Physics Formulas For Class 10 - Physics Formulas List

Vectors

Notation: $\vec{a} = a_x \,\hat{\imath} + a_y \,\hat{\jmath} + a_z \,\hat{k}$

Magnitude: $a = |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$

Dot product: $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = ab \cos \theta$

Cross product:

$$\vec{a} \times \vec{b} \xrightarrow{\vec{b}} \vec{a} \qquad \hat{k} \qquad \hat{j}$$

$$\begin{split} \vec{a}\times\vec{b} &= (a_yb_z-a_zb_y)\hat{\imath} + (a_zb_x-a_xb_z)\hat{\jmath} + (a_xb_y-a_yb_x)\hat{k} \\ |\vec{a}\times\vec{b}| &= ab\sin\theta \end{split}$$

Kinematics

Average and Instantaneous Vel. and Accel.:

$$ec{v}_{
m av} = \Delta \vec{r}/\Delta t,$$
 $ec{v}_{
m inst} = d\vec{r}/dt$ $ec{a}_{
m av} = \Delta \vec{v}/\Delta t$ $ec{a}_{
m inst} = d\vec{v}/dt$

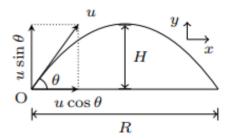
Motion in a straight line with constant a:

$$v = u + at$$
, $s = ut + \frac{1}{2}at^2$, $v^2 - u^2 = 2as$

Relative Velocity: $\vec{v}_{A/B} = \vec{v}_A - \vec{v}_B$

Projectile Motion

Projectile Motion:



$$x = ut \cos \theta, \quad y = ut \sin \theta - \frac{1}{2}gt^2$$

$$y = x \tan \theta - \frac{g}{2u^2 \cos^2 \theta}x^2$$

$$T = \frac{2u \sin \theta}{g}, \quad R = \frac{u^2 \sin 2\theta}{g}, \quad H = \frac{u^2 \sin^2 \theta}{2g}$$

Work, Power and Energy

Work: $W = \vec{F} \cdot \vec{S} = FS \cos \theta$, $W = \int \vec{F} \cdot d\vec{S}$

Kinetic energy: $K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$

Potential energy: $F = -\partial U/\partial x$ for conservative forces.

$$U_{\text{gravitational}} = mgh, \quad U_{\text{spring}} = \frac{1}{2}kx^2$$

Work done by conservative forces is path independent and depends only on initial and final points: $\oint \vec{F}_{\text{conservative}} \cdot d\vec{r} = 0.$

Work-energy theorem: $W = \Delta K$

Mechanical energy: E = U + K. Conserved if forces are conservative in nature.

Power $P_{\text{av}} = \frac{\Delta W}{\Delta t}$, $P_{\text{inst}} = \vec{F} \cdot \vec{v}$

Gravitation

Gravitational force: $F = G \frac{m_1 m_2}{r^2}$

Potential energy: $U = -\frac{GMm}{r}$

Gravitational acceleration: $g = \frac{GM}{R^2}$

Variation of g with depth: $g_{\text{inside}} \approx g \left(1 - \frac{2h}{R}\right)$

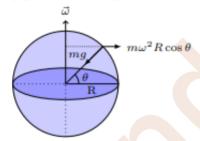
Variation of g with height: $g_{\text{outside}} \approx g \left(1 - \frac{h}{R}\right)$

Effect of non-spherical earth shape on g:

$$g_{
m at\ pole} > g_{
m at\ equator} \ (\because R_{
m e} - R_{
m p} \approx 21 \ {
m km})$$

Effect of earth rotation on apparent weight:

$$mg_{\theta}' = mg - m\omega^2 R \cos^2 \theta$$



Orbital velocity of satellite: $v_o = \sqrt{\frac{GM}{R}}$

Waves Motion

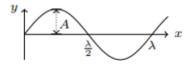
General equation of wave: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$.

Notation: Amplitude A, Frequency ν , Wavelength λ , Period T, Angular Frequency ω , Wave Number k,

$$T = \frac{1}{\nu} = \frac{2\pi}{\omega}, \quad v = \nu\lambda, \quad k = \frac{2\pi}{\lambda}$$

Progressive wave travelling with speed v:

$$y = f(t - x/v), \rightsquigarrow +x; \quad y = f(t + x/v), \rightsquigarrow -x$$



Progressive sine wave:

$$y = A\sin(kx - \omega t) = A\sin(2\pi (x/\lambda - t/T))$$

Sound Wave

Displacement wave: $s = s_0 \sin \omega (t - x/v)$

Pressure wave: $p = p_0 \cos \omega (t - x/v), \ p_0 = (B\omega/v)s_0$

Speed of sound waves:

$$v_{\rm liquid} = \sqrt{\frac{B}{\rho}}, \quad v_{\rm solid} = \sqrt{\frac{Y}{\rho}}, \quad v_{\rm gas} = \sqrt{\frac{\gamma P}{\rho}}$$

Intensity: $I = \frac{2\pi^2 B}{v} s_0^2 \nu^2 = \frac{p_0^2 v}{2B} = \frac{p_0^2}{2\rho v}$

Standing longitudinal waves:

$$p_1 = p_0 \sin \omega (t - x/v), \quad p_2 = p_0 \sin \omega (t + x/v)$$
$$p = p_1 + p_2 = 2p_0 \cos kx \sin \omega t$$

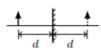
Reflection of Light

Laws of reflection:

 $\begin{array}{c} \text{normal} \\ i \\ r \end{array} \text{reflected} \quad (i)$

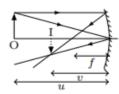
Incident ray, reflected ray, and normal lie in the same plane (ii) $\angle i = \angle r$

Plane mirror:



(i) the image and the object are equidistant from mirror (ii) virtual image of real object

Spherical Mirror:



- 1. Focal length f = R/2
- 2. Mirror equation: $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$
- 3. Magnification: $m = -\frac{v}{u}$

Heat and Temperature

Temp. scales: $F = 32 + \frac{9}{5}C$, K = C + 273.16

Ideal gas equation: pV = nRT, n: number of moles

van der Waals equation: $(p + \frac{a}{V^2})(V - b) = nRT$

Thermal expansion: $L = L_0(1 + \alpha \Delta T)$, $A = A_0(1 + \beta \Delta T)$, $V = V_0(1 + \gamma \Delta T)$, $\gamma = 2\beta = 3\alpha$

Thermal stress of a material: $\frac{F}{A} = Y \frac{\Delta l}{l}$

Specific Heat

Specific heat: $s = \frac{Q}{m\Delta T}$

Latent heat: L = Q/m

Specific heat at constant volume: $C_v = \frac{\Delta Q}{n\Delta T}\Big|_V$

Specific heat at constant pressure: $C_p = \frac{\Delta Q}{n\Delta T}\Big|_p$

Relation between C_p and C_v : $C_p - C_v = R$

Ratio of specific heats: $\gamma = C_p/C_v$

Relation between U and C_v : $\Delta U = nC_v\Delta T$

Specific heat of gas mixture:

$$C_v = \frac{n_1 C_{v1} + n_2 C_{v2}}{n_1 + n_2}, \quad \gamma = \frac{n_1 C_{p1} + n_2 C_{p2}}{n_1 C_{v1} + n_2 C_{v2}}$$

Molar internal energy of an ideal gas: $U = \frac{f}{2}RT$, f = 3 for monatomic and f = 5 for diatomic gas.

Photoelectric Effect

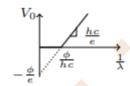
Photon's energy: $E = h\nu = hc/\lambda$

Photon's momentum: $p = h/\lambda = E/c$

Max. KE of ejected photo-electron: $K_{\max} = h\nu - \phi$

Threshold freq. in photo-electric effect: $\nu_0 = \phi/h$

Stopping potential: $V_o = \frac{hc}{e} \left(\frac{1}{\lambda} \right) - \frac{\phi}{e}$



de Broglie wavelength: $\lambda = h/p$