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In this unit, you will study surface integrals and volume integrals. You should study 

Appendix A2 of this block thoroughly before you start studying this unit so that you 

understand the methods of evaluating double integrals. Surface integrals are evaluated 

by reducing them to double integrals. Volume integrals are integrations over three 

variables. Line integrals are used in this unit in the applications of Stokes’ theorem. 

Therefore, revise how to evaluate line integrals from Unit 3. 

 

“Everyone now agrees that a physics lacking all connection 

with mathematics .... would only be an historical amusement, 

fitter for entertaining the idle, than occupying the mind of a 

philosopher.”  

Franz Karl 
Achard  

 

 

How do we calculate the electric field 

of a spherical charge distribution? We 

need to solve a volume integral for 

this.  
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4.1   INTRODUCTION 

The real world is three-dimensional and as such, most physical functions 

depend on all the three spatial variables (x,y,z), as you have seen in Units 1 

and 2. You have already studied how to integrate vector functions and fields 

with respect to one variable in Unit 3. However, in physics you often have to 

integrate functions of two and three variables, over planes and arbitrary 

surfaces and volumes in space. Such integrals are called multiple integrals. In 

this unit you will study multiple integrals and their applications in physics. You 

will also study two important theorems of vector integral calculus, namely, 

Stokes’ theorem and Gauss’s divergence theorem. 

In Appendix A2 of this block, you have learnt how to evaluate double integrals 

which are integration of functions of two variables and the regions of 

integration are on the coordinate planes. At the beginning of this unit in            

Sec. 4.2, we discuss some applications of double integrals in physics, like 

determining the volume of objects and their centre of mass, etc.  

In Unit 3, you have studied line integrals. Recall that in a line integral, the 

integration is over a single independent variable but the path may be an 

arbitrary curve in space. In Sec. 4.3 of this unit, you will study the surface 

integral of a vector field, in which the integration is over a two-dimensional 

surface in space. Surface integrals are a generalisation of double integrals. 

You will learn how to evaluate a special type of surface integral which is the 

flux of a vector field across a surface. This is used extensively in physics, 

e.g., in electromagnetic theory. You will learn about some other types of 

surface integrals as well. In Sec. 4.4, you will study Stokes’ theorem and its 

applications. Stokes’ theorem tells us how to transform a line integral into a 

surface integral and vice versa. 

In Sec. 4.5, you will learn how to evaluate a volume integral in which the 

integrand is a function of three variables. This is the same as triple integral. In 

Sec. 4.6 you will study Gauss’s divergence theorem and its application. The 

divergence theorem tells us how to transform a surface integral into a volume 

integral and vice versa.   

With this unit we will complete our study of Vector Analysis. In the remaining 

blocks of the course you will study the basic principles of electricity, 

magnetism and electromagnetic theory, where you will use the concepts and 

techniques of vector analysis covered in this block. 

Expected Learning Outcomes 
After studying this unit, you should be able to: 

 use double integrals to evaluate physical quantities;  

 calculate the flux of a vector field;  

 evaluate volume integrals of scalar and vector fields; 

 state Stokes’ theorem and Gauss’s divergence  theorem and write them 

in a mathematical form; and 

 solve problems based on these theorems and apply them to simple 

physical situations. 
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4.2   APPLICATIONS OF DOUBLE INTEGRALS 

In Appendix A2 you have studied that a double integral can be used to 

determine the area of a region and volume of a solid. In the example below, 

you will use the techniques for evaluating double integrals explained in A2.2 

and A2.3 to calculate area and volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that for y we write  

,22  xyx  and not 

.2 2xyx   This is 

because in the range  

.2,,21 2  xxx

 

 

 

 

i) Determine the area of the region R on xy plane bounded by the curves 

2 xy  and 2xy   by evaluating a double integral. 

ii) Calculate the volume of the solid below the surface defined by the 

function ,coscos4),( yxyxf   above the region R on the xy plane 

(z = 0), bounded by the curves 0,,0  yxx  and y  by 

evaluating a double integral. 

SOLUTION   i)  To determine the area of the region R, we have to 

evaluate 
R

dydx  where R is the region bounded by the curves 2 xy  

and 2xy   (Eq. A2.7). To carry out the double integration we first obtain 

the limits of integration for the variables x and y in the region R.  

To obtain the bounds (limits) on x, we solve the system of equations 
2xy   and ,2 xy  to get 

  2,122  xxx  

The region of integration R is then defined by the conditions 

21,22  xxyx  (read the margin remark) and we write 
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ii) The volume of the solid bound by the surface yxyxf coscos4),(   

and the region R defined by  yx 0;0  is (Eq. A2.3) 

  dxdyyxV  
 



0 0

)coscos4(  (i) 

 Integrating (i) over y we get: 

      dxyxyy





0
0

]sincos4[ dxx





0
0

]cos4[  (ii) 

 Next, integrating over x, we get 

      



0

]sin4[ xx  24  (iii) 

 

XAMPLE 4.1 : AREA AND VOLUME USING DOUBLE 

INTEGRALS 
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SAQ 1  -  Determining area and volume using double integrals 

a) Calculate the area of the region R bounded by the curves  2xy   and 

3xy   for 0;0  yx . 

b) Find the volume of the solid that lies below the surface of the curve  
4),( xyxf   and above the region in the xy plane bounded by the curves 

2xy   and .1y  

In physics, we also use double integrals to calculate several other quantities. 

We could use the double integral to determine the mass of an object like a 

planar lamina with a density function. We can also find the centre of mass of a 

laminar object or its moment of inertia about an arbitrary axis.  

Before you solve an example on the applications of double integrals, let us 

summarize some important applications:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We study one of these applications in the following example, where we 

determine the mass of an object using double integrals. 

 

 

 

 

 Centre of mass ),( cmcm yx  of a body with a density ),( yx  over a 

region R 

m

dydxyxy

y
m

dydxyxx

x R
cm

R
cm

 







),(

;

),(

     (4.1) 

 Mass m of a body with a density (mass/area) ),( yx over a region R 

 

R

dydxyxm ),(                    (4.2) 

 Moment of inertia of a body with a density ),( yx  over a region R 

about the x-axis, Ix and the y-axis Iy 

 

R

y

R

x dydxyxxIdydxyxyI ),(;),( 22            (4.3) 

 The average value  of a continuous function f(x,y) over a closed 

region R in the xy-plane is: 

  Rdydx
dydx

dydxyxf

R
R

R nintegratioofregiontheofArea;

),(

 



 (4.4) 

 

APPLICATIONS OF DOUBLE INTEGRALS 

 

 

A rectangular plate covers the region 30;40  yx  and has the mass 

density .),( yxyx   Calculate the mass of the plate. 

  

 

XAMPLE 4.2 :  APPLICATION OF DOUBLE INTEGRAL 
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In the following example we study one more application of a double integral in 

physics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SOLUTION   We use Eq. (4.2) to determine the mass of the body with 
the density function yxyx  ),( . R is defined by the equations 

,30;40  yx . So the mass 
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The temperature distribution at a point on a flat rectangular metal plate is 
22420),( yxyxT  ˚C. Calculate the average temperature on the 

plate, if the dimensions of the plate are described by 10;20  yx . 

SOLUTION  Using Eq. (4.4) we can write the average temperature on the 

plate as: 

 :;

),(

R
dydx

dydxyxT

T

R

R
avg




   10;20  yx        (i) 

Note that .units2platerrectangulatheofArea 
R

dydx  To evaluate 

the integral in the numerator of Eq. (i), we write: 
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(iii) 

Using Eqs. (i) and (iii), the average temperature is:  

            C
3

43
avgT  

XAMPLE 4.3 : AVERAGE VALUE USING DOUBLE 

INTEGRALS 
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In the next section, you will study surface integrals of vector fields. Just as line 

integrals are integrals along a curve, for surface integrals the region of 

integration is a surface. Surface integrals have several applications in physics. 

4.3   SURFACE INTEGRALS 

In physics, we come across many types of surface integrals. The commonest 

example of a surface integral is that of flux. You may recall the concept of 

electromagnetic induction from school physics. If we move a bar magnet M 

towards a circular coil C (Fig. 4.1), we know that an electromotive force is 

induced in the coil. This happens because the magnetic flux linked with the 

coil changes with time. The question is: How do we calculate the magnetic flux 

linked with the coil at a particular position? 
 
 
 
 
 
 
 

Fig. 4.1: Magnetic flux. 

To determine the magnetic flux, we have to integrate the magnetic field 

vector over the area enclosed by the coil. It is given by 

  

s

B dSB


.  (4.5) 

Here B


 is the magnetic field due to the magnet at the position of the element 

of area S


d  of the coil. Here S is the area of the coil (the shaded region in         

Fig. 4.1). 

This type of integral is called a surface integral. This involves the integral of a 

vector field over a surface. This is one type of surface integral. You will come 

across different types of surface integrals in physics as given below. 

 

 

 

 

 

 

 

 

Type (ii) is the most common form of surface integrals in physics. In this unit, 

we focus on this type of surface integral. It is the flux of vector field A


 through 

surface S.  

Types of Surface Integrals 

Analogous to line integrals, surface integrals may appear in the following 

different  forms: 

 i)  
s

dS


 (4.6a) 

 ii) 
S

dSA


.  (4.6b) 

 iii)  

S

dSA


 (4.6c) 

where  is a scalar field and A


, a vector field. 

Magnet 
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4.3.1 Flux of a Vector Field 

Let us consider a region of space in which we have a constant vector field 

iA ˆ),,( 0Azyx 


. Recall what you have studied about flux in Unit 1 of    

BPHCT-131. You saw that the flux of rainwater can be expressed as a scalar 

product of the vector field representing the flow of rain and an area vector 

representing the top surface of the bucket. 

Let us now learn how, in general, the flux of any vector field can be written as 

a surface integral. Suppose that A


 is a vector field associated with fluid 

flowing through any region. Let the magnitude 0A  of the vector field be the 

amount of fluid that crosses unit area in unit time. Then by definition, the flux 

of the field A


 through any area is the amount of fluid that flows through 

that area in unit time.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2: Flux of a vector field A


 )ˆ( ixA  through a surface a) SI perpendicular 

to A


; b) SII parallel to it. 

Thus, the flux of A


 through an imaginary square loop of area )( 2aS   placed 

in the yz plane (Fig. 4.2a) is defined as  

 2
0I aA  (4.7) 

The flux of A


 through the same area element placed in the xy plane              

(Fig. 4.2b) is 

 0II   (4.8) 

What happens if this imaginary loop is placed at an arbitrary angle to A


          

(Fig. 4.3a)? That is, it is neither parallel nor perpendicular to the flow.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.3: Flux of a vector field A


 through a surface S. The normal to the surface 

makes an angle  with the vector field. 

Since the loop (in yz 

plane) in Fig. 4.2a is 

perpendicular to fluid 

flow (along x-axis), fluid 

flows through it. Since 

the loop in Fig. 4.2b is 

parallel to the fluid flow, 

no fluid flows through it. 

 

The word flux is 

derived from the Latin 

word “fluxus” which 

means flow. The 

concept of flux is 

easier to understand in 

the context of fluid 

flow. You can of 

course determine the 

flux of any vector field. 
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Let   be the angle between the normal n̂  to the area element and the vector 

field A


 (Fig. 4.3b). We can resolve the vector field A


 into two components,  

 one perpendicular to S: )cos( 0 A  and  

 one parallel to it: ).sin( 0 A   

The only contribution to the flux is from the component of the field which is 

perpendicular to S, i.e. .cos0 A  So the flux is  

 cos0
2AaIII   

In vector notation, we can write this flux as the following scalar product: 

 S)ˆ.( nA


   (4.9) 

where n̂  is the unit normal to the surface S (Fig. 4.3b).  

We can write the area itself in terms of the normal vector n̂ as nS ˆS


. Then, 

the flux  of the vector field A


is: 

 SA


.   (4.10) 

Here both the vector field A


 and the unit normal are constant over the entire 

area element )(S


 over which we are defining the flux of the vector field. In 

general, the vector field may be a function of position (x, y, z). Also the surface 

itself may not be a plane, so the unit normal would point in different directions 

at different points on the surface. For example consider a part of the surface 

of a sphere (Fig. 4.4). In Fig. 4.4, we show the normal to this surface at 

different points. Note that their directions are different. How do we determine 

the flux in such cases? 

This is where we need the concept of a surface integral.  

4.3.2 Flux of a Vector Field as a Surface Integral 

Let us determine the flux of a vector field A


(x, y, z) over the surface S shown 

in Fig. 4.5.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: A surface S divided into n tiny area elements. The area of the i 

th
 element 

is ,iS it has a unit normal  in̂  and the vector field over this area 

element is a constant equal to iA


. 

The angle between 

n̂ and A


is . So     

n.A ˆ


 = ,cos0 A using 

the definition of the 

scalar product. Note 

that if we draw unit 

normal vectors to the 

surfaces SI and SII as 

well and use the 

expression   2ˆ anA.


we 

can get back Eqs. (4.7 

and 4.8) because 

0 for SI  and 

2/ for SII. 

iS  

 
in̂  

 
iA


 

 

Fig. 4.4: The unit 

normals to the three 

surface elements, 

S1, S2 and S3 are 

., ˆˆˆ 321 nandnn  

3n̂  

 
1n̂  

 

1S  

 

2n̂  

 

2S  

 
3S  

 



   

105 

 

 Unit 4                                                Surface and Volume Integrals 

We carry out the following steps: 

1.  We divide the surface into n tiny elements of area. The ith area element is 

ii nS ˆ
iS


 where in̂  is the unit normal to the surface for the area 

element iS  (Fig 4.5). 

2.  Assume that the vector field over each such area element is a constant 

iA


. 

3.  The flux through each element of area is .. iii SA


  

4.  The flux through the entire surface is then the sum of the flux through 

each of these elements of area. It is 

  



n

i

iinn

1

2211 ....... SASASASA


 (4.11) 

5.  In the limit as ,n we can write flux as an integral over the surface S: 

  





S

n

i

iin dSASA


..lim

1

  (4.12) 

where nS ˆdSd 


is the infinitesimal element of area on this surface.  

If the surface is a closed surface (like that of a sphere), we put a small circle 

on the sign of the integral and write flux of A


 as 

 

S

dSA


.  (4.13) 

There are several physical situations in which we need to calculate the flux of 

a vector field. One of these is the magnetic flux through the coil given by  

..

S

B dSB


  (4.14a) 

The current i flowing through a wire is the flux of the current density ( J


) (see 

margin remark) vector across a cross-section of the wire, i.e., 



S

di SJ


.

 

(4.14b) 

where S


d  is an area element of the cross-section of the wire.  

The mass (m) of fluid flowing out of a volume V is the flux of the vector v


 

across the closed surface S enclosing V. Here  is the density of the fluid and 

v


 its average flow velocity.  

  

S

dm Sv


.  (4.15) 

Before we actually evaluate surface integrals, we need to know the 

convention used for choosing the direction of .n̂  We discuss this point and 

define the area elements for integration in the following section. 

4.3.3 Surface of Integration 

In Fig. 4.6 you see an arbitrary surface of integration with a unit normal n̂ . 

Note that we could have chosen the unit normal to be pointing downwards 

from the surface instead of in the upward direction, as shown by nˆ  in           

.vJ


ne  

where n is the number 

of electrons per unit 

volume, e is the charge 

on an electron and v


 

is the average drift 

velocity of an electron. 

Fig. 4.6: The unit normal 

to the surface of 

integration may point 

outward from the surface 

like n̂  or in the opposite 

direction as nˆ . 

n̂  
 

nn ˆˆ   
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Fig. 4.6. Obviously this would change the sign of the scalar product between 

the vector field and the unit normal in the expression for the surface integral in 

Eq. (4.12). How then do we decide in which direction to choose the unit 

normal for each area? 

Consider a surface S enclosed by a closed curve C (Fig. 4.7) in a plane. It is 

an open surface lying on that plane. The direction of the normal depends on 

the sense in which the perimeter of this surface is traversed. If the right hand 

fingers are placed in the sense of travel around the perimeter, the positive 

normal points in the direction indicated by the thumb of the right hand             

(Fig. 4.7). Suppose the surface shown traversed in the sense, 
xyxyx  . The positive normal to the surface will be parallel 

to the positive z-axis.  

If a volume is enclosed by a curved surface, it is called a closed surface        

(Fig. 4.8). The shell of a whole egg is an example of a closed surface. For 

such a surface the direction of the normal varies from point to point. However, 

at any point, the convention is to take the normal to the surface pointing 

outwards.  

We may sometimes come across curved open surfaces. Examples of such 

surfaces are the shell of a cracked egg or a bowl (Fig. 4.9). In this case one 

side of the surface is chosen arbitrarily as outside and at any point the 

direction of the normal is outward. So we come to the general convention that: 

The vector n̂  for any curved surface always points outwards from the 

surface.   

In this unit we will study the surface integral over plane surfaces like the 

surface of a cube or cuboid. Surface integrals over curved surfaces are 

usually evaluated using non-Cartesian coordinates and this is beyond the 

scope of this syllabus. 

Let us now describe the area element nS ˆdSd 


 for the surface of a cube or 

cuboid. 

Area elements on the surface of a cube or cuboid 

In Fig. 4.10 we show some typical area elements on the different faces of a 

cube/cuboid. For example, for an area element on face S1, the outward 

normal is along the negative z-axis, so the area element is .k̂dxdy  

 

 

 

 

 

 

 

 

 

 

 

 

                                 Fig. 4.10: Surface area elements on a cube. 

The integral over a 

closed surface like the 

surface of a sphere, is 

indicated by 
S

.  

 

Fig. 4.7: Direction of 

the normal vector for 

a plane surface. 
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Fig. 4.9: We choose the 

outer surface of the 

shell to be the outside 

and draw the outward 

normal. 
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
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Fig. 4.8: Outward 

drawn normal to a 

closed surface. 
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The LHS of Eq. (i) is 

an integral over the 

entire surface 

whereas each 

integral on the RHS 

is on a plane, a face 

of the cube. 

NOTE  

You may note that the area element for the face 6S is îdydz . You may like to 

write the area elements for the remaining faces. Try the following SAQ: 

SAQ  2  -  Area elements on the surface of a cube/cuboid 

Write down the area element for the faces 432 ,, SSS  and 5S  of the cuboid in 

Fig. 4.10. 

4.3.4 Evaluation of Surface Integrals 

A surface integral is evaluated as a double integral, over two variables. This 

means that we must describe both the vector field and the surface in terms of 

the same variables and then evaluate the double integral. In many problems 

on surface integrals, the choice of variables can be made by looking at the 

symmetry of the surface of integration.  

Let us understand this by working out a few examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate the surface integral of a vector field kjiA ˆˆ2ˆ2 yzxzxz 


 over the 

surface of a unit cube occupying the space 0  x  1; 0 y  1; 0  z  1. 

SOLUTION   You have learnt about the area elements for each face of a 

cube in Sec. 4.3.3. Integrating A


 over the surface of the cube means that we 

have to integrate over each face of the cube. So 

 

654321

654321 .......

SSSSSSS

ddddddd SASASASASASASA


  (i) 

Now let us integrate A


 over the surface 1S  which is on the plane z = 0         

(Fig. 4.11):  

)0(0[.2ˆ2[.

111

]ˆ]ˆˆ
11    zyzdxdydxdyxzxzdI

SSS

yz 


kkjiSA   (ii) 

We next integrate A


 over the surface 2S  which is on the plane z = 1:   

   

)1(

.2ˆ2.

2 222

ˆˆˆ
22



   

z

ydxdyyzdxdydxdyxzxzdI

S SSS

yz




kkjiSA

 

(iii) 

We can evaluate this as a double integral on a rectangular region 2S using 

Eq. (4.7) with the following limits on x and y to define the region 2S : 

 10;10  yx                                                     (iv) 

                 
2

1

2
][

1

0

2
1
0

1

0

1

0

2

2






































 

y
xydydxydxdyI

S

    (v)                

(v) 

 

 

XAMPLE 4.4 : SURFACE INTEGRAL OF A VECTOR FIELD 

OVER A CUBE 

 

 

In many problems of 

surface integration, 

non-Cartesian 

coordinates are used 

for convenience. The 

choice of coordinate 

system is decided by 

the symmetry of the 

physical system. 

x  
 

Fig. 4.11: Unit cube of 

Example 10.1 with the 

surfaces 321 ,, SSS and 

4S  marked. These 

correspond to the 

planes z = 0, z = 1, y = 0 

and y = 1 respectively. 
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2S  
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O 

B 

A 

 

s 

r 

Fig. 4.12: Angle  
in a plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAQ 3  -  Surface integral 

a) Calculate the integrals 54,II and 6I from Example 4.4. 

b) Calculate the surface integral 
S

dSr


.  where kjir ˆˆˆ zyx 


 and S is the 

surface of a disc of radius 2 units, lying in the plane z = 5, defined by 

   5;422  zyx  

4.3.5 Solid Angle 

We now explain the concept of a solid angle which will be used in the next 

block. You are familiar with an angle in a plane. You know that in two-

dimensions, it is the angle between two straight lines, say AO and BO, that 

intersect at a point O (Fig. 4.12). It is measured in the plane of the same lines 

and defined as 

  
r

s
    (in rad) 

where s is the arc length of a circle of radius r passing through A and B. A 

solid angle is a three-dimensional analogue of the two-dimensional angle. Let 

us define it.  

Similarly, for the surface 3S )10;10(  zx is on the plane y = 0, we 

have   

   

      

333

2ˆ.2ˆ2. ˆˆ
33

SSS

xzdxdzdxdzxzxzdI yz jiSA kj


    

(vi) 

Evaluating this as a double integral we can write: 

     
2

1

2
222

1

0

2
1

0

21

0

1

0

3

3














































 

z

x

x
zdzxdxxzdxdzI

S

 (vii) 

You may like to work out for yourself the values of the integral of A over the 

faces S4, S5 and S6 of the cube (SAQ 3a). You will see that 

   
2

1
.

4

44  
S

dI SA


         

(viii) 

   

0.

5

55  
S

dI SA


         

(ix) 

and 

   

1.

6

66  
S

dI SA


         

(x) 

The total flux of A


through the surface of the cube is found by substituting 

the surface integral corresponding to each surface in Eq. (i) from 

Eqs.(iii),(v),(vii), (viii),(ix) and (x) to get: 

 
2

1
10

2

1

2

1

2

1
0. 

S

dSA

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Fig. 4.13: The solid 

angle d subtended 

by an area element 

S


d at a point O. 

P 

A 
d 

S


d  

r̂  

Consider an arbitrary differential area element S


d  of a surface at a distance r 

from a point P to the surface element. Let r̂ denote the unit vector from the 

point P to the area element (Fig. 4.13). Then, by definition, the solid angle d 

subtended by the surface area element S


d  at the point P is given by 

  
22

cosˆ

r

dS

r

d
d




r.S


 (4.16) 

where  is the angle between the normal to the surface element and .r̂ The 

unit of solid angle is the steradian which is dimensionless.  

The net solid angle subtended by the entire surface S is given by the surface 

integral: 

   

SS
r

d
d

2

ˆ S.r


 (4.17) 

The solid angle of a closed surface is an important special case that we will 

use in Unit 6 of Block 2. 

The net solid angle subtended by a closed surface S surrounding a point is 

given by 

    4
.ˆ

2
S

r

dSr


 (4.18) 

Note that for a closed surface, the vector S


d  is always taken as the normal to 

the surface pointing outwards. The proof of Eq. (4.18) is beyond the scope of 

this course.  

So, the net solid angle subtended by a closed surface of any shape, on a point 

enclosed by it, is 4 steradians. 

You may now work out the following SAQ. 

SAQ 4  -  Surface integral on the surface of a sphere  

Evaluate (i) 
S

dSr


.ˆ  and (ii) 
S

r

d

2

.ˆ Sr


 where S is a sphere of radius R. 

Integral theorems allow you to transform one type of integral into another. We 

now study the Stokes theorem which allows us to transform surface integrals 

into line integrals, and conversely, line integrals into surface integrals. 

4.4 STOKES’ THEOREM 

Stokes’ theorem states that: ‘The integral of the curl of a vector field over a 

surface S is equal to the line inetgral of the vector field over the closed 

path  C bounding S. It is expressed mathematically as 
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Fig. 4.14 shows some examples of surfaces bounded by closed paths. 
 

 

 

 

  

                      Fig. 4.14: Surfaces bounded by closed paths. 

Let us now use Stokes’ theorem to evaluate an integral.  

 

 

 

S  

 

C  

 

C  

 

S  

 S  

 

Fig. 4.15: The contour C 

and surface S for 

Example 4.5. 

t  
O  

 
 

x  

A  
 

2radius  

 

y  

 

)(tr


 

 

z  
 

B  
 

   

C S

dd SAlA


. .  (4.19) 

 

 

 

Verify Stokes’ theorem for the vector field kjiF ˆˆˆ xzy 


over the closed 

contour C enclosing the plane surface S shown in the Fig. 4.15. Here AB is 

the arc of the circle of radius 2 with its centre at the origin. 

SOLUTION   To verify Stokes’ theorem we must show: 

    

C S

dxzydxzy Skjilkji


.)ˆˆˆ().ˆˆˆ(   (i) 

C is the closed contour OAB which encloses the quarter circle in the yz 

plane. The radius of the circle is 2 units. Let us first integrate the line integral 

on the LHS of Eq. (i). The contour C is made up of 21,CC and 13,CC  is the 

straight line OA along the y-axis, 2C  is the arc AB of the circle and 3C is the 

straight line BO along the z-axis. Then 

      
 

321

.)ˆˆˆ(.)ˆˆˆ(.)ˆˆˆ(1

CCC

dxzydxzydxzyI lkjilkjilkji


     

(ii) 

We first evaluate the first and third integrals on the RHS of Eq. (ii). Using      

Eq. (3.19a), we can write 

  )along0(.)ˆˆˆ(

1 1

2

0

OAdzdxzdyxdzzdyydxdxzy

C C

  

lkji

 

                                                    ) along 0(0 OAz     (iii) 

 

 

 

 

XAMPLE 4.5 : EVALUATION OF LINE INTEGRAL USING 

THE STOKES’ THEOREM 
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and 

  

  )along0(.)ˆˆˆ(

0

233

BOdydxxdzxdzzdyydxdxzy

CC

  

lkji

 

               ) along 0(0 BOx    (iv) 

To evaluate the line integral along ,2C  we parametrize the curve AB as 

follows: 

2/0;sin2)(,cos2)(0)( ;ˆsin2ˆcos2)(  t ttztty,txttt kjr


  

 (v) 

jikjiF ˆsin2ˆcos2ˆˆˆ ttxzy 


;  kj
r ˆcos2ˆsin2

)(
tt

dt

td




 (vi) 

Using Eq. (vi) in Eq. (3.28) for the line integral we get (see also margin 

remark): 

 






2/

0

)ˆcos2ˆsin2(.)ˆsin2ˆcos2(.)ˆˆˆ(

2 tC

dtttttdxzy kjjilkji


 

                        




2/

0

2 )sin4(

t

dtt  (vii) 

Adding up the contributions from each segment, the line integral over OAB 

is found by substituting the results of Eqs. (iii), (iv) and (vii) in Eq. (ii): 

  

 001I  (viii) 

We next evaluate the surface integral in the RHS of Eq. (i). We first 

calculate the curl of the vector field (see margin remark): 

 

  kjiF ˆˆˆ 


 (ix) 

Note that the surface S is a plane surface on the yz plane. If we curl the 

fingers of our right hand around the contour in the direction of the contour, 

the normal to the surface is along the positive x-direction. We can consider 

the element of area on the yz plane to be: 

 iS ˆdydzd 


 (x) 

Then 

  

SSS

dydzdydzdxzyI  )ˆ(.)ˆˆˆ( .)ˆˆˆ( curl2 ikjiSkji


 (xi) 

Using the area property of the double integral we can see that: 

   )2radiusofcircleof(Area
4

1
ofArea Sdydz

S

 

Therefore, the integral of Eq. (xi) is just 

   2I  (xii) 

The  line integral of Eq. (viii) and the surface integral of Eq. (xii) both give 

us the same result, thereby, verifying Stokes’ theorem.

 

   
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




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 
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
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dttdt
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dtt

 

   

kji
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


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You may now like to work out an SAQ on solving integrals using Stokes’ 

theorem. 

 

SAQ 5  -  Evaluation of line integral using Stokes’ theorem 

Using Stokes’ theorem, evaluate 
C

d lA


.  around the closed curve C shown in 

Fig. 4.16 given that: 

  jiA ˆˆ( y)(xy)x 


 

4.4.1 Applications of Stokes’ Theorem 

We shall now discuss an application of this theorem. The direct evaluation of 

B




 

where B


 is magnetic field due to a current carrying conductor is quite 

tedious. To obtain ,B


  we shall use Stokes’ theorem and the circuital form 

of Ampere’s law, 

  




C

id 0l.


B  (4.20) 

where C is any closed path that is linked with the current i (Fig. 4.17). For a 

path like C, which is not linked with the current, we have 

   

C

d 0. lB


 

Now, our task is to calculate .B


  From Stokes’ theorem we get: 

    

SC

dd SBlB


 ..   (4.21) 

where S is enclosed by C. 

Recall that in Eq. (4.14b) we have defined current in terms of the current 

density J


 as: 

  

S

dI SJ


.   (4.22) 

Hence, from Eqs. (4.20), (4.21) and (4.22), we get 

     

SS

dd SJSB


.  . 0   (4.23) 

or 

   

  

S

d 0.0 SJB




 

(4.24) 

Since d S


 is arbitrary, the integrand must be zero. Therefore, 

   JB


0  (4.25) 

Thus we see that B


 has a non-vanishing curl.  

You have learnt in your Mechanics Course (BPHCT-131) that the curl of a 

conservative force field is zero. We can prove the same result using Stokes’ 

theorem. You can work this out yourself in the following SAQ. 

Fig. 4.16: Figure for 

SAQ 5. 

O 

y 

x 

 
2

xy   

C 

2
yx   

S
 

Fig. 4.17 

C  

i  

C  
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SAQ 6  -  Application of Stokes’ theorem 

Using Stokes’ theorem, prove that curl of a conservative force field is zero 
everywhere. 

So far you have learnt how to evaluate double integrals and surface integrals, 

which involve successive integrations over two variables. Next we study 

volume integrals (also called triple integrals) which involve successive 

integrations over three variables. 

4.5 VOLUME INTEGRALS 

Let us first define volume (also known as triple integrals) integrals, where we 

integrate a function of three variables, ),,( zyxf  over a closed volume   in 

the Cartesian coordinate system. The method we follow is similar as for 

defining a double integral.  

4.5.1 Volume Integral of the Function f (x, y, z)  

Like the double integral, the triple or volume integral is also defined as the limit 

of a sum. Let us see how this is done.  

1. We first partition the three dimensional volume    into n parts by drawing 

planes parallel to the three coordinate planes. As a result, the volume   

is filled with boxes, which we now number from 1 to n. Each box has a 

volume .iiii zyxV   

2. We choose a point ),( , iii zyx in each of these boxes and define a sum of 

the form: 

  



n

i

iiiin VzyxfS

1

),,(     (4.26) 

3. As n increases, the volume of the boxes becomes smaller and smaller. 

The volume integral of the function ),,( zyxf  over the region   is defined 

as the limit of the sum Sn in the limit n .   

The volume integral of a function ),,( zyxf  over a closed bounded region 

  is defined by the expression: 

  
 

  dxdydzzyxfdVzyxfVzyxf i

n

i

iiin ),,(),,(),,(lim

1

 (4.27) 

You have seen before that the integral of the function of a single variable 

with respect to that variable represents an area, and a double integral of a 

function of two variables represents the volume under a surface. What, 

then, is a volume integral? We can say that it represents a summation in a 

hypothetical 4th dimension.  

Let us try to understand this point with an example. Imagine a balloon that 

is being inflated. We define the surface of the balloon with the help of an 

equation ).,( yxfz   However since the size of the balloon is changing 

with time, each of these variables is also a function of time t.  If we 

integrate with respect to x and y, we get the volume of the balloon as a 

function of t. If we put in a value of t we will get the value of the volume of 

the balloon at that instant of time. However, now we can perform the 

integration over t to sum up the volume over the entire process of inflation 

that would be the volume integral.  
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We now write down the properties of the volume integral, which are quite 

similar to the properties of a double integral. 

4.5.2 Properties of the Volume Integral  

For any two functions ),,( zyxf  and ),,( zyxg  defined over the three 

dimensional region , the volume integral has the following properties:  

Linearity:  

     dxdydzzyxfdxdydzzyxfdxdydzzyxgzyxf 


 ),,(),,(),,(),,(  

         (4.28)    

where  and  are  constants. 

Additivity: 

If the region   can be broken up into several non-overlapping regions 

,,...,, 21 n  we can write: 

dxdydzzyxf


),,(      

      dxdydzzyxfdxdydzzyxfdxdydzzyxf

n




 ),,(....),,(),,(

21

 

 (4.29)  

Volume Property:  

If the function ,1),,( zyxf then the volume integral over the region   gives 

the volume of  : 

  


dxdydz1 Volume of the region      (4.30) 

Let us now see how a volume integral may be evaluated by iterated 

integration.  

4.5.3 Evaluation of a Volume Integral  

In evaluating the volume integrals we will once again perform iterated 

integration. In evaluating a double integral, where we integrate with respect 

to two variables, we perform a two-fold iterated integration. This, as you have 

seen in Sec. A2.2 of Appendix A2, can be carried out in two different ways 

depending on the order in which the integration over the two variables is 

carried out. Here we have three variables, so we carry out three-fold iterated 

integrations. However, in this case there are six possible ways of carrying out 

the repeated integral. If ),,( zyxf  is continuous, all the six iterated integrals are 

equal.  

Let us consider the solid region   bounded below by the surface ),,(1 yxvz   

and above by the surface ),,(2 yxvz   as shown in Fig. 4.18. The projection 

of the solid onto the xy plane is the region A (Fig. 4.18). We assume that the 

functions ),(1 yxv and ),(2 yxv are continuous in the region A. Then, for a 

function ),,( zyxf  continuous in the solid region ,  we can write. 

Fig. 4.18: Limits of 

integration on the 

variable z in the 

region .  

),(2 yxv  

 

y  

 

A  
 

z  
 

x  
 

),(1 yxv  
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dydxdzzyxfdxdydzzyxf

A

yxv

yxvz

 




















),(

),(

2

1

),,(),,(   (4.31) 

Once we calculate the integral within the bracket, we are left with (in general) 

a double integral of a function of two variables x and y to be integrated with 

respect to x and y. And we can use Eqs. (A.2.9) or (A.2.11) to evaluate this 

double integral. So if A is a region in the xy plane defined by: 

)()(; 21 xuyxubxa          (4.32) 

the volume integral reduces to: 

dxdydzzyxfdxdydzzyxf

b

ax

xu

xuy

yxv

yxvz

  
   


































)(

)(

),(

),(

2

1

2

1

),,(),,(     (4.33) 

As for double integrals, remember that iterated integral for the volume integral 

can be performed in any order of variables. Here we have chosen to integrate 

over z first, then over y, and finally over x. The choice of the order of the 

variables of integration is to be made according to our convenience. In 

Example 4.6, we integrate over y first, then over z and finally over x. Volume 

integrals are used to evaluate several quantities of interest to physicists, such 

as the volume and mass of an object of arbitrary shape, its centre of mass and 

its moment of inertia. We summarize these applications below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Volume V of a region : 

  


 dydzdxV       (4.34) 

 Mass m of a body with a density ),,( zyx  over a region : 

  


 dydzdxzyxm ),,(        (4.35) 

 Centre of mass of a body ),,( cmcmcm zyx  with a density ),,( zyx  

over a region : 

       

m

dydzdxzyxz

z

m

dydzdxzyxy

y
m

dydzdxzyxx

x

cm

cmcm





















),,(

;

),,(

;

),,(

(4.36) 

 Moment of inertia of a body with a density ),,( zyx  over a region   

about the x-axis ),( xI  about the y-axis )( yI and about the z-axis :)( zI  

  


 dydzdxzyxzyIx ),,()( 22    (4.37a) 

  ;),,()( 22



 dydzdxzyxzxIy        (4.37b) 

 


 dydzdxzyxyxIz ),,()( 22    (4.37c) 

APPLICATIONS OF VOLUME INTEGRALS 
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In the following example, we determine the moment of inertia of a cube by 

carrying out a volume integral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You may now like to evaluate a few integrals by this method. 

 

SAQ 7  -  Evaluating volume integrals  

a) Evaluate the volume integral of the function  yzxzyxf sin),,(  for 

.,,0  zyx  

b) Determine the mass of a unit cube of density  (x, y, z) = x + 2y + 3z. 

 

 

Consider a cube with uniform density  and side a. The cube is placed such 

that its edges lie along the x, y and z axes as shown in Fig. 4.19. Determine 

the moment of inertia about an edge of the cube. 

SOLUTION   To evaluate the moment of inertia about the x-axis, we use 

Eq. (4.37a). The limits of integration on the three variables are (Fig. 4.19): 

 azayax  0;0;0  

We write the moment of inertia as:  

   dxdydzzyI

a

x

a

y

a

z

x   
  



0 0 0

22  

      dxdy
z

zy

aa

x

a

y 00 0

3
2

3 
  













 (integrating over z first) 

      dxdy
a

ay

a

x

a

y

 
  















0 0

3
2

3
 

      dx
yaay

aa

x 00

33

33
 













  (integrating over y) 

     dxa

a

 









0

4

3

2
 5

0

4

3

2

3

2
axa

a









   (i) 

The mass of the cube is .(volume)density)( 3aM   Substituting for  in 

Eq. (i) we get: 

 2

3

2
MaIx   

 

 

 

 

 

XAMPLE 4.6 : DETERMINING MOMENT OF INERTIA 

USING THE VOLUME INTEGRAL 

Fig. 4.19: A cube of  

side a. 

z  
 

x  
 

y  

 
a  

 

a  

 

a  
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4.6 VOLUME INTEGRAL OF A VECTOR FIELD 

So far in this unit we have discussed the volume integrals of a scalar field. 

Sometimes, however, you may have to evaluate the volume integral of a 

vector field. The volume integral of a vector field is written as: 

 
V

dVA


 (4.38) 

where V is the volume over which the integration is to carried out. The volume 

element dV is a scalar and so we can write the volume integral of the vector 

field ,ˆˆˆ
321 kjiA AAA 


as: 

   

V VVV

dVAdVAdVAdV 321
ˆˆˆA kji


 (4.39) 

The integral of Eq. (4.39) reduces to a combination of integrals of scalar 

functions. The result of the integration is a vector quantity.  

We now discuss another integral theorem. This theorem tells us how to 

convert a surface integral into a volume integral and vice versa. 

4.7 THE DIVERGENCE THEOREM 

The divergence theorem states that ‘the integral of the divergence of a 

vector field over a volume V is equal to the surface integral of the vector 

over the closed surface bounding V.’ 

The divergence theorem is sometimes also referred to as the Gauss’s 

divergence theorem, Gauss’s theorem or the divergence theorem of Gauss. It 

is expressed mathematically as 

    

VS

dVd ASA


..  (4.40) 

where V is enclosed by S (Fig. 4.20). 

Let us now work out an example to understand how to apply the divergence 

theorem. 

 

 

 

 

 

 

 

 

 

 

 

 

i) Use the divergence theorem to obtain the flux of a vector field 

kjiA ˆ2ˆˆ3 zyx 


 over a cube of side 2a. The vertices of the cube are at 

),,( aaa  as shown in Fig. 4.21. 

ii) Use the divergence theorem to evaluate the flux of the vector field 

kjiF ˆˆˆ zyx 


over the sphere 
2222 azyx  . 

SOLUTION  i) Recall from Eq. (4.6b) that the flux of the vector field is 

defined as 
S

dSA


. . Here S is the surface of the cube shown in Fig. 4.21. 

Using the divergence theorem, we evaluate  
V

dVA


. , where V is the  

 

XAMPLE 4.7 :  DIVERGENCE THEOREM 

 

 

Fig. 4.20: A closed 

surface S enclosing a 

volume V. 

V  
 

S  

 

y  

 

z  
 V  

 

x  
 

2
a

 

Fig. 4.21: Cube with 

side 2a. The cube is 

bounded  by the planes 

x = ± a, y = ± a, z = ± a . 
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You may now like to work out the following SAQ. 

 

SAQ 8  -  Evaluating surface integral using the divergence  

         theorem 

Evaluate , ˆ. SnV


d

S

 where kjiV ˆsinˆˆcos 22 yzxzyx 


 and S is the 

surface of a sphere with its centre at the origin and radius 3 units. 

 

Let us now consider an application of the divergence theorem. 

4.7.1 Application of the Divergence Theorem 

You have studied in your school physics courses that the electric field due to a 

point charge q, at a point whose position vector with respect to the location of 

q is r


, is given by 

  
rE


3r

kq
      (r  0) (4.41)  

where k is a constant dependent on the nature of the medium. 

Let us now determine  the flux of E


 through a sphere of radius a (Fig. 4.22) 

whose centre is at the position of the charge q. 

The required surface integral is 
S

d ,. SE


 where S is the surface of a sphere of 

radius a. Here 

 region enclosed by the surface of the cube. The region V is defined by 

the limits: 

  azaayaaxa  ;;   (i) 

 Let us first evaluate A


.  : 

  4
)2()()3(

. 















z

z

y

y

x

x
A


  (ii) 

Using the result of Eq. (ii) in the divergence theorem we can write the flux 

of the vector field A


as (read the margin remark): 

  33 32)2(44.S. aadVdVd

VVS

  AA


  

ii) Using the divergence theorem for the vector field kjiF ˆˆˆ zyx 


 we can 

write for the flux, 

  

    

VSS

dVzyxdzyxd  ˆˆˆ..ˆˆˆ. kjiSkjiSF 


  (i) 

where V is the volume enclosed by the sphere enclosed by surface S 

given by 2222 azyx  . We evaluate the integral on the RHS of   

Eq. (i)  

       
  

































VV V

aadVdV
z

z

y

y

x

x
dV 33 4

3

4
33.F



 

(ii) 

 

 

 

In writing the final 

result we have used 

the volume property of 

the triple integral to 

write 
V

dV as the 

volume of the region V, 

which is just the 

volume of the cube of 

side 2a that is 8a
3
. 

 

a  

 

q  

 

Fig. 4.22: Electric 

flux due to a point 

charge q through a 

sphere of radius a. 

Using the volume 

property of the triple 

integral we can see 

that 
V

dV  is just the 

volume of the sphere 

of radius a which is 

3

3

4
a . 
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  rrrE ˆˆ
233 r

kq
r

r

kq

r

kq



 (4.42) 

where r̂ is the unit vector along the position vector r


.Contribution to a surface 

integral comes from the surface only. So we have to know E


 on the surface of 

the sphere, which is r̂
2a

kq
. Again, we know at every point on the sphere 

rS ˆdSd 


where dS is the surface element on the surface of a sphere. 

Hence, the required flux = 
S

dS
a

kq
rr ˆ.ˆ

2 

S

dS
a

kq

2
      ( 1)  ˆ . ˆ rr  

                         

S

dS
a

kq

2
 (4.43) 

because  dS is the surface area of the sphere of radius a which is 4a2, we 

can write 

   kqd

S

 4. SE


  (4.44) 

where S is the surface of a sphere that encloses charge q. It can be shown 

that the above result is true for any charge distribution. Suppose that a closed 

surface enclosing a volume V has a continuous distribution of charge. If the 

charge per unit volume is , then  

V

dVq .  

An example of such a distribution is a charged sphere. For this distribution, we 

have 

    

VS

dVkd  4. SE


  (4.45) 

But using Eq. (4.40), we have 

   

VS

dVd  E .SE


.  (4.46) 

From Eqs. (4.40) and (4.44),, we get 

   

VV

dVkdV 4  . E


 

or    0 4 .  dVk

V

E


 (4.47) 

Since dV is an arbitrary infinitesimal volume element, the integrand in             

Eq. (4.47) must be zero: 

   kk 4 .04 . EE


 (4.48) 

Eq. (4.48) tells us that the divergence of the electric field vector due to a 

continuous distribution of charge is independent of the extent of distribution. It 

depends only on the charge per unit volume. In charge-free space,  = 0, so 

that 

  0 E .


 (4.49) 

The advantage of the divergence theorem is that it enables us to convert a 

volume integral to a surface integral and vice versa. In applications of the 

divergence theorem, the strategy for problem solving should be to evaluate 

the simpler of the two integrals. 

You may now like to solve an SAQ to apply the divergence theorem. 
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SAQ 9  -  The divergence theorem 

a) Show that for any closed surface S the surface integral 

   

S

Vd 3Sr


 

 where V is the volume of the region enclosed by the surface. 

b) Show that for a vector AB


  

   

S

d 0SB


 

4.8   SUMMARY 

Concept Description 

Applications of double 

integrals 

 Double integrals are used in physics to evaluate the following quantities: 

 Area  A of a region R 

  

R

dydxA  

 Mass m of a body with a density ),( yx  over a region R 

  

R

dydxyxm ),(                    

 Centre of mass (xcm,ycm) of a body with a density ),( yx  over a region 

R 

  
m

dydxyxy

y
m

dydxyxx

x R
cm

R
cm

 







),(

;

),(

     

 The average value  of a continuous function f(x,y) over a closed 

region R in the xy plane is: 

 Rdydx
dydx

dydxyxf

R
R

R nintegratioofregiontheofArea;

),(

 



 

Surface integral  The surface integral of a scalar or a vector field is the generalisation of the 

double integral where the region of integration may be any surface.  

Surface integrals can occur in any of the following three forms: 

   

SSS

ddd SASAS


 and.,  

The element of area is nS ˆdSd 


. 



   

121 

 

 Unit 4                                                Surface and Volume Integrals 

Flux of a vector field  The flux of  a vector field A


 over a surface S is given by the surface integral  



S

dS.A


 

Volume/triple  integral 

of a function 

 The volume/triple integral of a function f(x,y,z) over a closed bounded region 

  is written as 


dVzyxf ),,( or 


dxdydzzyxf ),,(  and  can be defined as 

the limit of a sum as follows: 

  
 

  dxdydzzyxfdVzyxfVzyxf i

n

i

iiin ),,(),,(),,(lim

1

 

Applications of volume 

integrals 

 Volume/triple integrals are used in physics to evaluate the following 

quantities: 

 Volume V of a region  

  


 dydzdxV  

 Mass m of a body with a density ),,( zyx  over a region  

 


 dydzdxzyxm ),,(  

 Centre of mass of a body ),,( cmcmcm zyx  with a density ),,( zyx  over 

a region  

 

m

dydzdxzyxz

z

m

dydzdxzyxy

y
m

dydzdxzyxx

x

cm

cmcm





















),,(

;

),,(

;

),,(

 

 Moment of inertia of a body with density ),,( zyx  over a region   

about the x-axis, Ix, about the y-axis Iy and about the z-axis, .zI  

 



















dydzdxzyxyxI

dydzdxzyxzxI

dydzdxzyxzyI

z

y

x

),,()(

;),,()(

),,()(

22

22

22

 

Vector integral 

theorems 

 The Stokes’ theorem states that the integral of the curl of a vector field over 

a surface S is equal to the line integral of the vector field over the closed 

path bounding S and is expressed mathematically as: 

   

C S

dd SAlA


. curl.  

 The divergence theorem states that the integral of the divergence of a 

vector field over a volume V is equal to the surface integral of the vector field 

over the closed surface bounding V and is expressed mathematically as: 

  
VS

dVd AdivSA


.   
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4.9   TERMINAL QUESTIONS 

1. Use double integration to find the area of the region in the xy plane 

bounded by the curves xy  and 3xy  for x > 0. 

2. Calculate the volume V of a solid which is bound above by the plane 

yz  4  and below by the region R defined by the circle 422  yx . 

3. The product of inertia of a lamina in the xy plane about the x and y-axes is 

given by 

 

R

yxxy dydxxyII

 

where R is the region of space covered by the lamina and  is the mass 

per unit area of the lamina. Determine xyI for the lamina shown in   

Fig. 4.23. 

4. A box is bounded by the planes 2and0;1;0;1;0  zzyyxx . It 

has a density  39),,( zzyx   kg m3. Calculate the mass of the box.  

5.   Determine the flux of the vector field kjiF ˆ2ˆˆ zyx 


over the surface of 

a sphere S defined by the equation 1222  zyx . 

6. Verify Stokes’ theorem for the vector field ,ˆˆ2 kjA yzz 


where C is the 

path OPQ in the yz plane shown in Fig. 4.24. 

7.  Show that the line integral   

C

xzdzxzdyyzdx  is zero along any 

closed contour C. 

8.  Using Stoke’s Theorem evaluate 
C

d lF


.  

 kjiF ˆˆ2ˆ 22 zxx 


 

 where C is the ellipse in the xy plane defined by 

0,1
6416

22
 z

yx
 

9. Using the divergence theorem, calculate the flux of a vector field 

kjiF ˆˆ2ˆ 3xyz 


 over a sphere of radius 2 units. 

10. Evaluate the flux of the vector field )ˆ4ˆ5ˆ2( 2 kjiA zyy 


 through the 

surface of a unit cube which has one corner at the origin, one corner at   

(1, 1, 1) and all its edges are parallel to the coordinate axes. 

4.10   SOLUTIONS AND ANSWERS 

Self-Assessment Questions 

1. a) We have to evaluate 
R

dydx  where R is the region bound by 2xy   

and .3xy  Following Example 4.1, let us first determine the points of 

intersection of the two curves in the region x > 0; y > 0, for this we 

solve the equations 

Fig. 4.23: A rectangular 

lamina ,0 ax   

.0 by   

x  
 

a  

 

y  

 

b  

 

Fig. 4.24: Path OPQ for 

TQ 6. 

x  
 

z  
 

y  

 
)0,0,0(O  

 
)0,2,0(P  

 

)1,2,0(Q  
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    32 and xyxy   

    0)1(232  xxxx  

  So the points of intersection are x = 0 and x = 1 and the limits on x and 

y are 10;23  xxyx  

   
 

















1

0

2

3x

x

xy

dxdyA  

1

0

32

1

0

)()[
2

3
dxxxdxy x

x
 

       
12

1

43

1

0

43

















xx
 

 b) We use Eq. (A2.3) to evaluate the integral with .),( 4xyxf   The limits 

on y for the region of integration on the xy plane is defined by the 

equation: 

   12  yx   

  We obtain the limits on x in the region of integration by determining  

the value of x at the points at which the two curves y = x2 and y = 1 

intersect, as you see in Fig. 4.25. This is found by solving for x as 

follows:  

   1,112  xx       

  So the integral we have to evaluate is the following:  

     dxdyxI

x xy

 
 



1

1

1

4

2

  

  Integrating over y first, we get: 

        dxxxdxxyI

x






1

1

64

11

1

4

2

 

  Integrating over x, we then get: 

       
35

4

75

1

1

75



















xx
I  

2. From Fig. 4.10 we can see that 

     kS ˆ
2 dxdyd 


 

     jS ˆ
3 dxdzd 


 

     jS ˆ
4 dxdzd 


 

 and iS ˆ
5 dzdyd 


 

Note that the limits on  

y are 23 xyx   and 

not .32 xyx  This 

is because for 

.,10 23 xxx   

  

Fig. 4.25: The region of 

integration for               

SAQ 1(b). The two 

curves intersect at x = 1 

and  

x =  1 

 

1y  

2
xy   
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3. a) Using the results of SAQ 2, we can write the surface integral over the 

surface )10;10(4  zxS on the plane y = 1 as   

            

444

2ˆ.2ˆ2S. ˆˆ
44

SSS

xzdxdzdxdzxzxzdI yz jiA kj


 

   We evaluate this double integral to get: 

      
2

1
22

1

0

1

0

4

4





























  zdzxdxxzdxdzI

S

   

Similarly over the surface 5S )10;10(  zy on the plane x = 0   

(Fig. 4.10) we get   

               

5 5

ˆˆ2ˆ2. 55

S S

dydzyzxzxzdI ikjiSA


 

                   

5

)0(02

S

xxzdydz     

Over the surface )10;10(6  zyS  which is on the plane x = 1, 

we have  

          

6 6

ˆˆ2ˆ2. 66

S S

dydzyzxzxzdI ikjiSA


 

                     

6 6

)1(22

S S

xzdydzxzdydz   

    We evaluate this as a double integral: 

       1
2

222

1

0

2
1
0

1

0

1

0

6

6






































 

z
yzdzdyzdydzI

S

 

 b) Since the disc is parallel to the xy plane, we can write as explained in 
Sec. 3.3, 

      kS ˆdxdyd 


 

     

S S

dxdyzyxd kkjiSr ˆ.)ˆˆˆ(.


 

               

S

dydxz 

S

dydx5  (since the disc lies in the plane z = 5) 

                 202.5 2  ( 
S

dydx  is the area of the circle of radius 2 units) 

4. i) Refer to Fig. 4.26. r̂ is the unit vector along the position vector r


. 

Since S


d  points along the outward drawn normal, it points along r̂ at 

every point on the sphere so that rS ˆdSd 


 

     dSdSdSd  r.rrrS ˆˆˆ.ˆ.r̂


  ( r̂ . r̂  = 1) 

 Hence 
S

dS


.r̂ =  

S

SdS ,  which is the surface area of the sphere.  

Thus    

S

Rd 24.r̂ S


 

Fig. 4.26: The unit normal 

for an area element on the 

surface of a sphere.  

y  

 
r̂  
 

S


d  

 

x  
 

z  
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ii) Similarly 




4
41.ˆ

2

2

22
  R

R
dS

Rr

d

SS

Sr


 

5. To evaluate the line integral using Stoke’s theorem as given in Eq. (4.19), 

we first evaluate A


  as: 

  

k̂2)()(k̂

0)()(

k̂ĵî

A 
































 yx

y
yx

x

yxyx

zyx


     

The contour C and the region R are in the xy plane as shown in Fig. 4.27 

(Fig. 4.16 reproduced here), therefore kS ˆdydxd 


. Substituting for A


  

and S


d into Eq. (4.19) we can write the integral as: 

          

SSSC

dxdydydxddI 2ˆ.ˆ2.. kkSAlA


  

We define the region S (shown in Fig. 4.25) by the equations (see margin 

remark): 

   xyxx  2;10  

 Then 

       
 


















1

0

1

0

2

1

0

222
2

2x xx

x

x

x

xy

dxxxdxydxdyI  

         = 
3

2

3

1

3

2
2

33

2
2

1

0

3
2

3























 x
x  

6. Refer to Fig. 4.28. You have seen that for a conservative force 

    






ADBACB

dd rFrF


..  

 or 

    






ADBACB

dd 0.. rFrF


 

 

 i.e.  0. 
ACBDA

drF


 

 From Stokes’ theorem, we know that 

      

SACBDA

dd SFrF


. .  

 So, 

       0. 
S

dSF


 

But S


d  is arbitrary. Hence the integrand is zero. Moreover, since the path 

ACBDA has been chosen anywhere in the field, we can write 

Fig. 5.28: SAQ 6. 

B  
 

A  
 

C  

 
D  

 

S  

 

The limits on x are 

given by the points of 

intersection of the 

curves 2yx  and          

.2xy   By solving 

2xx  we get the 

points of intersection 

as x = 0 and x = 1.  

Fig. 4.27: Figure for SAQ 5. 

O 

y 

x 

2
xy 

  

C 

2
yx   

S
 

Fig. 4.28: Diagram for 

the solution of SAQ 6. 

B  
 

A  
 

C  

 
D  

 

S  
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     0 F 


everywhere in the field. 

7.  a) We write the volume integral as  

     I =   dxdydzzyx


sin , 

  where  is defined by the equations: 

        zyx ,,0  

    In this case, we can write the integral as: 

       I =  


































































0

2

0

2

0

000
22

cossin
zy

xdzzdyydxx  

       
2

4
  

 b) Using Eq. (4.35) with  (x, y, z) =  (x, y, z) we can write the mass of 

the cube as  


 dzdydxzyxm ),,(  where  is the volume of the 

cube. For the unit cube 

     ,10  x     10  y   and   .10  z   

          














1

0

1

0

1

0

)32( dydxdzzyxm  

       dzdy
z

yzxz  























1

0

1

0

1

0

2

2

3
2  

           dxdyyx  






















1

0

1

0
2

3
2  

            









1

0

1

0

2

2

3
dxyyxy  

           

1

0

21

0
2

5

22

3
1 

















  x

x
dxx  

           3  units 

8. Using Eq. (2.3), we first determine the divergence of the vector field, 

   )sin()()cos(. 22 yz
z

xz
y

yx
x 












 V


 

    1sincos 22  yy  (i)         

Using Eq. (4.39), we write using the result of Eq. (i) 

   


 dVdVdI

S

VSnV


. ˆ.  
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 where  is the sphere of radius 3 units with its centre at the origin.  

      36)3(
3

4 3I  

9. a) Using Eq. (4.39)  with kjirA ˆˆˆ zyx 


  we can write 

     


 dVdI

S

rSr

..      (i) 

  and 

    3)()()()ˆˆˆ(.. 













 z

z
y

y
x

x
zyx kjir


    

  Replacing 3.  r


in Eq. (i) we get: 

      














S

dVdI 3. Sr


     (ii) 

Using the volume property of a triple integral, the quantity in the 

bracket in the RHS of Eq. (ii) is just the volume of the region of 

integration which is V.   

      

S

VdI 3. Sr


 

 b) Using the divergence theorem we can write:  

    













 

VS

dVd BSB


..     (i)

 

  Given that  AB


 , we can write: 

    0)(..  AB


  

This is because the divergence of the curl of a vector field is always 

zero, as you have studied in Unit 2. 

    0. 

S

dSB


 

Terminal Questions 

1. We use the area property of the double integral given in Eq. (A.2.7) to find 

the area. Following Example 4.1, the range of x is decided by determining 

the points of intersection of the curves y = x and 3xy   (Fig. 4.29). We 

solve as follows: 

   1,00)1(23  xxxxx  

 The points of intersection are x = 0 and x = 1(Fig. 4.29). Note that in the 

range ,10  x xx 3 . Therefore, the region of integration is: 

   xyxx  3;10  

 The area A is: 

 

xy   

3xy   

Fig. 4.29: Region of 

integration is the area 

enclosed between the 

curves y = x and y = x
3
 in 

range .10  x  
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         dxxxdxydxdyA

x

x

xy

x

x    

 

1

0

3

1

0

1

03

3
1  [Integrating over y 

first] 

         .units
4

1

42

1

0

42











xx
               [Integrating over x] 

2. Using the double integral, we can define the volume under the plane         
yz  4 [see Example 4.1(ii)] as: 

   

R

dxdyyV 4       (i) 

where R is the region in the xy plane which is enclosed by the circle 

422  yx .  

The region of integration R for Eq. (i) is  

    22 44;22 xyxx               (ii) 

   























2

2

4

4

)4(

2

2x

x

xy

dxdyyV   

           




2

2

248 dxx  

(after integrating over y). 

 On integrating over x this gives us (read the margin remark): 

   



















 16
2

sin16

2

2

1 x
V    

3. Refer to Fig. 4.30, which is Fig. 4.23 repeated here for convenience. 

      
 

b a

xy dydxxy
ab

m
I

0 0

 

 where m is the mass of the rectangle. Using Eq. (A2.12) we can write: 

   



























 

ba

xy dyydxx
ab

m
I

00

 

 Evaluating both the integrals separately we get: 

 
422

0

2

0

2 mabyx

ab

m
I

ba

xy 



























  

4. We determine the mass of the box m using Eq. (4.35) with 

  33 m kg 9),,(  zzyx  and  (see Fig. 4.31) as defined by the 

equations: 









 

a

xa
dxxa

1
2

22
sin

2
 

Fig. 4.30: A rectangular 

lamina ,0 ax   

.0 by   

x  
 

a  

 

y  

 

b  

 

Fig. 4.31: Diagram for   

solution of TQ 4. 

z  
 

x  
 

y  

 

m1  

 

m1  

 

m2  
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   20;10;10  zyx            (i) 

 Then m is: 

      dzdydxzdydzdxzm

x y z

  
  



1

0

1

0

2

0

33 99  (ii)  

We can evaluate this integral as follows (read the margin remark): 

          14
4

18

2

0

4
1
0

1
0 
















z
yxm kg     

5. The flux of the vector field F


 is: 

   

  

SS

dzyxd SkjiSF


.ˆ2ˆˆ.  (i)

 

We evaluate the flux using the Divergence theorem (Eq. 4.40). 

       

vS

dVzyxdzyx  ˆ2ˆˆ..ˆ2ˆˆ kjiSkji


 (ii)

 

 We evaluate the integral on the RHS of Eq. (ii) by first calculating: 

   0)2()()()ˆ2ˆˆ(. 













 z

z
y

y
x

x
zyx kji


 (iii)  

By replacing the divergence of the vector field from Eq. (iii) into Eq. (ii) we 

get: 

   

0  

6. First we shall calculate 
C

d lA


. where C is shown in Fig. 4.32. Here

 

       kjilkjA ˆˆˆ,ˆˆ2 dzdydxdyzz 


 

    dzyzdyzd  2. lA


 

  Now   

QOPQOP

dddd lAlAlAlA

C


....  

  For the straight line OP, x = 0, 0  y  2, z = 0. Hence .0. 

OP

d lA


 

  For the straight line PQ, x = 0, y = 2, 0   z  1. Hence dy = 0 and 

       

1

0

12. dzzd

PQ

lA


 

  And for the straight line QO, x = 0, y = 2z, 1  z 0. Also dy = 2dz (see 

margin remark) and 

     
3

4
4)()2(2.

0

1

222   dzzdzzzdzzyzdzdyzd

QOQOQOQOQO

lA


 

    
3

1

3

4
10. 

C

d lA


 

  Next we evaluate the integral using Stokes’ theorem. 

Note that: 

  
  

1

0

1

0

2

0x y z

dzdydx is the 

volume of the cube. 
 

 

OQ is a straight line in 

the yz plane and its 

equation is y  2z = 0 

 

 

Fig. 4.32: Path OPQ for 

solution of TQ 6. 
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Block 1                                                                                       Vector Analysis 

      i

kji

A ˆ

0

ˆˆˆ

2

z

yzz

zyx
















 

  Since the path C is traversed anticlockwise, we have iS ˆdSd 


. 

  Moreover, as S lies on the yz plane, iS ˆdydzd 


 

        zdydzdydzzd 




  iiSA ˆ.ˆ.


 

  S is defined by the equations 2/0;20 yzy   

        dydzzdzdyzd

y

SS

  














2

0

2

0

. SA


 

                                  
3

1

38

1

8

2

0

32

0

2
 

y
dy

y
 

       

CS

dd lASA


..  

  which is Stokes’ theorem. 

7. Let S be the surface bounded by the closed curve C. We first note that the 

given line integral can be written as 
C

d l.F


where 

   kjiF ˆˆˆ xyxzyz 


 

 Applying Stokes’ theorem we can write: 

        SkjiSFlF


dxyxzyzdd

SSC

  .ˆˆˆ..  

 We next find )ˆˆˆ( kji xyxzyz 


 which is: 

   

0

ˆˆˆ















xyxzyz

zyx

kji

F


 

Since 0F


 , from Stokes’ theorem we get that 0
C

d l.F


 for any closed 

contour C. 

8.   The surface of integration is the shaded region shown in Fig. 4.33 which  

is an ellipse in the xy plane defined by the equation: 

     0;1
6416

22

 z
yx

 

The parameters (semi-major and semi-minor axes) of the ellipse are a = 4 

and b = 8. C is the curve enclosing the region. According to Stokes’ 

theorem: 

     SFl.F


ddI

SC

.    (i) 

Fig. 4.33: The 

shaded region is 

the surface of 

integration S. 

x  
 

y  

 

4a  

 

8b  

 

z  



   

131 

 

 Unit 4                                                Surface and Volume Integrals 

  We first calculate: 

   

k

kji

F ˆ2

2

ˆˆˆ

22















zxx

zyx


          

  On the xy plane kS ˆdydxd 


. 

   

       

S S S

dydxdydxdI 2ˆ.ˆ2. kkSF


    

  By the area property of the double integral, the integral is just:

 

    )Ellipsetheof(Area2I     

  The area of the ellipse is ab so with a = 4 and b = 8 we get: 

       64)84(2I     

9. Using the divergence theorem, the flux of the vector field 
S

dSF


.  where S 

is the surface of the sphere of radius two units, is the volume integral 

  

V

dVF


. , where V is the volume enclosed by the sphere. We first 

evaluate F


. : 

 2
)()2()(

.
3

















z

x

y

y

x

z
F


   (i) 

Using the result of Eq. (i) and the divergence theorem we can write the flux 

of the vector field A


as (see margin remark): 

    
3

64
)2(

3

4
22.. 3 








 

VVS

dVdVd FSF


  (ii) 

10.  We have to evaluate ,.
S

dSA


 where S is the surface of the cube. Using 

the divergence theorem we can write 

          

1

0

1

0

1

0

).(. dzdydxd

S

ASA 


 

                          

1

0

1

0

1

0

1

0

1

0

1

0

410 dzdydxdzdydxy  

                         

1

0

1

0

1

0

1

0

1

0

1

0

410 dzdydxdzdyydx  

                     units. 91.4][
2

][10 1

0

1

0

2
1

0









 z

y
x  

We have used the 

volume property of the 

triple integral to write 


V

dV as the volume of 

a sphere of radius 2 

units. 

 




