Formulas in current electricity (Direct Current)			
1	Electric Current	: . h	"q" is charge passing in normal direction
		I=q/t	through a cross section of conductor in time "t"
2	Drift velocity V _d with Electric	$-\rho \overrightarrow{F\tau}$	e is charge and m is mass on electron. E is
	field	$V_d = \frac{c_{BL}}{m}$	electric field. τ is relaxation time.
3	Current I with Drift velocity V		n is number density with of free electrons. A is
5		l = n e A V _d	area of cross section
Λ	Mobility of charge "u"	$q\tau$	
4	Mobility of charge µ	$\mu = V_d / E = \frac{T}{m}$	
5	Mobility and drift velocity	$V_{\rm A} = \mu E$	
		ν _d – μ _e L	
6	Current and Mobility	I= Ane x $\mu_e E$	
7	Resistance, P.D., and Current	R = V / I	V Potential Difference, I Current .
_	Desistance Desith and sifis Des	,	
8	Resistance R with specific Res.	$R = \rho \frac{l}{l}$	Is length of conductor and A is area of cross
_		A	Section
9	specific Resistance, ρ	$\rho = R \frac{R}{l}$	
10	Resistivity with electrons	$\rho = \frac{m}{m \sigma^2 r}$	
11		ne⁻t	Lis surrent Lourrent density A is area of cross section
11	Current density J	J = I / A	Tis current, i current density, A is area of closs section
12	Current density magnitude	J A cosθ = I	$ heta$ is angle between $ec{J}$ and $ec{A}$
13	Conductance G	0	
15		G = 1/R	
14	Conductivity σ	$\sigma = 1/\rho$	ho is specific resistance
15	Microscopic form of Ohms		E is electric field
	Law	$J = \sigma E$	
16	Temperature coefficient of	$Rt-R_0$	R_o is resistance at O_oC . R_t is resistance at t ^o and
	Resistance α	$\alpha = \frac{1}{R_0 X t}$	"t" is temperature difference.
17	Resistances in series	$\mathbf{D} = \mathbf{D} \perp \mathbf{D} \perp \mathbf{D}$	Same current through all resistances (circuit Current
-		$n - n_1 + n_2 + n_3$	
	Resistances in parallel	$1/R_e = 1/R_1 + 1/R_2 + 1/R_3$	Same P.D. across each resistance (V of cell)
18	In a cell, emf and internal	F	Lis current. E is emf. R is external resistance r
10	resistance	$I = \frac{L}{R+r}$	is internal resistance
19	In a circuit with a cell		V is terminal notential difference
		V = E - Ir	
20	n Cells of emf E in series	Emf = nE	
21	Desistance of a collection option		n is internal register as of one call. Deuternal
21	Resistance of n cells in series	nr + R	r is internal resistance of one cell, R external
22			Resistance
22	current in circuit with n cells	$I = \frac{nE}{D+m}$	r is internal resistance of one cell, R external
	In series	R+nr	Resistance
23	n cells in parallel, then emf	emf = E	
24	n cells in parallel, resistance	B + r/n	R external resistance, r internal resistance
		K + 1711	
25	Cells in mixed group, condition	$R = \frac{nr}{n}$	n is number of cells in one row, m is number of
	for maximum current	m E. K	rows. r is internal resistance, R external resis.
26	Internal resistance of a cell	$r = \left(\frac{E-V}{V}\right) \times R$	E is emf, V is terminal Potential difference, R is
		V	external resistance.
27	Power of a circuit	$P = I.V = I^2R = V^2/R$	
28	Energy consumed	Ε = Ι.Υ.ΔΤ	ΔT is time duration
29	Kirchoff Law (junction rule)	$\Sigma i = 0$	Sum of currents at junction is zero.
30	Kirchoff Law (Loop rule)	$\Sigma V = 0$	In a loop sum of all n d s is Zero