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In this unit, you will study surface integrals and volume integrals. You should study
Appendix A2 of this block thoroughly before you start studying this unit so that you
understand the methods of evaluating double integrals. Surface integrals are evaluated
by reducing them to double integrals. Volume integrals are integrations over three
variables. Line integrals are used in this unit in the applications of Stokes’ theorem.
Therefore, revise how to evaluate line integrals from Unit 3.

“Everyone now agrees that a physics lacking all connection

with mathematics .... would only be an historical amusement, Franz Karl
fitter for entertaining the idle, than occupying the mind of a Achard

philosopher.”




Block 1

Vector Analysis

98

4.1 INTRODUCTION

The real world is three-dimensional and as such, most physical functions
depend on all the three spatial variables (x,y,z), as you have seen in Units 1
and 2. You have already studied how to integrate vector functions and fields
with respect to one variable in Unit 3. However, in physics you often have to
integrate functions of two and three variables, over planes and arbitrary
surfaces and volumes in space. Such integrals are called multiple integrals. In
this unit you will study multiple integrals and their applications in physics. You
will also study two important theorems of vector integral calculus, namely,
Stokes’ theorem and Gauss'’s divergence theorem.

In Appendix A2 of this block, you have learnt how to evaluate double integrals
which are integration of functions of two variables and the regions of
integration are on the coordinate planes. At the beginning of this unit in

Sec. 4.2, we discuss some applications of double integrals in physics, like
determining the volume of objects and their centre of mass, etc.

In Unit 3, you have studied line integrals. Recall that in a line integral, the
integration is over a single independent variable but the path may be an
arbitrary curve in space. In Sec. 4.3 of this unit, you will study the surface
integral of a vector field, in which the integration is over a two-dimensional
surface in space. Surface integrals are a generalisation of double integrals.
You will learn how to evaluate a special type of surface integral which is the
flux of a vector field across a surface. This is used extensively in physics,
e.g., in electromagnetic theory. You will learn about some other types of
surface integrals as well. In Sec. 4.4, you will study Stokes’ theorem and its
applications. Stokes’ theorem tells us how to transform a line integral into a
surface integral and vice versa.

In Sec. 4.5, you will learn how to evaluate a volume integral in which the
integrand is a function of three variables. This is the same as triple integral. In
Sec. 4.6 you will study Gauss’s divergence theorem and its application. The
divergence theorem tells us how to transform a surface integral into a volume
integral and vice versa.

With this unit we will complete our study of Vector Analysis. In the remaining
blocks of the course you will study the basic principles of electricity,
magnetism and electromagnetic theory, where you will use the concepts and
techniques of vector analysis covered in this block.

Expected Learning Outcomes

After studying this unit, you should be able to:

% use double integrals to evaluate physical quantities;
% calculate the flux of a vector field;

+ evaluate volume integrals of scalar and vector fields;

% state Stokes’ theorem and Gauss’s divergence theorem and write them
in a mathematical form; and

¢ solve problems based on these theorems and apply them to simple

physical situations.
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4.2 APPLICATIONS OF DOUBLE INTEGRALS

In Appendix A2 you have studied that a double integral can be used to
determine the area of a region and volume of a solid. In the example below,
you will use the techniques for evaluating double integrals explained in A2.2
and A2.3 to calculate area and volume.

Eﬂﬂ?ﬁﬂ 4.1: AREA AND VOLUME USING DOUBLE
INTEGRALS

i) Determine the area of the region R on xy plane bounded by the curves
y =x+2 and y =x2 by evaluating a double integral.

ii) Calculate the volume of the solid below the surface defined by the
function f(x,y) =4+ cosx +cosy, above the region R on the xy plane

(z = 0), bounded by the curves x=0,x =7,y =0 and y =« by
evaluating a double integral.

SOLUTION ® i) To determine the area of the region R, we have to

evaluate H dxdy where R is the region bounded by the curves y = x +2
R

and y = x2 (Eg. A2.7). To carry out the double integration we first obtain

the limits of integration for the variables x and y in the region R.

To obtain the bounds (limits) on x, we solve the system of equations
y:x2 and y =x +2, to get

x2=x+2:>x=—12

The region of integration R is then defined by the conditions
X2 <y <x+2 —-1<x <2 (read the margin remark) and we write

2 [x+2 2 i
Areaof R = dy [dx = [ [y]*/“dx
[ o
=I [x+2—x2]dx ={X—+2x—x—} =g
) 2 3], 2

i) The volume of the solid bound by the surface f(x,y) =4+ cosx +cosy
and the region R defined by 0<x<m O0<y <= is (Eq. A2.3)

TT
\% :”(4+cosx+cosy) dy dx 0]
00
Integrating (i) over y we get:
Y T
=j[4y+ycosx+siny]g dx =j[4n+ncosx]g dx (i)
0 0

Next, integrating over x, we get

=[4nx+nsinx]g = 4n2 (iii)

Note that for y we write
x2 <y <x + 2, and not
X+2<y<x2 Thisis

because in the range

—1<x<2, X2 <x+2.
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SAQ 1 - Determining area and volume using double integrals

a) Calculate the area of the region R bounded by the curves y = x? and

y =x3 for x>0,y >0.

b) Find the volume of the solid that lies below the surface of the curve
f(x,y)= x* and above the region in the xy plane bounded by the curves
y = x2 and y =1

In physics, we also use double integrals to calculate several other quantities.
We could use the double integral to determine the mass of an object like a
planar lamina with a density function. We can also find the centre of mass of a
laminar object or its moment of inertia about an arbitrary axis.

Before you solve an example on the applications of double integrals, let us
summarize some important applications:

APPLICATIONS OF DOUBLE INTEGRALS

B Centre of mass (Xcm,Yem) Of @ body with a density y(X,y) over a
region R

[ xvCxy)dxay [y +0xy)dxay

Xem = R m v Yem = R m 4.1)

B Mass m of a body with a density (mass/area) y(x,y)over a region R

m=[[ v(uy)dxdy (4.2)
R
B Moment of inertia of a body with a density y(x,y) over a region R
about the x-axis, I, and the y-axis I,

o= [[y2voyydxdy; 1y = [[xyxy)dxdy  (4.3)
R R

B The average value u of a continuous function f(x,y) over a closed
region R in the xy-plane is:

j f(x,y)dx dy

p=R J] dxdy = Area of the regionof integration R (4.4)
R

J. dx dy
R

We study one of these applications in the following example, where we
determine the mass of an object using double integrals.

EXAMG’L(E 4.2: APPLICATION OF DOUBLE INTEGRAL

A rectangular plate covers the region 0 <x <4;0<y <3 and has the mass
density y(x,y)=x+Yy. Calculate the mass of the plate.
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SOLUTION B We use Eq. (4.2) to determine the mass of the body with
the density function y(x,y)=x+Yy . R is defined by the equations

0<x<4,0<y<3,. Sothe mass
4 3
I j(x+y)dxdy
=0

m =ﬂ(x+y)dxdy =
R x=0y

o] o o Do

| x=0 y=0 x=0 ] y=0
- 4 3
x2 2
| b
L 0 0
=42 units

In the following example we study one more application of a double integral in
physics.

EX}IMPLE 4.3 : AVERAGE VALUE USING DOUBLE
INTEGRALS

The temperature distribution at a point on a flat rectangular metal plate is
T(x,y)=20—-4x2 —-y2 °C. Calculate the average temperature on the
plate, if the dimensions of the plate are described by 0<x<2,0<y <1.

SOLUTION B Using Eq. (4.4) we can write the average temperature on the
plate as:

j_[T(x,y)dx dy

T, = : R: 0<x<2;0<y<1 (i)
4 Idxdy

R

Note that J] dx dy = Area of the rectangular plate = 2 units. To evaluate
R
the integral in the numerator of Eq. (i), we write:

2 1
J-J.T(x,y)dxdyz j I(20—4x2—y2)dxdy (ii)
R x=0y=0
2 1 2 1 2 1
:ZOJ. Idxdy—4j szdxdy—j _[yzdxdy
x=0y=0 x=0y=0 x=0y=0

(Lo ] e

- 20(2]- 4[%:[%% g ] -

o 3
Using Egs. (i) and (iii), the average temperature is:
43
Tovg =—°C
avg 3
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In the next section, you will study surface integrals of vector fields. Just as line
integrals are integrals along a curve, for surface integrals the region of
integration is a surface. Surface integrals have several applications in physics.

4.3 SURFACE INTEGRALS

In physics, we come across many types of surface integrals. The commonest
example of a surface integral is that of flux. You may recall the concept of
electromagnetic induction from school physics. If we move a bar magnet M
towards a circular coil C (Fig. 4.1), we know that an electromotive force is
induced in the coil. This happens because the magnetic flux linked with the
coil changes with time. The question is: How do we calculate the magnetic flux
linked with the coil at a particular position?

Fig. 4.1: Magnetic flux.

To determine the magnetic flux, we have to integrate the magnetic field
vector over the area enclosed by the coil. It is given by

o8 = [[B.dS (4.5)
S

Here B is the magnetic field due to the magnet at the position of the element
of area dS of the coil. Here S is the area of the coil (the shaded region in
Fig. 4.1).

This type of integral is called a surface integral. This involves the integral of a
vector field over a surface. This is one type of surface integral. You will come
across different types of surface integrals in physics as given below.

Types of Surface Integrals

Analogous to line integrals, surface integrals may appear in the following
different forms:

) [[eds (4.6a)
i) HA.dé (4.6b)
ii) ﬂA xdS (4.6¢)

where ¢ is a scalar field and A, a vector field.

Type (i) is the most common form of surface integrals in physics. In this unit,
we focus on this type of surface integral. It is the flux of vector field A through
surface S.
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4.3.1 Flux of a Vector Field

Let us consider a region of space in which we have a constant vector field
A(x,y,z):AOi . Recall what you have studied about flux in Unit 1 of

BPHCT-131. You saw that the flux of rainwater can be expressed as a scalar
product of the vector field representing the flow of rain and an area vector
representing the top surface of the bucket.

Let us now learn how, in general, the flux of any vector field can be written as
a surface integral. Suppose that A is a vector field associated with fluid
flowing through any region. Let the magnitude Aq of the vector field be the
amount of fluid that crosses unit area in unit time. Then by definition, the flux
of the field A through any areais the amount of fluid that flows through
that area in unit time.

SI S” -
A
> 7/ > A > »L/ >
> ya At > > / B
> > > > > >
> - = > '—/ﬁ' =
= = = »/ »/ -
> — /> > > — >
. D> D z P > D
z > > > y o > >
y
X
X
(@) (b)

Fig. 4.2: Flux of a vector field A (= Ay iA) through a surface a) S, perpendicular
to A ; b) S, parallel to it.

Thus, the flux of A through an imaginary square loop of area (S = a2) placed
in the yz plane (Fig. 4.2a) is defined as

(D|=A0a2

The flux of A through the same area element placed in the xy plane
(Fig. 4.2b) is

@y =0

4.7)

(4.8)

What happens if this imaginary loop is placed at an arbitrary angle to A
(Fig. 4.3a)? That is, it is neither parallel nor perpendicular to the flow.

S A
| > Agsin®
> >
- -
> >
> /> > 0
z > >
- > >
y Agcosf N
X (@) (b)

Fig. 4.3: Flux of a vector field A through a surface S. The normal to the surface
makes an angle 6 with the vector field.

The word flux is
derived from the Latin
word “fluxus” which
means flow. The
concept of flux is
easier to understand in
the context of fluid
flow. You can of
course determine the
flux of any vector field.

Since the loop (in yz
plane) in Fig. 4.2a is
perpendicular to fluid
flow (along x-axis), fluid
flows through it. Since
the loop in Fig. 4.2b is
parallel to the fluid flow,
no fluid flows through it.
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Let 0 be the angle between the normal n to the area element and the vector

field A (Fig. 4.3b). We can resolve the vector field A into two components,

« one perpendicular to S: (Ag cos6) and
« one parallel to it: (Ag sino6).

The angle between
nandAis 0. So
A.N =Aycoso, using

The only contribution to the flux is from the component of the field which is
perpendicular to S, i.e. Agcos6. So the flux is

the definition of the @) =a2Ag coso

scalar product. Note

that if we draw unit In vector notation, we can write this flux as the following scalar product:
normal vectors to the B

surfaces S, and S, as ®=(A.n)S (4.9)

well and use the
expression (A_ﬁ)aZ we | where n is the unit normal to the surface S (Fig. 4.3b).

k Egs. (4.7 . . . R - ~
can get back Egs. ( We can write the area itself in terms of the normal vector n as S=Sn. Then,
and 4.8) because

6=0for S, and the flux @ of the vector field A is:

9z7‘t/2f0|’S.|. - | =
®=A.S (4.10)

Here both the vector field A and the unit normal are constant over the entire
area element(é) over which we are defining the flux of the vector field. In

general, the vector field may be a function of position (X, y, z). Also the surface
itself may not be a plane, so the unit normal would point in different directions
at different points on the surface. For example consider a part of the surface
of a sphere (Fig. 4.4). In Fig. 4.4, we show the normal to this surface at
different points. Note that their directions are different. How do we determine
the flux in such cases?

Fig. 4.4: The unit
normals to the three

This is where we need the concept of a surface integral.

SUEERS eIl 4.3.2 Flux of a Vector Field as a Surface Integral

S, S, and S; are

ny,Nz and Na. Let us determine the flux of a vector field A (X, Yy, z) over the surface S shown
in Fig. 4.5.

Fig. 4.5: A surface S divided into n tiny area elements. The area of the i"™ element
is ASj,it has a unit normal n; and the vector field over this area

element is a constant equal to A, .
104
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We carry out the following steps:

1. We divide the surface into n tiny elements of area. The i" area element is
Aéi =AS;n, where n; is the unit normal to the surface for the area
element AS; (Fig 4.5).

2. Assume that the vector field over each such area element is a constant
A;.
The flux through each element of area is A®; =A;.AS;.

The flux through the entire surface is then the sum of the flux through
each of these elements of area. It is

n
®=A1.AS1+A3.ASp+...+ Ap.ASy =D Aj.AS; (4.11)
i=1
5. Inthe limit as n—o0, we can write flux as an integral over the surface S:

n
®=limnp_ Y Aj.AS :HA.dS (4.12)
i=1 [S
where dS=dSn is the infinitesimal element of area on this surface.

If the surface is a closed surface (like that of a sphere), we put a small circle
on the sign of the integral and write flux of A as

@:ﬁA.dé (4.13)
S

There are several physical situations in which we need to calculate the flux of
a vector field. One of these is the magnetic flux through the coil given by
Dg = ﬂ B.dS. (4.14a)
S
The current i flowing through a wire is the flux of the current density (3 ) (see
margin remark) vector across a cross-section of the wire, i.e.,

i =ﬂj.dé (4.14b)
S

where dS is an area element of the cross-section of the wire.

The mass (m) of fluid flowing out of a volume V is the flux of the vector pv
across the closed surface S enclosing V. Here p is the density of the fluid and
v its average flow velocity.

m = ﬁp\?.dé (4.15)
S

Before we actually evaluate surface integrals, we need to know the
convention used for choosing the direction of n. We discuss this point and
define the area elements for integration in the following section.

4.3.3 Surface of Integration

In Fig. 4.6 you see an arbitrary surface of integration with a unit normal .
Note that we could have chosen the unit normal to be pointing downwards
from the surface instead of in the upward direction, as shown by R’ in

J =nev.

where n is the number
of electrons per unit
volume, e is the charge
on an electron and v
is the average drift
velocity of an electron.

Fig. 4.6: The unit normal
to the surface of
integration may point
outward from the surface
like 1 orin the opposite
direction as n'.
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Fig. 4.7: Direction of
the normal vector for
a plane surface.

n

Fig. 4.8: Outward
drawn normal to a
closed surface.

5>

Fig. 4.9: We choose the
outer surface of the
shell to be the outside
and draw the outward
normal.

The integral over a
closed surface like the
surface of a sphere, is
indicated by ff.

S

106

Fig. 4.6. Obviously this would change the sign of the scalar product between
the vector field and the unit normal in the expression for the surface integral in
Eq. (4.12). How then do we decide in which direction to choose the unit
normal for each area?

Consider a surface S enclosed by a closed curve C (Fig. 4.7) in a plane. Itis
an open surface lying on that plane. The direction of the normal depends on
the sense in which the perimeter of this surface is traversed. If the right hand
fingers are placed in the sense of travel around the perimeter, the positive
normal points in the direction indicated by the thumb of the right hand

(Fig. 4.7). Suppose the surface shown traversed in the sense,
+X—>+Y—>—X—>—Yy —+X. The positive normal to the surface will be parallel
to the positive z-axis.

If a volume is enclosed by a curved surface, it is called a closed surface

(Fig. 4.8). The shell of a whole egg is an example of a closed surface. For
such a surface the direction of the normal varies from point to point. However,
at any point, the convention is to take the normal to the surface pointing
outwards.

We may sometimes come across curved open surfaces. Examples of such
surfaces are the shell of a cracked egg or a bowl (Fig. 4.9). In this case one
side of the surface is chosen arbitrarily as outside and at any point the
direction of the normal is outward. So we come to the general convention that:

The vector n for any curved surface always points outwards from the
surface.

In this unit we will study the surface integral over plane surfaces like the
surface of a cube or cuboid. Surface integrals over curved surfaces are
usually evaluated using non-Cartesian coordinates and this is beyond the
scope of this syllabus.

Let us now describe the area element dS =dSn for the surface of a cube or
cuboid.

Area elements on the surface of a cube or cuboid

In Fig. 4.10 we show some typical area elements on the different faces of a
cube/cuboid. For example, for an area element on face S,, the outward
normal is along the negative z-axis, so the area element is — dxdyk.

ZA

dxdylz
A
dS;
™ dxdz j dy
—dxdz] <-— > - «—
- dSy dx
dydzf \ -
N dSy
Yy dS;
X —dxdyk

Fig. 4.10: Surface area elements on a cube.
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You may note that the area element for the face Sgis dydzf. You may like to
write the area elements for the remaining faces. Try the following SAQ:

SAQ 2 - Areaelements on the surface of a cube/cuboid

Write down the area element for the faces S5,S3,S4 and Sg of the cuboid in
Fig. 4.10.

4.3.4 Evaluation of Surface Integrals

A surface integral is evaluated as a double integral, over two variables. This
means that we must describe both the vector field and the surface in terms of
the same variables and then evaluate the double integral. In many problems
on surface integrals, the choice of variables can be made by looking at the
symmetry of the surface of integration.

Let us understand this by working out a few examples.

Eﬂ%@ﬁf 4.4 : SURFACE INTEGRAL OF A VECTOR FIELD
OVER A CUBE

Calculate the surface integral of a vector field A:2xzf+2xz]—sz2 over the
surface of a unit cube occupying the space 0 <x<1;0<y<1;0<z<1.
SOLUTION B You have learnt about the area elements for each face of a

cube in Sec. 4.3.3. Integrating A over the surface of the cube means that we
have to integrate over each face of the cube. So

ﬁ?,&.dé =HA.d§1+ HA.déz +ﬂA.dé3 + [[A.dSy+[[A.dSs + [[A.dSe
S N S, e S, Ss Se
0)
Now let us integrate A over the surface S, which is on the plane z=0
(Fig. 4.11):

L= J-J'A.délz H [2xZi + 2xz] - yZR].[— dxdyR] = Hyzdxdy =0(-z=0) (i)
S Sy S;

We next integrate A over the surface So> which is on the plane z = 1:
ly = ”A.déz = ﬂ [2xzf + 2xz]—yzl2][dxdyl2]=— ﬂyzdxdy =—_U ydxdy
Sz S2 S2 Sz
(rz=1
(iii)
We can evaluate this as a double integral on a rectangular region S, using
Eq. (4.7) with the following limits on x and y to define the region S, :

0<x<1 0<y<1

Ip = i { yaxdy = —de}[]l-ydy} - —[x]%{%}:) - _%

0

(iv)

(v)

In many problems of
surface integration,
non-Cartesian
coordinates are used
for convenience. The
choice of coordinate
system is decided by
the symmetry of the
physical system.

NOTE

The LHS of Eq. (i) is
an integral over the
entire surface
whereas each
integral on the RHS
is on a plane, a face

of the cube.
Z
A
Sy
Sj3 >
/ ; \; y
X Sl
1

Fig. 4.11: Unit cube of
Example 10.1 with the
surfaces S4,S,,Szand
S4 marked. These
correspond to the
planes z=0,z=1,y=0
and y = 1 respectively.
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Similarly, for the surface S; (0<x <1;0<z<1)is on the planey =0, we
have

l; = H,&.dég = H [2xzf + 2xz]—yz|2”— dxdz]]: —_U 2xzdxdz (i)
S, S; S,
Evaluating this as a double integral we can write:

I, = —2g xzdxdz = —2E xdxM zdz} _ —2["72}1 {%}1 _ —% (vii)

0 0

You may like to work out for yourself the values of the integral of A over the
faces S, Ss and S; of the cube (SAQ 3a). You will see that

Iy =jjA.dé4 =% (viii)
Sq
I :HA.dés =0 (ix)
Ss
and
ls :Hli.dée =1 (x)
Se

The total flux of A through the surface of the cube is found by substituting
the surface integral corresponding to each surface in Eq. (i) from
Eqgs.(iii),(v),(vii), (viii),(ix) and (X) to get:

_UA. dS =0 —%—%+%+0+1:%

S

SAQ 3 - surface integral

a) Calculate the integrals 14,Isand Ig from Example 4.4.

b) Calculate the surface integral ﬂ r.dS where =xi + y ] +zk and Sis the
S

surface of a disc of radius 2 units, lying in the plane z = 5, defined by

x2+y2s4; z=5

4.3.5 Solid Angle

S We now explain the concept of a solid angle which will be used in the next
block. You are familiar with an angle in a plane. You know that in two-
dimensions, it is the angle between two straight lines, say AO and BO, that

0 intersect at a point O (Fig. 4.12). It is measured in the plane of the same lines

and defined as
Fig. 4.12: Angle 6

in a plane. 0 :E (in rad)
r

where s is the arc length of a circle of radius r passing through A and B. A
solid angle is a three-dimensional analogue of the two-dimensional angle. Let

108 us define it.
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Consider an arbitrary differential area element dS of a surface at a distance r
from a point P to the surface element. Let r denote the unit vector from the
point P to the area element (Fig. 4.13). Then, by definition, the solid angle dQ
subtended by the surface area element dS at the point P is given by

dQ:dSZ'r ZdSczose (4.16)
r r P

. A Fig. 4.13: The solid
where 6 is the angle between the normal to the surface element and r. The angle dQ subtended

unit of solid angle is the steradian which is dimensionless. by an area element

i i o dS at a point O.
The net solid angle subtended by the entire surface S is given by the surface atapoin

integral:
f.dS
jsj do = IS rr—z (4.17)

The solid angle of a closed surface is an important special case that we will
use in Unit 6 of Block 2.

The net solid angle subtended by a closed surface S surrounding a point is
given by

|

f.d
Q:ﬁ 2 =4n (4.18)
S

Note that for a closed surface, the vector dS is always taken as the normal to
the surface pointing outwards. The proof of Eq. (4.18) is beyond the scope of
this course.

So, the net solid angle subtended by a closed surface of any shape, on a point
enclosed by it, is 4r steradians.

You may now work out the following SAQ.

SAQ 4 - surface integral on the surface of a sphere

Evaluate (i) ﬁr‘.dé and (ii) ﬂ% where S is a sphere of radius R.
r
S S

Integral theorems allow you to transform one type of integral into another. We
now study the Stokes theorem which allows us to transform surface integrals
into line integrals, and conversely, line integrals into surface integrals.

4.4 STOKES’ THEOREM

Stokes’ theorem states that: ‘The integral of the curl of a vector field over a
surface S is equal to the line inetgral of the vector field over the closed
path C bounding S. It is expressed mathematically as

109



Block 1 Vector Analysis

fAdi=[[(FxA)dS (4.19)
C S

Fig. 4.14 shows some examples of surfaces bounded by closed paths.

C /C

Fig. 4.14: Surfaces bounded by closed paths.

Let us now use Stokes’ theorem to evaluate an integral.

3 EXAMG’MZ 4.5: EVALUATION OF LINE INTEGRAL USING

radius 2 THE STOKES’ THEOREM
A » o . = - = 5
M Verify Stokes’ theorem for the vector field F=yi+zj+xk over the closed
X contour C enclosing the plane surface S shown in the Fig. 4.15. Here AB is

_ the arc of the circle of radius 2 with its centre at the origin.
Fig. 4.15: The contour C

and surface S for
Example 4.5. SOLUTION B To verify Stokes’ theorem we must show:

§(yf+zi+ xﬁ).dT:_U [ﬁx(yih+zj+xlz)].d§ (i)
C S

C is the closed contour OAB which encloses the quarter circle in the yz

plane. The radius of the circle is 2 units. Let us first integrate the line integral
on the LHS of Eq. (i). The contour C is made up of C;,C, and C3,C; is the

straight line OA along the y-axis, C, is the arc AB of the circle and C3is the
straight line BO along the z-axis. Then

Iy = f(yin+z]+xI2).dT+ f(yiA+z]+xI2).dT+ f(yf+z]+xl2).df (ii)
Cy Co Cs

We first evaluate the first and third integrals on the RHS of Eq. (ii). Using
Eq. (3.19a), we can write

2
I(yf+z]+xl2).df = I(ydx +zdy +xdz) = Izdy (- dx =dz =0 along OA)
C C 0

=0 (-z=0along OA) (iii)
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and

J'(yf+z]+ xK).dl = I(ydx +zdy +xdz) =])- xdz (. dx =dy =0 along BO)
Cs Cs 2
=0 (-x =0along BO) (iv)
To evaluate the line integral along C,, we parametrize the curve AB as
follows:
r(t)=2cost j+2sintk; x(t)=0, y(t)=2cost, z(t)=2sint; 0<t<n/2

v)

ar® __ 2sint j + 2costk (vi)

~.F=yi+7j+xk = 2costi +2sint  ;

Using Eq. (vi) in Eqg. (3.28) for the line integral we get (see also margin
remark):

nl2
J.(yiA+z]+xI2).dT = J.(Zcostf+25int]).(—23int]+ 2costk)dt
Co t=0
/2
= j (~4sin2t) dt = - (vii)
t=0

Adding up the contributions from each segment, the line integral over OAB
is found by substituting the results of Eqgs. (iii), (iv) and (vii) in Eq. (ii):

[h=0-n+0=—mn (viii)
We next evaluate the surface integral in the RHS of Eq. (i). We first
calculate the curl of the vector field (see margin remark):

VxE=—i-j-k (ix)

Note that the surface S is a plane surface on the yz plane. If we curl the
fingers of our right hand around the contour in the direction of the contour,
the normal to the surface is along the positive x-direction. We can consider
the element of area on the yz plane to be:

dS = dydzi (x)
Then
Iy = H curl(yi +2zj+xk).dS = J] (-i-]—k).(dydz i)= —II dydz (i)
S S S

Using the area property of the double integral we can see that:

H dydz = Area of S =%(Area of circle of radius 2) ==
S

Therefore, the integral of Eq. (xi) is just

lo =—n (xii)
The line integral of Eq. (viii)) and the surface integral of Eq. (xii) both give
us the same result, thereby, verifying Stokes’ theorem.

nl2
jgnztdt
0

nl2
1- 2t
_ I( cos )dt
2
0

11':/2 lTC/Z
:5 j dt_E jcostht
0 0
1oz 1. /2
= ' - lsn20];
=nl4
ik
vxE-| L 2 2
oXx oy oz
y z X
—_i-j-k
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Fig. 4.16: Figure for
SAQ 5.
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You may now like to work out an SAQ on solving integrals using Stokes’
theorem.

SAQ S - Evaluation of line integral using Stokes’ theorem

Using Stokes’ theorem, evaluate ifA.dT around the closed curve C shown in
C
Fig. 4.16 given that:

A=(x-y)i+(x+y)]

4.4.1 Applications of Stokes’ Theorem

We shall now discuss an application of this theorem. The direct evaluation of
V xB where B is magnetic field due to a current carrying conductor is quite

tedious. To obtain V x B, we shall use Stokes’ theorem and the circuital form
of Ampere’s law,

:fé.dfzuoi (4.20)

where C is any closed path that is linked with the current i (Fig. 4.17). For a
path like C’ which is not linked with the current, we have

fé.dfzo
C

Now, our task is to calculate V x B. From Stokes’ theorem we get:

fB.d7=[[(VxB).as (4.21)
C S

where S is enclosed by C.

Recall that in Eq. (4.14b) we have defined current in terms of the current
density J as:

=ﬂ§.dé (4.22)
S
Hence, from Egs. (4.20) (4.21) and (4.22), we get
ﬂ VxB).dS= jjuo J.dS (4.23)
or
H(ﬁxé—uoj).dézo (4.24)
S

Since dS is arbitrary, the integrand must be zero. Therefore,
VxB=pgd (4.25)
Thus we see that B has a non-vanishing curl.

You have learnt in your Mechanics Course (BPHCT-131) that the curl of a
conservative force field is zero. We can prove the same result using Stokes’
theorem. You can work this out yourself in the following SAQ.
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SAQ 6 - Application of Stokes’ theorem

Using Stokes’ theorem, prove that curl of a conservative force field is zero
everywhere.

So far you have learnt how to evaluate double integrals and surface integrals,
which involve successive integrations over two variables. Next we study
volume integrals (also called triple integrals) which involve successive
integrations over three variables.

4.5 VOLUME INTEGRALS

Let us first define volume (also known as triple integrals) integrals, where we
integrate a function of three variables, f (X, y, z) over a closed volume Q in

the Cartesian coordinate system. The method we follow is similar as for
defining a double integral.

4.5.1 Volume Integral of the Function f (X, y, 2)

Like the double integral, the triple or volume integral is also defined as the limit
of a sum. Let us see how this is done.

1. We first partition the three dimensional volume Q into n parts by drawing
planes parallel to the three coordinate planes. As a result, the volume Q
is filled with boxes, which we now number from 1 to n. Each box has a
volume AVi = AXi Ayi AZi.

2. We choose a point (X; Yj,Z;)in each of these boxes and define a sum of
the form:

n
Sn=> f(Xi.yi.z) AV (4.26)
i=1
3. As nincreases, the volume of the boxes becomes smaller and smaller.
The volume integral of the function f(x,y,z) over the region Q is defined
as the limit of the sum S, in the limit n > «o.

The volume integral of a function f(x,y,z) over a closed bounded region
Q is defined by the expression:

M s, if(xi,yi Zi)AV, =m f(x,y,2)dV = m f(x,y,z)dxdydz (4.27)
i=1 Q Q

You have seen before that the integral of the function of a single variable
with respect to that variable represents an area, and a double integral of a
function of two variables represents the volume under a surface. What,
then, is a volume integral? We can say that it represents a summation in a
hypothetical 4™ dimension.

Let us try to understand this point with an example. Imagine a balloon that
is being inflated. We define the surface of the balloon with the help of an
equation z =f(x, y). However since the size of the balloon is changing
with time, each of these variables is also a function of time t. If we
integrate with respect to x and y, we get the volume of the balloon as a
function of t. If we put in a value of t we will get the value of the volume of
the balloon at that instant of time. However, now we can perform the
integration over t to sum up the volume over the entire process of inflation

that would be the volume integral. 113
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A

Va(XY)

3
K
.
o
B

vifx.y)

Fig. 4.18: Limits of
integration on the
variable z in the
region Q.
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We now write down the properties of the volume integral, which are quite
similar to the properties of a double integral.

4.5.2 Properties of the Volume Integral

For any two functions f(x,y,z) and g(x,y,z) defined over the three
dimensional region ©2, the volume integral has the following properties:

Linearity:
J:U [ocf (x,¥,2)+Bg(x,y, z)]dxdydz = ocjﬂ f(x,y,z)dxdydz + B_m f(x,y,z)dxdydz
Q Q Q

(4.28)

where a and B are constants.
Additivity:

If the region ©Q can be broken up into several non-overlapping regions
01,0o,...,Qn, We can write:

'm f(x,y,z)dxdydz
Q

= m. f(x,y,z)dxdydz + J.J:[ f(x,y,z)dxdydz +.... + m. f(x,y,z)dxdydz
Q4 Qo Qn

(4.29)
Volume Property:

If the function f(x,y,z) =1 then the volume integral over the region Q gives
the volume of Q:

m [1]dxdydz = Volume of the region Q (4.30)
0

Let us now see how a volume integral may be evaluated by iterated
integration.

4.5.3 Evaluation of a Volume Integral

In evaluating the volume integrals we will once again perform iterated
integration. In evaluating a double integral, where we integrate with respect
to two variables, we perform a two-fold iterated integration. This, as you have
seen in Sec. A2.2 of Appendix A2, can be carried out in two different ways
depending on the order in which the integration over the two variables is
carried out. Here we have three variables, so we carry out three-fold iterated
integrations. However, in this case there are six possible ways of carrying out
the repeated integral. If f(x,y,z) is continuous, all the six iterated integrals are
equal.

Let us consider the solid region Q2 bounded below by the surface z =v4(Xx,y),
and above by the surface z =v,(x,y), as shown in Fig. 4.18. The projection
of the solid onto the xy plane is the region A (Fig. 4.18). We assume that the
functions vq(Xx,y)and va (x,y) are continuous in the region A. Then, for a
function f(Xx,y,z) continuous in the solid region Q, we can write.
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Vo (XY)
Iﬂ f(x’y’z)dXdydhﬂ If(x,y,Z)dz ydx (4.31)
Q Al z=vi(xy)

Once we calculate the integral within the bracket, we are left with (in general)
a double integral of a function of two variables x and y to be integrated with
respect to x and y. And we can use Eqgs. (A.2.9) or (A.2.11) to evaluate this
double integral. So if A is a region in the xy plane defined by:

as<x<bh u(X)<y <uy(x) (4.32)

the volume integral reduces to:
b | uz(x) | va(xy)

H f(x,y,z)dxdydz = j j j f(x,y,z)dz [dy | dx (4.33)

Q x=a| y=uy(x)| z=vi(x,y)
As for double integrals, remember that iterated integral for the volume integral
can be performed in any order of variables. Here we have chosen to integrate
over z first, then over y, and finally over x. The choice of the order of the
variables of integration is to be made according to our convenience. In
Example 4.6, we integrate over Yy first, then over z and finally over x. Volume
integrals are used to evaluate several quantities of interest to physicists, such
as the volume and mass of an object of arbitrary shape, its centre of mass and
its moment of inertia. We summarize these applications below.

APPLICATIONS OF VOLUME INTEGRALS

B Volume V of aregion Q:
V= .”.[ dx dydz (4.34)
Q
B Mass m of a body with a density y(x,y,z) over a region Q:

m = J]] v(X,y,z)dx dydz (4.35)
Q

B Centre of mass of a body (X¢m,Ycem Zem) With a density y(X,y,z)

over a region Q:

JI] x vxy, 2)dxyaz [[] yr(x.y,2)dxdydz
Q 5 _

Xem = i Yem =
¢ m ¢ m

m‘ zy(x,y,z)dx dydz

| (4.36)

Z =
cm
m

B Moment of inertia of a body with a density y(X,y,z) over a region Q)
about the x-axis (Ix), about the y-axis (ly) and about the z-axis (I;):

Iy = H (y2 + zz)y(x,y,z)dx dydz (4.373)
Q

ly = jj j (x2 +22) y(x,y,z)dx dydz; (4.37b)
Q

I, = J:U (x2 +y2) v(X,y,z)dx dydz (4.37¢c)
Q
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In the following example, we determine the moment of inertia of a cube by
carrying out a volume integral.

E){/"IMTL‘E 4.6 : DETERMINING MOMENT OF INERTIA
z USING THE VOLUME INTEGRAL

Consider a cube with uniform density p and side a. The cube is placed such
that its edges lie along the x, y and z axes as shown in Fig. 4.19. Determine
a the moment of inertia about an edge of the cube.

Y| SOLUTION m To evaluate the moment of inertia about the x-axis, we use
«——K 2 Eq. (4.37a). The limits of integration on the three variables are (Fig. 4.19):

X 0<x<a 0<y<ag 0<Lz<a

Fig. 4.19: A cube of

X We write the moment of inertia as:
side a.

a

Ixzp-a[ :T. J.(y2+22)dzdydx

x=0y=0z=0
a a 23—a
=p J- J. y22+? dy dx (integrating over z first)
X:Oy:0_ -0
a a /[ a3_
=p J j y2a+? dy dx
x=0y=0L i
2 [y% ady |
= ~——+—=—| dx (integrating over
p | [ 5t 3 ] (integrating over y)
x=0 0
a a
2 4 2 4 2 5 .
=p||=a” |[dx =p|=a’x | =—pa i
p£[3 } ;{3 L 3" U

The mass of the cube is M = (density) x (volume) = pa3. Substituting for p in

Eq. (i) we get:
2
ly = §|\/|a2

You may now like to evaluate a few integrals by this method.

SAQ 7 - Evaluating volume integrals

a) Evaluate the volume integral of the function f(x,y,z) = (sinx)yz for
0<xy,z<m

b) Determine the mass of a unit cube of density y (X, y, z) = X + 2y + 3z
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4.6 VOLUME INTEGRAL OF A VECTOR FIELD

So far in this unit we have discussed the volume integrals of a scalar field.
Sometimes, however, you may have to evaluate the volume integral of a
vector field. The volume integral of a vector field is written as:

ﬂ AdvV (4.38)
\%
where V is the volume over which the integration is to carried out. The volume

element dV is a scalar and so we can write the volume integral of the vector
field A=Aji+A,j+AKk, as:

f\{f Adv =iAI£j AV +] j\{j AoV + kJ'\.[ [ Aav (4.39)

The integral of Eq. (4.39) reduces to a combination of integrals of scalar
functions. The result of the integration is a vector quantity.

We now discuss another integral theorem. This theorem tells us how to
convert a surface integral into a volume integral and vice versa.

4.7 THE DIVERGENCE THEOREM

The divergence theorem states that ‘the integral of the divergence of a
vector field over a volume V is equal to the surface integral of the vector
over the closed surface bounding V.’

The divergence theorem is sometimes also referred to as the Gauss’s
divergence theorem, Gauss’s theorem or the divergence theorem of Gauss. It
is expressed mathematically as

ffA.as={[f (V.A)dv (4.40)

where V is enclosed by S (Fig. 4.20).

Let us now work out an example to understand how to apply the divergence
theorem.

EX%M@LE 4,7 DIVERGENCE THEOREM

i) Use the divergence theorem to obtain the flux of a vector field
A=3xi-yj+2zk over a cube of side 2a. The vertices of the cube are at
(+ta,ta,xa)as shown in Fig. 4.21.

i)  Use the divergence theorem to evaluate the flux of the vector field
F=Xi +Yj+zk over the sphere x*+y?+z° =a”.

SOLUTION W i) Recall from Eq. (4.6b) that the flux of the vector field is
defined as ﬁ A.dS. Here S is the surface of the cube shown in Fig. 4.21.
S

Using the divergence theorem, we evaluate J:U V.AdV , where V is the
\Y

\Y,

Fig. 4.20: A closed
surface S enclosing a
volume V.

2a
N

Fig. 4.21: Cube with
side 2a. The cubeis
bounded by the planes
X=+a, y=+a,z=+a.
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In writing the final
result we have used
the volume property of
the triple integral to

write J] dV as the
\%

volume of the region V,

which is just the
volume of the cube of
side 2a that is 8a°.

Using the volume
property of the triple
integral we can see

that j” dV is just the
\%

volume of the sphere
of radius a which is

4
“rad,
3

Fig. 4.22: Electric

flux due to a point
charge q through a
sphere of radius a.
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region enclosed by the surface of the cube. The region V is defined by
the limits:
—a<x<a, —a<y<a —a<z<a 0]
Let us first evaluate V.A :
GA-AEX)  Ay) | a22)_, (i
oX oy 0z

Using the result of Eq. (ii) in the divergence theorem we can write the flux
of the vector field A as (read the margin remark):

ﬁ/&.dé =m6./ldv =4m dV = 4(2a)3 = 32a3
S \Y \Y

i) Using the divergence theorem for the vector field Ifzxf+y]+zlz we can
write for the flux,

= ﬁ F.dS =ﬁ (xf+yj+zl2).d§ = .UJ‘ ﬁ.(xf+y]+zl2)dv (i)
S S \%

where V is the volume enclosed by the sphere enclosed by surface S
given by x? +y2 + 2% = a®. We evaluate the integral on the RHS of

Eq. (i)

o[z e vl

You may now like to work out the following SAQ.

SAQ 8 - Evaluating surface integral using the divergence
theorem

Evaluate ﬁ V.AdS,where V=xcos?yi+xzj+zsin?yk and S is the
S
surface of a sphere with its centre at the origin and radius 3 units.

Let us now consider an application of the divergence theorem.

4.7.1 Application of the Divergence Theorem

You have studied in your school physics courses that the electric field due to a
point charge g, at a point whose position vector with respect to the location of
gis r,is given by

E= k—gf (r = 0) (4.41)
r

where k is a constant dependent on the nature of the medium.

Let us now determine the flux of E through a sphere of radius a (Fig. 4.22)
whose centre is at the position of the charge qg.

The required surface integral is ﬁé.dé, where S is the surface of a sphere of
S

radius a. Here
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g_ka-_kq . kq. (4.42)
I’3 r3 r2

where r is the unit vector along the position vector r .Contribution to a surface
integral comes from the surface only. So we have to know E on the surface of
the sphere, which is k—gr“ . Again, we know at every point on the sphere

a

dS = dSf where dS is the surface element on the surface of a sphere.

~

Hence, the required flux = ﬁk—gf.dsf = ﬂ;k—qu (v r.r=1)

2
s @ s a
_ka ﬁ ds (4.43)
a2
S
because ﬁ dSis the surface area of the sphere of radius a which is 4na®, we
can write
ﬁ E.dS = 4nkq (4.44)
S

where S is the surface of a sphere that encloses charge g. It can be shown
that the above result is true for any charge distribution. Suppose that a closed
surface enclosing a volume V has a continuous distribution of charge. If the
charge per unit volume is p, then g = m pdV.

v
An example of such a distribution is a charged sphere. For this distribution, we
have

j':f E.dS = 4nk j H pdV (4.45)
S \%

But using Eq. (4.40), we have
j’:fé.dé:ﬂj’%. Edv (4.46)
From Egs. (:40) and (2.44),, we get
m V.EdV = 4nkm pdV
v v
or I (V. E-ankp) dv =0 (4.47)
v

Since dV is an arbitrary infinitesimal volume element, the integrand in
Eq. (4.47) must be zero:

V.E—4nkp =0 = V. E =4nkp (4.48)
Eq. (4.48) tells us that the divergence of the electric field vector due to a
continuous distribution of charge is independent of the extent of distribution. It
depends only on the charge per unit volume. In charge-free space, p =0, so
that

V.E=0 (4.49)
The advantage of the divergence theorem is that it enables us to convert a
volume integral to a surface integral and vice versa. In applications of the
divergence theorem, the strategy for problem solving should be to evaluate
the simpler of the two integrals.

You may now like to solve an SAQ to apply the divergence theorem.
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SAQ 9 - The divergence theorem

a) Show that for any closed surface S the surface integral
ffr-ds=av
S

where V is the volume of the region enclosed by the surface.

b) Show that for a vector B=VxA

ﬁé-dé:o
S

4.8 SUMMARY

Concept Description

Applications of double B Double integrals are used in physics to evaluate the following quantities:

integrals .
e Area AofaregionR

Azﬂ dx dy
R

e Mass m of a body with a density y(x,y) over a region R
m= ([ v(uy)dxdy
R

e Centre of mass (X¢m,Yem) Of @ body with a density y(x,y) over a region
R

J[ x0xy)dxdy [y vx.y)dxdy

_ R . _
Xem = m v Yem = m

e The average value p of a continuous function f(x,y) over a closed
region R in the xy plane is:

j f(x,y)dxdy

p=R I dxdy = Area of the regionof integration R
I dx dy R
R
Surface integral B The surface integral of a scalar or a vector field is the generalisation of the

double integral where the region of integration may be any surface.

Surface integrals can occur in any of the following three forms:
jjq)dé, jj/&.dé and jJ'A xdS
S S S

120 The element of area is dS =dSA .
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Flux of a vector field

Volumeltriple integral
of a function

Applications of volume
integrals

Vector integral
theorems

The flux of a vector field A over a surface S is given by the surface integral
@:ﬂAué
S

The volumel/triple integral of a function f(x,y,z) over a closed bounded region
Q is written as m'f(x,y,z)dv or Iﬂf(x,y,z)dxdydz and can be defined as
Q Q

the limit of a sum as follows:

Mo if(xi Vi,Zi AV, =jj j f(x,y,2)dV = m f(x,y,2)dxdydz
i=1 Q Q

Volume/triple integrals are used in physics to evaluate the following
guantities:

e Volume V of aregion Q
\ =J.H dx dydz
Q

e Mass m of a body with a density y(X,y,z) over a region Q

m = J:” v(X,y,z)dx dydz
Q

e Centre of mass of abody (X¢m, Yem Zem) With a density y(x,y,z) over

a region Q
H X v(X,y,z)dx dydz J‘I y v(X,y,z)dx dydz
Xem =~ ; Yem =" :
m m
J:U Zy(X,y,2)dx dydz
Zem = -2 m

e Moment of inertia of a body with density y(x,y,z) over a region Q
about the x-axis, Iy, about the y-axis lyand about the z-axis, |, .

Iy = m (y2 + zz)y(x,y,z)dxdydz
Q

ly = m. (x2 + 22) v(x,y,z)dxdydz;
Q

I, =ﬂ (x2 +y2) v(X,y,2)dx dydz
Q

The Stokes’ theorem states that the integral of the curl of a vector field over
a surface S is equal to the line integral of the vector field over the closed
path bounding S and is expressed mathematically as:

ifA.dT = chrlA.dé
C S
The divergence theorem states that the integral of the divergence of a

vector field over a volume V is equal to the surface integral of the vector field
over the closed surface bounding V and is expressed mathematically as:

ﬁA.dé:mdivAdv
S v 121
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4.9 TERMINAL QUESTIONS

1.
y 2.
s
3.
b
T = —>
a X
Fig. 4.23: A rectangular
lamina 0 < x <a,
0<y<h. 4.
z 5.
Q(0,21)
6.
> >y
/0(0,0,0) P(0,20)
X
Fig. 4.24: Path OPQ for
TQ 6.
8.
9.
10.

Use double integration to find the area of the region in the xy plane
bounded by the curves y = xand y = x3for x > 0.

Calculate the volume V of a solid which is bound above by the plane
z=4-y and below by the region R defined by the circle x2 +y2 =4,

The product of inertia of a lamina in the xy plane about the x and y-axes is
given by

Iy =lyx =J. oXy dx dy
R

where R is the region of space covered by the lamina and o is the mass
per unit area of the lamina. Determine Iy, for the lamina shown in

Fig. 4.23.
A box is bounded by the planes x=0;x=%4y=0,y=Lz=0andz=2. It

has a density y(X,y,z) = (9— 23) kg m~. Calculate the mass of the box.

Determine the flux of the vector field F=x f+y ]—22I2 over the surface of
a sphere S defined by the equationx2 +y2 +z2 =1.

Verify Stokes’ theorem for the vector field A= 22] + yzlz, where C is the
path OPQ in the yz plane shown in Fig. 4.24.

Show that the line integral jf(yzdx +xzdy + xzdz) is zero along any
C
closed contour C.
Using Stoke’s Theorem evaluate flf.df
C

F=x f+2x]+22I2
where C is the ellipse in the xy plane defined by

x2 y2

16 64
Using the divergence theorem, calculate the flux of a vector field
F=zi+ 2y] —x3k over a sphere of radius 2 units.

1 z=0

Evaluate the flux of the vector field A = (2y i +5y? j +4zK) through the

surface of a unit cube which has one corner at the origin, one corner at
(1, 1, 1) and all its edges are parallel to the coordinate axes.

4.10 SOLUTIONS AND ANSWERS

Self-Assessment Questions

1. a) We have to evaluate J.J. dxdy where R is the region bound by y = x2

122

R
and y = x3. Following Example 4.1, let us first determine the points of

intersection of the two curves in the region x > 0; y > 0, for this we
solve the equations
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2

y =X 3

and y=xX
= x? =x3 :>x2(x—1)=0

So the points of intersection are x = 0 and x = 1 and the limits on x and
y are x3 sysx2;0sxs1

1 x?2 1 , 1
A= j j dy dx =j[y)§3dx = [(x2 - x3)dx
x=0 [ y=x3 0 0
1
RS SR I
3 4 12
0
b) We use Eqg. (A2.3) to evaluate the integral with f(x,y) = x?. The lim
on y for the region of integration on the xy plane is defined by the
equation:
5
x2<y<1
We obtain the limits on x in the region of integration by determining

the value of x at the points at which the two curvesy = x*and y = 1
intersect, as you see in Fig. 4.25. This is found by solving for x as
follows:

x2=1=x=1-1
So the integral we have to evaluate is the following:

1 1
I Ix4dydx

x=-1y=x2

Integrating over vy first, we get:

] dx= Jl‘[x4—x6]dx

Izi[yx4

-1 X2

Integrating over x, we then get:

1
|{£1q_
5 7

1

2. From Fig. 4.10 we can see that

dS, = dxdyk

dS; = —dxdzj

dS, =dxdz
and d§5 = —dydzi

2

0

Note that the limits on
yare x3 <y <x2 and
not x2 <y < x3. This
is because for
0<x<1 x3 <x2,

y=1
L2
T x<<
-1 0 1
X

Fig. 4.25: The region of
integration for

SAQ 1(b). The two
curves intersectatx =1
and
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3. a) Using the results of SAQ 2, we can write the surface integral over the
surface S4(0<x<1,0<z<l)ontheplaney=1as

I = J.J.A.d§4 = H [2xzf+2xz]—yzl2][dxdz]]= _U 2xzdxdz
Sa S4 S4

We evaluate this double integral to get:

g = 2] xzdxdz= 2[} xdx]ﬁzdz] =%

S4 0 0
Similarly over the surface S5 (0<y <1;0<z <1) on the plane x =0
(Fig. 4.10) we get

s = H AdSg = H [2xzf +2X7) — szZ][— dydzT]
Ss Ss
= —J. 2xzdydz =0 (- x=0)

Ss

Over the surface Sg(0<y <1;0<z<1) which is on the plane x =1,

we have
5 = _U A.dSg = ” [szf +2x7) — yzR][dydzT]
Se Se
= —J.J- 2xzdydz = _U 2zdydz (- x =1)
Se Se

We evaluate this as a double integral:
1 1 22 1
6 J] zdydz '[dy jzdz [y]o{ ) L
Se 0 0

b) Since the disc is parallel to the xy plane, we can write as explained in

Sec. 3.3,
dS = dxdy K
Z - -~ A ~ ~
4 HF.dSzJ](Xi+yj+zk).dxdyk
S S
= _U zdxdy = SH dxdy (since the disc lies in the plane z = 5)
S S

=51.22 =20n (H dx dy is the area of the circle of radius 2 units)
S
Refer to Fig. 4.26. r is the unit vector along the position vector r .
Since dS points along the outward drawn normal, it points along f at

Fig. 4.26: The unit normal every point on the sphere so that dS =dsf

for an area element on the . = o a n PR
surface of a sphere. .dS=r.dSf =dS(f.f)=dS (. 7.f =1)

Hence ﬁ F.dS= ﬁ;ds =S, which is the surface area of the sphere.
S S

Thus ﬁ F.dS = 4nR2
124 S
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i)  Similarly

4nR2

rdS_ 1
‘_2
S

5. To evaluate the line integral using Stoke’s theorem as given in Eq. (4.19),

we first evaluate Vx A as:

i
0
oX oy
(x-y) (x+y) O

k
Kl

<

X

p

|

|Q) —

_i[o 0 ok
P [—(Hy)—g(x—y)}—

The contour C and the region R are in the xy plane as shown in Fig. 4.27
(Fig. 4.16 reproduced here), therefore dS=dx dy k . Substituting for V x A

and dS into Eq. (4.19) we can write the integral as:
| =§ Adi=[[(VxA)dS=[[(2k).(axdy k)= 2[[ axdy
C S S S
We define the region S (shown in Fig. 4.25) by the equations (see margin
remark):
0<x<1; x2<y<x
Then

2J1‘ Idy dx_ZJ.y]de_ZJ.[f xz]dx

x=0| y=x2
1

3 3
= Z.g(x/éj__)[ﬁ ::2[2__1}::2
5 3 1y 3 3] 3
6. Refer to Fig. 4.28. You have seen that for a conservative force
[FdF=- [F.df

ACB —ADB
or
jﬁ.dh jﬁ.dr ~0
ACB —ADB
ie. § F.dr=0
ACBDA

From Stokes’ theorem, we know that
fF.dr = [[(VxF).dS
ACBDA S
So,
I (6 X IE) ds =

But dS is arbitrary. Hence the integrand is zero. Moreover, since the path
ACBDA has been chosen anywhere in the field, we can write

ig. 4.27: Figure for SAQ 5.

The limits on x are
given by the points of
intersection of the

curves x = yZ2and
y = x2. By solving

Jx = x2we get the
points of intersection
asx=0andx=1.

A

Fig. 4.28: Diagram for
the solution of SAO 6.
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V xF = 0 everywhere in the field.

7. a) We write the volume integral as

| = ﬂ (sinx)y zdxdydz,
o

where Qis defined by the equations:

0<Xx,y,z<m

In this case, we can write the integral as:

| :EsindeHTfy dymde] =[-cosx]g {%}: {%I

0

L
2

b) Using Eqg. (4.35) with y (X, Yy, z) = p (X, Y, Z) we can write the mass of
the cube as m = .U Ip(x,y,z)dx dy dz where Q is the volume of the
Q
cube. For the unit cube

0<x<1l 0<y<1and 0<z<l1.

11/1
m = ”U(x +2y +32)dz]dx dy
0

0

11 3
:J' J.(x+2y+5jddex
o\o

0

1/1 2N\l
I“(xz+2yz+%j dy}dz
0\0

1

|
(oo y) o
(

O t—

0

Jl- j x2 5 \!

X+1+— —+ =X
2 2 0

0

=3 units

8. Using Eq. (2.3), we first determine the divergence of the vector field,

<!

- 0 0 0 .
V =—(xcos?y)+—(xz) +—(zsin?
ax( y) ay( ) az( y)

=cos?y +sin?y =1 (i)
Using Eq. (4.39), we write using the result of Eq. (i)
~ffv.iads=([[vvav =[[[av
S Q Q
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where Q is the sphere of radius 3 units with its centre at the origin.

9. a)

b)

[ :gn(33) =36n

Using Eq. (4.39) with A =F=xi +y ]+ zK we can write

| = j':fr. dézm (V.F)dv ()

Q
and

9

- - s 2 - 0
Vr =V.(Xi + + zK)=—(X)+
( Y] ) 8x() Y

0
(y)+—,(2)=3

Replacing V.r =3 in Eq. (i) we get:

|=gr.d§:3{ﬂ dv} (ii)

Q

Using the volume property of a triple integral, the quantity in the
bracket in the RHS of Eq. (ii) is just the volume of the region of
integration which is V.

| = ffF. dS=3av
S
Using the divergence theorem we can write:

ﬁé.dé :[H V.B dV] 0
S \Y

Given that B =V x A , we can write:
V.B=V. (VxA)=0

This is because the divergence of the curl of a vector field is always
zero, as you have studied in Unit 2.

ﬁ B.dS =0
S

Terminal Questions

1. We use the area property of the double integral given in Eq. (A.2.7) to find
the area. Following Example 4.1, the range of x is decided by determining
the points of intersection of the curves y = x and y = x3 (Fig. 4.29). We

solve as follows:

x3=x=x2(x-1)=0=x=0,1

The points of intersection are x = 0 and x = 1(Fig. 4.29). Note that in the
range 0<x <1 x3 < x . Therefore, the region of integration is:

0<x<1;x3<y<x

The area A is:

s 0.54

2.0
1.51
1.04

0.0
-0.5-

-1.0 . . ‘
0.5 0.0 0.5 x 1.0 15

\

y=x3

Fig. 4.29: Region of
integration is the area
enclosed between the
curvesy=xandy= X2 in
range 0<x <1.
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E > —>
a X

Fig. 4.30: A rectangular
lamina 0< x <@,

0<y<h.
z
A
2m
>y
/Im
im

X

Fig. 4.31: Diagram for
solution of TQ 4.
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1 x 1 1
A= J. I (1)dy dx =.|.[y]§ s Ox = j[x —x3]dx [Integrating over y
x=0y=x3 0 0
first]
2 yat
T PR - 1units. [Integrating over X]
2 4 |, 4

Using the double integral, we can define the volume under the plane
z =4 -y [see Example 4.1(ii)] as:

V= ﬂ (4 —y)dxdy 0]

where R is the region in the xy plane which is enclosed by the circle
x?+y?=4.

The region of integration R for Eq. (i) is

—2<x<2 —V4-x2 <y<VJ4-x2 (ii)

2 4-x2
V= j j (4 —vy)dy |dx
X==-2 y=— 4—x2

2
= I8 4 - x?dx
-2
(after integrating over y).

On integrating over X this gives us (read the margin remark):

2
V = 16[sin_1(§ﬂ =16n
2 -2

Refer to Fig. 4.30, which is Fig. 4.23 repeated here for convenience.
ba

Ixy =“.£xydxdy
00

where m is the mass of the rectangle. Using Eq. (A2.12) we can write:

el

Evaluating both the integrals separately we get:

a b
L _mx*y? " _mab
XY ab 20 20_ 4

. We determine the mass of the box m using Eq. (4.35) with

1(X,y,z) = (9 - 23)kg m~— and Q (see Fig. 4.31) as defined by the
equations:
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0<x<1;0<y<1;0<z<2 0]
Then mis:
1 1 2
m =m. (9—23)dx dydz = I J. I(9—23)dxdy dz (i)
Q x=0y=0z=0
We can evaluate this integral as follows (read the margin remark):
272
_1a IWRIVRIZ | _
m =18 [X]O [y]ol 4 ] =14kg Note that:
0 1 1 2
5. The flux of the vector field F is: ] i ] i ] dxelydz is the
x=0y=0z=
® = §fF. dS =ff (xi+yj-2zk). dS 0 volume of the cube.
S S
We evaluate the flux using the Divergence theorem (Eq. 4.40). i
D= ﬁ(xhy]— ZZR) ds = J]] ?.(Xih+y]— 22I2)dV (ii) 0(021)
S \Y
We evaluate the integral on the RHS of Eq. (ii) by first calculating: N
> 4
V.0 +yi—220)=2 00+ L (y)+ 2 (22)=0 (i) / 0(000) "~ P(0,20)
OX oy oz X
By replacing the divergence of the vector field from Eq. (iii) into Eq. (i) we  Fig. 4.32: Path OPQ for
get: solution of TQ 6.
©=0

6. First we shall calculate :fA.dTWhere C is shown in Fig. 4.32. Here
C
A =2z2j +yzk,dl = dxi +dyj + dzk
A.dl =z2dy +yzdz
Now §A.di= [A.di+ [A.dl+ [A.dl
c oP PQ QO

For the straight line OP, x =0, 0 <y < 2, z = 0. Hence jA.dT - 0.
OoP

For the straight line PQ, x=0,y=2,0< z <1. Hence dy = 0 and

jA.dT =}22dz =1
PQ 0

And for the straight line QO, x =0, y = 2z, 1< z <0. Also dy = 2dz (see
margin remark) and

0 . . L
- - 4 OQ is a straight line in
- 2 - 2 - 2d7 —
jA.dI = Iz dy + J.yzdz— IZZ dz + I(Zz)z(dz)—j4z dz——g the yz plane and its

QO QO QO QO QO 1 equationisy -2z =0

§A.dT=0+1—f:—1
! 3 3

Next we evaluate the integral using Stokes’ theorem. -
1
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VxA = =-zi

NN\%)|Q)._.>
ﬁ ,%)|Q) x>

i
9
OX

0

Since the path C is traversed anticlockwise, we have dS =dSi .
Moreover, as S lies on the yz plane, ds = dydzf
(ﬁ x f‘\) .dS = (— ziA) .(dydz f) = —zdydz

S is defined by the equations0<y <20<z<y/2

jsj(ﬁxii).dé :—jsjzdy dz = _T[yfzdz}jy

o\ o
2 2
Cty? o 1)ys 1
R T 1Y R
[[0xA).d8=[A.dT
S C

which is Stokes’ theorem.

7. Let S be the surface bounded by the closed curve C. We first note that the

given line integral can be written as j:IE.dTWhere
C

IE:yziA+xz]+ xylz
Applying Stokes’ theorem we can write:

fIEdT = J] (ﬁ X IE) .dsS = J] [@ X (yzin+ Xz]+ xylz)]dé

We next find V x (yzi + Xz +xyk) which is:
k
0

i
0o 0

*@WWJ oX oy oz
b g yz Xz Xy

X

Since VxF=0, from Stokes’ theorem we get that flﬁz.dﬂzo for any closed
c

Fig. 4.33: The
shaded region is contour C.
the surface of

integration S. 8. The surface of integration is the shaded region shown in Fig. 4.33 which

is an ellipse in the xy plane defined by the equation:

2 2
X Yy 1:

_+ - =

16 64
The parameters (semi-major and semi-minor axes) of the ellipse are a =4
and b = 8. C is the curve enclosing the region. According to Stokes’
theorem:

| = {Fdl = [[(VxF).dS (i

z=0
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We first calculate:

] K
o LI |

oX oy oz

x2 2x z?

On the xy planedS=dx dyk .

1 =[[(VxF).dS = [[(2k).(dxayk)=2][ dxay

By the area property of the double integral, the integral is just:
| =2 (Areaof the Hiipse )

The area of the ellipse is nab so with a = 4 and b = 8 we get:
| = 2[n(4x8)]= 64n

9. Using the divergence theorem, the flux of the vector field ﬁﬁ.dé where S
S

is the surface of the sphere of radius two units, is the volume integral
Iﬂ (@. IE)dV , Where V is the volume enclosed by the sphere. We first
\%

evaluate V.F :

V- o(z)  o@y) . a(=x3) 5
ox oy oz

(i)

Using the result of Eq. (i) and the divergence theorem we can write the flux
of the vector field A as (see margin remark):

gﬁ.dézw(ﬁﬁ)dvzzw dvzz[gn(g)i’:}:% i

10. We have to evaluate 'Uﬂ.dé, where S is the surface of the cube. Using
[
the divergence theorem we can write

111
HA.dé :j”(?.A)dxdydz
S 000
111 111
=IIIlOydxdydz+4IIIdxdydz
000 000
1 1 1 111
=10Idxjydyjdz+4jjjdxdydz
0 O 0 000

2 1
- 1O[x]$[y7} (2]} +4.1=9units.
0

We have used the
volume property of the
triple integral to write

J-J- dV as the volume of
\%

a sphere of radius 2
units.
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