Magnetic Effect of Current

Oersted found that a magnetic field is established around a current carrying conductor.

Magnetic field exists as long as there is current in the wire.
The direction of magnetic field was found to be changed when direction of current was reversed.

Note : \square A moving charge produces magnetic as well as electric field, unlike a stationary charge which only produces electric field.

Biot Savart's Law

Biot-Savart's law is used to determine the magnetic field at any point due to a current carrying conductors.

This law is although for infinitesimally small conductors yet it can be used for long conductors. In order to understand the Biot-Savart's law, we need to understand the term current-element.

Current element

It is the product of current and length of infinitesimal segment of current carrying wire.
The current element is taken as a vector quantity. Its direction is same as the direction of current.
Current element $A B=\vec{d} \vec{d}$

In the figure shown below, there is a segment of current carrying wire and P is a point where magnetic field is to be calculated. $i d \vec{l}$ is a current element and r is the distance of the point ' P ' with respect to the current element $i d \vec{l}$. According to Biot-Savart Law, magnetic field at point ' P ' due to the current element $i d \vec{l}$ is given by the expression,

$$
d \boldsymbol{B}=\boldsymbol{k} \frac{\boldsymbol{i} d l \sin \boldsymbol{\theta}}{\boldsymbol{r}^{2}} \text { also } B=\int d B=\frac{\mu_{0} i}{4 \pi} \cdot \int \frac{d l \sin \theta}{r^{2}}
$$

In C.G.S. : $\quad k=1 \Rightarrow d B=\frac{i d l \sin \theta}{r^{2}}$ Gauss
In S.I. $\quad: \quad k=\frac{\mu_{0}}{4 \pi} \Rightarrow d B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i d l \sin \theta}{r^{2}}$ Tesla

where $\mu_{0}=$ Absolute permeability of air or vacuum $=4 \pi \times 10^{-7} \frac{\mathrm{~Wb}}{\text { Amp }- \text { metre }}$. It's other units are $\frac{\text { Henry }}{\text { metre }}$

$$
\text { or } \frac{N}{A^{2 m p}} \text { or } \frac{\text { Tesla }- \text { metre }}{\text { Ampere }}
$$

(1) Different forms of Biot-Savarts law

Vector form	Biot-Savarts law in terms of current density	Biot-savarts law in terms of charge and it's velocity
Vectorially,	In terms of current density	In terms of charge and it's velocity,
$d \vec{B}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i(d \vec{l} \times \hat{r})}{r^{2}}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i(d \vec{l} \times \vec{r})}{r^{3}} \Rightarrow d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{\vec{J} \times \vec{r}}{r^{3}} d V$	$d \vec{B}=\frac{\mu_{0}}{4 \pi} q \frac{(\vec{v} \times \vec{r})}{r^{3}}$	
Direction of $d \vec{B}$ is perpendicular to both $d \vec{l}$ and \hat{r}. This is given by right hand screw rule.	where $j=\frac{i}{A}=\frac{i d l}{A d l}=\frac{i d l}{d V}=$ current density at any point of the element, $d V=$ volume of element	$\because i d \vec{l}=\frac{q}{d t} d \vec{l}=q \frac{d \vec{l}}{d t}=q \vec{v}$

(2) Similarities and differences between Biot-Savart law and Coulomb's Law
(i) The current element produces a magnetic field, whereas a point charge produces an electric field.
(ii) The magnitude of magnetic field varies as the inverse square of the distance from the current element, as does the electric field due to a point charge.

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{l} \times \hat{r}}{r^{2}} \quad \text { Biot-Savart Law } \quad \vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \quad \text { Coulomb's Law }
$$

(iii) The electric field created by a point charge is radial, but the magnetic field created by a current element is perpendicular to both the length element $d \vec{l}$ and the unit vector \hat{r}.

Direction of Magnetic Field

The direction of magnetic field is determined with the help of the following simple laws :

(1) Maxwell's cork screw rule

According to this rule, if we imagine a right handed screw placed along the current carrying linear conductor, be rotated such that the screw moves in the direction of flow of current, then the direction of rotation of the thumb gives the direction of magnetic lines of force.

(2) Right hand thumb rule

According to this rule if a current carrying conductor is held in the right hand such that the thumb of the hand represents the direction of current flow, then the direction of folding fingers will represent the direction of magnetic lines of force.

(3) Right hand thumb rule of circular currents

According to this rule if the direction of current in circular

conducting coil is in the direction of folding fingers of right hand, then the direction of magnetic field will be in the direction of stretched thumb.

(4) Right hand palm rule

If we stretch our right hand such that fingers point towards the point. At which magnetic field is required while thumb is in the direction of current then normal to the palm will show the direction of magnetic field.

Note: \square If magnetic field is directed perpendicular and into the plane of the paper it is represented by \otimes (cross) while if magnetic field is directed perpendicular and out of the plane of the paper it is represented by $\odot($ dot $)$

In : Magnetic field is away from the observer or perpendicular inwards.
Out : Magnetic field is towards the observer or perpendicular outwards.

Application of Biot-Savarts Law

(1) Magnetic field due to a circular current

If a coil of radius r, carrying current i then magnetic field on it's axis at a distance x from its centre given by
$\boldsymbol{B}_{\text {axis }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi \mathrm{Nir}^{2}}{\left(\boldsymbol{x}^{2}+\boldsymbol{r}^{2}\right)^{3 / 2}}$; where $N=$ number of turns in coil.

Different cases

Case 1: Magnetic field at the centre of the coil

(i) At centre $x=0 \Rightarrow B_{\text {centre }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi N i}{r}=\frac{\mu_{0} N i}{2 r}=B_{\text {max }}$
(ii) For single turn coil $N=1 \Rightarrow B_{\text {centre }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r}=\frac{\mu_{0} i}{2 r}$
(iii) In C.G.S. $\frac{\mu_{0}}{4 \pi}=1 \Rightarrow B_{\text {centre }}=\frac{2 \pi i}{r}$
Note:

$$
B_{\text {centre }} \propto N(i, r \text { constant }), \quad B_{\text {centre }} \propto
$$

(N, r constant), B

$$
B_{\text {centre }} \propto \frac{1}{r} \quad(N, i \text { constant })
$$

Case 2 : Ratio of $B_{\text {centre }}$ and $B_{\text {axis }}$

The ratio of magnetic field at the centre of circular coil and on it's axis is given by $\frac{\boldsymbol{B}_{\text {centre }}}{\boldsymbol{B}_{\text {axis }}}=\left(\mathbf{1}+\frac{\boldsymbol{x}^{2}}{\boldsymbol{r}^{2}}\right)^{3 / 2}$
(i) If $x= \pm a, B_{c}=2 \sqrt{2} B_{a} \quad x= \pm \frac{a}{2}, B_{c}=\frac{5 \sqrt{5}}{8} B_{a} \quad x= \pm \frac{a}{\sqrt{2}}, B_{c}=\left(\frac{3}{2}\right)^{3 / 2} B_{a}$
(ii) If $B_{a}=\frac{B_{c}}{n}$ then $x= \pm r \sqrt{\left(n^{2 / 3}-1\right)}$ and if $B_{a}=\frac{B_{c}}{\sqrt{n}}$ then $x= \pm r \sqrt{\left(n^{1 / 3}-1\right)}$

Case 3 : Magnetic field at very large/very small distance from the centre
(i) If $x \gg r$ (very large distance) $\Rightarrow B_{\text {axis }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi N i r^{2}}{x^{3}}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 N i A}{x^{3}}$ where $A=\pi r^{2}=$ Area of each turn of the coil.
(ii) If $x \ll r$ (very small distance) $\Rightarrow B_{\text {axis }} \neq B_{\text {centre }}$, but by using binomial theorem and neglecting higher power of $\frac{x^{2}}{r^{2}} ; B_{\text {axis }}=B_{\text {centre }}\left(1-\frac{3}{2} \frac{x^{2}}{r^{2}}\right)$

Case 4 : B-x curve

The variation of magnetic field due to a circular coil as the distance x varies as shown in the figure.
B varies non-linearly with distance x as shown in figure and is maximum when $x^{2}=\min =0$, i.e., the point is at the centre of the coil and it is zero at $x= \pm \infty$.

Point of inflection $\left(A\right.$ and $\left.A^{\prime}\right)$: Also known as points of curvature change or pints of zero curvature.
(i) At these points B varies linearly with $x \Rightarrow \frac{d B}{d x}=$ constant \Rightarrow $\frac{d^{2} B}{d x^{2}}=0$.
(ii) They locates at $x= \pm \frac{r}{2}$ from the centre of the coil.
(iii) Separation between point of inflextion is equal to radius of coil (r)

(iv) Application of points of inflextion is "Hamholtz coils" arrangement.

Note : $\square \quad$ The magnetic field at $x=\frac{r}{2}$ is $B=\frac{4 \mu_{0} N i}{5 \sqrt{5} r}$

(2) Helmholtz coils

(i) This is the set-up of two coaxial coils of same radius such that distance between their centres is equal to their radius.
(ii) These coils are used to obtain uniform magnetic field of short range which is obtained between the coils.
(iii) At axial mid point O, magnetic field is given by $B=\frac{8 \mu_{0} N i}{5 \sqrt{5} R}=0.716 \frac{\mu_{0} N i}{R}=1.432 B$, where $B=\frac{\mu_{0} N i}{2 R}$
(iv) Current direction is same in both coils otherwise this arrangement is not called Helmholtz's coil arrangement.
(v) Number of points of inflextion \Rightarrow Three $\left(A, A^{\prime}, A^{\prime \prime}\right)$

Note: \square The device whose working principle based on this arrangement and in which uniform magnetic field is used called as "Halmholtz galvanometer".
(3) Magnetic field due to current carrying circular arc : Magnetic field at centre O

$$
B=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r}=\frac{\mu_{0} i}{4 r}
$$

$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{\theta i}{r}$

$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{(2 \pi-\theta) i}{r}$

Special results

If magnetic field at the centre of circular coil is denoted by $B_{0}\left(=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r}\right)$

Magnetic field at the centre of arc which is making an angle θ at the centre is

$$
B_{a r c}=\left(\frac{B_{0}}{2 \pi}\right) \cdot \theta
$$

Angle at centre	Magnetic field at centre in term of $B_{\mathbf{o}}$
$360^{\circ}(2 \pi)$	B_{0}
$180^{\circ}(\pi)$	$B_{0} / 2$
$120^{\circ}(2 \pi / 3)$	$B_{0} / 3$
$90^{\circ}(\pi / 2)$	$B_{0} / 4$
$60^{\circ}(\pi / 3)$	$B_{0} / 6$
$30^{\circ}(\pi / 6)$	$B_{0} / 12$

(4) Concentric circular loops ($N=1$)
(i) Coplanar and concentric : It means both coils are in same plane with common centre
(a) Current in same direction
(b) Current in opposite direction

$$
B_{1}=\frac{\mu_{0}}{4 \pi} 2 \pi i\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

$$
B_{2}=\frac{\mu_{0}}{4 \pi} 2 \pi\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]
$$

Note: ㅁ $\quad \frac{B_{1}}{B_{2}}=\left(\frac{r_{2}+r_{1}}{r_{2}-r_{1}}\right)$
(ii) Non-coplanar and concentric : Plane of both coils are perpendicular to each other

Magnetic field at common centre

$$
B=\sqrt{B_{1}^{2}+B_{2}^{2}}=\frac{\mu_{0}}{2 r} \sqrt{i_{1}^{2}+i_{2}^{2}}
$$

(5) Magnetic field due to a straight current carrying wire

Magnetic field due to a current carrying wire at a point P which lies at a perpendicular distance r from the wire as shown is given as

$$
B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left(\sin \phi_{1}+\sin \phi_{2}\right)
$$

From figure $\alpha=\left(90^{\circ}-\phi_{1}\right)$ and $\beta=\left(90^{\circ}+\phi_{2}\right)$
Hence $B=\frac{\mu_{o}}{4 \pi} \cdot \frac{i}{r}(\cos \alpha-\cos \beta)$

Different cases

Case 1: When the linear conductor $X Y$ is of finite length and the point P lies on it's perpendicular bisector as shown

So $B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}(2 \sin \phi)$

Case 2: When the linear conductor $X Y$ is of infinite length and the point P lies near the centre of the conductor

$$
\phi_{1}=\phi_{2}=90^{\circ} .
$$

So, $B=\frac{\mu_{0}}{4 \pi} \frac{i}{r}\left[\sin 90^{\circ}+\sin 90^{\circ}\right]=\frac{\mu_{0}}{4 \pi} \frac{2 i}{r}$

Case 3: When the linear conductor is of infinite length and the point P lies near the end Y or X

So, $B=\frac{\mu_{0}}{4 \pi} \frac{i}{r}\left[\sin 90^{\circ}+\sin 0^{\circ}\right]=\frac{\mu_{0}}{4 \pi} \frac{i}{r}$

Note : \square When point P lies on axial position of current carrying conductor then magnetic field at P

$$
B=0
$$

\square The value of magnetic field induction at a point, on the centre of separation of two linear parallel conductors carrying equal currents in the same direction is zero.
(6) Zero magnetic field : If in a symmetrical geometry, current enters from one end and exists from the other, then magnetic field at the centre is zero.

In all cases at centre $B=0$

Concepts

If a current carrying circular loop $(n=1)$ is turned into a coil having n identical turns then magnetic field at the centre of the coil becomes n^{2} times the previous field i.e. $B_{(n \text { turn })}=n^{2} B_{\text {(single turn) }}$

When a current carrying coil is suspended freely in earth's magnetic field, it's plane stays in East-West direction.

- Magnetic field ($\overrightarrow{\boldsymbol{B}}$) produced by a moving charge q is given by $\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q(\vec{v} \times \vec{r})}{r^{3}}=\frac{\mu_{0}}{4 \pi} \frac{q(\vec{v} \times \hat{r})}{r^{2}}$; where $v=$ velocity of charge and $v \ll c$ (speed of light).

If an electron is revolving in a circular path of radius r with speed v then magnetic field produced at the centre of circular path $B=\frac{\mu_{0}}{4 \pi} \cdot \frac{e v}{r^{2}}$.

Example

Example: 1

Current flows due north in a horizontal transmission line. Magnetic field at a point P vertically above it directed
(a) North wards
(b) South wards
(c) Toward east
(d) Towards west

Solution: (c) By using right hand thumb rule or any other rule which helps to determine the direction of magnetic field.
Example: 2 Magnetic field due to a current carrying loop or a coil at a distant axial point P is B_{1} and at an equal distance in it's plane is B_{2} then $\frac{B_{1}}{B_{2}}$ is
(a) 2
(b) 1
(c) $\frac{1}{2}$
(d) None of these

Solution: (a) Current carrying coil behaves as a bar magnet as shown in figure.
We also knows for a bar magnet, if axial and equatorial distance are same then $B_{a}=2 B_{e}$

Hence, in this equation $\frac{B_{1}}{B_{2}}=\frac{2}{1}$

Example: 3 Find the position of point from wire ' B ' where net magnetic field is zero due to following current distribution
(a) 4 cm
(b) $\frac{30}{7} \mathrm{~cm}$
(c) $\frac{12}{7} \mathrm{~cm}$
(d) 2 cm

Solution: (c) Suppose P is the point between the conductors where net magnetic field is zero.
So at $P \mid$ Magnetic field due to conductor $1|=|$ Magnetic field due to conductor $2 \mid$
i.e. $\frac{\mu_{0}}{4 \pi} \cdot \frac{2(5 i)}{i}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2(2 i)}{(6-x)} \Rightarrow \frac{5}{x}=\frac{9}{6-x} \Rightarrow x=\frac{30}{7} \mathrm{~cm}$

Hence position from $B=6-\frac{30}{7}=\frac{12}{7} \mathrm{~cm}$

Example: 4 Find out the magnitude of the magnetic field at point P due to following current distribution
(a) $\frac{\mu_{0} i a}{\pi r^{2}}$
(b) $\frac{\mu_{0} i a^{2}}{\pi r}$
(c) $\frac{\mu_{0} i a}{2 \pi r^{2}}$

(d) $\frac{2 \mu_{0} i a}{\pi r^{2}}$

Solution : (a) Net magnetic field at $P, B_{n e t}=2 B \sin \theta$; where $B=$ magnetic field due to one wire at $P=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r}$ and $\sin \theta=\frac{a}{r} \quad \therefore B_{n e t}=2 \times \frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r} \times \frac{a}{r}=\frac{\mu_{0} i a}{\pi r^{2}}$.
Example: 5 What will be the resultant magnetic field at origin due to four infinite length wires. If each wire produces magnetic field ' B ' at origin
(a) $4 B$
(b) $\sqrt{2} B$
(c) $2 \sqrt{2} B$
(d) Zero

Solution : (c) Direction of magnetic field $\left(B_{1}, B_{2}, B_{3}\right.$ and $\left.B_{4}\right)$ at origin due to wires $1,2,3$ and 4 are shown in the following figure.
$B_{1}=B_{2}=B_{3}=B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{x}=B$. So net magnetic field at origin O

$$
\begin{aligned}
B_{n e t} & =\sqrt{\left(B_{1}+B_{2}\right)^{2}+\left(B_{2}+B_{4}\right)^{2}} \\
& =\sqrt{(2 B)^{2}+(2 B)^{2}}=2 \sqrt{2} B
\end{aligned}
$$

Example: 6 Two parallel, long wires carry currents i_{1} and i_{2} with $i_{1}>i_{2}$. When the currents are in the same direction, the magnetic field at a point midway between the wires is $10 \mu T$. If the direction of i_{2} is reversed, the field becomes $30 \mu T$. The ratio i_{1} / i_{2} is
(a) 4
(b) 3
(c) 2
(d) 1

Solution : (c) Initially when wires carry currents in the same direction as shown. Magnetic field at mid point O due to wires 1 and 2 are respectively

$$
B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1}}{x} \otimes \text { and } B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{2}}{x} \odot
$$

Hence net magnetic field at $O \quad B_{n e t}=\frac{\mu_{0}}{4 \pi} \times \frac{2}{x}\left(i_{1}-i_{2}\right)$

$$
\begin{equation*}
\Rightarrow \quad 10 \times 10^{-6}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2}{x}\left(i_{1}-i_{2}\right) \tag{i}
\end{equation*}
$$

If the direction of i_{2} is reversed then

$$
B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1}}{x} \otimes \text { and } B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{2}}{x} \otimes
$$

So $B_{\text {net }}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2}{x}\left(i_{1}+i_{2}\right) \Rightarrow 30 \times 10^{-6}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2}{x}\left(i_{1}+i_{2}\right) \ldots \ldots$. (ii)
Dividing equation (ii) by (i) $\frac{i_{1}+i_{2}}{i_{1}-i_{2}}=\frac{3}{1} \Rightarrow \frac{i_{1}}{i_{2}}=\frac{2}{1}$
Example: 7 A wire of fixed length is turned to form a coil of one turn. It is again turned to form a coil of three turns. If in both cases same amount of current is passed, then the ratio of the intensities of magnetic field produced at the centre of a coil will be
(a) 9 times of first case
(b) $\frac{1}{9}$ times of first case
(c) 3 times of first case
(d) $\frac{1}{3}$ times of first case

Solution: (a) Magnetic field at the centre of n turn coil carrying current i

$$
\begin{equation*}
B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi n i}{r} \tag{i}
\end{equation*}
$$

For single turn $n=1$

$$
\begin{equation*}
B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r} \tag{ii}
\end{equation*}
$$

If the same wire is turn again to form a coil of three turns i.e. $n=3$ and radius of each turn $r^{\prime}=\frac{r}{3}$
So new magnetic field at centre $B^{\prime}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi(3)}{r^{\prime}} \quad \Rightarrow B^{\prime}=9 \times \frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r}$
Comparing equation (ii) and (iii) gives $B^{\prime}=9 B$.
Example: 8 A wire in the form of a square of side a carries a current i. Then the magnetic induction at the centre of the square wire is (Magnetic permeability of free space $=\mu_{0}$)
(a) $\frac{\mu_{0} i}{2 \pi a}$
(b) $\frac{\mu_{0} i \sqrt{2}}{\pi a}$
(c) $\frac{2 \sqrt{2} \mu_{0} i}{\pi a}$
(d) $\frac{\mu_{0} i}{\sqrt{2} \pi a}$

Solution: (c) Magnetic field due to one side of the square at centre O

$$
\begin{aligned}
B_{1} & =\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i \sin 45^{\circ}}{a / 2} \\
\Rightarrow \quad B_{1} & =\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2} i}{a}
\end{aligned}
$$

Hence magnetic field at centre due to all side $B_{n e t}=4 B_{1}=\frac{\mu_{0}(2 \sqrt{2} i)}{\pi a}$

Example: 9 The ratio of the magnetic field at the centre of a current carrying circular wire and the magnetic field at the centre of a square coil made from the same length of wire will be
(a) $\frac{\pi^{2}}{4 \sqrt{2}}$
(b) $\frac{\pi^{2}}{8 \sqrt{2}}$
(c) $\frac{\pi}{2 \sqrt{2}}$
(d) $\frac{\pi}{4 \sqrt{2}}$

Solution: (b) Circular coil
Square coil

Length $L=2 \pi r$
Magnetic field $B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r}=\frac{\mu_{0}}{4 \pi} \cdot \frac{4 \pi^{2} i}{r}$
Length $L=4 a$

$$
B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2} i}{a} B=\frac{\mu_{0}}{4 \pi} \cdot \frac{8 \sqrt{2} i}{a}
$$

Hence $\frac{B_{\text {circular }}}{B_{\text {square }}}=\frac{\pi^{2}}{8 \sqrt{2}}$
Example: 10 Find magnetic field at centre O in each of the following figure

(ii)

(a) $\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \otimes$
(b) $\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \otimes$
(c) $\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \odot$
(d) Zero
(b)
(iii)

(a) $\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \otimes$
$\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \otimes$
(c) $\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \odot$
(d) Zero
\therefore Net magnetic field at centre O,

$$
B_{n e t}=B_{1}+B_{2}+B_{3}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r} \otimes \Rightarrow B_{n e t}=\frac{\mu_{0} i}{4 r} \otimes
$$

(ii) (b) $B_{1}=B_{3}=0$

$$
\begin{aligned}
& B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r_{1}} \otimes \\
& B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r_{2}} \otimes \\
& \text { So } B_{\text {net }}=B_{2}+B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \pi i\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \otimes
\end{aligned}
$$

(iii) (a) $B_{1}=B_{3}=0$

$$
\begin{aligned}
& B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r_{1}} \otimes \\
& B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r_{2}} \otimes \quad \text { As }\left|B_{2}\right|>\left|B_{4}\right|
\end{aligned}
$$

So $B_{\text {net }}=B_{2}-B_{4} \Rightarrow B_{\text {net }}=\frac{\mu_{0} i}{4}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \otimes$
Example: 11 Find magnetic field at centre O in each of each of the following figure
(i)

(ii)

(iii)

(a) $\frac{\mu_{0} i}{2 r} \odot$
(a) $\frac{\mu_{0}}{2 \pi} \frac{i}{r}(\pi-2) \otimes$
(a) $\frac{\mu_{0}}{2 r} \frac{2 i}{r}(\pi+1) \otimes$
(b) $\frac{\mu_{0} i}{2 r} \otimes$
(b) $\frac{\mu_{0} i}{4 \pi} \cdot \frac{i}{r}(\pi+2) \odot$
(b) $\frac{\mu_{0} i}{4 r} \cdot \frac{2 i}{r}(\pi-1) \otimes$
(c) $\frac{3 \mu_{0} i}{8 r} \otimes$
(c) $\frac{\mu_{0} i}{4 r} \otimes$
(c) Zero
(d) $\frac{3 \mu_{0} i}{8 r} \odot$
(d) $\frac{\mu_{0} i}{4 r} \odot$
(d) Infinite

Solution : (i) (d) By using $B=\frac{\mu_{0}}{4 \pi} \cdot \frac{(2 \pi-\theta) i}{r} \Rightarrow B=\frac{\mu_{0}}{4 \pi} \cdot \frac{(2 \pi-\pi / 2) i}{r}=\frac{3 \mu_{0} i}{8 r} \odot$
(ii) (b) Magnetic field at centre O due to section 1, 2 and 3 are respectively

$$
\begin{aligned}
& B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \odot \\
& B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r} \odot \\
& B_{3}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \odot \\
& \Rightarrow B_{\text {net }}=B_{1}+B_{2}+B_{3}=\frac{\mu_{0}}{4 \pi} \frac{i}{r}(\pi+2) \odot
\end{aligned}
$$

(iii) (b) The given figure is equivalent to following figure, magnetic field at O due to long wire (part 1)

$$
B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r} \odot
$$

Due to circular coil $B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r} \otimes$
Hence net magnetic field at O

$$
B_{n e t}=B_{2}-B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r}(\pi-1) \otimes
$$

The field B at the centre of a circular coil of radius r is π times that due to a long straight wire at a distance r from it, for equal currents here shows three cases; in all cases the circular part has radius r and straight ones are infinitely long. For same current the field B is the centre P in cases $1,2,3$ has the ratio [CPMT 198

Solution: (a) Case $1: B_{A}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \otimes$

(1)

(a) $\left(-\frac{\pi}{2}\right):\left(\frac{\pi}{2}\right):\left(\frac{3 \pi}{4}-\frac{1}{2}\right)$
(c) $-\frac{\pi}{2}: \frac{\pi}{2}: \frac{3 \pi}{4}$
(2)
(3)
(b) $\left(-\frac{\pi}{2}+1\right):\left(\frac{\pi}{2}+1\right):\left(\frac{3 \pi}{4}+\frac{1}{2}\right)$
(d) $\left(-\frac{\pi}{2}-1\right):\left(\frac{\pi}{2}-\frac{1}{2}\right):\left(\frac{3 \pi}{4}+\frac{1}{2}\right)$

$$
\begin{aligned}
& B_{B}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \odot \\
& B_{C}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \odot
\end{aligned}
$$

(C)

So net magnetic field at the centre of case 1

$$
\begin{equation*}
B_{1}=B_{B}-\left(B_{A}+B_{C}\right) \quad \Rightarrow B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r} \odot \tag{i}
\end{equation*}
$$

Case 2 : As we discussed before magnetic field at the centre O in this case

$$
\begin{equation*}
B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r} \otimes \tag{ii}
\end{equation*}
$$

Case 3: $B_{A}=0$

$$
\begin{aligned}
& B_{B}=\frac{\mu_{0}}{4 \pi} \cdot \frac{(2 \pi-\pi / 2)}{r} \otimes=\frac{\mu_{0}}{4 \pi} \cdot \frac{3 \pi i}{2 r} \otimes \\
& B_{C}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \odot
\end{aligned}
$$

So net magnetic field at the centre of case 3

$$
\begin{equation*}
B_{3}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left(\frac{3 \pi}{2}-1\right) \otimes \tag{iii}
\end{equation*}
$$

(B)

(C)

From equation (i), (ii) and (iii) $B_{1}: B_{2}: B_{3}=\pi \odot: \pi \odot:\left(\frac{3 \pi}{2}-1\right) \otimes=-\frac{\pi}{2}: \frac{\pi}{2}:\left(\frac{3 \pi}{4}-\frac{1}{2}\right)$
Example: 13 Two infinite length wires carries currents $8 A$ and $6 A$ respectively and placed along X and Y-axis. Magnetic field at a point $P(0,0, d) m$ will be
(a) $\frac{7 \mu_{0}}{\pi d}$
(b) $\frac{10 \mu_{0}}{\pi d}$
(c) $\frac{14 \mu_{0}}{\pi d}$
(d) $\frac{5 \mu_{0}}{\pi d}$

Solution: (d) Magnetic field at P
Due to wire 1, $\quad B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2(8)}{d}$
and due to wire $2, B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2(16)}{d}$

$\therefore B_{n e t}=\sqrt{B_{1}^{2}+B_{2}^{2}}=\sqrt{\left(\frac{\mu_{0}}{4 \pi} \cdot \frac{16}{d}\right)^{2}+\left(\frac{\mu_{0}}{4 \pi} \cdot \frac{12}{d}\right)^{2}}=\frac{\mu_{0}}{4 \pi} \times \frac{2}{d} \times 10=\frac{5 \mu_{0}}{\pi d}$
Example: 14 An equilateral triangle of side ' a ' carries a current i then find out the magnetic field at point P which is vertex of triangle
(a) $\frac{\mu_{0} i}{2 \sqrt{3} \pi a} \otimes$
(b) $\frac{\mu_{0} i}{2 \sqrt{3} \pi a} \odot$
(c) $\frac{2 \sqrt{3} \mu_{0} i}{\pi a} \odot$

(d) Zero

Solution : (b) As shown in the following figure magnetic field at P due to side 1 and side 2 is zero. Magnetic field at P is only due to side 3 ,
which is $B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i \sin 30^{\circ}}{\frac{\sqrt{3} a}{2}} \odot$

$$
=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{\sqrt{3} a} \odot=\frac{\mu_{0} i}{2 \sqrt{3} \pi a} \odot
$$

Example: 15 A battery is connected between two points A and B on the circumference of a uniform conducting ring of radius r and resistance R. One of the arcs $A B$ of the ring subtends an angle θ at the centre. The value of, the magnetic induction at the centre due to the current in the ring is
[IIT-JEE 1995]
(a) Proportional to $2\left(180^{\circ}-\theta\right)$
(b) Inversely proportional to r
(c) Zero, only if $\theta=180^{\circ}$
(d) Zero for all values of θ

Solution: (d) Directions of currents in two parts are different, so directions of magnetic fields due to these currents are different.
Also applying Ohm's law across $A B \quad i_{1} R_{1}=i_{2} R_{2} \Rightarrow i_{1} l_{1}=i_{2} l_{2} \ldots$. (i)
Also $B_{1}=\frac{\mu_{0}}{4 \pi} \times \frac{i_{1} l_{1}}{r^{2}}$ and $B_{2}=\frac{\mu_{0}}{4 \pi} \times \frac{i_{2} l_{2}}{r^{2}} ; \therefore \frac{B_{2}}{B_{1}}=\frac{i_{1} l_{1}}{i_{2} l_{2}}=1$ [Using (i)]

Hence, two field are equal but of opposite direction. So, resultant magnetic induction at the centre is zero and is independent of θ.
Example: 16 The earth's magnetic induction at a certain point is $7 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$. This is to be annulled by the magnetic induction at the centre of a circular conducting loop of radius 5 cm . The required current in the loop is
[MP PET 1999; AIIMS 2000]
(a) 0.56 A
(b) 5.6 A
(c) 0.28 A
(d) 2.8 A

Solution: (b) According to the question, at centre of coil $B=B_{H} \Rightarrow \frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r}=B_{H}$
$\Rightarrow 10^{-7} \times \frac{2 \pi i}{\left(5 \times 1^{-2}\right)}=7 \times 10^{-5} \Rightarrow i=5.6 \mathrm{amp}$.
Example: 17 A particle carrying a charge equal to 100 times the charge on an electron is rotating per second in a circular path of radius 0.8 metre. The value of the magnetic field produced at the centre will be ($\mu_{0}-$ permeability for vacuum)
[CPMT 1986]
(a) $\frac{10^{-7}}{\mu_{0}}$
(b) $10^{-17} \mu_{0}$
(c) $10^{-6} \mu_{0}$
(d) $10^{-7} \mu_{0}$

Solution : (b) Magnetic field at the centre of orbit due to revolution of charge.
$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi(q v)}{r}$; where $v=$ frequency of revolution of charge
So, $B=\frac{\mu_{0}}{4 \pi} \times \frac{2 \pi \times(100 e \times 1)}{0.8} \Rightarrow B=10^{-17} \mu_{0}$.
Example: 18 Ratio of magnetic field at the centre of a current carrying coil of radius R and at a distance of $3 R$ on its axis is
(a) $10 \sqrt{10}$
(b) $20 \sqrt{10}$
(c) $2 \sqrt{10}$
(d) $\sqrt{10}$

Solution : (a) By using $\frac{B_{\text {centre }}}{B_{\text {axis }}}=\left(1+\frac{x^{2}}{r^{2}}\right)^{3 / 2}$; where $x=3 R$ and $r=R \Rightarrow \frac{B_{\text {centre }}}{B_{\text {axis }}}=(10)^{3 / 2}=10 \sqrt{10}$.
Example: 19 A circular current carrying coil has a radius R. The distance from the centre of the coil on the axis where the magnetic induction will be $\frac{1}{8}$ th to its value at the centre of the coil, is
[MP PMT 1997]
(a) $\frac{R}{\sqrt{3}}$
(b) $R \sqrt{3}$
(c) $2 \sqrt{3} R$
(d) $\frac{2}{\sqrt{3}} R$

Solution: (b) By using $\frac{B_{\text {centre }}}{B_{\text {axis }}}=\left(1+\frac{x^{2}}{r^{2}}\right)^{3 / 2}$, given $r=R$ and $B_{\text {axis }}=\frac{1}{8} B_{\text {centre }}$
$\Rightarrow 8=\left(1+\frac{x^{2}}{R^{2}}\right)^{3 / 2} \Rightarrow(2)^{2}=\left\{\left(1+\frac{x^{2}}{R^{2}}\right)^{1 / 2}\right\}^{3} \Rightarrow 2=\left(1+\frac{x^{2}}{R^{2}}\right)^{1 / 2} \Rightarrow 4=1+\frac{x^{2}}{R^{2}} \Rightarrow x=\sqrt{3} R$
Example: 20 An infinitely long conductor $P Q R$ is bent to form a right angle as shown. A current I flows through $P Q R$. The magnetic field due to this current at the point M is H_{1}. Now, another infinitely long straight conductor $Q S$ is connected at Q so that the current is $\frac{1}{2}$ in $Q R$ as well as in $Q S$, the current in $P Q$ remaining unchanged. The magnetic field at M is now H_{2}. The ratio H_{1} / H_{2} is given by
(a) $\frac{1}{2}$
(b) 1
(c) $\frac{2}{3}$
(d) 2

Solution: (c) Magnetic field at any point lying on the current carrying conductor is zero.
Here $H_{1}=$ magnetic field at M due to current in $P Q$

$$
\begin{aligned}
H_{2} & =\text { magnetic field at } M \text { due to } R+\text { due to } Q S+\text { due to } P Q=0+\frac{H_{1}}{2}+H_{1}=\frac{3}{2} H_{1} \\
\therefore \quad & \frac{H_{1}}{H_{2}}
\end{aligned}=\frac{2}{3}
$$

Example: 21 Figure shows a square loop $A B C D$ with edge length a. The resistance of the wire $A B C$ is r and that of $A D C$ is $2 r$. The value of magnetic field at the centre of the loop assuming uniform wire is
(a) $\frac{\sqrt{2} \mu_{0} i}{3 \pi a} \odot$
(b) $\frac{\sqrt{2} \mu_{0} i}{3 \pi a} \otimes$
(c) $\frac{\sqrt{2} \mu_{0} i}{\pi a} \odot$

(d) $\frac{\sqrt{2} \mu_{0} i}{\pi a} \otimes$

Solution: (b) According to question resistance of wire $A D C$ is twice that of wire $A B C$. Hence current flows through $A D C$ is half that of $A B C$ i.e. $\frac{i_{2}}{i_{1}}=\frac{1}{2}$. Also $i_{1}+i_{2}=i \Rightarrow i_{1}=\frac{2 i}{3}$ and $i_{2}=\frac{i}{3}$
Magnetic field at centre O due to wire $A B$ and $B C$ (part 1 and 2) $B_{1}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} \sin 45^{\circ}}{a / 2} \otimes=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2} i_{1}}{a} \otimes$
and magnetic field at centre O due to wires $A D$ and $D C$ (i.e. part 3 and 4) $B_{3}=B_{4}=\frac{\mu_{0}}{4 \pi} \frac{2 \sqrt{2} i_{2}}{a} \odot$ Also $i_{1}=2 i_{2}$. So $\left(B_{1}=B_{2}\right)>\left(B_{3}=B_{4}\right)$
Hence net magnetic field at centre O

$$
\begin{aligned}
& B_{\text {net }}=\left(B_{1}+B_{2}\right)-\left(B_{3}+B_{4}\right) \\
& =2 \times \frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2} \times\left(\frac{2}{3} i\right)}{a}-\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \sqrt{2}\left(\frac{i}{3}\right) \times 2}{a}=\frac{\mu_{0}}{4 \pi} \cdot \frac{4 \sqrt{2} i}{3 a}(2-1) \otimes=\frac{\sqrt{2} \mu_{0} i}{3 \pi a} \otimes
\end{aligned}
$$

Tricky example: 1

Figure shows a straight wire of length l current i. The magnitude of magnetic field produced by the current at point P is

(a) $\frac{\sqrt{2} \mu_{0} i}{\pi}$
(b) $\frac{\mu_{0} i}{4 \pi l}$
(c) $\frac{\sqrt{2} \mu_{0} i}{8 \pi l}$
(d) $\frac{\mu_{0} i}{2 \sqrt{2} \pi l}$

Solution: (c) The given situation can be redrawn as follow.
As we know the general formula for finding the magnetic field due to a finite length wire
$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left(\sin \phi_{1}+\sin \phi_{2}\right)$
Here $\phi_{1}=0^{\circ}, \phi=45^{\circ}$
$\therefore B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left(\sin 0^{\circ}+\sin 45^{\circ}\right)=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{\sqrt{2} l} \Rightarrow B=\frac{\sqrt{2} \mu_{0} i}{8 \pi l}$

Tricky example: 2
A cell is connected between the points A and C of a circular conductor $A B C D$ of centre ' O ' with angle $A O C=60^{\circ}$, If B_{1} and B_{2} are the magnitudes of the magnetic fields at O due to the currents in $A B C$ and ADC respectively, the ratio $\frac{B_{1}}{B_{2}}$ is

(a) 0.2
(b) 6
(c) 1
[KCET (Engg./ Med.) 1999]
(d) 5

Solution: (c) $\quad B=\frac{\mu_{0}}{4 \pi} \cdot \frac{\theta i}{r}$
$\Rightarrow B \propto \theta i$
$\Rightarrow \frac{B_{1}}{B_{2}}=\frac{\theta_{1}}{\theta_{2}} \times \frac{i_{1}}{i_{2}}$

$$
\text { Also } \frac{i_{1}}{i_{2}}=\frac{l_{2}}{l_{1}}=\frac{\theta_{2}}{\theta_{1}} \quad \text { Hence } \frac{B_{1}}{B_{2}}=\frac{1}{1}
$$

Amperes Law

Amperes law gives another method to calculate the magnetic field due to a given current distribution.
Line integral of the magnetic field \vec{B} around any closed curve is equal to μ_{0} times the net current i threading through the area enclosed by the curve
i.e. $\oint \vec{B} d \vec{l}=\mu_{0} \sum i=\mu_{0}\left(i_{1}+i_{3}-i_{2}\right)$

Also using $\vec{B}=\mu_{0} \vec{H}$ (where $\vec{H}=$ magnetising field)

$$
\oint \mu_{0} \vec{H} \cdot \overrightarrow{d l}=\mu_{0} \Sigma i \Rightarrow \oint \vec{H} \cdot \overrightarrow{d l}=\Sigma i
$$

 included in net current. (Outward $\odot \rightarrow+v e$, Inward $\otimes \rightarrow-v e$)
\square When the direction of current is away from the observer then the direction of closed path is clockwise and when the direction of current is towards the observer then the direction of closed path is anticlockwise.

Application of Amperes law

(1) Magnetic field due to a cylindrical wire
(i) Outside the cylinder

Solid cylinder

Thin hollow cylinder

Thick hollow

In all above cases magnetic field outside the wire at $P \quad \oint \vec{B} \cdot \overrightarrow{d l}=\mu_{0} i \Rightarrow B \int d l=\mu_{0} i \Rightarrow B \times 2 \pi r=\mu_{0} i \Rightarrow$ $B_{\text {out }}=\frac{\mu_{0} i}{2 \pi r}$

In all the above cases $B_{\text {sufface }}=\frac{\mu_{0} i}{2 \pi R}$
(ii) Inside the cylinder : Magnetic field inside the hollow cylinder is zero.

Cross sectional view Solid cylinder

Thin hollow cylinder

Thick hollow

Current enclosed by loop (i^{\prime}) is lesser then the total current (i)

Current density is uniform i.e. $J=J^{\prime} \Rightarrow \frac{i}{A}=\frac{i^{\prime}}{A^{\prime}}$
$\Rightarrow i^{\prime}=i \times \frac{A^{\prime}}{A}=i\left(\frac{r^{2}}{R^{2}}\right)$
Hence at point $Q \quad \oint \vec{B} . d \vec{l}=\mu_{0} i^{\prime} \Rightarrow B \times 2 \pi r=\frac{\mu_{0} i r^{2}}{R^{2}}$
$\Rightarrow B=\frac{\mu_{0}}{2 \pi} \cdot \frac{i r}{R^{2}}$

Inside the thick portion of hollow cylinder
$i^{\prime}=i \times \frac{A^{\prime}}{A}=i \times \frac{\left(r^{2}-R_{1}^{2}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)}$
Hence at point $Q \oint \vec{B} . d \vec{l}=\mu_{0} i^{\prime} \Rightarrow B \times 2 \pi r=\mu_{0} i \times \frac{\left(r^{2}-R_{1}^{2}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)}$
$\Rightarrow B=\frac{\mu_{0} i}{2 \pi r} \cdot \frac{\left(r^{2}-R_{1}^{2}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)}$. If $r=R_{1}$ (inner surface) $B=0$
If $r=R_{2}$ (outer surface) $B=\frac{\mu_{0} i}{2 \pi R_{2}}$ (max.)

Note: ㅁ For all cylindrical current distributions
$B_{\text {axis }}=\mathrm{o}$ (min.), $B_{\text {surface }}=\max$ (distance r always from axis of cylinder), $B_{\text {out }} \propto 1 / r$.
(2) Magnetic field due to an infinite sheet carrying current : The figure shows an infinite sheet of current with linear current density $j(A / m)$. Due to symmetry the field line pattern above and below the sheet is uniform. Consider a square loop of side l as shown in the figure.

According to Ampere's law, $\int_{a}^{b} B . d l+\int_{b}^{c} B . d l+\int_{c}^{d} B . d l+\int_{d}^{a} B . d l=\mu_{0} i$.
Since $B \perp d l$ along the path $b \rightarrow c$ and $d \rightarrow a$, therefore, $\int_{b}^{c} B . d l=0 ; \int_{d}^{a} B . d l=0$
Also, $B \| d l$ along the path $a \rightarrow b$ and $c \rightarrow d$, thus $\int_{a}^{b} B \cdot d l+\int_{d}^{a} B \cdot d l=2 B l$
The current enclosed by the loop is $i=j l$
Therefore, according to Ampere's law $2 B l=\mu_{0}(j l)$ or $B=\frac{\mu_{0} j}{2}$
(3) Solenoid

A cylinderical coil of many tightly wound turns of insulated wire with generally diameter of the coil smaller than its length is called a solenoid.

One end of the solenoid behaves like the north pole and opposite end behaves like the south pole. As the length of the solenoid increases, the interior field becomes more uniform and the external field becomes weaker.

A magnetic field is produced around and within the solenoid. The magnetic field within the solenoid is uniform and parallel to the axis of solenoid.
(i) Finite length solenoid : If $N=$ total number of turns,
$l=$ length of the solenoid
$n=$ number of turns per unit length $=\frac{N}{l}$

Magnetic field inside the solenoid at point P is given by $B=\frac{\mu_{0}}{4 \pi}(2 \pi n i)[\sin \alpha+\sin \beta]$
(ii) Infinite length solenoid : If the solenoid is of infinite length and the point is well inside the solenoid i.e. $\alpha=\beta=(\pi / 2)$.

So

$$
B_{i n}=\mu_{0} n i
$$

(ii) If the solenoid is of infinite length and the point is near one end i.e. $\alpha=0$ and $\beta=(\pi / 2)$

$$
\text { So } \quad \boldsymbol{B}_{\text {end }}=\frac{\mathbf{1}}{\mathbf{2}}\left(\boldsymbol{\mu}_{0} n i\right)
$$

Note: ㅁ Magnetic field outside the solenoid is zero.

$$
\square \quad B_{\text {end }}=\frac{1}{2} B_{\text {in }}
$$

(4) Toroid : A toroid can be considered as a ring shaped closed solenoid. Hence it is like an endless cylindrical solenoid.

Consider a toroid having n turns per unit length
Let i be the current flowing through the toroid (figure). The magnetic lines of force mainly remain in the core of toroid and are in the form of concentric circles. Consider such a circle of mean radius r. The circular closed path surrounds N loops of wire, each of which carries a current i therefore from $\oint \vec{B} \cdot d \vec{l}=\mu_{0} i_{\text {net }}$
$\Rightarrow B \times(2 \pi r)=\mu_{0} N i \quad \Rightarrow B=\frac{\mu_{0} N i}{2 \pi r}=\mu_{o} n i$ where $n=\frac{N}{2 \pi r}$
For any point inside the empty space surrounded by toroid and outside the toroid, magnetic field B is zero because the net current enclosed in these spaces is zero.

Concepts

- The line integral of magnetising field (\vec{H}) for any closed path called magnetomotive force (MMF). It's S.I. unit is amp.
- Ratio of dimension of e.m.f. to MMF is equal to the dimension of resistance.
- Biot-Savart law is valid for asymmetrical current distributions while Ampere's law is valid for symmetrical current distributions.
- Biot-Savart law is based only on the principle of magnetism while Ampere's laws is based on the principle of electromagnetism.

Example

Example: 22 A long solenoid has 200 turns per cm and carries a current of 2.5 . The magnetic field at its centre is

$$
\left[\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{m}^{2}\right]
$$

[MP PET 2OOO]
(a) $3.14 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
(b) $6.28 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
(c) $9.42 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$
(d) $12.56 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$

Solution: (b) $\quad B=\mu_{0} n i=4 \pi \times 10^{-7} \times \frac{200}{10^{-2}} \times 2.5=6.28 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$.
Example: 23 A long solenoid is formed by winding 20 turns $/ \mathrm{cm}$. The current necessary to produce a magnetic field of 20 mili tesla inside the solenoid will be approximately $\left(\frac{\mu_{0}}{4 \pi}=10^{-7}\right.$ Tesla - metre / ampere $)$
[MP PMT 1994]
(a) 8.0 A
(b) 4.0 A
(c) 2.0 A
(d) 1.0 A

Solution: (a) $\quad B=\mu_{0} n i$; where $n=\frac{20}{10} \frac{\mathrm{turn}}{\mathrm{cm}}=2000 \frac{\text { turn }}{\mathrm{m}}$. So, $20 \times 10^{-5}=4 \pi \times 2000 \times i \Rightarrow \quad i=8 A$.
Example: 24 Two solenoids having lengths L and $2 L$ and the number of loops N and $4 N$, both have the same current, then the ratio of the magnetic field will be
[CPMT 1994]
(a) $1: 2$
(b) $2: 1$
(c) $1: 4$
(d) $4: 1$

Solution: (a) $\quad B=\mu_{0} \frac{N}{L} i \Rightarrow B \propto \frac{N}{L} \Rightarrow \frac{B_{1}}{B_{2}}=\frac{N_{1}}{N_{2}} \times \frac{L_{2}}{L_{1}}=\frac{N}{4 N} \times \frac{2 l}{L}=\frac{1}{2}$.
Example: 25 The average radius of a toroid made on a ring of non-magnetic material is 0.1 m and it has 500 turns. If it carries 0.5 ampere current, then the magnetic field produced along its circular axis inside the toroid will be
(a) 25×10^{-2} Tesla
(b) 5×10^{-2} Tesla
(c) 25×10^{-4} Tesla
(d) 5×10^{-4} Tesla

Solution : (d) $\quad B=\mu_{0} n i$; where $n=\frac{N}{2 \pi R} \quad \therefore \quad B=4 \pi \times 10^{-7} \times \frac{500}{2 \pi \times 0.1} \times 0.5=5 \times 10^{-4} \mathrm{~T}$.
Example: 26 For the solenoid shown in figure. The magnetic field at point P is
(a) $\frac{\mu_{0} n i}{4}(\sqrt{3}+1)$
(b) $\frac{\sqrt{3} \mu_{0} n i}{4}$

(c) $\frac{\mu_{0} n i}{2}(\sqrt{3}+1)$
(d) $\frac{\mu_{0} n i}{4}(\sqrt{3}-1)$

Solution : (a) $\quad B=\frac{\mu_{0}}{4 \pi} .2 \pi n i(\sin \alpha+\sin \beta)$. From figure $\alpha=\left(90^{\circ}-30^{\circ}\right)=60^{\circ}$ and $\beta=\left(90^{\circ}-60^{\circ}\right)=30^{\circ}$
$\therefore B=\frac{\mu_{0} n i}{2}\left(\sin 60^{\circ}+\sin 30^{\circ}\right)=\frac{\mu_{0} n i}{4}(\sqrt{3}+1)$.
Example: 27 Figure shows the cress sectional view of the hollow cylindrical conductor with inner radius ' R ' and outer radius ' $2 R$ ', cylinder carrying uniformly distributed current along it's axis. The magnetic induction at point ' P ' at a distance $\frac{3 R}{2}$ from the axis of the cylinder will be
(a) Zero
(b) $\frac{5 \mu_{0} i}{72 \pi R}$
(c) $\frac{7 \mu_{0} i}{18 \pi R}$
(d) $\frac{5 \mu_{0} i}{36 \pi R}$

Solution: (d) By using $B=\frac{\mu_{0} i}{2 \pi r}\left(\frac{r^{2}-a^{2}}{b^{2}-a^{2}}\right)$ here $r=\frac{3 R}{2}, a=R, a b=2 R \Rightarrow B=\frac{\mu_{0} i}{2 \pi\left(\frac{3 R}{2}\right)} \times\left\{\frac{\left(\frac{3 R}{2}\right)-R^{2}}{\left(R^{2}\right)-R^{2}}\right\}=\frac{5 \cdot \mu_{o} i}{36 \pi r}$.

Tricky example: 3

A winding wire which is used to frame a solenoid can bear a maximum $10 A$ current. If length of solenoid is 80 cm and it's cross sectional radius is 3 cm then required length of winding wire is ($B=0.2 T$)
(a) $1.2 \times 10^{2} \mathrm{~m}$
(b) $4.8 \times 10^{2} \mathrm{~m}$
(c) $2.4 \times 10^{3} \mathrm{~m}$
(d) $6 \times 10^{3} \mathrm{~m}$

Solution: (c) $\quad B=\frac{\mu_{0} N i}{l}$ where $N=$ Total number of turns, $l=$ length of the solenoid
$\Rightarrow \quad 0.2=\frac{4 \pi \times 10^{-7} \times N \times 10}{0.8} \Rightarrow N=\frac{4 \times 10^{4}}{\pi}$
Since N turns are made from the winding wire so length of the wire $(L)=2 \pi r \times N[2 \pi r=$ length of each turns $]$
$\Rightarrow L=2 \pi \times 3 \times 10^{-2} \times \frac{4 \times 10^{4}}{\pi}=2.4 \times 10^{3} \mathrm{~m}$.

Motion of Charged Particle in a Magnetic Field

If a particle carrying a positive charge q and moving with velocity v enters a magnetic field B then it experiences a force F which is given by the expression

$$
F=q(\vec{v} \times \vec{B}) \Rightarrow F=q v B \sin \theta
$$

Here $\vec{v}=$ velocity of the particle, $\vec{B}=$ magnetic field

(1) Zero force

Force on charged particle will be zero (i.e. $F=0$) if
(i) No field i.e. $B=0 \Rightarrow F=0$
(ii) Neutral particle i.e. $q=0 \Rightarrow F=0$
(iii) Rest charge i.e. $v=0 \Rightarrow F=0$

(iv) Moving charge i.e. $\theta=\mathrm{o}^{\circ}$ or $\theta=180^{\circ} \Rightarrow F=0$
(2) Direction of force

The force \vec{F} is always perpendicular to both the velocity \vec{v} and the field \vec{B} in accordance with Right Hand Screw Rule, through \vec{v} and \vec{B} themselves may or may not be perpendicular to each other.

Direction of force on charged particle in magnetic field can also be find by Flemings Left Hand Rule (FLHR).

Here, First finger (indicates) \rightarrow Direction of magnetic field
Middle finger \rightarrow Direction of motion of positive charge or direction, opposite to the motion of negative charge.
Thumb \rightarrow Direction of force

(3) Circular motion of charge in magnetic field

Consider a charged particle of charge q and mass m enters in a uniform magnetic field B with an initial velocity v perpendicular to the field.

$\theta=90^{\circ}$, hence from $F=q v B \sin \theta$ particle will experience a maximum magnetic force $\boldsymbol{F}_{\boldsymbol{m a x}}=\boldsymbol{q} \boldsymbol{v} \boldsymbol{B}$ which act's in a direction perpendicular to the motion of charged particle. (By Flemings left hand rule).
(i) Radius of the path : In this case path of charged particle is circular and magnetic force provides the necessary centripetal force i.e. $q v B=\frac{m v^{2}}{r} \Rightarrow$ radius of path $r=\frac{m v}{q B}$

If $p=$ momentum of charged particle and $K=$ kinetic energy of charged particle (gained by charged particle after accelerating through potential difference V) then $p=m v=\sqrt{2 m K}=\sqrt{2 m q V}$

So

$$
r=\frac{m v}{q B}=\frac{p}{q B}=\frac{\sqrt{2 m K}}{q B}=\frac{1}{B} \sqrt{\frac{2 m V}{q}}
$$

$r \propto v \propto p \propto \sqrt{K}$ i.e. with increase in speed or kinetic energy, the radius of the orbit increases.
Note: \square Less radius (r) means more curvature (c) i.e. $c \propto \frac{1}{r}$
(ii) Direction of path : If a charge particle enters perpendicularly in a magnetic field, then direction of path described by it will be

Type of charge	Direction of magnetic field	Direction of it's circular motion
Negative	Outwards \odot	
Negative	Inward \otimes	Clockwise
Positive	Inward \otimes	
Positive	Outward ©	Clockwise

(iii) Time period : As in uniform circular motion $v=r \omega$, so the angular frequency of circular motion, called cyclotron or gyro-frequency, will be given by $\omega=\frac{v}{r}=\frac{q B}{m}$ and hence the time period, $T=\frac{2 \pi}{\omega}=2 \pi \frac{\mathrm{~m}}{q B}$
i.e., time period (or frequency) is independent of speed of particle and radius of the orbit and depends only on the field B and the nature, i.e., specific charge $\left(\frac{q}{m}\right)$, of the particle.
(4) Motion of charge on helical path

When the charged particle is moving at an angle to the field (other than $\mathbf{0}^{\circ}, 9 \mathbf{0}^{\circ}$, or 180°).
In this situation resolving the velocity of the particle along and perpendicular to the field, we find that the particle moves with constant velocity $v \cos \theta$ along the field (as no force acts on a charged particle when it moves parallel to the field) and at the same time it is also moving with velocity $v \sin \theta$ perpendicular to the field due to which it will describe a circle (in a plane perpendicular to the field) of radius. $\boldsymbol{r}=\frac{\boldsymbol{m}(v \sin \boldsymbol{n} \theta)}{\boldsymbol{q} \boldsymbol{B}}$

Time period and frequency do not depend on velocity and so they are given by $T=\frac{2 \pi m}{q B}$ and $v=\frac{q B}{2 \pi m}$
So the resultant path will be a helix with its axis parallel to the field \vec{B} as shown in figure in this situation.
The pitch of the helix, (ie., linear distance travelled in one rotation) will be given by $p=T(v \cos \theta)=2 \pi \frac{m}{q B}(v \cos \theta)$

Note:

$$
1 \text { rotation } \equiv 2 \pi \equiv T \text { and } 1 \text { pitch } \equiv 1 T
$$

- Number of pitches \equiv Number of rotations \equiv Number of repetition $=$ Number of helical turns
\square If pitch value is p, then number of pitches obtained in length l given as
Number of pitches $=\frac{l}{p}$ and time reqd. $t=\frac{l}{v \cos \theta}$

Some standard results

\& Ratio of radii of path described by proton and α-particle in a magnetic field (particle enters perpendicular to the field)

Constant quantity	Formula	Ratio of radii	Ratio of curvature (c)
v - same	$r=\frac{m v}{q B} \Rightarrow r \propto \frac{m}{q}$	$r_{p}: r_{\alpha}=1: 2$	$c_{p}: c_{R}=2: 1$
p - same	$r=\frac{p}{q B} \Rightarrow r \propto \frac{1}{q}$	$r_{p}: r_{\alpha}=2: 1$	$c_{p}: c_{R}=1: 2$
k-same	$r=\frac{\sqrt{2 m k}}{q B} \Rightarrow r \propto \frac{\sqrt{m}}{q}$	$r_{p}: r_{\alpha}=1: 1$	$c_{p}: c_{R}=1: 1$
V-same	$r \propto \sqrt{\frac{m}{q}}$	$r_{p}: r_{\alpha}=1: \sqrt{2}$	$c_{p}: c_{R}=\sqrt{2}: 1$

\& Particle motion between two parallel plates $(\vec{v} \perp \vec{B})$
(i) To strike the opposite plate it is essential that $d<r$.
(ii) Does not strike the opposite plate $d>r$.
(iii) To touch the opposite plate $d=r$.

(iv) To just not strike the opposite plate $d \geq r$.
(v) To just strike the opposite plate $d \leq r$.

(5) Lorentz force

When the moving charged particle is subjected simultaneously to both electric field \vec{E} and magnetic field \vec{B}, the moving charged particle will experience electric force $\vec{F}_{e}=q \vec{E}$ and magnetic force $\vec{F}_{m}=q(\vec{v} \times \vec{B})$; so the net force on it will be $\overrightarrow{\boldsymbol{F}}=\boldsymbol{q}[\overrightarrow{\boldsymbol{E}}+(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}})]$. Which is the famous 'Lorentz-force equation'.

Depending on the directions of \vec{v}, E and \vec{B} following situations are possible
(i) When \vec{v}, \vec{E} and \vec{B} all the three are collinear : In this situation as the particle is moving parallel or antiparallel to the field, the magnetic force on it will be zero and only electric force will act and so $\vec{a}=\frac{\vec{F}}{m}=\frac{q \vec{E}}{m}$

The particle will pass through the field following a straight line path (parallel field) with change in its speed. So in this situation speed, velocity, momentum kinetic energy all will change without change in direction of motion as shown

(ii) When $\overrightarrow{\boldsymbol{E}}$ is parallel to $\overrightarrow{\boldsymbol{B}}$ and both these fields are perpendicular to $\overrightarrow{\boldsymbol{v}}$ then : $\overrightarrow{\boldsymbol{F}_{e}}$ is perpendicular to $\overrightarrow{F_{m}}$ and they cannot cancel each other. The path of charged particle is curved in both these fields.

(iii) $\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{E}}$ and $\overrightarrow{\boldsymbol{B}}$ are mutually perpendicular : In this situation if \vec{E} and \vec{B} are such that

$$
\vec{F}=\vec{F}_{e}+\vec{F}_{m}=0 \text { i.e., } \vec{a}=(\vec{F} / m)=0
$$

as shown in figure, the particle will pass through the field with same velocity.
And in this situation, as $F_{e}=F_{m}$ i.e., $q E=q v B \quad v=E / B$

This principle is used in 'velocity-selector' to get a charged beam having a specific velocity.
Note : \square From the above discussion, conclusion is as follows
\square If $E=0, B=0$, so $F=0$.

- If $E=0, B \neq 0$, so F may be zero (if $\theta=0^{\circ}$ or 180°).
\square If $E \neq \mathrm{o}, B \neq \mathrm{o}$, so $F=\mathrm{o}$ (if $\left|\vec{F}_{e}\right|=\left|\vec{F}_{m}\right|$ and their directions are opposite)
- If $E \neq \mathrm{o}, B=\mathrm{o}$, so $F \neq \mathrm{o}$ (because $\vec{v} \neq$ constant).

Cvclotron

Cyclotron is a device used to accelerated positively charged particles (like, α-particles, deutrons etc.) to acquire enough energy to carry out nuclear disintegration etc. t is based on the fact that the electric field accelerates a charged particle and the magnetic field keeps it revolving in circular orbits of constant frequency. Thus a small potential difference would impart if

enormously large velocities if the particle is made to traverse the potential difference a number of times.
It consists of two hollow D-shaped metallic chambers D_{1} and D_{2} called dees. The two dees are placed horizontally with a small gap separating them. The dees are connected to the source of high frequency electric field. The dees are enclosed in a metal box containing a gas at a low pressure of the order of $10^{-3} \mathrm{~mm}$ mercury. The whole apparatus is placed between the two poles of a strong electromagnet $N S$ as shown in fig. The magnetic field acts perpendicular to the plane of the dees.

Note: $\square \quad$ The positive ions are produced in the gap between the two dees by the ionisation of the gas. To produce proton, hydrogen gas is used; while for producing alpha-particles, helium gas is used.
(1) Cyclotron frequency : Time taken by ion to describe q semicircular path is given by $t=\frac{\pi r}{v}=\frac{\pi m}{q B}$

If $T=$ time period of oscillating electric field then $T=2 t=\frac{2 \pi m}{q B}$ the cyclotron frequency $v=\frac{1}{T}=\frac{B q}{2 \pi m}$
(2) Maximum energy of position : Maximum energy gained by the charged particle $E_{\text {max }}=\left(\frac{q^{2} B^{2}}{2 m}\right) r^{2}$
where $r_{0}=$ maximum radius of the circular path followed by the positive ion.
Note: a Cyclotron frequency is also known as magnetic resonance frequency.

- Cyclotron can not accelerate electrons because they have very small mass.

Hall effect : The Phenomenon of producing a transverse emf in a current carrying conductor on applying a magnetic field perpendicular to the direction of the current is called Hall effect.

Hall effect helps us to know the nature and number of charge carriers in a conductor.

Negatively charged particles
Consider a conductor having electrons as current carriers. The electrons move with drift velocity \vec{v} opposite to the direction of flow of current
Let the current carriers be positively charged holes. The hole move in the direction of current
force acting on electron $F_{m}=-e(\vec{v} \times \vec{B})$. This force acts along x-axis and hence electrons will move towards face (2) and it becomes negatively charged.
Force acting on the hole due to magnetic field $F_{m}=+e(\vec{v} \times \vec{B})$ move towards face acts along x-axis and hence holes charged.

Concepts

- The energy of a charged particle moving in a uniform magnetic field does not change because it experiences a force in a direction, perpendicular to it's direction of motion. Due to which the speed of charged particle remains unchanged and hence it's K.E. remains same.
Magnetic force does no work when the charged particle is displaced while electric force does work in displacing the charged particle.
Magnetic force is velocity dependent, while electric force is independent of the state of rest or motion of the charged particle.
- If a particle enters a magnetic field normally to the magnetic field, then it starts moving in a circular orbit. The point at which it enters the magnetic field lies on the circumference. (Most of us confuse it with the centre of the orbit)
Deviation of charged particle in magnetic field : If a charged particle (q, m) enters a uniform magnetic field \vec{B} (extends upto a length x) at right angles with speed v as shown in figure.
The speed of the particle in magnetic field does not change. But it gets deviated in the magnetic field:

Deviation in terms of time $t ; \quad \theta=\omega t=\left(\frac{B q}{m}\right) t$

For $x>r$, the deviation will be 180° as shown in the fornowing figure

Example

Example: 28 Electrons move at right angles to a magnetic field of 1.5×10^{-2} Tesla with a speed of $6 \times 10^{27} \mathrm{~m} / \mathrm{s}$. If the specific charge of the electron is $1.7 \times 10^{11} \mathrm{Coul} / \mathrm{kg}$. The radius of the circular path will be
[BHU 2003]
(a) 2.9 cm
(b) 3.9 cm
(c) 2.35 cm
(d) 3 cm

Solution: (c)
$r=\frac{m v}{q B} \Rightarrow \frac{v}{(q / m) . B}=\frac{6 \times 10^{27}}{17 \times 10^{11} \times 1.5 \times 10^{-2}}=2.35 \times 10^{-2} \mathrm{~m}=2.35 \mathrm{~cm}$.
Example: 29 An electron (mass $=9 \times 10^{-31} \mathrm{~kg}$. charge $=1.6 \times 10^{-19}$ coul.) whose kinetic energy is 7.2×10^{-18} joule is moving in a circular orbit in a magnetic field of 9×10^{-5} weber $/ \mathrm{m}^{2}$. The radius of the orbit is[MP PMT 2OO2]
(a) 1.25 cm
(b) 2.5 cm
(c) 12.5 cm
(d) 25.0 cm

Solution: (d) $\quad r=\frac{\sqrt{2 m K}}{q B}=\frac{\sqrt{2 \times q \times 10^{-31} \times 7.2 \times 10^{-8}}}{1.6 \times 10^{-19} \times q \times 10^{-5}}=0.25 \mathrm{~cm}=25 \mathrm{~cm}$.
Example: 30 An electron and a proton enter a magnetic field perpendicularly. Both have same kinetic energy. Which of the following is true
[MP PET 1999]
(a) Trajectory of electron is less curved
(b) Trajectory of proton is less curved
(c) Both trajectories are equally curved
(d) Both move on straight line path

Solution : (b) By using $r=\frac{\sqrt{2 m k}}{q B} ; \quad$ For both particles $q \rightarrow$ same, $B \rightarrow$ same, $k \rightarrow$ same
Hence $r \propto \sqrt{m} \Rightarrow \frac{r_{e}}{r_{p}}=\sqrt{\frac{m_{e}}{m_{p}}} \quad \because m_{p}>m_{e}$ so $r_{p}>r_{e}$

Since radius of the path of proton is more, hence it's trajectory is less curved.
Example: 31 A proton and an α-particles enters in a uniform magnetic field with same velocity, then ratio of the radii of path describe by them
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) None of these

Solution: (b) By using $r=\frac{m v}{q B} ; v \rightarrow$ same, $B \rightarrow$ same $\Rightarrow r \propto \frac{m}{2} \Rightarrow \frac{r_{p}}{r_{\alpha}}=\frac{m_{p}}{m_{\alpha}} \times \frac{q_{\alpha}}{q_{p}}=\frac{m_{p}}{4 m_{p}} \times \frac{2 q_{p}}{q_{p}}=\frac{1}{2}$
Example: 32 A proton of mass m and charge $+e$ is moving in a circular orbit of a magnetic field with energy 1 MeV . What should be the energy of α-particle (mass $=4 \mathrm{~m}$ and charge $=+2 e$), so that it can revolve in the path of same radius
[BHU 1997]
(a) 1 MeV
(b) 4 MeV
(c) 2 MeV
(d) 0.5 MeV

Solution: (a) By using $r=\frac{\sqrt{2 m K}}{q B} ; r \rightarrow$ same, $B \rightarrow$ same $\quad \Rightarrow K \propto \frac{q^{2}}{m}$
Hence $\frac{K_{\alpha}}{K_{p}}=\left(\frac{q_{\alpha}}{q_{p}}\right)^{2} \times \frac{m_{p}}{m_{\alpha}}=\left(\frac{2 q_{p}}{q_{p}}\right)^{2} \times \frac{m_{p}}{4 m_{p}} 1 \Rightarrow K_{\alpha}=K_{p}=1 \mathrm{meV}$.
Example: 33 A proton and an α-particle enter a uniform magnetic field perpendicularly with the same speed. If proton takes $25 \mu \mathrm{sec}$ to make 5 revolutions, then the periodic time for the α-particle would be [MP PET 1993]
(a) $50 \mu \mathrm{sec}$
(b) $25 \mu \mathrm{sec}$
(c) $10 \mu \mathrm{sec}$
(d) $5 \mu \mathrm{sec}$

Solution: (c) Time period of proton $T_{p}=\frac{25}{5}=5 \mu \mathrm{sec}$
By using $T=\frac{2 \pi m}{q B} \Rightarrow \frac{T_{\alpha}}{T_{p}}=\frac{m_{\alpha}}{m_{p}} \times \frac{q_{p}}{q_{\alpha}}=\frac{4 m_{p}}{m_{p}} \times \frac{q_{p}}{2 q_{p}} \Rightarrow T_{\alpha}=2 T_{p}=10 \mu \mathrm{sec}$.
Example: 34 A particle with 10^{-11} coulomb of charge and $10^{-7} \mathrm{~kg}$ mass is moving with a velocity of $10^{8} \mathrm{~m} / \mathrm{s}$ along the $y-$ axis. A uniform static magnetic field $B=0.5$ Tesla is acting along the x-direction. The force on the particle is
[MP PMT 1997]
(a) $5 \times 10^{-11} N$ along \hat{i}
(b) $5 \times 10^{3} N$ along \hat{k}
(c) $5 \times 10^{-11} N$ along $-\hat{j}$
(d) $5 \times 10^{-4} N$ along $-\hat{k}$

Solution: (d) By using $\vec{F}=q(\vec{v} \times \vec{B})$; where $\vec{v}=10 \hat{j}$ and $\vec{B}=0.5 \hat{i}$
$\Rightarrow \vec{F}=10^{-11}\left(10^{8} \hat{j} \times 0.5 \hat{i}\right)=5 \times 10^{-4}(\hat{j} \times \hat{i})=5 \times 10^{-4}(-\hat{k})$ i.e., $5 \times 10^{-4} N$ along $-\hat{k}$.
Example: 35 An electron is moving along positive x-axis. To get it moving on an anticlockwise circular path in $x-y$ plane, a magnetic filed is applied
(a) Along positive y-axis
(b) Along positive z-axis
(c) Along negative y-axis
(d) Along negative z-axis

Solution : (a) The given situation can be drawn as follows
According to figure, for deflecting electron in $x-y$ plane, force must be acting an it towards y-axis.
Hence according to Flemings left hand rule, magnetic field directed along positive y-axis.

Example: 36 A particle of charge -16×10^{-18} coulomb moving with velocity $10 \mathrm{~m} / \mathrm{s}$ along the x-axis enters a region where a magnetic field of induction B is along the y-axis, and an electric field of magnitude $10^{4} \mathrm{~V} / \mathrm{m}$ is along the negative z-axis. If the charged particle continuous moving along the x-axis, the magnitude of B is [AIEEE 2003]
(a) $10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$
(b) $10^{3} \mathrm{~Wb} / \mathrm{m}^{2}$
(c) $10^{5} \mathrm{~Wb} / \mathrm{m}^{2}$
(d) $10^{16} \mathrm{~Wb} / \mathrm{m}^{2}$

Solution: (b) Particles is moving undeflected in the presence of both electric field as well as magnetic field so it's speed $v=\frac{E}{B} \Rightarrow B=\frac{E}{v}=\frac{10^{4}}{10}=10^{3} \mathrm{~Wb} / \mathrm{m}^{2}$.

Example: 37 A particle of mass m and charge q moves with a constant velocity v along the positive x direction. It enters a region containing a uniform magnetic field B directed along the negative z direction extending from $x=a$ to $x=b$. The minimum value of v required so that the particle can just enter the region $x>b$ is
(a) $q b B / m$
(b) $q(b-a) B / m$
(c) $q a B / m$
(d) $q(b+a) B / 2 m$

Solution: (b) As shown in the following figure, the z-axis points out of the paper and the magnetic fields is directed into the paper, existing in the region between $P Q$ and $R S$. The particle moves in a circular path of radius r in the magnetic field. It can just enter the region $x>b$ for $r \geq\left(b-q_{y} \uparrow\right.$

Now $r=\frac{m v}{q b} \geq(b-a)$
$\Rightarrow v \geq \frac{q(b-a) B}{m} \Rightarrow v_{\min }=\frac{q(b-a) B}{m}$.

Example: $\mathbf{3 8}$ At a certain place magnetic field vertically downwards. An electron approaches horizontally towards you and enters in this magnetic fields. It's trajectory, when seen from above will be a circle which is
(a) Vertical clockwise
(b) Vertical anticlockwise
(c) Horizontal clockwise
(d) Horizontal anticlockwise

Solution: (c) By using Flemings left hand rule.
Example: 39 When a charged particle circulates in a normal magnetic field, then the area of it's circulation is proportional to
(a) It's kinetic energy
(b) It's momentum
(c) It's charge
(d) Magnetic fields intensity

Solution: (a) $\quad r=\frac{\sqrt{2 m K}}{q B}$ and $A=A q^{2} \Rightarrow A=\frac{\pi(2 m K)}{q^{2} b^{2}} \Rightarrow A \propto K$.

Example: 40 An electron moves straight inside a charged parallel plate capacitor at uniform charge density σ. The space between the plates is filled with constant magnetic field of induction \vec{B}. Time of straight line motion of the electron in the capacitor is
(a) $\frac{e \sigma}{\varepsilon_{0} l B}$
(b) $\frac{\varepsilon_{0} l B}{\sigma}$

(c) $\frac{e \sigma}{\varepsilon_{0} B}$
(d) $\frac{\varepsilon_{0} B}{e \sigma}$

Solution: (b) The net force acting on the electron is zero because it moves with constant velocity, due to it's motion on straight line.

$$
\Rightarrow \vec{F}_{n e t}=\vec{F}_{e}+\vec{F}_{m}=0 \Rightarrow\left|\vec{F}_{e}\right|=\left|\vec{F}_{m}\right| \Rightarrow e E=e v B \Rightarrow v e=\frac{E}{B}=\frac{\sigma}{\varepsilon_{0} B} \quad\left[E=\frac{\sigma}{\varepsilon_{o}}\right]
$$

\therefore The time of motion inside the capacitor $t=\frac{l}{v}=\frac{\varepsilon_{0} l B}{\sigma}$.
Example: 41 A proton of mass $1.67 \times 10^{-27} \mathrm{~kg}$ and charge $1.6 \times 10^{-19} \mathrm{C}$ is projected with a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ at an angle of 60° to the X-axis. If a uniform magnetic field of 0.104 Tesla is applied along Y-axis, the path of proton is
(a) A circle of radius $=0.2 \mathrm{~m}$ and time period $\pi \times 10^{-7} \mathrm{~s}$
(b) A circle of radius $=0.1 \mathrm{~m}$ and time period $2 \pi \times 10^{-7} \mathrm{~s}$
(c) A helix of radius $=0.1 \mathrm{~m}$ and time period $2 \pi \times 10^{-7} \mathrm{~s}$
(d) A helix of radius $=0.2 \mathrm{~m}$ and time period $4 \pi \times 10^{-7} \mathrm{~s}$

Solution: (b) By using $r=\frac{m v \sin \theta}{q B} \Rightarrow r=\frac{1.67 \times 15^{27} \times 2 \times 10^{6} \times \sin 30^{\circ}}{1.6 \times 10^{-19} \times 0.104}=0.1 \mathrm{~m}$
and it's time period $T=\frac{2 \pi m}{q B}=\frac{2 \times \pi \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 0.104}=2 \pi \times 10^{-7} \mathrm{sec}$.

Example: 42 A charge particle, having charge q accelerated through a potential difference V enter a perpendicular magnetic field in which it experiences a force F. If V is increased to $5 V$, the particle will experience a force
(a) F
(b) $5 F$
(c) $\frac{F}{5}$
(d) $\sqrt{5} F$

Solution: (d) $\frac{1}{2} m v^{2}=q V \Rightarrow v=\sqrt{\frac{2 q V}{m}}$. Also $F=q v B$
$\Rightarrow F=q B \sqrt{\frac{2 q V}{m}}$ hence $F \propto \sqrt{V}$ which gives $F^{\prime}=\sqrt{5} F$.
Example: 43 The magnetic field is downward perpendicular to the plane of the paper and a few charged particles are projected in it. Which of the following is true
[CPMT 1997]
(a) A represents proton and B and electron
(b) Both A and B represent protons but velocity of A is more than that of B
(c) Both A and B represents protons but velocity of B is more than that of A
(d) Both A and B represent electrons, but velocity of B is more than that of A

Solution: (c) Both particles are deflecting in same direction so they must be of same sign.(i.e., both A and B represents protons)
By using $r=\frac{m v}{q B} \Rightarrow r \propto v$

From given figure radius of the path described by particle B is more than that of A. Hence $v_{B}>v_{A}$.
Example: 44 Two very long straight, particle wires carry steady currents i and $-i$ respectively. The distance between the wires is d. At a certain instant of time, a point charge q is at a point equidistant from the two wires, in the plane of the wires. It's instantaneous velocity \vec{v} is perpendicular to this plane. The magnitude of the force due to the magnetic field acting on the charge at this instant is
(a) $\frac{\mu_{0} i q v}{2 \pi d}$
(b) $\frac{\mu_{0} i q v}{\pi d}$
(c) $\frac{2 \mu_{0} i q v}{\pi d}$
(d) Zero

Solution: (d) According to gives information following figure can be drawn, which shows that direction of magnetic field is along the direction of motion of charge so net on it is zero.

Example: 45 A metallic block carrying current i is subjected to a uniform mar
 The moving charges experience a force F given by face Assume the speed of the carriers to be v which results in $\xrightarrow{\text { lowf } d \text { dig of }}$ e potential of the
(a) $e V B \hat{k}, A B C D$
(b) $e V B \hat{k}, A B C D$
(c) $-e V B \hat{k}, A B C D$
(d) $-e V B \hat{k}, E F G H$

Solution : (c) As the block is of metal, the charge carriers are electrons; so for current along positive x-axis, the electrons are moving along negative x-axis, i.e. $\vec{v}=-v i$ and as the magnetic field is along the y-axis, i.e. $\vec{B}=\hat{B j}$ so $\vec{F}=q(\vec{v} \times \vec{B})$ for this case yield $\vec{F}=(-e)[-v \hat{i} \times \hat{B j}]$ i.e., $\vec{F}=e v B \hat{k} \quad[$ As $\hat{i} \times \hat{j}=\hat{k}]$

As force on electrons is towards the face $A B C D$, the electrons will accumulate on it an hence it will acquire lower potential.

Tricky example: 4

An ionised gas contains both positive and negative ions. If it is subjected simultaneously to an electric field along the $+v e x$-axis and a magnetic field along the $+z$ direction then [IIT-JEE (Screening
(a) Positive ions deflect towards $+y$ direction and negative ions towards $-y$ direction
(b) All ions deflect towards $+y$ direction
(c) All ions deflect towards $-y$ direction
(d) Positive ions deflect towards $-y$ direction and negative ions towards $+y$ direction.

Solution : (c) As the electric field is switched on, positive ion will start to move along positive x-direction and negative ion along negative x-direction. Current associated with motion of both types of ions is along positive x-direction. According to Flemings left hand rule force on both types of ions will be along negative y-direction.

Force on a Current Carrying Conductor in Magnetic Field

In case of current carrying conductor in a magnetic field force experienced by its small length element is $d \vec{F}=i d \vec{l} \times \vec{B} ; i d \vec{l}=$ current element $d \vec{F}=l(d \vec{l} \times \vec{B})$

| \times |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \times | \times | \times | \times | \times | | \times |
| \times | x | | | | | \times |
| \times | | | | | $\times \vec{B}$ | \times |
| \times | | | | \times | \times | \times |
| \times | | \times | \times | \times | \times | \times |

Total magnetic force $\vec{F}=\int d \vec{F}=\int i(d \vec{l} \times \vec{B})$
If magnetic field is uniform i.e., $\vec{B}=$ constant
$\vec{F}=i\left[\int d \vec{l}\right] \times \vec{B}=i\left(\vec{L}^{\prime} \times \vec{B}\right)$
$\int d \vec{l}=\vec{L}=$ vector sum of all the length elements from initial to final point. Which is in accordance with the law of vector addition is equal to length vector \vec{L}^{\prime} joining initial to final point.
(1) Direction of force : The direction of force is always perpendicular to the plane containing $i d \vec{l}$ and \vec{B} and is same as that of cross-product of two vectors $(\vec{A} \times \vec{B})$ with $\vec{A}=i d \vec{l}$.

The direction of force when current element $i d \vec{l}$ and \vec{B} are perpendicular to each other can also be determined by applying either of the following rules

(2) Force on a straight wire : If a current carrying straight conductor (length l) is placed in an uniform magnetic field (B) such that it makes an angle θ with the direction of field then force experienced by it is $F=B i l \sin \theta$

If $\theta=0^{\circ}, F=0$
If $\theta=90^{\circ}, F_{\text {max }}=$ Bil

(3) Force on a curved wire

The force acting on a curved wire joining points a and b as shown in the figure is the same as that on a straight wire joining these points. It is given by the expression $\vec{F}=i \vec{L} \times \vec{B}$

Specific Example

The force experienced by a semicircular wire of radius R when it is carrying a current i and is placed in a uniform magnetic field of induction B as shown.

$\vec{L}^{\prime}=2 \hat{R i}$ and $\vec{B}=\hat{B i}$
So by using $\vec{F}=i\left(\overrightarrow{L^{\prime}} \times \vec{B}\right)$ force on the wire

$$
\vec{F}=i(2 R)(B)(\hat{i} \times \hat{i}) \Rightarrow \vec{F}=0
$$

$\vec{L}^{\prime}=2 \hat{R \hat{i}}$ and $\vec{B}=\hat{B j}$
$\vec{F}=i \times 2 B R(\hat{i} \times \hat{j})$
$\vec{F}=2 B i R \hat{k}$ i.e. $F=2 B i R$
(perpendicular to paper outward)

$\vec{L}^{\prime}=2 \hat{R i}$ and $\vec{B}=B(-\hat{k})$
$\therefore \vec{F}=i \times 2 B R(+\hat{j})$
$F=2 B i R$ (along Y-axis)

Force Between Two Parallel Current Carrying Conductors

When two long straight conductors carrying currents i_{1} and i_{2} placed parallel to each other at a distance ' a ' from each other. A mutual force act between them when is given as
$F_{1}=F_{2}=F=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{a} \times l$
where l is the length of that portion of the conductor on which force is to be calculated.
Hence force per unit length $\frac{F}{l}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{a} \frac{N}{m}$ or $\frac{F}{l}=\frac{2 i_{1} i_{2}}{a} \frac{d y n e}{c m}$
Direction of force : If conductors carries current in same direction, then force between them will be attractive. If conductor carries current in opposite direction, then force between them will be repulsive.

Note: If $a=1 \mathrm{~m}$ and in free space $\frac{F}{l}=2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$ then $i_{1}=i_{2}=1 \mathrm{Amp}$ in each identical wire. By this concept S.I. unit of Ampere is defined. This is known as Ampere's law.

Force Between Two Moving Charges

If two charges q_{1} and q_{2} are moving with velocities v_{1} and v_{2} respectively and at any instant the distance between them is r, then

Magnetic force between them is $F_{m}=\frac{\mu_{0}}{4 \pi} \cdot \frac{q_{1} q_{2} v_{1} v_{2}}{r^{2}}$
and Electric force between them is $F_{e}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q_{1} q_{2}}{r^{2}}$
(ii)

From equation (i) and (ii) $\frac{F_{m}}{F_{e}}=\mu_{0} \varepsilon_{0} \nu^{2}$ but $\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}$; where c is the velocity light in vacuum. So $\frac{F_{m}}{F_{e}}=\left(\frac{v}{c}\right)^{2}$

If $v \ll c$ then $F_{m} \ll F_{e}$

Standard Cases for Force on Current Carrving Conductors

Case 1: When an arbitrary current carrying loop placed in a magnetic field (\perp to the plane of loop), each element of loop experiences a magnetic force due to which loop stretches and open into circular loop and tension developed in it's each part.

Specific example

In the above circular loop tension in part A and B.
In balanced condition of small part $A B$ of the loop is shown below

$$
2 T \sin \frac{d \theta}{2}=d F=B i d l \Rightarrow 2 T \sin \frac{d \theta}{2}=B i R d \theta
$$

If $d \theta$ is small so, $\sin \frac{d \theta}{2} \approx \frac{d \theta}{2} \Rightarrow 2 T \cdot \frac{d \theta}{2}=B i R d \theta$
$T=B i R$, if $2 \pi R=L$ so $T=\frac{B i L}{2 \pi}$
Nete : \square If no magnetic field is present, the loop will still open into a circle as in it's adjacent parts current will be in opposite direction and opposite currents repel each other.

Case 2 : Equilibrium of a current carrying conductor : When a finite length current carrying wire is kept parallel to another infinite length current carrying wire, it can suspend freely in air as shown below

In both the situations for equilibrium of $X Y$ it's downward weight $=$ upward magnetic force i.e. $m g=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{h} . l$

Note: \square
In the first case if wire $X Y$ is slightly displaced from its equilibrium position, it executes SHM and it's time period is given by $T=2 \pi \sqrt{\frac{h}{g}}$.

- If direction of current in movable wire is reversed then it's instantaneous acceleration produced is $2 g \downarrow$.

Case 3 : Current carrying wire and circular loop : If a current carrying straight wire is placed in the magnetic field of current carrying circular loop.

Wire is placed in the perpendicular magnetic field due to coil at it's centre, so it will experience a maximum force $F=B i l=\frac{\mu_{0} i_{1}}{2 r} \times i_{2} l$

wire is placed along the axis of coil so magnetic field produced by the coil is parallel to the wire. Hence it will not experience any force.

Case 4 : Current carrying spring : If current is passed through a spring, then it will contract because current will flow through all the turns in the same direction.

Case 5: Tension less strings : In the following figure the value and direction of current through the conductor $X Y$ so that strings becomes tensionless?

Strings becomes tensionless if weight of conductor $X Y$ balanced by magnetic force $\left(F_{m}\right)$.

Case 6: A current carrying conductor floating in air such that it is making an angle θ with the direction of magnetic field, while magnetic field and conductor both lies in a horizontal plane.

In equilibrium $m g=B i l \sin \theta \Rightarrow i=\frac{m g}{B l \sin \theta}$

Case 7 : Sliding of conducting rod on inclined rails : When a conducting rod slides on conducting rails.

In the following situation conducting $\operatorname{rod}(X, Y)$ slides at constant velocity if
$F \cos \theta=m g \sin \theta \Rightarrow B i l \cos \theta=m g \sin \theta \Rightarrow B=\frac{m g}{i l} \tan \theta$

Concepts

- Electric force is an absolute concept while magnetic force is a relative concept for an observer.

The nature of force between two parallel charge beams decided by electric force, as it is dominator. The nature of force between two parallel current carrying wires decided by magnetic force.

$F_{n e t}=F_{m}$ only

$F_{e} \rightarrow$ repulsion
$F_{m} \rightarrow$ attraction
$F_{n e t} \rightarrow$ repulsion (Due to
this foree these beams

$F_{e} \rightarrow$ attraction
$F_{m} \rightarrow$ repulsion
$F_{\text {net }} \rightarrow$ attraction (Due to this force these beams

Example

Example: 46 A vertical wire carrying a current in the upward direction is placed in a horizontal magnetic field directed towards north. The wire will experience a force directed towards
(a) North
(b) South
(c) East
(d) West

Solution : (d) By applying Flemings left hand rule, direction of force is found towards west.

Example: $473 A$ of current is flowing in a linear conductor having a length of 40 cm . The conductor is placed in a magnetic field of strength 500 gauss and makes an angle of 30° with the direction of the field. It experiences a force of magnitude
(a) $3 \times 10^{4} N$
(b) $3 \times 10^{2} N$
(c) $3 \times 10^{-2} N$
(d) $3 \times 10^{-4} N$

Solution : (c) By using $F=B i l \sin \theta \Rightarrow F=\left(500 \times 10^{-4}\right) \times 0.4 \times \sin 30^{\circ} \Rightarrow 3 \times 10^{-2} \mathrm{~N}$.
Example: 48 Wires 1 and 2 carrying currents t_{1} and t_{2} respectively are inclined at an angle θ to each other. What is the force on a small element $d l$ of wire 2 at a distance of r from 1 (as shown in figure) due to the magnetic field of wire 1
[AIEEE 2002]
(a) $\frac{\mu_{0}}{2 \pi r} i_{1}, i_{2} d l \tan \theta$
(b) $\frac{\mu_{0}}{2 \pi r} i_{1}, i_{2} d l \sin \theta$
(c) $\frac{\mu_{0}}{2 \pi r} i_{1}, i_{2} d l \cos \theta$

(d) $\frac{\mu_{0}}{4 \pi r} i_{1}, i_{2} d l \sin \theta$

Solution: (c) Length of the component $d l$ which is parallel to wire (1) is $d l \cos \theta$, so force on it

$$
F=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{r}(d l \cos \theta)=\frac{\mu_{0} i_{1} i_{2} d l \cos \theta}{2 \pi r}
$$

Example: 49 A conductor $P Q R S T U$, each side of length L, bent as shown in the figure, carries a current i and is placed in a uniform magnetic induction B directed parallel to the positive Y-axis. The force experience by the wire and its direction are
(a) $2 i B L$ directed along the negative Z -axis
(b) $5 i B L$ directed along the positive Z-axis
(c) $i B L$ direction along the positive Z-axis
(d) $2 i B L$ directed along the positive Z-axis

Solution: (c) As $P Q$ and $U T$ are parallel to Q, therefore $F_{P Q}=F_{U T}=0$
The current in $T S$ and $R Q$ are in mutually opposite direction. Hence, $F_{T S}-F_{R Q}=0$
Therefore the force will act only on the segment $S R$ whose value is Bil and it's direction is $+z$.

Alternate method :

The given shape of the wire can be replaced by a straight wire of length l between P and U as shown below Hence force on replaced wire $P U$ will be $F=B i l$ and according to $F L H R$ it is directed towards $+z$-axis
Example: 50 A conductor in the form of a right angle $A B C$ with $A B=3 \mathrm{~cm}$ and $B C=4 \mathrm{~cm}$ carries a current of $10 A$. There is a uniform magnetic field of $5 T$ perpendicular to the plane of the conductor. The force on the conductor will be
(a) 1.5 N
(b) 2.0 N
(c) 2.5 N
(d) 3.5 N

Solution: (c) According to the question figure can be drawn as shown below Force on the conductor $A B C=$ Force on the conductor $A C$

$$
\begin{aligned}
& =5 \times 10 \times\left(5 \times 10^{-2}\right) \\
& =2.5 \mathrm{~N}
\end{aligned}
$$

Example: $51 \quad$ A wire of length l carries a current i along the X-axis. A magnetic field exists which is given as $\vec{B}=B_{0}$ $(\hat{i}+\hat{j}+\hat{k}) T$. Find the magnitude of the magnetic force acting on the wire
(a) $B_{0} i l$
(b) $B_{0} i l \times \sqrt{2}$
(c) $2 B_{0} i l$
(d) $\frac{1}{\sqrt{2}} \times B_{0} i l$

Solution: (b) By using $\vec{F}=i(\vec{l} \times \vec{B}) \Rightarrow \vec{F}=i\left[l \hat{i} \times B_{0}(\hat{i}+\hat{j}+\hat{k})\right]=B_{0} i l[\hat{i} \times(\hat{i}+\hat{j}+\hat{k})]$

$$
\Rightarrow \quad \vec{F}=B_{0} i l[\hat{i} \times \hat{i}+\hat{i} \times \hat{j}+\hat{i} \times \hat{k}]=B_{0} i l[\hat{k}-\hat{j}] \quad\{\hat{i} \times \hat{i}=0, \hat{i} \times \hat{j}=\hat{k}, \hat{i} \times \hat{k}=-\hat{j}\}
$$

It's magnitude $F=\sqrt{2} B_{0}$ il
Example: 52 A conducting loop carrying a current i is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop will have a tendency to
[IIT-JEE (Screening) 2003]]
(a) Contract
(b) Expand
(c) Move towards + ve x-axis
(d) Move towards - ve x-axis

Solution : (b) Net force on a current carrying loop in uniform magnetic field is zero. Hence the loop can't translate. So, options (c) and (d) are wrong. From Flemings left hand rule we can see that if magnetic field is perpendicular to paper inwards and current in the loop is clockwise (as shown) the magnetic force $\overrightarrow{F_{m}}$ on each element of the loop is radially outwards, or the loops will have a tendency to expand.

Example: 53 A circular loop of radius a, carrying a current i, is placed in a two-dimensional magnetic field. The centre of the loop coincides with the centre of the field. The strength of the magnetic field at the periphery of the loop is B. Find the magnetic force on the wire
(a) $\pi i a B$
(b) $4 \pi i a B$
(c) Zero
(d) $2 \pi i a B$

Solution : (d) The direction of the magnetic force will be vertically downwards at each element of the wire. Thus $F=B i l=B i(2 \pi a)=2 \pi i a B$.
Example: 54 A wire $a b c$ is carrying current i. It is bent as shown in fig and is placed in a uniform magnetic field of magnetic induction B. Length $a b=l$ and $\angle a b c=45^{\circ}$. The ratio of force on $a b$ and on $b c$ is
(a) $\frac{1}{\sqrt{2}}$
(b) $\sqrt{2}$
(c) 1
(d) $\frac{2}{3}$

Solution : (c) Force on portion $a b$ of wire $F_{1}=B i l \sin 90^{\circ}=B i l$
Force on portion $b c$ of wire $F_{2}=B i\left(\frac{l}{\sqrt{2}}\right) \sin 45^{\circ}=B i l$. So $\frac{F_{1}}{F_{2}}=1$.

Example: 55 Current i flows through a long conducting wire bent at right angle as shown in figure. The magnetic field at a point P on the right bisector of the angle $X O Y$ at a distance r from O is
(a) $\frac{\mu_{0} i}{\pi r}$
(b) $\frac{2 \mu_{0} i}{\pi r}$
(c) $\frac{\mu_{0} i}{4 \pi r}(\sqrt{2}+1)$

(d) $\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r}(\sqrt{2}+1)$

Solution: (d) By using $B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left(\sin \phi_{1}+\sin \phi_{2}\right)$, from figure $d=r \sin 45^{\circ}=\frac{r}{\sqrt{2}}$
Magnetic field due to each wire at $P \quad B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{(r / \sqrt{2})}\left(\sin 45^{\circ}+\sin 90^{\circ}\right)$
$=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}(\sqrt{2}+1)$

Hence net magnetic field at $P \quad B_{\text {net }}=2 \times \frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}(\sqrt{2}+1)=\frac{\mu_{0}}{2 \pi} \cdot \frac{i}{r}(\sqrt{2}+1)$
Example: 56 A long wire A carries a current of 10 amp . Another long wire B, which is parallel to A and separated by 0.1 m from A, carries a current of 5 amp . in the opposite direction to that in A. What is the magnitude and nature of the force experienced per unit length of $B\left[\mu_{0}=4 \pi \times 10^{-7}\right.$ weber/amp -m$]$
(a) Repulsive force of $10^{-4} \mathrm{~N} / \mathrm{m}$
(b) Attractive force of $10^{-4} \mathrm{~N} / \mathrm{m}$
(c) Repulsive force of $2 \pi \times 10^{-5} \mathrm{~N} / \mathrm{m}$
(d) Attractive force of $2 \pi \times 10^{-5} \mathrm{~N} / \mathrm{m}$

Solution: (a) By using $\frac{F}{l}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i_{1} i_{2}}{a}$
$\Rightarrow \frac{F}{l}=10^{-7} \times \frac{2 \times 10 \times 5}{0.1}=10^{-4} \mathrm{~N}$
Wires are carrying current in opposite direction so the force will be repulsive.

Example: 57 Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force experienced by 10 cm length of wire Q is
[MP PET 1997]
(a) $1.4 \times 10^{-4} \mathrm{~N}$ towards the right
(b) $1.4 \times 10^{-4} \mathrm{~N}$ towards the left
(c) $2.6 \times 10^{-4} \mathrm{~N}$ to the right
(d) $2.6 \times 10^{-4} \mathrm{~N}$ to the left

Solution : (a) Force on wire Q due to R; $\quad F_{R}=10^{-7} \times \frac{2 \times 20 \times 10}{\left(2 \times 10^{-2}\right)} \times\left(10 \times 10^{-2}\right)=2 \times 10^{-4} \mathrm{~m}$ (Repulsive)
Force on wire Q due to $P ; \quad F_{P}=10^{-7} \times 2 \times \frac{10 \times 30}{\left(10 \times 10^{-2}\right)} \times\left(10 \times 10^{-2}\right)=0.6 \times 10^{-4} N$ (Repulsive)

Hence net force $F_{\text {net }}=F_{R}-F_{P}=2 \times 10^{-4}-0.6 \times 10^{-4}=1.4 \times 10^{-4} N$ (towards right i.e. in the direction of $\overrightarrow{F_{R}}$.
Example: 58 What is the net force on the coil
(a) $25 \times 10^{-7} \mathrm{~N}$ moving towards wire
(b) $25 \times 10^{-7} \mathrm{~N}$ moving away from wire
(c) $35 \times 10^{-7} \mathrm{~N}$ moving towards wire
(d) $35 \times 10^{-7} \mathrm{~N}$ moving away from wire

[DCE 2000]

Solution: (a) Force on sides $B C$ and $C D$ cancel each other.
Force on side $A B$

$$
\begin{aligned}
& F_{A B}=10^{-7} \times \frac{2 \times 2 \times 1}{2 \times 10^{-2}} \times 15 \times 10^{-2}=3 \times 10^{-6} \mathrm{~N} \\
& F_{A B}=10^{-7} \times \frac{2 \times 2 \times 1}{12 \times 10^{-2}} \times 15 \times 10^{-2}=0.5 \times 10^{-6} \mathrm{~N}
\end{aligned}
$$

Hence net force on loop $=F_{A B}-F_{C D}=25 \times 10^{-7} N$ (towards the wire).
Example: 59 A long wire $A B$ is placed on a table. Another wire $P Q$ of mass 1.0 g and length 50 cm is set to slide on two rails $P S$ and $Q R$. A current of $50 A$ is passed through the wires. At what distance above $A B$, will the wire $P Q$ be in equilibrium
(a) 25 mm
(b) 50 mm
(c) 75 mm
(d) 100 mm

Solution : (a) Suppose in equilibrium wire $P Q$ lies at a distance r above the wire $A B$
Hence in equilibrium $m g=B i l \Rightarrow m g=\frac{\mu_{0}}{4 \pi}\left(\frac{2 i}{r}\right) \times i l \Rightarrow 10^{-3} \times 10=10^{-7} \times \frac{2 \times(50)^{2}}{r}=0.5 \Rightarrow r=25 \mathrm{~mm}$
Example: 6o An infinitely long, straight conductor $A B$ is fixed and a current is passed through it. Another movable straight wire $C D$ of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire
(a) The rod $C D$ will move upwards parallel to itself
(b) The rod $C D$ will move downward parallel to itself
(c) The $\operatorname{rod} C D$ will move upward and turn clockwise at the same time
(d) The rod $C D$ will move upward and turn anti -clockwise at the same time

Solution : (c) Since the force on the rod $C D$ is non-uniform it will experience force and torque. From the left hand side it can be seen that the force will be upward and torque is clockwise.

Tricky example: 5

A current carrying wire $L N$ is bent in the from shown below. If wire carries a current of $10 A$ and it is placed in a magnetic field a $5 T$ which acts perpendicular to the paper outwards then it will experience a force
(a) Zero
(b) $5 N$
(c) 30 N
(d) 20 N

Hence force experienced by the wire $F=B i l=5 \times 10 \times 0.1=5 N$

Tricky example: 6

A wire, carrying a current i, is kept in $X-Y$ plane along the curve $y=A \sin \left(\frac{2 \pi}{\lambda} x\right)$. A magnetic field B exists in the Z-direction find the magnitude of the magnetic force on the portion of the wire between $x=0$ and $x=\lambda$
(a) $i \lambda B$
(b) Zero
(c) $\frac{i \lambda B}{2}$
(d) $3 / 2 i \lambda B$

Solution: (a) The given curve is a sine curve as shown below.
The given portion of the curved wire may be treated as a straight wire $A B$ of length λ which experiences a magnetic force $F_{m}=B i \lambda$

Current Loop As a Magnetic Dipole

A current carrying circular coil behaves as a bar magnet whose magnetic moment is $M=N i A$; Where $N=$ Number of turns in the coil, $i=$ Current through the coil and $A=$ Area of the coil

Magnetic moment of a current carrying coil is a vector and it's direction is given by right hand thumb rule

Specific examples

A given length constant current carrying straight wire moulded into different shaped loops. as shown

Note:For a given perimeter circular shape have maximum area. Hence maximum magnetic moment.
\square For a any loop or coil \vec{B} and \vec{M} are always parallel.

Behaviour of Current loop In a Magnetic Field

(1) Torque

Consider a rectangular current carrying coil $P Q R S$ having N turns and area A, placed in a uniform field B, in such a way that the normal (\hat{n}) to the coil makes an angle θ with the direction of B. the coil experiences a torque given by $\boldsymbol{\tau}=\mathbf{N B i A} \boldsymbol{\operatorname { s i n }} \theta$. Vectorially $\vec{\tau}=\vec{M} \times \vec{B}$
(i) τ is zero when $\theta=0$, ie., when the plane of the coil is perpendicular to the field.
(ii) τ is maximum when $\theta=90^{\circ}$, i.e., the plane of the coil is parallel to the fie
$\Rightarrow \tau_{\text {max }}=$ NBA
The above expression is valid for coils of all shapes.

(2) Workdone

If coil is rotated through an angle θ from it's equilibrium position then required work. $W=M B(1-\cos \theta)$. It is maximum when $\theta=180^{\circ} \Rightarrow W_{\text {max }}=2 M B$
(3) Potential energy

Is given by $U=-M B \cos \theta \Rightarrow U=\vec{M} \cdot \vec{B}$
Note:
Direction of \vec{M} is found by using Right hand thumb rule according to which curl the fingers of right hand in the direction of circulation of conventional current, then the thumb gives the direction of \vec{M}.
\square Instruments such as electric motor, moving coil galvanometer and tangent galvanometers etc. are based on the fact that a current-carrying coil in a uniform magnetic field experiences a torque (or couple).

Moving coil galvanometer

In a moving coil galvanometer the coil is suspended between the pole pieces of a strong horse-shoe magnet. The pole pieces are made cylinderical and a soft iron cylinderical core is placed within the coil without touching it. This makes the field radial. In such a field the plane of the coil always remains parallel to the field. Therefore $\theta=90^{\circ}$ and the deflecting torque always has the maximum value.

coil deflects, a restoring torque is set up in the suspension fibre. If α is the angle of twist, the restoring torque is

$$
\tau_{\text {rest }}=C \alpha \quad \text {.....(ii) where } C \text { is the torsional constant of the fibre. }
$$

When the coil is in equilibrium.

$$
N B i A=C \alpha \Rightarrow i=\frac{C}{N B A} \alpha \Rightarrow i=K \alpha
$$

Where $K=\frac{C}{N B A}$ is the galvanometer constant. This linear relationship between i and α makes the moving coil galvanometer useful for current measurement and detection.

Current sensitivity : The current sensitivity of a galvanometer is defined as the deflection produced in the galvanometer per unit current flowing through it.

$$
S_{i}=\frac{\alpha}{i}=\frac{N B A}{C}
$$

Thus in order to increase the sensitivity of a moving coil galvanometer, N, B and A should be increased and C should be decreased.

Quartz fibres can also be used for suspension of the coil because they have large tensile strength and very low value of k.

Voltage sensitivity $\left(\boldsymbol{S}_{V}\right)$: Voltage sensitivity of a galvanometer is defined as the deflection produced in the galvanometer per unit applied to it.

$$
S_{V}=\frac{\alpha}{V}=\frac{\alpha}{i R}=\frac{S_{i}}{R}=\frac{N B A}{R C}
$$

Concepts

[^0]about an axis perpendicular to it's plane.
Moving coil galvanometer can be made ballistic by using a non-conducting frame (made of ivory or bamboo) instead of a metallic frame.

Example

Example: 61 A circular coil of radius 4 cm and 20 turns carries a current of 3 ampere. It is placed in a magnetic field of o. 5 T. The magnetic dipole moment of the coil is
[MP PMT 2001]
(a) $0.60 \mathrm{~A}-\mathrm{m}^{2}$
(b) $0.45 \mathrm{~A}-\mathrm{m}^{2}$
(c) $0.3 A-m^{2}$
(d) $0.15 A-m^{2}$

Solution : (c) $\quad M=n i A \Rightarrow M=20 \times 3 \times \pi\left(4 \times 10^{-2}\right)^{2}=0.3 A-m^{2}$.
Example: 62 A steady current i flows in a small square loop of wire of side L in a horizontal plane. The loop is now folded about its middle such that half of it lies in a vertical plane. Let $\overrightarrow{\mu_{1}}$ and $\overrightarrow{\mu_{2}}$ respectively denote the magnetic moments due to the current loop before and after folding. Then
[IIT-JEE 1993]
(a) $\overrightarrow{\mu_{2}}=0$
(b) $\overrightarrow{\mu_{1}}$ and $\overrightarrow{\mu_{2}}$ are in the same direction
(c) $\frac{\left|\overrightarrow{\mu_{1}}\right|}{\left|\overrightarrow{\mu_{2}}\right|}=\sqrt{2}$

Solution: (c) Initially
Finally

$M=$ magnetic moment due to each part $=i\left(\frac{L}{2}\right) \times L=\frac{i L^{2}}{2}=\frac{\mu_{1}}{2}$

$$
\mu_{2}=M \sqrt{2}=\frac{\mu_{1}}{2} \times \sqrt{2}=\frac{\mu_{1}}{\sqrt{2}}
$$

Example: 63 A coil of 50 turns is situated in a magnetic field $b=0.25 w e b e r / m^{2}$ as shown in figure. A current of $2 A$ is flowing in the coil. Torque acting on the coil will be
(a) 0.15 N
(b) 0.3 N
(c) 0.45 N
(d) 0.6 N

Solution : (b) Since plane of the coil is parallel to magnetic field. So $\theta=90^{\circ}$
Hence $\tau=N B i A \sin 90^{\circ}=N B i A=50 \times 0.25 \times 2 \times\left(12 \times 10^{-2} \times 10 \times 10^{-2}\right)=0.3 N$.
Example: 64 A circular loop of area $1 \mathrm{~cm}^{2}$, carrying a current of $10 A$, is placed in a magnetic field of $0.1 T$ perpendicular to the plane of the loop. The torque on the loop due to the magnetic field is
(a) Zero
(b) $10^{-4} \mathrm{~N}-\mathrm{m}$
(c) $10^{-2} \mathrm{~N}-\mathrm{m}$
(d) $1 \mathrm{~N}-\mathrm{m}$

Solution: (a) $\quad \tau=N B i A \sin \theta$; given $\theta=0$ so $\tau=0$.
Example: 65 A circular coil of radius 4 cm has 50 turns. In this coil a current of $2 A$ is flowing. It is placed in a magnetic field of 0.1 weber $/ \mathrm{m}^{2}$. The amount of work done in rotating it through 180° from its equilibrium position will be
[CPMT 1977]
(a) 0.1 J
(b) 0.2 J
(c) 0.4
(d) $0.8 J$

Solution : (a) Work done in rotating a coil through an angle θ from it's equilibrium position is $W=M B(1-\cos \theta)$ where $\theta=180^{\circ}$ and $M=50 \times 2 \times \pi\left(4 \times 10^{-2}\right)=50.24 \times 10^{-2} A-m^{2}$. Hence $W=0.1 J$
Example: 66 A wire of length L is bent in the form of a circular coil and current i is passed through it. If this coil is placed in a magnetic field then the torque acting on the coil will be maximum when the number of turns is
(a) As large as possible
(b) Any number
(c) 2
(d) 1

Solution : (d) $\quad \tau_{\max }=M B$ or $\tau_{\max }=n i \pi a^{2} B$. Let number of turns in length l is n so $l=n(2 \pi a)$ or $a=\frac{l}{2 \pi n}$
$\Rightarrow \tau_{\text {max }}=\frac{n i \pi B l^{2}}{4 \pi^{2} n^{2}}=\frac{l^{2} i B}{4 \pi n_{\text {min }}} \quad \Rightarrow \tau_{\text {max }} \propto \frac{1}{n_{\text {min }}} \Rightarrow n_{\text {min }}=1$
Example: 67 A square coil of N turns (with length of each side equal L) carrying current i is placed in a uniform magnetic field $\vec{B}=B_{0} \hat{j}$ as shown in figure. What is the torque acting
(a) $+B_{0} N i L^{2} \hat{k}$
(b) $-B_{0} N i L^{2} \hat{k}$
(c) $+B_{0} N i L^{2} \hat{j}$

(d) $-B_{0} N i L^{2} \hat{j}$
d $-B_{0} N L^{2}{ }^{j}$

Example: 68 The coil of a galvanometer consists of 100 turns and effective area of 1 square cm . The restoring couple is $10^{-8} \mathrm{~N}-\mathrm{m}$ rad . The magnetic field between the pole pieces is $5 T$. The current sensitivity of this galvanometer will be
[MP PMT 1997]
(a) $5 \times 10^{4} \mathrm{rad} / \mu \mathrm{amp}$
(b) 5×10^{-6} per amp
(c) 2×10^{-7} per amp
(d) 5 rad. $/ \mu a m p$

Solution: (d) Current sensitivity $\left(S_{i}\right)=\frac{\theta}{i}=\frac{N B A}{C} \Rightarrow \frac{\theta}{i}=\frac{100 \times 5 \times 10^{-4}}{10^{-8}}=5 \mathrm{rad} / \mu \mathrm{amp}$.
Example: 69 The sensitivity of a moving coil galvanometer can be increased by
[SCRA 2000]]
(a) Increasing the number of turns in the coil
(b) Decreasing the area of the coil
(c) Increasing the current in the coil
(d) Introducing a soft iron core inside the coil

Solution : (a) \quad Sensitivity $\left(S_{i}\right)=\frac{N B A}{C} \Rightarrow S_{i} \propto N$.

Tricky example: 7

The square loop $A B C D$, carrying a current i, is placed in uniform magnetic field B, as shown. The loop can rotate about the axis $X X^{\prime}$. The plane of the loop makes and angle $\theta\left(\theta<90^{\circ}\right)$ with the direction of B. Through what angle will the loop rotate by itself before the torque on it becomes zero
(a) θ
(b) $90^{\circ}-\theta$
(c) $90^{\circ}+\theta$
(d) $180^{\circ}-\theta$

Solution: (c) In the position shown, $A B$ is outside and $C D$ is inside the plane of the paper. The Ampere force on $A B$ acts into the paper. The torque on the loop will be clockwise, as seen from above. The loop must rotate through an angle $\left(90^{\circ}+\theta\right)$ before the plane of the loop becomes normal to the direction of B and the torque becomes zero.

[^0]: 5 The field in a moving coil galvanometer radial in nature in order to have a linear relation between the current and the deflection.
 A rectangular current loop is in an arbitrary orientation in an external magnetic field. No work required to rotate the loop

