SL. NO.	quantities	FORMULA (RELATIONS)	Electrostatics
1	Quantisation of Elect. Charges (Q) on a body	Q = n.e	n is Integral Number, e is charge on electron 1.6 X 10 ⁻¹⁹ C
2	Electrostatic force constant	1/(4πε _o)	value : $9 \times 10^9 \text{ Nm}^2 \text{C}^{-2}$
3	Permittivity	€o	8.85 x 10 ⁻¹² C ² N ⁻¹ m ⁻²
4	Coulumb's Law	$F = q_1 q_2 / 4\pi \epsilon_0 r^2$	q_1 and q_2 are two charges placed at distance r.
5	Forces on two charges	$F_{12} = -F_{21}$	Direction of F is along r.
6	Dielectric Constant	$K = \epsilon/\epsilon_0 = \epsilon_r$	$ε$ is absolute permittivity of medium, $ε_0$ is permittivity of free space, $ε_r$ is relative permittivity.
7	Electric Field at a point	E = F/q	F is force experienced by the test charge q at a point. E is called field intensity at that point
	Force with respect to field	F = q.E	
8	Electric field due to source charge Q at distance r	$E = Q/(4\pi\epsilon_0 r^2)$	Direction of E is along r.
9	Electric Field due to dipole on a point on axial line	E = 2P/(4πε _o r³)	P is dipole moment, r is distance from centre of dipole on axial line.
10	Electric Field due to dipole on a point on equitorial line	$E = P/(4\pi\epsilon_0 r^3)$	P is dipole moment, r is distance from centre of dipole on equitorial line.
11	Electric Field due to dipole at any general point, at distance r making angle θ with P →	E = PVI(3cos²θ+1)/4πε _o r³	r is distance of point from midpoint of dipole, θ is angle between direction of r and dipole moment P
	E makes angle α with r then	$\tan \alpha = \frac{1}{2} \tan \theta$	α is angle between resultant field and direction of r, θ is angle between r and P
12	E at any point on the axis of a uniformly charged ring at distance r	qr/4πε _o (r ² +a ²) ³ / ²	
13	Torque on a dipole kept in Electric Field	τ = PESinθ or τ = P x E	P is dipole moment, E is electric field, Direction of Torque is normal to plain containing P and E
14	Work done for rotating dipole by angle $\boldsymbol{\theta}$	W = PE(1- Cosθ)	P is dipole moment. E is electric field
15	Potential Energy of dipole in equilibrium condition when P is along E.	U = - PE	P is dipole moment. E is electric field
16	Potential energy of dipole at 90 degree to E	Zero	
17	Potential energy of dipole at 180 ⁰	U = + PE	P is dipole moment. E is electric field
18	Electric Flux φ _ε	φ _E = E.S = ∫E.ds	
19	gauss theorem	$\phi_{E} = \oint [[E.ds]] = q/\epsilon_{o}$	Flux linked to a closed surface is q/ε ₀ times the charge enclosed in it.
20	Field due to infinite long straight charged conductor	λ/2πε₀r	λ is linear charge density in the conductor, r is the perpendicular distance.
21	Electric field due to infinite plane sheet of charge	σ /2ε ₀	$\boldsymbol{\sigma}$ is areal charge density. Independent of distance
22	Within two parallal sheets of opposite charges	σ /εο	Outside, field is zero
23	Within two parallal sheets of similar charges	zero	Outside, field is σ / ϵ_0
24	Electric field due to spherical shell, out side shell	$E = q/(4\pi\epsilon_0 r^2)$	q is charge on shell, r distance from centre.

25	Electric field on the surface of spherical shell.	E = q/(4πε _o R²)	R is radius of shell
26	Electric field inside spherical shell.	Zero	
27	Electric field inside the sphere of charge distributed uniformly all over the volume .	E = rp/3€	r is radius of sphere, ρ is volumetric charge density, is permittivity of medium
28	Potential due to charge Q at distance r	V = Q/(4πε _o r)	Potential is characteristic of that location
29	Potential Energy with charge q kept at a point with potential V	$U = qV = Qq/(4\pi\epsilon_o r)$	Potential Energy is that of the system containing Q and q.
30	Work done for in moving a charge q through a potential difference of V	$W = q(V_2 - V_1)$	$V = (v_2 - v_1)$
	Energy of system of two charges	$U = q_1 q_2 / (4\pi\epsilon_0 r)$	
31	Relation of E and V	E = - dv/dr	dv is potential difference between two points at distance r where r and E are in the same direction.
32	Relation of E and V and θ	E Cosθ = - dv/dr	where θ is angle between dr and E
33	Potential at infinity / in earth	Zero	
34	Electric Potential due to dipole on a point on axial line	$V = P/(4\pi\epsilon_0 r^2)$	P is dipole momentum, r is distance from centre of dipole
35	Electric Potential due to dipole on a point on equitorial line	Zero	
36	Electric Potential due to dipole at any general point,	V = P cosθ / 4πε _o (r ² - a ² cos ² θ)	P is dipole momentum, r is distance from centre of dipole, a is half length of dipole, is angle between r and P
37	Work done in moving a charge between two points of an equipotential surface	Zero	
38	Capacitance of a spherical conductor	4πε _o R	R is radius of the sphere
39	Capacitance of a parallal plate capacitor	ε₀kA/d	A is area of each plate, d is distance between them, k is dilectric constant of the medium between plates.
40	Dielectric Constant	$k = C / C_o$	Cis capacitance with medium within plates, and C_0 is capacitance in free space.
41	Capacitance of a spherical capacitor.	$C = 4\pi\epsilon_0 r_a r_b / (r_a - r_b)$	$r_{\rm a}$ and $r_{\rm b}$ are radius of internal and external spherical shells
42	Equivalent capacitance for Capacitors in parallal	$C = c_1 + c_2 + c_3$	Cis equivalent capacitance, c_1 , c_2 are capacitnce of the capacitors joint together.
43	Equivalent capacitance for Capacitors in series	$1/C = 1/c_1 + 1/c_2 + 1/c_3$	
44	Charge, capacitance, Potential Difference	C = q/V	q ischarge on the plate of capacitor and V is Potential Difference between the plates.
45	Energy stored in capacitor	½cv², ½qv, ½q²/c	q is charge, c is capacitance, v is Pot. Difference
46	Common Potential	$V=C_1V_1+C_2V_2)/C_1+C_2$	
47	Energy loss in connecting	$\frac{1}{2} \frac{C_1 C_2}{C^1 + C_2} (V1 - V2)^2$	c_1 at v_1 is connected to c_2 at v_2
48	C with dielectric slab inserted	ε _o kA/d-t(1-1/k)	t is thickness of dielectric slab of constant k,
49	C with metal plate inserted	ε _o kA/(d-t)	t is thickness of metal plate inserted,
50	Force of attraction between plates	½q²/ε₀A, ½ε₀E²A	q is charge on plate, A is area, E Elect. Field.