o,
1 2 3
= m [I] 12(02 + I] Iz(ﬂl = 211 12(1)1(1)2]
= L((t}f + (!.')E - 2(1)1 (,l)-,)
2(L + I) 2 2
= ._IL (0 — Y =a positive quantity
2(L + 1) 2

[ o #w,]
Hence there is a loss of rotational K.E. which appears
as heat. When the two discs are brought together, work is
done against friction between the two discs.
7.26. (a) Prove the theorent of perpendicular axes.
(b) Prove the theorem of parallel axes.
Ans. (a) Refer answer to Q.38 on page 7.27.

(b) Refer answer to Q.39 on page 7.27.

7.27. Prove the result that the velocity v of translation of a
rolling body (like a ring, disc, cylinder or sphere) at the bottom
of an inclined plane of a height h is given by

2__ 2gh
(1+ k*/ R?)

using dynamical consideration (i.e.. by consideration of forces
and torques). Note k is the radius of gyration of the body abonut
its synnmetry axis, and R is the radius of the body. The body
starts from rest at the top of the plane.

Ans. Velocity attained by a body rolling down an
inclined plane. Consider a body of mass M and radius R
rolling down a plane inclined at an angle 6 with the
horizontal, as shown in Fig. 7.107. It is only due to friction
at the line of contact that body can roll without slipping.
The centre of mass of the body moves in a straight line
parallel to the inclined plane.

The external forces on the body are

(1) The weight Mg acting vertically downwards.
(i1 The normal reaction N of the inclined plane.
(iit) The force of friction acting up the inclined plane.
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Fig. 7.107 A body rolling without slipping on an
inclined plane.

Let a be the downward acceleration of the body. The
equations of motion for the body can be written as
N-Mgcos8=0
F=Ma=Mgsin0- f

As the force of fricion f provides the necessary
torque for rolling, so

T= fo=fu.=Mk2(£)
: R

K2
or f =M F .a
where k is the radius of gyration of the body about its axis
of rotation. Clearly

Ma = Mg sin 6 - M %.n
gsin 0
B 127 R
(1+k“/ R%)
Let h be height of the inclined plane and s the distance
travelled by the body down the plane. The velocity v

attained by the body at the bottom of the inclined plane
can be obtained as follows :

or

v — 1 = 2as
or 112—02=2.g$92.5
(1+ k°/ R%)
2_ 2gh L
or 7 ——1+k2/R2 I: S—sm()]

or v= _2311—__
(1+k*/ R?)

7.28. A disc rotating about
its axis with angular speed w, is
placed lightly (without any
translational  push) on a
perfectly frictionless table. The
radius of the disc is R What are
the linear velocities of the points
A, Band Con the disc shown in

Fig. 7.108 ? Will the disc roll in

the direction indicated ? Fig. 7.108

Ans. We know that, v=Raoe

For point A: v, = Raw,
(in the direction of the arrow)

For point B: vz = R,
(in the direction opposite to arrow)

ForpointC: .= (-E] W,
(in the direction of the arrow)

The disc will not roll in the direction indicated. It is
because the disc is placed on a perfectly frictionless table
and without friction, a body cannot roll.

7.29. Explain why friction is necessary to make the disc in
Fig. 7.108 given in previous question roll in the direction
indicated.

(i) Give the direction of frictional force at B, and the sense
of frictional torque, before perfect rolling begins.
(i) What is the force of friction after perfect rolling begins ?
Ans. To roll a disc, a torque is required which in tumn
requires a tangential force to act on it. As the force of
friction is the only tangential force acting on the disc, so it
is necessarily required for the rolling of a disc.

(i) Frictional force at B opposes the velocity of B.
Therefore, frictional force is in the same direction as the
arrow. The sense of frictional torque is such as to oppose

the angular motion. By right hand rule, both (5:) and T act

normal to the plane of paper, n_):, into the plane of paper
—5

and t out of the paper.

(i) Frictional force decreases the velocity of the point
of contact B. Perfect rolling begins when this velocity is
zero. Once this is, the force of friction is zero.

7.30. A solid disc and a ring, both of radius 10 cmare placed

on a horizontal table simultaneously, with initial angular speed
equal to 10t rad s™ . Which of the two will start to roll
earlier ? The co-efficient of kinetic friction is p, = 0.2.

Ans. In case of pure rotation without translation, the
velocity of centre of mass is zero. The friction reduces the
speed at the point of contact and as such accelerates the
centre of mass till the velocity of centre of mass becomes
equal to v= Rw and the instantaneous velocity at the
contact point becomes zero. Thus the force of friction
u . mg produces an acceleration a in the centre of mass. So
the equation of motion for CM is

W,mg = ma

(1)
The torque due to force of friction is p mg x R It
produces angular retardation given by

pomgR = - la .(2)
Rolling begins when
v= Rw
But v=0+at =y gt (3)

(From (1), a = p,g]
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d HmgR :
an 0=, +af =w, - ; t [using (2)]
or b mo——p"ng

R I
or Bef _ oy - LoTER
R I
Hegt [, mR? ’
or "T[1+—I-;]_m0
or " t:——RmD
. i mR?
He 8|1+ —
Foradisc: I'=mR*/2
. Ray, _ 0.10 x 10n 0535,

3u,'g 3x02x9.8
For a ring : [ = mR*
Rw, 010x10m
2u, 8 T 2x02x98°

Thus the disc bégins to roll earlier than the ring.
‘731 A soiid_ cylinder of mass 10 kg and radius 15 cm is

t = =0.80s.

rolling perfectly on a plane of inclination 30°. The coefficient of
static friction, p ; = 0.25. (i) Find the force of friction acting on
the cylinder. (ii) What is the work done against friction during
_rolling ? (iii) If the inclination 0 of the plane is increased, at
what value of 0 does the cylinder begm to skid, and no! roll

perfectly ?
Ans. Here M=10kg, R=0.15m, p5—025 6=30°

(i) Force of friction,
=3 Mgsin 0=1 x10x98 xsin 30°
'=1x10x98x05-1633N.
(i) Work done against friction during rolling

= o J
(iif) Condition for skidding (or no rolhng) is

%Mgsine
or 2__— <

Mg cos 8 ¥, .
or %tanGSus

Thus the cylinder will start skidding at an angle of

-inclination 6 given by

tan8=3p =3x0.25=0.75
or 0= 36°52'. '

7.32. Read each statement below carefully, and state, with
reasons, if it is true or false :

(a) During rolling, the force of friction acts in the same
direction as the direction of motion of the CM of the
body.

(b) The instantaneous speed of the point of contact during

rolling is zero.

(¢) The instantaneous acceleration of the point of contact

during rolling is zero..

(d) For perfect rolling motion, work done against friction is

zero. ' -

(e) A wheel moving down a perfectly frictionless incliried

- plane will undergo slipping (not rolling) motion. _

Ans. (a) True. When a body rolls, the force of friction
acts'in the same direction as the direction of motion of the
CM of the body.

(b) True. A rolling body can be 1magmed to be rotating
about an axis passing through the point of contact of the
body and the ground. Hence the instantaneous speed of
the point of contact is zero.

() False. As the body is rotating, its instantaneous
acceleration cannot be zero.

(d) True. Perfect rolling begins when force of friction is
zero. So work done against friction is zero.

(¢) True: On a perfectly frictionless inclined plane,

. there is no tangential force of friction. So the wheel

cannot roll. It will simply slip under the effect of its own
weight, :

Text Based Exerci_s,e's

Type A: Vefy Short Answer Questions

ﬁine centre of mass of a system.

[Himachal 08, 09]

2. On what factors, does the position of centre of mass -

of a rigid body depend ?

3. Where does the centre of mass of umform
triangular lamina lie ? '

v

1 Mark Each

4. Where does the centre of mass of a cone lie ?
* 5. What is an isolated system ? What will be the nature
of motion of centre of mass of isolated system ?

6. Where does the centre of mass of a two particle
system lie, if one partlcle is more massive than the
other ? [Delhi 97)
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10.

1L
12.

13.

14.
15.

16.
17.

18.

19.

20.
21

.24,

27,
28.

29.

30.

. Give an example each for a body, where the centre

of mass lies inside the body and outside the body.
[Delhi 99]

. Where does the centre of mass of two particles of

equal mass lie ? What is its position vector ?
Write an expression for the centre of mass of a two
particle system.

Write an expression for the velocity of the centre of
mass of a system of particles.

What is a ngld body ? [Himachal 08 ; Delhi 09]
Name the rotational analogue of force. Give its SI
unit. :

Is torque a scalar or vector ? If vector, which rule is
used to determine its direction ?

Write the dimensional formula of torque.

What is the ratio of SI unit to the CGS unit of

torque ? —

Under what conditions, is the torque zero ?

A body is rotating at a steady rate. Is any torque
acting on the body ?

Which physical quantity corresponds to moment of
linear momentum ?

Write the dimensional formula of angular
momentum., Is it a scalar ?

Write the SI unit of angular momentum. [Delhi 08]
What is the ratio of the SI unit to the CGS unit of
angular momentum ?

Name the constant whose dimensions are same as
that of angular momentum ?

Does the magnitude and direction of angular
momentum depend on the choice of the origin ?
Does the total momentum of a system of particles
depend upon the velocity of the centre of mass ?
What is the angular momentum of a body of mass m
moving in a circular path of radius r with constant
speed v ?

State right hand rule to fmd the dxrechon of angular
momentum.

Name the physical quantity which is equal to the
time rate of change of angular momentum:.

Which physical quantity is conserved when a
planet revolves around the sun ?

A planet revolves around the sun under the effect
of gravitational force exerted by the sun. Why is the

torque on the planet due to the gravitational force
zero ?

A boat is likely to capsize if the persons in the boat
stand up. Why ?

31

32.

33.

35.
36.

37.

38.

39.
40.
4.
2.

43.

45.

: 46:

47.
48.

49.

50‘

51.

52.

A body is moving in a circle of radius r centimetre

at a constant speed of vcm s™'. What is the angular

velocity ?

What is the angular velocity of the earth spinning

about its own axis ?

Is the angular velocity of rotation of hour hand of a

watch greater or smaller than the angular velocity

of earth’s rotation about its own axis ? °

Two bodies move in two concentric circular paths

of radii 4 and r, in the same time. What is the ratio

of their angular velocities ?

Name the rotational analogue of linear acceleration.

What is the analogous of mass in rotational

motion ? Write unit of that physical quantity also.
[Delhi 95, 08]

Is moment of inertia a scalar or a vector quantity ?
[Himachal 01]

Write an expression for the moment of inertia of a
rod of mass ‘M’ and length ‘L’ about an axis
perpendicular to it through one end.  [Delhi 2003]

What is the moment of inertia of a solid sphere -
about its diameter ? [Delhi 09]

'What is the moment of inertia of a hollow sphere

about an axis passing through its centre ?

What is the moment of inertia of a circular ring
about its tangent in its plane ?

What is the dimensional formula of radius of
gyration ?

State the factors on w}uch radius of gyrahon of a
body depends.

- A drcular ring and a circular disc of the same

radius have the same moment of inertia about axis
passing through their centres and perpendicular to
their planes. What is the ratio of their masses ?
Where does the centre of mass of a rectangular
lamina lie ? [Himachal 03]
What is torque ? Give its SI unit.

" [Himachal 04, 05C, 09]
What .are the factors on which the moment of
inertia of a body depends ? [Himachal 04]
Give the phys:cal significance of moment of inertia.

[Himachal 08, 09]

Which physical quantity is represented by the
product of moment of inertia and angular velocity ?

[Delhi 04 ; Central Schools 121

Define angular momentum
[Himachal 05C, 07C, 08, 09]
Define the term moment of momentum.
[Himachal 07C]

Write two factors on which centre of mass of a body
does not depend. [Chandigarh 09]
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__Answers

10.

11.

12.
13.

14.
15.

16.

The centre of mass of a system may be defined as
the point at which the entire mass of the system
may be supposed to be concentrated. The nature of
the motion of the system will remain unaffected if
all the forces acting on the system were applied
directly on the centre of mass of the system.

The centre of mass of a rigid body depends on
(/) The geometrical shape of the body.
(if) The distribution of mass in the body.

Centre of mass of a triangular lamina lies at its
centroid i.e., at the point of intersection of the three
medians.

The centre of mass of a cone lies on the line
joining the apex to the centre of the base at a

distance equal to 5 of the length of this line from the

base.

An isolated system is one on which no external force
acts. The centre of mass of such a system remains
either at rest or moves with uniform velocity.

The CM will lie on the line joining the two particles,
closer to the more massive particle.

(i) The CM of a solid sphere lies inside the body.

(if) The CM of a hollow sphere lies outside the
body.

The centre of mass of two particles of equal masses

lies midway between them. Its position vector is

the average of the position vectors of the two

particles.

_mn +mr
RCM'__—HE+rr‘2 :

=5
- z n. v,

Uepm = M

A rigid body is one whose constituent particles
retain their relative positions even when they
move under the action of an external force.

Torque. Its SI unit is Nm.
- —* — i - . -
Torque is a vector, T =r x F. Its direction is

perpendicular to the plane of 7and F and is given
by right handed screw rule.
[Torque] = [ML2T2].
SI unit of torque
CGS unit of torque

As t =rFsin 8, so torque is zero if ris zero or F is
zero. It is also zero if 0= 0° or 180°.

17.
18.
19.

20.

21.

24,

26.

27.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

No. A torque produces angular acceleration.
Angular momentum.

[Angular momentum] = [MLzT"l].

Angular momentum is not a scalar but a vector.
2 -1

SI unit of angular momentum =kg m*“s .

SI unit of angular momentum 107

CGS unit of angular momentum

Planck’s constant () has the same dimehsions as
angular momentum.

Yes.

Yes.

Total momentum = Mug,,.

Angular momentum
= Linear momentum x moment arm

or L=pxr=mur
Curl the fingers of the right hand in the direction of

rotation, then the thumb points in the direction of
angular momentum.

Torque.
Angular momentum of the planet.
The gravitational force acts along the line joining
the planet to the sun. Vectors 7 and F are always
parallel.

t=rFsin 0°=0.
If the passengers stand, the CG of the system (boat
+ passengers) is raised and so it is likely to capsize.

o="rads™.

r
Angular velocity of spinning of earth
2n

~ 86400

The hour hand completes one rotation in 12 hours
while the earth completes one rotation in 24 hours.
So, angular velocity of hour hand is double the
angular velocity of earth, because @ =2n/T.

rads™.

Angular velocity, ® = 2r / T is same for both bodies.
So the ratiois 1: 1.

Angular acceleration is the rotational analogue of
linear acceleration.

Moment of inertia is the rotational analogue of
mass. Its SI unit is kg m?=.

M.L is a scalar quantity.
ML?
I= :
3
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39, [=— MI?.2 where M is the mass and Ris the radius

of the solid sphere
40. I= % MR?, where M is the mass and Ris the radius

of the hollow sphere.
41. | = % MR?, where M is the mass and R s the radius

of the ring.

42. The dimensional formula of radius of gyration is
M)
43. The radius of gyration of a body depends on
(i) the position and orientation of the axis of
rotation.
(if) the distribution of mass of the body about the
axis of rotation.

4. 1=M R =1

2
ring :_Z Md'u;r R

Mring"Mdisc = 142

Type 8:

1. What is meant by a particle, a system and internal
and external forces ?

2. Define centre of mass of a system. How does it
differ from the centre of gravity ?

3. Write an expression for the centre of mass of a two
particle system. What will be the location of
centre of mass if the two particles have equal
masses ?

4. Show that the centre of mass of two particles is on
the line joining them at a point whose distance
from each particle is inversely proportional to the
mass of that particle.

5. Write an expression for the centre of mass of
w-particle system. Also write the equations of
motion which govern the motion of the centre of
mass. :

6. Show that in the absence of any external force, the
velocity of the centre of mass remains constant.

7. Show that the total linear momentum of a system of

particles is conserved in the absence of any external
force.

8. Show that the total linear momentum of a system of
particles is equal to the product of the total mass of
the system and the velocity of its centre of mass.

9. What are binary stars ? Discuss their motion in
respect of their centre of mass.

Short Answear Quastic

45. The CM of a rectangle lies at the point of
intersection of the diagonals of the rectangle.

46. Refer to point 8 of Glimpses.

47. Moment of inertia of a body depends on :

(i) Mass of the body.

(1f) Distribution of mass about the axis of rotation.

48. Moment of inertia of a body is the rotational inertia
of the body:. It is the rotational analogue of mass in
linear motion.

49. Angular momentum (L = la).

50. Angular momentum of a particle is the moment of
its linear momentum about the axis of rotation.

51. It is equal to the product of linear momentum and
the perpendicular distance of its line of action from
the axis of rotation.

52. The centre of mass of a system does not depend on
(1) choice of the coordinate system, and (i) force
acting on the particles.

M-

ons 2 or 3 Marks Each

10. Briefly describe the motion of CM of a diatomic
molecule like Q.

11. Briefly explain the motion of the centre of mass of
the earth-moon system.

12. Discuss the motion of the centre of mass of a fire
cracker that explodes in air.

13. Define a rigid body. State the factors on which the
centre of mass a rigid body depends.

14. Define the term torque or moment of force. Give its
units and dimensions. [Himachal 01C, 04, 08]

15. Name the physical quantity corresponding to force
in rotational motion. How is it related to force ?
Give its units. [Central Schools 08]

16. State and explain the principle of moments.

17. Define a couple. Show that the moment of a couple is
same irrespective of the point of rotation of a body.

18. Derive an expression for the work done by a torque.
Hence write the expression for the power delivered
by a torque.

19. How torque is expressed as the vector product of

two vectors ? State the rule for determining the
direction of lorque,

20. What is torque ? Give its unit. Show that it is equal
to the product of force and the perpendicular
distance of its line of action from the axis of

rotation. |Chandigarh 07 ; Himachal 07C]



7.80 PHYSICS-XI

21.

22,

24.

26.

27.

29.

30.

31

32.

* moment of inertia for a rigid body.

35.

Show that the magnitude of torque = magnitude of
force x moment arm. Also show that only the
angular component of the force is responsible for
préducing torque.

Define angular momentum of a particle. State its SI
unit. ‘ '

. How angular momentum can be expressed as the
_ vector,product of two vectors ? How is its dlrechon

determined ?

Show that the angular momentum of. a particle is
the product of its linear momentum and moment
arm. Also show that the angular momentum is

- produced only by the angular component of linear

momentum. What is the physical meaning of
angular momentum ? '

. Define angular momentum. Prove that angular

momentum of a particle is equal to twice the
product of its mass and ‘areal velocity.
[Himachal 05C, 06]

Wrrite the SI unit of torque and angular momentum.
Derive the relation between angular momentum
and torque. [Himachal 05, 09 ; Delhi 10]

Prove that the time rate of changé of the angular
momentum of a particle is equal to the torque
acting on it. [Delhi 97, 05]

Define a rigid bod.y. Name two kinds of motion
which a rigid body can execute. What is meant by
the term equilibrium ? For the equilibrium of a
body, two conditions need to be satisfied. State

them. [Delhi 2003]
Distinguish between the stable, unstable and
neutral equilibria of a body:

Define moment of inertia of a body. Give its units
and dimensions. What is the physical significance
of moment of inertia ? [Himachal 05C, 06]
State the factors on which the moment of inertia of a
body depends. [Himachal 06 ; Delhi 03C]

Establish the relation between kinetic energy and
[Himachal 07]

Show that the moment of inertia of a body about the
given axis of rotation is equal to twice the kinetic
energy of rotation of the body rotating with unit
angular velocity. [Himachal 07C]

Derive an exgressnon for the rotational kinetic
energy of a body and hence define moment of
[Hnnacha.l 07, 09C ; Delhi 08]

Define radius of gyration. What is its physical
significance ? [Himachal 01]

inertia.

36.

37.

38.

-39,

40.

41.

43.

45,

46.

47,

48.

.49.

State and prove the theorem of perpendicular axes
on moment of inertia. [Himachal 02, 03, 04]

State the theorem of parallel axes on moment of
inertia. [Delhi 12]

Derive an expression for moment of inertia of a
circular disc about an axis passing through its centre
and perpendicular to its plane.

[Delhi 95, 96 ; Himachal 05, 08]
What is the moment of inertia of a rod of mass M
and length L about an axis perpendicular to it
through one end ? Given the moment of inertia |

about the centre of mas§ is 1_12 Mt.z.

[Central Schools 03, 08, 09]

Deduce an expression for the moment of inertia of a
hollow cylinder of mass M and radjus R-about its
own axis.

Establish the relation between torque and angular’
acceleration. Hence define moment of inertia.
_ [Delhi 99 ; Himachal 03]

Establish the relation’ between moment of inertia
and torque ona ng1d body. ‘ .
[Himachal 07, 08, 09C]

Establish the relation between angular momentum
and moment of inertia for a rigid body.

[Himachal 07]
Show that angular momentum = moment of inertia
x angular acceleration and hence define moment of
inertia. [Chandigarh 03]
State the law of conservation of angular momentum
and illustrate it with the example of planetary
motion. - . [Delhi, 96, 04 ; Himachal 05]

State and prove the principle of conservation of
angular momentum. [Himachal 03, 05, 08]

Define moment of inertia. Write any two factors on
which it depends. When the diver leaves the diving
board, why he brings his hand and feet closer
together in order to make a somersault.
[Delhi 05]
Derive an expression for moment of inertia of a thin
circular ring about an axis passing through the
centre and perpendicular to the plane of the ring.
[Himachal 07 ; Central Schools 05]

(a) State theorem of parallel axes for the moment
of inertia of a body.
(b) Determine the moment of inertia of a thin ring

about a tangent to the circle in the plane of the
ring. [Delhi 09]
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50.

51.

State perpendicular axis theorem for calculation of
moment of inertia using appropriate diagram. Also
calculate moment of inertia about a diameter if that
of an axis perpendicular to the plane of a disc and
passing through its centre is given by 1MR2
[Central Schools_ 08, 09]

Derive an expression for angular momentum of a
rigid body rotating at an angular speed of a Give
its geometrical meaning and hence derive Kepler's
second law of planetary motion. " [Delhi 06]

Anqwerq
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" 1s.

16.
17.
18.
19.

R BRRESB

26.
27.

; ~Refer answer to Q. 1 on page 7.1.

Refer answer to Q. 2 on page 7.1.

. Refer-answer to Q. 3 on page 7.2.

Refer to solution of Problem 4 on page 7.59.
Refer answer to Q. 5 on page 7.3.

Refer answer to Q. 6 on page 7.4.

Refer answer to Q. 7 on page 7.5.

Refer answer to Q. 7 on page 7.5.

Refer answer to Q. 8(i) on page 7.11.

Refer answer to Q. 8(if) on page 7.11. -

. Refer answer to Q. 8(iii) on page 7.11.

Refer answer to Q. 9 on page 7.11.

. Refer answey to Q. 10 and Q. 11 on page 7 12.

Refer answer to Q. 16 on page 7.15.

The analogue of force .in rotational motion is
torque. -

—
Torque, . T =FxF

'S.I. unit of torque = Nm.

Refer answerto Q. 17 on pége 7.15.
Refer answer to Q. 18 on page 7.16.
Refer answer to Q. 19 on page 7.16.
Refer answer to Q. 20 on page 7.16.
Refer answer to Q.21 on page 7.17.
Refer answer to Q. 21 on page 7.17.
Refer answer to Q. 23 on page 7.18.
Refer answer to Q. 24 on page 7.18.
Refer answer to Q. 25 on page 7.18.

. Refer answer to Q.28 on page 7.20.

Refer answer'to Q.27 on page 7.19.
Refer answer to Q. 27 on page 7.19.
Refer answer to Q. 30 on page 7.23.

52.

53.

29.
30.
31.

33,
34,
35.
36.

.37

38.
39,

40.
41.

4.

s
. Refer answer to Q.50 on page 7.45.

47.

49.

50.

51.
52.
53.

Give the analogy between various quanhhes that
describe linear and rotational motions.

Prove that the acceleration of a solid cylinder
rolling without slipping down an inclined plane is
2/3gsin 6. [Central Schools 03]

Refer answer to Q. 32 on page .7.25.. |
Refer answer to Q. 33 on page 7.25.
Refer answer to Q. 34 on page 7.25.

. Refer answer to Q.36 on page 7.26.

Refer answer to Q.36 on page 7.26.
Refer answer to Q. 36 on page 7.26.
Refer answer to Q. 37 on page 7.26.
Refer answer to Q. 38 on page 7.27.
Refer answer to Q. 39 on page 7.27.

‘Refer answer to Q. 41(a) on page 7.29.

By using theorem of parallel axes,

LZ
Imd=I.CM+M[E)

1

+ = MI 1
4

= 1—12 M = M.
Refer answer to Q. 44 on page 7.31.
Refer answer to Q. 48 on page 741..
Refer answer to Q.48 on page 7.41.
Refer answer to Q.49 on page 7.41.
Refer answer to Q. 49 on page 7.41.

Refer answer to Q. 50 on page 7.45.

Refer answer to Q. 50(iif) on pgge 7.45.

.. Refer answer to Q. 41 on page 7.29.

(a) Refer answer to Q.39 on page 7.27.

~ (b) Refer answer to Q.40(c) on page 7.28. |

Refer answer to Q.39 on page 7.27 and Q. 41(b) on
page 7.29. i
Refer answer to Q. 28 on page 7.20.
Refer answer to Q. 51 on page 7.48.
Refer answer to Q. 52 on page 7.49.

.
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1.

Type C: Long Answer Questions

Define centre of mass of a system. Derive an
expression for the centre of mass of a two particle
system from ab-initio. [Chandigarh 03]

. Define rotational motion of a body. Derive the

following equations of rotational motion under
constant angular acceleration.

() 0=w, + at (ii)6=to“f+%uf2

(ifi) 0 ~ w0} = 206.

Prove that the angular momentum of a particle is
twice the product of its mass and areal velocity.
How does it lead to the Kepler's second law of
planetary motion ?

Prove that the rate of change of total angular
momentum of a system of particles about a
reference point is equal to the total torque acting on
the system.

. Derive an expression for the total work done on a

rigid body executing both translational and
rotational motions. Hence deduce the condition for
the equilibrium of the rigid body.

Derive an expression for the moment of inertia of a
thin uniform circular ring about an axis through its
centre and perpendicular to its plane. Hence write
the expressions for its moment of inertia

(i) about its diameter and

(i) about a tangent in its plane. |Himachal 05]

Define the term moment of inertia. Derive an
expression for moment of inertia of a circular disc
about an axis passing through its centre and
perpendicular to its plane.

[Himachal 07 ; Delhi 03C ; Chandigarh 04]

Answers

i
2,

3
4
5.
6
7.

Refer answer to Q. 4 on page 7.2.

Refer answer to Q. 13 on page 7.12 and Q. 14 on
page 7.13.

- Refer answer to Q. 28 on page 7.20.
. Refer answer to Q. 28 on page 7.20.

Refer answer to Q. 31 on page 7.24.

. Refer answer to Q. 41 on page 7.29.

Refer answer to Q. 41 on page 7.29.

10.

11.

12,

13.

14.

5 Marks Each

Derive an expression for the moment of inertia of a
thin uniform rod about an axis through its centre
and perpendicular to its length. Also determine the
radius of gyration about the same axis.

Derive an expression for the moment of inertia of a
thin uniform rod about an axis passing through its
one end and perpendicular to its length. Also
determine the radius of gyration about the same
axis.

Derive an expression for the moment of inertia of a
uniform solid cylinder about its own axis.

Devive an expression for the moment of inertia of a
uniform cylinder about an axis passing through its
centre and perpendicular to its length.

Derive an expression for the moment of inertia of a
uniform solid sphere about its any diameter. Hence
write the expression tor its moment of inertia about
its tangent.

Obtain an expression for the linear acceleration of a
cylinder rolling down an inclined plane and hence
find the condition for the cylinder to roll down
without slipping.

A light string is wound round a cylinder and carries
a mass tied to it at the free end. When the mass is
released, calculate

(1) the linear acceleration of the descending mass,
(ii) the angular acceleration of the cylinder and
(iti) the tension in the string,
Show that the acceleration of the mass is less
than g.

8. Refer answer to Q. 42 on page 7.30.

10.
11.
12,
13.
14.

Refer answer to Q. 43 on page 7.30.
Refer answer to Q. 45 on page 7.31.
Reter answer to Q. 46 on page 7.31.
Refer answer to Q. 47 on page 7.32.
Refer answer to Q. 52 on page 7.49.
Refer answer to Q. 55 on page 7.52.
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Systems of Parlicles &
Rotalional Molion

‘GLIMPSES

Particle. A particle is an object whose mass is finite
but whose size and internal structure can be
neglected.

System. A system is a collection of a very large
number of particles which mutually interact with
one another.

Centre of mass. It is the point at which entire mass
of a system may be supposed to be concentrated.
The nature of motion of the system remains
unaffected when all the forces acting on the system
are applied directly on the centre of mass of the
system.

Ifz andr, are the position vectors of two particles

of masses my and m,, then the position vector of
their centre of mass is given by
_mi+my

nil T ﬂlz
For a system of N-particles, the centre of mass is
given by

—+
RCM

— — —
- MR LT+ M Ty
Roy =
"ll + ’"2 Fiaeee F mN
N
i i
M

For a continuous mass distribution, the centre of

mass is given by
Rey = | Fdm

where dm is the mass of small element located at
position 7

~1

The velocity of the centre of mass of a two-particle
system is given by

- —
- ml Z?] + le Z’z

U~
M gt N,

Properties of centre of mass :

(i) The location of the centre of mass is the
weighted average of the locations of the
particles of the system.

(if) Centre of mass moves as if the external force
acts on the entire mass concentrated at this
point.

(i) In the absence of any external force, the centre
of mass moves with a constant velocity.

(iv) For bodies of normal dimensions, centre of
mass and centre of gravity coincide.

Rigid body. A rigid body is one whose constituent

particles retain their relative positions even when

they move under the action of an external force.

totational motion of a rigid body. A body is said
to possess rotational motion if all its particles
move along circles in parallel planes. The centres
of these circles lie on a fixed line perpendicular to
the parallel planes and is called the axis of
rotation.

Equations of rotational motion. For a body

moving in circle, let w, be the initial angular

velocity, w the final angular velocity, a the angular
acceleration and O be the angular displacement
after the time t. Then equations of rotational

motion can be written as
X " 1
(1) o=y + at (11)9=m0t+50.1‘2

(iii) o - of =208
7.83
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10.

% W 7

Torque (¢ ). The turning effect of a force about the

axis of rotation is called moment of force or torque
due to the force.

Torque = Force xits perpendicular distance:
from the axis of rotation

or t = Force xmomentarm =Fd ~ .

- SRR
If a force F acts at a point whose position vector is
= . s .
r  with respect to the axis of rotation, then torqueis

T=7xF

(i) In Cartesian coordinates :
(if) In polar coordinates :

,=xE-yE
t=rFsin @

wheré,B is the angle between force vector F and.

position-vector r.
SI Unit of torque is Nm.
Principle of moments of rotational equilibrium.

When a body is in rotational equilibrium, the sum

of the clockwise moments about any point is equal
to the sum of the anticlockwise moments about

- that point. Or, the algebraic sum of moments about
- any point is zero. In rotational equilibrium, -

Clockwise moment = Anticlockwise moment_

or  Exé=Exdy -

or Load xload arm = Effort x effort arm
This is sometimes called the lever principle.

Céuple A pair of equal and opposite forces acting '

on a body along two different lines of action consti-
tute a couple. In a couple, total external force is zero
but torque is non-zero. So a couple has a turning
effect but cannot produce translational motion.

Moment of a couple. The moment of a couple is

* equal to.the product of either of the forces and the
perpendicular distance, called the arm of the couple, -

between their lines of action. It is independent of

" the choice of the fulcrum or the point of rotation.

Moment of couple = Force x arm of the couple
or ‘ 1=Fd "
A couple can only be balanced by an equal and

‘ . opposite couple.

12.

Work done by a torque and power'of atorque.Ifa

torque t applied ori a body rotates it through an

angle A6, the work done by the torque is
AW =1A0
or Work done = Torque x Angular displacement

Power of a torque is given by
_AW _1A8 _

i.e., Power of a torque = Torque x Angular velocity

13.

SILunit of angular momentum is kgm G

Angular momentum (L'). It is the moment of

linear momentum of a particle about the axis of
rotation. '
Angular momentum = Linear momentum

. x its perpendicular distance

from the axis of rotation.

or L=pd

If F is the linear momentum of a particle and r its
position vector, then its angular momentum is

5 !

L—?x;

(i) In Gartesian coordinates : L= =Xp, = YP;

(i) In pplar coordinates : L=rpsin @

where 8is the angle between the linear momentum
=+ o - :

vector p and the position vector .

If a particle of mass m moves with uniform speed v

along a qu'cle of radius 7, then its angular moment

is - » L=mor
-1

. The linear momentum p and velocity vector 7 are

14.

I 1

16.

always parallel to each other. But the angular

momentum L and the angular velocity @ are not

" necessarily parallel vectors.

Geometrical meaning of angular momentum.
Geometrically, the angular momentum of a particle
is equal to twice the product of its mass and areal

* velocity. Equivalently, the areal velocity of a particle

is just half its angular momenturmn per unit: mass.

I 1
f.’vaAi or AA ——L—;
‘ At At 2m

Relation between torque and angula:r momentum.

" The rate of change of angular momentum of a system
. of particles about a fixed point is equal to the total
- external borque acting on the system about thatpomt

2ot _ 4L L
. at
Equilibrium of rigid bodies. A rigid body is said

"to be in equilibrium if both the linear momentum

and angular momentum of the rigid body remain
constant with time. It must possess the following
two equilibria simultaneously :
(i) Translational equilibrium. The resultant of all
ﬂummachngm&\ebodymustbezem

TP =0

(i) Rotahonal equilibrium. The resultant of all
the torques due to all the forces acting on the
body about any point must be zero.

2T =27 xEM=0
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17,

18.

19,

Thin rod of length L

Moment of inertia. The moment of inertia of a
rigid body about an axis of rotation is the sum of
the products of masses of the various particles and
squares of their perpendicular distances from the
axis of rotation. Mathematically

2

T

n
I=m 7{2 + mzrzz +otm, r”2 = ')31 "

SI unit of moment of inertia = kg m?.
The moment of inertia of a body can be regarded
as the rotational inertia of a body. It is the
rotational analogue of mass in linear motion.
Factors on which the moment of inertia depends.
The moment of inertia of a body depends on the
following factors :

(i) Mass of the body.

(if) Size and shape of the body.
(1if) Distribution of mass about the axis of rotation.
(iv) Position and orientation of the axis of rotation

with respect to the body.

Radius of gyration. It may be defined as the
distance from the axis of rotation at which if whole
mass of the body were supposed to be
concentrated, the moment of inertia, would be
same as with the actual distribution of mass. The
relation between moment of inertia [ and radius of
gyration K is

I=MK* or K=\/I
M

Passing through centre and
perpendicular to the rod

21.

t’al)le Moments o[ Inertia of some BoJies o[ Regu/ar Sllape

For a body composed of particles of equal masses,

2 2 2
K=J’i I bt

n

i.e. radius of gyration is equal to the root mean
square distance of the particles from the axis of
rotation.

SI unit of radius of gyration = m.

Theorem of perpendicular axes. It states that the
moment of inertia of a plane lamina about an axis
perpendicular to its plane is equal to the sum of
the moments of inertia of the lamina about any
two mutually perpendicular axes in its plane and
intersecting each other at the point, where the
perpendicular axes pass through the lamina.
Mathematically,

L=1+1

where X- and Y-axes lie in the plane of the lamina
and Z-axis is perpendicular to its plane and passes
throtigh the point of intersection of X- and Y-axes.

Theorem of parallel axes. It states that the
moment of inertia of a rigid body about any axis is
equal to the moment of inertia of the body about a
parallel axis through its centre of mass plus the
product of mass of the body and the square of the

perpendicular distance between the parallel axes.
Mathematically,  I=1I.,+ Md?

I=— MP

12

Thin rod of length L

Through its one end and
perpendicular to its length

Rectangular lamina of
length | and breadth b

Through its centre and
perpendicular to its plane

Pl

2, 12
=M I“+b
12

Circular ring of radius R

Passing through its centre
and perpendicular to its
plane -




7.86 PHYSICS-XI

Circular ring of radius R

Diameter

Circular ring of radius R

Tangent in its plane

1=2 MR?
2
Circular disc of radius R | Passing through its centre 1
and perpendicular to its =— MR?
plane 2
Circular disc of radius R | Diameter 1
I=- MR?
4
Circular disc of radius R | Tangent in its plane 3_ 5
I I =— MR
4
Right circular solid Symmetry axis 1
cylinder of radius R and I=- MR?
length L 2
Hollow cylinder of Symmetry axis 2
radius R and length L iy I'= MR
“Solid sphere of radius R | Diameter 2
; =< MR?
5
‘ R
Solid sphere of radius R | Any tangent I -
- _ I== MR?
5
Hollow sphere of radius R | Symmetry axis 2 MR
3
Hollow sphere of radius R | Any tangent 5
: 1= MR?
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| ]

Rotational K.E. If a body of mass M and moment
of inertia I rotates about an axis of rotation with an
angular velocity o, then

Rotational K.E.= % Jo?.

Total K.E. of a rolling body. The centre of mass of

a rolling body moves along a straight line, so it

possesses translational K.E. in addition to rota-

tional K.E.

.. Total K.E. of a rolling body

e = Translational K.E. + Rotational K.E.

= Mo + A I
2 2

Relation between M.IL. and angular momentum.

Angular momentum =M.L x Angular velocity

ie., L=Iw
Relation between M.L and torque.
Torque = M.1. x Angular acceleration

23.

2

Le., 1= la.
Law of conservation of angular momentum. If no
external torque acts on a system, total angular

momentum of the system remains unchanged.
In the absence of any external torque,
L = I = constant

26.

21t___1 2n

or Ilml-—-Izm2 or 11.71_— Zl?z'
1

Motion of a cylinder rolling down an inclined
plane without slipping. As shown in figure,
consider a solid cylinder of mass M and radius R
rolling down an inclined plane of inclination 0
without slipping,.

27.

(i) Linear acceleration of the cylinder down the

inclined plane,
a= gsin © =2gsh19
n 3
1+ - —3
MR
(ii) Force of friction between inclined plane and
cylinder,
f =% Mg sin @
(iii) Condition for rolling of cylinder without
slipping is
1
—3' tan A< H 5

where p_ is the coefficient of static friction.

IIT Entrance Exam

N’ MULTIPLE CHDIGCE HUESTIDNS WITH
DisE CORREST ANSWER
1. Look at the drawing given in the figure which
has been drawn with ink of uniform line-thickness.
The mass of ink used to draw each of the two inner
circles, and each of the two line segments is m The
mass of the ink used to draw the outer circle is 6 m. The
coordinates of the centres of the different parts are :
outer circle (0, 0), left inner circle iy
(~a, a), right inner circle (a, a), vertical
line (0, 0) and horizontal line (0,—a).
The y-coordinate of the centre of
mass of the ink in this drawing is

e -
( )8
a a
(c) T (d) 3

2. Two particles A and B, initially at rest, move

towards each other under mutual force of attraction.

At the instant when the speed of Ais vand the speed of
Bis2v, the speed of the centre of mass of the system is

a
(a) ‘1—0
[1IT 09]

()v
(d) zero.

(a) 3v

(c) 1.5v

3. Two blocks of masses 10 kg and 4 kg are con-
nected by a spring of negligible mass and placed on a

fricionless horizontal surface. An impulse gives a
velocity of 14 m/s to the heavier block in the direction

of the lighter block.

The velocity of the centre of mass is

(a) 30 m/s (b) 20 m/s

(c) 10 m/s (d) 5 m/s

4. An isolated particle of mass m is moving in
horizontal plane (x-y) along the x-axis at a certain
height above the ground. It suddenly explodes into
two fragments of masses m/4 and 3m/4. An instant
later, the smaller fragment is at y =+15 cm. The larger
fragment at this instant is at
(b) y =+20 cm
(d) y =—20 cm.

(T 82]

(IIT 02)

(@) y==5cm

(c)y=+5cm (T 97
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5. A smooth sphere A is moving on a frictionless
horizontal plane with angular speed ® and centre of
mass velocity u. It collides elastically and head on with
an identical sphere B at rest. Neglect friction
everywhere. After the collision, their angular speeds
are o, and wp respectively. Then

(a) oy < (b) 0, =y
(d) o =0 (11T 99)

6. A mass m is moving with a constant velocity
along a line parallel to the x-axis, away from the origin.
Its angular momentum with respect to the origin

(€)oo, =

(a) is.zero (b) remains constant
(c) goes on increasing (d) goes on decreasing
, [ITT 97]
7.A particle of mass m is projected with a velocity v
making an angle of 45° with the horizontal. The magni-
tude of the angular momentum of the projectile about
the point of projection, when the particle is at its

maximum height h is
3

mu
(a) zero (b) -4_«/_2_;
2
(&) (@) my2g1°
V2g [ITT 90]

8. A particle undergoes uniform circular motion.
About which point on the plane of the circle, will the
angular momentum of the particle remain conserved ?

(a) centre of the circle

(b) on the circumference of the circle

(c) inside the circle

(d) outside the circle [1IT 03]

9.A particle is confined to rotate in a circular path
with decreasing linear speed. Then which of the
following is correct ?

—-’
(@) L (angular momentum) is conserved about the

centre

(b) only direction of angular momentum Z is con-
served

(c) it spirals towards the centre

(d) its acceleration is towards the centre. [IIT 05]

10. A cubical block of side Lrests on a rough hori-
zontal surface with coefficient of friction p. A hori-
zontal face F is applied on F
the block as shown. If the T
coefficient of friction is L
sufficiently high so that the |

block does not slide before toppling, the minimum
force required to topple the block is
(@) infinitesimal (b)y mg/ 4
(c) mg /2 (d) mg(1-p)
11. A disc is rolling without
slipping with angular velocity
®. Pand Q are two points equi-
distant from the centre C. The
order of magnitude of velocity
is ‘

[IIT 2K]

(a)vQ>vC>vl (b)vP>vC>vQ‘

(c) vp =7, Vg =7 [2(d) vp <vp >, [T 04]

12. A thin wire of length L
and uniform linear mass density
p is bent into a circular loop
with centre at O as shown. The
moment of inertia of the loop
about the axis XX' is

pl3 ol
— b
@ 8n* ©) 16n°
SpL3 3pl
C S — ———
© 1677 @ 8n? (IIT 2K)

13.0ne quarter sector is cut from a uniform circular
disc of radius R. This sector has mass M. It is made to
rotate about a line perpen-
dicular to its plane and passing
through the centre of the original
disc. Its moment of inertia
about the axis of rotation is

1 vR2 1 vR?
(@) 5 MR (b) ; MR

© %an (d) VZMR?

- [IIT 01]
14.From a circular disc of radius R and mass9M, a
small disc of radius R /3 is removed from the disc. The
moment of inertia of the
remaining . disc about an "
axis perpendicular to the 2R/3
plane of the disc and
passing through O is 0]
(a) 4 MR?

40 , 53
(b) 5 MR
(c) 10 MR?

OEAYS
9 (11T 05]
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15. A solid sphere of mass M and radius R having
moment of inertia I about its diameter is recast into a
solid disc of radius r and thickness t. The moment of
inertia of the disc about an axis passing the edge and
perpendicular to the plane remains I. Then R and r are
related as

_ |2 _2
(a)r—J;R (b)r_Jl_SR
_2 _2
©@©r=35k @r=15 R (1IT 06]

16. Two point masses of 0.3 kg and 0.7 kg are fixed
at the ends of a rod of length 1.4 m and of negligible
mass. The rod is set rotating about an axis perpen-
dicular to its length with a uniform angular speed. The
point on the rod through which the axis should pass in
order that the work required for rotation of the rod is
minimum, is located at a distance of

(a) 0.42 m from mass of 0.3 kg

(b) 0.70 m from mass of 0.7 kg

(¢) 0.98 m from mass of 0.3 kg

(d) 0.98 m from mass of 0.7 kg (1T 95]

17. A disc of mass M and radius R is rolling with
angular speed ® on a horizontal plane as shown in

figure.

The magnitude of angular momentum of the° disc
about the origin O is

(a) (1/2) MR (b) MR*

(©) 3/2)MR?w (d) 2 MR*e

18. A cubical block of side 2 is moving with velocity
v on a horizontal smooth plane as shown in figure. It

(1T 99]

fo—a—|

M |—>»v

&
-

o]

hits a ridge at point O. The angular speed of the block

after it hits O is
(@)3v/4a
(c)3v/2a

19. Consider a body, shown in figure, consisting of
two identical balls, each of mass M connected by a light

(b)3v/2a

(d) zero. [T 99]

rigid rod. If an impulse | = Mv is imparted to the body
at one of its ends, what would be its angular velocity ?

L
Me - M
J=Mv
(a)v/L (b)2v/L
(c)v/3L (dv/4L [IIT 03]

20. A cylinder rolls up an inclined plane, reaches
some height, and then rolls down (without slipping
throughout these motions). The directions of the
frictional force acting on the cylinder are

(a) up the incline, while ascending and down the

incline, while descending.

(b) up the incline, while ascending as well as

descending. . .

(c) down the incline, while ascending and up the

incline, while descending.

(d) down the incline, while ascending as well as

A |

descending. [T 02)
21, An equilateral triangle ABC formed from a
uniform wire has two small identical beads initially
vertical axis AQ. Then the '
beads are released from rest ALP
simultaneously and allowed -
to slide down, one along AB /
shown. Neglecting frictional
effects, the quantities that
are conserved as the beads p : c
slide down are o
potential)
(b) total angular momentum and total energy.
(c) angular velocity and moment of inertia about
the axis of rotation.
about the axis of rotation. (1T 2K]
22. A horizontal circular plate is rotating about a
vertical axis passing through its centre with an angular
velocity @, A man sitting at the centre having two
moment of inertia of the system doubles. If the kinetic
energy of the system is K initially, its final kinetic
energy will be
(@) 2K

located at A. The triangle is set rotating about the
and the other along AC as
(a) angular velocity and total energy l(kineh'c and
(d) total angular momentum and moment of inertia
blocks in his hands stretches out his hands so that the
(c) K

(b) K/2

T (@d) K/4 (11T 04]
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23. A child is standing with folded hands at the
centre of a platform rotating about its central axis. The
kinetic energy of the system is K. The child now
stretches his arms so that the moment of inertia of the
system doubles. The kinetic energy of the system now is

(@)2K (b) K/2

(c)K/4 (d) 4K [IIT 04)

24. A small object of uniform density rolls up a
curved surface with an initial velocity v. It reaches up
to a maximum height of
§——2 with respect to the
g
initial position. The objectis  -°

(a) ring (b) solid sphere

(c) hollow sphere (d) disc. [T 07)

25. A circular platform is free to rotate in horizontal
plane about a vertical axis passing through its centre. A
tortoise is sitting at the edge of the platform. Now, the
platform is given an angular velocity @,. When the
tortoise moves along a chord of the platform with a
constant velocity (with respect to the platform), the

angular velocity of the platform w(t) will vary with
time ¢ as [TIT 02]

@) ety ®)

o f— Wy

()

o(f)
@y 0y
t t

26. A piece of wire is bent in the shape of a parabola
y = kx” (y-axis vertical) with a bead of mass m on it. The
bead can slide on the wire without friction. It stays at
the lowest point of the parabola when the wire is at
rest. The wire is now accelerated parallel to the x-axis
with a constant acceleration a. The distance of the new
equilibrium position of the bead, where the bead can
stay at rest w.r.t. the wire, from the y-axis is

L3 by
(a) o (b) ng
2a
(c) — (d) —
gk 48" [T 09]

A MULTIPLE CHOICE DUESTIONS WITH

ONE OrR MDRE THAN ONE CORRECT
ANBWER

27. A ball hits the floor and rebounds after an
inelastic collision. In this case

(a) the momentum of the ball just after the collision
is the same as that just before the collision

(b) the mechanical energy of the ball remains the
~ same in the collision

(c) the total momentum of the ball and the earth is
conserved

(d) the total energy of the ball and the earth is
conserved. [1IT 86]

28. A shell is fired from a cannon with a velocity
v (m/sec) at an angle O with the horizontal direction. At
the highest point in its path it explodes into two pieces
of equal mass. One of the pieces retraces its path to the

cannon and the speed (in m/sec) of the other piece
immediately after the explosion is

(@) 3vcosO (b)2vcosH

(d) \/Evcosﬁ
2 [IIT 86)

29. A uniform bar of length 6z and mass 8mlies on a
smooth horizontal table. Two point masses m and 2m
moving in the same horizontal plane with speed 2o
and v respectively, strike the bar [as shown in figure]

2m

(o) gvcosﬁ

; p—3a ——
C

L . | 8m
- @ sh— 27—

12::
m
and stick to the bar after collision. Denoting angular

velocity (about the centre of mass), total energy and

centre of mass velocity by o, Eand U respectively, we
have after collision

3v
» =0 b
(a) e (b) o= 5a
v _ 3mv?
(epmr= 5a @ E= 5 (LT 91]

30. Two blocks A and B each of mass m are
connected by a massless spring of natural length Land
spring constant k. The blocks are initially resting on a
smooth horizontal floor with the spring at its natural
length, as shown in the figure. A third identical block
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C, also of mass m, moves on the floor with a speed v
along the line joining A and B and collides elastically
with A. Then

U L
C A B

(@) the kinetic energy of the A-B system, at maxi-
mum compression of the spring, is zero.

(b) the kinetic energy of the A-B system, at maxi-
mum compression of the spring, is mo? | 4

(c) the maximum compression of the spring is

vy/(m/ k)
(d) the maximum compression of the spring is
vy/(m/2k). [1IT 93]
31. A tube of length Lis filled completely with an
incompressible liquid of mass Mand closed at both the
ends. The tube is then rotated in a horizontal plane
about one of its ends with a uniform angular velocity
©. The force exerted by the liquid at the other end is

2
(a) M;) L (b) Mo’L
ML Mo* P
© 4 @) 2 [ITT 92]

32. The moment of inertia of a thin square plate
ABCD, as shown in the figure, of uniform thickness
about an axis passing through

the centre O and perpendicular 4 - Bl -
to the plane of the plate is
(@) L+ 1, . .3
(b) L+1,
© L+, Y. 3

@ L+ L+L+1,
where I, I, I; and I, are respectively the moments of
inertia about axis 1, 2, 3 and 4 which are in the plane of
the plate. (11T 92]

33. Let I be the moment of inertia of a uniform
square plate about an axis AB that passes through its
centre and is parallel to two of its sides. CDis a line in
the plane of the plate that passes through the centre of
the plate and makes an angle 8 with AB. The moment
of inertia of the plate about the axis CDis then equal to

(@) 1 (b) Isin*@

(oI cos20 (d) I cos*0/2

34. A solid cylinder is rolling down a rough
inclined plane of inclination 6. Then

(a) the friction force is dissipative

[IIT 98]

(b) the friction force is necessarily changing
(c) the friction force will aid rotation but hinder
translation.

(d) the friction force is reduced if 8 is reduced.

- (T ]

35. If the resultant of all the external forces acting
on a system of particles is zero, then from an inertial
frame, one can surely say that

(a) linear momentum of the system does not

change in time

(b) ‘kinetic energy of the system does not change in

time

(c) angular momentum of the system does not

change in time

(d) potential energy of the system does not change

in time. (1T 09]

36. A sphere is rolling without slipping on a fixed
horizontal plane surface. In the figure, A is the point of
contact, B is the centre of the sphere and C.is its
topmost point. Then

= =

@) VoV, =2(V;= V)

—

(©) Vo=V, 1=21V,-V, |

’
1
S

- - —
(@) V=V, 1=4 1Vl
37. A point mass of 1 kg collides elastically with a
stationary point mass of 5 kg. After their collision, the
1 kg mass reverses its direction and moves with a
speed of2 ms™ 1 Which of the following statement(s) is
(are) correct for the system of these two masses ?
(a) Total momentum of the system is 3 kg ms~
(b)) Momentum of 5 kg mass after collision is
4 kg ms!
(c) Kinetic energy of the centre of mass is 0.75]

(d) Total kinetic energy of the system isd]
[1IT 2010

[IIT 09]

1

38. A thin ring of mass 2 kg and radius 0.5 m is
rolling without slipping on a horizontal plane with
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velocity 1 m/s. A small ball of mass 0.1 kg, moving with
velocity 20 m/s in the opposite direction, hits the ring
at a height of 0.75 m and goes vertically up with
velocity 10 m/s. Immediately after the collision

(@) the ring has pure rotation about its stationary
M

(b) the ring comes to a complete stop
(c) friction between the ring and the ground is to

the left
(d) there is no friction between the ring and the
ground. [T 2011)

A REASDNING TYPE

Instructions. This question contains statement — 1
(assertion) and statement — 2 (reason). Of these statements,
mark correct choice if

(a) statements — 1 and 2 are true and statement — 2
is a correct explanation for statement — 1.

(b) statements — 1 and 2 are true and statement - 2 is
not a correct explanation for statement — 1.

(c) statement -1 is true, statement — 2 is false.
(d) statement - 1 is false, statement — 2 is true.

39.Statement - 1: If there is no external torqueon a
body about its centre of mass, then the velocity of the
centre of mass remains constant.

Statement - 2. The linear momentum of an isolated
system remains constant. [IIT 07]

40. Statement - 1 : Two cylinders, one hollow
(metal) and the other solid (wood) with the same mass
and identical dimensions are simultaneously allowed
to roll without slipping down an inclined plane from
the same height. The hollow cylinder will reach the
bottom of the inclined plane first.

Statement - 2 : By the principle of conservation of
energy, the total kinetic energies of both the cylinders
are identical when they reach the bottom of the incline.

V4 CoMPREHENSIEN BASED FUESTIONS

PARAGRAPH FOR QUESTION NOS. 41 ToO 43

Two discs Aand Bare mounted coaxially on a vertical
axle. The discs have moments of inertia I and 2]
respectively about the common axis. Disc A is imparted
an initial angular velocity 2 w using the entire potential
energy of a spring compressed by a distance x,. Disc B
is imparted an angular velocity @ by a spring having
the same spring constant and compressed by a distance
x,. Both the discs rotate in the clockwise direction.

Read the passage given
following questions

41. The ratio X /x2 is

(@) 2 (b) 1/2
(c) V2 (@) 1/2 (1T 07]

42. When disc Bis brought in contact with disc A
they acquire a common angular velocity in time t. The
average frictional torque on the disc by the other
during this period is

above and answer the

21w 9lw
28 1) et
@3 Ly
91w 3w
o) —= d) —
© 4t @ 2t [IIT 07]

43. The loss of kinetic energy during the above
process is

Io? los?
- by S
(a) 5 (b) 5
Iw? Io?
o dy 22
© 4 (@) 6 [IIT 07)

PARAGRAPH FOR GQUEsSTION NOs. 44 TO 46

A uniform thin cylindrical disk of mass M and radius R
is attached to two identical massless springs of spring
constant k which are fixed to the wall as shown in the
figure.The springs are attached to the axle of the disk
symmetrically on either side at a distance d from its
centre. The axle is massless and both the springs and
the axle are in a horizontal plane. The unstretched length
of each spring is L The disk is initially at its equili-
brium position with its centre of mass (CM) at a
distance Lfrom the wall. The disk rolls without slipping

2 A
with velocity V; = V1. The coefficient of friction is M.

yA

Vo
R -

- X

Read the passage given above and answer the
following questions

44. The net external force acting on the disk when

its centre of mass is at displacement x with respect to
its equilibrium position is

(a) —kx (b) —2kx
2kx 4kx
© _T @ —T [1IT 09)
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45. The centre of mass of the disk undergoes simple
harmonic motion with angular frequency o equal to

k 2k
2k 4k
(c) ﬁ (d) m

46, The maximum value of Vo for which the disk

(IIT 09]

will roll without slipping is

M M
(@) ug]/? (b) us,/ﬂ

3IM 5M
(c) “‘WT (d) IJS’\‘E(‘

[ITT 09]

N INTEGER ANSWER TYPE

47. Four solid spheres each of diameter /5 cm and
mass 0.5 kg are placed with their centres at the corners
of a square of side 4 cm. The moment of inertia of
the system about the diagonal of the square is
Nx10~* kgm? Find N. (IIT 2011]

#8. A binary star consists of two stars
A(Mass 2.2 M,) and B(Mass 11 M), where M, is the
mass of the sun. They are separated by distance d and
are rotating about their centre of mass, which is sta-
tionary. Find the ratio of the total angular momentum
of the binary star to the angular momentum of star B
about the centre of mass. [1IT 2010]

Answers and Explanations

1. (a) The positions of different masses are m(—a,a),
m(a,a), m(0,0), m(0,—a) and 6m(0,0).
m(a)+ m(a)+ m(0)+ m(—a)+6m(0) a
- m+ m+ m+m+6m =E

Yem

2. (d) No external force is acting on the centre of
mass. It remains at rest. The speed of CM is zero.
mo; +mu, 10x14+4x0

m+m  4+10

4. (a) As the isolated particle is initially moving along
x-axis, so there is no motion along y-axis. CM should
remain stationary along y-axis even after explosion.

=10ms !

3. () vy =

ny +n,
But Yeu =0
myy +mpy, =0
ny m/ 4
=——1 y =- 15=-5 cm.
or yZ )112 yl 3m/4 X cm

Thus the larger fragment will be at y =-5 cm.

5. (c) Only the linear velocities are exchanged. The
two spheres cannot exert torques on each other, as
their surfaces are frictionless, and so that angular
velocities of the spheres do not change.

w, =0 and @, =0.

6. (b)

Angular momentum

=Mement of momentum
L=muvx h = constant

As the particle moves, mv and h all remain
unchanged.
7.() Y

When the particle is at its maximum height,

L= Horizontal component of momentum
x maximum height

2. .2ar0
= mv cos45° x fs—m4—5
28
0?1 mo°

1
=MUIX —=X —X—=—F7.
" ﬁxlgx2 442g

8. (a) In uniform circular motion, centripetal force
acts towards the centre. Torque due to such a force
about the centre is zero. Hence angular momentum is
conserved about the centre of the circle.

9. (b) L=7x 7 =m(rxv)

As the particle has decreasing linear speed (7'), so
IL | also decreases i.e., L is not conserved. Option (a) is
not correct.

Direction of (7x7"), hence the direction of L

remains the same. Option (b) is correct.
As the particle is confined to rotate in a circular path,
it cannot spiral towards the centre. Option (c) is incorrect.
As the particle has a decreasing speed, it must have
a transverse acceleration in addition to the centripetal
acceleration. Option (d) is in correct.
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10. (c) When force F is applied, the normal reaction
N of the floor shifts to the right. The cube topples

when N reaches the edge. AN
Consider torque about O. F
- Fx L=mgx 21’ T
A
or F=18 h ¢
2 mg

11. (b) In pure rolling, instan- taneous velocity at
the lowermost point O is zero. In the figure shown,
CP =CQ. Velocity of any point on the disc, v=rw,
where ris the distance of the point from O.

Now

OP>0C>0Q

or >r 2>r

P>t
Up > T >,
12. (d) Mass of the ring,
M=pL
If R is the radius of the ring, then
L=2nR
L
2
M.L of the ring about a diameter through O and
parallel to XX/,

or

1
2

By parallel axes theorem, moment of inertia about
XX' will be

2
Ip=-MR

.= lo + MR? = MR® + MR?
=g —x pLx

L2
2 2 (2_7:)
13. (a) Mass of complete disc =4M

M.L of whole disc about the given axis,

I= %(41\4):{2 -2 MR?

3 _3p

MR? = .
8>

M.L of quarter section of the disc,

r=1 1 MR?

4

14. (a) Refer to the solution of Problem 17 on
page 7.67.

15. (b) MLL of the solid sphere about a diameter,
1=2 MR?
5

M.L of the disc about an axis through its edge and

perpendicular to its plane (from parallel axes theorem)
is

1=M—'2+Mr2
2
2 mr2 = M2 | 2
5 2
2
or r=——R.
V15

- 16. (c) Let the required point be located at a distance
x from 0.3 kg mass.

® -

0.

w

kg

M.I. about an axis through O,
[=03x%+0.7(1.4—x)?

Work done,
W= L je?
2
W will be minimum when [ is minimum.
a_y
dx

2x03x-2x0.7(14-x)=0
03x+0.7x=0.7x1.4
x=0.98 m.
Ltot= Lfran+ Lror
= MuR + lo
= M(R)R +%MR2m

17. (c)

3

2
18. (a) Clearly, (2 r)? =a®+a?

g
2

=Z MR%w».
or

p—a— M

Ca s

™y ©
O

_ As net torque about O is zero, angular momentum
is conserved,

>

(@)

L,=L

Mv(%): I{fm:(lc + Mo - :

R

3v
n=—.
4a

or

Ma*o
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19. (a) Applying conservation of angular
momentum about the centre of the rod,
L
o=].—
Iemo=1-3
2
or ZxM(—[-') m=Mv.£’
. 2 2
v
or 0=—.
L

20. (1) Whether the cylinder rolls up or down, the
CM and hence the point of contact of the cylinder has
an acceleration gsin® in the downward direction.
Hence in both cases, the force of friction acts up the
inclined plane.

21. (b) No external torque acts on system. Therefore,
angular momentum is conserved. Again, forces acting
on the system are conservative. Therefore, total mecha-
nical energy of the system is conserved.

22. (b) Initial K.E,, K =% I3
By conservation of angular momentum (I, = 1,0,)

when M.I is doubled, angular velocity is halved. So,

the final K.E. is
2
1 o, 11 2 K
K=-21)-=2]| = I
L 0)[2]

=277 0% "7
23. (b) Same reasoning as in the above problem.

24. (d) Loss in K.E. = Gain in P.E.
1 1

EMU(ZZM +EICM‘°2 = Mgh
2 2

1 2 1 (UJ 3v

~Mvfy, A=l — | = Mg—

2 Moam* g tem(T ) = M8y
10\,,=%1th2

Clearly, the small object is a disc.

25. (b) Suppose initially the
tortoise is at A. Its distance from
the centre = OA = radius of the
platform. As the tortoise moves
along the chord AB, its distance
from the axis of rotation varies.
Let it be x at any instant £.

N
,

~—_ 0
By conservation of angular momentum,

m(OA)zo)O =m.x*®

(04)?

x2

@ aoc 1
x2

g (DO

Thus the variation of ® with x is non-linear. More-
over, then value of x first decreases, takes a minimum
value and then increases to maximum value (equals to
radius). Consequently, o first increases non-linearly,
takes a maximum value (at C) and again falls to
original value (at B). Hence option (b) is correct.

26. (I) In equilibrium,

Ncos8 = mg A
and Nsin8 = ma -
a g | —"
tan6 =— " z [,
g y=k< | N AJ
Given : ma
B N sinf)
& Ze¥ms
E =2kx
dx
dy .
But Fra Slope of parabolic curve =tan®
X
2kx =2 or reut,
g 28k

27. (c), (d) Option (a) is incorrect because after the
collision, momentum of the ball changes both in
magnitude and direction. Option (b) is also incorrect
because during collision some mechanical energy gets
converted into heat and sound.

Options (c) and (d) are correct.

28. (@) The shell follows a parabolic path. At the
highest point, it has horizontal velocity vcos®. After
explosion, one piece retraces its path with velocity
—vcosh. Let velocity of other piece be v'. Then
conservation of momentum,

2mx vcos® = m(—vcos0)+ m-v'
or v' = 3vcoshb.

29, (a), (¢), (d) Refer to the solution of Problem 8 on
page 7.65.

30. (b), (d) As a result of head-on collision between
Cand A, Cstops and A begins to move with speed v. It
compresses the spring L which pushes the block B
towards right. At maximum compression, A and B
both have same speed v/2 (from conservation of
momentum).

v/2

0000 8

e 2, v=0

L

A oooo] & o [
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Let x be the maximum compression of the spring,.

Then the K.E. of A-B system at maximum compression,

1 (v)z 1 (v)z mov?
=—m - +-ml - =—
2 \2) 2 \2 4
Again by conservation of mechanical energy,
1 2 1 4.1 5
—mv°=—mv" +—k
2 Ty

or lkJrz = lmz)2
2 4

’m
or X=v,/—.
2k

31. (a) Refer to the solution of Problem 5 on page 7.64.
32. (a), (b), (c) By symmetry,

IL=1, and I; =1,
By perpendicular axes theorem,

L=L+1,
and L=L+1,
On adding,
2I, =(L+ L)+(;+ 1)
=(L+L)+(;+13)
=2(L+ 1)
or Ib=5L+I

Hence options (a), {b) and (c) are correct.
33. (7) Let AB L ABand CD'1CD.

A
\ ‘-'D
\\B 4
aq .-
A B L
e
B D
By symmetry,

Lyg=14p and Iop =1.,p,

By perpendicular axes theorem, the M.I. about O,
perpendicular to the plane of the plate,

Iy=lLg+ 145 =Icp+Icp.

or ZIAB--ZICD
But IAB=I
ICD=I

This is independent of 6.
34. (c), (d) The component Mg sin 0 tends to slide the
point of contact down the inclined plane. The sliding

friction acts in its opposite direction. The cylinder rolls
because of friction. Thus frictional force aids rotation
but hinders translation.

Hence option (¢) is correct. If a . is the acceleration of
CM of the cylinder, then

Ma, = Mgsin® - f

or f=Mgsinb-Ma, (1)
¥ Cz 1+2 3
MR
2
=Z ¢sin®
3 %8

f = Mgsin®-Mx %gsine
or f= ;—Mg sin@
Clearly, if 8 is reduced, f also reduces. Hence option
(d) is correct.
35. (1) According to law of conservation of linear
—

momentum if F_, =0, then the linear momentum of the

system does not change in time. There may be external
forces acting due to which K.E. or P.E. or both may
change. Also, net force is zero does not mean net
torque is zero. So, angular momentum may change.
Hence only option (a) is correct.

36. (b), (c) The velocities at points A, Band C are as
shown

C “;c= 2‘75

-
= VB

Clearly, only options (b) and (c) are correct.



SYSTEMS OF PARTICLES & ROTATIONAL MOTION 7.97

37. (), (¢) 40. (d) From energy conservation
v=0 -1 2 2
v 2ms O v 1/2mv; +1/21 w° =mgh
o » O ¢ o [~ c
1kg 5kg 1kg Skg 0=v./R
Before collision After collision (IC)SOIJd < ( IC )‘houow
By conservation of linear momentum, Hence (V) id > (Y hotiow
a0 o Hence solid cylinder will reach the bottom first.
or v=-2+5¢ (i) 1, 1
As the collision is elastic, 41. () Clearly, Ekxl ) 1Qw)®
Y% 4
- = 1
Uy — U, and 5kr§=%(21)m2
or -2 g X
v-0 1-2.
" o x2
or 2+v' =0 ()]
On solving (i) and (ii), v =3ms™, ' =1ms~! 42. (a) By conservation of angular momentum,
Total momentum of the system (I+2N)o =120+2].0
=1%3+5x0=3kgms™’ il 4o
or W=—=— (1)
1x3+5x0 1 4 3] 3
demM =", 5 ~—omS : :
1+5 2 . Angular acceleration of disc B,
.. K.E. of the centre of mass Torque =
2 aga==—=—
=21x(1+5)2x(%J =0.75] ME o
1 o =ot+at =0+t (1)
Total KE. =—-x1x3%2=45] 21
2 From (i) and (ii),
Hence the correct options are (a) and (c). 2 .
38. (c) During collision, friction is impulsive. The STy
angular impulse created by the impulsive forces tends 2 I
to decrease the angular speed of the ring about O but or =35
the ring continues to rotate anticlockwise. Hence the _
friction between the ring and the ground at the point of 43. (b) Loss in K.E.
contact will act towards left. =K -K f
[Fat 2
1 2 1 2:| 1 (4&))
=(=-I2e) " +=Q2Na" |-=(I+2I) —
[2 Qo)+ @ {=o(1e21) <
I
3
_ 4. (d)
J,=1Ns P,
39. (d) The absence of external torque does not A
ensure the absence of external force. If external force is =g "
present, then the wvelocity of CM will not remain > f
constant. Thus statement — 1 is false.
The linear momentum of an isolated system Fot =2kx— f=ma
remains constant because no external force acts on T =
orque, fR=l.a

such a system. Thus statement — 2 is true.
Hence option (d) is correct. a=aR
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o
f= ICE 47.
0j|0|0)|9
1 5 1
=—mR*. — =—ma -
2 ] "
E, =2kx——ma=ma KDM.R
5 aHE
2kx = =ma \‘u"
4kx /’ \\RM‘E
ma=—— R N
A ' L
__4k—’ ,CJ
net ’ I_ a %
45. (d) —(2kx)R = Lo 2
3P I=2[%MR2)+2[%MR2+M[%) ]
2k.RB.R=EMR2a
m =EMR2+M112
u=—m9=—m29 5 2
N ﬁxlﬂ‘z +0.5%(4x1072)
_[E 5\ )
3 =1x107* +8x10™* =9x 10~ * kgm?
46. (a) But I = N x10™*kgm?
Hence, N=9
/—\‘m
48.
Yo 0[0j0]|6s6
lo. r 1
fS].'lN ) 1 T E .
L.a, © , ’ )
> 22M, - cM hv
a<"NR |
F Clearly 227 =11¢
umgR = n=5n
mR* /2 But rn+r=d
a, 2pg 5d d
£ = <=0 .
R "SR 5 h=" ad p=o
4kA <2
gﬁ"ac Hg Now L=lLo and L=lLo
ASZpg::XS =gpng h=£
L L
4k 3 ugM
VSA= [—x—2— 2 2
"SM =% _22 M,(5d/6) +111:Is(d/6)
T 11M,(d/6)
”ﬁﬂs\/; 55 11
i )

7 -36_ 36 _g
v(,:pg\ﬁ . | I
k 36



