Formulas in current electricity (Direct Current)

| 1 | Electric Current | $\mathrm{i}=\mathrm{q} / \mathrm{t}$ | "q" is charge passing in normal direction through a cross section of conductor in time "t" |
| :---: | :---: | :---: | :---: |
| 2 | Drift velocity $\mathrm{V}_{\mathrm{d}}$ with Electric field | $V_{d}=\frac{-e \overrightarrow{E \tau}}{m}$ | $e$ is charge and $m$ is mass on electron, $E$ is electric field, $\tau$ is relaxation time. |
| 3 | Current I with Drift velocity $\mathrm{V}_{\mathrm{d}}$ | $\mathrm{I}=\mathrm{neAV} \mathrm{d}^{\text {d }}$ | n is number density with of free electrons, A is area of cross section. |
| 4 | Mobility of charge " $\mu$ " | $\mu=\mathrm{V}_{\mathrm{d}} / \mathrm{E}=\frac{q \tau}{m}$ |  |
| 5 | Mobility and drift velocity | $\mathrm{V}_{\mathrm{d}}=\mu_{e} E$ |  |
| 6 | Current and Mobility | I= Ane $\times \mu_{e} E$ |  |
| 7 | Resistance, P.D., and Current | $\mathrm{R}=\mathrm{V} / \mathrm{l}$ | V Potential Difference, I Current. |
| 8 | Resistance R with specific Res. | $\mathrm{R}=\rho \frac{l}{A}$ | $I$ is length of conductor and $A$ is area of cross section |
| 9 | Specific Resistance, $\rho$ | $\rho=\mathrm{R} \frac{\mathrm{~A}}{\mathrm{l}}$ |  |
| 10 | Resistivity with electrons | $\rho=\frac{m}{n e^{2} \tau}$ |  |
| 11 | Current density J | $\vec{J}=1 / \vec{A}$ | I is current, J current density, A is area of cross section |
| 12 | Current density magnitude | $\mathrm{J} \mathrm{A} \cos \theta=1$ | $\theta$ is angle between $\vec{J}$ and $\vec{A}$ |
| 13 | Conductance G | $\mathrm{G}=1 / \mathrm{R}$ |  |
| 14 | Conductivity $\sigma$ | $\sigma=1 / \rho$ | $\rho$ is specific resistance |
| 15 | Microscopic form of Ohms Law | $\mathrm{J}=\sigma \mathrm{E}$ | $E$ is electric field |
| 16 | Temperature coefficient of Resistance $\alpha$ | $\alpha=\frac{R t-R_{0}}{R_{0} X t}$ | $R_{o}$ is resistance at $0_{o} C . R_{t}$ is resistance at $t^{0}$ and " t " is temperature difference. |
| 17 | Resistances in series | $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ | Same current through all resistances (circuit Current |
|  | Resistances in parallel | $1 / R_{e}=1 / R_{1}+1 / R_{2}+1 / R_{3}$ | Same P.D. across each resistance (V of cell) |
| 18 | In a cell, emf and internal resistance | $\mathrm{I}=\frac{E}{R+r}$ | I is current, E is emf, R is external resistance, r is internal resistance. |
| 19 | In a circuit with a cell | $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$ | V is terminal potential difference |
| 20 | n Cells of emf E in series | $\mathrm{Emf}=\mathrm{nE}$ |  |
| 21 | Resistance of n cells in series | $n \mathrm{n}+\mathrm{R}$ | $r$ is internal resistance of one cell, $R$ external Resistance |
| 22 | Current in circuit with n cells in series | $\mathrm{I}=\frac{n E}{R+n r}$ | $r$ is internal resistance of one cell, $R$ external Resistance |
| 23 | n cells in parallel, then emf | emf $=\mathrm{E}$ |  |
| 24 | n cells in parallel, resistance | $\mathrm{R}+\mathrm{r} / \mathrm{n}$ | R external resistance, r internal resistance |
| 25 | Cells in mixed group, condition for maximum current | $\mathrm{R}=\frac{n r}{m}$ | $n$ is number of cells in one row, $m$ is number of rows. $r$ is internal resistance, $R$ external resis. |
| 26 | Internal resistance of a cell | $\mathrm{r}=\left(\frac{E-V}{V}\right) \times R$ | E is emf, V is terminal Potential difference, R is external resistance. |
| 27 | Power of a circuit | $\mathrm{P}=\mathrm{I} . \mathrm{V}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}$ |  |
| 28 | Energy consumed | $\mathrm{E}=\mathrm{I} . \mathrm{V} . \Delta \mathrm{T}$ | $\Delta \mathrm{T}$ is time duration |
| 29 | Kirchoff Law (junction rule) | $\Sigma i=0$ | Sum of currents at junction is zero. |
| 30 | Kirchoff Law (Loop rule) | $\Sigma V=0$ | In a loop sum of all p.d.s is Zero |

