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                     UNIT 2 
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Representation of a Vector Field  

Sources and Sinks of a Vector Field 

2.3   Divergence of a Vector Field 

 

  

STUDY GUIDE           

 

 

 

 

 

In this unit, you will study two new concepts of vector differential calculus, namely, 

divergence and curl of vector fields. The concept of vector field may be new for you. 

So study it carefully. For calculating the divergence and curl of vector fields, you will 

need to use partial derivatives. These are discussed in the Appendix of Unit 1. You 

have to be well versed with these. You will also be using scalar and vector products. 

Therefore, you should revise scalar and vector products in the algebraic notation from 

Unit 2 of your Physics Elective BPHCT-131 as also in the Appendix A1 of this Block. 

You will learn how to apply the del operator more than once. So revise Sec. 1.3 of   

Unit 1. Practice will make you learn the concepts of this unit better. So you must work 

through all the examples, SAQs and Terminal Questions. 
 

2.4 Curl of Vector Field  

2.5 Successive Applications of the Del 

Operator 

2.6 Summary 

2.7 Terminal Questions 

2.8 Solutions and Answers 

 

“Mathematics is the tool especially suited for dealing with 

abstract concepts of any kind and there is no limit to its 

power in this field.” 
 

P.A.M. Dirac  
 

 

Field lines around an electric dipole. 

How will you find out if the field is 

spreading out or not? 
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2.1   INTRODUCTION 

In Unit 1, you have studied the concept of a scalar field and learnt how to 

calculate the gradient of a scalar field, which is related to its directional 

derivative. You now know that the directional derivative of a scalar field tells 

us how the scalar field changes in a particular direction. In this unit, you will 

learn the concept of a vector field and operations on vector fields. Vector 

fields are quite common in physics. One of the most common examples of a 

vector field is the velocity field. The gravitational force and the electrostatic 

force are also familiar examples of vector fields. In the previous unit you have 

also seen that the gradient of a scalar field is a vector function of position, and 

is, therefore, a vector field.  

We begin this unit by giving a formal definition of a vector field in Sec. 2.2. In 

Sec. 1.3, you have learnt about the del operator and its operation on a scalar 

field. In Secs. 2.3 and 2.4, you will learn two ways in which the del operator 

can operate on a vector field. These give us the divergence and curl of a 

vector field. The divergence and curl of vector fields are used extensively in 

physics. In this course you will learn that Maxwell’s equations in 

electromagnetic theory can be written in a compact form using the del 

operator. In Sec. 2.5, you will learn about successive applications of the del 

operator and product rules involving the del operator. 

 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 explain the concept of a vector field and identify vector fields;  

 calculate the divergence and curl of vector fields; and 

 solve problems based on successive applications of the del operator and 

product rules involving the del operator. 

2.2   VECTOR FIELD 

Have you been to a riverside on a calm sunny day and observed the flow of 

water? Did you observe a leaf floating near the river bank? You may have 

noticed that it moves very slowly since the water is almost at rest there. 

Suppose the leaf were dropped in the middle of the river. It would flow faster. 

Now suppose you want to describe the flow of water in the river. In principle, 

you could describe the motion of each water particle using Newton’s laws. But 

it would be a cumbersome task since the number of water particles in the river 

is very large.  

Another way to study the flow of water is to specify the velocity at each point 

in the river. That is, we describe the velocity that a small floating object (e.g., a 

leaf) would have at each point. Water particles at different points in a flowing 

river have different velocities. Note that the velocities could change with time. 

This is an example of a velocity field. Since velocity is a vector, the velocity 

field is a vector field. Velocity fields are used to describe the motion of a 

system of particles in space. 
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Refer to Fig. 2.1, where we have shown some more examples of velocity 

fields. From Fig. 2.1a, you can see the velocity field for a wheel rotating on its 

axle. The vectors represent the velocity at different points on the wheel and 

the length of the vector at each point represents its magnitude at that point. As 

you may recall from your school physics courses or from the course    

BPHCT-131 entitled Mechanics, the farther away we move from the centre of 

the wheel, the greater is the velocity. In Fig. 2.1b, we have shown the velocity 

field for water flowing through a pipe. You may note that the velocity of water 

is maximum at the centre of the pipe and minimum at its sides. In Fig. 2.1c, 

you can see the velocity field for air around a moving car. (Car manufacturing 

companies constantly strive to improve the design of their vehicle so as to 

increase efficiency through improved aerodynamics.) 

 

 

 

 

 

 

                    (a)        (b)                           (c) 

Fig. 2.1: Velocity field for a) a wheel rotating on its axle; b) water flowing 

through a pipe; (c) air around a moving car. 

You may recall from Sec. 1.2 of Unit 1 that a scalar field is a scalar function, 

which associates a scalar to every point in a specified region of space. 

Similarly, a vector field associates a vector to every point in a specified region, 

as you have seen in the examples of velocity fields. Let us now define a vector 

field. 

2.2.1    Definition of a Vector Field 

We can define the vector field as follows: A vector field F


 over a region R in 

space is a function which assigns a unique vector ),,( zyxF


 to every point in 

R. Sometimes we refer to vector fields as vector field functions. 

In a Cartesian coordinate system, we write a vector field in terms of the unit 

vectors ji ˆ,̂  and k̂  as 

 kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 (2.1) 

where ),,(),,,( 21 zyxFzyxF and ),,(3 zyxF are the component functions of 

F


. Note that each component function is actually a scalar field defined 

over the same region of space as the vector field F


. 

In Fig. 2.1, we have given some examples of a velocity field. Other vector 

fields that we come across in physics are force fields, and the electric and 

magnetic fields. Let us consider a few examples. 

 

y  

x  

y  

x  
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a) Gravitational Force Field  

Consider a particle of mass M located at the origin of the 3D Cartesian 

coordinate system (Fig. 2.2a). The gravitational force F


due to this 
particle on a particle of mass m located at the point ),,( zyx  is 

directed along the line joining the point ),,( zyx  to the origin and is 

given by 

  rF ˆ
)(

),,(
222 zyx

GMm
zyx





 (i) 

where r̂  is the unit vector along the line joining the origin to the point 

),,( zyx  pointing away from the origin. Note that ),,( zyxF


 is a vector 

field. The negative sign in Eq. (i) means that ),,( zyxF


 is an attractive 

force field. Since 

  
2/1222 )(

ˆˆˆ
ˆ

zyx

zyx

r 




kjir
r



 (ii) 

We can rewrite Eq. (i) as 

  )ˆˆˆ(
)(

),,(
2/3222

kjiF zyx
zyx

GMm
zyx 





 (iii) 

The component functions for the gravitational force field of Eq. (iii) are 

  
2/32221

)(
),,(

zyx

GMmx
zyxF


  (iv) 

  
2/32222

)(
),,(

zyx

GMmy
zyxF


  (v) 

  
2/32223

)(
),,(

zyx

GMmz
zyxF


  (vi) 

b) Electric Fields 

In your school physics, you have learnt about the electrostatic force 

(also called the Coulomb force) between charged particles at rest. 

Consider a charge Q located at the origin of the Cartesian coordinate 

system (Fig. 2.2b). The electrostatic force on a charge q located at a 

point (x, y, z) at a distance r


 from Q is 

 )ˆˆˆ(
)(

ˆ),,(
2/32222

kjirF zyx
zyx

kqQ

r

Qq
kzyx 





 (vii) 

where r̂  is the unit vector given by Eq. (ii). It points from the origin 

towards (x, y, z). The electrostatic force on charge q is directed 

towards the origin if Q and q are unlike charges (since in this case the 

force is attractive). It points away from the origin if Q and q are like 

charges (because in this case the force is repulsive). F


 is a force field. 

The electric field due to the charge Q at the point (x, y, z) is defined 

as   

 

XAMPLE 2.1 :  EXAMPLES OF VECTOR FIELDS 

 

 

 

Fig. 2.2: a) The 

gravitational force field 

due a mass M located 

at the origin of the 

Cartesian coordinate 

system on a mass m 

located at a distance r 

from it; b) The electric 

field due to a positive 

charge located at the 

origin. The magnitude 

of the field is greater at 

a point nearer the 

charge; c) The electric 

field due to a negative 

charge located at the 

origin. 
 

(c) 

Q  

 

x  
 (a) 

y  

 
M  

z  

m  

r̂  
 

F


 
 

(b) 

Q  
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Let us now summarize the concept of a vector field. 

  

 

 

 

 

 

 

 

 

In the previous unit you have learnt how scalar fields are represented by 

contour lines and contour maps. We now discuss how to represent a vector 

field. 

2.2.2    Representation of a Vector Field 

We know that a scalar field gives us the magnitude of a scalar function at 

every point in a region of space. However, a vector field gives both the 

magnitude and the direction of a vector function at every point in a specified 

region of space. So when you represent the vector field in a diagram, you 

must show both the magnitude and direction of the vector field at every point 

in the region. This can be done in two different ways: we can either use the 

vector field representation or the field lines representation. You will learn it 

now. 

In the vector field representation, we draw arrows to represent the vector at 

each point in the region in which the vector field is defined. We have shown 

this representation for the velocity fields in Fig. 2.1. The length of the arrow 

represents the magnitude of the field at a point and the sense of the arrow 

 )ˆˆˆ(
)(

ˆ),,(
2/32222

kjirE zyx
zyx

kQ

r

Q
kzyx 





 (viii) 

The electric field due to Q is also a vector field, which points away 

from Q if Q is a positive charge and towards Q if Q is a negative 

charge (Figs. 2.2b and c, respectively). 

c) Magnetic Fields 

 A magnetic field, such as the magnetic field due to a bar magnet or a 

current carrying wire, is another example of a vector field. You may 

have traced the lines of force for a bar magnet in your school physics 

laboratory using a compass needle. The alignment of the compass 

needle defines the direction of the magnetic field, as shown in Fig. 2.3. 

In some textbooks you 

may observe that the 

vectors are all of the 

same length but are 

colour coded to show 

relative magnitudes. 

 

 

 
 

 

 

 

 

 

 

 

VECTOR FIELD  
 
 

 A vector field is a function that assigns a unique vector to every point 

of a given region in space. 

 A three-dimensional vector field F


 can be written as 

 kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 (2.1) 

 The components of the vector field ),,( zyxF


, viz., ),,(1 zyxF , 

),,(2 zyxF  and ),,(3 zyxF  are scalar fields. These are defined over 

the same region as the vector field. 

 A vector field F


in two-dimensions can be written as 

jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 (2.2) 

 

 

Fig. 2.3: The magnetic 

field of a bar magnet as 

traced by a compass 

needle. 
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Represent the following vector fields diagramatically: 

a)  jF ˆ2


      b)   jiF ˆˆ xy 


 

SOLUTION  We draw the vectors at different points in space for both 

fields. 

a) Note that jF ˆ2


 is a constant vector field. At each point of the vector 

field, we just have to draw the vector ĵ2 . This vector field is shown in 

Fig. 2.4a for the first quadrant of the xy plane. You can see that all 

vectors are of the same length.  

b)   First let us write down the vectors at some representative points in the 

xy plane corresponding to the vector field jiF ˆˆ),( xyyx 


: 

x y ),( yxF


 x y ),( yxF


 

0 1 î  0 2 î2  
1 0 ĵ  2 0 ĵ2  

1 1 ji ˆˆ   0 2 î2  

0      1   î  2 0 ĵ2  

   1 0     ĵ  1 1 ji ˆˆ   

1 1 ji ˆˆ   1 1 ji ˆˆ   

This field is shown in Fig. 2.4b for some values of x and y. 

   

        

 

 

 

 

 

gives the direction of the field at that point. If we draw the vectors at a 

sufficient number of points in the region, we can visualize the vector field 

better. 

Now go back to Fig. 2.2a. The gravitational force field is represented by the 

vectors pointing toward the origin. Note that the force becomes weaker as we 

move away from the origin. That is why the arrows in the figure are longer at 

points closer to the origin and become shorter as we move away from it. 

Figs. 2.2b and c show the vector field representation for the electric field due 

to a charge Q located at the origin.  

In the example given below, we draw the vector field representation of some 

simple vector fields. 

   

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

In physics, we also use vector field lines to depict vector fields, particularly in 

electricity and magnetism. The concept of field lines was introduced in physics 

by Michael Faraday, in the context of electromagnetic induction. He called 

these lines of force (read the margin remark). 

A vector field line is a line such that the tangent drawn to it at any point gives 

the direction of the vector field at that point. How can you draw such a field 

line? Choose any point in the region in which the vector field is defined as a 

starting point. Walk a small distance in the direction of the vector field at that 

point and draw a line as you walk. From the new point, walk a short distance 

Faraday observed that 

iron filings arranged 

themselves around a 

bar magnet. He called 

these curved paths, the 

lines of force. He 

visualized a similar 

pattern of lines around 

positively and negatively 

charged bodies. For a 

bar magnet, the lines 

appeared to originate on 

its North pole and 

terminate on the South 

pole. So he imagined 

that the lines of force of 

an electric field would 

originate on a positive 

charge and end on a 

negative charge. 

 

 

 

 

 

 

 

Fig. 2.4: The vector fields 

a) ;̂2jF 


  

b) jiF ˆˆ),( xyyx 


 

(b) 

(a) 
x 

y 

x 

y 
XAMPLE  2.2 : REPRESENTING A VECTOR FIELD 
 



   

37  

 Unit 2                                       Vector Fields, Divergence and Curl  

in the direction of the vector field and draw a line again. As you continue this 

process, the tangent to the line at any point will give the direction of the vector 

field at that point. By choosing different starting points, you can generate a set 

of lines that represents the vector field. In Figs. 2.5a and b, we have shown 

the field lines for the electric field around a pair of charges and the magnetic 

field around a bar magnet. For electric and magnetic fields, the field lines are 

also called the lines of force. You should remember that these figures give 

us only a 2-dimensional view of the vector fields that actually exist in                 

3-dimensional space. 

Field lines are also used to represent velocity fields. The field lines for velocity 

fields are called streamlines (Fig. 2.5c). They represent the path followed by 

a particle whose velocity is given by the velocity field. 

 

 

 

 

 

 

(a)                 (b)                                                        (c) 

Fig. 2.5: a) The field lines around an electric dipole; b) the magnetic field lines 

around a bar magnet; and c) streamlines for velocity field of water 

flowing into a pipe. 

 

 

 

 

 

To be sure that you have understood the concept of a vector field and learnt 

how to represent it, you should answer the following SAQ. 

 

SAQ 1  -  Vector fields 

All particles of a fluid flow in one direction with a constant speed. What is the 

velocity field of the fluid? Draw the vector field lines representing this field. 

So far you have learnt the concept of vector fields and how to depict them. We 

now proceed to learn about another property of vector fields, namely, the 

presence of sources and sinks. It is useful for understanding the behaviour of 

several vector fields in physics. 

1. The tangent drawn to the field line at any point gives the direction of the 

vector field at that point.  

2. The field lines never cross each other. If the field lines were to cross, it 

would mean that the vector field points in two different directions at the 

point of intersection. This has no physical meaning. 

B 

 

A 

   

 

Field lines around a bar magnet 



  

38  

Block 1                                                                                       Vector Analysis 

2.2.3    Sources and Sinks of a Vector Field 

Refer to Fig. 2.5a again. It shows field lines for the electric field due to an 

electric dipole. The points A and B mark the location of the positive and 

negative charges, respectively. Note that all field lines diverge from point A 

and converge to point B. The point A is called the "source" of the vector field 

and B is called the "sink". 

Similarly, in fluid flow, a source in the velocity field is the point at which fluid 

enters the region, whereas sink is the point where fluid leaves the region. That 

is, particles flow out from a source and hence a source is a point of diverging 

flow. A sink is a point of converging flow because particles flow into it. 

In Example 2.1 you have seen that in electric fields, field lines diverge from a 

positive charge and converge on a negative charge. Hence for electric fields, 

a positive charge acts as a source and the negative charge as a sink. 

In Sec. 1.3 of Unit 1, you have learnt the concept of the gradient of a scalar 

field. It is the vector differential operator 























zyx
kji ˆˆˆ applied to a 

scalar field f and defined as:  

 
z

f

y

f

x

f
f














 kji ˆˆˆ


 

You now know that physically, the gradient of a scalar field defines the 

direction of its maximum rate of change. You may also like to know: How 

rapidly (at what rate) does a vector field change in a given region? Can we 

extend the analysis of Sec. 1.3.2 as such? The answer is: We cannot. But 

why? To answer this question, you may recall from Eq. (2.1) that each 

component of a vector field is a scalar field. There are two different ways in 

which the del operator can act upon the vector field. Each of these ways 

defines a type of derivative of the vector field. One of these involves the rate 

of change of a vector field component in its own direction such as 

zFyFxF  /,/,/ 321  and is called the divergence of the vector field. 

The other type of derivative is called the curl of the vector field. It involves the 

rate of change of the vector field components in directions other than their 

own, e.g., xFzFyF  /,/,/ 211 , and so on. We now discuss the 

divergence of vector fields. 

2.3   DIVERGENCE OF A VECTOR FIELD 

Consider a three-dimensional vector field function 

kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


                                         

where ),,(),,,( 21 zyxFzyxF  and ),,(3 zyxF are the component scalar 

functions. Its divergence is defined as: 

z

F

y

F

x

F
zyxzyx














 321),,(div),,(. FF


  (2.3) 

This expression “ .


” is read as “divergence of” or “del dot”. Note that the 

divergence of a vector field is a scalar field (read also the margin remark). 

This suggests that we can construct a scalar field from a vector field. 

In Sec. 1.3 you saw 

that the gradient of a 

scalar field is a vector 

field.  

 

In the field line 

representation of the 

vector field, some 

authors prefer to show 

sources by full circles 

and sinks by open 

circles. 
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For a two-dimensional vector field jiF ˆ),(ˆ),( 21 yxFyxF 


, the divergence is  

y

F

x

F
yx









 21),(F.


 (2.4) 

The meaning of the divergence of a vector field is contained in its name itself. 

Divergence of the vector field F  at a point is a measure of its spread from the 

point. To appreciate this, go through the following example carefully. 

 

 

 

 

 

 

 

 

 

 

 

 

While going through the solution of Example 2.3, you must have noted that 

the divergence of the vector field jiF ˆˆ yx 


 is positive, the divergence of 

jiF ˆˆ yx   is negative whereas jiF ˆˆ   has zero divergence. Plots of the 

two-dimensional vector fields of Example 2.3 are shown in Fig. 2.6. These 

plots suggest that the vector field jiF ˆˆ yx 


 has a source at the origin           

(Fig. 2.6a), jiF ˆˆ yx   has a sink at the origin (Fig. 2.6b) and the field 

jiF ˆˆ 


 has neither a source nor a sink (Fig. 2.6c). In general, a point of 

positive divergence is a source and point of negative divergence is a 

sink. 

 

 

 

 

 

 
 

        Fig. 2.6: Plots of the vector fields a) jiF ˆˆ yx 


;  b) jiF ˆˆ yx 


; c) jiF ˆˆ 


. 

 
 

Calculate the divergence of the following vector fields: 

(i) jiF ˆˆ yx 


  (ii) jiF ˆˆ yx 


  (iii)  jiF ˆˆ 


 

SOLUTION  We use Eq. (2.4) to calculate the divergence of these         

two-dimensional vector fields.  

(i) For jiF ˆˆ yx   from Eq. (2.4), we get 

   211. 










y

y

x

x
F     

(ii) For jiF ˆˆ yx   from Eq. (2.4), we get  

   211
)()(

),(. 










y

y

x

x
yxF  

(iii) For 
yx

yx










)1()1(
),(.,̂ˆ FjiF 0         

 

XAMPLE  2.3 : DIVERGENCE OF A VECTOR FIELD 
 

(a)   (c)  (b)  

x 

y
 

 

y
 

x 

y
 

x 
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A vector field F


 is called divergence-free or solenoidal in a given region, if 

for all points in that region 

  0.  F


 (2.5) 

The vector field jiF ˆˆ 


 shown in Fig. 2.6c is solenoidal at all points in the  

xy plane. The magnetic field is an example of a solenoidal vector field: 

  0 B


.  

Let us now summarize what you have learnt about the concept of divergence. 

 

 

 

 

 

 

 

 

 

 

 

 

Let us now calculate the divergence of a 3D vector field. 

 
 
 

Calculate the divergence of the vector field .
3r

r
E


  

SOLUTION  We define the given vector field  .
)(

k̂ˆˆ

2/32223 zyx

zyx

r 




jir
E


 

Then, using Eq. (2.3) with ,EF




 

we can write:  














2/3222 )(
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E


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
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
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
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

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yzyx
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x
       

           


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

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






2/3222 )( zyx

z

z
 (i) 

        

 

 

XAMPLE  2.4 : DIVERGENCE OF A 3D VECTOR FIELD  
 

Solenoidal comes from 

a greek word meaning 

a tube. 

 The divergence of a three-dimensional vector field 

kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 is defined as 

 
z

F

y

F

x

F
zyxzyx














 321),,(.),,(div FF


 (2.3) 

 The divergence of a two-dimensional vector field 

jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 is defined as 

 
y

F

x

F
yxyx









 21),(.),( div FF


 (2.4) 

 A non-zero value of the divergence at any point in a vector field 

signifies the presence of a source or a sink at that point: 0.  F


 for a 

source and 0.  F


 for a sink. 

 A vector field is called “divergence-free” or “solenoidal” if its 

divergence is zero: 0.  F


 (2.5) 

DIVERGENCE OF A VECTOR FIELD 
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We evaluate each derivative separately: 
 

     


































2/32222/3222 )(

1
).(

)( zyx
x

xzyx

x

x
 

                                                

















2/3222 )(

1
.

zyxx
x

 
 

        
2/5222

222

2/5222

2

2/3222 )(

2

)(

3

)(

1

zyx

xzy

zyx

x

zyx 








 (ii)  

Similarly 

2/5222

222

2/3222 )(

2

)( zyx

yzx

zyx

y

y 




















 

         (iii) 

and  
2/5222

222

2/3222 )(

2

)( zyx

zyx

zyx

z

z 



















         (iv) 

Substituting from Eqs.  (ii), (iii) and (iv) in Eq. (i) we get 

   

0
)(

)(2)(2
.

2/5222

222222







zyx

zyxzyx
E


        

 

 

 

 

 

 

  

 

   

   

 

 

 

 

 

Before we discuss the physical meaning of the divergence of a vector field, 

you may like to work out a few problems. 

 

SAQ 2  -  Divergence of a vector field  

a)  Determine the divergence of the following vector fields: 

 (i)  kji ˆ)(ˆ)(ˆ)( 222222 xzzyyx   

 (ii)  kji ˆˆˆ 232 zxyzy   

b)  Calculate the value of the constant a such that the vector field 

kjiu ˆ)(ˆ)2(ˆ)3( azxzyyx 


 is solenoidal. 

You may now like to know: What is the physical significance of the 

divergence of a vector field?  

The divergence of a vector field can be related to the flux of that vector 

field. You will study about the flux of a vector field in Unit 4. 

It is important that we understand another aspect of the divergence at this 

point. We have written down the expression for the divergence in the 

rectangular Cartesian coordinate system. However, since the divergence of a 

vector field can be interpreted as the flux of the vector field per unit volume, it 

means that: 
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In your physics courses you will often encounter quantities which involve the 

sum and products of vector fields or products of scalar fields and vector fields. 

You will be required to calculate the divergence of these quantities and for this 

you need to know the rules governing these operations. 

 

 

 

 

 

 

 

 

 

You may now like to work out an SAQ. 

SAQ 3  -  Identities on the divergence of a vector field 

For a scalar field f, show that )(.3)(. fff 


rr , where .ˆˆˆ kjir zyx 


 

 

Let us now study the concept of the curl of a vector field. 

 

2.4   CURL OF VECTOR FIELD 

Suppose that you are standing near a pond. Float a small cork with toothpicks 

(or needles) sticking out radially from it or a paddle wheel in the pond. You 

may observe that sometimes the cork or paddle wheel rotates. Does this tell 

us anything about the velocity vector field of the water on the surface of the 

pond? We can describe this observation in terms of the curl of the velocity 

vector field. If the cork rotates, it means that the velocity vector field has a 

non-zero curl at that point. Let us first try to understand, intuitively: What is 

the curl of a vector field? 

Let us consider the velocity vector field of water particles on the pond’s 

surface. To keep things simple, we consider a two-dimensional flow in the xy 

The value of the divergence of the vector field at any point is 

independent of the coordinate system. 

The proof of these 

identities is beyond the 

scope of this syllabus. 

 

We can write down the following rules for the divergence of the sum and 

product of vector fields F


 and G


, and the product of a scalar field  

),,( zyxff   with F


: 

 GFGF


..)(.   (2.6a) 

 FF


.)(.  kk      where k is a constant (2.6b) 

 )(.).()(. fff 


FFF  (2.6c) 

 

 

IDENTITIES INVOLVING THE DIVERGENCE OF A 
VECTOR FIELD 
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A 

B 

C 
D 

(b) (a) 

 

(c) 

plane. Imagine that we put a paddle wheel in the pond with its axis in the       

z-direction (Fig. 2.7). 

 

 

 

 

 

                                                                

 

Fig. 2.7: A paddle wheel in the vector field a) iv ˆ)1(  y ; b) jv ˆ)1(  x ; c) jiv ˆ ̂ . 

Let us first consider the velocity vector field given by iv ˆ)1(  y  shown in 

Fig. 2.7a. Note that this velocity vector field is directed along the x-axis and its 

magnitude increases with y. Since the velocity of water is greater at the top 

end of the paddle wheel (A) than at the bottom (B), the wheel will have a 

tendency to rotate in the clockwise direction, as shown in Fig. 2.7a.  

Next, let us consider the velocity vector field jv ˆ)1(  x . Here the field is 

directed along the y-axis and its magnitude increases with x. Since the 

velocity of water is greater at the right end of the paddle wheel (C) than at the 

left (D), the wheel will have a tendency to rotate counterclockwise as shown 

in Fig. 2.7b. For a constant velocity field jiv ˆˆ  , shown in  

Fig. 2.7c, the paddle wheel will not rotate at all.  

We use the concept of curl of a vector field to describe these three 

observations mathematically. 

The curl of a vector field is defined as follows: 

 

 

 

 

 

 

 

 

 

 

The expression “ F


curl ” is pronounced as F


curl  and “ F


 ” as “del cross F”. 

The curl of a two-dimensional vector field jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 is: 

The curl of the vector field 

 kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 is given by 

321

ˆˆˆ

curl

FFF
zyx 












kji

FF


 (2.7a) 

kjiFF ˆˆˆcurl 123123























































y

F

x

F

x

F

z

F

z

F

y

F
 (2.7b) 

 

 

 

 

 

 

CURL OF A VECTOR FIELD 

 

The vector field in    

Fig. 2.7a is a 

particular example of 

a vector field which is 

along the x-direction 

but the magnitude of 

the field increases 

with y. 

For three-dimensional 

vector fields the curl 

gives the net rotation of 

the field which would 

be about some axis. 

The axis may not be so 

easy to visualize.  
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 kFF ˆcurl 12



















y

F

x

F
 (2.8) 

Note that the curl of a two-dimensional field is normal to the field. If the field is 

in the xy plane, the curl of the field is along the z-direction. You can use           

Eq. (2.8) to obtain the curl of the vector fields depicted in Fig. 2.7.  

For  ,ˆ ,̂)1( kviv 


y   

for  kvjv ˆ ,̂)1( 


x  and  

for . ,̂ˆ 0vjiv


  

So the velocity vector fields in Figs. 2.7a and b have a finite non-zero curl and 

the vector field in Fig. 2.7c has a zero curl. Note that the paddle wheel turns 

anticlockwise if the curl is positive and clockwise if the curl is negative. So in 

the two-dimensional xy plane the curl of a vector field F


 is a measure of the 

tendency of the vector field to produce a rotation about the z-axis. You will see 

later in Example 2.6 that the angular velocity of rotation of a rigid body is 

proportional to the curl of the velocity vector field.  

A vector field with zero curl at every point is said to be an irrotational vector 

field. The gravitational force field and electric fields (Example 2.1, Fig. 2.2) 

are examples of irrotational fields. 

Although the expression for the vector product and the curl of a vector look 

similar, there are some important differences:  

 

 

 

 

 

 

In the following example we calculate the curl of three vector fields. 

 

 

 

  

 

 

  

 

 

1. F


  is not necessarily orthogonal to .F


 In general, it can lie at any 

angle to F


 or even be parallel to .F


 For any two-dimensional vector 

field, however, the curl of the vector field is always normal to the 

vector field.  

2. 


is a vector differential operator. It means that F


  is not the same 

as 


F  and .FF


  

 

 
 
 

Calculate the curl of the following vector fields: 

(i)    jiF ˆˆ xy 


 

(ii)   jiF ˆˆ yx 


 

(iii)  kjiF ˆˆˆ xzy zeyexe 


 

SOLUTION  (i) Substituting xFyF  21   and , in Eq. (2.8), we get:  

kkF ˆ2ˆ 


















y

y

x

x
       

XAMPLE  2.5 : CURL OF A VECTOR FIELD 
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The curl of this two-dimensional vector field is a constant vector in the  

z-direction. 

ii) Substituting yFxF  21  and  in Eq. (2.8) we get:  

   F


 0k



















 ˆ

y

x

x

y
 

 The curl of this two dimensional vector field is a null vector so the vector 

field is irrotational. 

ii) When we use Eq. (2.7a) with zy yeFxeF  21 ;  and ,3
xzeF   we get   

 
xzy zeyexe

zyx 












ki

F

ˆˆˆ j

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



















































 )()(ˆ)()(ˆ)()(ˆ yzxyzx xe

y
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x
ze

x
xe

z
ye

z
ze

y
kji

 

][ˆ][ˆ][ˆ yxz xezeye  kji    kji ˆˆˆ yxz xezeye   

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

The vector field of Example 2.5(i) is shown in Fig. 2.4b. It has a positive curl. 

As you can see in the figure, the field has the appearance of a whirlpool 

rotating anticlockwise. What is the divergence of this vector field? Let us 

calculate it using Eq. (2.4):  

0)()()ˆˆ(.. 








 x

y
y

x
xy kiF


 

So kiF ˆˆ xy 


 is an example of a vector field which has zero divergence 

and a finite (positive) curl. This is an example of a circulating field, which 

has no sources or sinks. 

On the other hand, the vector field of Example 2.5(ii) which is shown in          

Fig. 2.6a has zero curl and is an irrotational vector field. From the figure, it 

appears that this vector field has a source.  

What is the divergence of this vector field? Using Eq. (2.4) we can write 

2)()()ˆˆ(.. 








 y

y
x

x
yx kiF


 

So jiF ˆˆ yx 


 is an example of a vector field which has finite (positive) 

divergence and zero curl. This is an example of a diverging field that has  

no rotation. We also say that it has no circulation. 

Let us now summarise what you have learnt about the curl of a vector field. 
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In the next section, we establish some identities for the curl of vector fields. 

But before studying further, you may like to work out the following SAQ. 

 

SAQ 4  -  Curl of a vector field 

Determine the curl of the following vector fields: 

a) kjiF ˆ2ˆ2ˆ)2( 22 zyyzyx 


   

b) kjiF ˆˆ)sin(ˆcos xyzxyxz 


 

We now write down important identities for the curl of the sum and product of 

vector fields and the product of a scalar field and a vector field. 

 

 

 

 

 

 

 

 

 

We also add the following rule for the divergence of the vector product of the 

two vector fields because it also involves the curl of a vector field: 

 )(.)(.)(. GFFGGF


  (2.9e) 

The proof of these 

identities is beyond the 

scope of this course. 

 

For the vector fields F


 and ,G


 and the scalar field ),,( zyxff  : 

 GFGF


 )(  (2.9a) 

 FF


 kk )(                      where k is a constant (2.9b) 

 )()()( fff 


FFF  (2.9c) 

 FGGFFGGFGF


).().().()()(  .  (2.9d) 

 

IDENTITIES INVOLVING THE CURL OF A  
VECTOR FIELD 

 

 The curl of a three-dimensional vector field 

kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 is defined as 

       

321

ˆˆˆ

curl

FFF
zyx 












kji

FF


 (2.7a) 

        kji ˆˆˆ 123123





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


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




























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









y

F

x

F

x

F

z

F

z

F

y

F
 (2.7b) 

 The curl of a two-dimensional vector field 

 jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 is defined as 

 kFF ˆcurl 12



















y

F

x

F
                (2.8) 

 If the curl of the vector field is zero, i.e., 

 0F


   

the vector field is said to be “irrotational”. 

 

 

 

 

 

 

CURL OF A VECTOR FIELD 
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Let us now study some simple applications of these product rules. 

 
 

Consider a rigid body rotating about a fixed axis with a constant angular 

velocity 


, directed along the axis of rotation (Fig. 2.8). The velocity v


 of a 

particle on the rigid body is .r


  Here r


 is the position vector of the 

particle relative to the origin of the coordinate system located at some point 

on the axis of rotation. Calculate .v


  

SOLUTION  Since velocity v


 of a particle on the rigid body is given by 

r


 , we can write ).( rv


  To obtain the desired expression, 

we use Eq. (2.9d) for the curl of the cross product of two vector fields. 

Substituting F


by 


 and G


 by r


in Eq. (2.9d) we get 

)( r


  


).().().().(  rrrr   (i) 

The position vector is kjir ˆˆˆ zyx 


 and the angular velocity is 

.ˆˆˆ kji zyx 


 As the angular velocity  is a constant, all terms in  

Eq. (i)  which involve the derivatives of yx  ,  and z  are zero. For 

example:   

 














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


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
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




zyx
zyx kjikjir ˆˆˆ.)ˆˆˆ().(      

               0
























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z
z

y
y

x
x  (ii) 

Also 0r


 ).(   (iii) 

On combining Eqs. (i), (ii) and (iii), we get 

 rrr


).().()(    (iv) 

Now   


3).( 























z

z

y

y

x

x
r  (v) 

and )ˆˆˆ().( kjir zyx
zyx

zyx 
























   

               


 kji ˆˆˆ
zyx                                        (vi) 

The final expression for v


  is obtained by substituting Eqs. (v) and (vi) 

into Eq. (iv): 

 


23  v  (vii) 

So we can now write the angular velocity of the rigid body as the curl of the 

velocity as: 

 )(
2

1
v


  (viii) 

 

 

  

XAMPLE  2.6 : ROTATION OF A RIGID BODY 
 

Fig. 2.8: A rigid 

body rotating about 

an axis. 




 

r


 y  

x  
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Therefore, v


   describes the rate at which the body rotates about the 

axis of rotation. 

If v


 is a two dimensional velocity field describing fluid flow, instead of the 

velocity of the particles on a rigid body, we can say that v


  at any    

point ),( yx  in the field, is twice the angular velocity of an infinitesimal 

paddle wheel placed at the point ).,( yx  

 

 

 

 

 

 

 

 

Let us study another important example in physics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before you study the next section you may like to work out an SAQ. 

SAQ 5  -  Identities of the Curl Operator 

a)  If u


 and v


 are both irrotational, show that vu


  is solenoidal. 

b)  A vector function ),,( zyxf


 is not irrotational but its product with a scalar 

 function g (x, y, z) is irrotational. Show that .0)(.  ff


 

 
 

A central force field is a force field of the form .)( rF


rf  Determine .F


  

SOLUTION  In Eq. (2.9c), we replace f by )(rf  and kjir F ˆˆˆ by zyx 


 

to write: 

 ))(()()())(( rfrfrf 


rrr     (i) 

From Example 1.2 of Unit 1, you may recall that 

 r̂)(
dr

df
rf 


  and rr ˆr


     (ii) 

So we can write  0rrr










 ˆ)ˆ())((

dr

df
rrf    (iii) 

since .ˆˆ 0rr


  Further, you can show that 

 0

kji

r
















zyx
zyx

ˆˆˆ

     (iv) 

Using Eqs. (iii) and (iv) in Eq. (i), we get 

 0r


 ))(( rf        (v) 

Thus, a central force field F


 of the form rF


)(rf  is irrotational. 

 

 

 

 

XAMPLE  2.7 : CURL OF A CENTRAL FORCE FIELD 
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2.5   SUCCESSIVE APPLICATIONS OF THE DEL 
OPERATOR 

We now write down five basic identities involving repeated applications of the 

del operator. These are commonly used in physics: In Poisson’s equation and 

Laplace’s equation in electrostatics, electromagnetic wave equation and to 

describe conservative force fields. 

Since f


is a vector field, we can take its divergence and curl: 

i) Divergence of  )(.: ff 


 

ii) Curl of )(: ff 


 

Since F


.  is a scalar field, we obtain its gradient as 

iii) Gradient of F.


   : )( F.


  

Since F


 is vector field we can take its divergence and curl: 

iv) Divergence of F


 : )(. F


  

v) Curl of F


 : )( F


  

Thus, we can construct five different second order derivatives of scalar and 

vector fields. Let us consider them one at a time with examples. 

i) Divergence of f


 

 Using Eqs. (1.11a) and (2.3) we can write 

  













































z

f

y

f

x

f

zyx
f kjikji. ˆˆˆ.ˆˆˆ)(


 

                       
2

2

2

2

2

2

z

f

y

f

x

f














  

 or  

  ff
zyx

f 2

2

2

2

2

2

2

)(. 






























 (2.10a) 

The operator ).(2 


is called the Laplace operator and f2  is 

called the Laplacian of f. Notice that 2f is a scalar field. The Laplace 

operator plays an extremely important role in determining the charge 

density   (x, y, z) of a charge distribution which gives rise to an 

electrostatic potential . This is done by solving the following equation, 

known as Poisson’s equation: 

 
0

2




  

Conversely, given  (x, y, z), we can obtain  from this equation but the 

method of solving for  is beyond the scope of this course. You will learn 

to do so in a course on partial differential equations.  

To obtain   in a charge-free region we solve Laplace’s equation: 

 02   

In electromagnetic theory, you will come across the Laplacian of a 

vector field: F


2 . This means that F


2  is a vector quantity whose x, y 

We have presented the 

repeated applications of 

del operator in the light 

of their applications. 
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and z components are the Laplacians 2 Fx, 
2 Fy and 2 Fz, 

respectively, i.e. 

  kjiF ˆ)(ˆ)(ˆ)( 2222
zyx FFF 


 (2.10b) 

ii) Curl of f


 

 We can show that curl f


 is always zero: 

 

z

f

y

f

x

f

zyx
f


























kji ˆˆˆ

)(


 

     














































































x

f

yy

f

xz

f

xx

f

zy

f

zz

f

y
kji ˆˆˆ  

From the theory of partial derivatives we know that 
y

f

xx

f

y 















 

z

f

xx

f

z 














 , and so on. Therefore, it follows that 

 0)(  f


 (2.10c) 

You may think that 0)(  f


 is an obvious result: Isn’t it just ,)( f


 and 

the cross product of a vector with itself is zero. This reasoning is not correct. 

This is because 


is an operator and does not multiply in the usual way. The 

proof of Eq. (2.10c), in fact, depends on the relation 
y

f

xx

f

y 















, etc. 

There are some vector fields like the inverse square force field F


 (e.g., the 

gravitational force field or the electrostatic force field) which can be expressed 

as the gradient of the scalar field .)( 2/1222  zyxk  For such fields, 

using the identity (2.10c) you can see that 0F


 . Such vector fields with 

zero curl can be expressed as gradients of scalar fields and are called 

conservative fields. 

 

 

iii) Gradient of F


.   

 Using the definitions of 


 and the divergence, we can write 

 


















































z

F

y

F

x

F

zyx
zyxkjiF ˆˆˆ).(


 

     










































































z

F

yy

F

x

F

yz

F

xy

F

xx

F zyxzyx
2

2

2

2
ˆˆ ji  

                      





































2

2
ˆ

z

F

y

F

zx

F

z
zyxk  (2.10d) 

For a conservative vector field 0FF


,  everywhere. 
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This operator has no name of its own and is called the gradient of the 

divergence. It appears in the wave equation of an electromagnetic wave 

E


: 

  
tt 









JE
EE

2




0

2

00
2 ).(  

 where 0  and 0  are the permeability and permittivity of free space. 

 Remember that ).( F


  is not the same as f2  : 

  ).()(.2 F


 ff  (2.10e) 

iv) Divergence of )( F


  

 We can show that ).( F


  is zero. (2.10f) 

You can try this out for yourself in SAQ 6. 

 

 

 

v) Curl of )( F


  

 This can be expressed as the following: 

  FF.F


2)()(   (2.10g) 

Of course, F


2  has the meaning as explained in this section before              

Eq. (2.10b). 

Using Eq. (2.10g) you can express the electromagnetic wave equation 

as 

  
tt 









JE
E

2




0

2

00)(  

We can apply the del operator once more to get a few more identities 

but this is beyond the scope of this course.  

Let us understand some physical implications of what you have learnt in this 

section.  

 

 

 

 
 

 
 
 
 
 
 
 

You have seen in Eq. (2.10c) that the curl of the gradient of a scalar field 

is zero. This means that if a vector field is irrotational or has a zero 

curl, you may write it as the gradient of a scalar field. In other words, 

an irrotational vector field may be generated from a scalar field alone.   

Similarly, if a vector field is solenoidal, its divergence is zero. It can then 

be written as the curl of a vector field as you can see from Eq. (2.10f). 

Therefore, a solenoidal vector field can be generated from a vector field 

alone.  

The most general vector field, which has both a non-zero divergence and 

a non-zero curl, can therefore be written as the sum of a solenoidal field 

and an irrotational field (see margin remark). 

 

Do not equate 0).(  F


 with the property 0)(. BAA


 for vectors, 

as 


 is a differential operator. 

This is also called the 

Helmholtz Theorem.  

 



  

52  

Block 1                                                                                       Vector Analysis 

The magnetic field B


 is an example of a solenoidal vector field. Since 

0.  B


 we can write, using Eq. (2.10f) 

  AB


  (2.10h) 

The vector field A


 associated with the magnetic field is also called the vector 

potential. 

You may now like to work out an SAQ on the repeated applications of the del 

operator.  

 

SAQ 6  -  Successive applications of the Del Operator 

a)  Verify Eq. (2.10f). 

b)  For a function ,2xyz  show that  .)(. 2


 

We now summarise what you have learnt in this unit. 

2.6   SUMMARY 

  Concept Description 

Vector field   A vector field is a function that assigns a vector to every point of a given 

region in space. 

A three-dimensional vector field F


 can be written as follows: 

       kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 

The components of the vector field ),,( zyxF


 namely ),,(1 zyxF , 

),,(2 zyxF  and ),,(3 zyxF  are scalar fields defined over the same region 

as the vector field. 

A vector field F


in two-dimensions can be written as follows: 

              jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 

Divergence of a 

vector field 

 The divergence of a two-dimensional vector field 

jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 is defined as 

 
y

F

x

F
yxyx









 21),(.),( div FF


 

The divergence of a three-dimensional vector field 

kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 is defined as 

          
z

F

y

F

x

F
yxyx














 321),(),(div F.F


 

The divergence of a vector field gives the extent to which the vector field 

flow behaves like source or a sink at a given point. 

A non-zero value of the divergence at any point in a vector field signifies 

the presence of a source or a sink: 0.  F


 for a source and 0.  F


 for a 

sink. 

If the divergence of the vector field is zero, the vector field is called 

“divergence-free” or “solenoidal”.  
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Curl of a vector field 

 

 The curl  of a two-dimensional vector field jiF ˆ),(ˆ),(),( 21 yxFyxFyx 


 is 

defined as 

               kFF ˆcurl 12



















y

F

x

F
 

The curl of a three-dimensional vector field 

kjiF ˆ),,(ˆ),,(ˆ),,(),,( 321 zyxFzyxFzyxFzyx 


 is defined as 

               

321

ˆˆˆ

curl

FFF

zyx 












kji

FF


  

                    kji ˆˆˆ 123123























































y

F

x

F

x

F

z

F

z

F

y

F
 

If the curl of the vector field is zero, the vector field is called irrotational. 

Identities involving 

the divergence and 

curl of a vector field 

 For arbitrary vector fields F


 and G


, and a scalar field  f = f (x,y,z): 

 GFGF


..)(.    

 FF


.)(.  kk      where k is a constant  

 )(.).()(. fff 


FFF   

  GFGF


 )(   

  FF


 kk )(           where k is a constant 

  )()()( fff 


FFF  

  ).().().()).()( FGGFGFFGGF


  

Successive 

application of the Del 

operator 

 For an arbitrary vector field F


and a scalar field f 

 f
zyx

ff 























2

2

2

2

2

2
2).(


 

 0)(  f  

 0).(  F


 

   FF.F


2)()(   
 

2.7   TERMINAL QUESTIONS 

1. Determine the divergence and curl of the following vector fields 

 (i) jiu ˆˆ 222 yxyx 


 

 (ii) kjiu ˆ)(lnˆ)(lnˆ)(ln xyzxyx 

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2.  Calculate ,.
r

r



   given kjir ˆˆˆ zyx 


, .222 zyxr   

3. Determine whether the vector field 
2r

r
F


 is: (i) irrotational, (ii) solenoidal. 

4. Given ,ˆˆ4ˆ2 22 kjiu zxzy 


 calculate u.


  and u


  at the point            

(0, 1, 2). 

5. If a


 is a constant vector show that ara


2)(   

6,  Determine the value of the constant k for which curl of the vector field 

   jiF ˆ

)(

ˆ

)( 2/222/22 kk yx

x

yx

y








 

is (i) positive (ii) negative and (iii) a null vector. 

7. If kjiA ˆˆˆ2 22 xzyxyz 


 and xyzf   show that  ff 


.).( AA . 

8. Determine the values of a, b and c such that the vector field 

kjiA ˆ)2(ˆ)2(ˆ)3( zcyxzybxazyx 


 is irrotational. 

9. Prove that .0)(.  gf


 

10. Determine 2  for (i) )(ln 22 yx   and (ii) )( 222 zyxxyz   

2.8   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. We choose a constant velocity in the y-direction. Then the velocity vector 

at every point in the field is the same and given by jv ˆa


. We sketch the 

field in Fig. 2.9.  

 

 

 
 
 
 
 
 
 

Fig. 2.9: The vector field jv ˆa


 

2. a) We use Eq. (2.3) to evaluate the divergence of a three dimensional 

field.  

i) ]ˆ)(ˆ)(ˆ)[(. 222222 kji xzzyyx 

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  )()()( 222222 xz
z

zy
y

yx
x















     

  zyx 222   

  ii)  )ˆˆˆ(. 232 kji zxyzy 


   

    )()()( 232 z
z

xy
y

zy
x 














 

    
zxy 23 2       

 b)  For a vector field to be solenoidal, its divergence has to be zero. 

Imposing this condition on the given vector field we can write  

     0]ˆ)(ˆ)2(ˆ)3[(.  kji azxzyyx


 

     0)()2()3( 













 azx

z
zy

y
yx

x
 

     011  a    or   .2a  

 For the value of 2a  the divergence of the vector field is zero and 

the field is solenoidal. 

3. We use Eq. (2.6c) with kjirF ˆˆˆ zyx 


 to obtain the result.  

    )(.).().( fff 


rrr        (i) 

   )ˆˆˆ.(. kjir zyx 


 

             )()()( z
z

y
y

x
x 












   11 1 = 3  (ii) 

 Substituting Eq. (ii) in Eq. (i) we get  

 fff 


.3)(. rr  

4. a)  Using Eq. (2.7a) with ,2 and2,2 2
3

2
21 zyFyzFyxF   we  

get : 

      
22 222

ˆˆˆ

zyyzyx

zyx
















kji

F


    

                        kkji ˆ)1(ˆ)00(ˆ)44(ˆ  yzyz         

 b) We use Eq.  (2.7a) with  . andsin,cos 321 xyzFxyFxzF   

     

xyzxyxz

zyx

sincos

ˆˆˆ
















kji

F

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                             0cosˆcosˆ0ˆ  xyzxxz kji     

                        kji ˆcosˆ)(cosˆ xyzxxz      

5. a) To show that the vector field vu


  is solenoidal we must prove that the 

divergence of  vu


  is zero or   0.  vu


.  

  It is given that the vector fields u


 and v


 are irrotational, so 0u


  

and 0v


 . Using Eq. (2.9e) with uF


 and vG


  we get:  

         0...  vuuvvu


 since 0u


  and 0v


   

  b) Since f


g is irrotational 0f


 )(g . So, using Eq. (2.9c)  

               0fff


 ggg   

    )( gg 


ff  (i) 

  Taking the scalar product of Eq. (i) with f


, we have 

       ][.. gg 


ffff  (ii) 

  Since a scalar triple product of the kind )(. baa


 is always zero, the 

RHS of Eq. (ii) is zero. Hence   0 f.f


 

6. a) With kjiF ˆˆˆ
321 FFF 


, we can write using Eq. (2.7b) 

   kji ˆˆˆF 123123























































y

F

x

F

x

F

z

F

z

F

y

F
 

    
































































y

F

x

F

zx

F

z

F

yz

F

y

F

x

123123F


 

                      01
2

2
2

3
2

1
2

2
2

3
2
































yz

F

xz

F

xy

F

zy

F

zx

F

yx

F
 

   
yz

F

zy

F

xz

F

zx

F

xy

F

yx

F


























 1
2

1
2

2
2

2
2

3
2

3
2

and,  

 b) We first determine .F


 Using Eq. (1.11a) for the gradient of a scalar 

function with 2xyzf  we can write: 

    
kjiF ˆ)(ˆ)(ˆ)( 222 xyz

z
xyz

y
xyz

x 
















       

                        kji ˆ2ˆˆ 22 xyzxzyz     

  Next we find F


.  using Eq. (2.3): 

    
xyxyz

z
xz

y
yz

x
2)2()()().(. 22 

















F  (i) 



   

57  

 Unit 2                                       Vector Fields, Divergence and Curl  

  We next determine 2  :   

    

)()()( 2

2

2
2

2

2
2

2

2 xyz
z

xyz
y

xyz
x 












    (ii) 

  We now calculate the following partial derivatives:  

    
0)()(;)( 22

2

2
22 














yz

x
xyz

x
yzxyz

x
     (iii) 

    

.0)()(;)( 22

2

2
22 














xz

y
xyz

y
xzxyz

y
    (iv) 

 and   xyxyz
z

xyz
z

zxyxyz
z

2)2()(;2)( 2
2

2
2 














       (v) 

 Substituting from Eqs. (iii), (iv) and (v) in Eq. (ii) we get   

    xyxy 22002           (vi) 

 Comparing Eqs. (i) and (vi), we can see that  

    xy2).( 2 


   

Terminal Questions 

1. i)  We use Eq. (2.4) with  yxFyxF 2
2

22
1 ,     

    

)()(. 222 yx
y

yx
x










 F


222 xxy       

  Using Eq. (2.8) for the curl we get: 

    

kkF ˆ)22()()(ˆ 2222 yxxyyx
y

yx
x





















 

 ii) We use Eq. (2.3) with  xyzFxyFxF ln andln,ln 321  to get 

       )lnln(ln)ln(ln)(ln. zyx
z

yx
y

x
x















 F


.

111

zyx


 

  Using Eq. (2.7a) for the curl we get: 

    
zyxyxx

zyx
lnlnlnlnlnln

ˆˆˆ
















kji

F


         

                    





























xxy

1ˆ1ˆ1ˆ kji

 

ln (x y) = ln x + ln y 

ln (xyz) = ln x + ln y + ln z 

x
x

x

1
)(ln 




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2.  Here the given field is 
r

ˆzŷˆx kji
F





 where 2/1222 )( zyxr      

  

















 kjiF ˆ

)(

ˆ

)(

ˆ

)(
..

2/12222/12222/1222 zyx

z

zyx

y

zyx

x
    

           

















































2/12222/12222/1222 ))()( zyx

z

zzyx

y

yzyx

x

x
 

         (i)
 

 Let us evaluate each of the three partial derivatives separately.  

          
2/3222

2

2/12222/1222 )()(

1

)( zyx

x

zyxzyx

x

x 



















 (See MR) 

                   
2/3222

22

)(

)(

zyx

zy






  

    (ii) 

 Similarly,  

    
2/3222

22

2/1222 )(

)(

)( zyx

zx

zyx

y

y 



















    (iii) 

 and  



































2/3222

22

2/1222 )(

)(

)( zyx

yx

zyz

z

z
  

(iv)

   

 Substituting from Eqs.  (ii), (iii) and (iv) in Eq. (i) we get  

    
2/3222

222

)(

)(2
.

zyx

zyx




F


  

ryx

2

)(

2

2/1222



    

3. The field F


is written in Cartesian coordinates as 

    )(

ˆˆˆ

222 zyx

zyx






kji
F


 

 i) For an irrotational field 0F


 . Using Eq. (2.7a) we evaluate F


  
as:  

     

)()()(

ˆˆˆ

222222222 zyx

z

zyx

y

zyx

x
zyx
















kji

F


 

      

                   




















































222222
ˆ

zyx

y

zzyx

z

y
i     

                    




















































222222
ˆ

zyx

z

xzyx

x

z
j     

                       




















































222222
ˆ

zyx

x

yzyx

y

x
k    

Differentiate this as the 

product of two functions, 

as you have learnt to do 

for ordinary derivatives 

in your school calculus 

course. If you are still 

not clear about partial 

derivatives, please read 

the Appendix of Unit 1. 
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                



















22222222 )(

2

)(

2ˆ

zyx

yz

zyx

yz
i     

                   



















22222222 )(

2

)(

2ˆ

zyx

xz

zyx

xz
j     

                   



















22222222 )(

2

)(

2ˆ

zyx

xy

zyx

xy
k     

                0


     

  So, the vector filed F


 is irrotational at all points (because F


  is 

always zero), except at the origin. The field is not defined at the 

origin.    

 ii) To find whether the field is solenoidal, we must calculate F


. . Using 

Eq. (2.3) we get: 

          

















































222222222
.

zyx

z

zzyx

y

yzyx

x

x
F


 

                    




















2222

2

222 )(

2

)(

1

zyx

x

zyx
    

                       




















2222

2

222 )(

2

)(

1

zyx

y

zyx
  

                       




















2222

2

222 )(

2

)(

1

zyx

z

zyx
    

               
2222

222

222 )(

)(2

)(

3

zyx

zyx

zyx 





    

                
   222222

23

zyxzyx 



     

               
)(

1
222 zyx 

       

  Since the value of F


.  is not zero, the field is not solenoidal. 

4. To evaluate the divergence of the vector field kjiu ˆˆ4ˆ2 22zxzy 


 we 

use Eq. (2.3) 

      224)2(. zx
z

z
y

y
x 












 u


  

            zx2200  zx22   

 At point (0, 1, 2), 0.  u


.  

 To evaluate u


  we use Eq. (2.7a) as follows:  

   

2242

ˆˆˆ

u

zxzy

zyx 












kji
   )2(ˆ2ˆ)4(ˆ 2  kji xz    

                       kji ˆ2ˆ2ˆ4 2  xz   
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 At point (0, 1, 2) 

   kiu ˆ2ˆ4 


  

5. We can write the vector a


 as kjia ˆˆˆ
321 aaa 


 and the position vector 

r


as kjir ˆˆˆ zyx 


. We first calculate the cross product ra


 . Using    

Eq. (2.21b) from Unit 2, BPHCT-131, we get, 

         xayazaxayaza 211332
ˆˆˆ  kjira


 

 Using Eq. (2.7a) for the curl we get: 
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211332
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6. We use Eq. (2.8) with: 

   
2/221

)( kyx

y
F




    ; 

2/222
)( kyx

x
F


       

 















































2/222/22 )()(

ˆ
kk yx

y

yyx

x

x
kF


 

                    













 2/221)2/(22

2

2/22 )(

1

)()(

1

kkk yxyx

kx

yx
k


 

                   







1)2/(22

2

)( kyx

ky
 

                     
 























12/22

22

2/22 )(

)(

)(

2ˆ
kk yx

yxk

yx
k

 

k̂
)(

)2(
2/22 kyx

k






      

 Now, let us find the values of k for which  

(i) Curl F̂  is positive: 2020  kkF


    

(ii) Curl F


is negative: 2020  kkF


    

(iii) Curl F


 is zero: 2020  kkF


   

7.   Let us write an expression for ),.( 


A  using the rules of the scalar product.  

    

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
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

zyx
xzyxyz kjiji.A ˆˆˆk̂ˆˆ2 22


    

          
























z
xz

y
yx

x
yz 222

        

 This is now an operator and can act of on the scalar field f.  
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             )()()(2 22 xyxzxzyxyzyz      

              
223222 yzxyzxzy 

 

      (i) 

 Next we evaluate   :. f


A       

 We first determine f


using Eq. (1.11a). 

  

)(ˆ)(ˆ)(ˆ xyz
z

xyz
y

xyz
x

f













 kji


      

             .ˆˆˆ kji xyxzyz       

 f


 is a vector.  So )(. f


A   is evaluated as a scalar product as follows: 

  )ˆˆˆ).(ˆˆˆ2()(. 22 kjikjiA xyxzyzxzyxyzf 


   (ii)  

                        .2 22322 yzxyzxzy     

 Comparing Eqs. (i) and (ii) we  can see that : 

  )(.).( ff 


AA     

8.   Let us first find A


   using Eq. (2.7a): 

  
zcyxzybxazyx

zyx
223
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






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

kji

A


     

                      kji ˆ)1(ˆ)1(ˆ)1(  bac         (i) 

 For A


to be irrotational, .0A


  In other words, each component of 

A


   is zero. So from Eq. (i) we can write: 

  0)1( and0)1(,0)1(  bac  

 which gives us the values for a, b, c as: 

  1and 1,1  cba  

9.   Let us write f


A  and .g


B     

 Then  ).().( BA


 gf     

 Using Eq. (2.9e) with BGAF


 and   we get,  

  ).().().( BAABBA


        (i) 

 Replacing BA


and   by f


 and ,g


 respectively, in Eq. (i) we get 

  )]([.)]([.)(. gffggf 


     (ii) 

 But we already know that the curl of the gradient of scalar field is zero. So 

  0)()(  gf


       (iii) 

 Replacing from Eq. (iii) in Eq. (ii) we get:  .0).(  gf

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10. i) We have defined the operator 2 in Eq. (2.10a). Using that we can 

write: 
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  We first evaluate all the partial derivatives in Eq. (i).  
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  Similarly,  

     
22

22 2
)(ln

yx

y
yx

y 





   

     




















22

22

2

2 2
)(ln

yx

y

y
yx

y
 

222

2

22 )(

4

)(

2

yx

y

yx 



  (iii) 

  Substituting from Eqs. (ii) and (iii) into Eq. (i) we get: 
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 ii) We first rewrite the function   as  
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  Then  
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   Next we evaluate all the partial derivative of   in Eq. (i). 
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   Substituting the second order partial derivatives from Eqs. (ii), (iii) and 

(iv) in Eq. (i), we get: 

   

xyzxyzxyzxyz 66662    




