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Preface

Quantum mechanics is very puzzling.
A particle can be delocalized,
it can be simultaneously in several energy states
and it can even have several different identities at once.

—Serge Haroche∗

Quantum physics, also known as quantum mechanics or quantum

wave mechanics—born in the late 1800s—is a study of the

submicroscopic world of atoms, the particles that compose them

and the particles that compose those particles. In 1800s, physicists

believed that radiation is a wave phenomenon and matter is

continuous; they believed in the existence of ether and had no ideas

of what charge was. A series of the following experiments performed

in late 1800s led to the formulation of quantum physics:

• Discovery of the electron

• Discovery of X-rays

• Observation of photoelectric effect

• Observation of discrete atomic spectra

Especially important among these was the interpretation of the

spectrum of blackbody radiation that led to the breakdown of the

equipartition theorem for electromagnetic radiation.

This textbook covers the background theory of various effects

discussed from first principles, and as clearly as possible, to

∗Haroche was granted the Nobel Prize in 2012 for ground-breaking experimental

methods that enable measuring and manipulation of individual quantum systems.



March 21, 2016 18:19 PSP Book - 9in x 6in 00-Zbigniew-Ficek-prelims

xii Preface

introduce readers to the main ideas of quantum physics and to

teach the basic mathematical methods and techniques used in the

fields of advanced quantum physics, atomic physics, laser physics,

nanotechnology, quantum chemistry, and theoretical mathematics.

It also describes some of the key problems of quantum physics,

concentrating on the background derivation, techniques, results,

and interpretations. The book can be understood by a reader with

little or even no previous knowledge of modern and quantum

physics. It will help the readers learn how it comes about that

microscopic objects (particles) behave in unusual ways called

quantum effects, what the term “quantum” means, and where

this idea came from. The book makes no attempt to a complete

exploration of all predictions of quantum physics, but it is hoped

that the predictions and problems explored in it will provide

a useful starting point for those interested in learning more. It

intends to explore problems that have been the most influential

on the development of quantum physics and formulation of what

we now call modern quantum physics. Many of the predictions of

quantum physics appear to be contrary to our intuitive perceptions,

and the goal to which this book aspires is a compact and logical

exposition and interpretation of these fundamental and unusual

predictions of quantum physics. Moreover, it contains numerous

detailed derivations, proofs, worked examples, discussion problems,

and a wide range of exercises from simple confidence-builders to

fairly challenging problems, hard to find in textbooks on quantum

physics. A number of problems, singled out as “tutorial problems”,

have been included in the chapters. It is important that the

readers attempt these problems because they provide adequate

understanding of the chapters. Another small set of the problems

has also been introduced as “challenging problems”, which are more

advanced than the tutorial problems and are designed for readers

with a passion for quantum physics.

The author would like to express his thanks to a number of

students from the University of Queensland, King Saud University,

and King Abdulaziz City for Science and Technology, who made use



March 21, 2016 18:19 PSP Book - 9in x 6in 00-Zbigniew-Ficek-prelims

Preface xiii

of a preliminary version of this book, for their valuable criticisms

and suggestions for improvements.

Zbigniew Ficek
The National Centre for Applied Physics

King Abdulaziz City for Science and Technology
Riyadh, Saudi Arabia

Spring 2016
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Note to the Reader

Quantum physics is the mathematical description of physical

systems. A famous German physicist Arnold Sommerfeld∗ used to

say, “If you want to study quantum physics, I give you three advices:

(1) study mathematics, (2) study mathematics, (3) study more

mathematics”.

Calculus has been used extensively in the book, and therefore,

the necessary prerequisites before attempting to study this book are

that the reader should have some familiarity with wave mechanics,

electromagnetism and optics, and a sufficient background in vector

algebra, vector calculus, series and limits. In particular, complex

numbers and functions of a complex variable, partial differentiation,

multiple integrals, first- and second-order differential equations,

Fourier series, matrix algebra, diagonalization of matrices, eigen-

vectors and eigenvalues, coordinate transformations, and special

functions (Hermite and Legendre polynomials).

∗Sommerfeld graduated in mathematics, worked for few years at some technical

universities as an engineer, and next turned to physics. His greatest contribution to

physics was the improvement of the Bohr model of a hydrogen atom. He included

relativistic effects to the motion of an electron that allowed to explain the fine

structure of the hydrogen spectrum. He also extended the model to elliptical orbits

of the electron to describe the motion in terms of three quantum numbers what

allowed to explain the Zeeman effect.
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Chapter 1

Radiation (Light) is a Wave

To anyone who is motivated by anything
beyond the most narrowly practical,
it is worthwhile to understand Maxwell’s equations
simply for the good of his soul.

—J. R. Pierce

It is well known from classical optics that the most commonly

observed phenomena with light (optical radiation) are polarization,

interference, and diffraction. These phenomena are characteristic

of waves, and some sort of wave theory is required for their

explanation. Maxwell, in 1860, formulated the wave theory of

light. He predicted the existence of electromagnetic waves that

propagate with a speed, calculated from the laws of electricity and

magnetism, similar to the measured speed of light. The prediction

of electromagnetic waves and the subsequent successful use of

Maxwell’s theory in explaining the interference and diffraction

phenomena made the theory to be recognized as the fundamental

wave theory of radiation.

We begin our journey through the fundamentals of quantum

physics with an elementary, but quantitative, classical theory of the

radiative field. We first briefly outline the electromagnetic theory of

radiation, and describe how the electromagnetic radiation may be

understood as a wave that can be represented by a set of harmonic

Quantum Physics for Beginners
Zbigniew Ficek
Copyright c© 2016 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4669-38-2 (Hardcover), 978-981-4669-39-9 (eBook)
www.panstanford.com

http://www.panstanford.com
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2 Radiation (Light) is a Wave

oscillators. This is followed by a description of the Hamiltonian

of the electromagnetic field, which determines the energy of the

electromagnetic wave. In particular, we will be interested in how

the energy of the electromagnetic wave depends on the parameters

characteristic of the wave: amplitude and frequency. In our analysis,

we assume that the readers are familiar with vector algebra and with

the basic concepts of electricity and magnetism.

1.1 Wave Equation

We start by considering the time-varying electric ( �E ) and magnetic

( �B) fields that propagate in an empty space, i.e., in the space that

does not contain material bodies, but there can be free charges

and currents present. The fields propagating in the space satisfy

Maxwell’s equations, the fundamental (experimental) laws relating

to the electric and magnetic field vectors assembled together into a

single set of differential equationsa

∇ · �E = ρ/ε0 , (1.1)

∇ · �B = 0 , (1.2)

∇ × �E = − ∂

∂t
�B , (1.3)

∇ × �B = μ0
�J + 1

c2

∂

∂t
�E , (1.4)

where ρ is the density of free charges and �J is the density of currents

at a point where the electric and magnetic fields are evaluated. The

parameters ε0 and μ0 are constants that determine the property of

the vacuum and are called the electric permittivity and magnetic

permeability, respectively. The parameter c = 1/
√

ε0μ0, and its

numerical value is equal to the speed of light in vacuum, c = 3 × 108

(ms−1).

The symbol ∇ is called “nabla” or “del.” It is a vector differential

operator and, in the Cartesian coordinates, has the form

∇ = �i ∂

∂x
+ �j ∂

∂y
+ �k ∂

∂z
, (1.5)

aReaders familiar with the laws of electricity and magnetism should recognize which

of the fundamental laws of electromagnetism are assembled together to form

Maxwell’s equations.
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Wave Equation 3

where �i , �j , and �k are the unit vectors in the orthogonal x , y, and

z directions, respectively. We have much more to say about this

operator, but for the present it is sufficient to note that nabla is

incomplete as it stands; it needs something to operate on. In other

words, nabla may be viewed formally as an operator converting a

scalar function into a vector. The dot (·) and the cross (×) symbols

appearing in Maxwell’s equations are the standard scalar and vector

products between two vectors, respectively.

The fact that the numerical value of c is 3 × 108 [ms−1], which

is the velocity of light in vacuum, led Maxwell to propose an

electromagnetic theory of light, one of the brilliant contributions to

physics of the 19th century.

Let us analyze briefly Maxwell’s idea leading to the electromag-

netic theory of light. Suppose, we have electric and magnetic fields in

the absence of free currents and charges, �J = 0, ρ = 0. In this case,

Maxwell’s equations (1.1)–(1.4) describe a free electromagnetic

field, i.e., an electromagnetic field in vacuum. Of course, there must

be a source of the fields somewhere, but the region in which we

consider the fields is free of currents and charges.

With �J = 0 and ρ = 0, we may reduce Maxwell’s equations into

two differential equations for �E or �B alone. To show this, we apply

∇× to both sides of Eq. (1.3), and then using Eq. (1.4), we find

∇ × (∇ × �E ) = − ∂

∂t
(∇ × �B) = − 1

c2

∂2

∂t2
�E . (1.6)

Since

∇ × (∇ × �E ) = −∇2 �E + ∇(∇ · �E ) , (1.7)

and ∇ · �E = 0 in the vacuum, we obtain

∇2 �E − 1

c2

∂2

∂t2
�E = 0 , (1.8)

where the operator

∇2 = ∇ · ∇ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1.9)

is called Laplacian and is a scalar.

Readers familiar with harmonic motion will recognize that

Eq. (1.8) is a form of the well-known differential equation in physics,
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called the Helmholtz wave equation for a harmonic motion. It is in

the standard form of a three-dimensional vector wave equation.

Similarly, we can derive a wave equation for the magnetic field,

and the readers may readily verify that field �B satisfies the same

equation as �E :

∇2 �B − 1

c2

∂2

∂t2
�B = 0 . (1.10)

The wave equations (1.8) and (1.10) can be solved with a

minor difficulty, and the general solution is given in a form of a

superposition of plane harmonic waves, specified by the symbol k
as

�U =
∑

k

�U k e−i(ωkt−�k·�r) , (1.11)

where �U ≡ ( �E , �B), the parameter ωk is the frequency of the kth

wave, and �U k is the amplitude of the �E or �B wave propagating in

the �k direction. The solution (Eq. 1.11) represents a set of harmonic

waves of frequencies ωk and propagating with a velocity c in the �k
direction relative to the position �r of an observation point.

The vector �k is called the wave vector that, as we have already

mentioned, determines the direction of propagation of the kth wave.

From the requirement that Eq. (1.11) is a solution to the wave

equation (Eq. 1.8), we find that the magnitude of �k as: |�k| = ωk/c =
2π/λk, where λk is the wavelength of the kth wave.a

Summarizing briefly: Maxwell’s theory of electromagnetism shows

that the electric and magnetic fields propagate in vacuum as plane

(electromagnetic) waves.

The electromagnetic waves have specific properties, which are

determined from Maxwell’s equations. It is easy to show that the

divergence Maxwell’s equations (1.1) and (1.2) demand that for all

directions of propagation �k:

�k · �Ek = 0 and �k · �Bk = 0 . (1.12)

This means that the electric and magnetic fields are both perpen-

dicular to the direction of propagation �k, i.e., both �E and �B have no

aThe relationship between wavelength, velocity, and frequency obtained here is

undoubtedly familiar to the readers who have undertaken courses in physics.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Energy of the Electromagnetic Wave 5

components in the direction of propagation. Such a wave is called a

transverse wave.

Maxwell’s equations (1.3) and (1.4) provide a further restriction

on the fields that

�Bk = 1

c
�κ × �Ek , (1.13)

where �κ = �k/|�k| is the unit vector in the �k direction. This

equation shows that the electric ( �E ) and magnetic ( �B) fields

of an electromagnetic wave propagating in vacuum are mutually

orthogonal ( �E ⊥ �B).

In summary: From the foregoing, we see that only transverse waves

are predicted in vacuum, both electric and magnetic fields being

perpendicular to the direction of propagation and to each other.

1.2 Energy of the Electromagnetic Wave

Electromagnetic waves contain and transport energy. The energy of

an electromagnetic wave is carried in its electric and magnetic fields,

a result we could well anticipate in view of our knowledge of the

properties of electric and magnetic fields.

In order to determine the energy carried by an electromagnetic

wave and how the energy depends on the parameters characteristic

of the wave (amplitude and frequency), we consider a simple

example of a plane electromagnetic wave propagating in one

dimension, say the positive z-axis: �k · �r = kz. Suppose that the wave

is linearly polarized in the x-direction. In this case, the wave may be

determined by the electric field

�E (z, t) = �i E x (z, t) = �iq (t) sin(kz) , (1.14)

where q (t) represents the time-dependent amplitude of the electric

field.

The energy of the electromagnetic wave is given by the

Hamiltonian

H = 1

2

∫ L

0

dz
{

ε0| �E |2 + 1

μ0

| �B|2

}
, (1.15)

where ε0| �E 2|/2 is the density of energy stored in the electric field,

and | �B|2/(2μ0) is the density of energy stored in the magnetic field.
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6 Radiation (Light) is a Wave

The integration is to be carried out over the whole length L where

the wave exists.

One can see from Eq. (1.15) that to determine the energy of

the electromagnetic wave, we need the magnetic field �B . Since we

know the electric field, we can find the magnetic field from the

Maxwell equation (1.4). For the electromagnetic wave, the magnetic

vector �B is perpendicular to �E and oriented along the y-axis.

Hence, the magnitude of the magnetic field can be found from the

following equation:

∇ × �B = �i 1

c2
q̇ (t) sin(kz) . (1.16)

Since Bx = Bz = 0 and By �= 0, and obtain

∇ × �B = −�i ∂ By

∂z
+ �k ∂ By

∂x
= �i 1

c2
q̇ (t) sin(kz) . (1.17)

The coefficients on both sides of Eq. (1.17) at the same unit vectors

should be equal. Hence, we find that

∂ By

∂x
= 0 and

∂ By

∂z
= − 1

c2
q̇ (t) sin(kz) . (1.18)

Then, integrating ∂ By/∂z over z, we find

By (z, t) = − 1

c2
q̇ (t)

∫
dz sin(kz) = 1

kc2
q̇ (t) cos(kz) . (1.19)

Thus, the energy of the electromagnetic field, given by the

Hamiltonian (1.15), is of the form

H = 1

2

∫ L

0

dz
{

ε0q2 (t) sin2(kz) + 1

k2c4μ0

(q̇ (t))2 cos2(kz)

}
. (1.20)

Since ∫ L

0

dz sin2(kz) =
∫ L

0

dz cos2(kz) = 1

2
L , (1.21)

and μ0 = 1/c2ε0, the Hamiltonian H reduces to

H = 1

4
ε0 Lq2 (t) + 1

4

ε0

ω2
L(q̇ (t))2 . (1.22)

An inspection of this equation leads us to conclude that the energy

of the electromagnetic wave is proportional to the square of its

amplitude, q (t).
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Energy of the Electromagnetic Wave 7

Note that the Hamiltonian (1.22) is in the form of the familiar

Hamiltonian of a harmonic oscillator. It is easy to prove. We know

from classical mechanics that the energy of a harmonic oscillator is

given by the sum of the kinetic and potential energies as

Hosc = E K + E p = 1

2m

(
p2 + m2ω2x2

)
, (1.23)

where p = mẋ is the momentum of the oscillating mass m.

Comparing Eq. (1.23) with Eq. (1.22), we see that the variables

q(t) and q̇(t) can be related to the position and momentum of the

harmonic oscillator.

Summary

We have learned that

(1) The electromagnetic field propagates in vacuum as transverse

plane waves, which can be represented by a set of harmonic os-

cillators. Thus, according to Maxwell’s electromagnetic theory,

radiation (light) is a wave.

(2) The energy (intensity) of the electromagnetic field is propor-

tional to the square of the amplitude of the oscillation.

Worked Example

Show that the single-mode electric field

�E = �E0 sin (kx x) sin
(

ky y
)

sin (kzz) sin (ωt + φ) (1.24)

is a solution to the wave equation (1.8) if k = ω/c, where k =(
k2

x + k2
y + k2

z

) 1
2 is the magnitude of the wave vector, and φ is an

arbitrary initial phase of the propagating field.

Solution

To show that the electric field (1.24) satisfies the wave equation, we

have to calculate the time and coordinate second derivatives of �E .
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Thus, using Eq. (1.24), we find

∂2 �E
∂t2

= −ω2 �E , (1.25)

and

∂2 �E
∂x2

= −k2
x
�E ,

∂2 �E
∂y2

= −k2
y
�E ,

∂2 �E
∂z2

= −k2
z
�E . (1.26)

Hence, substituting Eqs. (1.25) and (1.26) into the wave equation(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
�E − 1

c2

∂2 �E
∂t2

= 0 , (1.27)

we obtain

− (k2
x + k2

y + k2
z

) �E + ω2

c2
�E = 0 , (1.28)

or [(
k2

x + k2
y + k2

z

)− ω2

c2

]
�E = 0 . (1.29)

Since �E �= 0 and k2
x + k2

y + k2
z = k2, we find that the left-hand side of

Eq. (1.29) is equal to zero when

k2 = ω2

c2
, i.e. when k = ω

c
. (1.30)

Hence, the single-mode electric field (Eq. 1.24) is a solution to the

wave equation if k = ω/c.

Revision Questions

Question 1. What is a wave equation and how it is derived from

Maxwell’s equations?

Question 2. What is the solution to a wave equation?

Question 3. What are the properties of an electromagnetic wave

propagating in vacuum?

Question 4. Energy of an electromagnetic wave is proportional to

the amplitude of the wave: true or false?
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Tutorial Problems

Problem 1.1 Verify that the general solution (1.11) satisfies the

wave equation (1.8).

Problem 1.2 Using Eq. (1.13), show that

�Ek = −c�κ × �Bk ,

which is the same relation one could obtain from the Maxwell

equation (1.4).

(Hint: Use the vector identity �A × ( �B × �C ) = �B( �A · �C ) − �C ( �A · �B).)

Problem 1.3 Using the divergence Maxwell equations, show that the

electromagnetic waves in vacuum are transverse waves.

Problem 1.4 Calculate the energy of an electromagnetic wave

propagating in one dimension.
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Chapter 2

Difficulties of the Wave Theory of
Radiation

We have already seen how the fundamental laws of electromag-

netism led to the prediction that light is an electromagnetic wave.

But what properties of light are commonly observed in experiments?

Since light has been recognized as a wave phenomenon, one can say

that we shall observe properties characteristic of waves. Classical

optics provides us with many examples of phenomena reflecting the

wave character of light. Typical are polarization, interference, and

diffraction phenomena. However, a series of experiments performed

in the late 19th century showed that the wave model predicted

from Maxwell’s equations is not the correct description of the

properties of light. In this chapter, we will discuss some of the

experiments that provided evidence that light, which we have

recognized as a wave phenomenon, has properties that we normally

associate with particles. In particular, these experiments indicated

that in some phenomena, the energy of light does not show up as

being proportional to the amplitude of the oscillation; it is rather

proportional to the frequency of the oscillation. The experimental

results will force us to conclude that the wave theory of light is

simply inappropriate to explain these phenomena. We will discover

Quantum Physics for Beginners
Zbigniew Ficek
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later that to explain these phenomena and to understand the

physical processes involved, some kind of a corpuscular theory of

light is required.

2.1 Discovery of Electron

Let us first discuss briefly how the idea of the existence of discrete

(corpuscular) structures has been innovated in physics. The first

idea of the existence of discrete structures referred to physics of

materials and their electric properties.a Joseph Thomson, in his

famous q/m experiment performed in 1896, measured the ratio of

the charge q to the mass m of the cathode beam particles.b He found

that the ratio q/m

• Did not depend on the cathode material.

• Did not depend on the residual gas in the tube.

• Did not depend on anything else about the experiment.

This independence, discovered by Thomson, showed that the

particles in the cathode beam are a common element of all

materials.c

In 1910–13, Robert Millikan performed a series of oil-drop

experiments, in which he measured electric charge of individual oil

drops.d In these experiments, he made an important observatione

that every drop had a charge q equal to some small integer multiple

of a basic (elementary) charge e (q = ne), where n is an integer

(n = 1, 2, . . .), and e = 1.602177 × 10−19 [C].

aIn fact, the idea of the corpuscular nature of the physical world, particularly the

corpuscular nature of light, was first introduced by Newton. It was abounded when

the wave properties of light were observed experimentally.
bFor a complete discussion of Thomson’s experiment see, for example, R.A. Serway,

C.J. Moses, and C.A. Moyer, Modern Physics (Saunders, New York, 1989), p. 80.
cThomson was granted the Nobel prize in 1906 for his theoretical and experimental

investigations on the conduction of electricity by gases.
dFor a complete discussion of Millikan’s experiment see, for example, R.A. Serway, C.J.

Moses, and C.A. Moyer, Modern Physics (Saunders, New York, 1989), p. 83.
eMillikan was granted the Nobel Prize in 1923 for his work on the elementary charge

of electricity.
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Thus, we may summarize that Thomson’s and Millikan’s experi-

ments clearly indicate that matter is not continuous but composed of

discrete particles. The most important discovery was the existence

of particles that are a common element of all materials! These

particles are electrons, and Millikan’s experiments showed that each

electron carries the same amount of electric charge. Physicists

believe, but not all are convinced, that electrons do not have internal

structure and are the smallest particles (elementary particles) that

exist in the universe. Why there exist the smallest particle remains,

however, one of the unsolved mysteries of physics.

2.1.1 Discovery of X-Rays

In 1895, Wilhelm Röntgen was interested in the study of the

passage of a cathode beam through an aluminum-foil window. He

made a classic observation that a highly penetrating radiation of

unknown nature was produced when the cathode beam impinged on

matter. He observed that the radiation traveled in straight lines even

through electric and magnetic fields. He also found that the radiation

passed readily through opaque materials and exposed photographic

plates for no apparent reason. He called this unknown radiation X-

rays.a

In 1906, Charles Barklab observed a partial polarization of X-rays,

which indicated that they were transverse waves.

If X-rays are transverse waves and are invisible, then an obvious

question arises: What are the wavelengths of X-rays?

To answer this question, let us think how we can measure the

wavelength of X-rays. One possibility, in principle at least, would be

to perform Young’s double-slit experiment. However, any attempt to

measure the wavelength using Young’s double-slit experiment was

unsuccessful with no interference pattern observed.

In 1912, Max Laue got an idea that resolved this problem. He

explained that no interference pattern was observed simply because

the wavelengths of X-rays were too small. To explore his argument,

aRöntgen was granted the Nobel Prize in 1901 for his discovery of X-rays.
bBarkla was granted the Nobel Prize in 1917 for his discovery of the characteristic

X-rays of elements.
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consider the condition for observation of an interference pattern

2d sin θn = nλ , n = 0, 1, 2, . . . , (2.1)

from which we have

sin θn = nλ
2d

, (2.2)

where λ is the wavelength of the X-rays, d is the separation between

the slits, and the integer n numbers the successive maxima or

minima in the interference pattern. For λ � d, we have sin θn ≈ 0

even for large n. Hence, to make sin θn ≈ 1 to see the interference

fringes separated from each other, the separation d between the slits

should be very small.

Laue proposed to use a crystal for the interference experiment.a

This Nobel Prize winning idea was based on the following

observation: In crystals, the average separation between the atoms,

acting as slits, is about d ≈ 0.1 nm. From the experiment, he found

that the wavelength of the measured X-rays was λ ≈ 0.6 nm. Typical

X-ray wavelengths are in the range 0.001–1 nm. These are very

short wavelengths well outside the ultraviolet wavelengths. For a

comparison, visible light wavelengths are between λ ≈ 410 nm

(violet) and λ ≈ 656 nm (red).

We know how to generate visible light, but how this invisible

radiation of such small wavelengths is generated?

This can be explained as follows: X-rays are generated when

high-speed electrons crash into the anode and rapidly deaccelerate.

It is well known from the theory of classical electrodynamics that

electrons, when deaccelerated, emit radiation. In other words, their

kinetic energy is converted into radiation energy (braking, i.e.,

deaccelerating radiation, often referred to by the German phrase

bremsstrahlung).

The total instantaneous power P radiated by the deaccelerated

electron is given by the Larmor formula:

P = 2

3

e2

4πε0c3
|a|2 , (2.3)

where |a| is the magnitude of the deacceleration of the electron.

aLaue was granted the Nobel Prize in 1914 for his discovery of the diffraction of X-rays

by crystals.
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Hence, due to the continuous deacceleration of the electrons,

the spectrum I (λ) of X-rays also should be continuous. However,

the experimentally observed spectrum of the X-rays is composed

of two pronounced peaks at certain wavelengths superimposed on

a continuous background (see Fig. 2.1). It is observed that the

position of the two peaks depends only on the material of the anode

(characteristic radiation). The origin of the two lines is unknown!

Figure 2.1 An example of experimentally observed spectrum I (λ) of X-ray

radiation.

Yet another unexpected property of the X-rays spectrum is as

follows. For a given potential V , experiments showed that X-rays

of different wavelengths were produced, giving the continuous

background seen in Fig. 2.1, but none of the wavelengths was shorter

than a certain wavelength λmin. The minimum wavelength λmin was

observed to depend only on the potential in the tube (λmin ∼ V )

and was the same for all target (anode) material. The reason was

unknown!

2.2 Photoelectric Effect

In 1887, Heinrich Hertz discovered the photoelectric effect: emis-

sion of electrons from a surface (cathode) when light strikes on it.

If a positively charged electrode is placed near the photoemissive

cathode to attract photoelectrons, an electric current can be made

to flow in response to the incident light.
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Figure 2.2 Photoelectric effect for two different intensities I1 and I2 (I1 >

I2) of the incident light.

The following properties of the photoelectric effect were

observed:

1. When a monochromatic light falls on the cathode, no electrons

are emitted, regardless of the intensity of the light, unless the

frequency (not the intensity!) of the incident light is high enough

to exceed some minimum value, called the threshold frequency.

The threshold frequency was found to be dependent on the

material of the cathode.

2. Once the frequency of the incident light is greater than the

threshold value, some electrons are emitted from the cathode

with a nonzero speed. The reversed potential is required to stop

the electrons (stopping potential: eVs = 1
2

mv2).

3. When the intensity of light is increased, while its frequency is

kept the same, more electrons are emitted, but the stopping

potential Vs is the same (see Fig. 2.2).

Conclusion: Velocity of the electrons, which is proportional to

the energy, is unaffected by changes in the intensity of the

incident light.

4. When the frequency of light is increased, ν2 > ν1, the stopping

potential increased, Vs2 > Vs1 (see Fig. 2.3).

In summary: We see that the results of the experiments on

photoelectric effect are in contradiction to classical wave theory.
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–Vs2 –Vs1

n2
n1

I

V

Figure 2.3 Photoelectric effect for two different frequencies but the same

intensity of the incident light, with ν2 > ν1.

These puzzling features of the photoelectric effect suggest that the

energy of light is not proportional to its intensity but is proportional

to the frequency:

E ∼ ν or E ∼ 1

λ
,

(
ν = c
λ

)
. (2.4)

It is impossible to explain the aspects of the photoelectric effect

by means of the wave theory of light that gives no reason why the

energy of a light beam should be proportional to frequency. The

wave theory of light leads one to anticipate that a long-wavelength

light incident on a surface could cause enough energy to be absorbed

for an electron to be released. Moreover, when electrons are emitted,

an increase in the incident light intensity should cause an emitted

electron to have more kinetic energy rather than more electrons of

the same average energy to be emitted.

2.3 Compton Scattering

Compton scattering experiments, named after Arthur Compton

who, in 1924, performed a series of experiments on scattering of
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X-rays on free electrons,a provided additional direct confirmation

that energy of light is proportional to its frequency rather than to

the amplitude. In the Compton experiment, the light of a wavelength

λ was scattered on free electrons, as shown in Fig. 2.4.

Figure 2.4 Schematic diagram of the Compton scattering. An incident light

of wavelength λ is scattered on free electrons and the scattered light of

wavelength λ′ is detected in the α direction.

It was observed that during the scattering process, the intensity

of the incident light did not change, but the wavelength changed

such that the wavelength of the scattered light was larger than the

incident light, i.e., λ′ > λ.

Conclusion: From energy conservation, we have

E = E ′ + Ee , (2.5)

where Ee is the energy of the scattered electrons.

Since Ee > 0, E ′ < E , indicating that the energy of the incident light

is proportional to the frequency, or equivalently, to the inverse of the

wavelength

E ∼ ν or E ∼ 1

λ
. (2.6)

This is another notable departure from the predictions of the wave

theory of radiation.

aCompton was granted the Nobel Prize in 1927 for his discovery of the effect named

after him.
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2.4 Discrete Atomic Spectra

In a different area of physics, radiation spectroscopy experiments

show that light emitted by a hot solid or liquid exhibits a continuous

spectrum, i.e., light of all wavelengths is emitted. In 1814, Joseph

von Fraunhoffer observed that the continuous spectrum of light

coming from the sun also contained some discrete (black) lines

that were later recognized as absorption lines corresponding to the

elements in the outer atmosphere of the sun. Moreover, experiments

showed that the spectrum of light emitted by a hot gas contained

only a few isolated sharp lines (see Fig. 2.5) of the following

properties:

Figure 2.5 An example of discrete radiation spectrum emitted from single

atoms.

• Each spectral line corresponds to a different frequency.

• The lines group into separate sequences, called spectral

series.

• Different gases produce different sets of lines.

• When we increase the temperature of a gas, more lines at

larger frequencies are emitted.

Once again, we are faced with the difficulty of explaining

experimental observations using the wave theory of light. Evidently,

these results contradict the prediction of the wave theory of light

since the experimentally observed spectra show that energy is

proportional to frequency, E ∼ ν, not to the amplitude of the

emitted light. Moreover, this shows that the structure of atoms is not

continuous.
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Then additional questions arise: What is an atom composed of?

How does the discrete spectrum relate to the internal structure of

the atom?

These questions were left without answers at that time.

Summary

A series of experiments on properties of X-rays, properties of

photoelectric effect, Compton scattering and atomic spectra suggest

that energy of the radiation field (light) is not proportional to its

amplitude, as one could expect from the wave theory of light, but

to the frequency of the radiation field, E ∼ ν.

In the next chapter, we consider one more example of unusual

experimental results, the blackbody radiation, which solved the

problem.
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Chapter 3

Blackbody Radiation

The radiation emitted by a body that is heated is called thermal
radiation. All bodies emit and absorb such radiation. We have

just seen that hot gases or individual atoms emit radiation with

characteristic discrete lines. In contrast, hot matter in a condensate

state (solid or liquid) emits radiation with a continuous distribution

of wavelengths rather than a line spectrum.

In this chapter, we will consider spectral distribution of the

continuous radiation emitted by a blackbody, i.e., the dependence

of the intensity of the blackbody radiation on the wavelength of

the radiation.a First, we will define what we mean by a blackbody.

Blackbody is an object that absorbs completely all radiation falling

on it, independent of its frequency, wavelength, and intensity. In

other words, no reflections occur from a blackbody.

Examples: Consider a box with perfectly reflecting sides and with a

small hole, as illustrated in Fig. 3.1. The small hole, not the box itself,

can be treated as a blackbody. Radiation of an arbitrary wavelength

aIn spectroscopy, the spectral distribution (or spectrum) of a radiation is usually

determined by the dependence of the radiation intensity on frequency rather than

wavelength. Since the blackbody spectrum was first analyzed in terms of wavelength,

we will follow this historical development.
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Figure 3.1 A box with a small hole that models a blackbody.

that strikes on the hole gets lost inside the box. Thus, no reflection

occurs from the hole, which is the property of a blackbody.

Formulation of the correct theoretical approach to calculate

the spectrum of the blackbody radiation was a major challenge

in theoretical physics during the late 19th century. In 1900,

Strutt (Lord) Rayleigh calculated the energy density distribution

I (λ) of the radiation emitted by the blackbody box at absolute

temperature T .

According to Rayleigh, the energy density distribution (spec-

trum) of the blackbody radiation is of the form

I (λ) = Nλ〈E 〉 , (3.1)

where Nλ is the number of radiating oscillators (modes), per unit

volume and unit wavelength, inside the boxa

Nλ = 8π

λ4
, (3.2)

and 〈E 〉 is the average energy of each mode. Note that 〈E 〉 in

the Rayleigh and Jeans formula is the same for each mode. This

is consistent with the wave theory of radiation that the energy

of a radiation wave is proportional to its amplitude, not to the

wavelength λ.

aThe formula for the density of modes derived by Rayleigh missed the factor 8, which

was corrected by James Jeans in 1905. Therefore, the energy density distribution

(3.1) is called the Rayleigh–Jeans formula.
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Before discussing the Rayleigh–Jeans formula in details, we will

first prove Eq. (3.2) for the number of modes inside the box, and next

we will find the average energy of each mode in terms of the absolute

temperature T .

3.1 Number of Radiation Modes inside a Box

Consider an electromagnetic wave confined in the volume V . We

take a plane wave propagating in the �r direction, which in terms of

x , y, z components can be written as

�E = �E0 sin (kx x) sin
(

ky y
)

sin (kzz) sin (ωt + φ) . (3.3)

The wave propagating in the box interferes with the waves reflected

from the walls. The interference will destroy the wave unless it forms

a standing wave inside the box. The wave forms a standing wave

when the amplitude of the wave vanishes at the walls. This happens

when

sin (kx x) = 0 , sin
(

ky y
) = 0 , sin (kzz) = 0 , (3.4)

i.e., when

kx = nπ

x
, ky = mπ

y
, kz = lπ

z
, (3.5)

where n, m, l are integer numbers (n, m, l = 1, 2, 3, . . .).

The conditions (3.5) are called the boundary condition, i.e.,

condition imposed on the wave at the walls to form standing

waves inside the box. The standing wave condition is common to

all confined waves. In vibrating violin strings or organ pipes, for

example, it also happens that only those frequencies that satisfy the

aforementioned boundary condition are permitted. Thus, inside the

box, the electromagnetic field is a combination of standing waves.

Since k = 2π/λ, we have the following condition for a standing

wave inside the box in terms of the wavelength

x = nλ
2

, y = mλ
2

, z = lλ
2

, (3.6)

We see that each set of the numbers (n, m, l) corresponds to a

particular wave, which we call mode.
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Figure 3.2 Illustration of the positive octant of k-space. The dots represent

modes of different (n, m, l). In the limit of a large number of modes,

the roughness of the edges is insignificant. Therefore, we can assume a

continuous distribution of the modes and approximate it by a sphere.

To find the number of modes inside the box in terms of frequency

or wavelength of the radiation, it is convenient to work in the

propagation k-space spanned on the components kx , ky , and kz of the
�k vector, as shown in Fig. 3.2. Each set of the components kx , ky , kz

is represented by the numbers n, m, l .

We will calculate the number of the modes as the ratio of the

volume occupied by all the modes to the volume occupied by a single

mode.

In the k-space, a single mode, say (n, m, l) = (1, 1, 1), occupies a

volume

Vk = kx kykz = π3

xyz
= π3

V
, (3.7)

where V = xyz is the volume of the box.

Since kx , ky , kz are positive numbers, the modes propagate only

in the positive octant of the k-space. The number of modes inside the

octant, shown in Fig. 3.2, is given by

N(k) = 1

8

4
3
πk3

Vk
, (3.8)

i.e., it is equal to the volume of the octant occupied by all the modes

divided by the volume occupied by a single mode. Since k = 2πν/c,
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we get

N(k) = 8πν3

3c3
V , (3.9)

where we have increased N(k) by a factor of 2. This arises from

the fact that the light is assumed to be generated by a thermal field

and hence is completely unpolarized. Thus, it may be regarded as a

mixture of waves of two mutually orthogonal polarizations.

In the limit of a large number of modes, we can assume a

continuous distribution of the modes, and then the number of modes

per unit volume and per unit frequency needed for the energy

density distribution is

Nν = 1

V
d N(k)

dν
= 8πν2

c3
. (3.10)

In terms of wavelengths λ, the number of modes per unit volume and

per unit of wavelength is given by the following conversion formula:

Nλ = 1

V
d N(k)

dλ
= 1

V
d N(k)

dν

∣∣∣∣dν

dλ

∣∣∣∣ = Nν

∣∣∣∣dν

dλ

∣∣∣∣ . (3.11)

Since ν = c/λ and dν = (−c/λ2)dλ, we obtain

Nλ = 8π

λ4
. (3.12)

This is the final formula for the number of modes (allowed standing

waves) inside the box. Note that the number of modes is determined

in terms of wavelength, and Eq. (3.11) must be kept in mind when

translating results for the mode density from a wavelength to a

frequency scale.

3.2 Average Energy of a Radiation Mode: Equipartition
Theorem

We now return to the Rayleigh and Jeans calculations of the energy

density distribution I (λ) of the blackbody radiation:

I (λ) = Nλ〈E 〉 . (3.13)

The average energy of a radiation mode that appears in Eq. (3.13)

may be found from the so-called equipartition theorem. This is a
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rigorous theorem of classical statistical mechanics, which states

that, in thermodynamic equilibrium at temperature T , the average

energy associated with each degree of freedom of an oscillator

(mode) is

〈E 〉 = 1

2
kB T , (3.14)

where kB is the Boltzmann constant. In other words, the equiparti-

tion theorem says that all modes have the same energy, irrespective

of their frequencies or wavelengths.

The number of degrees of freedom is defined to be the number
of squared terms appearing in the expression for the total
energy of the atom (mode).

For example, consider an atom moving in three dimensions. The

kinetic energy of the atom is given by

E = 1

2
mv2

x + 1

2
mv2

y + 1

2
mv2

z . (3.15)

There are three quadratic terms in the energy, and therefore the

atom has three degrees of freedom and a thermal energy 3
2

kB T .

The energy of a single radiation mode inside a box is the energy

of an electromagnetic wave

H = 1

2

∫
V

dV
{

ε0| �E |2 + 1

μ0

| �B|2

}
. (3.16)

Because this expression contains two squared terms, Rayleigh and

Jeans argued that each mode had two degrees of freedom and

therefore

〈E 〉 = kB T . (3.17)

Hence, the energy density distribution (spectrum) of the blackbody

radiation is given by

I (λ) = 8π

λ4
kB T . (3.18)

This is the Rayleigh–Jeans formula, which shows that the energy

density distribution depends linearly on the temperature and

is inversely proportional to the fourth power of the radiation

wavelength. It predicts that at any temperature, I (λ) tends to infinity

as λ → 0. It is obviously an impossible law, since it predicts an

infinite intensity at any finite temperature.
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Figure 3.3 Energy density distribution (energy spectrum) of the blackbody

radiation. The dashed line shows the prediction of the Rayleigh–Jeans

theory. The dotted line shows the shift of the maximum of I (λ) with

temperature T .

3.3 Rayleigh–Jeans Formula versus the Experiment

Figure 3.3 shows the experimentally observed spectrum of the

blackbody radiation. In this figure, T3 > T2 > T1. Note that the

maxima of the spectral lines move toward shorter wavelengths as

the temperature increases. This could be expected as a radiating

body changes color when the temperature is raised. However, the

most interesting significance, seen in Fig. 3.3, is that the Rayleigh–

Jeans formula agrees quite well with the experiment in the long-

wavelength region but disagrees violently at short wavelengths.

The experimentally observed behavior shows that for some

reason, the short-wavelength modes do not contribute, i.e., they are

frozen out. As λ tends to zero, I (λ) tends to zero. The theoretical

Rayleigh–Jeans formula goes to infinity as λ tends to zero, leading to

an absurd result known as the ultraviolet catastrophe. Moreover, the

theoretical prediction does not even pass through a maximum.

An aside: The Rayleigh–Jeans formula represents something

worse than a disagreement between theory and experiment, namely,

a contradiction within the theory itself. Perfectly logical application

of well-established theory led in this case to results that were not

just wrong but entirely unthinkable.
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Worked Example

Show that the number of modes per unit wavelength and per unit

length for a string of length L is given by

1

L

∣∣∣∣d N
dλ

∣∣∣∣ = 2

λ2
.

Solution

In one dimension, volume occupied by a single mode is

Vk = π

L
.

Number of modes in the volume V = k is

N(k) = k
Vk

= 2π

λ

L
π

= 2L
λ

.

Then, the number of modes per unit wavelength and per unit length

is

N = 1

L

∣∣∣∣d N
dλ

∣∣∣∣ = 1

L

∣∣∣∣−2L
λ2

∣∣∣∣ = 2

λ2
.

We can summarize the chapter on the wave theory of radiation as

follows:

The experimental results on the spectrum of X-rays, properties

of photoelectric effect, Compton scattering, atomic spectra, and the

spectrum of the blackbody radiation indicate that something is

seriously wrong with the wave theory of light!

In the next chapter, we will show how the lack of any concepts in

classical physics that could explain these results led to new ideas

in physics. We shall see that these results can be explained by

abandoning the classical physics concepts and introducing a new

concept: the particle concept of radiation. In other words, these

experiments led to the failure of classical physics and the birth of

quantum physics.
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Tutorial Problem

Problem 3.1 We have shown in the chapter that the number of

modes in the unit volume and the unit of frequency is

N = Nν = 1

V
d N(k)

dν
= 8πν2

c3
.

In terms of the wavelength λ, we have shown that the number of

modes in the unit volume and the unit of wavelength is

N = Nλ = 8π

λ4
.

Explain, why it is not possible to obtain Nλ from Nν simply by using

the relation ν = c/λ.
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Chapter 4

Planck’s Quantum Hypothesis: Birth of
Quantum Theory

Shortly after the derivation of the Rayleigh–Jeans formula, Max

Planck found a simple way to explain the experimental behavior, but

in doing so he contradicted the prediction of the wave theory of light,

which had been so carefully developed over the previous hundred

years, that energy of an electromagnetic wave is proportional to its

amplitude. Planck realized that the ultraviolet catastrophe could be

eliminated by assuming that the average energy 〈E 〉 depends on

the frequency of a mode and each mode could only take up energy

in well-defined discrete portions (small packets or quanta), each

having the energya

E = hν = �ω ,

(
� = h

2π
, ω = 2πν

)
, (4.1)

where the constant h is adjusted to fit the experimentally observed

I (λ).

The concept of quanta was considered by many physicists as

a mathematical trick. In a published paper, Planck states: “We

consider, however − this is the most essential point of the whole

aPlanck was granted the Nobel Prize in 1918 for the concept of energy quanta.
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calculations − E to be composed of a very definite number of equal

parts and use thereto the constant of nature h.” If there are n quanta

in the radiation mode, the energy of the mode is En = nhν.

The view that light is composed of small packets of energy

is directly opposed to the wave theory of light. More precisely,

the contrast between the wave and Planck’s hypothesis is that in

the classical case the mode energy is continuous, i.e., can lie at

any position between 0 and ∞ of the energy line, whereas in the

quantum case the mode energy can only take on discrete (point)

values.

The assumption of the discrete energy distribution required

a modification of the equipartition theorem. Planck introduced

“discrete portions” so that he might apply Boltzmann’s statistical

ideas to calculate the energy density distribution of the blackbody

radiation.

4.1 Boltzmann Distribution Function

The solution to the blackbody problem may be developed from

a calculation of the average energy of a harmonic oscillator of

frequency ν in thermal equilibrium at temperature T .

The probability that at temperature T an arbitrary system, such

as a radiation mode, has an energy En is given by the Boltzmann

distribution

Pn = e−En/kB T∑
n

e−En/kB T
, (4.2)

which assumes an exponential distribution of the energy between

different modes. The detailed derivation of the Boltzmann distribu-

tion (Eq. 4.2) is given in Appendix A.

For quantized energy En = n�ω, we find thata

Pn = e−nx

∞∑
n=0

e−nx
, (4.3)

where x = �ω/kB T is a dimensionless parameter.

aWe write the energy in terms of �ω rather than hν as in quantum physics the form �ω

is used more frequently.
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Since the sum
∑∞

n=0 e−nx is a particular example of a geometric

series, and | exp(−nx)| < 1 for all n’s, we readily find that the sum

tends to the limita

∞∑
n=0

e−nx = 1

1 − e−x
. (4.4)

Hence, we can write the Boltzmann distribution function (Eq. 4.2) in

a simple form

Pn = (1 − e−x) e−nx . (4.5)

This is a very simple formula, sometimes called the Planck

distribution function. It tells us about the distribution of photons

among different modes. We will use this formula in our calculations

of the average energy 〈E 〉, average number of photons 〈n〉, and

higher statistical moments, e.g., 〈n2〉.

4.2 Planck’s Formula for I (λ)

Assuming that n is a discrete variable, Planck showed that the

average energy of the radiation mode is

〈E 〉 =
∑

n

En Pn = (1 − e−x)
�ω

∞∑
n=0

ne−nx . (4.6)

Then, evaluating the sum in the aforementioned equation,b he found

〈E 〉 = �ω

ex − 1
, (4.7)

and finally

I (λ) = 8πhc
λ5
(

ehc/λkB T − 1
) , (4.8)

which is called Planck’s formula, and the numerical constant h,

known as the Planck constant, adjusted such that the energy density

distribution (Eq. 4.8) agrees with the experimental results, is

h = 6.626 × 10−34 [J · s] = 4.14 × 10−15 [eV · s] . (4.9)

aIn statistical physics, the sum is called the partition function.
bThe details of the evolution of the sum in Eq. (4.6) are left for the readers as a tutorial

problem; see the Tutorial Problem 4.2
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Remember the importance of Planck’s idea of n being a discrete

variable. Thus, Eqs. (3.18) and (4.8) for the radiation spectrum

contrast the discrete energy distribution with the continuous.

How important for the explanation of the blackbody spectrum

was to assume that n is a discrete variable? To answer this question,

simply check how Planck’s formula fits into the experimentally

observed spectra. There are two interesting limited cases for λ: λ�
1 and λ� 1.

Look carefully at the denominator of Eq. (4.8). For long

wavelengths, (λ � 1), i.e., for a wavelength range such that

hc/λkB T � 1, we can expand the exponent appearing in Eq. (4.8)

into a Taylor series and when we neglect powers of hc/λkB T higher

than the first, we obtain

(
ehc/λkB T − 1

) = 1 + hc
λkB T

+ . . . − 1 ≈ hc
λkB T

. (4.10)

The Planck spectrum then gives simply

I (λ) = 8πhc
λ5

(
hc
λkB T

)−1

= 8π

λ4
kB T , (4.11)

which is the Rayleigh–Jeans formula. Thus, for long wavelengths

(λ � 1), Planck’s formula agrees perfectly with the equipartition

theorem. We should point out here that only in the region of long

wavelengths, Planck’s formula and the Rayleigh–Jeans formula give

the same result for the spectrum. Outside this region, discreteness

brings about Planck’s quantum corrections. It is most evident in the

region of short wavelengths.

Let us see what Planck’s formula predicts for short wavelengths.

For short wavelengths, λ � 1, we can ignore 1 in the denominator

of Eq. (4.8) as it is much smaller than the exponent. Then

I (λ) = 8πhc
λ5ehc/λkB T

. (4.12)

As λ → 0, the factor ehc/λkB T → ∞, and λ5 → 0. It is not clear

that I (λ) will go to zero as λ → 0. However, ea/λ function goes to

infinity faster than λ5 goes to zero. Therefore, I (λ) → 0 as λ → 0,

which agrees perfectly with the observed energy density spectrum

(see Fig. 3.3).



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Planck’s Formula for I (λ) 35

4.2.1 Wien and Stefan–Boltzmann Laws

The experimental results show that I (λ) passes through a maximum

whose position depends on the temperature T . Planck’s formula

also shows that I (λ) reaches a maximum whose the position

depends on T and agrees perfectly with that predicted by the

experimental results. The dependence of the position of the

maximum on T is given by the Wien displacement law

λmaxT = hc
4.9651kB

= constant , (4.13)

where λmax is the value of λ at which I (λ) is maximal. The factor

4.9651 is a solution to the equation

e−x + 1

5
x − 1 = 0 . (4.14)

The Wien lawa says that with increasing temperature of the

radiating body, the maximum of the intensity shifts toward shorter

wavelengths. In terms of energy, higher temperatures tend to give

higher photon energies.

Moreover, Planck’s formula correctly predicts the experimental

observation, the Stefan–Boltzmann lawb, giving the variation of the

total power per unit area of the emitted blackbody radiation with the

fourth power of its absolute temperature

I = c
4

∫ ∞

0

I (λ)dλ = σ T 4 , (4.15)

where I is the total intensity of the emitted radiation and σ is

a constant, called the Stefan–Boltzmann constant.c The factor c/4,

where c is the speed of light, arises from the relation between the

intensity spectrum (radiance) and the energy density distribution.

The relation follows from classical electromagnetic theory.d

aWien was granted the Nobel Prize in 1911 for his discoveries regarding the laws

governing the radiation of heat.
bThe Stefan–Boltzmann law was found experimentally by Stefan and later deduced

theoretically by Boltzmann.
cDetails of the derivation of the Stefan–Boltzmann law are left as a tutorial problem;

see Tutorial Problem 4.7.
dApart from the factor 1/4, one could have guessed the multiplication by speed of

light using the following analysis: To turn density (energy/volume) into power/area,

we have to multiply by something with units of distance/time, and the only relevant

speed in the problem involving radiation is the speed of light.
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The Stefan–Boltzmann law is reflected in the blackbody spectrum

as the areas under the intensity profile.a As the temperature

increases, the area under the intensity profile increases rapidly

with T .

An interesting observation: Quantum against continuous
To explore the importance of the discrete distribution of the

radiation energy, in other words, the importance to assume that n
is a discrete variable, it is useful to compare Planck’s formula for a

discrete n with that for a continuous n.

Thus, assume for a moment that n is a continuous, rather than a

discrete, variable. Then the Boltzmann distribution takes the form

Pn = e−nx

∞∫
0

dn e−nx

, (4.16)

and hence the average energy is given by

〈E 〉 = �ω

∞∫
0

dn ne−nx

∞∫
0

dn e−nx

= −�ω
(1/x)′

1/x
= �ω

x
= kB T , (4.17)

where ′ denotes the first derivative of 1/x with respect to x .

This result is the one expected from the classical equipartition

theorem.

Looking backward with the knowledge of the quantum hy-

pothesis, we see that the essence of the blackbody calculation

is remarkably simple and provides a dramatic illustration of the

profound difference that can arise from summing things discretely

instead of continuously, i.e., making an integration.

We see from the above that the physical world prefers a

sum over an integration, but why it happens still escapes our

understanding.

aThe thermal radiation from many real materials that are not black is found

experimentally to be very nearly proportional to the fourth power of the absolute

temperature, but with a proportionality constant, which is smaller than σ .
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More interesting observations: Energy and mass measured with a
clock

Time is measured by a periodically oscillating device, a clock.

Since, according to the quantum hypothesis, energy of the

radiation depends on time

E = hν = h
τ

, (4.18)

where τ is the period of oscillation, it also should be measured with

a clock.

Even more, since

E = mc2 = h
τ

, (4.19)

mass should be measured with a clock as well.

Tutorial Problems

Problem 4.1 Consider Planck’s formula for two temperatures T1 =
2000 K and T2 = 4000 K.

(a) How much the maximum of I (λ) for T2 is shifted relative to the

maximum for T1?

(b) How much the total area under the graph for T2 is larger than

that under the graph for T1?

Problem 4.2 Using Planck’s formula for Pn,

(a) Show that the average number of photons is given by

〈n〉 = 1

ex − 1
,

where x = �ω
kB T , and kB is the Boltzmann constant.

(b) Show that for large temperatures (T � 1), the average energy is

proportional to temperature, i.e., 〈E 〉 = kB T , that the prediction

of Planck’s formula agrees with the Rayleigh–Jeans formula.

(c) Calculate the variance of the number of photons defined as σn =
〈n2〉 − 〈n〉2 and show that the ratio

α = 〈n2〉 − 〈n〉
〈n〉2

= 2 .
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In statistical physics, the ratio α is used as a measure of the

departure of photon statistics from a Poissonian distribution: α < 1

means sub-Poissonian, α = 1 means Poissonian, and α > 1 means

super-Poissonian distribution of photons.

Problem 4.3 Suppose that photons in a radiation field have a

Poissonian distribution defined as

Pn = 〈n〉n

n!
e−〈n〉 .

Calculate the variance of the number of photons and show that the

ratio α = 1.

Problem 4.4 Show that the Boltzmann formula for the probability

distribution, Eq. (4.5), can be written as

Pn = 〈n〉n

(1 + 〈n〉)n+1
,

where

〈n〉 = 1

ex − 1

is the average number of photons of frequency ω and x = �ω/kB T .

Problem 4.5 Show that at the wavelength λmax, the intensity I (λ)

calculated from Planck’s formula has its maximum

I (λmax) ≈ 170π(kB T )5

(hc)4
.

Problem 4.6 Wien displacement law

(a) Derive the Wien displacement law by solving the equation

d I (λ)/dλ = 0.

(Hint: Set hc/λkB T = x and show that d I/dx leads to the

equation e−x = 1 − 1
5

x . Then show that x = 4.9651 is the

solution).

(b) In part (a), we have obtained λmax by setting d I (λ)/dλ = 0.

Transform Planck’s formula from the wavelength to frequency

dependence and calculate νmax by setting d I (ν)/dν = 0. Is it

possible to obtain νmax from λmax simply by using λmax = c/νmax?

Note, νmax is the frequency at which the intensity of the emitted

radiation is maximal.
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Problem 4.7 Derivation of the Stefan–Boltzmann law
Derive the Stefan–Boltzmann law evaluating the integral in

Eq. (4.15).

Hint: It is convenient to evaluate the integral by introducing a

dimensionless variable

x = hc
λkB T

.

4.3 Photoelectric Effect: Quantum Explanation

We have just learned about the spectacular triumph of quantum

hypothesis to be able to explain the experimentally observed

blackbody radiation spectra. The quantum hypothesis of light was

also successful in explaining the photoelectric effect. It was explored

by Albert Einsteina who extended Planck’s hypothesis by postulating

that these discrete quanta of energy hν, which are emitted at time,

can also propagate as individual well-localized quanta (particles of

light), which he termed photons.b

Einstein proposed that the photoelectric effect can be explained

in terms of the energy conservation. The energy of a single photon

is E = hν, and then the photoelectric effect is given by the energy

conservation formula

hν = W + 1

2
mv2

max , (4.20)

where W is the work function required to remove an electron from

the plate, and vmax is the maximal velocity of the removed electrons.

The photoelectric effect showed that photons of an incident

light of a frequency less than a threshold frequency νT (a cutoff

frequency) do not have enough energy to remove an electron from a

particular plate. From Einstein’s photoelectric formula, we see that

the minimum energy required to remove an electron from the plate

is

aEinstein was granted the Nobel Prize in 1921 for his discovery of the law of

photoelectric effect.
bIn fact, the term “photon” was first introduced by Gilbert Lewis in 1926 (Nature

118, 784 (1926)). The term “photon” did not appear in Einstein’s paper on the

photoelectric effect. He used the term “localized quanta of energy.”
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hνT = W , (4.21)

which agrees with the experimental prediction.

The stopping potential—the potential at which the photoelectric

current does drop to zero—is found from

eVs = 1

2
mv2

max , (4.22)

which gives

Vs =
1
2

mv2
max

e
= hν − W

e
. (4.23)

Thus, we see that the stopping potential is proportional to frequency

and increases with increasing ν, which is in accordance with the

experimental observation.

We may conclude that what we have just shown is an another

example of a remarkable triumph of Planck’s quantum hypothesis.

Einstein’s photoelectric formula (4.20), incorporating the photon

nature of light, correctly explains the properties of the photoelectric

effect discovered by Hertz. It predicts correctly that the photoelec-

tric effect depends on the frequency of the incident light, not upon

its intensity, contrary to what the wave theory suggested.

4.4 Compton Scattering: Quantum Explanation

Another support of Planck’s hypothesis, which gave the most

conclusive confirmation for the corpuscular (photon) aspect of light,

was provided by the Compton scattering effect.

Let us re-examine the Compton scattering experiment, discussed

in Section 2.3, but now we shall assume that the incident X-rays

are composed of particles (photons) that can be scattered from the

electrons as balls. Suppose that the incident photon has momentum

p and energy E = pc. The scattered photon has momentum p′ and

energy E ′ = p′c. The electron is initially at rest, so its energy is

Ee = m0c2, and the initial momentum is zero.

From the energy conservation, we have

E + Ee = E ′ + mc2 , (4.24)

where m is the relativistic mass
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m = m0√
1 − (v/c)2

, (4.25)

and v is the velocity of the scattered electron.

Since E = pc, E ′ = p′c, and Ee = m0c2, the energy conservation

formula may be written as(
pc − p′c + m0c2

) = mc2 . (4.26)

Taking square of both sides of Eq. (4.26), we obtain(
pc − p′c + m0c2

)2 = (mc2)2 = (m0c2)2 + ( pec)2 , (4.27)

where pe is the momentum of the scattered electron. Thus, we can

write (
p − p′)2 + 2m0c

(
p − p′) = p2

e . (4.28)

This energy conservation formula contains the momentum of the

scattered electron. Unfortunately, the momentum of the scattered

electrons is difficult to measure in experiments, as they move

with large velocities. Therefore, we will eliminate pe using the

momentum conservation law:

�pe = �p − �p′ , (4.29)

from which we find

p2
e = �pe · �pe = p2 + p′2 − 2 pp′ cos α , (4.30)

where α is the angle between directions of the incident and scattered

photons.

Substituting Eq. (4.30) into Eq. (4.28), we get

2m0c
(

p − p′) = 2 pp′ (1 − cos α) , (4.31)

from which, we find the momentum difference

p − p′ = pp′

m0c
(1 − cos α) . (4.32)

This is how far we can get with the analysis of the Compton effect

using arguments of classical physics. To relate this effect to the

wavelength of the radiation, we apply Planck’s hypothesis of the

quantization of energy. In this case, we find the following relation

between the momentum and wavelength:

p = E
c

= hν

c
= h
λ

. (4.33)
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Using this relation in Eq. (4.32), we finally obtain

λ′ − λ = h
m0c

(1 − cos α) . (4.34)

This is the Compton scattering formula.

The quantity h/(m0c) is called the Compton wavelength of a

particle with rest mass m0 (here, an electron)

λc = h
m0c

= 2.426 × 10−12 [m] . (4.35)

The Compton scattering formula (Eq. 4.34) shows that the change

in wavelength depends only on the scattering angle α. During the

collision, the photon loses a part of its energy and consequently its

wavelength increases. Thus, the quantum theory predicts correctly

that the scattered light has different wavelength than the incident

light. The classical (wave) theory predicts that λ′ = λ.

One may notice from the Compton scattering formula (Eq. 4.34)

that the transition from quantum (photon) to classical (wave)

description of the theory is to put h → 0. Thus, the Planck constant

distinguishes between quantum and classical, but the presence of

the constant h is not the universal criterion for quantum.

An interesting observation

A significant feature of the derivation of the Compton scattering

formula is that it relied essentially on special relativity. Thus, the

Compton effect not only confirms the existence of photons, it also

provides a convincing proof of the validity of special relativity.

Worked Example

A photon collides with a stationary electron.

(a) Show that in the collision the photon cannot transfer all its

energy to the electron.

(b) Show that a photon cannot produce a positron–electron pair.
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Solution

(a) Assume that the photon can transfer all its energy to the

electron. Then, from the conservation of energy

E f + m0c2 = mc2 =
√

m2
0c4 + p2

e c2 , (4.36)

where E f = hν is the energy of the photon, and pe is

the momentum of the electron. From the conservation of

momentum, we have

p f = hν

c
= pe , (4.37)

and substituting Eq. (4.37) into Eq. (4.36), we obtain

hν + m0c2 =
√

m2
0c4 + (hν)2 , (4.38)

which is not true, as the right-hand side is larger than the left-

hand side.

(b) From the conservation of momentum, we have

p f =
√

m2
0c2 + p2

e +
√

m2
0c2 + p2

p , (4.39)

where pp is the momentum of the positron.

We see from the above equation that

p f > |�pe| + |�pp| ≥ |�pe + �pp| . (4.40)

Hence

�p f > �pe + �pp . (4.41)

Thus, a photon cannot produce a positron–electron pair.

Tutorial Problems

Problem 4.8 Explain why is it much more difficult to observe the

Compton effect in the scattering of visible light than in the scattering

of X-rays?

Problem 4.9 Calculate the kinetic energy transferred to a stationary

proton hit by a photon of energy hν.
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Problem 4.10 Consider the Compton scattering.

(a) Show that �E/E , the fractional change in photon energy in the

Compton effect, equals

�E
E

= hν ′

m0c2
(1 − cos α) ,

where ν ′ is the frequency of the scattered photon and �E =
E − E ′.

(b) Show that the relation between the directions of motion of

the scattered photon and the recoil electron in the Compton

scattering is

cot
α

2
=
(

1 + hν

m0c2

)
tan θ ,

where α is the angle of the scattered photon, θ is the angle of the

recoil electron, and ν is the frequency of the incident light.

This formula shows that one can test the Compton effect by

a measurement of the angles α and θ instead of measuring the

wavelength λ′ of the scattered photons, which is difficult to measure

with a large precision in experiments.
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Chapter 5

Bohr Model

Anyone who is not shocked by quantum theory has not
understood it.

—Niels Bohr

In 1913, the Danish scientist Niels Bohr used Planck’s concept to

propose a model of the hydrogen atoma that had a spectacular

success in explanation of the discrete atomic spectra.b The model

also correctly predicted the wavelengths of the spectral lines. We

have seen that the atomic spectra exhibit discrete lines unique

to each atom. From this observation, Bohr concluded that atomic

electrons can have only certain discrete energies. That is, the

kinetic and potential energies of electrons are limited to only

discrete particular values, as the energies of photons in a blackbody

radiation.

aThe Bohr model is called “semiclassical” not “quantum” because, as we shall see, it

contains concepts of both classical and quantum physics.
bAbout the earlier models of the hydrogen atom (Thomson model, Rutherford model),

see R.A. Serway, C.J. Moses, and C.A. Moyer, Modern Physics (Saunders, New York,

1989).
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5.1 Hydrogen Atom

In the formulation of his model, Bohr assumed that the electron

in the hydrogen atom moves under the influence of the Coulomb

attraction between it and the positively charged nucleus, as

assumed in classical mechanics. However, he incorporated new

ideas. Namely, he postulated that the electron could only move

in certain nonradiating orbits, which he called stationary orbits
(stationary states). Next, he postulated that the atom radiates only

when the electron makes a transition between states.

Let us illustrate Bohr’s ideas in some detail. We begin with

considering the classical equation of motion for the electron in

a circular orbit, which is based on Newton’s laws of motion and

Coulomb’s law of electric force. The electrostatic Coulomb force

provides the centripetal acceleration v2/r that holds the electron in

an orbit r from the nucleus. The condition for orbit stability is

e2

4πε0r2
= me

v2

r
. (5.1)

This relation allows us to calculate kinetic energy of the electron

K = 1

2
mev2 = e2

8πε0r
, (5.2)

which, together with the potential energy

U = − e2

4πε0r
(5.3)

gives the total energy of the electron as

E = K + U = − e2

8πε0r
. (5.4)

From the kinetic energy, we can find the velocity of the electron, its

linear momentum, and finally its angular momentum

L = mevr =
√

mee2r
4πε0

. (5.5)

Up to this point, the analysis has been classical and as such creates

a problem. The equations (5.4) and (5.5) show that the energy and

angular momentum of the electron depend on the radius of the orbit.

An obvious question arises: How to find the radius, since in practice

it is rather impossible to measure r?
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5.1.1 Quantization of Angular Momentum

Bohr got the tricky idea to solve this problem. To find the radius

of the orbit, Bohr postulated that the angular momentum of the
electron is quantized, i.e., it can only take values that are integer

multiples of �.

Where this idea came from?

It came from the following observation: One can notice from

Planck’s formula E = hν that h has the units of energy multiplied

by time (J·s), or equivalently of momentum multiplied by distance.

The electron in the atom travels a distance 2πr per one turn. Since

the momentum is p = mev , we obtain

(mev)(2πr) = nh , (5.6)

which shows that the angular momentum is quantized:

L = n� , n = 1, 2, 3, . . . . (5.7)

Comparing this quantum relation for the angular momentum with

Eq. (5.5), we can readily find the radius of the orbits. Since

mee2r
4πε0

= n2 h2

4π2
, (5.8)

we find, as a result of the quantization of angular momentum, that

the orbits are quantized:

r = n2 ε0h2

πmee2
= n2ao , (5.9)

where

ao = ε0h2

πmee2
= 5.3 × 10−11 [m] (5.10)

is called the Bohr radius. It is the radius of the electron’s lowest

energy level and is taken as the length scale in the quantum

description of the hydrogen atom. The result (5.9) is in terms of

known constants and is very different from what one could expect

from classical physics. The electron’s orbits cannot have any radius;

only certain radii are allowed. The radius of the electron’s orbit may

be ao, 4ao, 9ao, . . . , but never 2ao or 1.6ao.

By substituting Eq. (5.9) into Eq. (5.4), we find that the energy of

the electron is also quantized:

En = − 1

(4πε0)2

mee4

2�2

1

n2
. (5.11)
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The energies specified by Eq. (5.11) are called the energy levels or

energy states of the hydrogen atom. These levels are all negative,

signifying that the electron does not have enough energy to escape

from the atom. This is the so-called bounding energy. The lowest

energy level n = 1 is called the ground state of the atom and, in

the hydrogen atom, has the energy

E1 = − mee4

8ε2
0h2

= −13.6 [eV] . (5.12)

This is the energy required to separate a hydrogen atom into a

proton and an electron.

The higher levels n = 2, 3, . . . are called excited states. Note also

that the energy becomes less negative as n increases. At n → ∞,

En → 0 and there is no binding energy of the electron to the nucleus.

We say the atom is ionized.

5.1.2 Quantum Jumps Hypothesis

How does the electron make transitions between the energy levels?

Bohr introduced another postulate—the hypothesis of quantum
jumps—that the electron jumps (suddenly moves) from one energy

level to another emitting or absorbing radiation of a frequency

ν = Em − En

h
= mee4

8ε2
0h3

(
1

n2
− 1

m2

)
, (5.13)

or of wavelength

λ =
(

mee4

8cε2
0h3

)−1(
1

n2
− 1

m2

)−1

= R−1

(
1

n2
− 1

m2

)−1

, (5.14)

where R is the Rydberg constant.

Equation (5.14) states that the radiation emitted by excited

hydrogen atoms should contain certain wavelengths only. The

wavelengths fall into definite sequences, called spectral series, that

depend upon the quantum number of the final energy level. This is

illustrated in Fig. 5.1. Note that the energy levels get closer together

(converge) as the n value increases.

We should point out here that quantum jumps are inconsistent

with any classical picture of radiation and are often regarded as a

quantum effect without classical analog.
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Figure 5.1 Energy-level diagram for hydrogen atom with possible electron

transitions.

In summary, the Bohr model was very successful in explaining

the discrete atomic spectra of one-electron (hydrogen-like) atoms.

Simply, discrete spectral lines are observed because in order for an

electron to move from one state to another, it must either absorb or

emit exactly the right amount of energy to jump. This puts the model

among the most spectacular achievements in physics.a

5.2 Franck–Hertz Experiment

The Bohr model is, of course, a theoretical model of an atom.

It predicts that the electron in the atom can have only certain

discretely separated energy levels. At this point, we may ask a

question: Do in reality the quantized energy levels really exist? The

observation of the discrete atomic spectra is one of the evidences

of discretely separated energy levels. However, atomic spectra

are not the only means of investigating the presence of discrete

energy levels.

In 1914, shortly after the Bohr model was introduced, James

Franck and Gustav Hertz performed a series of experiments that

provided a direct demonstration that atomic energy levels do indeed

aBohr was granted the Nobel Prize in 1922 for investigating the structure of atoms

and of the radiation emanating from them.
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Figure 5.2 Results of the Franck–Hertz experiment for mercury atoms

showing regular maxima and minima of the anode current.

exist. In the experiments, electrons emitted by a heated cathode

were accelerated by a potential V applied between the cathode and

anode plate placed in a tube filled with a vapor of Hg atoms.

The measurements involved measuring the anode current as a

function of the voltage V . The results of the experiment for the

tube containing mercury (Hg) vapor are shown in Fig. 5.2. As the

accelerating potential is increased, the anode current is increased

as more electrons arrive at the anode plate. It indicates that the

presence of the mercury atoms does not affect the motion of the

electrons and that no energy is transferred from the electrons to

the atoms. However, when V reaches 4.9 V, the current abruptly

drops. This can be interpreted that some interaction between the

electrons and the Hg atoms suddenly begins when the electrons

attain a kinetic energy 4.9 eV. Additional drops of the current are

observed at integer multiplies of 4.9 eV.

To understand why the anode current drastically drops at integer

multiplies of 4.9 eV, Franck and Hertz,a in addition to the current,

observed the emission (fluorescence) spectrum of the Hg vapor.

They observed that the wavelength of the emitted radiation was

2536 Å, which for the Hg atoms corresponds exactly to a photon

energy of 4.9 eV. Thus, in a single collision between the electrons

aFranck and Hertz were granted the Nobel Prize in 1925 for their discovery of the

laws governing the impact of an electron on an atom.
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and the atoms, the energy of 4.9 eV is transferred from the electrons

to the atoms. The current drops at 9.8 eV, 14.7 eV, etc. correspond to

multiple, two, three, etc., collisions, respectively.

To summarize, the Franck–Hertz experiment provided a proof

that atomic energy states are quantized. It also provided a method

for the direct measurement of the energy difference between the

quantum energy states of an atom.

5.3 X-Rays Characteristic Spectra

In the study of X-rays characteristic spectra, we observed that the

spectra were composed of two distinctive lines (see Fig. 2.1) whose

origin was not accountable in terms of classical electromagnetic

theory.

In 1913, Henry Moseley studied X-rays characteristic spectra in

detail, and he showed how the X-ray spectra can be understood

in terms of the quantum theory of radiation and on the basis

of the discrete energy levels of atoms in the anode material. His

analysis was based on the Bohr model, and the explanation was as

follows:

In a multi-electron atom, the fast and energetic electrons from

the cathode knock electrons of the anode atoms out of their inner

orbits, as shown in Fig. 5.3. Then, the outer electrons jump to these

e

e

e
X-ray

Figure 5.3 Illustration of the X-ray emission from a multi-electron atom.
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empty places emitting X-ray (short-wavelength) photons of discrete

frequencies.

It is interesting to note that generation of X-rays is often called the

inverse photoelectric effect. Energy of moving electrons is converted

into photons.

5.4 Difficulties of Bohr Model

Bohr was able to predict the stationary properties of the hydrogen-

like atom, i.e., the energy levels with great accuracy, but the dynamics

had to be introduced artificially, by introducing the concept of

quantum (sudden) jumps between the energy states. This ad hoc

assumption, which has no counterpart in classical physics, caused a

vivid controversy in quantum physics. In addition, there were many

objections to the Bohr theory, and to complete our discussion of this

theory, we indicate some of its undesirable aspects:

• The model contains both the classical (orbital) and quantum

(jumps) concepts of motion.

• The model was applied with a mixed success to the structure

of atoms more complex than hydrogen.

• Classical physics does not predict the circular Bohr orbits

to be stable. An electron in a circular orbit is accelerating

toward the center and, according to classical electrodynamic

theory, should gradually lose energy by radiation and spiral

into the nucleus.

• The model does not tell us how to calculate the intensities of

the spectral lines.

• If the electron can have only particular energies, what

happens to the energy when the electron jumps from one

orbit to another?

• How the electron knows that it can jump only if the energy

supplied is equal to Em − En?

• The model does not explain how atoms can form different

molecules.

• Experiments showed that some of the lines in atomic spectra

are not singlets but are composed of two or more closely
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spaced lines. The lines can be resolved by applying a

magnetic field (Zeeman effect), the feature not presented in

the Bohr model.

We see that some of these objections are really of a very fundamental

nature, and much effort was expended in attempts to develop a

quantum theory that would be free of these objections. As we will

see later, the effort was well rewarded and led to what we now know

as quantum wave mechanics. Nevertheless, the Bohr theory is still

frequently employed as the first approximation to the more accurate

description of quantum effects. In addition, the Bohr theory is often

helpful in visualizing processes that are difficult to visualize in terms

of the rather abstract language of the quantum wave mechanics,

which will be presented in details in next few chapters.

Tutorial Problems

Problem 5.1 We usually visualize electrons and protons as spinning

balls. Is it a true model? To answer this question, consider the

following example.

Suppose that the electron is represented by a spinning ball.

Using Bohr’s quantization postulate, find the linear velocity of the

electron’s sphere. Assume that the radius of the electron is in the

order of the radius of a nucleus, r ≈ 10−15 m (1 fm). What

would you say about the validity of the spinning ball model of the

electron?

Problem 5.2 How big is an electron?
Suppose that the electron is a spherical shell of radius re and all the

electron’s charge is evenly distributed on the shell. Using the formula

for the energy of a charged shell, calculate the classical electron

radius. Compare the size of the electron with the size of an atomic

nucleus.

This problem illustrates the discrepancy between the experi-

mentally observed size of the electron and that calculated from the

classical electromagnetic theory.
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Problem 5.3 Just for fun with Maxwell’s equations. A spatial

distribution of charges creates the radial electric field of the form

�E (r) = Ae−br

r2
r̂ ,

where A and b are real and positive constants and r̂ is the unit vector

in the radial direction.

Using the Maxwell equation (1.1), calculate the density of the

charge and show that the field is produced by a positive charge

located at the origin, r = 0, and a negative charge continuously

distributed in space. Then, show that the total charge is zero.

This problem illustrates Rutherford’s (classical) model of an

atom, used before the Bohr model was introduced. The positive

charge at the origin represents the charge of the nucleus and the

negative charge symmetrically distributed in space represents the

cloud of electrons.

Problem 5.4 The Bohr model for a hydrogen-like atom
Show that in the Bohr atom model, the electron’s orbits in a

hydrogen-like atom are quantized with the radius r = n2ao/Z ,

where ao = 4πε0�
2/me2 is the Bohr radius, n = 1, 2, . . . , and Z is

atomic number. Z = 1 refers to a hydrogen atom, Z = 2 to a Helium

He+ ion, and so on.

Problem 5.5 Magnetic dipole moment of an electron
The magnetic dipole moment �μ of a current loop is defined by �μ =
I �S , where I is the current and �S = S�u is the area of the loop, with �u—

the unit vector normal to the plane of the loop. A current loop may

be represented by a charge e rotating at constant speed in a circular

orbit. Use the classical model of the orbital motion of the electron

and Bohr’s quantization postulate to show that the magnetic dipole

moment of the loop is quantized such that

μ = n mB , n = 1, 2, 3, . . . ,

where mB = e�/2me is the Bohr magneton and me is the mass of the

electron.

Problem 5.6 Why we do not see single photons?
Consider an experiment. A student is at a distance 10 m from a light

source whose power P = 40 W.
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(a) How many photons strike the student’s eye if the wavelength of

the light is 589 nm (yellow light) and the radius of the pupil (a

variable aperture through which light enters the eye) is 2 mm.

(b) At what distance from the source only one photon would strike

the student’s eye?

Problem 5.7 Stern–Gerlach experiment: Evidence of the quantized
angular momentum (spin) of an electron

(a) Illustrate and explain in a simple way the Stern–Gerlach

experiment.

(b) Explain, using some algebra, why in the Stern–Gerlach experi-

ment the silver atomic beam after passing the magnetic field is

not continuously spread, but is split into only two components?

Challenging Problem: Collapse of the classical atom

The classical atom has a stability problem. Let us model the

hydrogen atom as a non-relativistic electron in a classical circular

orbit about a proton. From the electromagnetic theory, we know that

a deaccelerating charge radiates energy. The power radiated during

the deacceleration is given by the Larmor formula (2.3).

(a) Show that the energy lost per cycle is small compared to the

electron’s kinetic energy. Hence, it is an excellent approximation

to regard the orbit as circular at any instant, even though the

electron eventually spirals into the proton.

(b) How long does it take for the initial radius of r0 = 1 Å to

be reduced to zero? Insert appropriate numerical values for all

quantities and estimate the (classical) lifetime of the hydrogen

atom.
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Chapter 6

Duality of Light and Matter

If all this damned quantum jumps were really to stay, I should be
sorry I ever got involved with quantum theory.

—Erwin Schrödinger

We have already encountered several aspects of quantum physics,

but in all the discussions so far, we have always assumed that a

particle, a photon in particular, is a small solid object. However,

quantum physics as it developed in the three decades after Planck’s

discovery, found a need for an uncomfortable fusion of the discrete

and the continuous. This applies not only to light but also to

particles. Arguments about particles or waves gave way to a

recognized need for both particles and waves in the description

of radiation. Thus, we will see that our modern view of the “true

nature” of radiation and matter is that they have a dual character,

behaving like a wave under some circumstances and like a particle

under other, but never both simultaneously.

In the last few chapters, we discussed the wave and particle

properties of light, and with our current knowledge of the radiation

theory, we can recognize the following wave and particle aspects of
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radiation:

Wave character Particle character

1. Polarization Photoelectric effect

2. Interference Compton scattering

3. Diffraction Blackbody radiation

The fact that the same light beam can behave like a wave and a

particle raises tricky questions.

How can light be a wave and a particle at the same moment?

Is a photon a particle or a wave?

Evidently, we are left with an obvious question: Which theory are

we to believe?

If we accept the duality of light, then another obvious question

arises: Is this dual character a property of light alone or of all

structures in the universe, in particular material particles?

Following this, one may ask: Is an electron really a material

particle or is it a wave?

We have to say that there is no definite answer to these questions.

We can get a satisfactory answer to these questions, but we must

enter the strange and often deceiving world of quantum wave
physics.

6.1 Matter Waves

The confusion over particle versus wave properties was resolved by

Louis de Broglie. On the basis of the observations that

• Nature is strikingly symmetrical and

• Our universe is composed entirely of light and matter,

he postulated that since light has a dual wave–particle nature, matter

also has this nature.

The dual nature of light shows up in equations

λ = h
p

, E = hν . (6.1)

Each equation contains within its structure both a wave concept

(λ, ν), and a particle ( p, E ). According to this observation, a particle
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with energy E and momentum p should have the possibility to

manifest itself as a wave.

The photon also has an energy given by the relationship from the

relativity theory

E = mc2 . (6.2)

Since E = hν = hc/λ, we find the wavelength

λ = h
mc

= h
p

, (6.3)

where p is the momentum of the photon.

This does not mean that light has mass, but because mass and

energy can be interconverted, it has an energy that is equivalent to

some mass.

De Broglie postulated that a particle can have a wave character

and predicted that the wavelength of a matter wave would also be

given by the same equation that held for light, where now p would

be the momentum of the particlea

λ = h
mv

= h
p

, (6.4)

where v is the velocity of the particle, and λ is called the de Broglie

wavelength.

Remember this formula! It is the fundamental matter–wave

postulate and will appear very often in our journey through the

developments of quantum physics.

If particles may behave as waves, could we ever observe the

matter waves?

The idea was to perform a diffraction experiment with electrons.

But an obvious question was: How to perform such an experiment?

What wavelengths can we expect? To answer these questions and

gain some appreciation of the de Broglie wavelength, consider first

a simple example.

aWave character of particles is often interpreted that particles itself are waves. It is a

wrong interpretation! Quantum physics predicts that particles can behave as waves,

and it does not mean that they are waves in nature.
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Example: What is the de Broglie wavelength of an electron whose

kinetic energy is K = 100 eV?

We first calculate the velocity of the electron from which we then

find the de Broglie wavelength corresponding to that velocity.

Thus, the velocity of the electron of energy 100 eV is

v =
√

2K
me

= 5.9 × 103 [km/s] .

Hence, the de Broglie wavelength corresponding to this velocity is

λ = h
p

= h
mev

= 1.2 [Å] .

The wavelength is very short; it is about the size of a typical atom.

The aforementioned example shows that the wavelength is very

short. Thus, an obvious question arises: How to detect such short

wavelengths?

We may notice from the aforementioned example that the

wavelength is also of the same order as the wavelengths of X-rays.

Therefore, we immediately conclude that the matter waves can be

detected in the same way that the wave nature of X-rays was first

observed: diffraction of particles on crystals.

This idea was tested experimentally in 1926 by Clinton Davisson

and Lester Germer,a and independently by George Thompson,b who

performed electron-scattering experiments. They observed that

electrons, after passing through a large nickel crystal (d = 2.15 Å),

produced an interference pattern. Using the experimental data, they

found that the wavelength calculated from the diffraction relation

nλ = 2d sin θn , n = 0, 1, 2, . . . (6.5)

was in excellent agreement with the wavelength calculated from the

de Broglie relation λ = h/p.

An interference pattern was demonstrated not only with elec-

trons, but also with many kinds of material particles like protons

and neutrons. However, any attempt to observe an interference

aIn fact, Davisson and Germer had done some of these experiments even before de

Broglie’s matter wave postulate was established, but they could not interpret their

results.
bDavisson and Thompson were granted the Nobel Prize in 1937 for their

experimental discovery of the diffraction of electrons by crystals.
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pattern with neutral atoms was found difficult by the fact that atoms

carried no charge as electrons do and could not penetrate through

condensate matter like neutrons.

This problem has not been solved until recently, when rapidly

developing laser techniques enabled to create two slits separated by

a very small distance. In addition, laser cooling of atoms has enabled

to increase the de Broglie wavelength of an atom, thereby allowing to

observe interference effects in Young’s double-slit type experiment

with atoms traveling along well-separated paths.

In 1991, Carnal and Mlynek demonstrated that atoms emerging

from the same source and split by two slits produced an interference

pattern at the atomic detector. The source of the atoms in their

experiment was a thermal beam of metastable helium atoms. The

velocity of the atoms was adjusted by setting the temperature of the

source to T = 295 K, corresponding to a mean de Broglie wavelength

of λ = 0.56 Å, or to T = 83 K, corresponding to λ = 1.03 Å. The

atoms traveled through two slits, burned with a laser beam in a

thin gold foil, and separated by 8 μm. The interference pattern was

monitored by a detection system consisting of a secondary electron

multiplier. The interference pattern of the detected atoms is shown

in Fig. 6.1.

Figure 6.1 Interference pattern observed in the Carnal and Mlynek

experiment with two different de Broglie wavelengths (a) λ = 0.56 Å and

(b) λ = 1.03 Å. The dashed line represents the detector background with

the atomic beam blocked in front of the entrance slit.
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In summary of this section, we may conclude that for matter as

well as for light, we must face up to the existence of a dual character:

Matter behaves in some circumstances like a particle and in others

like a wave.

What does it mean by “some circumstances”? One can say that

this is a rather confusing statement. It means that the two models

(particle and wave) complement each other.

6.2 Matter Wave Interpretation of Bohr’s Model

De Broglie’s wave–particle theory offered a much more satisfactory

interpretation of the Bohr atom: Bohr’s condition for angular

momentum of the electron in a hydrogen atom is equivalent to a

standing wave condition. The quantization of angular momentum

L = n� means that

mvr = n�

or

mv = nh
2πr

. (6.6)

However, if we employ de Broglie’s postulate that the electron

behaves as a wave, not as a particle

p = mv = h
λ

, (6.7)

and combine Eqs. (6.6) and (6.7), we find

nλ = 2πr , n = 1, 2, 3, . . . (6.8)

Thus, if one tries to represent the length in terms of wavelengths, the

length of Bohr’s allowed orbits (2πr) exactly equals to an integer

multiple of the electron wavelength (nλ), as illustrated in Fig. 6.2.

Hence, Bohr’s quantum condition is equivalent to saying that an

integer number of electron waves must fit into the circumference of

a circular orbit.

The de Broglie wavelength of an electron in the smallest orbit

turns out to be exactly equal to the circumference of the orbit

predicted by Bohr. Similarly, the second and third orbits are found
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2πr1 2πr2

(a) (b)

Figure 6.2 Example of standing waves in the length of the electrons’ first

(n = 1) and second (n = 2) orbit of lengths (a) 2πr1 and (b) 2πr2.

to contain two and three de Broglie wavelengths, respectively. From

this picture, it now becomes clear why only certain orbits are

allowed.

Note that de Broglie arrived to this conclusion from the

fundamental matter–wave postulate, whereas Bohr assumed this

property.

We can summarize that according to quantum wave mechanics:

(1) The electron motion in an atom is represented by standing

waves.

(2) Since only certain wavelengths can now exist, the electron’s

energy can take on only certain discrete values.

Tutorial Problems

Problem 6.1 If, as de Broglie says, a wavelength can be associated

with every moving particle, then why are we not forcibly made aware

of this property in our everyday experience? In answering, calculate

the de Broglie wavelength of each of the following “particles”:

(a) A car of mass 2000 kg traveling at a speed of 120 km/h.

(b) A marble of mass 10 g moving with a speed of 10 cm/s.

(c) A smoke particle of diameter 10−5 cm (and a density of,

say, 2 g/cm3) being jostled about by air molecules at room

temperature (27◦C = 300 K). Assume that the particle has the
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same translational kinetic energy as the thermal average of the

air molecules

p2

2m
= 3

2
kB T ,

where, as usual, kB is Boltzmann’s constant and T is the absolute

temperature.

Problem 6.2 Show that the de Broglie wavelength of the electron in

the ground state, n = 1, is equal to 2πao, where ao is the Bohr radius.

6.3 Definition of Wave Function

The idea that the electron’s orbits in atoms correspond to standing

matter waves was taken by Erwin Schrödinger in 1926 to formulate

quantum wave mechanics. He introduced the idea of wave function

�(�r , t) as the basic quantity in quantum wave mechanics. According

to this idea, the wave function measures the wave disturbance of

matter waves associated with a given system at time t and at a

point �r .

But what exactly is this “wave function” and what is its physical

meaning?

Before we explain the physical meaning of the wave function,

consider a simple but important example in which we will determine

what types of wave functions represent a physical system, and what

are the physical consequences of choosing this particular form.

Suppose we have a free particle of mass m confined between two

walls separated by a distance a. The motion of the particle along the

x-axis may be represented by a harmonic wave

�(x , t) = �max sin(kx) sin(ωt + φ) , (6.9)

where ω = 2πν and k = 2π/λ.

However, only standing waves will exist for all times, and other

waves will destructively interfere and disappear after some time t.

Therefore, only standing waves can represent the particle confined

between the walls. The condition required for a standing wave is

a = n
λ

2
, n = 1, 2, 3, . . . (6.10)
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from which we find that

k = 2π

λ
= nπ

a
. (6.11)

Hence, the wave function takes the form

�n(x , t) = �max sin
(nπ

a
x
)

sin(ωt + φ) , (6.12)

where the subscript n has been introduced to indicate that the

particle is determined by an infinite number of separate wave

functions.

Physically, all that Eq. (6.12) says is that a particle in a box

is represented by a set of separate standing waves of different

amplitudes. It means that the motion of the particle is quantized and

is represented by an infinite (discrete) number of wave functions

determined by different n. However, this is not the whole story.

As a consequence of the quantization of the amplitude, the linear

momentum is also quantized. Since

λ = 2a
n

, (6.13)

we can replace λ by h/p and obtain

p = n
h

2a
. (6.14)

The momentum is related to the energy E , which gives

E = 1

2

p2

m
= n2 h2

8ma2
≡ En . (6.15)

This indicates that the energy of the particle is also quantized. Thus,

a particle confined between two walls cannot have any energy.

In summary, the main consequence of quantum confinement is

that the particle is represented by a set of separate wave functions.

In addition, the continuous energy spectrum of the particle in

free space (unlimited space corresponding to a → ∞) is radically

modified and replaced by a discrete energy spectrum. The energy

levels depend on the distance a and can be modified by appropriate

choice of the value a.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

66 Duality of Light and Matter

6.4 Physical Meaning of Wave Function

The aforementioned theoretical analysis and diffraction experi-

ments with particles definitely convinced us that a particle can

behave like a wave. Remember, the particle itself is not a wave, but it

behaves like a wave. If you say that the particle is a wave, then one

may object to this interpretation and may say that it is problematic.

Namely, a particle has mass and some of them have electric charge.

Does this mean that the mass and charge of an electron, for example,

are spread out over the extent of the wave? This would be crazy.

It would mean that if we isolate just a part of the wave, we would

obtain a fraction of an electron charge.

How then should we interpret an electron wave?

The answer is that the wave itself does not have any substance.

It is a probability wave. When we talk about a particle wave, the

amplitude of the wave at a particular point tells us the probability of

finding the particle at that point.

We may recognize the close analogy between the wave function

and, for example, the electric field amplitude. The wave function of a

particle describes the probability distribution of a particle in space,

just as the wave function of an electromagnetic field describes the

distribution of the electromagnetic field in space.

In fact, the idea of the probabilistic interpretation of the physical

phenomena, introduced by Born, Heisenberg, and Schrödinger, came

from the probabilistic nature of the interference and diffraction

effects. Simply, it is observed in diffraction experiments that the

particles randomly distribute to form the diffraction pattern on the

screen.

In addition, we know from the interference and diffraction in-

volving an electromagnetic field that the intensity of the interference

fringes is proportional to the square of the field amplitude, or

alternatively to the probability that the waves interfere positively or

negatively at some points.

In analogy to this theory of interference, Max Born suggesteda

that the quantity |�(�r , t)|2 = �∗(�r , t)�(�r , t) is a measure of the

aBorn was granted the Nobel Prize in 1954 for his fundamental research in quantum

mechanics, especially for his statistical interpretation of the wave function.
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probability density that the particle will be found at time t near the

point �r . More precisely, the quantity |�(�r , t)|2dV is the probability
that the particle will be found within a volume dV around the point

�r at which |�(�r , t)|2 is evaluated.a

Since |�(�r , t)|2dV is interpreted as the probability, it is normal-

ized to one as ∫
V

|�(�r , t)|2dV = 1 . (6.16)

The probabilistic formulation of quantum physics makes it

completely different from classical physics. In classical physics,

everything appears to have a definite position, a definite momentum,

and a definite time of occurrence. The trajectory of a particle and

the future behavior may be predicted with absolute certainty using

Newton’s laws. In other words, in Newtonian mechanics everything

is predictable.

Let us consider two examples that illustrate differences between

the classical and quantum behavior of a particle.

Example 1: Classical behavior of a particle
Suppose there is a force �F , which might be associated with a

potential energy of a particle, acting on the particle initially at t = t0

located at a point �r0. The particle is moving with an initial velocity

�v0.

Using Newton’s second law

�F = d �p
dt

= m
d2�r
dt2

, (6.17)

we find with absolute certainty the particle’s locality �r(t) and

velocity �v(t) at any future time.

Moreover, we may predict the trajectory of the particle’s motion.

Let

�F = m�g . (6.18)

Then

m�g = m
d�v
dt

, (6.19)

aThe wave function � is complex, but the product ��∗ is always real and a positive

quantity. The function �∗ is the complex conjugate of � and is obtained from � by

replacing the complex parameter i by −i whenever it appears in the function.
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from which we find

�v(t) = �v0 + �gt , (6.20)

and

�r(t) = �r0 + �v0t + 1

2
�gt2 . (6.21)

Thus, if we know �r0 and �v0 at time t = t0, we may predict the precise

position �r(t) and velocity �v(t) of the particle at all future times t > t0.

Example 2: Quantum behavior of a particle
Let us consider now the motion of the particle from the point of view

of quantum physics, in which behavior of the particle is described by

a wave function.

Consider the wave function at time t = 0 of a free particle confined

between two walls (Eq. (6.12)). In this case, the probability density

of finding the particle at a point x between the walls is given by

|�(x , 0)|2 = |�max|2 sin2
(nπ

a
x
)

. (6.22)

This formula shows that the probability of finding the particle at the

point x is different from 1 (certain) and varies with the position x
and the distance between the walls.

Thus, according to quantum physics, we are not able to predict

with absolute certainty the initial t = t0 position of the particle

between the walls. Hence, we will not be able to predict with

absolute certainty the trajectory of the particle, position �r(t), and

velocity �v(t) at any future time t > t0.

The dependence of the probability density on the position x
between the walls for two different values of n is shown in Fig. 6.3. It

is seen that for n = 1, the particle is more likely to be found near the

center than the ends. For n = 2, the particle is most likely to be found

at x = a/4, x = 3a/4, and the probability of finding the particle at

the center is zero. The strong dependence of the probability on x is

in contrast to the predictions of classical physics, where the particle

has the same probability of being anywhere between the walls.

Such a behavior of the particle is another example of quantum

effect without classical analog.

An aside: The readers may probably get a mixed feeling about

these quantum ideas. It could be expected, as these quantum ideas
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(a) (b)
P P

x x0 0a a

Figure 6.3 Probability density P = |�(x , 0)|2 as a function of the position

x for a free particle confined between two walls, and (a) n = 1, (b) n = 2.

are not easy to grasp as they seem to contradict our intuitive

understanding of the physical world.a It often leads people to

question the physical models developed in physics. The probabilistic

(statistical) nature of quantum physics is in itself a psychological

barrier for many people. Even Einstein was inflexibly opposed to this

statistical interpretation, which “leaves so much to chance.” He never

accepted these views and on some occasions dismissed them rather

harshly:

I cannot believe that God plays dice with the cosmos.
—Albert Einstein

According to Einstein, quantum mechanics is an incomplete

theory, fails to provide a complete description of physical reality,

and that there exist certain hidden variables that, if known, would

remove the necessity of the probabilistic interpretation of quantum

mechanics.b

aIf any reader knows why a particle confined between two walls behaves in such an

unusual way, please write to us. We would like to know it, too.
bThis problem is known as the Einstein–Podolsky–Rosen (EPR) paradox and is the

most famous and powerful attack on the quantum wave mechanics. The detailed

discussion of the paradox requires the knowledge of the advance quantum physics.

However, the readers interested in learning more about the theory and experiments

on the EPR paradox is referred to a recent review article by A. Zeilinger, Experiments

in quantum mechanics, Review Modern Physics, 71, S288 (1999).
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Remember that the wave function of a particle does not tell us

what the particle is, how it looks like, and what is its structure.

The wave function �(�r , t) tells us about properties of the particle

and how the particle behaves in space and time. Moreover, the wave

function �(�r , t) is a mathematical construct only. It is a probability
wave, which does not have any physical meaning.

Only |�(�r , t)|2 = �∗(�r , t)�(�r , t) has physical meaning—

probability density—and |�(�r , t)|2dV is the probability of finding

the particle at time t in the volume dV around the point �r .

An interesting comment of a former student

“If only |�(�r , t)|2dV has physical meaning, why don’t we use this

probability rather than �(�r , t)? Wouldn’t it be simpler in quantum

mechanics to use only the probability and forget about the wave

function?”

We shall see in the next chapter that the answer to this question

lies in the interference experiments, which show that the wave

function itself plays an important role in the interpretation of many

phenomena in quantum physics. Briefly, �(�r , t) describes the wave

nature of a particle, and |�(�r , t)|2dV describes where we might find

the particle.

Tutorial Problems

Problem 6.3 Determine where a particle is most likely to be found

whose wave function is given by

� (x) = 1 + i x
1 + i x2

.

Problem 6.4 The wave function of a free particle at t = 0 is given by

�(x , 0) =
⎧⎨
⎩

0 x < −b ,

A −b ≤ x ≤ 3b ,

0 x > 3b .

(a) Using the fact that the probability is normalized to one, i.e.,
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∫ +∞

−∞
|�(x , 0)|2dx = 1 ,

find the constant A. (You can assume that A is real.)

(b) What is the probability of finding the particle within the

interval x ∈ [0, b] at time t = 0?

Problem 6.5 The state of a free particle at t = 0 confined between

two walls separated by a is described by the following wave

function:

�(x , 0) = �max sin
(nπ

a
x
)

, 0 ≤ x ≤ a ,

�(x , 0) = 0 , x > a , and x < 0 .

(a) Find the amplitude �max using the normalization condition.

(b) What is the probability density of finding the particle at x =
0, a/2, and a? How does the result depend on n?

(c) Calculate the probability of finding the particle in the regions
a
2

≤ x ≤ a and 3a
4

≤ x ≤ a, for n = 1 and n = 2.

Problem 6.6 The time-independent wave function of a particle is

given as

�(x) = Ae−|x|/σ ,

where A and σ are constants.

(a) Sketch this function and find A in terms of σ such that �(x) is

normalized.

(b) Find the probability that the particle will be found in the region

−σ ≤ x ≤ σ .

6.5 Phase and Group Velocities of Matter Waves

We have already learned that light has a dual character, and after de

Broglie and the interference experiments with particles, we believe

that matter also has dual character. A particular consequence of this

is that a particle confined between two walls and treated as a matter

wave cannot have any energy. We remember from a previous chapter

that the radiation in a box exhibits a similar property, which led

Planck to introduce the concept of quantization of energy. In this
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chapter, we continue our study of the duality problem and turn our

attention to the following question: What is the velocity with which

the probability moves in space and time? To answer this question,

we shall introduce the concept of phase and group velocities and

will examine the variation of the velocity of matter waves with

frequency of these waves. In the wave mechanics, this effect is called

the dispersion.

We have seen that the radiation and matter contain within their

structures both wave and particle concepts.

Waves concept

λ = h
p

= h
mv

, (6.23)

where v is the velocity of a particle of the mass m.

Particles concept

E = mc2 = hν . (6.24)

Hence, if we accept that there is an analogy between the matter

waves and radiation, we shall find that the velocity of the matter

waves is

u = λν = h
mv

mc2

h
= c2

v
. (6.25)

Since, v < c, we see that the velocity of the matter waves is always

greater than the speed of light in vacuum, i.e., u > c. Thus, u and v
are never equal for a moving particle.

This result seems disturbing because it appears that the matter

waves, if treated as an analog of radiation, would propagate faster

than the speed of light in vacuum and would not be able to keep up

with particles whose motion they govern.

However, the velocity u is a phase velocity of the matter waves,

which is the velocity of the wave front, not its amplitude. The

maximum of the amplitude of a given wave can propagate at

different velocities, called group velocity. At this velocity, the energy

(information) is transmitted. Usually, vg = u, but in the case of

dispersion, u(ν), the group velocity vg < u. Thus, the matter wave

should be dispersive to match the requirement of vg < u when u > c.
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Thus, an obvious question arises from the foregoing: Are the

matter waves dispersive?

Let us answer this by first defining the phase and group

velocities.

In order to introduce the concept of group velocity and to

show that matter waves are dispersive, we have to assume that a

matter wave is composed at least of two harmonic waves of slightly

different k and ω. We shall explain it later in the book why we have

to assume that a matter wave is composed of a group of harmonic

waves.

Suppose we have two harmonic waves of slightly different k and

ω and propagating in the same direction. Let

k1 = k0 + �k , ω1 = ω0 + �ω ,

k2 = k0 − �k , ω2 = ω0 − �ω , (6.26)

The resulting wave is obtained by taking a linear superposition of

the two waves

�(�r , t) = 1

2
ei(�k1·�r−ω1t) + 1

2
ei(�k2·�r−ω2t) . (6.27)

Then, using Eq. (6.26) and Euler’s formula (e±i x = cos x ± i sin x),

we obtain

�(�r , t) = 1

2
ei[(k0+�k)�κ·�r−(ω0+�ω)t] + 1

2
ei[(k0−�k)�κ·�r−(ω0−�ω)t]

= ei(k0 �κ·�r−ω0t) cos (�k�κ · �r − �ωt) , (6.28)

where �κ · �r is the distance the wave propagated, and �κ is the unit

vector in the �k direction.

We see from Eq. (6.28) that in time t, the fast varying function

propagates a distance

�κ · �r = ω0

k0

t = ut , (6.29)

whereas the envelope propagates a distance

�κ · �r = �ω

�k
t = dω

dk
t = vgt . (6.30)

Hence, the envelope propagates at velocity vg = dω/dk, which is

called the group velocity.
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We see from Eq. (6.28) that the probability density |�(�r , t)|2 is

independent of the phase velocity; it depends only on the group

velocity

|�(�r , t)|2 = cos2 �k
(�κ · �r − vgt

)
. (6.31)

Thus, the probability moves with the group velocity.

The envelope forms a so-called wave packet and, as we have

already seen, the amplitude of the wave packet propagates with

velocity vg .

We are now at the position to answer the main question of

whether matter waves are dispersive or not. To check this, consider

the energy of a particle as

E = 1

2m
p2 = �

2

2m
k2 . (6.32)

If the energy of the particle is quantized, E = �ω, and then

�dω = �
2

2m
2kdk , (6.33)

from which we find that

vg = dω

dk
= �k

m
�= u . (6.34)

Hence, if E = �ω, then the matter waves are dispersive.

When vg < u, we say that the matter waves exhibit normal
dispersion, whereas vg > u is regarded as anomalous dispersion.

When vg = u, there is no dispersion.

Let us consider two examples that illustrate some of the concepts

just introduced.

Worked Example

What is the group velocity of the wave packet associated with a

particle moving with velocity v?

Solution

From the definition of group velocity, we have

vg = dω

dk
= 2π

dν

dk
= 2π

d(hν)

d(hk)
= d E

dp
, (6.35)
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where p = �k. However,

E 2 = m2
0c4 + p2c2 . (6.36)

Thus,

2E d E = 2 pc2dp . (6.37)

from which we find that

d E
dp

= pc2

E
= mvc2

mc2
= v . (6.38)

Hence, vg = v , the group velocity is equal to the velocity of the

particle. In other words, the velocity of the particle is equal to the

group velocity of the corresponding wave packet.

Worked Example

The dispersion relation for free relativistic electron waves is

ωk =
√

c2k2 + (mc2/�)2 . (6.39)

(a) Calculate expressions for the phase velocity u and group velocity

vg of these waves and show that their product is constant,

independent of k.

(b) From the result (a), what can you conclude about vg if u > c?

Solution

(a) From the definition of the phase velocity, we find

u = ωk

k
=
√

c2 +
(

mc2

k�

)2

. (6.40)

We see that the phase velocity u > c.

From the definition of the group velocity, we find

vg = dωk

dk
= 1

2

2c2k√
c2k2 + (mc2/�

)2

= c2k

ck
√

1 + (mc/k�)2
= c√

1 + (mc/k�)2
. (6.41)
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Thus, the group velocity is less than c (vg < c) as it must be

since, according to the theory of relativity, energy or a signal

cannot be propagated with a velocity exceeding c.

In addition, the product

uvg = c2k
ωk

ωk

k
= c2 (6.42)

is constant and independent of k. Thus, relativity is still all right.

(b) We see from (a) that in general for dispersive waves for which

u > c, the group velocity vg < c. Only when u = c, the group

velocity

vg = c.

To summarize, we have learned that

(1) Matter waves are dispersive.

(2) The matter wave associated with a particle is in the form of a

wave packet.

(3) The amplitude of a matter wave (wave packet) moves with the

group velocity.

(4) The group velocity of the matter wave associated with a moving

particle travels with the same velocity as the particle.

In the next step of our efforts to understand the fundamentals of

quantum physics, we will explain why in quantum physics a localized

particle is represented by a superposition of wave functions (wave

packet) rather than a single harmonic wave function. Important

steps on the way to understand the concept of wave packets are the

uncertainty principle between the position and momentum of the

particle, and the superposition principle.

Tutorial Problems

Problem 6.7 In one of the chapters, we calculated the phase velocity

u using the relativistic formula for the energy. Calculate the phase

velocity for the non-relativistic case. Does the relativistic result for u
tends to the corresponding non-relativistic result as the velocity of

the particle becomes small compared to the speed of light?
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Problem 6.8 We know that the group velocity vg of the wave packet

of a particle of mass m is equal to the velocity v of the particle. Show

that the total energy of the particle is E = �ω, the same which holds

for photons.

Problem 6.9 If the group velocity of a wave packet is given by vg =
3u, where u is the phase velocity, how does u depend on frequency

ω?

What the electron is doing during its journey in the
interferometer? During this time the electron is a great smoky
dragon, which is only sharp at its tail (at the source) and at
its mouth, where it bites the detector.

—J. A. Wheeler

6.6 Heisenberg Uncertainty Principle

In quantum physics, we usually work with the wave function � ,

whose |�|2dV describes a probability that a given object, e.g., a

particle confined to a volume dV , is moving with a velocity v0.

A probability different from 1 (certain) means that we are not

precisely sure that the velocity of the particle is v0. We may say

that the velocity is v0 with some error �v0, which is called standard

deviation or variance or simply uncertainty.

The same argument applies to a measurement of position of the

particle. In fact, it applies to the measurement of any quantity in

physics. Measurements of some quantities are independent of each

other, but some are related (correlated), i.e., a measurement of one

of the quantities affects the measurement of the other. We call this

relation the Heisenberg uncertainty principle.

The uncertainty principle can be derived in a variety of

ways. It applies in both classical and quantum physics. Let us

obtain it by considering a typical diffraction experiment shown in

Fig. 6.4.
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A

yΔ

θv0

Figure 6.4 Schematic diagram of a diffraction experiment. A beam of

particles emerging from the slit of width �y interferes to form an

interference pattern on the observation screen.

The position of the first (n = 1) minimum in the diffraction

pattern is given by the diffraction formula

sin θ = λ

�y
. (6.43)

In order to reach the point A, the particle initially moving in the

x-direction has to gain a velocity in the y-direction, such that

sin θ = �vy

v0

, (6.44)

where �vy is a change (gain) of the velocity of the particle in the

y-direction.

By comparing Eqs. (6.43) and (6.44), we find that

�vy

v0

= λ

�y
, (6.45)

which we may write as

�vy�y = v0λ . (6.46)

This relation is often called the classical uncertainty relation. The

uncertainty is limited by the wavelength λ and can be changed by

changing λ.

When we apply the de Broglie postulate

λ = h
p

= h
mv0

, (6.47)
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we find that the relation (6.46) takes the form

�py�y = h , (6.48)

where �py = m�vy is the uncertainty in the momentum of the

particle.a

This is the quantum uncertainty relation. The precision of

measurement of a given quantity is independent of any experimental

parameter. It is limited by the Planck constant h.

The relation (6.48) is one form of the uncertainty principle
first obtained by Werner Heisenbergb in 1927. It states that it is

impossible to measure the momentum py and position y of a particle

simultaneously with the same precision. If we know more about one

of the two quantities, the less we know about the other. For example,

if the particle is completely unlocalized, �y → ∞, the momentum

is certain, �py → 0, and vice versa; if the momentum is completely

random, �py → ∞, the position is certain, �y → 0. Two physical

(measurable) quantities related through the uncertainty principle

are called complementary observables.

An aside: The Heisenberg uncertainty principle has created a

long debate on the validity of quantum physics. Most scientists

interpret physical phenomena as events taking place “out there,”

independent of any measurement or observation. At the same time,

quantum theory stands in conflict with such naive notions of reality.

As we have already learned, the Heisenberg uncertainty principle

sets a limit on the precision with which two complementary

observables can be measured. For example, a measurement of

momentum of a particle disturbs the position of the particle.

To many people, this is an unsatisfactory feature of quantum

physics. The most notable objector, of course, was Einstein, whose

concern about the uncertainty principle is expressed in his famous

statement:

aThe arguments used in the derivation of Eq. (6.48) are somewhat rough. A more

concrete treatment, which will be presented in Section 10.6, results in the following

inequality, called the Heisenberg inequality

�py�y ≥ h/4π .

Note that the relation (6.48) satisfies the Heisenberg inequality as h > h/4π .
bHeisenberg was granted the Nobel Prize in 1932 for the creation of quantum

mechanics.
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Is the state of the Universe disturbed if a mouse looks at it?.

In summary, remember that the Heisenberg uncertainty principle is

not a statement about the inaccuracy of measurement instruments,

nor a reflection on the quality of experimental methods. It arises

from the wave properties inherent in the quantum mechanical

description of nature. Even with perfect instruments and techniques,

the uncertainty is inherent in the nature of things and quantifies the

inability to precisely locate them.

Discussion Problem

Problem D1 Regarding uncertainty principle, a student asked a

question: “If I do not move, does it mean that I am everywhere”? How

would you answer this question?

Tutorial Problems

Problem 6.10 Monochromatic light, such as produced by lasers, is

used to determine the position of small objects such as particles or

single trapped atoms. Suppose that visible light of wavelength λ =
5 × 10−7 m is used to determine the position of an electron within

the wavelength of the light. What is the uncertainty in the electron’s

velocity?

Problem 6.11 Energy and time uncertainty relation
The time required for a wave packet to move the distance equal to

the width of the wave packet is �t = �x/vg , where �x is the width

of the wave packet. Show that the time �t and the uncertainty in the

energy of the particle satisfy the uncertainty relation

�E�t = h ,

where �E = ��ω.
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I cannot define the real problem therefore I suspect there is
no real problem, but I am not sure there is no real problem.

—R. P. Feynman

6.7 Superposition Principle

According to quantum physics, we may associate with each particle

a wave function to determine its position �r at a given time t:

�(�r , t) = Aei(�k·�r−ωt) . (6.49)

Since the probability density |�(�r , t)|2 = |A|2 = const., i.e., it

is independent of �r and t, we see that the particle is completely

unlocalized in space and can be found anywhere in space with

the same probability. However, we know from everyday life that

particles are localized in space and their position can be given with

some approximation. In other words, particles are partly localized.

Therefore, a wave function such as (6.49) cannot represent a real

physical system.

How to get out of this dilemma?

We may resolve this dilemma by referring to the uncertainty

principle. According to the uncertainty principle, a particle partly

localized in space (��r < ∞) has an uncertainty in momentum

(��p �= 0). Hence, if

�1(�r , t) = A1ei(�p1·�r/�−ω1t) (6.50)

is a wave function of the particle located at �r , then

�2(�r , t) = A2ei(�p2·�r/�−ω2t) , (6.51)

where |�p1 − �p2| ≤ ��p is also a wave function of the particle.

Moreover, any linear combination (superposition) of the two

wave functions is also a wave function of the particle,a i.e.,

�(�r , t) = a�1(�r , t) + b�2(�r , t) , (6.52)

where a and b are complex numbers.

aWe will see in Chapter 7 that this conclusion arises from the linearity in � of

the Schrödinger equation, which determines the wave function of a given particle.

Namely, the linearity simply means that if �1 and �2 are solutions to the Schrödinger

equation, then an arbitrary linear combination of �1 and �2 is also a solution.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

82 Duality of Light and Matter

Equation (6.52) is an example of the superposition principle,

which, in general, holds for an arbitrary number of wave functions.

Thus, a single wave function cannot represent a particle of a given

momentum. Instead, we expect that the particle is represented by a

superposition of wave functions. Hence, we may conclude that the

wave function of a particle is represented by the sum of sinusoidal

waves exp[i(�k · �r − ωkt)]. For a continuous set of wave functions, the

sum is of course an integral

�(�r , t) =
∫

k
A(�k)ei(�k·�r−ωkt)d3k , (6.53)

where d3k is the element of volume in �k-space (momentum space).

In other words, the set contains an infinite number of waves with

continuously varying wave number k.

One can see from Eq. (6.53) that the mathematics used in

carrying out the procedure of obtaining a superposition wave

function involves the Fourier transformation (Fourier integral). If

the superposition function is known, the amplitude A(�k) can be

found employing the inverse Fourier transformation:

A(�k) = 1√
2π

∫
V

�(�r , t)e−i(�k·�r−ωkt)d3�r . (6.54)

In summary, the superposition principle is at the heart of quantum

mechanics and is referred by many physicists as really “the only

mystery” of quantum mechanics. It is in complete contrast with

classical mechanics, where a superposition of two states would be

a complete nonsense as it would imply that a particle could simulta-

neously occupy two or more points in space. According to quantum

physics, a particle can exist in two or more states at the same time.

Furthermore, if more particles are involved, we encounter the idea

of a multi-particle superposition or non-separability, called quantum
entanglement. Clearly, the superposition principle confronts us with

some basic questions of interpretation of physical reality. The

superposition principle and entanglement have been exploited in

recent years in three important applications. The first is quantum
cryptography, where a communication signal between two people

can be made completely secure from eavesdroppers. The second

is quantum communication, where capacities of transmission lines

can be increased in comparision to that of classical transmission



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Quantum Interference 83

systems. The third is a proposed device called quantum computer,

where all possible calculations could be carried out simultaneously.

6.8 Quantum Interference

A beautiful illustration of the superposition principle is the

interference phenomenon. Although interference is a classical wave

phenomenon, it is also at the heart of quantum mechanics. It is

usually illustrated with Young’s double-slit experiment, in which a

beam of light is divided at two narrow slits into two beams that,

after traveling separately for some distance, are recombined at an

observation point.

If there is a small path difference between the beams, interfer-

ence fringes are observed at the observation (recombination) point.

A schematic diagram of Young’s double-slit experiment is shown in

Fig. 6.5.

Figure 6.5 Schematic diagram of Young’s double-slit experiment. Two light

beams emerging from the slits S1 and S2 are brought together at the

observing screen and the resulting light intensity is measured at various

positions.

The observed intensity is a pattern of alternating bright and

dark strips, called interference fringes. Understanding the reason for

this interference is not difficult. It may be explained using classical

description of the process. The paths from each slit to a given point

on the observation screen are not necessarily equal, so the beams
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traveling from the slits arrive with different phases of propagation.

Due to the phase difference, the two beams will yield constructive

interference (bright strips) if they are in phase at the observation

point and destructive interference (dark strips) if they are 180◦ out

of phase with each other.a

The interpretation of the interference phenomenon becomes

more subtle when the light beams are replaced by individual

photons or particles. What happens is that when single photons

or particles are used and the experiment is repeated many times,

it is observed that the resulting pattern on the screen is identical

to that observed with the light beams. This seems to imply that

the individual photons had passed through both slits at the same

time and interfered with themselves. Dirac first noticed this strange

behavior, and his statement is now cited as the famous phrase “each

photon interferes only with itself. Interference between different

photons never occurs.”

How could the photon travel simultaneously through both slits?

This confusion is explained in terms of the superposition

principle resulting from the lack of information about the slit

through which the photon has been transferred to the screen. The

interference pattern observed in Young’s double-slit experiment

results from a superposition of the probability amplitudes for the

photon to take either of the two possible pathways. After the

interaction of the photon with the slits, the system of the two slits

and a photon is a single quantum system. In this case, the wave

function of the photon detected at the screen is a sum of two wave

functions corresponding to the two possible pathways the photon

traveled to the screen

�( �R) = �1( �R) + �2( �R) , (6.55)

where �R is the position of the detector on the screen.

The probability of detecting the photon at R is obtained by

calculating the square of the absolute value of �( �R):∣∣∣�( �R)
∣∣∣2 =

∣∣∣�1( �R) + �2( �R)
∣∣∣2 =

∣∣∣�1( �R)
∣∣∣2 +
∣∣∣�2( �R)

∣∣∣2
+2Re

[
�∗

1 ( �R)�2( �R)
]

, (6.56)

aCertain fundamental conditions must be satisfied to obtain interference fringes: the

beams must have the same intensity, frequency, wavelength, and polarization.
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where “Re” denotes the real part. In this equation, the term |�1( �R)|2

is the probability for the photon to pass through slit 1; the term

|�2( �R)|2 is the probability for the photon to pass through slit 2; and

the last term is the interference (superposition) between these two

probabilities. Since the wave functions depend on the position of

the slits, �i ( �R) ∼ ei�ki · �R , we see that |�( �R)|2 is a cosine function of

position �R and the recorded signal will show a spatial modulation

(interference fringes) on the screen.

Note that only the last term in Eq. (6.56) varies with the position

on the screen. Thus, this term is the only one responsible for the in-

terference fringes observed on the screen. It shows that interference

is a clear example of non-separability or entanglement in quantum

mechanics. Of course, the concept of a photon as a discrete localized

object is not helpful in understanding this experiment.

When we close one of the slits, say slit 1, �1( �R) = 0, and then the

probability (6.56) reduces to∣∣∣�( �R)
∣∣∣2 =

∣∣∣�2( �R)
∣∣∣2 , (6.57)

which shows that in this case no interference fringes are observed.

When one of the slits is closed, we definitely know through which

slit the photon traveled to the screen. This example is a clear

illustration that the observation of interference fringes and the

acquisition of which way the photon (information) was transferred

are mutually exclusive. This problem is often referred to by the

German phrase “welcher weg” (which way). Thus, interference is

always a manifestation of the intrinsic indistinguishability of two

possible paths of the detected photon. This indistinguishability is

an example of Bohr’s principle of complementarity that interference

and which way information are mutually exclusive concepts.a

An aside: The welcher weg problem has created many discus-

sions on the validity of the principle of complementarity. Einstein

proposed modifying Young’s double-slit experiment by using freely

moving slits. A light beam, or a particle, arriving at a point on the

screen must have changed momentum when passing through the

aReaders wishing to learn more about quantum interference, phenomena involving

quantum interference, and some interference experiments are referred to a book by

Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments
(Springer, Berlin, New York, Heidelberg, 2005).
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slits. Since the paths of the light beams traveling from the slits to

the point on the screen are different, the change of the momentum

at each slit must be different. Einstein’s proposal was simply to

observe the motion of the slits after the light beam traversed them.

Depending on how rapidly they were moving, one could deduce

through which slit the light beam had passed and, simultaneously,

one could observe an interference pattern. If this were possible, it

would be a direct contradiction of the principle of complementarity.

However, Bohr proved that this proposal was deceptive in the

sense that the position of the recoiling slits was subject to some

uncertainty provided by the uncertainty principle. As a result, if the

slits are moveable, a random phase is imparted to the light beams,

and hence the interference pattern disappears.

Feynman in his proposal for a welcher weg experiment suggested

replacing the slits in the usual Young’s experiment by electrons.

Because electrons are charged particles, they can interact with

the incoming electromagnetic field. Feynman suggested putting a

light source symmetrically between the slits. If the light beam

is scattered by an electron, the direction of the scattered beam

will precisely determine from which electron the beam has been

scattered. In this experiment, the momentum of the electrons

and their positions are both important parameters. To determine

which electron had scattered the light beam and at the same

moment observe interference, the momentum and the position of

the electron would have to be measured to accuracies greater than

allowed by the uncertainty principle.

6.9 Wave Packets

We have already learned that a free particle is not represented by a

single wave function but rather by a superposition of closely related

wave functions. Such a superposition is named a free particle wave
packet. A typical wave packet of a free particle is given by Eq.

(6.53). It also shows that the momentum and then also the position

distribution are roughly pictured by the behavior of |A(�k)|2.

We now consider the motion of a free particle wave packet. For

simplicity, we consider the motion in one dimension. In this case,
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�(�r , t) → �(x , t) =
∫ ∞

−∞
A (k) ei(kx−ωkt)dk , (6.58)

where k = kx and the frequency ωk is different for different k.

Let us assume that A(k) is appreciable only for k values that

lie in an interval k0 − 1
2
�k, k0 + 1

2
�k, where �k/k0 � 1 and k0

corresponds to the central (maximum) momentum.

Consider first the shape of the wave packet at t = 0. For t = 0,

the wave packet (6.58) reduces to

�(x , 0) =
∫ ∞

−∞
A (k) eikx dk . (6.59)

We see that waves with different k have different phases.

Is there any relation between different phases and different

positions of the fronts of the superimposed waves?

If �x is the displacement of x from x = 0, we may calculate under

what condition the particle can be found in the region �x . Since the

phases of the waves are different, calculate the maximal and minimal

phases of the packet:

�x
(

k0 − 1

2
�k
)

, minimal

�x
(

k0 + 1

2
�k
)

, maximal .

Waves with different phases will interfere with each other. The

maximum of interference appears for the difference between the

phases equal to 2π . Thus,

�x�k = 2π . (6.60)

Hence, the particle can be found at points for which �x = 2π/�k,

i.e., determined by the uncertainty relation.

Now we will check how the packet moves in time.

To do this, we may expand the frequency ωk, appearing in

Eq. (6.58), into a Taylor series about ωk0
= ω0 corresponding to the

maximum of the momentum at k = k0. By taking k = k0 + β , where

β is a small displacement from k0, the frequency can be expanded as

ωk = ωk0+β = ω0 +
(

dω

dβ

)
k0

β + 1

2

(
d2ω

dβ2

)
k0

β2 + . . . (6.61)
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Provided β is small enough, we take only first two terms of the series.

Then substituting the expansion to �(x , t), we obtain

�(�r , t) = ei(k0 x−ω0t)

∫ ∞

−∞
dβ A (k0 + β) eiβ(x−vgt) , (6.62)

where vg =
(

dω
dβ

)
k0

is the group velocity of the packet.

If we increase x by �x , i.e., x → x + �x , then

eiβ(x−vgt) = eiβx eiβ(�x−vgt) . (6.63)

Thus, for �x = vgt, we obtain the same packet as for t = 0, but

shifted by vgt. The conclusion then is that the group velocity is the

velocity of the packet moving as a whole.

If we include the third term of the Taylor expansion (6.61), we

get

�(�r , t) = ei(k0 x−ω0t)

∫ ∞

−∞
dβ A (k0 + β)

× exp iβ

[
x −
(

vg +
(

dvg

dβ

)
k0

β

)
t

]
. (6.64)

The term vg +
(

dvg

dβ

)
k0

β plays the role of the velocity of the wave

packet, which now depends on β . Thus, different parts of the wave

packet will move with different velocities, leading to a spreading of

the wave packet. This spreading is due to dispersion that vg depends

on β .

We can now summarize to give the connection between the group

velocity and the phase velocity, and the role of dispersion.

Phase velocity u = ω

k
,

Group velocity vg = dω

dk
.

Hence

vg = dω

dk
= d

dk
(ku) = u + k

du
dk

. (6.65)

Thus, vg depends on k when du
dk �= 0, i.e., when the phase velocity

depends on k. The dependence of vg on k is called dispersion.

In addition, we can say that the spread of the wave packet is due

to the dependence of the phase velocity on k [vg �= u when du
dk �= 0].



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Wave Packets 89

Let us summarize what we have learned in this lecture:

(1) In quantum physics, localized particles are represented by a

superposition of wave functions (so-called wave packets) rather

than a single harmonic wave function.

(2) The fact that the wave function of a particle must be represented

by a group of waves of different momenta suggests that there is

a fundamental limit to the accuracy with which the momentum

and position of the particle can be measured.

(3) The maximum of a wave packet moves through space with the

group velocity.

(4) The group velocity of the wave packet associated with a moving

particle is the same as the velocity of the particle.

(5) Since the matter waves are dispersive, a wave packet spreads

out as time progresses, which means that the position becomes

more uncertain.

Revision Questions

Question 1 Define the phase and group velocities and what do they

describe?

Question 2 Prove that matter waves are dispersive.

Tutorial Problems

Problem 6.12 The amplitude A(k) of the wave function

�(x , t) =
∫ +∞

−∞
A(k)ei(kx−ωkt)dk

is given by

A(k) =
⎧⎨
⎩

1 for k0 − 1
2
�k ≤ k ≤ k0 + 1

2
�k ,

0 for k > k0 + 1
2
�k , and k < k0 − 1

2
�k .
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(a) Show that the wave function can be written as

�(x , t) = sin z
z

�k ei(k0 x−ω0t) ,

where z = 1
2
�k(x − vgt).

(b) Sketch the function f (z) = sin z/z and find the width of the

main maximum of f (z).

(Hint: For f (z), one might define a suitable width as the spacing

between its first two zeros.)

Problem 6.13 Calculate A(k) (inverse Fourier transform)

A(k) = 1√
2π

∫ +∞

−∞
�(x , 0)e−ikx dx .

of the triangular wave packet

�(x , 0) =
⎧⎨
⎩

1 + x
b −b ≤ x ≤ 0 ,

1 − x
b 0 < x < b ,

0 elsewhere .

Draw qualitative graphs of A(k) and �(x , 0). Next to each graph,

write down its approximate “width.”

Problem 6.14 The wave function of a particle is given by a wave

packet

�(x , t) =
∫ +∞

−∞
A(k)ei(kx−ωkt)dk .

Assuming that the amplitude A(k) = exp(−α|k|), show that the

wave function is in the form of a Lorentzian

�(x , t) = 2α

α2 + (x − vgt
)2

.

(Hint: Expand k and ωk in a Taylor series around k0 = ω0 = 0.)
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Chapter 7

Non-Relativistic Schrödinger Equation

The major problem in quantum physics is to find the wave function

of a given physical system and to understand (predict) how the wave

function of the system evolves in time, or how it changes under

external influences.

In 1926, Erwin Schrödinger predicted that the wave function of a

given physical system might be completely determined if the total

energy of the system was known.a He formulated an equation of

motion for the wave function of a physical system, which is called the

Schrödinger equation. It is the basic relationship for determining

the evolution of the wave function and possible energies of a given

physical system.

We shall try to find a differential equation for the wave function

of a particle assuming that only the energy of the particle is known.

Since the equation represents a real physical system, it must satisfy

the following conditions:

• The equation must be linear.

• Coefficients appearing in this equation should only depend

on the parameters characteristic of the particle.

aSchrödinger was granted the Nobel Prize in 1933 for his discovery of new productive

forms of atomic theory.
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We will limit our considerations to the non-relativistic case only.

7.1 Schrödinger Equation of a Free Particle

First, we will consider the case of a free particle moving in one

dimension. The wave function of a free particle moving along, say

the x-axis, is given by

�(x , t) = �maxei(kx−ωt) . (7.1)

On the other hand, the energy and momentum of a free particle are

related by

E = 1

2m
p2

x . (7.2)

Since E = �ω and px = �k, we can express the energy in terms of

the wave parameters

ω = �

2m
k2 . (7.3)

Note that

(1) Taking the first derivative of Eq. (7.1) over x is equivalent to

multiplying the wave function �(x , t) by ik.

(2) Taking the first derivative of Eq. (7.1) over t is equivalent to

multiplying the wave function �(x , t) by −iω.

Thus, from Eq. (7.3), we can conclude that the differential

equation for the wave function should be the first order in t and the

second order in x . The simplest equation of this form is

∂�(x , t)

∂t
= �2 ∂2�(x , t)

∂x2
, (7.4)

where � is a parameter, which has to be determined.

To determine �, we substitute Eq. (7.1) into Eq. (7.4) and find

−iω = −�2k2 . (7.5)

Then, using Eq. (7.3), we find that

�2 = i�
2m

. (7.6)
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Hence, the wave function of a particle of the energy (7.2) satisfies

the following differential equation:

∂�(x , t)

∂t
= i�

2m
∂2�(x , t)

∂x2
, (7.7)

or equivalently

i�
∂�(x , t)

∂t
+ �

2

2m
∂2�(x , t)

∂x2
= 0 . (7.8)

Equation (7.8) is called the one-dimensional Schrödinger equa-
tion for a free particle. It is easy to extend the equation to three

dimensions:

i�
∂�(�r , t)

∂t
+ �

2

2m
∇2�(�r , t) = 0 . (7.9)

7.1.1 Operators

We can write the three-dimensional Schrödinger equation in the

following form:

−�

i
∂

∂t
�(�r , t) = 1

2m

(
�

i
∇
)(

�

i
∇
)

�(�r , t) . (7.10)

It shows that the Schrödinger equation can be obtained from the

energy (Hamiltonian) of the free particle (E = |�p|2/2m) by simply

replacing E and �p, respectively, by

E → −�

i
∂

∂t
, �p → �

i
∇ . (7.11)

These relations show that in quantum physics, the physical

quantities are represented by mathematical operations. We call

them operators.

The quantities ∇ and ∂/∂t define operations or actions to be

carried out on the wave function � . The particular operation stated

in Eq. (7.10), ∂�/∂t consists of taking a partial derivative of � in

terms of t, and ∇2� consists of taking partial derivatives of � in

terms of Cartesian coordinates. The result is a new wave function,

which may be different from the original one or may be equal to

the original wave function multiplied by a scalar. We often say that

operators associate a wave function with another wave function. To

clarify further the action of the operators ∇ and ∂/∂t on the wave

function, we will apply them to a specific example.
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Worked Example

Calculate (a) ∂�
∂t and (b) ∇2� , where � = �maxei(kx−ωt).

Solution

(a) The partial derivative of � in terms of t is

∂

∂t
� = �max

∂

∂t
ei(kx−ωt) = −iω�maxei(kx−ωt) = −iω�. (7.12)

Thus, the action of the operator ∂/∂t on the wave function � results

in a constant −iω times the original wave function. We shall see

later that such a wave function is called in quantum physics an

eigenfunction or eigenstate of the ∂/∂t operator, and −iω is the

corresponding eigenvalue.

The solution to part (b) is left to the readers.

Important property of operators

In classical physics, the multiplication of two quantities, say x and

px , is immaterial. However, in quantum physics, where physical

quantities are represented by operators, the order of multiplication

is important and, for example, xpx �= px x , where px = −i�∂/∂x .

We say that the two quantities x and px do not commute.a The

readers are familiar with such an ordering through the use of matrix

algebra, where in general the order of two matrices is important,

that is M1 M2 �= M2 M1.

A measure of the extent to which xpx �= px x is given by the

commutator bracket

[x̂ , p̂x ] = x̂ p̂x − p̂x x̂ , (7.13)

where we have introduced the symbol “ ˆ” over the quantities x and

px to indicate that these quantities are operators.

aCommutation consists in reversing the order of two quantities in an algebraic

operation.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Schrödinger Equation of a Free Particle 95

Note that the coordinates of �r are the same in operator and

classical forms. For example, the coordinate x is simply used in the

operator form as x .

How to calculate the commutator [x̂ , p̂x ]?

Since operators are “action” operations on functions, we consider

the action of this commutator on a trial function �(x):

[x̂ , p̂x ] �(x) = x
(

−i�
∂�

∂x

)
+ i�

∂

∂x
(x�)

= −i�x
∂�

∂x
+ i�� + i�x

∂�

∂x
= i�� . (7.14)

Hence

[x̂ , p̂x ] = i� . (7.15)

The result of the commutator is a number i�. However, this is not

the general rule that a commutator of two operators is always a

number. We shall see later many examples where the commutator

of two operators is an operator.

We can generalize the commutation relation between the

position and momentum operators into three dimensions and can

readily show that the components of the positions �̂r and momentum

�̂p operators satisfy the commutation relations

[r̂m, p̂n] = i�δmn , m, n = 1, 2, 3 , (7.16)

where

r̂1 = x̂ , r̂2 = ŷ , r̂3 = ẑ ,

p̂1 = p̂x , p̂2 = p̂y , p̂3 = p̂z . (7.17)

The symbol δmn is called Kronecker δ function and is defined as

δmn =
{

1 if m = n
0 if m �= n .

(7.18)

The commutation relations (7.16) are called the canonical commuta-
tion relations.

Using the operator representation, the Schrödinger equation is

often written as

i�
∂�(�r , t)

∂t
= Ĥ �(�r , t) , (7.19)

where Ĥ = − �
2

2m∇2 is the Hamiltonian (energy operator) of the free

particle.
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7.2 Schrödinger Equation of a Particle in an External
Potential

In physics, we often deal with problems in which particles are free

within some kind of boundary but have boundary conditions set by

some external potentials. The particle-in-a-box problem, discussed

before, is the simplest example.

In the presence of an external potential V (�r , t), which may

depend on time, the Hamiltonian of the particle takes the form

Ĥ (�r , t) = − �
2

2m
∇2 + V̂ (�r , t) , (7.20)

which shows that the particle can gain an energy due to the potential

V̂ (�r , t).

The wave function of the particle moving in the external potential

can be different from that of the free particle. It can be found solving

the Schrödinger equation (7.19) with the Hamiltonian (7.20). The

solution, however, must satisfy the following conditions:

(1) The wave function must be determined and continuous at any

point of the space (�r , t).

(2) The wave function must vanish at infinity, i.e., �(�r , t) → 0 when

r → ±∞.

We will try to solve the Schrödinger equation assuming that

the Hamiltonian Ĥ (�r , t) does not explicitly depend on time, i.e.,

V̂ (�r , t) = V̂ (�r). In this case, the Schrödinger equation contains two

terms: one dependent on time t and the other dependent on �r , i.e.,(
i�

∂

∂t
− Ĥ (�r)

)
�(�r , t) = 0 , (7.21)

where Ĥ depends solely on �r .

Since the time- and �r-dependent parts are separated, the solution

to the Schrödinger equation will be in the form of a product of two

functions φ(�r) and f (t):

�(�r , t) = φ(�r) f (t) . (7.22)

Substituting this equation into the Schrödinger equation, we get

i�φ(�r)
d f (t)

dt
= f (t)Ĥ (�r)φ(�r) , (7.23)
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which can be written as

i�
1

f
d f
dt

= 1

φ
Ĥ φ , (7.24)

where Ĥ ≡ Ĥ (�r), f ≡ f (t), and φ ≡ φ(�r).

The left-hand side of Eq. (7.24) is a function of only one variable

t, whereas the right-hand side is a function of only the position �r ,

i.e., each side is independent of any changes in the other. Thus, both

sides must be equal to a constant, say E :

i�
1

f
d f
dt

= E , (7.25)

1

φ
Ĥ φ = E . (7.26)

We can easily solve Eq. (7.25), and the solution can be written

directly as

f (t) = C e− i
�

E t , (7.27)

where C is a constant.

The other part of the Schrödinger equation, Eq. (7.26), can be

written as

Ĥ φ = Eφ , (7.28)

which is called the stationary (time-independent) Schrödinger

equation, or the eigenvalue equation for the Hamiltonian Ĥ .

Hence, the complete solution to the Schrödinger equation is of

the form

�(�r , t) = Cφ(�r)e− i
�

E t , (7.29)

that is, �(�r , t) is the product of a time-dependent function and

a position-dependent function φ(�r), which satisfies the eigenvalue

equation (7.28).

Note that the solution (7.29) leads to the probability density

|�(�r , t)|2 = |Cφ(�r)|2 , (7.30)

which is independent of time.

Thus, when the Hamiltonian of a particle is independent of

time, the probability of finding the particle in an arbitrary point

�r is independent of time. Such a state (wave function) is called a

stationary state of the particle.
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The existence of stationary states has two very useful practical

consequences. Physically, such states have a permanence in time,

which allows their long-time experimental investigations. Mathe-

matically, they reduce the Schrödinger equation to the eigenvalue

equation for the Hamiltonian. Thus, to obtain specific values of

energy and corresponding wave functions, we operate on the wave

function with the Hamiltonian and solve the resulting differential

equation. However, not all mathematically possible solutions are

accepted. Physics imposes some limits on the solutions of the

Schrödinger equation.

More precisely, the solution to the Schrödinger equation must

satisfy the following conditions:

(1) The wave function φ must be finite in all points of the space and

vanish at infinity.

(2) The wave function φ must be continuous and should have

continuous first derivatives.

(3) The wave function φ must be a single-value function at any point

�r .

(4) The wave function must be normalized.

These conditions are often called the boundary conditions for the

wave function.

When an operation on a wave function gives a constant times the

original wave function, that constant is called an eigenvalue and the

wave function is called an eigenfunction or eigenstate. Thus, the

wave function that satisfies the stationary Schrödinger equation is

the eigenfunction of the Hamiltonian Ĥ , and E is the eigenvalue of

the Hamiltonian in the state φ.

The complete set of eigenvalues of the Hamiltonian Ĥ is termed

energy spectrum. The energy spectrum can be non-degenerated

(different eigenfunctions have different eigenvalues), or degener-

ated (all or few eigenfunctions have the same eigenvalues), but it

is not allowed that one eigenfunction could have a few different

eigenvalues.

To solve the Schrödinger equation, even in its simpler stationary

(time-independent) form, usually requires sophisticated mathemat-

ical techniques. In fact, for any system, the stationary Schrödinger
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equation

Ĥ φ = Eφ (7.31)

is in the form of a second-order differential equation

− �
2

2m
∇2φ + (V̂ (�r) − E

)
φ = 0 , (7.32)

whose solution depends on the explicit form of the potential V̂ (�r).

Thus, we see that the particle is represented by its mass and only

the potential V̂ (�r) alters the form of the differential equation.

Hence, the problem of finding energies and the wave function

of a particle moving in a potential V̂ (�r) is equivalent to solving

the second-order differential equation for the wave function with a

known specific form of V̂ (�r). In other words, once V̂ (�r) is known, the

Schrödinger equation may be solved and the wave function φ(�r) may

be found. Then the probability density |φ(�r)|2 may be determined for

a specific point �r .

In the next few chapters, we will investigate solutions to the

stationary Schrödinger equation for different forms of the potential

V̂ (�r). More precisely, we will seek energies and wave functions of a

particle subject to different constrains on its free motion.

In summary of the chapter on the Schrödinger equation, we have

learned that

(1) In quantum physics, physical quantities are represented by

operators.

(2) The operator representing the energy of a system is the

Hamiltonian Ĥ .

(3) The eigenvalues of Ĥ are energies E .

(4) If the potential V̂ is independent of time, then the separation

of variables is possible and we can write the wave function as

�(�r , t) = φ(�r) f (t).

(5) The wave function φ(�r) is the eigenfunction of the time-

independent Hamiltonian Ĥ and can be found by solving the

stationary Schrödinger equation Ĥ φ(�r) = Eφ(�r).
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7.3 Equation of Continuity

We know that the probability of finding a particle in a volume V is

normalized to 1, i.e., ∫
V

|�(�r , t)|2dV = 1. (7.33)

This normalization condition must be valid for any wave function

evaluated at any point �r and at any time t. We will show that the

Schrödinger equation guarantees the conservation of normalization

of the wave function. In other words, if � was normalized at t = 0, it

will remain normalized at all times.

In addition, there is a flow of the probability density or particle

current density associated with a moving particle. Therefore, we will

also define what the particle probability current density is in terms

of the particle wave function.

Suppose we have a particle described by a wave function � in

a volume V enclosed by a surface S . We will consider the time

evolution of the particle wave function, which is given by the time-

dependent Schrödinger equation

i�
∂�

∂t
= − �

2

2m
∇2� + V̂ � . (7.34)

First, we take complex conjugate of the aforementioned equation:

−i�
∂�∗

∂t
= − �

2

2m
∇2�∗ + V̂ �∗ . (7.35)

Next, multiplying Eq. (7.34) by �∗ and Eq. (7.35) by � , and

subtracting the resulting equations, we get

i�
(

�∗ ∂�

∂t
+ �

∂�∗

∂t

)
= − �

2

2m

(
�∗∇2� − �∇2�∗) . (7.36)

Note that

�∗ ∂�

∂t
+ �

∂�∗

∂t
= ∂

∂t
|�|2 . (7.37)

Moreover, using a vector identity

∇ ·
(

u �A
)

= ∇u · �A + u∇ · �A , (7.38)
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J

S

dS

dS = n dS^

Figure 7.1 Probability current density �J crossing a surface S , with n̂, the

unit vector normal to the surface.

we find that

∇ · (�∗∇� − �∇�∗)

= ∇�∗ · ∇� + �∗∇ · (∇�) − ∇� · ∇�∗ − �∇ · (∇�∗)

= �∗∇2� − �∇2�∗ . (7.39)

Thus, Eq. (7.36) can be written as

∂

∂t
|�|2 + ∇ ·

(
�

2im
(�∗∇� − �∇�∗)

)
= 0 . (7.40)

Introducing a notation

|�|2 = ρ ,
�

2im
(�∗∇� − �∇�∗) = �J , (7.41)

we obtain
∂ρ

∂t
+ ∇ · �J = 0 . (7.42)

The reader familiar with the theory of fluids and with electricity

and magnetism will immediately recognize that the above equation

is identical in form to the well-known continuity equation, which

shows the conservation of matter or the conservation of charge.

In our case, the continuity equation shows the conservation of the

probability density ρ, and �J is then the probability current density.

To interpret the continuity equation in terms of a flow of the

probability, it is convenient to integrate Eq. (7.42) over the volume

V closed by a surface S , as shown in Fig. 7.1:

∂

∂t

∫
V

|�|2dV = −
∫

V
∇ · �J dV . (7.43)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

102 Non-Relativistic Schrödinger Equation

From Gauss’s divergence theorem∫
V

∇ · �J dV =
∮

S

�J · d�S , (7.44)

we get

∂

∂t

∫
V

|�|2dV = −
∮

S

�J · d�S . (7.45)

The left-hand side of this equation is the time rate of increase of

probability of finding the particle inside the volume V . The integral

on the right-hand side is the probability per unit time of the particle

leaving the volume V through the surface S . This justifies why �J is

called the probability current density. It tells us the rate at which

probability is “flowing” through the surface S .

The scalar product �J · d�S is the probability that the particle will

cross an area d�S on the surface. When the particle remains inside the

volume for all times, i.e., does not cross the surface �S , then �J ·d�S = 0,

and we get

∂

∂t

∫
V

|�|2dV = 0 , (7.46)

which shows that the Schrödinger equation guarantees the conser-

vation of normalization of the wave function. In other words, if �

was normalized at t = 0, it will remain normalized at all times.

7.4 Transmission and Reflection Coefficients

Suppose that particles inside the surface are represented by plane

waves

�in(�r) = Aei�k1·�r + Be−i�k1·�r , (7.47)

and outside the surface

�out(�r) = C ei�k2·�r , (7.48)

where �k1 and �k2 are the wave vectors of the particle inside and

outside the surface, respectively. The coefficients A , B , and C
are interpreted as the amplitudes of the incident, reflected, and

transmitted particles, respectively.
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To interpret the wave functions, we calculate the probability

current densities inside and outside the surface and find

�J in = �

2im

(
�∗

in∇�in − �in∇�∗
in

) = ��k1

m

(|A|2 − |B|2
)

, (7.49)

and

�J out = �

2im

(
�∗

out∇�out − �out∇�∗
out

) = ��k2

m
|C |2 . (7.50)

Inside the surface, the current density is composed of two terms and

can be written as

�J in = �J i − �J r , (7.51)

where

�J i = ��k1

m
|A|2 (7.52)

is interpreted as the incident particle current, and

�J r = ��k1

m
|B|2 (7.53)

is interpreted as the reflected particle current. The current density

outside the surface

�J t = ��k2

m
|C |2 (7.54)

is interpreted as the transmitted particle current.

If the number of particles is conserved, i.e., the particles are not

created or destroyed, the current densities inside and outside the

surface should be equal:

�J in = �J out . (7.55)

This equation can be written in terms of the amplitudes as

|A|2 − |B|2 = k2

k1

|C |2 . (7.56)

We can define the reflection coefficient of the surface

R = |�J r |
|�J i |

, (7.57)

which is given by the probability current density reflected from the

surface divided by the probability current density incident on the

surface.
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We can also define the transmission coefficient of the surface

T = |�J t|
|�J i |

, (7.58)

which is given by the probability current density transmitted

through the surface divided by the probability current density

incident on the surface.

Using Eqs. (7.52)–(7.54), we can write the reflection and

transmission coefficients in terms of the incident, reflected, and

transmitted coefficients as

R = |B|2

|A|2
, T = k2

k1

|C |2

|A|2
, (7.59)

where k1 = |�k1| and k2 = |�k2|.
Thus, if |B|2 = |A|2, then R = 1, i.e., all the particles that are

incident on the surface are reflected.

It is easy to show from Eqs. (7.56) and (7.59) that

R + T = 1 , (7.60)

as it should be, otherwise the particles could be created or

destroyed.

Revision Questions

Question 1 What are the conditions imposed on the wave function

that is a solution to the time-independent Schrödinger equation?

Question 2 Define the probability current density and what does it

describe?

Question 3 Define the transmission coefficient from the region

where a particle has a momentum k1 to a region where the particle

has a momentum k2.

Discussion Problem

Problem D2 One can notice from the definition of the probability

current density, Eq. (7.41), that in general when the wave function
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� of a particle in a given region is real, the current density �J = 0 in

this region.

How would you interpret this result?

Tutorial Problems

Problem 7.1 Usually we find the wave function from knowing the

potential V (x). Consider, however, an inverse problem where we

know the wave function and would like to determine the potential

that leads to the behavior described by the wave function.

Assume that a particle is confined within the region 0 ≤ x ≤ a,

and its the wave function is

φ(x) = sin
(πx

a

)
.

Using the stationary Schrödinger equation, find the potential V (x)

confining the particle.

Problem 7.2 Another example of the inverse problem where we

know the wave function and would like to determine the potential

that leads to the behavior described by the wave function.

Let φ(x) be the one-dimensional stationary wave function

φ(x) = A
(

x
x0

)n

e−x/x0 ,

where A, x0, and n are constants.

Using the stationary Schrödinger equation, find the potential

V (x) and the energy E for which this wave function is an

eigenfunction.

Assume that V (x) → 0 as x → ∞.

Problem 7.3 Consider the three-dimensional time-dependent

Schrödinger equation of a particle of mass m moving in a potential

V̂ (�r , t):

i�
∂�(�r , t)

∂t
=
(

− �
2

2m
∇2 + V̂ (�r , t)

)
�(�r , t) .

(a) Explain, what must be assumed about the form of the potential

energy to make the equation separable into a time-independent
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Schrödinger equation and an equation for the time dependence

of the wave function.

(b) Using the condition stated in (a), separate the time-dependent

Schrödinger equation into a time-independent Schrödinger

equation and an equation for the time-dependent part of the

wave function.

(c) Solve the equation for the time-dependent part of the wave

function and explain why the wave function of the separable

Schrödinger equation is a stationary state of the particle.

Problem 7.4 Consider the wave function

�(x , t) = (Aeikx + Be−ikx) eiωt .

(a) Find the probability current corresponding to this wave

function.

(b) How would you interpret the physical meaning of the parame-

ters A and B?
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Chapter 8

Applications of Schrödinger Equation:
Potential (Quantum) Wells

We have seen that the wave nature of particles plays an important

role in their physical properties that, for example, particles confined

into a small bounded area can have only particular discrete energies.

However, the question we are most interested in is: Can we create an

artificial structure that exploits discrete energy levels? The answer

is “yes”; we can produce such structures, and they involve potential

barriers. Such one-dimensional structures constructed are called

quantum wells, two-dimensional structures are called quantum
wires, and three-dimensional structures are called quantum dots.

With the current knowledge of quantum physics, this answer

may probably sound rather abstract to the readers, so let us try to

make it more concrete.

To illustrate that in practice, particles may really exhibit unusual

quantum effects when they are located in such structures; we will

solve the time-independent Schrödinger equation

Ĥ φ(�r) = Eφ(�r) , (8.1)

to find the energies (eigenvalues) E and the corresponding eigen-

functions φ(�r) of a particle of mass m moving in a potential V̂ (�r) that

varies with the position �r .

Quantum Physics for Beginners
Zbigniew Ficek
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It is simplest to first consider the motion of particles in one

dimension. Therefore, in this and the following chapter, we will limit

our calculations to the one-dimensional case, in which the Hamil-

tonian of the particle moving in one dimension, say x-direction,

is given by

Ĥ = − �
2

2m
d2

dx2
+ V̂ (x) . (8.2)

With this Hamiltonian, we get from the Schrödinger equation a

second-order differential equation for the wave function of the

particle

d2φ(x)

dx2
= −2m

�2
(E − V (x)) φ(x) , (8.3)

which can be written as

d2φ(x)

dx2
= −k2(x)φ(x) , (8.4)

where

k2(x) = 2m
(

E − V̂ (x)
)

�2
. (8.5)

Thus, we see that the behavior of the particle, which is

determined by the parameter k2(x), will depend only on three

factors: total energy of the particle, potential barriers, and the mass

of the particle.

When V̂ (x) is independent of x , i.e., the particle is moving along

the x-axis under the influence of no force because the potential is

constant, the parameter k2(x) = k2, and then Eq. (8.4) reduces to a

simple harmonic oscillator equation

d2φ(x)

dx2
= −k2φ(x) . (8.6)

This is a linear differential equation with a constant coefficient.

The solution to Eq. (8.6) depends on whether k2 > 0 or k2 < 0.

For k2 > 0, the general solution to Eq. (8.6) is in the form of an

oscillating wave

φ(x) = Aeikx + Be−ikx , (E > V ) , (8.7)

where A and B are amplitudes of the particle wave moving to the

right and to the left, respectively.
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For k2 < 0, the general solution to Eq. (8.6) is in the form

φ(x) = C e−kx + Dekx , (E < V ) , (8.8)

that the exponents are real and no longer represent an oscillating

wave function. They represent a wave function with damped

amplitudes.

Important note: The general solution (8.7) with both constants

A and B different from zero is physically acceptable. However, the

general solution (8.8) with both constants C and D different from

zero cannot be accepted. We have learned that the wave function

must vanish for x → ±∞. Thus, if the particle moves in the direction

of positive x , in an unbounded or semibounded space, then only the

wave function with C �= 0 and D = 0 will satisfy this condition,

whereas if the particle moves in the direction of negative x , only the

wave function with C = 0 and D �= 0 will satisfy the condition of

φ(x) → 0 as x → −∞.

Another important observation: The general solutions (8.7) and

(8.8) are single-value solutions for the wave function φ(x). Thus, for

the particle moving in an unbounded area where the potential V̂ is

constant, there are no restrictions on k, which, according to Eq. (8.5),

means that there are no restrictions on the energy E of the particle.

Hence, the energy E of the particle can have any value ranging from

zero to +∞ (continuous spectrum). It is also valid for x-dependent

potentials, where V (x) slowly changes with x .a

Having now obtained a general solution to the Schrödinger

equation, let us examine a few special cases more closely. We

will consider four cases of a one-dimensional motion of particles

confined in potentials rapidly changing with x :

• Infinite potential quantum well.

• A potential step.

• Square-well potential.

• Tunneling through a potential barrier.

aFor potentials rapidly changing with x , the particle can be trapped in potential holes,

and then E can be different.
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Our interest in these four problems is

(1) To understand how the wave function of a particle confined by

a potential V is calculated.

(2) To see how the Schrödinger equation is solved when the motion

of a particle is subject to restrictions.

(3) To learn the characteristic properties of solutions to this

equation.

(4) To see differences between the predictions of quantum mechan-

ics and classical physics.

8.1 Infinite Potential Quantum Well

As the first example of the application of Schrödinger equation,

consider a particle confined in a one-dimensional structure, an

infinite potential well, as illustrated in Fig. 8.1. The term “well” is

a bit misleading since the particle is actually only trapped in one

direction. It is still free to move in other two directions. However,

the term “well” is commonly used in the literature and we will follow

this terminology.

For the infinite potential well centered at x = 0:

V (x) = 0 for − a
2

≤ x ≤ a
2

,

V (x) = ∞ for x < −a
2

and x >
a
2

. (8.9)

Figure 8.1 An infinite potential well. Outside the region −a/2 ≤ x ≤ a/2,

the potential V (x) → ∞.
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Within the well, there is no potential energy, while outside the

well the potential is infinite, so that the particle cannot exist there

since it would have to have infinite energy. What classical physics

and quantum physics tell us about the behavior of the particle inside

the well?

According to classical physics, the particle trapped between the

potential walls will bounce back and forth indefinitely; its kinetic

energy will be constant E = mv2/2. Moreover, the probability of

finding the particle at any point between the walls is constant and

anywhere outside the walls is zero. In fact, if we know the initial

momentum and position of the particle, we can specify the location

of the particle at any time in the future. The classical case seems

trivial.

According to quantum physics, the particle is described by a wave

function φ(x), which satisfies the Schrödinger equation and some

boundary conditions. One of the boundary conditions says that the

wave function φ(x) must be finite everywhere. Thus, in the regions

x < −a/2 and x > a/2, the wave function φ(x) must be zero to

satisfy this condition that V (x)φ(x) must be finite everywhere.

In the region −a/2 ≤ x ≤ a/2, the potential V (x) = 0, and then

the Schrödinger equation for the wave function takes the form

d2φ(x)

dx2
= −k2φ(x) , (8.10)

where k2 = 2mE/�
2.

Since k2 is positive, the Schrödinger equation (8.10) has a simple

solution

φ(x) = Aeikx + Be−ikx , −a
2

≤ x ≤ a
2

, (8.11)

where A and B are constants, which in general are complex

numbers.

To determine the unknown constants,a we will use the boundary

condition that the wave function must be continuous at x = −a/2

and x = a/2.

aUsually, we find only one of the two constants in terms of the other, say B in terms

of A. The remaining constant A is readily found from the normalization condition

that the wave function is normalized to 1, i.e.,∫ ∞

−∞
dx |φ(x)|2 = 1 . (8.12)
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Since in the regions x < −a/2 and x > a/2, the wave function is

equal to zero and the wave function must be continuous at x = −a/2

and x = a/2, we have φ(x) = 0 at these points. In other words, the

wave functions must join smoothly at these points.

Thus, at x = −a/2, the wave function φ(x) = 0 when

Ae− ika
2 + Be

ika
2 = 0 . (8.13)

At x = a/2, the wave function φ(x) = 0 when

Ae
ika
2 + Be− ika

2 = 0 . (8.14)

From Eq. (8.13), we find that

B = −Ae−ika , (8.15)

whereas from Eq. (8.14), we find that

B = −Aeika . (8.16)

We have obtained two different solutions for the coefficient

B . Accepting these two different solutions, we would accept two

different solutions to the wave function. However, we cannot accept

it, as one of the conditions imposed on the wave function says that

the wave function must be a single-value function. Therefore, we

have to find a condition under which the two solutions (8.15) and

(8.16) are equal. It is easy to see from Eqs. (8.15) and (8.16) that the

two solutions for B will be equal if

e−ika = eika , (8.17)

which will be satisfied when

e2ika = cos(2ka) + i sin(2ka) = 1 , (8.18)

or when

sin(2ka) = 0 and cos(2ka) = 1 , (8.19)

i.e., when

k = n
π

a
, with n = 0, 1, 2, . . . . (8.20)

Thus, for a particle confined in the infinite well, a restriction is

imposed on k that k can take only discrete values.
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Figure 8.2 Four lowest energy levels of a particle trapped inside the infinite

potential well. Note that the separation between the energy levels increases

with an increasing n.

8.1.1 Energy Quantization

Since k2 = 2mE/�
2, and k is restricted to discrete values, we see

that the energy of the particle cannot be arbitrary; it can take only

certain discrete values!

En = �
2

2m
k2 = n2 π2

�
2

2ma2
. (8.21)

Thus, the energy of the particle inside the well is quantized and

can have only discrete values (discrete spectrum), which depend on

the integer variable n.

We indicate this by writing a subscript n on E . The integer

number n is called the quantum number. A few of the lowest energy

levels are shown in Fig. 8.2. Note from Eq. (8.21) that the energy

levels in a quantum well depend on the dimension of the well and

the mass of the particle. This means that we can build artificial

structures of desired quantum properties, which could be observed

if the dimensions of the structures are very small.

8.1.2 Wave Functions

Substituting one of the solutions for B , Eq. (8.15) or (8.16) into the

general solution (8.11), we find the wave function of the particle
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inside the well

φn(x) = A′ sin
[nπ

a

(
x − a

2

)]
, with n = 1, 2, 3, . . . , (8.22)

and A′ = A exp(ika/2).

One may notice that the solution for n = 0 is not included. There

is a simple explanation. For n = 0, the wave function φ(x) = 0 for

all x inside the well. Accepting this solution would mean we accept

that the particle is not in the well. Thus, the minimum energy state in

which the particle can be inside the well is that with the energy E1 =
π2

�
2/2ma2. Since E1 > 0, the particle can never have zero energy.

In other words, the particle can never truly be at rest.

This essentially solves the problem. The remaining coefficient A′

that appears in Eq. (8.22) is found from the normalization condition∫ +∞

−∞
|φn(x)|2dx = 1 . (8.23)

Performing integration with the wave function φn(x) given by

Eq. (8.22), we find |A′| = √
2/a. The details of the integration are

left as an exercise for the readers.

While φn(x) may be negative as well as positive, |φn(x)|2 is always

positive and, since φn(x) is normalized, its value at a given x is equal

to the probability density of finding the particle at this point. Figure

8.3 shows the wave function φn(x) of the particle for the first three

values of n. At a given x , the wave function is different for different

n. For example, φ1(x) has its maximum at x = 0, while φ2(x) = 0

at this particular point. For all n’s, the probability is not constant

xa/2-a/2

φ1(x )

xa/2

-a/2

φ2(x )

x

a/2-a/2

φ3(x )

Figure 8.3 Plot of the wave function φn(x) for the first three energy levels

n = 1, n = 2, and n = 3.
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and, for n > 1, has zeros for some values of x . For example, in the

lowest energy level of n = 1, the particle is most likely to be found in

the center of the well, while being in the first excited state of n = 2,

it will never be found there! This is in contrast to the predictions

of classical physics, where the particle has the same probability

of being located anywhere between the walls independent of its

energy. Moreover, the lowest energy (n = 1) is nonzero, which

indicates that the particle can have nonzero energy even if the

potential energy is zero.

The predicted unusual effects: the exclusion of E = 0 as a

possible value for the energy of the particle, the limitation of E to a

discrete set of definite values, and the dependence of the probability

on the position of the particle are other examples of quantum effects

without classical analog.

In the next few chapters, we will learn that these unusual

phenomena are not the only quantum phenomena. There is a more

bizarre phenomenon: penetration of the barrier that particles can be

found in the classically forbidden region.

What do we mean by the classically forbidden region? It is the

energy region in which the particles, if found, would have to have

negative kinetic energy.

In summary, we have learned that

(1) The energy of a particle in a quantum well can take only certain

discrete values. All other values of the energy are forbidden. We

say that the energy of the particle is quantized.

(2) The quantization of the energy arises from the condition of

the continuity of the particle wave function at the boundaries

between two regions of different potential.

(3) The lowest energy the particle can have inside the well is not

zero.

(4) The probability of finding the particle at an arbitrary position x
is not constant; it even has zeros.

Worked Example

An electron is confined in an infinite potential well of width a = 0.1

nm (approximate size of an atom).
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(a) Calculate the minimum energy of the electron.

(b) What is the equivalent temperature?

Solution

(a) The minimum energy of the electron corresponds to n = 1.

Using Eq. (8.21), we find

E1 = (1)2 π2
�

2

2ma2
= h2

8ma2
= (6.626 × 10−34)2

8 × 9.109 × 10−31 × (10−10)2

= 6.025 × 10−18 [J] = 37.6 [eV] .

(b) We find the temperature from the formula for the number of

photons in the mode of frequency ω:

〈n〉 = 1

e
En

kB T − 1
.

Since n = 1, we find that

e
E1

kB T = 2 ,

from which, we get

E1

kB T
≈ 1 ,

i.e.,

T ≈ E1/kB = 6.025 × 10−18/
(

1.381 × 10−13
) = 43.6 [μK] .

This is a very low temperature, which is routinely achieved in

laboratory with current trapping and cooling techniques of atomic

gases.

Revision Questions

Question 1 Explain the reason for quantization of the energy of a

particle confined in an infinite potential well.
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Question 2 Explain why zero energy of the particle is excluded from

the solution to the wave function of a particle confined inside an

infinite potential well.

Question 3 Probability of finding the particle at any point inside the

well is independent of the position of the particle. True or false?

Tutorial Problems

Problem 8.1 One may notice from Fig. 8.3 that the wave function for

n = 2 is zero at x = 0, i.e., at the center of the well. This means that

the probability of finding the particle at the center of the well is also

zero. Then, a question arises: How does the particle move from one

side of the well to the other if the probability of being at the center

is zero?

Problem 8.2 Solve the stationary Schrödinger equation for a particle

not bounded by any potential and show that its total energy E is not

quantized.

Problem 8.3 Solve the Schrödinger equation with appropriate

boundary conditions for an infinite square-well with the width of

the well a centered at a/2, i.e.,

V (x) = 0 for 0 ≤ x ≤ a ,

V (x) = ∞ for x < 0 and x > a .

Check that the allowed energies are consistent with those derived

in the chapter for an infinite well of width a centered at the origin.

Confirm that the wave function φn(x) can be obtained from those

found in chapter if one uses the substitution x → x + a/2.

Problem 8.4 Show that, as n → ∞, the probability of finding a

particle between x and x + �x inside an infinite potential well is

independent of x , which is the classical expectation. This result is

an example of the correspondence principle that quantum theory

should give the same results as classical physics in the limit of large

quantum numbers.
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Problem 8.5 As we have already learned, the exclusion of E = 0 as

a possible value for the energy of the particle and the limitation of E
to a discrete set of definite values are examples of quantum effects

that have no counterpart in classical physics, where all energies,

including zero, are presumed possible.

Why we do not observe these quantum effects in everyday life?

Problem 8.6 What length scale is required to observe discrete

(quantized) energies of an electron confined in an infinite potential

well?

Calculate the width of the potential well in which a low-energy

electron, being in the energy state n = 2, emits a visible light of

wavelength λ = 700 nm (red) when making a transition to its

ground state n = 1. Compare the length scale (width) to the size

of an atom ∼0.1 nm.

8.2 Potential Step

In our studies of unusual properties of particles confined to a small

region, we now remove one of the two barriers and make the other

of finite potential V0. This is called a potential step. Such a potential

energy step very often appears in practice, e.g., at the connection

of two different wires or semiconductors. Electrons moving inside

either wire have a constant energy, but it changes very rapidly when

passing from one to the other due to different conductivities of the

wires.

Let us define the potential as

V (x) = V0�(x) with V0 > 0 , (8.24)

where �(x) is the Heaviside step function in which �(x) = 1 for

x ≥ 0, and �(x) = 0 for x < 0. This is shown in Fig. 8.4.

Thus, the potential has a height of V0 for positive x and is zero for

the negative x . This potential creates a barrier for particles moving

along the x-axis.

An example of such a situation in practice is a junction between

two conductors of different conductivities or between two different

semiconductors. The junction works as a potential barrier for

electrons on each side. Another practical example of a step potential
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is the surface of a conductor as the potential energy of an electron

rapidly increases at the surface. Of course a step potential is an

idealization. In real situations, potential does not change abruptly.

Nevertheless, these idealized potentials are used frequently in

quantum mechanics to approximate real situations. Because of

the mathematical simplicity, one obtains the exact solution to the

Schrödinger equation with a variety of initial conditions.

Figure 8.4 Potential step at x = 0. The potential is zero for x < 0 (region I)

and V = V0 for x ≥ 0 (region II). Particles of total energy E travel from −x
toward the barrier.

Suppose that particles of mass m and total energy E travel from

−x toward the potential step (barrier), as shown in Fig. 8.4.

We will calculate the wave function of the particles in both

regions x < 0 and x ≥ 0 for two cases: E < V0 and E > V0.

The case E < V0.

Since in region x < 0 (we will call it region I), the potential V = 0,

the parameter k2 appearing in the stationary Schrödinger equation

is a positive number and, therefore, the solutions to the Schrödinger

equation in this region are of the form

I. φ1(x) = Aeik1 x + Be−ik1 x , x < 0 , (8.25)

where k1 = √
2mE/�.

In region x ≥ 0 (we will call it region II), the potential V = V0.

Since E < V0, the parameter k2 is a negative number and, therefore,

the solutions to the Schrödinger equation in this region are of the
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form

II. φ2(x) = C ek2 x + De−k2 x , x ≥ 0 , (8.26)

where k2 = √
2m(V0 − E )/�.

Since the wave function must be finite everywhere and must

vanish as x becomes infinite, the coefficient C must be zero.

Otherwise, φ2(x) would go to infinity as x → ∞.

We will find the coefficients B and D in terms of A, using the

continuity conditions for the wave function, that at x = 0

φ1(0) = φ2(0) ,

dφ1(x)

dx

∣∣∣∣
x=0

= dφ2(x)

dx

∣∣∣∣
x=0

. (8.27)

The above continuity conditions lead to two coupled equations:

A + B = D ,

ik1 A − ik1 B = −k2 D , (8.28)

which can be written as

A + B = D ,

A − B = iβ D , (8.29)

where β = k2/k1. By adding these two equations, we obtain

2A = (1 + iβ)D , (8.30)

and by subtracting the equations, we find

2B = (1 − iβ)D . (8.31)

Thus, we find that the coefficients B and D are given in terms of

A as

D = 2A
(1 + iβ)

,

B = (1 − iβ)

(1 + iβ)
A = (1 − iβ)2

1 + β2
A . (8.32)

Hence, the wave function of the particle with E < V0 is given by

φ1(x) = Aeik1 x + (1 − iβ)2

1 + β2
Ae−ik1 x , (8.33)

φ2(x) = 2A
(1 + iβ)

e−k2 x . (8.34)

The coefficient A can be found from the normalization condition.
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Having the wave functions available, we can show that in both

regions, x < 0 and x > 0, the probability current �J = 0.

The probability current is defined as

�J = �

2im

(
φ∗ dφ

dx
− φ

dφ∗

dx

)
. (8.35)

In region I, the wave function of the particles is

φ1(x) = Aeik1 x + γ Ae−ik1 x , (8.36)

where

γ = (1 − iβ)2

1 + β2
. (8.37)

Hence

dφ1

dx
= ik1 A

(
eik1 x − γ e−ik1 x) , (8.38)

and then

φ∗
1

dφ1

dx
= ik1|A|2

(
e−ik1 x + γ ∗eik1 x) (eik1 x − γ e−ik1 x)

= ik1|A|2
[
1 − |γ |2 + (γ ∗e2ik1 x − γ e−2ik1 x)] . (8.39)

However, 1 − |γ |2 = 0, and then

φ∗
1

dφ1

dx
= ik1|A|2

(
γ ∗e2ik1 x − γ e−2ik1 x) . (8.40)

By taking the complex conjugate of the above equation, we obtain

φ1

dφ∗
1

dx
= −ik1|A|2

(
γ e−2ik1 x − γ ∗e2ik1 x) . (8.41)

Thus,

φ∗
1

dφ1

dx
− φ1

dφ∗
1

dx
= 0 , (8.42)

and then

J 1 = �

2im

(
φ∗

1

dφ1

dx
− φ1

dφ∗
1

dx

)
= 0 . (8.43)

In the region II, the wave function of the particles is

φ2(x) = 2A
(1 + iβ)

e−k2 x . (8.44)

Hence

dφ2

dx
= −2k2 A

(1 + iβ)
e−k2 x , (8.45)
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and then

φ∗
2

dφ2

dx
= −4k2|A|2

1 + β2
e−2k2 x . (8.46)

Since φ∗
2

dφ2

dx is a real function

φ∗
2

dφ2

dx
= φ2

dφ∗
2

dx
, (8.47)

and then

J 2 = �

2im

(
φ∗

2

dφ2

dx
− φ2

dφ∗
2

dx

)
= 0 . (8.48)

Thus, in both regions the probability current is zero.

The case: E > V0.

We now turn to the case in which the particles have energy larger

than the potential barrier. Since E > V0, one could expect that the

particles should travel freely from region I to region II. This is true in

classical mechanics, but it is not true in quantum mechanics. We will

show that a part of the particles can be reflected from the barrier.

First, we calculate the wave function of the particles. Since in

region II the energy E of the particles is larger than the potential

barrier, the parameter k2 is a positive number and, therefore, the

solutions to the Schrödinger equation in the two regions are of the

form

I. φ1(x) = Aeik1 x + Be−ik1 x , x < 0

II. φ2(x) = C eik2 x + De−ik2 x , x ≥ 0 , (8.49)

where k1 = √
2mE/�, and k2 = √

2m(E − V0)/�.

The particles, after passing to region II, will continue to move to

the right with no reasons to turn back and move to the left, so we can

put D = 0 in the wave function φ2. Using the continuity conditions

for the wave function, we obtain two equations for the coefficients

A, B , and C :

A + B = C ,

ik1(A − B) = ik2C , (8.50)

from which we find that

B = 1 − β

1 + β
A , C = 2

1 + β
A , (8.51)

where β = k2/k1.
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Thus, for E > V0, the wave function of the particles is given by

φ1(x) = Aeik1 x + (1 − β)2

1 + β
Ae−ik1 x , x < 0 (8.52)

φ2(x) = 2A
(1 + β)

eik2 x , x ≥ 0 (8.53)

and, as usual, the coefficient A can be found from the normalization

condition.

It is interesting to calculate the probability current in both

regions, x < 0 and x > 0.

Consider first the probability current in region I:

J 1 = �

2im

(
φ∗

1

dφ1

dx
− φ1

dφ∗
1

dx

)
. (8.54)

Since

dφ1

dx
= ik1 A

(
eik1 x − ue−ik1 x) , (8.55)

where

u = 1 − β

1 + β
, (8.56)

we obtain

φ∗
1

dφ1

dx
= ik1|A|2

[
(1 − u2) − ue2ik1 x + ue−2ik1 x] . (8.57)

Hence

J 1 = �|A|2k1

2m
2(1 − u2) = �|A|2k1

m
(1 − u2) . (8.58)

In region II: x ≥ 0, the wave function of the particles is

φ2(x) = 2A
(1 + β)

eik2 x . (8.59)

Thus,

dφ2

dx
= 2ik2 A

1 + β
eik2 x , (8.60)

and then

φ∗
2

dφ2

dx
= 4ik2

(1 + β)2
|A|2 . (8.61)

Hence

J 2 = 4�k2

m(1 + β)2
|A|2 . (8.62)
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Since

1 − u2 = 4β

(1 + β)2
, (8.63)

we see that J 1 = J 2.

Note that the current in both regions is the same, as should be,

otherwise particles would be created or destroyed.

We can find the transmission and reflection coefficients.

For E < V0, it is obvious that the transmission coefficient T = 0,

as the transmitted current is zero (see Eq. (8.48)).

The reflection coefficient is

R = |B|2

|A|2
= (1 − iβ)2(1 + iβ)2

(1 + β2)2
= 1 . (8.64)

Thus, the relation T + R = 1 is satisfied.

For E > V0, the transmission coefficient is

T = k2|C |2

k1|A|2
= 4k2

k1(1 + β)2
= 4β

(1 + β)2
, (8.65)

and the reflection coefficient is

R = |B|2

|A|2
= (1 − β)2

(1 + β)2
. (8.66)

Note that T + R = 1 should be always satisfied.

It is interesting that the transmission and reflection coefficients

are independent of the mass of the particles.

To show this, we rewrite the transmission and reflection

coefficients in terms of the parameters E , m, and V0. Since

T = 4β

(1 + β)2
= 4k1k2

(k1 + k2)2
,

R = (1 − β)2

(1 + β)2
= (k1 − k2)2

(k1 + k2)2
, (8.67)

we substitute for k1 and k2

k1 =
√

2mE
�2

, k2 =
√

2m(E − V0)

�2
, (8.68)

we find

T = 4
√

E (E − V0)(√
E + √

E − V0

)2
,

R =
(√

E − √
E − V0

)2

(√
E + √

E − V0

)2
. (8.69)
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We see that the transmission and reflection coefficients are

independent of the mass of the particles. They depend only on

E and V0. It is interesting—but someone can say very puzzling—

that in some situations, like quantum tunneling (see Eq. (8.125) in

Section 8.4), the coefficients depend on the mass of the particle, but

in some situations, they do not depend on m.

An extra exercise

Just for fun, consider a similar problem as above, but now assume

that the particles of energy E > V0 are moving from +x to −x , as

shown in Fig. 8.5.

Figure 8.5 Potential step at x = 0. Particles of the total energy E > V0

travel from +x toward the potential step.

We expect that in the case of E > V0, the behavior of the particles

at the barrier should be the same, i.e., independent of the direction

of motion of the particles. Is it true?

In order to check it, consider the solutions to the wave function

in both regions. Since in both regions E > V0, the wave functions in

both regions are of the form of traveling waves

I. φ2(x) = C eik2 x + De−ik2 x , x ≤ 0 ,

II. φ1(x) = Aeik1 x + Be−ik1 x , x > 0 , (8.70)

where k1 = √
2m(E − V0)/�, and k2 = √

2mE/�.
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We can put D = 0, as we do not expect the particle to turn back

and move to the right in region I.

Using the continuity conditions for the wave function, we obtain

two equations for the coefficients A, B , and C :

A + B = C ,

ik1(A − B) = ik2C , (8.71)

from which we find that

B = 1 − β

1 + β
A , C = 2

1 + β
A , (8.72)

where β = k2/k1. Thus, the wave function of the particles is given by

φ1(x) = Aeik1 x + (1 − β)2

1 + β
Ae−ik1 x , x > 0 (8.73)

φ2(x) = 2A
(1 + β)

eik2 x , x ≤ 0 (8.74)

and the coefficient A can be found from the normalization condition.

Note that the wave function (8.74) is the same as in Eq. (8.53).

Thus, nothing is changed physically in this problem. This confirms

our expectation that the behavior of the particle at the barrier

should be the same, i.e., independent of the direction of motion of

the particle.

We can also find the reflection and transmission coefficients and

verify the relation T + R = 1.

Using the solutions to the coefficients C and B , we find that the

transmission coefficient is

T = k2|C |2

k1|A|2
= 4k2

k1(1 + β)2
= 4β

(1 + β)2
, (8.75)

and the reflection coefficient is

R = |B|2

|A|2
= (1 − β)2

(1 + β)2
, (8.76)

where β = k2/k1. Hence

T + R = 4β

(1 + β)2
+ (1 − β)2

(1 + β)2
= (1 + β)2

(1 + β)2
= 1 . (8.77)

Thus, the relation T + R = 1 is satisfied.

Note that the transmission and reflection coefficients are the

same we found before for the case of the particle moving from −x
to +x . Thus, again we can conclude that the behavior of the particles

at the barrier is the same, i.e., independent of the direction of motion

of the particles.
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Figure 8.6 A double potential step.

Discussion Problem

Problem D3 We have already illustrated the phenomena of reflec-

tion and transmission of a group of particles acting on a potential

barrier. One can notice that these phenomena are independent

of the number of particles, so that the results may as well be

applied to a single particle. Then, an obvious question arises: how

to explain simultaneously that both the transmission and reflection

coefficients of the particle are different from zero? Does it mean that

a part of the particle is reflected and a part is transmitted?

Tutorial Problems

Problem 8.7 Double potential step
Particles of mass m and energy E moving in one dimension from −x
to +x encounter a double potential step, as shown in Fig. 8.6, where

V1 = π2
�

2

8ma2
, E = 2V1, V1 < V2 < E .

(a) Find the transmission coefficient T .

(b) Find the value of V2 at which T is maximal.
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In the quantum world there is more than one mystery.
—H. P. Silverman

8.3 Finite Square-Well Potential

The infinite potential well, discussed in Section 8.1, is an idealized

example. More realistic problems in physics have finite energy

barriers, such as the step potential discussed in the preceding

section, or more complicated arrangements composed of two or

multiple potential steps. In such systems, one of the most interesting

differences between classical and quantum descriptions of behavior

of particles concerns the phenomenon of barrier penetration and

transmission of particles through the barrier from one region to

others.

Figure 8.7 Finite square-well potential.

In this chapter, we will consider a particle moving in a finite

square-well potential, as shown in Fig. 8.7:

I. V (x) = V0 , x < −a
2

II. V (x) = 0 , −a
2

≤ x ≤ a
2

III. V (x) = V0 , x >
a
2

. (8.78)

In classical physics, a particle is trapped in the well if the energy

E of the particle is less than V0. In this case, the probability of finding

the particle outside the well is zero. When the energy E is larger
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than V0, the particle can freely move in all three regions. Let us look

at these situations from the point of view of quantum physics.

Before proceeding to a rigorous calculation of the particle wave

function, we point out that in behavior of the particle in a finite

square-well potential, it must be recognized that the wave function

of the particle exists in all space, that all regions in space are

accessible for the particle even if the energy E is less than V0. We

have shown before that in the limit of V0 → ∞, the wave function is

zero at the walls and in the region of infinite potential. In the present

case, when the confining potential has a finite value, the particle

wave function does not equal zero at the walls and can be different

from zero in the regions where E < V0.

To obtain a rigorous solution to the wave function, we will

consider the Schrödinger equation for the wave function of the

particle in all three regions indicated in Fig. 8.7.

In region II, −a/2 ≤ x ≤ a/2, the potential V (x) = 0, and then

the Schrödinger equation reduces to

d2φ2(x)

dx2
= −k2

2φ2(x) , (8.79)

where k2
2 = 2mE/�

2, and φ2(x) is the wave function of the particle

in region II.

Since k2
2 is positive, the solution to Eq. (8.79) is of the form

φ2(x) = Aeik2 x + Be−ik2 x , (8.80)

that is, the same as for the particle in the potential well. Thus, we

expect that, similar to the case of the infinite potential barrier, the

energy of the particle will be quantized in region II.

In regions I and III, the potential is different from zero V (x) = V0,

and then

k2
1 = −2m

�2
(V0 − E ) = 2m

�2
(E − V0) . (8.81)

In this case, the Schrödinger equation is given by

d2φi (x)

dx2
= −k2

1φi (x) , i = 1, 3 . (8.82)

Solution to the above equation depends on the relation between V0

and E .

Consider separately two cases: E > V0 and E < V0.
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8.3.1 The case E > V0

For E > V0, the parameter k2
1 is positive, and then the solution to

Eq. (8.82) in regions I and III is of the form

I. φ1(x) = C eik1 x + De−ik1 x ,

III. φ3(x) = F eik1 x + Ge−ik1 x , (8.83)

indicating that the probability of finding the particle in regions I

and III is similar to that in region II. It is not difficult to show that

in this case the energy spectrum of the particle is continuous in all

regions. Thus, one could conclude that there is nothing particularly

interesting about the solution when E > V0. However, we may

obtain nonzero reflection coefficient at the boundaries, which is a

quantum effect. Classically, one would expect that the particle of

energy E > V0 should travel from region I to region III without any

reflection at the boundaries, and that the transmission coefficient

should be unity, T = 1. It can be shown that only under a specific

condition, the transmission coefficient becomes unity.a

8.3.2 The case E < V0

More interesting is the case of E < V0, i.e., when the particles

have energy smaller than the potential barrier. When E < V0, the

parameter k2
1 is a negative real number. In this case, the solution

to Eq. (8.82) in regions I and III is in the form of nonoscillatory

exponential functions

φ1(x) = C ek1 x + De−k1 x , x < −a
2

φ3(x) = F ek1 x + Ge−k1 x , x >
a
2

. (8.84)

To get φ1(x) and φ3(x) finite for each |x| > a/2, in particular

at x → ±∞, we have to choose D = F = 0. Otherwise, the

wave function would be infinite at x = ±∞. Hence, the acceptable

solutions to the wave function in regions I and III are

I. φ1(x) = C ek1 x , for x < −a
2

III. φ3(x) = Ge−k1 x , for x >
a
2

. (8.85)

aThe details of the calculations are left for the readers as a tutorial problem.
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Figure 8.8 An example of the probability function of the particle inside the

potential well.

Assume for a moment that C , G �= 0. Then the probability density

|φ(x)|2 has interesting properties, as shown in Fig. 8.8.

Referring to Fig. 8.8, the most striking features of the wave

function φ(x) are the “tails” that extend outside the well. The

nonzero values of φ(x) outside the well mean that there is a nonzero

probability for finding the particle in regions I and III. In other

words, the reflection of the particle takes place within the barriers,

not at their surfaces.

Note that regions I and III are forbidden by classical physics

because the particle would have to have negative kinetic energy.

Since the total energy of the particle E < V0 and E = Ek + V0,

we have

Ek + V0 < V0 in the regions I and III . (8.86)

Therefore, the penetration of the barrier is a quantum effect

that has no classical analog. It is a strange effect, which makes a

quantum mechanical penetration of the barrier to be regarded as a

paradoxical, controversial, nonintuitive aspect of quantum physics.

How far the particle can penetrate the barrier?

This depends on V0 and the mass of the particle. To show this,

consider the wave function in region III. In this case,

φ3(x) = Ge−k1 x , x >
a
2

, (8.87)

with

k1 = 1

�

√
2m (V0 − E ) . (8.88)
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Figure 8.9 The dependence of exp(−k1x) on x for two different values of

k1.

Since the parameter k1 is a positive real number, it plays a role of

the damping coefficient of the exponential function. For V0 � E , the

parameter k1 � 1, and then the depth of penetration is very small

(vanishes for V0 → ∞). For V0 ≈ E , the parameter k1 ≈ 0, and

then the depth of penetration is very large. These two situations are

shown in Fig. 8.9.

The same arguments apply for the mass m of the particle. For a

heavy particle, m � 1, the parameter k1 � 1, and then the depth of

penetration is very small.

To prove that the penetration effect really exists, we have to

demonstrate that the constants C and G are really nonzero.

To show this, we will turn to the details and carry out the

complete solution to the wave function of the particle.

We start from the general solution to the Schrödinger equation

for the wave function of the particle inside the square-well potential,

which is of the form:

I. φ1(x) = C ek1 x , x < −a
2

II. φ2(x) = Aeik2 x + Be−ik2 x , −a
2

≤ x ≤ a
2

III. φ3(x) = Ge−k1 x , x >
a
2

. (8.89)

To find the constants A , B , C , and G, we use the property of

the wave function that φ(x) and the first-order derivative dφ(x)/dx



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Finite Square-Well Potential 133

must be finite and continuous everywhere, in particular, at the

boundaries x = −a/2 and x = a/2.

Hence, at x = −a/2 :

C e− 1
2

ak1 = Ae−i 1
2

ak2 + Bei 1
2

ak2 . (8.90)

At x = a/2 :

Ge− 1
2

ak1 = Aei 1
2

ak2 + Be−i 1
2

ak2 . (8.91)

We remember that also dφ/dx must be continuous across the

same boundaries. Since

I.
dφ1

dx
= k1C ek1 x ,

II.
dφ2

dx
= ik2 Aeik2 x − ik2 Be−ik2 x ,

III.
dφ3

dx
= −k1Ge−k1 x , (8.92)

we find that at x = −a/2:

C k1e− 1
2

ak1 = ik2

(
Ae− 1

2
iak2 − Be

1
2

iak2

)
, (8.93)

and at x = a/2:

−Gk1e− 1
2

ak1 = ik2

(
Ae

1
2

iak2 − Be− 1
2

iak2

)
. (8.94)

Dividing both sides of Eq. (8.93) by k1, we obtain

C e− 1
2

ak1 = iβ
(

Ae− 1
2

iak2 − Be
1
2

iak2

)
, (8.95)

where β = k2/k1. Comparing Eqs. (8.90) and (8.95), we get

Ae−i 1
2

ak2 + Bei 1
2

ak2 = iβ
(

Ae− 1
2

iak2 − Be
1
2

iak2

)
, (8.96)

from which we find that

A = (iβ + 1)

(iβ − 1)
Beiak2 . (8.97)

With this relation between A and B , it is now possible to obtain a

solution to the constant C in terms of B . Thus, substituting Eq. (8.97)

into Eq. (8.90), we find that

C = 2iβ
(iβ − 1)

Be
1
2

ak1(iβ+1) . (8.98)
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Since B �= 0, as the particle exists inside the well, we have C �= 0,

indicating that there is a nonzero probability of finding the particle

in region I. The probability is given by |φ1(x)|2, that is

|φ1(x)|2 = |C |2e−2k1|x| , (8.99)

where |x| = −x for x < 0. Thus,

|φ1(x)|2 = |B|2 4β2

(β2 + 1)
e−2k1(|x|− a

2 ) . (8.100)

The probability is different from zero and decreases exponen-

tially with the rate 2k1. The remaining constant |B| is found from

the normalization condition of φ(x).

We may conclude that even though the particle’s energy is

smaller than the value of V outside the well, there is still a definite

probability that the particle can be found outside the well.

8.3.3 Discrete Energy Levels

We now check whether the constant G is different from zero and that

the particle can really be found in region III. The calculations will

also give us the condition for energies of the particle inside the well.

To find G, we consider the continuity conditions at x = a/2. From

the symmetry of the system, we expect that the constant G, similar

to C , will be different from zero and may be found in a similar way

as we have found the constant C .

However, from Eqs. (8.91) and (8.94), and using Eq. (8.97), we

find two solutions to the constant G in terms of B:

Ge− 1
2

ak1 = B
(

ue
3
2

iak2 + e− 1
2

iak2

)
, (8.101)

Ge− 1
2

ak1 = −iβ B
(

ue
3
2

iak2 − e− 1
2

iak2

)
, (8.102)

where

u = (iβ + 1)

(iβ − 1)
. (8.103)

Thus, we have two different solutions to G. However, we cannot

accept both the solutions as it would mean that there are two

different probabilities of finding the particle at a point x inside

region III. Therefore, we have to find under which circumstances

these two solutions are equal.
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Dividing Eq. (8.102) by Eq. (8.101), we obtain

iβ
(

ue2iak2 − 1
)(

u e2iak2 + 1
) = −1 , (8.104)

from which we find that the solutions (8.101) and (8.102) are equal

when

tan(ak2) = 2k1k2

k2
2 − k2

1

. (8.105)

To proceed further, we introduce dimensionless parameters

ε = 1

2
ak2 = 1

2
a

√
2mE
�2

, (8.106)

√
ξ2 − ε2 = 1

2
ak1 , (8.107)

where

ξ2 = ma2V0

2�2
. (8.108)

We see from the relation ε = 1
2

ak2 that determining ε, we can get

the energy E of the particle inside the well. To show this, we rewrite

Eq. (8.105) in terms of ε and ξ , and find

ε tan ε =
√

ξ2 − ε2 . (8.109)

This is a transcendental equation, which cannot be solved

analytically, but it can be solved graphically as follows. Introducing

the notation

p(ε) = ε tan ε ,

q(ε) =
√

ξ2 − ε2 , (8.110)

we find solutions to the equation p(ε) = q(ε) by plotting separately

p(ε) and q(ε). The functions p(ε) and q(ε) are shown in Fig. 8.10.

The intersection points of the two curves give the solutions to the

equation p(ε) = q(ε). We see from the figure that the equation

p(ε) = q(ε) is satisfied only for discrete (finite) values of ε. Since the

energy E is proportional to ε, see Eq. (8.106), we find that the energy

of the particle is quantized in region II, i.e., the energy spectrum is

discrete.
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Figure 8.10 p(ε) and q(ε) as a function of ε. The number of solutions to the

equation p(ε) = q(ε) is given by the number of intersections of p(ε) and

q(ε).

The number of solutions, which will give us the number of energy

levels, depends on ξ , but always is finite. We see from Fig. 8.10 that

we have

one solution for ξ < π ,

two solutions for ξ < 2π ,

three solutions for ξ < 3π ,

and so on. The number of solutions determines the number of

energy levels inside the well. We remember that

ξ2 = 1

4
a2
(

k2
1 + k2

2

) = ma2V0

2�2
. (8.111)

Thus, ξ is determined by the dimensions of the well.

The number of energy levels that the well is capable of binding is

often called the “strength” of the well. It is interesting to note from

Fig. 8.10 that there must be at least one energy level inside the well

and that the number of energy levels can never be zero.

Exercise in Class

Find the number of energy levels and the allowed values of E in a

potential well with ξ = 4.
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Since ξ = 4 < 2π , we see from Fig. 8.10 that in this case there

are two solutions to ε: ε1 = 1.25 and ε2 = 3.60. Thus, there are only

two energy levels inside the well.

Once we have the allowed values of ε, we can find the allowed

values of the energy E . The calculations proceed in the following

way. Since

ε = 1

2
ak2 ,

√
ξ2 − ε2 = 1

2
ak1 , (8.112)

and

k1 =
√

2m
�2

(V0 − E ) , k2 =
√

2m
�2

E , (8.113)

we get √
ξ2 − ε2

ε
= k1

k2

=
√

V0 − E
E

, (8.114)

from which we find that

E = ε2

ξ2
V0 . (8.115)

Hence, for ε1 = 1.25 and ε2 = 3.60, we get E1 = 0.098V0

and E2 = 0.81V0, respectively. The two energy levels are shown in

Fig. 8.11.

Discussion Problems

Problem D4 Suppose someone would like to put a particle of energy

E into the well analyzed in the aforementioned exercise in class.

What would happen to the particle of energy E �= E1, E2?

Figure 8.11 Energy levels inside the well with ξ = 4.
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Problem D5 In the chapter, we have shown that the phenomenon of

penetration of the barrier would imply that the kinetic energy of the

particle in regions I and III is negative. As a consequence, the particle

would have an imaginary speed.

Attack this problem from the standpoint of Heisenberg uncer-

tainty principle and calculate the uncertainty in the kinetic energy of

the particle in regions I and III. Compare the uncertainty in Ek to the

amount of Ek; we expect it to be negative. How would you comment

on this result?

Tutorial Problems

Problem 8.8 Show that the particle probability current density �J
is zero in region I, and deduce that R = 1, T = 0. This is the

case of total reflection; the particle coming toward the barrier will

eventually be found moving back. “Eventually,” because the reversal

of direction is not sudden. Quantum barriers are “spongy” in the

sense the quantum particle may penetrate them in a way that

classical particles may not.

Problem 8.9 Recall the case of E > V0 discussed briefly in

Section 8.3.1.

(a) Evaluate the transmission coefficient from region I to region III.

V0

I II0 a III x

Figure 8.12 Potential well of semi-infinite depth.
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(b) Under which condition the transmission coefficient becomes

unity, T = 1?

Problem 8.10 A rectangular potential well is bounded by a wall of

infinite high on one side and a wall of high V0 on the other, as shown

in Fig. 8.12. The well has a width a and a particle located inside the

well has energy E < V0.

(a) Find the wave function of the particle inside the well.

(b) Show that the energy of the particle is quantized.

(c) Discuss the dependence of the number of energy levels inside

the well on V0.

Quantum mechanics is magic.
—Daniel Greenberger

8.4 Quantum Tunneling

When the potential barrier has a finite width, an interesting effect

can appear, that the particle with energy E < V0 can not only

penetrate the barrier, it can even pass through the barrier and

appear on the other side, as illustrated in Fig. 8.13.

This phenomenon is known as quantum tunneling. In solid state

physics, this phenomenon is often called cold emission.

How can we understand the process of a particle tunneling

through a seemingly impenetrable barrier? How large is the

probability that the particle passes through the barrier? To answer

these questions, we can use a wave picture of the particle. We have

already learned that the particle wave function does not terminate

abruptly at the edge of the barrier, but actually leaks out of the

barrier. As we will see, the tunneling effect depends on the relation

between E and V0, mass m of the particle, and also on the thickness

of the barrier.
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a/2-a/2 x

V0
I II III

Figure 8.13 Potential barrier of a thickness a. The wave function of a

particle is continuous across the barrier, which may result the particle to

tunnel through the barrier from region I to region III.

Rigorous calculations

The analytic formulation of the tunneling effect can be obtained

simply as follows: Consider a particle of mass m and total energy E
moving from the left and acting on the rectangular potential barrier,

as shown in Fig. 8.13. Assume that E < V0. According to classical

physics, the particle cannot pass the barrier. What does the quantum

mechanics say about it?

According to quantum mechanics, the particle is determined

by the wave function, which exists in all three regions shown in

Fig. 8.13. The wave function is found from the Schrödinger equation,

whose solution for the three regions is

I. φ1(x) = Aeik1 x + Be−ik1 x , x < −a
2

II. φ2(x) = C e−k2 x + Dek2 x , −a
2

≤ x ≤ a
2

III. φ3(x) = F eik1 x + Ge−ik1 x , x >
a
2

(8.116)

where k1 = √
2mE/� and k2 = √

2m(V0 − E )/�.

The wave function and its first-order derivatives must be

continuous at the two boundaries x = −a/2 and x = a/2. The

continuity conditions at x = −a/2 are

Ae−ik1
a
2 + Beik1

a
2 = C ek2

a
2 + De−k2

a
2 ,

Ae−ik1
a
2 − Beik1

a
2 = ik2

k1

(
C ek2

a
2 − De−k2

a
2

)
. (8.117)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Quantum Tunneling 141

The continuity conditions at x = a/2 are

C e−k2
a
2 + Dek2

a
2 = F eik1

a
2 + Ge−ik1

a
2 ,

−C e−k2
a
2 + Dek2

a
2 = ik1

k2

(
F eik1

a
2 − Ge−ik1

a
2

)
. (8.118)

The continuity conditions (8.117) and (8.118) can be concisely

written in terms of matrix equations that are easy to solve:

(
A
B

)
= 1

2

⎛
⎝
(

1 + ik2

k1

)
ek2

a
2
+ik1

a
2

(
1 − ik2

k1

)
e−k2

a
2
+ik1

a
2(

1 − ik2

k1

)
ek2

a
2
−ik1

a
2

(
1 + ik2

k1

)
e−k2

a
2
−ik1

a
2

⎞
⎠( C

D

)
,

(8.119)

and

(
C
D

)
= 1

2

⎛
⎝
(

1 − ik1

k2

)
ek2

a
2
+ik1

a
2

(
1 + ik1

k2

)
ek2

a
2
−ik1

a
2(

1 + ik1

k2

)
e−k2

a
2
+ik1

a
2

(
1 − ik1

k2

)
e−k2

a
2
−ik1

a
2

⎞
⎠( F

G

)
.

(8.120)

The relationship between the solution on the left of the barrier

and the solution on the right can now be obtained by substituting

the matrix equation (8.120) into the right-hand side of the matrix

equation (8.119). This leads to the matrix equation(
A
B

)
=
(

M11 M12

M∗
12 M∗

11

)(
F
G

)
, (8.121)

where

M11 =
(

cosh k2a + iε
2

sinh k2a
)

eik1a ,

M12 = iη
2

sinh k2a , (8.122)

with

ε = k2

k1

− k1

k2

, and η = k2

k1

+ k1

k2

. (8.123)

We now have four unknown coefficients to evaluate. But we have

only two equations and a third from the normalization. However, if

we assume that particles travel from the left to the right, we can set

G = 0 as there is nothing in region III that could reflect particles
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back toward the barrier. In this case, it is a simple algebraic exercise

to show that

F
A

= e−ik1a

cosh(k2a) + 1
2

iε sinh(k2a)
. (8.124)

Hence, the transmission coefficient of the particle from region I

to region III is

T = |F |2

|A|2
=
[

cosh2(k2a) +
( ε

2

)2

sinh2(k2a)

]−1

=
[

1 +
(( ε

2

)2

+ 1

)
sinh2(k2a)

]−1

=
[

1 + V 2
0 sinh2(k2a)

4E (V0 − E )

]−1

. (8.125)

When E > V0, the solution changes only in region II. In this case,

the propagation constant k2 is imaginary, and the new solution can

be readily obtained from the above solution simply by replacing k2

by ik′
2, where k′

2 = √
2m(E − V0)/�. So that the expression for T

changes to

T =
[

1 + V 2
0 sin2(k′

2a)

4E (E − V0)

]−1

. (8.126)

First, note that if there is no barrier, V0 = 0, and then there is

100% transmission. Thus, there is nothing particularly remarkable

about the solution when V0 = 0. Its physical interest lies in what

happens when V0 �= 0.

For V0 �= 0, one could expect from the classical physics that there

is no transmission through the barrier, T = 0 for E < V0, and that

the transmission coefficient T = 1 for E > V0. However, Eq. (8.125)

shows that T is not zero for E < V0 (nonzero transmission), and

Eq. (8.126) shows that T < 1 for E > V0 (nonzero reflection).

Thus, tunneling effect for E < V0 and partial reflection at the

barrier for E > V0 are quantum phenomena. In the classical limit

of � → 0, the parameter k2 → ∞, and then T → 0. Hence, in the

classical limit, there is no possibility of the particle of an energy E <

V0 to pass the barrier. Moreover, since that k2 is proportional to the

mass of the particle, the transmission coefficient (8.125) is large for

light particles and decreases with the increasing m.
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There is a further interesting phenomenon for the case of E > V0.

One can see from Eq. (8.126) that if k′
2a = nπ, n = 1, 2, 3, . . . , the

transmission coefficient becomes unity, T = 1, i.e., there is 100%

transmission from region I to region III. Otherwise, quantum effect

(partial reflection) appears. The conditions at which there is 100%

transmission are called resonances. This phenomenon is analogous

to the behavior of coated lenses in optics. Another example is the

scattering of electrons by atoms, where it is observed that for

certain energies of the electrons, almost no scattering takes place,

i.e., the atom is almost transparent. These are real examples of the

transmission resonances, and in electron scattering by electrons, it

is known as the Townsend–Ramsauer effect.

Remember: External potential (energy supply) is not required to

tunnel particles through the barrier. Quantum tunneling does not

use energy!

8.4.1 Applications of Quantum Tunneling

Quantum tunneling is important in the understanding of a number

of physical phenomena such as thermonuclear reactions and

conduction in metals and semiconductors. In 1928, Gamov, Condon,

and Gurney used quantum tunneling to explain the α-decay of

unstable nuclei, in which an alpha particle (a helium nucleus) is

emitted from a radioactive nucleus. The alpha particle has an energy

that is less than the high of the potential barrier keeping the particle

inside the nucleus. Nevertheless, alpha particles tunnel through the

barrier and are detected outside the nucleus.

Tunneling has also been used in a number of electronic devices.

One is a tunnel diode in which the current of electrons is controlled

by adjusting the energy E of the electrons. This changes the value of

k2 and thus the rate at which the electrons tunnel through the device.

The most advanced application of quantum tunneling is the

scanning tunneling microscope. A probe needle is held very close

(<1 nm) above a conducting object and scanned across it. The

object is at a positive voltage V with respect to the probe needle.

However, for electrons to pass from the needle to the object, they

have to overcome the work function of the needle material. This

creates a potential barrier through which electrons can tunnel. As
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they tunnel through the potential barrier, they generate a current

whose variation tells us about the distance between the needle and

the object.

Discussion Problem

Problem D6 Take the limits V0 → ∞ and a → 0 in the solution

(8.125) such that aV0 is equal to a constant α. How does the

transmission coefficient depend on E ?

This problem illustrates transmission through a potential barrier

of the shape of a δ function.

Tutorial Problems

Problem 8.11 Check the derivation of Eq. (8.121) from Eqs. (8.119)

and (8.120).

Problem 8.12 Fill the missing steps in the derivation of Eq. (8.124)

from Eq. (8.121).

Problem 8.13 Using either Eq. (8.125) or Eq. (8.126), find the

transmission coefficient in the limit of E → V0.

Problem 8.14 An electron, which has a kinetic energy of 100 eV,

enters a region of width a = 0.1 nm, where there is an accumulation

of negative charge. The region may be treated as a potential barrier

of 120 eV. Find the probability that the electron will be found on the

other side of the barrier.

Problem 8.15 Tunneling through a nonsymmetric barrier
Particles of mass m and energy E < V0 moving in one dimension

from −x to +x encounter a nonsymmetric barrier, as shown in

Fig. 8.14.

(a) Find the transmission coefficient T .

(b) Show that in the limit of a → 0, the transmission coefficient

reduces to that of the step potential.

(c) Does the transmission coefficient depend on the direction of

propagation of the particles?
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a-a x

V0

-V1

V (x )

E

Figure 8.14 Tunneling through a nonsymmetric barrier.

Challenging problem: Quantum tunneling from and into a
semi-finite well

In the problem discussed in the chapter, we have shown there are

no restrictions on the energy of a particle to tunnel through the

barrier. The explanation of this effect is simple: The particle of an

arbitrary energy can tunnel through the barrier because there are

no restrictions on energies, which the particle can have in region III.

Let us consider the exercise from the preceding section—a rectan-

gular potential well of width a bounded by a wall of infinite high on

one side and a barrier of high V0 and infinite thickness on the other.

We have learned that inside the well in region I, a particle can have

only a limited number of discrete energies.

(a) Now imagine what happens if the thickness of the barrier

(region II) is finite and the particle of energy E < V0 is inside

the potential well. Do you expect that the energy levels of the

particle in region I are still discrete?
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(b) Suppose that the particle of energy E < V0 is in region III on the

right of the barrier and moves toward the barrier, as shown in

Fig. 8.15.

Figure 8.15 Potential well of semi-infinite depth.

Find the tunneling coefficient and determine whether for each

E , in the range 0 < E < V0, the particle can tunnel to region I,

i.e., determine whether the energy spectrum in region I is discrete

or continuous. Would you expect this result without the detailed

calculations?
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Chapter 9

Multidimensional Quantum Wells

In the last three chapters, we have learned about some strange

effects that occur in the one-dimensional quantum world. We have

seen that particles confined into a small region can have quantized

energies, can be found in “classically forbidden” region, and even

can tunnel through this region. Although the one-dimensional case

is very useful in the illustration and understanding of the quantum

effects, we need a full three-dimensional treatment if we want to

illustrate applications of quantum mechanics to atoms, solid state,

nanotechnology, and nuclear physics. The application to atoms is

postponed for last because it is more difficult and will be discussed

in a separate chapter on angular momentum and hydrogen atom

(Chapter 16).

In this chapter, we extend the concept of quantum wells

from one to three dimensions to see how particles behave in

a three-dimensional quantum world. We will consider properties

of particles confined in two- and three-dimensional potential

structures called quantum wires and quantum dots. Determining

energies and corresponding wave functions requires some careful

analysis but is worth the trouble.

We can picture a quantum wire as a pipe, as shown in Fig. 9.1,

and particles moving freely along this pipe, just like water flowing
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x

y

z

a

a

L

Figure 9.1 A three-dimensional well of sides x = a, y = a, and z = L. Inside

the well, V = 0. The potential is infinite at the xy walls and can be set zero

at the z walls (quantum wire), or infinite (quantum dot).

through a pipe. However, we must be careful when using analogies

to describe quantum phenomena. We expect water to flow along

the bottom of the pipe, but we would be surprised to see the water

flowing through mid-air a few centimeters above the pipe floor. This

is precisely how the particles appear to behave in a quantum wire.

9.1 General Solution to the Three-Dimensional
Schrödinger Equation

Let us find the stationary wave function of a particle located

inside a three-dimensional well and its energies. The readers will

immediately notice that the wave function and the energies are

found from the stationary three-dimensional Schrödinger equation

− �
2

2m
∇2� + V � = E� . (9.1)

We see that in Cartesian coordinates, the operator ∂2/∂x2 in

the one-dimensional case is replaced in three dimensions by the

Laplacian

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (9.2)
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Since x , y, z are independent (separable) variables, the wave

function is also separable into three independent functions �x , �y ,

and �z. In this case, we can find the solution to the Schrödinger

equation in product form

�(x , y, z) = �x (x)�y(y)�z(z) . (9.3)

Substituting this into the above Schrödinger equation and

dividing both sides by �x�y�z, we obtain

− �
2

2m�x

d2�x

dx2
− �

2

2m�y

d2�y

dy2
− �

2

2m�z

d2�z

dz2
= E , (9.4)

where, as before, we have put V = 0 inside the well, but outside the

well we will set V = ∞ as a boundary condition.

Since each term on the left-hand side of Eq. (9.4) is a function

of only one variable, each will be independent of any change in

the other two variables. Thus, Eq. (9.4) can be separated into three

independent equations. To illustrate this, we write this equation as

− �
2

2m�x

d2�x

dx2
= E + �

2

2m�y

d2�y

dy2
+ �

2

2m�z

d2�z

dz2
. (9.5)

The left-hand side involves all of the x dependence. If we change

x any way we want, the right-hand side is not affected. Thus, it must

be that both sides are equal to a constant, say E x :

− �
2

2m�x

d2�x

dx2
= E x , (9.6)

− �
2

2m�y

d2�y

dy2
− �

2

2m�z

d2�z

dz2
= E − E x . (9.7)

Equation (9.7), which depends only on y and z variables, can be

written as

− �
2

2m�y

d2�y

dy2
= E − E x + �

2

2m�z

d2�z

dz2
. (9.8)

Again, both sides depend on different variables. The left-hand

side depends only on y and the right-hand side depends only on z;

thus, both sides are equal to a constant, say E y:

− �
2

2m�y

d2�y

dy2
= E y , (9.9)

− �
2

2m�z

d2�z

dz2
= E − E x − E y . (9.10)
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Hence, after the separation of the variables, the complicated

differential equation involving three variables has turned into three

independent equations of one variable each:

− �
2

2m�x

d2�x

dx2
= E x , (9.11)

− �
2

2m�y

d2�y

dy2
= E y , (9.12)

− �
2

2m�z

d2�z

dz2
= E z , (9.13)

where E z = E − E x − E y .

The wave function of the particle inside the well and its energies

are found from these three independent equations. The parameters

E x , E y , and E z are separation constants and represent energies of

motion along the three Cartesian axes x , y, and z. It is easy to see

that these three constants satisfy the equation

E x + E y + E z = E . (9.14)

The solutions to Eqs. (9.11) and (9.12) are the same as that for

the infinite square-well in one dimension and are given by

�x = A sin
(n1π

a
x
)

, n1 = 1, 2, 3, . . . , (9.15)

�y = B sin
(n2π

a
y
)

, n2 = 1, 2, 3, . . . , (9.16)

with energies

E x = n2
1

π2
�

2

2ma2
and E y = n2

2

π2
�

2

2ma2
. (9.17)

Thus, the energy of the particle is quantized in the x- and y-

directions.

It is worth noting how inevitably quantum numbers appear in

quantum theories of particles confined (trapped) into a particular

region of space.

9.2 Quantum Wire

The solution to the z-component of the motion, Eq. (9.13), depends

on whether the z sides of the well have zero or infinite potential. For
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zero potential, the z-direction is free for the motion of the particle.

In this way we form a quantum wire. The z component of the wave

function is given by

�z = C eikzz , (9.18)

where k2
z = 2mE z/�

2 and E z can have arbitrary values.

Thus, we conclude that for a quantum wire, the three-

dimensional wave functions of the particle are of the form

�n1, n2
= D sin

(n1π

a
x
)

sin
(n2π

a
y
)

eikzz , (9.19)

and the corresponding energies are given by

E = π2
�

2

2ma2

(
n2

1 + n2
2

)+ E z , with n1, n2 = 1, 2, 3, . . . ,

(9.20)

where D = A BC is a constant, which is found from the normalization

condition of the wave function, and E z can be arbitrary. It is easy to

show that

D = 2

a

√
1

L
. (9.21)

The proof of this formula is left as a tutorial problem for the

readers.

Interesting observation: Since the energy of the particle in the y-

direction can never be zero, the particle will never move at the floor

of the wire. Because the particle is confined in two directions, it

has only one dimension of freedom. Therefore, a quantum wire is

sometimes referred to as a one-dimensional system.

9.3 Quantum Dots

Can we reduce the freedom of the particle still further? Yes, if the

potential at the z sides is infinite, the particle is confined in every

direction, so we have an example of quantum dot.a In this case, the

solution to Eq. (9.13) is the same as for the x and y components:

�z = C sin
(n3π

L
z
)

, n3 = 1, 2, 3, . . . , (9.22)

aIt would be more correct to call the quantum dot a quantum box, but in many

calculations, quantum dots that have spherical symmetries are approximated by

rectangular boxes.
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with the E z energy taking only discrete values

E z = n2
3

π2
�

2

2mL2
. (9.23)

Thus, for a quantum dot with L = a, the wave functions of the

particle inside the well are of the form

�n1, n2, n3
=
(

2

a

) 3
2

sin
(n1π

a
x
)

sin
(n2π

a
y
)

sin
(n3π

a
z
)

, (9.24)

and the corresponding energies are given by

E = π2
�

2

2ma2

(
n2

1 + n2
2 + n2

3

)
, with n1, n2, n3 = 1, 2, 3, . . . .

(9.25)

Notice that the energy of the particle in a quantum dot is

quantized in all three directions. Because the motion of the particle

is now restricted in every direction (quantum confinement), the

particle has zero dimension of freedom. That is why a quantum dot

is often referred to as a zero-dimensional system. Quantum dots are

also regarded as artificial atoms.

An obvious question arises: Why are we interested in and what

do we achieve by producing such a structure?

Currently, most physicists say that nothing exciting can be done

with a single dot and it could have a little practical use. One can just

observe discrete energies of the confined electron. This would only

be another confirmation of the quantization of the energy. However,

if a single dot is located on a chip, a set of closely located dots, it could

have many practical uses. The set of quantum dots, composed into a

regular array, can behave as a single macroscopic device performing

a highly complex function. An electron located in one of the dots can

tunnel to another dot and this process can be controlled by varying

the energy levels in some of the dots. Thus, we can affect and control

the flow of the current through the device just by changing energies

of the dots. This is an example of an entirely different class of devices

in which the current flow is due to the wave behavior of electrons.

9.3.1 Degeneracy of Energy Levels

One can notice that the results obtained for the three-dimensional

case are similar to that obtained for the one-dimensional case.
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However, there is a significant difference between these two cases.

Notice from Eqs. (9.24) and (9.25) that in the three-dimensional

case, the wave function and the energy are specified by the trio

of integers (n1, n2, n3). Thus, there might be few wave functions

corresponding to the same energy. If it happens, we say that the

energy level is degenerate, and the number of degenerate states,

degeneracy.

We can illustrate this on a simple example of energies and the

corresponding wave functions of a quantum dot:

The lowest energy state (the ground state), for which n1 = n2 =
n3 = 1, has energy

E = 3π2
�

2

2ma2
, (9.26)

and there is only one wave function (singlet) corresponding to this

energy. We say that the level has degeneracy 1.

However, for the first excited energy level, there are three wave

functions corresponding to energy

E = 6π2
�

2

2ma2
, (9.27)

as there are three combinations of n1, n2, and n3 whose squares

sum to 6. These combinations are (n1 = 2, n2 = 1, n3 = 1),

(n1 = 1, n2 = 2, n3 = 1), and (n1 = 1, n2 = 1, n3 = 2). The three

wave functions corresponding to this energy and specified by the

three combinations are �2, 1, 1, �1, 2, 1, and �1, 1, 2. In this case, we say

that the level has degeneracy 3.

An interesting observation: It is easy to notice from Eq. (9.25) that

the degeneracy of the energy levels is characteristic of quantum

wells whose sides are of equal lengths. The degeneracy can be lifted,

if the sides of the well were of unequal lengths.

Revision Question

Quantum physics predicts that a particle can behave in unusual

ways, which are regarded as nonclassical or quantum effects without

classical analog.
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Figure 9.2 Tunneling through a quantum well.

(a) Give examples of nonclassical effects you have learned in the

book.

(b) Explain using physical arguments, why these effects are re-

garded as nonclassical.

Tutorial Problems

Problem 9.1 This problem illustrates why the tunneling (flow) of an

electron between different quantum dots is possible only for specific

(discrete) energies of the electron.

Consider a simplified situation, a one-dimensional system of

quantum wells, as shown in Fig. 9.2. The well represents a quantum

dot. Show, using the method we learned in the previous chapters on

applications of the Schrödinger equation, that an electron of energy

E < V0 and being in region I can tunnel through the quantum well

(region II) to region III only if E is equal to the energy of one of the

discrete energy levels inside the well.

Problem 9.2 Find the number of wave functions (energy states)

of a particle in a quantum well of the sides of equal lengths

corresponding to energy

E = 9π2
�

2

2ma2
,

i.e., for the combination of n1, n2, and n3, whose squares sum to 9.
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Problem 9.3 Find all energy states of a particle confined inside a

three-dimensional box with energies below

15
π2

�
2

2ma2
.

Indicate the degeneracy of each energy level.
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Chapter 10

Linear Operators and Their Algebra

We leave the stationary Schrödinger equation for a few chapters

to learn some operator techniques and state representations

commonly used in quantum physics. We have seen that in quantum

physics, it is frequently required to calculate energy and momentum

of a particle, which are represented by energy and momentum

operators, respectively. In this chapter, we will extend the idea of

representing physical as well as nonphysical quantities by operators

and collect together some frequently used operator techniques. We

will postulate that any quantity in quantum physics is specified by a

linear operator.

An operator Â is linear if for arbitrary functions fi and gi , and

arbitrary complex numbers ci , such that

Â f1 = g1 and Â f2 = g2 ,

the linear superposition is

Â (c1 f1 + c2 f2) = c1 Â f1 + c2 Â f2 = c1g1 + c2g2 . (10.1)
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10.1 Algebra of Operators

Let Â and B̂ are two linear operators. The sum and product of the

two operators Â and B̂ are defined as(
Â + B̂

)
f = Â f + B̂ f , (10.2)(

Â B̂
)

f = Â
(

B̂ f
)

. (10.3)

The operators obey the following algebraic rules:

1. Â + B̂ = B̂ + Â , (addition commutes) ,

2. Â + B̂ + Ĉ = ( Â + B̂
)+ Ĉ = Â + (B̂ + Ĉ

)
,

3. Â B̂Ĉ = Â
(

B̂Ĉ
) = ( Â B̂

)
Ĉ , (associative law of multiplicity) ,

4.
(

Â + B̂
)

Ĉ = ÂĈ + B̂Ĉ , (distributive law) .

(10.4)

The power of an operator and the sum of two operators are defined

as

1. Â2 = Â Â , Â3 = Â Â Â , etc.

2.
(

Â + B̂
)2 = ( Â + B̂

) (
Â + B̂

) = Â2 + B̂2 + Â B̂ + B̂ Â .

(10.5)

In a manipulation with operators, it is very important to maintain

the order of the operators because operator algebra is not in general

commutative for multiplication. For example, Â B̂ �= B̂ Â in general

and then (
Â + B̂

)2 �= Â2 + B̂2 + 2 Â B̂ , (10.6)

as in standard mathematics.

An important concept in quantum physics is a commutator. For

two operators Â and B̂ , the commutator is defined as[
Â, B̂
] = Â B̂ − B̂ Â , (10.7)

and says that two operators commute if[
Â, B̂
] = 0 . (10.8)

We can also define anti-commutator as{
Â, B̂
} ≡ [ Â, B̂

]
+ = Â B̂ + B̂ Â , (10.9)

and we say that two operators anti-commute if[
Â, B̂
]
+ = 0 . (10.10)
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Inverse operator: The inverse of an operator Â, if it exists, is defined

by

Â Â−1 = Â−1 Â = 1̂ , (10.11)

where 1̂ is the unit operator defined by

1̂ f = f . (10.12)

Hermitian adjoint: (Hermitian conjugate)

Operator Â† is the Hermitian adjoint of an operator Â if for two
functions f and g that vanish at infinity∫

f ∗ ÂgdV =
∫ (

Â† f
)∗

gdV . (10.13)

There are several important properties of Hermitian conjugate.

Property 1:
(

Â†)† = Â.

Proof:∫
f ∗ ÂgdV =

∫ (
Â† f
)∗

gdV =
∫

g
(

Â† f
)∗

dV =
(∫

g∗ Â† f dV
)∗

=
(∫ ((

Â†)† g
)∗

f dV
)∗

=
∫ ((

Â†)† g
)

f ∗dV

=
∫

f ∗
((

Â†)† g
)

dV , (10.14)

as required.

Property 2:
(

Â B̂
)† = B̂† Â†.

Proof:∫
f ∗ ( Â B̂

)†
gdV =

∫ (
Â B̂ f

)∗
gdV =

∫ [
Â
(

B̂ f
)]∗

gdV. (10.15)

Introducing the notation B̂ f = u, we get∫ (
Âu
)∗

gdV =
∫

u∗ Â†gdV =
∫ (

B̂ f
)∗

Â†gdV

=
∫

f ∗ B̂† Â†gdV . (10.16)

Thus,
(

Â B̂
)† = B̂† Â†, as required.
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The above rules of operator algebra show that it is important

to maintain the order of the factors because operator algebra is

not in general commutative for multiplication. Many commonly

used results in mathematics are generally not valid for operators

since these are based on the assumption that multiplication is

commutative. For example, the simple identity written for operators

e ÂeB̂ = e( Â+B̂) (10.17)

is true only if Â and B̂ commute. The proof of this identity is left as a

tutorial problem for the readers.

10.2 Hermitian Operators

We now turn to define a special class of operators called Hermitian
operators. They are distinguished by the relationship of Â and

Â†. The Hermitian operators are of great importance in quantum

physics, as they represent physical (measurable) quantities.

Definition

Operator Â is called Hermitian if

Â† = Â , (10.18)

i.e., when ∫
f ∗ ÂgdV =

∫ (
Â f
)∗

gdV . (10.19)

In other words, an operator is Hermitian if the Hermitian
conjugate is equal to the operator itself.

10.2.1 Properties of Hermitian operators

There are several important properties of Hermitian operators.

If Â and B̂ are Hermitian, then

Property 1. Â + B̂ is Hermitian.

Property 2. Â2, Â3, etc. are Hermitian.
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Property 3. c Â is Hermitian if c is a real number.

Proof of property 3:∫
f ∗ (c Â

)
gdV =

∫ (
c Â f
)∗

gdV = c∗
∫ (

Â f
)∗

gdV ,

(10.20)

as required.

Property 4. The product Â B̂ of two Hermitian operators is Her-

mitian only if Â and B̂ commute.

Proof: (
Â B̂
)† = B̂† Â† = B̂ Â . (10.21)

Hence, ( Â B̂)† �= Â B̂ , unless Â and B̂ commute, as required.

Property 5. From property 4, we find that the commutator
[

Â, B̂
]

is

not Hermitian, even if Â and B̂ are Hermitian.

Proof: [
Â, B̂
]† = ( Â B̂ − B̂ Â

)† = ( Â B̂
)† − (B̂ Â

)†
= B̂† Â† − Â† B̂† = B̂ Â − Â B̂ = − [ Â, B̂

]
, (10.22)

as required.

Example

Commutator of the position and momentum operators

[x̂ , p̂x ] = i� . (10.23)

The commutator of the two Hermitian operators is a complex

number (nonphysical number).

Property 6. The commutator i
[

Â, B̂
]

is Hermitian.

The proof is left to the readers.
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Property 7. For an arbitrary not necessary Hermitian operator Â,

the product Â Â† is Hermitian.

Proof: Take the Hermitian conjugate of Â Â†:(
Â Â†)† = ( Â†)† Â† = Â Â† , (10.24)

as required.

Property 8. If Â is non-Hermitian, Â + Â† and i
(

Â − Â†) are

Hermitian. Hence, the operator Â can be written as a linear

combination of two Hermitian operators:

Â = 1

2

(
Â + Â†)+ 1

2i

(
i
(

Â − Â†)) . (10.25)

10.2.2 Examples of Hermitian Operators

Example 1. Position operator �̂r is Hermitian.

Proof:
Since |�r| is a real number and �̂rg is just a multiplication of the

function g by the vector �r , we have∫
f ∗�̂rgdV =

∫
�̂r f ∗gdV =

∫ (
�̂r f
)∗

gdV . (10.26)

as required.

Example 2. Potential V̂ (�r) is Hermitian.

It is easy to prove. Since �̂r is Hermitian, an arbitrary function of �r is

also Hermitian.

Example 3. Momentum operator is Hermitian.

Proof:∫
V

(
�̂p f
)∗

gdV =
∫

V

(
�

i
∇ f
)∗

gdV = −�

i

∫
V

(∇ f ∗) gdV

= −�

i

∫
V

∇ ( f ∗g) dV + �

i

∫
V

f ∗ (∇g) dV

= −�

i

∫
V

∇ ( f ∗g) dV +
∫

V
f ∗
(

�

i
∇g
)

dV. (10.27)
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Using Gauss’s divergence theorem, we find that the above equation

can be written as

= −�

i

∮
S

f ∗gdS +
∫

V
f ∗
(

�̂pg
)

dV . (10.28)

First integral in Eq. (10.28) vanishes as f and g vanish at infinity,

and therefore we get∫
V

(
�̂p f
)∗

gdV =
∫

V
f ∗
(

�̂pg
)

dV , (10.29)

which means that �̂p is Hermitian, as required.

10.3 Eigenvalues and Eigenvectors

We have defined before the eigenvalues and eigenfunctions of the

Hamiltonian of a particle (see Section 7.2). The idea of eigenvalues

and eigenfunctions can be extended to arbitrary operators. Thus, we

can state: If

Â� = α� , (10.30)

then � is an eigenfunction of Â with eigenvalue α.

Example

Determine if the function � = e2x is an eigenfunction of the

operators (a) Â = d/dx , (b) B̂ = ()2, and (c) Ĉ = ∫ dx .

Solution

(a) Operating on the wave function � with the operator Â, we obtain

Â� = d
dx

e2x = 2e2x = 2� , (10.31)

which is a constant times the original function. Therefore, � = e2x

is an eigenfunction of the operator Â = d/dx with an eigenvalue

α = 2.

Solutions to the parts (b) and (c) are left to the readers.
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10.3.1 Eigenvalues of Hermitian Operator

As we have already stated, Hermitian operators play an important

role in quantum physics as they represent physical quantities

(observables). We put this fact as a theorem.

Theorem: Eigenvalues of a Hermitian operator are real.

Proof:
Assume that α is an eigenvalue of a Hermitian operator Â
corresponding to the eigenfunction f , which is normalized and

vanishes at infinity. Then

α = α

∫
V

| f |2dV =
∫

V
f ∗α f dV =

∫
V

f ∗ Â f dV

=
∫

V

(
Â f
)∗

f dV =
∫

V
α∗ f ∗ f dV = α∗

∫
V

| f |2dV

= α∗ , (10.32)

as required.

10.4 Scalar Product and Orthogonality of Wave Functions

In this chapter, we will define a very important property of wave

functions: orthogonality. This property, for example, allows to

identify whether the given wave functions belong to the same

operator or not.

We say that two functions �1(�r) and �2(�r) are orthogonal if∫ +∞

−∞
�∗

1 (�r)�2(�r)dV = 0 . (10.33)

The orthogonality condition of two functions is analogous to

the orthogonality condition of two vectors. We know from basic

mathematics that vectors are orthogonal when the scalar product

of the vectors is zero. In analogy, we can write a scalar product of

two functions as(
�i , � j

) =
∫

�∗
i (�r)� j (�r)dV = aj δi j , (10.34)

where aj is a positive constant and δi j is the Kronecker delta

function.
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When aj = 1, we say that the functions are orthonormal.
The complex functions �i form a complex linear vector space.

The infinite-dimensional vector space of orthonormal functions is

called Hilbert space.

The scalar product

(�i , �i ) = ||�i || =
∫

|�i |2 dV , (10.35)

where �i is a square integrable function, is called the norm of

the state (vector) � . For a state function that represents physical

quantity, the norm is finite. If the functions are orthonormal, the

norm ||�i || = 1.

Example of orthogonal functions: Typical examples of orthogonal

functions are sine and cosine functions. Their product with any

other function of the same class gives zero when integrated over all

ranges of variable, unless the two multiplied functions are identical.∫ 2π

0

sin(mφ) sin(nφ) dφ =
{

0 for m �= n
π for m = n

(10.36)

∫ 2π

0

cos(mφ) cos(nφ) dφ =
{

0 for m �= n
π for m = n

(10.37)

∫ 2π

0

sin(mφ) cos(nφ) dφ = 0 for all m and n . (10.38)

The above orthogonality properties are readily proved by direct

integration.

From the orthogonality of the sine functions, we see that the

eigenfunctions of a particle in an infinite square-well potential,

Eq. (8.22), corresponding to different energies (n �= m) are

orthogonal.

Having available the definition of orthogonal functions, we can

proceed to formulate an important property of eigenfunctions of a

linear Hermitian operator.

Theorem: Eigenfunctions of a linear Hermitian operator be-
longing to different eigenvalues are orthogonal.
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Proof:
Consider a Hermitian operator Â. Let f and g be two eigenfunctions

of Â corresponding to two different eigenvalues α f and αg ,

respectively:

Â f = α f f , Âg = αgg , (10.39)

where α f , αg are real numbers.

Since
(

Â f
)∗ = α f f ∗, we can write∫ (

Â f
)∗

gdV −
∫

f ∗ ( Âg
)

dV = (α f − αg
) ∫

f ∗gdV .

(10.40)

However ∫ (
Â f
)∗

gdV =
∫

f ∗ ( Âg
)

dV , (10.41)

and therefore the left-hand side of Eq. (10.40) vanishes. Since, α f �=
αg, we have

( f, g) =
∫

f ∗gdV = 0 , (10.42)

as required.

10.5 Expectation Value of an Operator

In classical physics, an expectation or average or mean value of

an arbitrary quantity A is obtained by weighting each measured

value Ai by the associated probability Pi and summing over all the

measurements N . Thus,

〈A〉 =
∑

i

Pi Ai i = 1, 2, . . . , N , (10.43)

where Pi is a probability of measuring the value Ai .

How do we calculate expectation values in quantum physics?

Consider an operator Â acting on a function �i . Suppose that Â�i

exists, then the scalar product(
�i , Â�i

) =
∫

�∗
i Â�i dV (10.44)
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is called the expectation or average or mean value of the operator Â
in the state �i .

Similarly, as in classical physics, the expectation value can be

calculated from the probability density as

〈 Â〉 =
∫

Âρ(�r)dV =
∫

Â |�i |2 dV =
∫

�∗
i Â�i dV , (10.45)

where the order of the factors under the integral is not important.

10.5.1 Properties of Expectation Value

Property 1. Expectation value of a Hermitian operator is real.

Proof:

〈 Â〉 =
∫

�∗
i Â�i dV =

∫ (
Â�i
)∗

�i dV

=
∫

�i
(

Â�i
)∗

dV =
(∫

�∗
i Â�i dV

)∗
= 〈 Â〉∗ , (10.46)

as required.

Property 2. Expectation value of an arbitrary operator B̂ satisfies

the following equation of motion

d
dt

〈B̂〉 =
〈

∂ B̂
∂t

〉
+ i

�

〈[
Ĥ , B̂

]〉
. (10.47)

Proof:
Since

〈B̂〉 =
∫

�∗
i B̂�i dV ,

we have

d
dt

〈B̂〉 =
∫ (

∂�∗

∂t

)
B̂�dV +

∫
�∗
(

∂ B̂
∂t

)
�dV

+
∫

�∗ B̂
(

∂�

∂t

)
dV .

From the Schrödinger equation,

i�
∂�

∂t
= Ĥ � ,
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and its complex conjugate

−i�
∂�∗

∂t
= Ĥ �∗ ,

we obtain

d
dt

〈B̂〉 =
〈

∂ B̂
∂t

〉
+ i

�

∫
Ĥ �∗ B̂�dV − i

�

∫
�∗ B̂ Ĥ �dV .

Since Ĥ is Hermitian, we finally get

d
dt

〈B̂〉 =
〈

∂ B̂
∂t

〉
+ i

�

∫
�∗ (Ĥ B̂ − B̂ Ĥ

)
�dV

=
〈

∂ B̂
∂t

〉
+ i

�

〈[
Ĥ , B̂

]〉
,

as required.

Thus, expectation value of the operator B̂ can depend on time

even if the operator does not depend explicitly on time (∂ B̂/∂t = 0).

When [Ĥ , B̂] = 0, we have d〈B̂〉/dt = 0, and then the expectation

value is constant in time. In analogy to classical physics, we call 〈B̂〉
a constant of motion.

Worked Example

Calculate the expectation value of the x-coordinate of a particle in an

energy state En of a one-dimensional well, discussed in Section 8.1.

Solution

The expectation value of x is

〈x〉 =
∫

φ∗(x)xφ(x)dx ,

where φ(x) is the wave function of the particle.

Since

φ(x) = φn(x) =
√

2

a
sin
(nπ

a
x
)

, for 0 ≤ x ≤ a ,
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and φ(x) is zero for x < 0 and x > a, we obtain

〈x〉 =
∫

φ∗(x)xφ(x)dx = 2

a

∫ a

0

dx x sin2
(nπ

a
x
)

= 1

a

∫ a

0

dx x
[

1 − cos

(
2nπ

a
x
)]

= 1

a

∫ a

0

dx
[

x − x cos

(
2nπ

a
x
)]

= 1

a

∫ a

0

dx x − 1

a

∫ a

0

dx x cos

(
2nπ

a
x
)

= 1

a
1

2
x2

∣∣∣∣
a

0

− 1

a

{
− a2

(2nπ)2

[
cos

(
2nπ

a
x
)

+2nπx
a

sin

(
2nπ

a
x
)]a

0

}
.

Since cos(2nπ) = cos 0 = 1, and sin(2nπ) = sin 0 = 0, we find that

〈x〉 = 1

2
a ,

independent of n! Physically, this value results from the fact that the

wave function of the particle is symmetric about x = a/2 for all n.

Note the expectation value is not equal to the most probable value,

which is given by |φ(x)|2.

10.5.2 Useful General Property of Hermitian Operators

We have already shown that expectation values of Hermitian

operators are real. In terms of the scalar product of two orthonormal

functions, this is characterized by(
�i , Â�i

) = (�i , Â�i
)∗

. (10.48)

From this property, we have in general for Hermitian operators(
�i , Â� j

) = (� j , Â�i
)∗

. (10.49)

Proof:(
�i , Â� j

) =
∫

�∗
i Â� j dV =

∫ (
Â�i
)∗

� j dV =
∫

� j
(

Â�i
)∗

dV

=
(∫

�∗
j Â�i dV

)∗
= (� j , Â�i

)∗
, as required.
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The properties (10.48) and (10.49) are very often used to

check whether operators are Hermitian. The following example will

illustrate the procedure.

Worked Example

Consider two operators Â = d/dx and B̂ = d2/dx2 acting on two

orthonormal wave functions �1 = a sin(nx) and �2 = a cos(nx),

where n is a real number, a = 1/
√

π and x ∈ 〈−π, π〉.

Are the operators Â and B̂ Hermitian?

Solution

First, consider the operator Â = d/dx . Since

Â�1 = a
d

dx
sin(nx) = an cos(nx) = n�2 , (10.50)

and

Â�2 = a
d

dx
cos(nx) = −an sin(nx) = −n�1 , (10.51)

we find the following values of the scalar products(
�1, Â�1

) = −n (�1, �2) = 0 ,(
�1, Â�2

) = −n (�1, �1) = −n ,(
�2, Â�2

) = −n (�2, �1) = 0 ,(
�2, Â�1

) = n (�2, �2) = n . (10.52)

Hence (
�1, Â�1

) = (�2, Â�2

)∗
, (10.53)

but (
�1, Â�2

) = −an �= (�2, Â�1

)∗ = an . (10.54)

Thus, the operator Â = d/dx is not Hermitian.
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Consider now the operator B̂ = d2/dx2. Since

B̂�1 = a
d2

dx2
sin(nx) = −an2 sin(nx) = −n2�1 , (10.55)

and

B̂�2 = a
d2

dx2
cos(nx) = −an2 cos(nx) = −n2�2 , (10.56)

we find the following values of scalar products(
�1, B̂�1

) = −n2 (�1, �1) = −n2 ,(
�1, B̂�2

) = −n2 (�1, �2) = 0 ,(
�2, B̂�2

) = −n2 (�2, �2) = −n2 ,(
�2, B̂�1

) = −n2 (�2, �1) = 0 . (10.57)

Hence (
�1, B̂�1

) = −n2 = (�2, B̂�2

)∗
, (10.58)

and (
�1, B̂�2

) = 0 = (�2, B̂�1

)∗
. (10.59)

Thus, the operator B̂ = d2/dx2 is Hermitian.

I am not really here.
—Tim Allen

10.6 Heisenberg Uncertainty Principle Revisited

In Section 6.6, we have shown that the uncertainties in the position

and momentum of a particle satisfy the relation

�y�py = h . (10.60)

This relation says that the position and momentum of a particle

cannot be measured simultaneously with the same precision. This is

known as the Heisenberg uncertainty relation, or the Heisenberg

uncertainty principle, and we will show that the relation is a direct
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consequence of the noncommutivity of the position and momentum

operators [
ŷ, p̂y

] = i� . (10.61)

In fact, the Heisenberg uncertainty relation can be formulated for

arbitrary two Hermitian operators that do not commute. In other

words, if Â and B̂ are two Hermitian operators that do not commute,

the physical quantities represented by the operators cannot be

measured simultaneously with the same precision.

Theorem: The variances 〈(� Â)2〉 = 〈 Â2〉 − 〈 Â〉2 and 〈(�B̂)2〉 =
〈B̂2〉 − 〈B̂〉2 of two Hermitian operators satisfy the inequality

〈(� Â)2〉〈(�B̂)2〉 ≥ −1

4
〈[ Â, B̂]〉2 , (10.62)

which is called the Heisenberg inequality.

Proof: First, we prove that for an arbitrary operator Â, the following

inequality holds:

〈 Â Â†〉 ≥ 0 . (10.63)

It is easy to prove the above inequality using the definition of the

expectation value:

〈 Â Â†〉=
∫

�∗ Â Â†�dV =
∫ (

Â†�
)∗

Â†�dV =
∫ ∣∣ Â†�

∣∣2 dV ≥ 0.

(10.64)

Now we prove that for two Hermitian operators, the following

inequality is satisfied:

〈 Â2〉〈B̂2〉 ≥ −1

4
〈[ Â, B̂]〉2 . (10.65)

To prove it, we introduce an operator

D̂ = Â + i zB̂ , (10.66)

where z is an arbitrary real number. Hence, from Eq. (10.63), we find

〈D̂D̂†〉 = 〈( Â + i zB̂)( Â − i zB̂)〉
= 〈 Â2〉 − i z(〈 Â B̂ − B̂ Â〉) + z2〈B̂2〉 ≥ 0 . (10.67)

This inequality is satisfied when

−〈 Â B̂ − B̂ Â〉2 − 4〈 Â2〉〈B̂2〉 ≤ 0 . (10.68)

Hence

〈 Â2〉〈B̂2〉 ≥ −1

4
〈[ Â, B̂]〉2 , (10.69)

as required.
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Finally, since

[� Â, �B̂] = [ Â, B̂] , (10.70)

where �Û = Û − 〈Û 〉, (Û = Â, B̂), and replacing in Eq. (10.69),

Â → � Â and B̂ → �B̂ , we obtain the Heisenberg uncertainty

relation (10.62), as required.

Some of the practical applications of the Heisenberg uncertainty

relation are illustrated in the following examples.

Worked Example

The Heisenberg uncertainty relation for the position and momentum
operators.

Since the position and momentum operators satisfy the commuta-

tion relation

[x̂ , p̂x ] = i� , (10.71)

we obtain by substituting into Eq. (10.62), Â = x̂ and B̂ = p̂x

〈(�x̂)2〉〈(� p̂x )2〉 ≥ 1

4
�

2 , (10.72)

or in terms of the standard deviations (fluctuations)

δxδpx ≥ 1

2
� , (10.73)

where δx =
√

〈(�x̂)2〉 and δpx =
√

〈(� p̂x )2〉.

Similarly, we can show that for the y- and z-components of the

position and momentum

δyδpy ≥ 1

2
� and δzδpz ≥ 1

2
� . (10.74)

Note that Eq. (10.60) satisfies the Heisenberg inequality as h >

�/2.

The uncertainty relations (10.73) and (10.74) show one of the

strange quantum behavior. The particle can never truly be at rest.

Even in its lowest energy state, at a temperature of absolute zero,

its position and momentum are still subject to fluctuations, called

quantum fluctuations.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

174 Linear Operators and Their Algebra

Worked Example

The Heisenberg uncertainty relation for the components of the
electron spin.

Since the components of the electron spin satisfy the commuta-

tion relationa

[σ̂x , σ̂y] = 2i σ̂z , (10.75)

where σ̂x , σ̂y , σ̂z are the operators corresponding to the three

components of the electron spin, we obtain

〈(�σ̂x )2〉〈(�σ̂y)2〉 ≥ 〈σ̂z〉2 , (10.76)

or

δσxδσy ≥ |〈σ̂z〉| . (10.77)

The uncertainty relation (10.77) shows that the components of

the electron spin cannot be measured simultaneously with the same

precision. Again, we face a strange quantum behavior. The spin of the

electron, even at a temperature of absolute zero, exhibits quantum

fluctuations.

10.7 Expansion of Wave Functions in the Basis of
Orthonormal Functions

Orthonormal wave functions are very useful in quantum physics,

in particular those of Hermitian operators. They can be employed

to represent an arbitrary wave function. In other words, we may

expand an arbitrary wave function in the basis of orthonormal

functions. This is a very useful property of orthonormal functions,

which, similar to the orthogonality, arises from the properties of

vectors. The reason of using expansions is that it is more convenient

to perform any calculations and mathematical operations on

orthonormal functions, whose properties are completely known,

rather than on non-orthogonal or not completely determined

functions.

aThe proof of the commutation relation is left to the readers as a tutorial problem.
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To illustrate this procedure, consider a simple example: In the

Cartesian coordinates, an arbitrary vector �A can be written as a

linear combination of the orthonormal unit vectors

�A = (�i · �A)�i + (�j · �A)�j + (�k · �A)�k , (10.78)

where �i , �j , and �k are unit vectors in the directions x , y, and z,

respectively.

Proof: We know from the vector analysis that in the Cartesian

coordinates, an arbitrary vector �A may be presented in terms

of components Ax , Ay , Az, and three unit vectors oriented in the

directions of the coordinate axis

�A = Ax�i + Ay�j + Az�k . (10.79)

Since the components are the projections of �A on the coordinate axis

Ax = �i · �A , Ay = �j · �A , Az = �k · �A , (10.80)

we find that the vector (10.79) can be written in the form

�A = (�i · �A)�i + (�j · �A)�j + (�k · �A)�k , (10.81)

as required.

We can extend this property to m-dimensional space and state

that an arbitrary vector �A can be written as a linear combination
of the coordinate (basis) orthogonal unit vectors �e as

�A =
(
�e1 · �A

)
�e1 +

(
�e2 · �A

)
�e2 + . . . +

(
�em · �A

)
�em =

m∑
n=1

(
�en · �A

)
�en ,

(10.82)

where (�en · �A) is the scalar product of �en and �A, (nth component of
�A), and �ei · �e j = δi j .

The norm (magnitude) of the vector �A is

|| �A||2 = |�A| =
∑

n

(
�en · �A

)2

. (10.83)

Thus, we see that an arbitrary vector can be expressed as a linear

combination of the orthonormal vectors �en.

The same ideas carry over to the space of wave functions. Namely,

an arbitrary wave function � can be expanded in terms of
orthonormal wave functions �n as

� =
∑

n

cn�n , (10.84)
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(discrete spectrum of �n), or in the case of a continuous spectrum of

�n

�(�r) =
∫

cn(�r)�n(�r)dVn , (10.85)

where cn are arbitrary (unknown) expansion coefficients, and dVn

is the volume element of the space the orthonormal functions �n(�r)

are spanned.

We can find the coefficients cn(�r) by multiplying Eq. (10.85) by

�∗
m(�r) and integrating over all space as follows:∫

�∗
m(�r)�(�r)dV =

∫
cn(�r)

∫
�∗

m(�r)�n(�r)dV dVn = cm(�r) ,

(10.86)

where we have used the orthonormality property of the �n functions∫
�∗

m(�r)�n(�r)dVn = δnm . (10.87)

In general, the coefficients cm(�r) are complex numbers and

are called the components of the function � in the basis of the

orthonormal functions �m. The components determine the function

completely, and very often the coefficients cm(�r) are called a

representation of the wave function � in the basis �m.

The coefficients cm(�r) satisfy the following relation:∫
V

|cm(�r)|2 dV = 1 . (10.88)

Proof: Multiplying Eq. (10.85) by �∗(�r) and integrating over V , we

obtain ∫
V

�∗(�r)�(�r)dV =
∫

V
|�(�r)|2 dV

=
∫

V

∫
Vn

∫
Vm

c∗
m(�r)cn(�r)�n�mdVndVmdV

=
∫

V

∫
Vn

c∗
m(�r)cn(�r)δmndVndV =

∫
V

|cm(�r)|2 dV . (10.89)

Since,
∫

V |�|2dV = 1, we get
∫

V |cm(�r)|2 dV = 1, as required.

From Eqs. (10.85) and (10.88), we see that |cm(�r)|2 can be

interpreted as the probability that a system, described by the wave

function �(�r), is in the state described by the wave function �m(�r).
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Example

Let Â be an operator and �(�r) be an unknown wave function that is

not an eigenfunction of Â. Suppose that we cannot find the explicit

form of �(�r). However, we can find a form of the wave function in

the basis of the eigenfunctions of Â. If �m(�r) is an eigenfunction of

Â, then

�(�r) =
∫

cm(�r)�m(�r)dVm . (10.90)

Tutorial Problems

Problem 10.1 Show that three arbitrary operators Â, B̂ , and Ĉ
satisfy the following identities:

[ Â + B̂ , Ĉ ] = [ Â, Ĉ ] + [B̂ , Ĉ ] ,

[ Â, B̂Ĉ ] = [ Â, B̂]Ĉ + B̂[ Â, Ĉ ] .

Problem 10.2 Let Â, B̂ , Ĉ are arbitrary linear operators. Prove that

(a)
[

Â B̂ , Ĉ
] = [ Â, Ĉ

]
B̂ + Â

[
B̂ , Ĉ
]

,

(b)
[

Â,
[

B̂ , Ĉ
]]+ [B̂ ,

[
Ĉ , Â
]]+ [Ĉ ,

[
Â, B̂
]] = 0.

Problem 10.3 Let[
Â, B̂
] = i�Ĉ and

[
B̂ , Ĉ
] = i� Â .

Show that

B̂
(

Ĉ + i Â
) = (Ĉ + i Â

) (
B̂ + �

)
,

B̂
(

Ĉ − i Â
) = (Ĉ − i Â

) (
B̂ − �

)
.

Problem 10.4 Taylor expansion
Show that

e Â B̂e− Â = B̂ + 1

1!

[
Â, B̂
]+ 1

2!

[
Â,
[

Â, B̂
]]

+ 1

3!

[
Â,
[

Â,
[

Â, B̂
]]]+ . . .

This formula shows that the calculation of complicated exponential-

type operator functions can be simplified to the calculation of a

series of commutators.
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Problem 10.5 Consider two arbitrary operators Â and B̂ . If Â
commutes with their commutator,

[
Â, B̂
]
:

(a) Prove that for a positive integer n,[
Ân, B̂

] = nÂn−1
[

Â, B̂
]

.

(b) Apply the commutation relation (a) to the special case of Â =
x̂ , B̂ = p̂x , and show that

[ f (x̂), p̂x ] = i�
d f
dx

,

assuming that f (x̂) can be expanded in a power series of the

operator x̂ .

Problem 10.6 Prove that the Campbell–Baker–Hausdorff operator

identity

e Â+B̂ = e ÂeB̂ e− 1
2 [ Â, B̂]

is valid only for two operators satisfying the commutation relations

[ Â, [ Â, B̂]] = [B̂ , [ Â, B̂]] = 0 ,

i.e., when each of the operators commutes with their commutator.

Problem 10.7 Determine if the function φ = eax sin x , where a is a

real constant, is an eigenfunction of the operator d/dx and d2/dx2.

If it is, determine any eigenvalue.

Problem 10.8 What are the eigenvalues and eigenfunctions of the

operator (id/dx)2 if the eigenfunctions are required to be zero when

x = 0 and 2?

Problem 10.9 Calculate the expectation value of the x-coordinate of

a particle in an energy state En of a one-dimensional box.

Problem 10.10 Prove, using the condition (10.49) and the wave

functions �1 and �2 of the above example, that the momentum

operator p̂x = −i�d/dx is Hermitian.
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Problem 10.11 For a particle in an infinite square-well potential

represented by the position x̂ and momentum p̂x operators, check

the uncertainty principle �x�px ≥ �/2 for n = 1, where �x =√
〈x̂2〉 − 〈x̂〉2 and �px =√〈 p̂2

x 〉 − 〈 p̂x〉2.

Problem 10.12 The expectation value of an arbitrary operator Â in

the state φ(x) is given by

〈 Â〉 =
∫

φ∗(x) Âφ(x)dx .

(a) Calculate expectation values (i) 〈x̂ p̂x〉, (ii) 〈 p̂x x̂〉, and (iii) (〈x̂ p̂x〉+
〈 p̂x x̂〉)/2 of the product of position (x̂ = x) and momentum ( p̂x =
−i� d

dx ) operators of a particle represented by the wave function

φ(x) =
√

2

a
sin
(πx

a

)
,

where 0 ≤ x ≤ a.

(b) The operators x̂ and p̂x are Hermitian. Which of the products (i)

x̂ p̂x , (ii) p̂x x̂ , and (iii) (x̂ p̂x + p̂x x̂)/2 are Hermitian?

(c) Explain which of the results of (a) are acceptable as the

expectation values of physical quantities.
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Chapter 11

Dirac Bra-Ket Notation

Dirac introduced a very useful (compact) notation of state vectors

(wave functions) �i in terms of “bra” 〈i | and “ket” |i〉 vectors. This

notation allows to make the formal expressions of quantum physics

more transparent and easier to manipulate.

For example, a wave function �i can be expressed by a ket vector

|�i 〉, and �∗
i by a bra vector 〈�i |. This notation can be further

simplified to |i〉 and 〈i |, respectively.

Let us illustrate what kind of simplifications we will get using the

Dirac notation.

In the Dirac notation, a scalar product is written as(
�i , � j

) = 〈�i |� j 〉 = 〈i | j〉 , (11.1)

which is called a bracket.

We note in the bracket expression the double vertical bar is

dropped in favor of a single one.

For orthonormal vectors, we have used the notation
(
�i , � j

) =
δi j , which in the Dirac notation takes the form 〈i | j〉 = δi j .

Since
(
�i , � j

) = (� j , �i
)∗

, we have in the Dirac notation 〈i | j〉 =
〈 j |i〉∗.

In the bra-ket notation, the definition of the Hermitian adjoint

becomes

〈i | Â| j〉 = (〈 j | Â†|i〉)∗ , (11.2)

Quantum Physics for Beginners
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or

〈 j | Â†|i〉 = 〈i | Â| j〉∗ . (11.3)

Thus, for a Hermitian operator,

〈i | Â| j〉 = 〈 j | Â|i〉∗ . (11.4)

Expectation value of an operator Â in a state |i〉 is given by 〈i | Â|i〉.

We write a linear superposition of ket states as

|a〉 =
∑

n

λn|n〉 , discrete states (11.5)

or

|a〉 =
∫
λ(x)|x〉dx . continuous states (11.6)

The bra-ket notation also extends to action of operators on state

vectors.

A linear operator Â associates with every ket |i〉 another ket | j〉:

Â|i〉 = | j〉 , (11.7)

such that

Â (|a〉 + |b〉) = Â|a〉 + Â|b〉 , and Âλ|a〉 = λ ( Â|a〉) , (11.8)

where λ is a number.

Hermitian conjugate of Â|i〉 is 〈i | Â†.

An arbitrary ket state |a〉 can be expanded in terms of

orthonormal ket states as

|a〉 =
∑

n

cn|n〉 . (11.9)

Since |n〉 are orthonormal (〈m|n〉 = δmn), we get for cn:

〈n|a〉 =
∑

m

cm〈n|m〉 =
∑

m

cmδnm = cn . (11.10)

Thus, we can write the ket state |a〉 as

|a〉 =
∑

n

|n〉〈n|a〉 , (11.11)

from which we find a useful property of the orthonormal ket states∑
n

|n〉〈n| = 1̂ , (11.12)

where 1̂ is the unit operator.
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The product ket-bra (|n〉〈n|) is called a projection operator, and

the relation (11.12) is called the completeness relation.

The product |n〉〈n| is not a product of two functions in the normal

sense. It is a dyadic product: the function |n〉 “stands” at the function

〈n|.
The completeness relation is very useful in quantum physics as

it provides significant simplifications in calculations involving oper-

ators and state vectors. Examples will be presented in Section 11.2;

see also Tutorial Problem 11.1.

11.1 Projection Operator

In general, we can define projection operator of two different bra-ket

states as

P̂mn = |m〉〈n| . (11.13)

The term “projection” results from a specific property of this

operator, that it projects an arbitrary state vector |a〉 onto the ket

state |m〉:

P̂mn|a〉 = |m〉〈n|a〉 , (11.14)

i.e., the result of its action is the state |m〉 with the amplitude 〈n|a〉.

When m = n, the projection operator reduces to a diagonal

form P̂nn, which satisfies the relation

P̂ 2
nn = P̂nn . (11.15)

It is easy to prove. Since 〈n|n〉 = 1, we have

P̂ 2
nn = P̂nn P̂nn = |n〉〈n|n〉〈n| = P̂nn . (11.16)

Thus, the square of P̂nn equals itself.

Another important property of the projection operator:

The operator P̂nn is Hermitian, but P̂mn, (m �= n) is not
Hermitian.

The proof is straightforward. First note that

〈i | P̂mn| j〉 = 〈i |m〉〈n| j〉 = δimδnj . (11.17)

Then, we have 〈m| P̂mn|n〉 = 1. However, 〈n| P̂mn|m〉 = 0, and then

〈m| P̂mn|n〉 �= (〈n| P̂mn|m〉)∗ . (11.18)

Thus, the operator P̂mn, (m �= n) is not Hermitian.
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11.2 Representations of Linear Operators

The projection operator and the completeness relation are very

important quantities in quantum physics. They are very useful

in calculations and are often employed to represent an arbitrary

operator and a wave function (state) in terms of orthonormal states.

As we have already seen, the reason of employing representations

is that it is more convenient to perform any calculations and

mathematical operations on orthonormal functions, whose proper-

ties are completely known, rather than on non-orthogonal or not

completely determined functions. To illustrate the procedure of

representations, we will consider an arbitrary operator Â and will

show how to represent the operator in terms of projection operators

of known orthonormal states |m〉.

To arrive at a representation of the operator Â in the basis of the

orthonormal states |m〉, we make use of the completeness relation

by multiplying the operator Â on both sides by unity in the form

1 =
∑

m

|m〉〈m| . (11.19)

This gives

Â =
(∑

m

|m〉〈m|
)

Â

(∑
n

|n〉〈n|
)

=
∑
m, n

|m〉〈m| Â|n〉〈n|

=
∑
m, n

〈m| Â|n〉|m〉〈n| =
∑
m, n

Amn P̂mn , (11.20)

where Amn = 〈m| Â|n〉 are numbers, which are interpreted as matrix

elements of the operator Â in the basis of the states |m〉.

Thus, this simple application of the completeness relation shows

that an arbitrary operator can be written (represented) as a linear

combination of projection operators P̂mn of the known orthonormal

states |m〉. The following example illustrates the concept just

introduced.

Worked Example

Consider an operator Â = d2/dx2. Write the operator in terms

of projection operators involving the two lowest energy states of a

particle in an infinite well potential.
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Solution

We have found before in Section 8.1.2 that the two lowest energy

states of a particle in an infinite well potential are orthonormal and

are given by

|1〉 = φ1(x) =
√

2

a
sin
(π

a
x
)

,

|2〉 = φ2(x) =
√

2

a
sin

(
2π

a
x
)

.

According to Eq. (11.20), an arbitrary operator Â can be

represented in the basis |1〉, |2〉 as

Â = A11|1〉〈1| + A12|1〉〈2| + A21|2〉〈1| + A22|2〉〈2| ,

where Amn = 〈m| Â|n〉, (m, n = 1, 2) are the matrix elements of the

operator. Since

Â|1〉 = d2

dx2

√
2

a
sin
(π

a
x
)

= −
(π

a

)2

|1〉 ,

Â|2〉 = d2

dx2

√
2

a
sin

(
2π

a
x
)

= −
(

2π

a

)2

|2〉 ,

and the states |1〉 and |2〉 are orthonormal, we easily find that

A11 = −
(π

a

)2

, A22 = −
(

2π

a

)2

, A12 = A21 = 0 .

Thus, in the basis of the orthonormal states |1〉, |2〉, the operator

Â is represented in terms of the projection operators as

Â = −
(π

a

)2

(|1〉〈1| + 4|2〉〈2|) .

11.3 Representations of an Expectation Value

We have learned that an arbitrary state |a〉 can be expanded in terms

of orthonormal states |n〉:

|a〉 =
∑

n

cn|n〉 . (11.21)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

186 Dirac Bra-Ket Notation

We will apply this expansion to find a representation of an

expectation value 〈 Â〉 of an operator Â in terms of the orthonormal

states |m〉. Using Eq. (11.21), we can write the expectation value as

〈 Â〉 = 〈a| Â|a〉 =
∑
m, n

〈n| Â|m〉c∗
ncm . (11.22)

If |m〉 is an eigenfunction of Â, i.e., Â|m〉 = Am|m〉, then

〈 Â〉 =
∑
m, n

c∗
ncm Amδmn =

∑
n

An |cn|2 . (11.23)

Thus, the modulus square of the expansion coefficients is the

probability that the quantity described by the operator Â is in the

state |n〉.

As 〈 Â〉 is a weighted sum of the eigenvalues, this suggests that the

eigenvalues represent the possible results of measurement, while

|cn|2 is the probability that the eigenvalue An will be obtained as the

result of any individual measurement.

Thus, in quantum physics, even if a given system is in its

eigenstate, the measurement is not certain.

This is in contrast to classical physics. In classical physics, the

measurement of a physical quantity at any time always leads to a

definite result. In quantum physics, the measurement of the physical

quantity at any time leads to a range of possible results, each

occurring with a certain probability. In this sense, quantum physics

is probabilistic.

Results of any measurement in physics are real numbers. Since

eigenvalues of Hermitian operators are real, we postulate that every

physical quantity that is measurable is specified in quantum physics

by a linear Hermitian operator Â, which is also called an observable.

In quantum physics, the set of possible measured values for a

physical quantity is the set of eigenvalues of a linear Hermitian

operator specifying the physical quantity.

Example

As an example of this procedure, let us consider a particle specified

by a wave function �a , or in the Dirac notation, by |a〉. Let Ĥ
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be the Hamiltonian (energy) of the particles and |n〉 are known

eigenfunctions of Ĥ .

If |a〉 is an eigenfunction of Ĥ , then

Ĥ |a〉 = Ea|a〉 , (11.24)

where Ea is the eigenvalue (energy) of the particle. Thus, Ea =
〈a|Ĥ |a〉.

If |a〉 is not an eigenfunction of Ĥ , then we can expand |a〉 in

terms of the eigenfunctions |n〉 as

|a〉 =
∑

n

cn|n〉 , (11.25)

and find that

〈a|Ĥ |a〉 =
∑

n

En |cn|2 . (11.26)

Hence, the measurement of energy of the particle in the state |a〉
leads to a range of possible results, each occurring with probability

|cn|2. Thus, |cn|2 is the probability that the measurement of Ĥ will

give the value En.

Since, |a〉 = ∑ cn|n〉, we say that the state of the particle is a

superposition of the eigenfunctions of Ĥ .

Tutorial Problems

Problem 11.1 Useful application of the completeness relation
As we have mentioned in the chapter, the completeness relation

is very useful in calculations involving operators and state vectors.

Consider the following example.

Let Ail and Bl j be matrix elements of two arbitrary operators Â
and B̂ in a basis of orthonormal vectors. Show, using the complete-

ness relation, that matrix elements of the product operator Â B̂ in

the same orthonormal basis can be found from the multiplication of

the matrix elements Ail and Bl j as

(
Â B̂
)

i j =
n∑

l=1

Ail Bl j .
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Problem 11.2 Eigenvalues of the projection operator
Show that the eigenvalues of the projection operator Pnn are 0 or 1.

Problem 11.3 Sum of two projection operators
Let Pnn and Pmm be projection operators. Show that the sum Pnn +
Pmm is a projection operator if and only if Pnn Pmm = 0.
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Chapter 12

Matrix Representations

We have already learned that an arbitrary operator can be

represented in a basis of orthonormal states as a linear combination

of projection operators. In this chapter, we will illustrate how

one can obtain a matrix representation of a state vector, an

operator, and an eigenvalue equation in a basis of orthonormal

states. We will learn that matrix representations are very useful

in calculations of the properties of operators, because algebra of

matrices is very simple and completely developed. Readers familiar

with the algebra of matrices agree that mathematical operations on

matrices such as multiplication by a scalar, addition, subtraction,

multiplication and diagonalization are simple and easy to perform.

In fact, the application of the algebra of matrices to quantum physics

results from the direct relations between operators and matrices

that any mathematical relation that holds between operators also

holds between the corresponding matrices. The eigenvalues and

eigenvectors of the matrix representing a given operator Â in the

basis of orthonormal states are the same as the eigenvalues and

eigenvectors of Â.

Quantum Physics for Beginners
Zbigniew Ficek
Copyright c© 2016 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4669-38-2 (Hardcover), 978-981-4669-39-9 (eBook)
www.panstanford.com

http://www.panstanford.com


March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

190 Matrix Representations

12.1 Matrix Representation of State Vectors

Using an orthonormal basis, we can represent an arbitrary normal-

ized state vector |a〉 as a linear superposition of the basis states

|a〉 =
∑

n

cn|n〉 , (12.1)

where, in general, the coefficients cn are complex numbers, and∑
n |cn|2 = 1.

The set of the expansion coefficients c1, c2, . . . defines the state

|a〉 and is called the representation of |a〉 in the basis of the

orthonormal states |n〉.

We can write the set of the coefficients cn as a column (ket) vector

|a〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

.

.

.

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (12.2)

Then, the bra state 〈a|, which is a complex conjugate of the ket

state |a〉, can be written as

〈a| = (c∗
1, c∗

2, . . . , c∗
n

)
. (12.3)

12.2 Matrix Representation of Operators

Using the representation (12.1), we will try to write in a matrix form

the relationship between two ket states |a〉 and |b〉 related through a

linear operator Â as

|b〉 = Â|a〉 . (12.4)

Let

|a〉 =
∑

n

cn|n〉 ,

|b〉 =
∑

m

bm|m〉 . (12.5)
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Then

bm = 〈m|b〉 = 〈m| Â|a〉 =
∑

n

cn〈m| Â|n〉 =
∑

n

Amncn , (12.6)

where Amn = 〈m| Â|n〉.

The right-hand side of Eq. (12.6) is the result of multiplication of

a matrix composed of the elements Amn and the column vector cn:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

.

.

.

bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 . . . A1n

A21 A22 . . . A2n

.

.

.

An1 An2 . . . Ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

.

.

.

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (12.7)

Thus, the scalar product (�m, Â�n), or 〈m| Â|n〉 represents a

matrix element of the operator Â in the orthonormal basis |n〉. The

matrix representing the operator is a square matrix of dimension

n × n.

The above procedure is very general and is applicable to any

operator and an arbitrary orthonormal basis.

The following example will illustrate the introduced procedure

of finding the matrix representation of a given operator in a given

orthonormal basis.

Worked Example

Find the matrix representation of the operator Â = d/dx in the

basis of two orthonormal states �1 = a sin(nx) and �2 = a cos(nx),

where a = 1/
√

π and x ∈ 〈−π, π〉.

Solution

Since

Â�1 = d
dx

a sin(nx) = n�2 ,

Â�2 = d
dx

a cos(nx) = −n�1 , (12.8)
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we find that the matrix elements of the operator Â in the

orthonormal basis �1, �2 are(
�1, Â�1

) = n (�1, �2) = 0 ,(
�1, Â�2

) = −n (�1, �1) = −n ,(
�2, Â�2

) = −n (�2, �1) = 0 ,(
�2, Â�1

) = n (�2, �2) = n . (12.9)

Hence, the matrix representation of the operator Â = d/dx in the

basis of two orthonormal states �1 = a sin(nx) and �2 = a cos(nx)

is

Â =
(

0 −n
n 0

)
. (12.10)

We can solve this problem in a more elegant way using the Dirac

notation.

Denote

|1〉 = a sin(nx) , |2〉 = a cos(nx) . (12.11)

Since

Â|1〉 = n|2〉 ,

Â|2〉 = −n|1〉 , (12.12)

the operator Â written in the basis |1〉, |2〉, has the form

Â = n (|2〉〈1| − |1〉〈2|) . (12.13)

Hence

〈1| Â|1〉 = 0 , 〈2| Â|2〉 = 0 ,

〈1| Â|2〉 = −n , 〈2| Â|1〉 = n . (12.14)

Note that the operator Â is not Hermitian

Â† = n (|1〉〈2| − |2〉〈1|) = − Â , (12.15)

and, therefore, we can further conclude that the states |1〉, |2〉 are

not the eigenfunctions of Â.
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12.3 Matrix Representation of Eigenvalue Equations

We have seen that if we know the explicit forms of an operator Â
and a ket vector |a〉, we can easily determine whether the vector |a〉
is an eigenvector of the operator Â. Namely, the ket vector |a〉 is an

eigenvector of a linear operator Â if the ket vector Â|a〉 is a constant

α times |a〉, i.e.,

Â|a〉 = α|a〉 . (12.16)

The complex constant α is called the eigenvalue and |a〉 is the

eigenvector corresponding to the eigenvalue α.

In many practical situations, however, we know the explicit

form of an operator Â, but we do not know explicit forms of the

eigenvalues and eigenvectors of this operator. Then one can ask: Can

we find the explicit forms of the eigenvalues and eigenvectors of the

operator Â?

We do find the explicit forms of the eigenvalues and eigenvectors.

We use the fact that an arbitrary vector |a〉 can always be

expressed in terms of a linear superposition of arbitrary, but known,

orthonormal vectors |n〉. Since |a〉 = ∑
cn|n〉, we can write the

eigenvalue equation as

Â|a〉 =
∑

n

cn Â|n〉 = α
∑

m

cm|m〉 . (12.17)

Using the completeness relation to the left-hand side of

Eq. (12.17), we get∑
n

∑
m

cn|m〉〈m| Â|n〉 = α
∑

m

cm|m〉 , (12.18)

which can be written as∑
m

(∑
n

cn〈m| Â|n〉
)

|m〉 =
∑

m

(αcm)|m〉 . (12.19)

Hence ∑
n

cn〈m| Â|n〉 = αcm , (12.20)

or ∑
n

cn Amn = αcm . (12.21)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

194 Matrix Representations

The left-hand side of Eq. (12.21) is the product of a column vector

composed of the elements cn and a matrix composed of the elements

Amn. Thus, we can write Eq. (12.21) in the matrix form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 . . . A1n

A21 A22 . . . A2n

.

.

.

An1 An2 . . . Ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

.

.

.

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= α

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1

c2

.

.

.

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (12.22)

This is a matrix eigenvalue equation.

The following conclusions arise from the matrix eigenvalue
equation:

1. When the matrix Āmn is diagonal, i.e., Amn = 0 for m �= n,

the orthonormal states |n〉 are the eigenstates of the operator

Â with eigenvalues αn = Ann.

2. If the matrix Āmn is not diagonal, then we can find the

eigenvalues and eigenvectors of Â diagonalizing the matrix Āmn.

The eigenvalues are obtained from the characteristic equation

∣∣∣∣∣∣∣∣∣∣∣∣∣

A11 − α A12 . . . A1n

A21 A22 − α . . . A2n

.

.

.

An1 An2 . . . Ann − α

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 . (12.23)

This is of the form of a polynomial equation of degree n and shows

that n eigenvalues can be found from the roots of the polynomial.

For each eigenvalue αi found by solving the characteristic equation,

the corresponding eigenvector is found by substituting αi into the

matrix equation.

The following example will help to understand the procedure of

finding the eigenvalues and eigenvectors of a given operator.
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Worked Example

Consider the example from Section 12.2. In the matrix representa-

tion, the operator Â = d/dx has the form given in Eq. (12.10). Since

the matrix is not diagonal, the orthonormal states �1 and �2 are not

eigenstates of the operator Â. We can find the eigenstates of Â in

terms of linear superpositions of the states �1 and �2, simply by the

diagonalization of the matrix (12.10).

We start from the eigenvalue equation, which is of the form(
0 −n
n 0

)(
c1

c2

)
= α

(
c1

c2

)
. (12.24)

First, we solve the characteristic equation∣∣∣∣−α −n
n −α

∣∣∣∣ = 0 , (12.25)

from which we find two eigenvalues α1 = +in and α2 = −in.

For α1 = in, the eigenvalue equation takes the form(
0 −n
n 0

)(
c1

c2

)
= in

(
c1

c2

)
, (12.26)

from which, we find that

−nc2 = inc1 ⇒ c1 = ic2 . (12.27)

Hence, the eigenfunction corresponding to the eigenvalue α1 is of

the form

�α1
=
(

ic2

c2

)
= c2

(
i
1

)
. (12.28)

From the normalization of �α1
, we get

1 = (�α1
, �α1

) = |c2|2 (−i, 1)

(
i
1

)
= 2 |c2|2 . (12.29)

Thus, the normalized eigenfunction corresponding to the eigen-

value α1 is given by

�α1
= 1√

2

(
i
1

)
, (12.30)

which may be written as

�α1
= 1√

2π
[i sin(nx) + cos(nx)] = 1√

2π
einx . (12.31)
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Similarly, we can easily show that the normalized eigenfunction

corresponding to the eigenvalue α2 is of the form

�α2
= 1√

2π
[−i sin(nx) + cos(nx)] = 1√

2π
e−inx . (12.32)

In the Dirac notation, the normalized eigenvectors can be written

in a compact form as

|α1〉 = 1√
2

(i |1〉 + |2〉) ,

|α2〉 = 1√
2

(−i |1〉 + |2〉) . (12.33)

The physical interpretation of the superposition states (12.33) is

as follows: The eigenfunctions |α1〉 and |α2〉 in the form of the linear

superpositions tell us that, e.g., with the probability 1/2, the system

described by the operator Â is in the state |1〉 or in the state |2〉.

In summary of this chapter, we have learned that

(1) In quantum physics, an arbitrary wave function may be

represented by a normalized column vector of expansion

coefficients in the basis of orthonormal states.

(2) In an orthonormal basis, an arbitrary operator Â may be

represented by a matrix, whose elements Amn are given by

scalar products (�m, Â�n).

(3) Using an orthonormal basis, an eigenvalue equation of an

arbitrary operator may be written in a matrix form. In this

case, the problem of finding eigenvalues and eigenvectors of the

operator reduces to a simple problem of diagonalization of the

matrix.

Tutorial Problems

Problem 12.1 Eigenvalues and eigenvectors of Hermitian operators.

(a) Consider two Hermitian operators Â and B̂ that have the same

complete set of eigenfunctions φn. Show that the operators

commute.
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(b) Suppose two Hermitian operators have the matrix representa-

tion:

Â =
⎡
⎣a 0 0

0 −a 0

0 0 −a

⎤
⎦ , B̂ =

⎡
⎣ b 0 0

0 0 ib
0 −ib 0

⎤
⎦ ,

where a and b are real numbers.

(i) Calculate the eigenvalues of Â and B̂ .

(ii) Show that Â and B̂ commute.

(iii) Determine a complete set of common eigenfunctions.

Problem 12.2 The Rabi problem that illustrates what are the energy
states of an atom driven by an external coherent (laser) field.

A laser field of frequency ωL drives a transition in an atom

between two atomic energy states |1〉 and |2〉. The states are

separated by the frequency ω0. The Hamiltonian of the system in the

bases of the atomic states is given by the matrix

Ĥ = �

(− 1
2
� �

� 1
2
�

)
,

where � = ωL − ω0 is the detuning of the laser frequency from

the atomic transition frequency, and � is the Rabi frequency that

describes the strength of the laser field acting on the atom.

Find the energies and energy states of the system, the so-called

dressed states, which are, respectively, eigenvalues and eigenvectors

of the Hamiltonian Ĥ .
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Chapter 13

Spin Operators and Pauli Matrices

It is well known from atomic spectroscopy and in particular from

the Stern–Gerlach experiment that electrons have a nonzero angular

momentum (spin) and that there exist only two kinds of electrons

with spin �/2 or −�/2. An external field or force cannot change the

value of the electron spin; they can only change the orientation of

the spin in space. This means that the projection of the spin on any

of the coordinate axis is always equal to ±�/2. In this chapter, we will

derive the Pauli matrices, the matrix representation of the spin. We

will also demonstrate how the two kinds of spin can be represented

in terms of spin up and spin down operators.

For convenience, the spin of the electron can be written as

�S = 1

2
��σ , (13.1)

where from now the new operator �σ will be called the spin operator.

From the above relation, we see that the eigenvalues of the operator

�σ are +1 and −1.

Note that the magnitude of �σ , i.e., σ 2 = �σ · �σ = 1. Thus, for any

direction in the cartesian coordinates

σ 2
x = σ 2

y = σ 2
z = 1. (13.2)

Since the spin is an angular momentum of the electron, it should

satisfy the commutation relations for the components of the angular

Quantum Physics for Beginners
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momentum

[σi , σ j ] = 2iei jkσk. i, j, k = x , y, z. (13.3)

Using Eqs. (13.2) and (13.3), we find that

2i(σyσz + σzσy) = σy(2iσz) + (2iσz)σy

= σy(σxσy − σyσx ) + (σxσy − σyσx )σy

= σyσxσy − σx + σx − σyσxσy = 0. (13.4)

In the same way, we can show that

2i(σxσy + σyσx ) = 0,

2i(σzσx + σxσz) = 0. (13.5)

These results show that the components of the spin anti-

commute:

[σi , σ j ]+ = 0, i �= j, i, j = x , y, z. (13.6)

13.1 Matrix Representation of the Spin Operators: Pauli
Matrices

We wish to find the matrix representation of the spin operators.

To solve this problem, we use the conditions imposed on the

spin components, the commutation and anti-commutation relations,

Eqs. (13.3) and (13.6).

Note first that the trace of the matrices is zero.

Tr σi = 0, i = x , y, z. (13.7)

Proof: Using Eqs. (13.2) and (13.6), we find

Tr σi = Tr σi σkσk = −Tr σkσi σk = −Tr σi σkσk = −Tr σi , (13.8)

which is satisfied only when Trσi = 0. In the proof, we have used the

cycling property of the trace that TrA BC = TrBC A.

Our problem may now be stated as follows: Obtain the matrix

representation of the spin components such that in the basis of the

spin states, spin “up” |2〉 and spin “down” |1〉, the component σz is

represented by a diagonal matrix

σz =
(

1 0

0 −1

)
. (13.9)
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Then, what form are the matrices of the other components, σx

and σy? To answer this question, consider the operator σx , which

written in the basis |2〉 and |1〉 has a general matrix form

σx =
(

a22 a21

a12 a11

)
, (13.10)

where ai j are unknown matrix elements that we have to determine.

In order to determine the matrix elements, we use the anti-

commutation relations (13.6), from which we find that

0 = σzσx + σxσz = 2

(
a22 0

0 −a11

)
, (13.11)

which means that a11 = a22 = 0.

Since the spin operator is Hermitian, as it represents an

observable (physical quantity), so then the components of the spin

are also Hermitian. Thus, we have that

σx =
(

0 a21

a12 0

)
=
(

0 a21

a∗
21 0

)
. (13.12)

If we take the square of σx , we get

σ 2
x =
(

a21a∗
21 0

0 a∗
21a21

)
=
( |a21|2 0

0 |a21|2

)
= 1. (13.13)

Hence |a21|2 = 1, so that a21 = eiα , where α is an arbitrary real

number.

Thus, the component σx may be written in the matrix form as

σx =
(

0 iα

e−iα 0

)
. (13.14)

Similarly, for σy , we may show that

σy =
(

0 iβ

e−iβ 0

)
. (13.15)

In order to determine α and β , we apply the above matrices to

the anti-commutation relation, and find

0 = σxσy + σyσx =
(

ei(α−β) + e−i(α−β) 0

0 e−i(α−β) + ei(α−β)

)

= 2

(
cos(α − β) 0

0 cos(α − β)

)
. (13.16)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

202 Spin Operators and Pauli Matrices

This means that

cos(α − β) = 0, (13.17)

which is met if

α − β = (2n + 1)
π

2
, n = 0, 1, 2, . . . (13.18)

If we choose the simplest values for n and α: n = 0 and α = 0, we

then have β = −π/2. Hence, the matrices σx and σy take the form

σx =
(

0 1

1 0

)
, σy =

(
0 −i
i 0

)
. (13.19)

Thus, the components of the spin can be represented by matrices

σx =
(

0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (13.20)

called the Pauli matrices.

The Pauli matrices have many interesting properties. For

example, the reader may immediately notice from Eq. (13.20) that

the trace of the matrices is zero. The detailed study of the other

properties of the Pauli matrices is left for the reader as a tutorial

problem (see Tutorial Problem 13.4).

13.2 Spin “Up” and Spin “Down” Operators

The operators σ̂x , σ̂y , and σ̂z representing the components of the

electron spin can be written in terms of the spin raising and spin

lowering operators σ+ and σ− as

σ̂x = σ̂+ + σ̂−, (13.21)

σ̂y = (σ̂+ − σ̂−) / i, (13.22)

σ̂z = σ̂+σ̂− − σ̂−σ̂+. (13.23)

Let |1〉 and |2〉 be the two eigenstates of the electron spin. The

raising and lowering operators satisfy the following relations:

σ̂+|1〉 = |2〉, σ̂−|1〉 = 0, (13.24)

σ̂+|2〉 = 0, σ̂−|2〉 = |1〉. (13.25)

The relations explicitly illustrate where the meaning of the spin

raising and lowering comes from. The operator σ+ turns the “down”

spin into the “up” spin. In other words, it raises the spin. The

operator σ− acts in the opposite direction. It turns the “up” spin into

the “down” spin, that it lowers the spin.
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Tutorial Problems

Problem 13.1 Calculate the square ( �A · �S)2 of the scalar product of

an arbitrary vector �A and of the spin vector �S = Sx�i + Sy�j + Sz�k.

Problem 13.2 Calculate the squares of the spin components, σ 2
x , σ 2

y ,

and σ 2
z , and verify if the squares of the spin components can be

simultaneously measured with the same precision.

Problem 13.3 Matrix representation of the spin operators
The operators σ̂x , σ̂y , and σ̂z representing the components of the

electron spin can be written in terms of the spin raising and spin

lowering operators σ+ and σ− as

σ̂x = σ̂+ + σ̂− ,

σ̂y = (σ̂+ − σ̂−) / i ,

σ̂z = σ̂+σ̂− − σ̂−σ̂+ .

Let |1〉 and |2〉 be the two eigenstates of the electron spin with

the eigenvalues −�/2 and +�/2, respectively, as determined in

the Stern–Gerlach experiment. The raising and lowering operators

satisfy the following relations:

σ̂+|1〉 = |2〉 , σ̂−|1〉 = 0 ,

σ̂+|2〉 = 0 , σ̂−|2〉 = |1〉 .

Using these relations, find the matrix representations (the Pauli

matrices) of the operators σ̂x , σ̂y , and σ̂z in the basis of the states |1〉
and |2〉.

Problem 13.4 Properties of the Pauli matrices
Consider the Pauli matrices representing the spin operators σ̂x , σ̂y ,

and σ̂z in the basis of the states |1〉 and |2〉.

(a) Prove that the operators σ̂x , σ̂y , σ̂z are Hermitian. This result

is what the readers could expect as the operators represent a

physical (measurable) quantity, the electron spin.

(b) Show that the operators σ̂x , σ̂y , σ̂z each has eigenvalues +1, −1.

Determine the normalized eigenvectors of each. Are |1〉 and |2〉
the eigenvectors of any of the matrices?
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(c) Show that the operators σ̂x , σ̂y , σ̂z obey the commutation

relations [
σ̂x , σ̂y

] = 2i σ̂z ,

[σ̂z, σ̂x ] = 2i σ̂y ,[
σ̂y , σ̂z

] = 2i σ̂x .

If you recall the Heisenberg uncertainty relation, you will

conclude immediately that these commutation relations show

that the three components of the spin cannot be measured

simultaneously with the same precision.

(d) Calculate anti-commutators
[
σ̂x , σ̂y

]
+ , [σ̂z, σ̂x ]+ ,

[
σ̂y , σ̂z

]
+.

(e) Show that σ̂ 2
x = σ̂ 2

y = σ̂ 2
z = 1̂. This result is a confirmation of the

conservation of the total spin of the system that the magnitude

of the total spin vector is constant.

(f) Write the operators σ̂x , σ̂y , and σ̂z in terms of the projection

operators P̂i j = |i〉〈 j |, (i, j = 1, 2).
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Chapter 14

Quantum Dynamics and Pictures

We have already learned that to find the evolution of a physical

system, we have to specify how state vectors and operators of a given

system evolve in time. In this chapter, we will demonstrate how one

can find the time evolution of the operators from the knowledge of

the time evolution of the state vector, and vice versa. We introduce a

unitary operator and discuss the concept of a unitary transformation

to show how one could transfer the time dependence from the

state vectors to the operators. The possibility that either the state

vectors or the operators can depend explicitly on time will lead us

to introduce the Schrödinger, Heisenberg, and interaction pictures.

We will discuss the fundamental differences between these pictures.

Finally, we discuss the Ehrenfest theorem, which shows under

which conditions quantum mechanics predicts the same results for

measured physical quantities as classical physics.

14.1 Unitary Time-Evolution Operator

Consider the time-dependent Schrödinger equation

i�
∂

∂t
|�(�r , t)〉 = Ĥt|�(�r , t)〉, (14.1)

Quantum Physics for Beginners
Zbigniew Ficek
Copyright c© 2016 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4669-38-2 (Hardcover), 978-981-4669-39-9 (eBook)
www.panstanford.com

http://www.panstanford.com


March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

206 Quantum Dynamics and Pictures

where Ĥt ≡ Ĥ (�r , t). If the Hamiltonian is independent of time, i.e.,

Ĥt = Ĥ , the solution to the Schrödinger equation (14.1) is of the

form

|�(�r , t)〉 = e−i Ĥ
�

(t−t0)|�(�r , t0)〉 ≡ Û (t, t0)|�(�r , t0)〉, (14.2)

where

Û (t, t0) = e−i Ĥ
�

(t−t0), (14.3)

is a unitary time-evolution operator.

A unitary operator should satisfy the following property:

Û (t, t0)Û †(t, t0) = 1, where Û †(t, t0) is the adjoint operator of

Û (t, t0). For Û (t, t0) of the form (14.3), we use the Taylor expansion

and find

Û (t, t0)Û †(t, t0) = e−i Ĥ
�

(t−t0)ei Ĥ
�

(t−t0)

=
⎡
⎣1 − i

Ĥ
�

(t − t0) + 1

2

(
−i

Ĥ
�

(t − t0)

)2

+ . . .

⎤
⎦

×
⎡
⎣1 + i

Ĥ
�

(t − t0) + 1

2

(
i

Ĥ
�

(t − t0)

)2

+ . . .

⎤
⎦

= 1 + i
Ĥ
�

(t − t0) − i
Ĥ
�

(t − t0) + . . . = 1. (14.4)

In a similar way, we can show that Û †(t, t0)Û (t, t0) = 1.

Obviously, Û (t0, t0) = 1.

In addition, Û (t, t0) satisfies the transitive feature

Û (t, t1)Û (t1, t0) = Û (t, t0). (14.5)

Proof: According to the solution (14.2), we can write for an arbitrary

t > t1 > t0:

|�(�r , t)〉 = Û (t, t1)|�(�r , t1)〉 = Û (t, t1)Û (t1, t0)|�(�r , t0)〉. (14.6)

Since |�(�r , t)〉 = Û (t, t0)|�(�r , t0)〉, we have that Û (t, t1)Û (t1, t0) =
Û (t, t0).

The state vector (14.2) is given in terms of the initial state

|�(�r , t0)〉. If we know the eigenstates |φn〉 of the Hamiltonian Ĥ ,
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then we can use the completeness relation for the eigenstates,∑
n |φn〉〈φn| = 1, and write the state (14.2) in terms of |φn〉 as

|�(�r , t)〉 = Û (t, t0)|�(�r , t0)〉 =
∑

n

Û (t, t0)|φn〉〈φn|�(�r , t0)〉

=
∑

n

e−i En
�

(t−t0)|φn〉〈φn|�(�r , t0)〉 =
∑

n

cne−i En
�

(t−t0)|φn〉,

(14.7)

where cn = 〈φn|�(�r , t0)〉 is the probability amplitude that at time

t = 0, the system was in the state |φn〉.

14.2 Unitary Transformation of State Vectors

We can make an arbitrary unitary transformation of the state vector

|�(�r , t)〉 to a “new” state vector, which will depend on a different

time or to a state vector independent of time. For example, if we

make a transformation

Û †(t, t0)|�(�r , t〉 = |�(�r , t)〉T , (14.8)

the new “transformed” vector |�(�r , t)〉T is independent of time. It is

easy to see. If we use the result (14.7), we readily find

|�(�r , t)〉T = Û †(t, t0)|�(�r , t)〉 =
∑

n

cne−i En
�

(t−t0)Û †(t, t0)|φn〉

=
∑

n

cne−i En
�

(t−t0)ei Ĥ
�

(t−t0)|φn〉

=
∑

n

cne−i En
�

(t−t0)ei En
�

(t−t0)|φn〉

=
∑

n

cn|φn〉 = |�(�r , t0)〉. (14.9)

The transformed vector is equal to the initial vector |�(�r , t0)〉.

We can make unitary transformations not only of the state

vectors but also the Schrödinger equation. In other words, if we

know the Schrödinger equation for the state vector |�(�r , t)〉, we can

find the evolution of motion of the transformed state vector. To show

this, we start from the time-dependent Schrödinger equation (14.1)

and using the fact that |�(�r , t)〉 = Û |�(�r , t)〉T , we find

i�
∂

∂t
|�(�r , t)〉 = i�

∂

∂t

(
Û |�(�r , t)〉T

) = ĤtÛ |�(�r , t)〉T . (14.10)
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Since

i�
∂

∂t

(
Û |�(�r , t)〉T

) = i�
[(

∂

∂t
Û
)

|�(�r , t)〉T + Û
∂

∂t
|�(�r , t)〉T

]

= i�
[
− i

�
Û Ĥ |�(�r , t)〉T + Û

∂

∂t
|�(�r , t)〉T

]

= Û Ĥ |�(�r , t)〉T + i�Û
∂

∂t
|�(�r , t)〉T , (14.11)

we get

Û Ĥ |�(�r , t)〉T + i�Û
∂

∂t
|�(�r , t)〉T = ĤtÛ |�(�r , t)〉T . (14.12)

Multiplying both sides from the left by Û †, we obtain

Ĥ |�(�r , t)〉T + i�
∂

∂t
|�(�r , t)〉T = Û † ĤtÛ |�(�r , t)〉T , (14.13)

which can be written as

i�
∂

∂t
|�(�r , t)〉T = (Û † ĤtÛ − Ĥ

) |�(�r , t)〉T = ĤT |�(�r , t)〉T ,

(14.14)

where ĤT = Û † ĤtÛ − Ĥ . We see that the transformed state

satisfies the Schrödinger equation with the effective (transformed)

Hamiltonian ĤT .

14.3 Unitary Transformation of Operators

Let us now illustrate unitary transformations of an arbitrary

operator Â(t), which can depend explicitly on time.

Consider the mean value of the operator 〈 Â(t)〉 = 〈�(t)| Â(t)

|�(t)〉 and a transformed operator Â′(t) = Û † Â(t)Û . We can make

unitary transformations of mean values of the operator. For example,

the mean value of the transformed operator is

T 〈�(t)| Â′(t)|�(t)〉T =〈�(t)|Û Û † Â(t)Û Û †|�(t)〉=〈�(t)| Â(t)|�(t)〉.

(14.15)

We see that the mean value of the transformed operator is the same

as the mean value of Â(t).

We can also make a transformation of the equation of motion for

the operator Â(t). Calculate a time derivative of Â′(t) and find
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d
dt

Â′(t) =
(

∂

∂t
Û †
)

ÂÛ + Û †
(

∂

∂t
Â
)

Û + Û † Â
(

∂

∂t
Û
)

= i
�

Û † Ĥ ÂÛ + Û †
(

∂

∂t
Â
)

Û − i
�

Û † Â Ĥ Û

= i
�

Û † Ĥ Û Û † ÂÛ + Û †
(

∂

∂t
Â
)

Û − i
�

Û † ÂÛ Û † Ĥ Û

= i
�

Ĥ ′ Â′ + Û †
(

∂

∂t
Â
)

Û − i
�

Â′ Ĥ ′

= Û †
(

∂

∂t
Â
)

Û + i
�

[
Ĥ ′, Â′] , (14.16)

where Ĥ ′ = Û † Ĥ Û . An important conclusion arises from

Eq. (14.16). We see that the transformed operator Â′(t) depends on

time even if the operator Â(t) does not depend explicitly on time

(∂ Â(t)/∂t = 0), unless the commutator [Ĥ ′, Â′] = 0, and then Â′(t)

is independent of time.

We have shown that the evolution of the transformed state

|�(t)〉T depends on whether the Hamiltonian of a given system

depends explicitly on time or not. There could be situations where

the state vector of a given system depends on time but the operators

of the system are independent of time, and vice versa. Thus,

we can distinguish different cases, which are called “pictures.”

Depending on whether states or operators depend explicitly on

time, we distinguish three pictures: the Schrödinger, Heisenberg,

and interaction pictures.

14.4 Schrödinger Picture

Consider a system whose Hamiltonian Ĥt is independent of time, i.e.,

Ĥt = Ĥ . In this case, only the state vector depends on time. The

dependence arises from the fact that the wave function satisfies the

time-dependent Schrödinger equation

i�
∂

∂t
|�(�r , t)〉 = Ĥ |�(�r , t)〉, (14.17)

whose solution is of the form

|�s (�r , t)〉 = e−i Ĥ
�

(t−t0)|�(�r , t0)〉. (14.18)
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A situation where the operators are independent of time but

the state vectors depend explicitly on time is called the Schrödinger
picture. In Eq. (14.18), the subscript “s” indicates that the evolution

of the system is described in the Schrödinger picture that the

wave function depends explicitly on time and the operator Ĥ is

independent of time.

14.5 Heisenberg Picture

When the state vectors of a given system are independent of time,

but the operators depend on time, we call it the Heisenberg picture.

For example, if in Eq. (14.14), the Hamiltonian Ĥt is independent of

time, i.e., Ĥt = Ĥ then ĤT = 0, which results in

i�
∂

∂t
|�(�r , t)〉T = 0. (14.19)

Thus, the transformed state vector is independent of time.

Consider now the evolution of an operator. Let us introduce a

time-independent operator Â and its unitary transformation Â′(t) =
Û † ÂÛ . We have already seen, Eq. (14.16), that the transformed

operator depends explicitly on time as it satisfies the Heisenberg

equation of motion

d
dt

Â′(t) = i
�

[
Ĥ ′, Â′] . (14.20)

The state vector |�(�r , t)〉T and the operator Â′(t) are called,

respectively, the state vector and the operator in the Heisenberg

picture (|�(�r , t)〉T ≡ |�H (�r , t)〉, Â′(t) = Â H (t)).

In summary, in the Heisenberg picture, the state vectors are

independent of time, whereas operators depend explicitly on time

and satisfy the Heisenberg equation of motion

d
dt

Â H (t) = i
�

[
ĤH (t), Â H (t)

]
. (14.21)

Note that the transition from the Schrödinger to the Heisenberg

pictures is in fact the transfer of the time dependence from the state

vectors to the operators. It should be pointed out that the transfer

of the time dependence does not change measured quantities such



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Heisenberg Picture 211

as averages. For example, the average value of an operator Â in the

Schrödinger and Heisenberg pictures has the same value

〈�s (�r , t)| Â|�s (�r , t)〉 = T 〈�(�r , t)|Û † ÂÛ |�(�r , t)〉T

= 〈�H (�r , t)| Â H (t)|�H (�r , t)〉. (14.22)

Worked Example

Find the Heisenberg equations of motion for the position x̂ and

momentum p̂x operators of a single particle of mass m moving in

one dimension in a potential energy V̂ (x).

Solution

The Hamiltonian of the particle moving in one dimension is given by

Ĥ = 1

2m
p̂2

x + V̂ (x), (14.23)

and we have the well-known commutation relations

[x̂ , p̂x ] = i�,
[

V̂ (x), x̂
] = 0,

[
V̂ (x), p̂x

] = i�
∂ V̂ (x)

∂x
. (14.24)

Assuming that the operators x̂ and p̂x do not depend explicitly

on time, we have the following equation of motion for the position

operator:

dx̂
dt

= i
�

[
Ĥ , x̂
] = i

2m�

[
p̂2

x , x̂
] = − i

2m�

[
x̂ , p̂2

x

]
= − i

2m�
{[x̂ , p̂x ] p̂x + p̂x [x̂ , p̂x ]} = 1

m
p̂x . (14.25)

Hence

p̂x = m
dx̂
dt

. (14.26)

Notice that the Heisenberg equation of motion for the position

operator is analogous to the classical equation

px = m
dx
dt

. (14.27)
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The Heisenberg equation of motion for the momentum operator

is found in the following way:

d p̂x

dt
= i

�

[
Ĥ , p̂x

] = i
�

[
V̂ (x), p̂x

] = −∂ V̂ (x)

∂x
. (14.28)

This equation is analogous to the classical equation, the Newton’s

second law

dpx

dt
= Fx = −∂V (x)

∂x
, (14.29)

where Fx is the force acting on the particle.

14.6 Interaction Picture

We have already demonstrated that when the Hamiltonian of a given

system is independent of time, either the states or operators can

depend explicitly on time. We have distinguished those two cases,

respectively, as the Schrödinger and Heisenberg pictures. We have

also seen that the time dependence can be transferred, using a

unitary transformation, from the vectors to the operators, and vice

versa.

When, however, the Hamiltonian Ĥt depends explicitly on time,

the situation is more complicated that both the state vectors and

operators can, in general, depend simultaneously on time and there

is no unitary transformation that could transfer them to either the

Schrödinger or Heisenberg pictures.

In many situations in physics, it is possible to write the time-

dependent Hamiltonian Ĥt as a sum of two terms

Ĥt = Ĥ0 + V̂ (t), (14.30)

in which only the second term V̂ (t) depends explicitly on time.

In particular, this can happen in composite systems composed of

two or more subsystems. Usually, in this case the time-dependent

part of the Hamiltonian represents the interaction energy between

subsystems.

In this case, we can define a unitary operator involving only the

time-independent part of the Hamiltonian

Û 0(t, t0) = e− i
�

Ĥ0(t−t0), (14.31)
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and a transformed state

|�I (t)〉 ≡ |�(t)〉T = Û †
0 (t, t0)|�s (t)〉. (14.32)

Using this transformation, we can transform the time-dependent

Schrödinger equation for |�s (t)〉, given in the Schrödinger picture,

into a time-dependent equation for the state vector |�I (t)〉, which

we shall call the Schrödinger equation in the interaction picture.

Beginning from Eq. (14.14), which is the Schrödinger equation for

the transformed state and using Eq. (14.30), we get

i�
∂

∂t
|�I (t)〉 =

[
Û †

0

(
Ĥ0 + V̂ (t)

)
Û 0 − Ĥ0

]
|�I (t)〉. (14.33)

Since Û †
0 Ĥ0Û 0 = Ĥ0, we then have

i�
∂

∂t
|�I (t)〉 = Û †

0 V̂ (t)Û 0|�I (t)〉 = V̂I (t)|�I (t)〉, (14.34)

where V̂I (t) = Û †
0 V̂ (t)Û 0. Hence, the evolution of the state vector

|�I (t)〉 is solely determined by the time-dependent part of the

Hamiltonian, the interaction part V̂ (t). For this reason, the vector

|�I (t)〉 is called the state vector in the interaction picture.

When, for example, V̂I does not depend explicitly on time, we can

write

|�I (t)〉 = Û I (t, t0)|�I (t0)〉, (14.35)

where

Û I (t, t0) = e− i
�

V̂I (t−t0) (14.36)

is the evolution operator in the interaction picture. Since

|�I (t0)〉 = |�s (t0)〉 = Û †(t, t0)|�s (t)〉, (14.37)

we get

|�I (t)〉 = Û I (t, t0)Û †(t, t0)|�s (t)〉. (14.38)

Comparing Eq. (14.38) with Eq. (14.32), we see that

Û †
0 (t, t0) = Û I (t, t0)Û †(t, t0), (14.39)

or

Û I (t, t0) = Û †
0 (t, t0)Û (t, t0). (14.40)
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Substituting Eq. (14.35) into Eq. (14.34), we get the equation of

motion for the unitary operator Û I (t, t0):

i�
dÛ I

dt
= V̂I Û I . (14.41)

Similar to the state vector |�I (t)〉, the evolution of the unitary

operator in the interaction picture is determined by the interaction

Hamiltonian V̂ .

In summary, using the unitary operator Û 0(t, t0) involving only

the time-independent part of the Hamiltonian, we can transform the

state vector of a given system into the interaction picture in which

the evolution if the transformed state is determined solely by the

time-dependent (interaction) part of the Hamiltonian.

What about the evolution of an operator Â(t)? Define a

transformed operator

Â I (t) = Û †
I Â(t)Û I , (14.42)

and find its time evolution

d
dt

Â I (t) =
(

∂

∂t
Û †

I

)
Â(t)Û I + Û †

I

(
∂

∂t
Â(t)

)
Û I + Û †

I Â(t)

(
∂

∂t
Û I

)

= i
�

Û †
I V̂I Â(t)Û I + Û †

I

(
∂

∂t
Â(t)

)
Û I − i

�
Û †

I Â(t)V̂I Û I

= i
�

Û †
I V̂I Û I Û †

I Â(t)Û I + Û †
I

(
∂

∂t
Â(t)

)
Û I

− i
�

Û †
I Â(t)Û I Û †

I V̂I Û I

= i
�

V̂I Â I + Û †
I

(
∂

∂t
Â(t)

)
Û I − i

�
Â I V̂I

= Û †
I

(
∂

∂t
Â(t)

)
Û I + i

�

[
V̂I , Â I

]
. (14.43)

Hence, the operator Â I (t) evolves in time even if the operator

Â(t) does not explicitly depend on time. The evolution of the

operator is solely determined by the interaction Hamiltonian V̂I .

For this reason, the operator Â I (t) is called the operator of a given

system in the interaction picture.
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14.7 Ehrenfest Theorem

The Ehrenfest theorem says that quantum mechanics must produce

the same result as the classical mechanics for a system in which the

particle can be represented by a well-localized wave function, i.e., the

wave function with ∂�(x , t)/∂x = 0. Thus, the Ehrenfest theorem is

an example of the correspondence principle.

According to the Ehrenfest theorem, the equations of motion

for the average (mean or expectation) values of the position and

momentum operators of a particle, which can be represented by

well-localized wave functions, are identical to the classical equations

of motion. Consider the equations of motion for the average values

of the position x̂ and momentum p̂x operators of a particle of mass

m moving in a one-dimensional potential V̂ :

d
dt

〈x̂〉 = d
dt

〈�H |x̂|�H 〉 = 〈�H | d
dt

x̂|�H 〉

= 1

m
〈�H | p̂x |�H 〉 = 1

m
〈 p̂x〉, (14.44)

d
dt

〈 p̂x〉 = d
dt

〈�H | p̂x |�H 〉 = 〈�H | d
dt

p̂x |�H 〉 = −
〈

∂ V̂
∂x

〉
.

(14.45)

Equation (14.45) can be written as

m
d2

dt2
〈x̂〉 = −

〈
∂ V̂
∂x

〉
. (14.46)

However, classical physics says that the right-hand side of

Eq. (14.46) is a force Fx not 〈Fx〉. To solve the problem, we can use

the assumption that the particle is represented by the well-localized

wave function. Then〈
∂ V̂
∂x

〉
=
∫

�∗(x , t)
∂ V̂
∂x

�(x , t)dx . (14.47)

Note that

∂ V̂
∂x

�(x , t) =
(

∂ V̂
∂x

)
�(x , t) + V̂

∂�(x , t)

∂x
. (14.48)
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x< x >

|Ψ(x)|2

Figure 14.1 Example of a well-localized wave function. The function is

different from zero only in a very narrow region around the expectation

value of x .

Thus, if �(x , t) is a well-localized function, then ∂�(x , t)/∂x = 0,

and we can write Eq. (14.47) as〈
∂ V̂
∂x

〉
=
∫

�∗(x , t)
∂ V̂
∂x

�(x , t)dx =
∫

�∗(x , t)

(
∂ V̂
∂x

)
�(x , t)dx

≈
(

∂ V̂
∂x

)
〈x〉

∫
|�(x , t)|2dx =

(
∂ V̂
∂x

)
〈x〉

, (14.49)

where (∂ V̂ /∂x)〈x〉 is the value of the derivative at the maximum of

the wave function.

Figure 14.1 shows an example of a well-localized wave function

that is maximal at the expectation value of x and is different from

zero only in a very narrow region around 〈x〉. Thus, a measurement

of x is almost certain to yield a result, which is very close to 〈x〉.

The best shape for the wave function for a perfect correspondence

between the quantum and classical mechanics would be a δ

function, �(x) = δ(x − 〈x〉).

In summary, quantum mechanics produces the same result as

classical mechanics for a system in which particles are represented

by well-localized (narrow) wave functions. In this case, the

expectation values of the operators correspond to the classical limits

of the observables, which is consistent with the correspondence

principle.
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Tutorial Problems

Problem 14.1 Consider a two-level atom of energy states |1〉 and

|2〉 driven by a laser field. The atom can be represented as a spin-
1
2

particle and the laser field can be treated as a classical field. The

Hamiltonian of the system is given by

Ĥ = 1

2
�ω0σ̂z − 1

2
i��
(
σ̂+e−iωLt − σ̂−eiωLt) , (14.50)

where � is the Rabi frequency of the laser field, ω0 is the atomic

transition frequency, ωL is the laser frequency, and σ̂z, σ̂+, and σ̂−

are the spin operators defined as

σ̂z = |2〉〈2| − |1〉〈1|, σ̂+ = |2〉〈1|, σ̂− = |1〉〈2|. (14.51)

(a) Calculate the equation of motion for σ̂−.

(b) The equation of motion derived in (a) contains a time-

dependent coefficient. Find a unitary operator that transforms

σ̂− into ˆ̃σ− whose equation of motion is free of time-dependent

coefficients.

Problem 14.2 The Hamiltonian of the two-level atom interacting

with a classical laser field can be written as

Ĥ = Ĥ0 + V̂ (t), (14.52)

where

Ĥ0 = 1

2
�ω0σ̂z

V̂ (t) = −1

2
i��
(
σ̂+e−iωLt − σ̂−eiωLt) . (14.53)

(a) Transform V̂ (t) into the interaction picture to find V̂I =
Û †

0 V̂ (t)Û 0.

(b) Find the equation of motion for σ̂− in the interaction picture, i.e.,

find the equation of motion for σ̂−
I (t) = Û †

I σ̂−Û I .
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Chapter 15

Quantum Harmonic Oscillator

We have illustrated in Section 8.3 the solution to the stationary

Schrödinger equation for a particle in a square-well potential, where

V (x) had a special simple structure (step function).

In this chapter, we shall try to investigate a more complicated sys-

tem: the one-dimensional Schrödinger equation with the potential

V (x) strongly dependent on x , such that

V̂ (x) = 1

2
mω2 x̂2 . (15.1)

Readers familiar with harmonic motion will recognize that this is

the well-known potential of a one-dimensional harmonic oscillator

of mass m and frequency of oscillations ω. Its dependence on the

amplitude of the oscillation x is illustrated in Fig. 15.1. This is still a

one-dimensional problem but with a complication arising from the

x dependence of the potential.

The study of quantum properties of the harmonic oscillator

is important in physics as many real-world systems oscillate

harmonically. Motion of systems in a confined space is often modeled

as being a quantized harmonic motion or, in first instance, is

approximated by a harmonic motion.

Quantum Physics for Beginners
Zbigniew Ficek
Copyright c© 2016 Pan Stanford Publishing Pte. Ltd.
ISBN 978-981-4669-38-2 (Hardcover), 978-981-4669-39-9 (eBook)
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xx0-x0

E

V(x)

Figure 15.1 Potential of a one-dimensional harmonic oscillator. The

amplitude x0 of the motion is called the classical turning point and is

determined by the total energy E of the oscillator, which classically can have

any value.

Consider a harmonic oscillator composed of an oscillating mass

m. In one dimension, the Hamiltonian of the harmonic oscillator is

given by

Ĥ = 1

2m
p̂2 + 1

2
mω2 x̂2 , (15.2)

where p̂2/2m is the kinetic energy and mω2 x̂2/2 is the potential

energy of the mass.

We will find energies (eigenvalues) and eigenfunctions of the

harmonic oscillator by solving the stationary Schrödinger equation

(eigenvalue equation) using two different approaches.

In the first, we will solve the equation employing an alge-

braic operator technique, which is based on the Dirac notation.

This approach has several definite advantages and exploits the

commutation relations among the operators involved and their

properties.

In the second approach, we will transform the stationary

Schrödinger equation into a second-order differential equation and

will find the solution to the equation with the aid of a more advanced

mathematical technique that involves special functions.
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15.1 Algebraic Operator Technique

The algebraic operator technique is based on the commutation

relation of two Hermitian operators involved in the evolution of the

harmonic oscillator: position x̂ and momentum p̂ = p̂x :

[x̂ , p̂] = i� . (15.3)

We will introduce a non-Hermitian operator defined as

â =
√

mω

2�
x̂ + i

1√
2m�ω

p̂ , (15.4)

and the adjoint of this operator

â† =
√

mω

2�
x̂ − i

1√
2m�ω

p̂ . (15.5)

Using the commutation relation (15.3), we find that the operators

â, â† satisfy the commutation relation[
â, â†] = 1̂ . (15.6)

This allows us to write the Hamiltonian Ĥ in a compact form

Ĥ = 1

2
�ω
(

â†â + ââ†) = �ω

(
â†â + 1

2

)
. (15.7)

Hence, the eigenvalue equation

Ĥ |φ〉 = E |φ〉 , (15.8)

can be written as

�ω

(
â†â + 1

2

)
|φ〉 = E |φ〉 . (15.9)

Multiplying Eq. (15.9) from the left by 〈φ|, and using the

normalization 〈φ|φ〉 = 1, we get

�ω

(
〈φ|â†â|φ〉 + 1

2

)
= E . (15.10)

Since

〈φ|â†â|φ〉 = (â|φ〉, â|φ〉) ≥ 0 , (15.11)

we have that

E ≥ 1

2
�ω . (15.12)
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Thus, the energy of the quantum harmonic oscillator can never

be zero.

From Eq. (15.9), we can generate a new eigenvalue equation

multiplying this equation from the left by â†:

�ω

(
â†â†â + 1

2
â†
)

|φ〉 = E â†|φ〉 . (15.13)

Using the commutation relation (15.6), we can write Eq. (15.13)

as

�ω

(
â†â − 1

2

)
â†|φ〉 = E â†|φ〉 . (15.14)

Adding to both sides �ωâ†|φ〉, we obtain

�ω

(
â†â + 1

2

)
â†|φ〉 = (E + �ω) â†|φ〉 . (15.15)

Introducing a notation |�〉 = â†|φ〉, we see that |�〉 is an

eigenfunction of Ĥ with eigenvalue E + �ω.

Thus, the operator â† acting on the state |φ〉 of energy E
transforms this state to the state |�〉 of energy E + �ω. Therefore,

the operator â† is called the raising operator or creation operator.

Now, multiplying Eq. (15.15) from the left by â†, we obtain

�ω

(
â†â†â + 1

2
â†
)

|�〉 = (E + �ω) â†|�〉 . (15.16)

Proceeding similar as above, we get

�ω

(
â†â + 1

2

)
â†|�〉 = (E + 2�ω) â†|�〉 . (15.17)

Thus, the state â†|�〉 = â†â†|φ〉 is an eigenfunction of Ĥ with an

eigenvalue E + 2�ω.

Similarly, we can show that the state |φn〉 = (â†)n|φ〉 is an

eigenfunction of Ĥ with an eigenvalue E + n�ω.

Consider now the action of the operator â on the eigenfunctions

to find the resulting eigenvalues and eigenfunctions.

Take the eigenvalue equation for |φn〉:

�ω

(
â†â + 1

2

)
|φn〉 = (E + n�ω) |φn〉 = En|φn〉 . (15.18)

Multiplying Eq. (15.18) from the left by â, we get

�ω

(
ââ†â + 1

2
â
)

|φn〉 = (E + n�ω) â|φn〉 , (15.19)
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E +   ωh

E 

E + 2   ωh

E + 3   ωh

|φ0>

|φ3>

|φ2>

|φ1>
a^

a^

Figure 15.2 Energy spectrum of the harmonic oscillator and the action of

the annihilation and creation operators. Note that the discrete energy levels

are equally separated from each other by �ω.

and using the commutation relation (15.6), we obtain

�ω

(
â†ââ + 3

2
â
)

|φn〉 = (E + n�ω) â|φn〉 . (15.20)

Hence

�ω

(
â†â + 1

2

)
â|φn〉 = [E + (n − 1) �ω] â|φn〉 . (15.21)

Thus, the state |φn−1〉 = â|φn〉 is an eigenfunction of Ĥ with an

eigenvalue En − �ω. Therefore, the operator â is called the lowering
operator or annihilation operator.

Suppose that the state |φ0〉 of energy E is the lowest (ground)

state of the harmonic oscillator. Thus, the energy spectrum

(eigenvalues), shown in Fig. 15.2, forms a ladder of equally spaced

levels separated by �ω, which one ascends by the action of â†

and descends by the action of â. The quantum harmonic oscillator,

therefore, has a discrete energy spectrum.

Consider the action of â on the ground state

�ω

(
â†â + 1

2

)
â|φ0〉 = (E − �ω) â|φ0〉 . (15.22)

This equation cannot be satisfied. Otherwise, there would exist

another eigenvalue E − �ω lower than E . Thus, â|φ0〉 must be

identically zero:

â|φ0〉 ≡ 0 . (15.23)
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Hence, the eigenvalue equation for the ground state is

Ĥ |φ0〉 = �ω

(
â†â + 1

2

)
|φ0〉 = 1

2
�ω|φ0〉 . (15.24)

Thus, the energy (eigenvalue) of the ground state is E = �ω/2.

We can summarize our findings that the energy eigenvalues of

the harmonic oscillator are discrete

En =
(

n + 1

2

)
�ω , n = 0, 1, 2, . . . (15.25)

with corresponding eigenfunctions

|φ0〉 , |φ1〉 = â†|φ0〉 , |φ2〉 = (â†)2 |φ0〉 , . . . , |φn〉 = (â†)n |φ0〉 .

(15.26)

From the above equation, it follows that starting with |φ0〉,

we may obtain the complete set of eigenvectors of the harmonic

oscillator by repeatedly applying the operator â† on the eigenstate

|φ0〉.

However, the eigenstates found in this way are not normalized.

The normalization of φn(x) = cn
(

â†)n
φ0(x) gives

1 = 〈φn|φn〉 = |cn|2〈φ0|
(

â†n)† (â†)n |φ0〉
= |cn|2〈φ0|ânâ†n|φ0〉
= |cn|2〈φ0|ân−1ââ†n|φ0〉 . (15.27)

Using the commutation relationa[
â,
(

â†)n
]

= n
(

â†)n−1
, (15.28)

we can continue Eq. (15.27) as

= |cn|2〈φ0|ân−1
(

nâ†n−1 + â†nâ
) |φ0〉

= |cn|2n〈φ0|ân−1â†n−1|φ0〉
= |cn|2n〈φ0|ân−2

(
(n − 1)â†n−2 + â†n−1â

) |φ0〉
= |cn|2n(n − 1)〈φ0|ân−2â†n−2|φ0〉 . (15.29)

Proceeding further, we find that Eq. (15.27) reduces to

1 = |cn|2n! . (15.30)

aProof by induction left for the readers as a tutorial problem.
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Thus, the normalized eigenfunctions of the harmonic oscillator

are

|φn〉 = 1√
n!

(
â†)n |φ0〉 . (15.31)

Equation (15.31) shows that an nth eigenfunction can be

generated from the ground state eigenfunction by the n-times

repeated action of the creation operator on |φ0〉. Thus, it is enough

to know the ground state eigenfunction to find all the eigenfunctions

of the harmonic oscillator.

This is the complete solution to the problem. It is remarkable

that the commutation relation (15.6) was all what we needed to deal

with the harmonic oscillator completely. In a very effective way, we

extracted the essential structure of the problem and have founded

the eigenvalues and eigenvectors of the harmonic oscillator.

Using the definition of the ground state (15.23), we may find the

explicit form of the ground state eigenfunction. Substituting for â
from Eq. (15.4) and using the explicit form of p̂ = −i�d/dx , we get√

mω

2�
xφ0 + i

1√
2�mω

(
−i�

dφ0

dx

)
= 0 , (15.32)

which simplifies to

dφ0

dx
+ mω

�
xφ0 = 0 , (15.33)

where φ0 ≡ |φ0〉. Hence

dφ0

φ0

= −mω

�
xdx . (15.34)

Integrating Eq. (15.34), we obtain

ln
φ0(x)

φ0(0)
= −mω

2�
x2 , (15.35)

from which we find

φ0(x) = φ0(0) exp
(
−mω

2�
x2
)

. (15.36)

We find φ0(0) from the normalization, which finally gives

φ0(x) =
(mω

π�

) 1
4

exp
(
−mω

2�
x2
)

. (15.37)

Thus, the wave function of the ground state is a Gaussian.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

226 Quantum Harmonic Oscillator

The wave functions φn(x) of the other states can be found from

the relation

φn(x) = (â†)n
φ0(x) . (15.38)

Using the definition of â† (Eq. (15.5)), we can find φn(x) in terms

of the position x :

φ1(x) = â†φ0(x)

=
[√

mω

2�
x − i

1√
2m�ω

(
−i�

d
dx

)]
φ0(x) . (15.39)

From Eq. (15.33), we have

dφ0

dx
= −mω

�
xφ0 . (15.40)

Hence

φ1(x) =
(√

2

√
mω

�
x
)

φ0(x) . (15.41)

Similarly, we can find that

φ2(x) = 1√
2

[
2
(mω

�

)
x2 − 1

]
φ0(x) . (15.42)

We can introduce a new parameter

α =
√

mω

�
x , (15.43)

and write the wave functions as

φ1(α) = 1√
2

H1(α)φ0(α), φ2(α) = 1

2
√

2
H2(α)φ0(α), (15.44)

where Hn(α) are Hermite polynomials of degree n.

First few Hermite polynomials

H0(α) = 1 , H1(α) = 2α , H2(α) = 4α2 − 2 , . . . (15.45)

Hermite polynomials satisfy the differential equation

d2 Hn(α)

dα2
− 2α

d Hn(α)

dα
+ 2nHn(α) = 0 . (15.46)

Notice that the wave functions of the harmonic oscillator are not

in the form of sinusoidal functions.
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xx0

E
   ωh

E=1/2

E=3/2

|φ0 |2

|φ1|
2V (x)

Figure 15.3 First two energy eigenvalues and the corresponding eigenfunc-

tions of the harmonic oscillator.

Let us consider in more details the properties of the harmonic

oscillator being in its ground state. Using the classical representation

of energy, we have

1

2
�ω = p2

2m
+ 1

2
mω2x2 . (15.47)

Since, p2 ≥ 0, the particle must be restricted to positions x , such

that
1

2
mω2x2 ≤ 1

2
�ω , (15.48)

i.e.,

|x| ≤
√

�

mω
. (15.49)

The maximum of |x| ≡ x0 = √
�/mω is called the classical

turning point.

Since the wave function ψ0(x) is not restricted to x ≤ x0, see

Fig. 15.3, quantum mechanics predicts that the harmonic oscillator

can be in the classically forbidden region.

Another interesting observation: According to classical theory of

harmonic oscillator, the probability of finding the oscillating mass at

a given position is greatest at the end points of its motion, where it

moves slowly, and least near the equilibrium position (x = 0), where

it moves rapidly.
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Exactly opposite behavior is manifested by a quantum oscillator

in its lowest energy state of n = 0. The probability density has its

maximum value at x = 0 and drops off on either side of the position.

15.2 Special Functions Method

We will carry out the solution to the eigenvalue equation of the

harmonic oscillator again, this time using the stationary Schrödinger

equation in a form of a second-order differential equation.

The starting point is the stationary Schrödinger equation for the

harmonic oscillator whose Hamiltonian is of the form

Ĥ = 1

2m
p̂2 + 1

2
mω2 x̂2 . (15.50)

Since in one dimension, p̂ = −i�d/dx , the Schrödinger (eigen-

value) equation takes the form(
− �

2

2m
d2

dx2
+ 1

2
mω2x2

)
φ = Eφ , (15.51)

or multiplying by −2m and dividing by �
2, we obtain a second-order

differential equation

d2φ

dx2
+ 2m

�2

(
E − mω2

2
x2

)
φ = 0 . (15.52)

This is not a linear differential equation, and it is not easy to

obtain a solution.

We can proceed in the following way. Introducing new variables

λ = 2m
�2

E , β2 = m2ω2

�2
, (15.53)

we can write Eq. (15.52) in a simpler form

d2φ

dx2
+ (λ − β2x2

)
φ = 0 , (15.54)

which is still difficult to solve. Despite the difficulty, we will try to

solve the differential equation (15.54). First, we will find the solution

to Eq. (15.54) in the asymptotic limit of large x (x � 1). In this limit,

we can ignore the λ term as being small compared to β2x2 and obtain

d2φ

dx2
− β2x2φ = 0 . (15.55)
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This is a simple differential equation whose solution is of the

form

φ(x) = C exp

(
−1

2
βx2

)
, (15.56)

where C is a constant.

Hence, we will try to find the solution to Eq. (15.54) in the form

φ(x) = f (x) exp

(
−1

2
βx2

)
, (15.57)

i.e., in the form satisfying the asymptotic solution (15.56), where

f (x) is a function of x , which remains to be found.

By substituting Eq. (15.57) into Eq. (15.54), we obtain

d2 f
dx2

− 2βx
d f
dx

+ (λ − β) f = 0 . (15.58)

Introducing a new variable α = √
βx and a new function f (x) →

H (α), for which

d f
dx

= d H
dα

dα

dx
=
√

β
d H
dα

,

d2 f
dx2

=
√

β
d2 H
dα2

dα

dx
= β

d2 H
dα2

, (15.59)

the differential equation (15.58) transforms into

d2 H
dα2

− 2α
d H
dα

+
(
λ

β
− 1

)
H = 0 . (15.60)

Having written the Schrödinger equation in this form, one can

notice that it is identical to the differential equation for Hermite

polynomials, Eq. (15.46), with

λ

β
− 1 = 2n , (15.61)

where n is integer.a

aOf course, we can prove by using the standard procedure of solving differential

equations that the solution to Eq. (15.60) is really in the form of Hermite

polynomials. We leave the details of the solution as a tutorial problem.
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Thus, the wave functions of the harmonic oscillator are of the

form

φn(x) = N Hn(α) exp

(
−1

2
α2

)
, (15.62)

where N is a normalization constant.

Since n is integer, we find from Eqs. (15.61) and (15.53) that the

energy eigenvalue E is

E =
(

n + 1

2

)
�ω . (15.63)

In summary, from the foregoing treatment of the harmonic

oscillator, we see that the solution to the Schrödinger equation given

in the differential form agrees perfectly with the results obtained by

the algebraic operator technique.

In summary of this chapter, we have learned that

(1) The energy of a harmonic oscillator is quantized, with the

sequence of values

En =
(

n + 1

2

)
�ω , n = 0, 1, 2, . . .

(2) The energy levels are equally spaced. This is an important point

to remember. The difference in energy between adjacent energy

levels is equal to the energy of a single photon, �ω.

(3) The lowest energy the oscillator can have is E0 = 1
2
�ω, which is

nonzero. Thus, the oscillator can never be made stationary.

(4) The oscillator can be found in the classically forbidden region.

This is another example of penetration of a potential barrier or

quantum tunneling.

Worked Example

Assume that the harmonic oscillator is in the ground state n = 0.

Calculate the probability that the oscillator will be found in the

classically forbidden region, where the kinetic energy is negative.
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Solution

We have shown in the chapter that the wave function of the ground

state is

φ0(x) = Ae−βx2

,

where

A =
(mω

π�

) 1
4

and β = mω

2�
.

Classically forbidden regions are x ≤ −x0 and x ≥ x0, where

x0 = √
�/mω is the classical turning point (see Fig. 15.3).

Probability of finding the harmonic oscillator in the classically

forbidden region is

P =
∫ −x0

−∞
|φ0(x)|2dx +

∫ ∞

x0

|φ0(x)|2dx

= 2A2

∫ ∞

x0

e−2βx2

dx = 2A2

∞∫
1√
2β

e−2βx2

dx .

By substituting

y2 = 2βx2 ,

we can change the variable

x = 1√
2β

y and dx = 1√
2β

dy .

Hence, we find

P = 2A2

√
2β

∫ ∞

1

e−y2

dy = 2√
π

∫ ∞

1

e−y2

dy = 1 − Erf(1) = 0.16 ,

where Erf(x) is the error function, defined as

Erf(x) = 2√
π

∫ x

0

e−y2

dy .

Thus, there is about a 16% chance that the oscillator will be

found in the classically forbidden region.
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Tutorial Problems

Problem 15.1 Use the operator approach developed in the chapter

to prove that the nth harmonic oscillator energy eigenfunction obeys

the following uncertainty relation

δxδp = �

2
(2n + 1) ,

where δx =
√

〈x̂2〉 − 〈x̂〉2 and δpx =√〈 p̂2
x 〉 − 〈 p̂x〉2 are fluctuations

of the position and momentum operators, respectively.

Problem 15.2 Given that â|n〉 = √
n|n − 1〉, show that n must be a

positive integer.

Problem 15.3 (a) Using the commutation relation for the position x̂
and momentum p̂ ≡ p̂x operators

[x̂ , p̂] = i� ,

show that the annihilation and creation operators â, â† of a one-

dimensional harmonic oscillator satisfy the commutation relation[
â, â†] = 1̂ .

(b) Show that the Hamiltonian of the harmonic oscillator

Ĥ = 1

2m
p̂2 + 1

2
mω2 x̂2

can be written as

Ĥ = �ω

(
â†â + 1

2

)
.

(c) Calculate the value of the uncertainty product �x�p for a one-

dimensional harmonic oscillator in the ground state |φ0〉, where

�x =
√

〈x̂2〉 − 〈x̂〉2 and �p =
√

〈 p̂2〉 − 〈 p̂〉2.

Problem 15.4 Prove, by induction, the following commutation rela-

tion: [
â,
(

â†)n
]

= n
(

â†)n−1
.
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Problem 15.5 Generation of an nth wave function from the ground
state wave function
Using the normalized energy eigenfunctions of the harmonic

oscillator,

|φn〉 = 1√
n!

(
â†)n |φ0〉 ,

show that

â† |φn〉 = √
n + 1 |φn+1〉 ,

â |φn〉 = √
n |φn−1〉 .

Problem 15.6 Matrix representation of the annihilation and creation
operators

Write the matrix representations of the operators â and â† in the

basis of the energy eigenstates |φn〉, and using this representation

verify the commutation relation
[
â, â†] = 1̂, where 1̂ is the unit

matrix.

Problem 15.7 Introducing a dimensionless parameter ξ = √mω
�

x ,

show that:

(a) The operators â and â† can be written as

â = 1√
2

(
ξ + ∂

∂ξ

)
,

â† = 1√
2

(
ξ − ∂

∂ξ

)
.

(b) The time-independent Schrödinger equation becomes

∂2φ

∂ξ2
+
(

2E
�ω

− ξ2

)
φ = 0 .

(c) Show that the wave function φ1(x) of the n = 1 energy state can

be written as

φ1(x) = 2ξ A1e−ξ2/2 .

(d) Find the normalization constant A1.

(e) Using (a) as the representation of the operators â and â†, verify

the commutation relation
[
â, â†] = 1.
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Problem 15.8 Calculate the expectation value 〈x̂〉 and the variance

(fluctuations) σ = 〈x̂2〉 − 〈x̂〉2 of the position operator of a one-

dimensional harmonic oscillator being in the ground state φ0(x),

using

(a) Integral definition of the average

(b) Dirac notation, which allows to express x̂ in terms of â, â†, and

to apply the result of question 3.

(c) Show that the average values of the kinetic and potential

energies of a one-dimensional harmonic oscillator in an energy

eigenstate |φn〉 are equal.

Problem 15.9 Show that the nonzero minimum energy of the

quantum harmonic oscillator, E ≥ �ω/2, is a consequence of the

uncertainty relation between the position and momentum operators

of the oscillator.

Hint: Use the uncertainty relation for the position and the

momentum operators in the state n = 0 and plug it into the average

energy of the oscillator. Then, find the minimum of the energy in

respect to δx .

Challenging Problem

Show that the probability of finding the harmonic oscillator beyond

the classical turning points x = ±x0 decreases with increasing n.

This example shows that the classical and quantum pictures become

less and less marked with increasing n, in agreement with the

correspondence principle.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Chapter 16

Quantum Theory of Hydrogen Atom

In Chapter 5, we have seen how Bohr explained the experimentally

observed discrete atomic spectra. He postulated that angular

momentum of the electron in a hydrogen atom is quantized, i.e.,

L = n� , where n = 1, 2, 3, . . . . (16.1)

However, a careful analysis of the observed spectra showed that

some spectral lines are not singlets but are composed with a few

superimposed lines. Thus, the angular momentum cannot be n�, but

rather
√

l(l + 1), where l = 0, 1, 2, . . . , n − 1.

It follows from the Bohr postulate that energy and also electron’s

orbits are quantized, that the electron can be only at some particular

distances from the nucleus. In other words, the electron is not

allowed to be at distances different from that predicted by the

angular momentum quantization. A question then arises: where

really is the electron when it makes a transition from one orbit to

another?

Bohr had discussions with Schrödinger on this point, apparently

without agreement. The heat of these discussions is captured in the

famous statement by Schrödinger that “If all this damned quantum

jumps were really to stay, I should be sorry I ever got involved

with quantum theory,” after which Bohr reportedly replied, “But we

Quantum Physics for Beginners
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others are very grateful to you that you did, since your work did so

much to promote the theory”.

In this chapter, we will consider Schrödinger’s model of hydrogen

atom and will analyze in details the quantum wave mechanics

approach to the motion of the electron in the hydrogen atom. In this

approach, rather than wondering about the position and motion of

the electron, we will classify the electron in terms of the amount

of energy that the electron has, and will represent the electron by

a wave function �(�r), which satisfies the stationary Schrödinger

equation

Ĥ �(�r) = E�(�r) , (16.2)

where the Hamiltonian is given by

Ĥ = − �
2

2me
∇2 + V̂ (r) , (16.3)

with the Coulomb potential energy of the electron

V̂ (r) = − e2

4πε0

1

r
. (16.4)

Thus, the potential is spherically symmetric; it depends only on

the distance r of the moving electron from the nucleus (central

force).

16.1 Schrödinger Equation in Spherical Coordinates

The motion of the electron in the hydrogen atom is a three-

dimensional problem, and by solving Eq. (16.2), we will find the

explicit form of the wave function of the electron and its energy E .

The stationary Schrödinger equation (16.2) is not easy to solve

as it stands, and the whole problem looks rather complicated when

expressed in terms of Cartesian coordinates. The problem is that

the differential equation (16.2) involves three variables, x , y, z, and

cannot be split into a set of three separate differential equations,

each involving only one variable.

Since the potential V (r) has a spherical symmetry, the whole

problem becomes considerably easier to solve if we work in

the spherical coordinates. In the spherical coordinates, shown in
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φ Y

X

Z

θ
r

Figure 16.1 The relation between the Cartesian coordinates (x , y, z) of the

position vector �r and its polar coordinates (r, φ , θ), where r is the radial

coordinate, φ is the azimuthal angle, and θ is the polar angle.

Fig. 16.1, we express all the coordinate variables in terms of the polar

variables r, φ , θ . Thus, the operator ∇2, appearing in the Schrödinger

equation, when written in terms of the polar variables, takes the

form

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2
,

(16.5)

and then the Schrödinger equation can be written as

∂

∂r

(
r2 ∂�

∂r

)
+ 2me

�2
r2 (E − V (r)) �

+ 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

sin2 θ

∂2�

∂φ2
= 0 . (16.6)

Equation (16.6) has two separate parts: the first part depends

only on the distance r , whereas the second part depends only on the

polar angle θ and the azimuthal angle φ. Thus, the wave function is

of the separable form

�(�r) = R(r)Y (θ , φ) , (16.7)

where R(r) is called the radial part of the wave function, and Y (θ , φ)

is the angular part.
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Hence, substituting Eq. (16.7) into Eq. (16.6) and dividing both

sides by R(r)Y (θ , φ), we obtain[
1

R
d

dr

(
r2 d R

dr

)
+ 2mer2

�2
(E − V (r))

]

= − 1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+ 1

sin2 θ

∂2Y
∂φ2

]
. (16.8)

Both sides of Eq. (16.8) depend on different variables, and thus

are independent of each other and therefore must be equal to

the same constant, say −α. Consequently, we are able to separate

the differential equation into two independent equations: one

depending solely on r and the other on θ and φ:

1

r2

d
dr

(
r2 d R

dr

)
+ 2me

�2
(E − V (r)) R + α

r2
R = 0 , (16.9)

1

sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+ 1

sin2 θ

∂2Y
∂φ2

− αY = 0 . (16.10)

We will solve the above differential equations separately. First,

let us consider the angular part, Eq. (16.10), that depends on the

angular variables θ , φ.

16.1.1 Angular Part of the Wave Function: Angular
Momentum

We will first show that Eq. (16.10) is, in fact, the eigenvalue equation

for the square of the angular momentum operator

�̂L = �̂r × �̂p = −i��̂r × ∇ . (16.11)

To show this, we rewrite Eq. (16.10) in the form{
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

}
Y = αY , (16.12)

which evidently is in the form of an eigenvalue equation of the

operator

Ô = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2
. (16.13)

On the other hand, if we write the square of the angular

momentum operator in the spherical coordinates

L̂2 = �̂L · �̂L , (16.14)
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we find that in the operator L̂2 is of the form

L̂2 = −�
2

{
1

sin θ

∂

∂θ

(
sin θ

∂Y
∂θ

)
+ 1

sin2 θ

∂2Y
∂φ2

}
= −�

2 Ô . (16.15)

The proof of this relation is left as an exercise for the readers.

Since the eigenvalue equation for L̂2 can be written as

L̂2Y (θ , φ) = λY (θ , φ) , (16.16)

it then follows that α = −λ/�
2, where λ is the eigenvalue of L̂2.

We now return to Eq. (16.10), which we can write as

sin θ
∂

∂θ

(
sin θ

∂Y
∂θ

)
− α sin2 θY + ∂2Y

∂φ2
= 0 . (16.17)

This equation contains two separate parts: one dependent only

on θ and the other dependent only on φ. Therefore, the solution to

Eq. (16.17) will be of the form

Y (θ , φ) = X (θ)�(φ) . (16.18)

Hence, substituting Eq. (16.18) into Eq. (16.17) and dividing both

sides by X (θ)�(φ), we obtain

1

X
sin θ

d
dθ

(
sin θ

d X
dθ

)
− α sin2 θ = − 1

�

d2�

dφ2
, (16.19)

where X ≡ X (θ) and � ≡ �(φ).

As before, both sides must be equal to a constant, say m2. Thus

1

X
sin θ

d
dθ

(
sin θ

d X
dθ

)
− α sin2 θ = m2 , (16.20)

1

�

d2�

dφ2
= −m2 . (16.21)

Hence, we have separated Eq. (16.17) into two differential

equations, that we can solve separately.

16.1.2 Azimuthal Part of the Wave Function

First, we will solve the equation for the azimuthal part of the wave

function, which is particularly simple. We rewrite Eq. (16.21) in the

form

d2�

dφ2
= −m2� , (16.22)
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and readily find that a general solution to Eq. (16.22) is of the form

�(φ) = A exp(imφ) , (16.23)

where A is a constant.

Since in rotation, φ and φ + 2π correspond to the same position

in space, we have �(φ) = �(φ + 2π). Thus

exp(imφ) = exp[im(φ + 2π)] , (16.24)

from which we find that

exp(i2πm) = 1 . (16.25)

However, this condition is satisfied only when m is an integer,

m = 0, ±1, ±2, . . . .

Hence, the constant m2 is not an arbitrary number and is an

integer.

Using the normalization condition

1 =
∫ 2π

0

|�(φ)|2 dφ = 2π |A|2 , (16.26)

we can write the final form of the azimuthal part of the wave function

�(φ) as

�m(φ) = 1√
2π

exp(imφ) , (16.27)

where m is an integer, and the subscript m has been introduced to

indicate the dependence of the wave function upon the quantum

number m.

16.1.3 Polar Component of the Wave Function

The next step in the solution is to find X (θ), the polar component

of the wave function that is a solution to the differential equation

(16.20). The solution is rather complicated and is given in terms of

special functions.

The procedure of solving the differential equation (16.20) is as

follows: If we multiply both sides of the equation by X and divide by

sin2 θ , we obtain after a slight rearrangement

1

sin θ

d
dθ

(
sin θ

d X
dθ

)
−
(

α + m2

sin2 θ

)
X = 0 . (16.28)
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Introducing a new variable z = cos θ , and noting that

d
dθ

= −
√

1 − z2
d

dz
, (16.29)

we find that Eq. (16.28) becomes

(
1 − z2

) d2 X
dz2

− 2z
d X
dz

−
(

α + m2

1 − z2

)
X = 0 , (16.30)

which after a slight rearrangement can be written as

d
dz

[(
1 − z2

) d X
dz

]
−
(

α + m2

1 − z2

)
X = 0 . (16.31)

This differential equation is known in mathematics as the

generalized Legendre differential equation, and its solutions are the

associated Legendre polynomials. For m = 0, the equation is called

the ordinary Legendre differential equation whose solution is given

by the Legendre polynomials.

Equation (16.31) has singularities (poles) at z = ±1. However,

the desired solution should be single valued, finite, and continuous

on the interval −1 ≤ z ≤ 1 to represent the wave function of the

electron.

To find the physically acceptable solution to this equation, we will

check what solution could be continuous near the poles.

We first find a possible finite solution near z = 1. Substituting

x = 1 − z, we have dx = −dz, and then in terms of x , the differential

equation (16.31) takes the form

d
dx

[
x (2 − x)

d X
dx

]
−
(

α + m2

x(2 − x)

)
X = 0 . (16.32)

The standard procedure for solving differential equations like

Eq. (16.32) is to assume that X (x) can be given in terms of a power

series in x :

X (x) = xs
∞∑

j=0

aj x j . (16.33)

Substituting this into the differential equation for X , we get

2s2a0xs−1 + (s + 1)(2sa1 − sa0 + 2a1)xs + . . .

−
(

α + m2

x(2 − x)

)
(a0 + a1x + . . .)xs = 0 . (16.34)
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Near x ≈ 0, we can replace x(2 − x) by 2x and obtain(
2s2a0 − m2

2
a0

)
xs−1 + (. . .)xs . . . = 0 . (16.35)

This equation is satisfied for all x only if the coefficients at

xs , xs±1, . . . are zero. From this, we find that

s = ±1

2
|m| . (16.36)

We take only s = + 1
2
|m| as for s = − 1

2
|m| the solution to X (x)

at x = 0 would go to infinity. We require the solution to the wave

function to be finite at any point x .

Thus, the solution that is continuous near x = 0 is of the form

X (x) = x
1
2
|m|

∞∑
j=0

aj x j (16.37)

or in terms of z

X (z) = (1 − z)
1
2
|m|

∞∑
j=0

a′
j z j . (16.38)

Using the same procedure, we can show that near the pole

z = −1, the continuous solution is

X (z) = (1 + z)
1
2
|m|

∞∑
j=0

a′′
j z j . (16.39)

Hence, we will try to find the solution to Eq. (16.31) in the form

X (z) = (1 − z2
) 1

2
|m|

∞∑
j=0

bj z j . (16.40)

Substituting this equation into the differential equation for X (z)

and collecting all terms at the same powers of z j , we obtain∑
j

{
( j + 1)( j + 2)b j+2 − j( j − 1)b j

− 2(|m| + 1) jb j − (α + |m| + m2)bj
}

z j = 0 . (16.41)

Hence, we get a recurrence relation for the coefficients bj

bj+2 = ( j + |m|)( j + |m| + 1) + α

( j + 1)( j + 2)
b j . (16.42)
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Thus, if we know the first two coefficients, b0 and b1, then we

can determine the whole series. However, there is a problem with

the series. Since b j+2 > b j , the series diverges (logarithmically) for

z = ±1, which means that X (z) is not finite at z = ±1. But the wave

function must be finite everywhere, including the polar directions

z = ±1.

There is a simple way out of this dilemma.

If the series representing X (z) terminates at a certain b j0
, so that

the coefficients bj are zero for j > j0, the wave function X (z) will

be finite everywhere. In other words, if X (z) is a polynomial with a

finite number of terms instead of an infinite series, it is acceptable.

Therefore, we terminate the series at some j = j0, i.e., we assume

that bj0+1 = bj0+2 = . . . = 0. The series terminating at j = j0

indicates that

( j0 + |m|)( j0 + |m| + 1) + α = 0 . (16.43)

Introducing

l = j0 + |m| , (16.44)

we see that l ≥ |m|, and

α = −l(l + 1) , l = 0, 1, 2, . . . (16.45)

Hence, we see that the eigenvalues of the angular momentum are

quantized

L̂2 : λ = �
2l(l + 1) ,

L̂ : λ = �

√
l(l + 1) . (16.46)

The integer number l is called the angular momentum quantum
number. Since l ≥ |m|, the number m is limited to absolute values

not larger than l .

After the termination of the series, we get the solution to the

wave function X (z), which is in the form of polynomials, called the

associated Legendre polynomials

X lm(z) = (1 − z)
1
2
|m|

l−|m|∑
j=0

bj z j , (16.47)

where the subscript lm has been introduced to indicate the

dependence of the wave function on the quantum numbers l and m.
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Important: In the sum over j , we take either even or odd terms

in z j depending on whether l − |m| is even or odd.

For example, when l −|m| is even, we take b0 �= 0 and put b1 = 0,

so that the solution is given in terms of only even j . For l − |m| odd,

we put b0 = 0 and take b1 �= 0, so that the solution is given in terms

of odd j .

Why we cannot accept both the even and odd solutions at the

same time?

The answer is as follows: We cannot accept both the even and

odd solutions at the same time because in this case the solution X (z)

would not be a single-valued function.

For example, for b0 �= 0, we have α = −|m| − m2, but for b1 �= 0,

we have α = −2 − 3|m| − m2. If we would accept both the solutions

at the same time, the wave function would have two different values.

As an illustration: The first few associated Legendre polynomials

are

X 00(z) = b0 ,

X 10(z) = b1z ,

X 11(z) = b0

√
1 − z2 , (16.48)

where the coefficients b0, b1, . . . are found from the normalization of

the wave functions X lm(z).

The first few normalized complete angular parts of the wave

function of the electron Ylm(θ , φ) = X lm(θ)�m(φ), the so-called

spherical harmonics, are:

Y00(θ , φ) = 1√
4π

,

Y10(θ , φ) =
√

3

4π
cos θ ,

Y11(θ , φ) = −
√

3

8π
sin θ eiφ ,

Y1−1(θ , φ) =
√

3

8π
sin θ e−iφ . (16.49)

All the spherical harmonics have basically the same mathemat-

ical structure and are in the form of powers of the sine and cosine

functions.
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16.1.4 Physical Interpretation of the Quantum Number m

Before proceeding further with the procedure of finding the

complete wave function of the electron, let us discuss the physical

meaning of the quantum number m. We have already shown that the

azimuthal part of the wave function is given by

�m(φ) = 1√
2π

exp(imφ) , m = 0, ±1, ±2, . . . , ±l . (16.50)

Consider the z-component, L̂z, of the angular momentum.

We will try to find the eigenvalues and eigenfunctions of L̂z:

L̂z� = μ� . (16.51)

It is convenient to write the operator L̂z in the spherical

coordinates, where it takes the form

L̂z = −i�
∂

∂φ
. (16.52)

Then, we get from Eq. (16.51) a simple differential equation

−i�
∂�

∂φ
= μ� , (16.53)

whose solution is

�(φ) = A exp

(
i
�
μφ

)
, (16.54)

where A is a constant.

Using the same argument as before that in rotation φ and φ + 2π

correspond to the same position in space, we find that

μ = m� , m = 0, ±1, ±2, . . . (16.55)

Thus, the azimuthal part of the wave function is the wave

function of the z-component of the angular momentum, and

the number m is the z-component angular momentum quantum

number.

Note that the component L̂z, whose eigenvalue is m�, can never

be as long as the vector �̂L, whose magnitude is �
√

l(l + 1). This is

illustrated in the following example.
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m=+1

m=0

m=-1

L

L

Lz

y

x

Figure 16.2 Angular momentum quantization for l = 1.

Example

Consider angular momentum with l = 1. In this case, the eigenvalue

of �̂L is
√

2�, and L̂z can have three values +�, 0, −�. Thus, the

orientation of �̂L along the z-axis is quantized. The vector �̂L processes

around the z-axis, sweeping out cones of revolution around that axis.

This is shown in Fig. 16.2. The quantization of the orientation of L̂
along its z-axis is called space quantization.

16.2 Radial Part of the Wave Function

The final step in the procedure of finding the wave function of the

electron is to determine the remaining radial part R of the wave

function (Eq. (16.9)).

We start with a simplification of Eq. (16.9) by introducing new

variables

β2 = −2me E
�2

, λ = mee2

4πε0�2β
, ρ = 2βr , (16.56)

and substituting the explicit form for V (r) (Eq. (16.4)), and α =
−l(l + 1).
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After this simplification, the differential equation (16.9) takes the

form
1

ρ2

d
dρ

(
ρ2 d R

dρ

)
+
[
λ

ρ
− 1

4
− l(l + 1)

ρ2

]
R = 0 . (16.57)

We begin the solution to Eq. (16.57) by finding the asymptotic

form that R must have if we want R → 0 as r → ∞.

In the limit of ρ � 1, we can ignore in Eq. (16.57) the terms

proportional to 1/ρ and 1/ρ2 and obtain an asymptotic equation

d2 R
dρ2

− 1

4
R = 0 . (16.58)

It is a simple second-order differential equation whose solution

is of the exponential form

R(ρ) = Ae− 1
2
ρ + Be

1
2
ρ , (16.59)

where A and B are constants.

In the limit of r → ∞ (ρ → ∞), the second term in Eq. (16.59)

goes to infinity and then the wave function R would be infinite. Since

the wave function must be finite for all r , we ignore the second term,

leaving only the first term in Eq. (16.59) as an acceptable asymptotic

solution.

Following this asymptotic behavior, we expect the general

solution to Eq. (16.57) in the form

R(ρ) = e− 1
2
ρ F (ρ) , (16.60)

where F (ρ) is a function of ρ that remains to be found.

To find F (ρ), we substitute Eq. (16.60) into (16.57) and obtain

d2 F
dρ2

+
(

2

ρ
− 1

)
d F
dρ

+
[
λ

ρ
− 1

ρ
− l(l + 1)

ρ2

]
F = 0 . (16.61)

This equation contains several terms, which become infinity at

ρ = 0. Since the solution must be finite everywhere including r = 0,

we will look for a solution in the form of a power series in ρ:

F (ρ) = ρs L(ρ) , (16.62)

where s and L(ρ) have to be determined.

Substituting Eq. (16.62) into Eq. (16.61), we find

ρs+2 d2 L
dρ2

+ 2sρs+1 dL
dρ

+ s(s − 1)ρs L + 2ρs+1 dL
dρ

+ 2sρs L

−ρs+2 dL
dρ

− sρs+1 L + (λ − 1)ρs+1 L − l(l + 1)ρs L = 0 . (16.63)
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In order for this equation to hold for all values of ρ, the

coefficients at all powers of ρ must be zero. In particular, the

coefficient at ρs is

{s(s + 1) − l(l + 1)} L , (16.64)

and vanishes when

s = l or s = −(l + 1) . (16.65)

For s = −(l + 1), the function F (ρ) = ρ−(l+1) L(ρ) diverges as

ρ → ∞. Hence, we ignore this solution leaving s = l as the only

acceptable solution to F (ρ).

We have already determined s; what left is to determine L(ρ). The

function L(ρ) is found from Eq. (16.63). When we substitute s = l
into Eq. (16.63) and divide both sides by ρl+1, we obtain a second-

order differential equation

ρ
d2 L
dρ2

+ [2 (l + 1) − ρ]
dL
dρ

+ (λ − l − 1) L = 0 . (16.66)

The standard procedure for solving differential equations like

Eq. (16.66) is to assume that L(ρ) can be expanded in a power series

in ρ:

L(ρ) =
∞∑

j=0

bj ρ
j , (16.67)

and then to determine the values of the coefficients bj .

Substituting Eq. (16.67) into Eq. (16.66), we obtain the recursion

relation for the coefficients bj :

bj+1 = ( j + l + 1 − λ)

2( j + 1)(l + 1) + j( j + 1)
b j , (16.68)

which enables us to find the coefficients b1, b2, b3, . . . in terms of b0.

We now check whether the coefficients converge as j → ∞.

For a large j ( j � 1), we get

b j+1

bj
≈ 1

j
, (16.69)

which shows that the coefficients converge as j → ∞.

Because L(ρ) is multiplied by the exponential function ρl e− 1
2
ρ ,

the wave function R will vanish at ρ → ∞ only if

lim
ρ→∞ L(ρ) < e

1
2
ρ . (16.70)
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However, the function L(ρ) behaves at ρ → ∞ as the exponent

function eρ . To show this, expand eρ into a series

eρ = 1 + ρ + ρ2

2!
+ ρ3

3!
+ . . . + ρ j

j !
+ ρ j+1

( j + 1)!
. . . (16.71)

The ratio of the coefficients at ρ j+1 and ρ j is equal to

j !

( j + 1)!
= 1

j + 1
≈ 1

j
for j → ∞ . (16.72)

Hence, for large j , the series L(ρ) behaves as eρ . Therefore, the

radial function

R(ρ) = e− 1
2
ρρl L(ρ) (16.73)

would behave as ρl e
1
2
ρ , which does not vanish as ρ → ∞. This

means that the wave function R(ρ) would not be a physically

acceptable wave function.

As before, we solve this dilemma in the following way. If the series

representing R(ρ) terminates at a certain b j0
, so that all coefficients

bj are zero for j > j0, the wave function R(ρ) will go to zero as r →
∞ because of the exponential factor e− 1

2
ρ .

Therefore, we terminate the series at some j = j0, which

according to Eq. (16.68) corresponds to j0 = λ−l−1. In other words,

the condition j0 = λ−l −1 is a necessary and sufficient condition for

the wave function R to be continuous for all r and vanish as r → ∞.

Next, denoting j0 + l + 1 = n, we have λ = n > 0, i.e., n =
1, 2, 3, . . . . In other words, n can never be zero. Moreover, we see

that n > l . We call the integer number n − the principal quantum
number.

We have found that λ (= n) is a discrete number, so β too is a

discrete number, and from that we find the energy of the electron

E = − 1

(4πε0)2

mee4

2�2

1

n2
. (16.74)

We can introduce a constant

ao = 4πε0�
2

mee2
, (16.75)

called the Bohr radius, and then

E = − 1

4πε0

e2

2aon2
. (16.76)
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Thus, the energy of the electron in the hydrogen atom is

quantized.a Notice that Eq. (16.76) agrees perfectly with the

prediction of the Bohr theory of the hydrogen atom (see Eq. (5.11)).

Hence, we see that Bohr’s concept that the electron can exist only

in discrete energy levels survived the transition to quantum wave

mechanics.

Since ρ = 2βr , and β = 1/(aon), the radial part of the wave

function can be written as

Rnl (r) = e−βr (2βr)l Ll
n(r) , (16.77)

where

Ll
n(r) =

n−l−1∑
j=0

bj (2βr) j (16.78)

are the associated Laquerre polynomials of order (n − l − 1).

The coefficients bj are found from the normalization of the radial

function ∫ ∞

0

drr2|Rnl (r)|2 = 1 . (16.79)

Once the radial part of the wave function is known, the solution

to the problem of the hydrogen atom is completed by writing down

the normalized wave function of the electron

�nlm(r, θ , φ) = Rnl (r)Ylm(θ , φ) , (16.80)

where the subscript nlm indicates the dependence of the wave

function on the quantum numbers n, l , and m. Thus, for each set of

quantum numbers (n, l , m), there is a different wave function �nlm.

Summary

The eigenvalues of the energy of the electron in the hydrogen atom

are quantized

En = − 1

4πε0

e2

2aon2
, (16.81)

aAn interesting observation: The energy E depends solely on the quantum number n,

not on the quantum numbers l and m. Why? I leave the answer to this question for

the reader.
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and the corresponding eigenfunctions are

�nlm(r, θ , φ) = Rnl (r)Ylm(θ , φ) , (16.82)

where the discrete (quantum) numbers are

n = 1, 2, 3, . . . , ∞ ,

l = 0, 1, 2, . . . , n − 1 ,

m = 0, ±1, ±2, . . . , ±l . (16.83)

The angular momentum states are often indicated by letters

s, p, d, . . . , such that s corresponds to l = 0 state, p to l = 1, and

so on according to the following scheme:

l = 0, 1, 2, 3, 4, 5, 6, . . . ,

s, p, d, f, g, h, i, . . . (16.84)

This particular notation that is widely used in atomic physics

originated from the classification of atomic spectra into series called

(s) sharp, ( p) principal, (d) diffusive, and ( f ) fundamental. Thus, an

s state is one with no angular momentum, a p state has the angular

momentum
√

2�, etc.

The analysis of the solution to the Schrödinger equation shows

how inevitably quantum numbers appear in Schrödinger’s model of

the hydrogen atom. Namely, the important condition for obtaining

physically acceptable solution to the wave function of the electron

is that n, l , and m are integer parameters. This is in contrast to

Bohr’s model, where the quantization of the angular momentum was

postulated without any evident reasons.

Few normalized eigenfunctions of the electron

�100 = 1√
πa3

o

e−r/ao ,

�200 = 1√
8πa3

o

(
1 − r

2ao

)
e−r/(2ao) ,

�210 = 1√
32πa3

o

r
ao

e−r/(2ao) cos θ . (16.85)

Note that eigenfunctions with l = 0 have spherical symmetry, i.e.,

are independent of the angular variables θ and φ.

The absolute square of the wave function |�nlm(r, θ , φ)|2 is the

probability density of finding the electron at the point �r(r, θ , φ), and

Pnlm = |�nlm(r, θ , φ)|2dV = 4πr2|�nlm(r, θ , φ)|2drdθdφ (16.86)
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P100

1 2 r/ao

Figure 16.3 Probability function of the electron in the state (nlm) = (100).

is the probability of finding the electron in a small volume dV =
drdθdφ around the point �r .

The maximum value of Pnlm, which is the most probable distance

of the electron from the nucleus, differs from the expectation

(average) distance 〈r〉, given by

〈r〉 =
∫

�∗
nlmr�nlmdV . (16.87)

Examples of the probability distribution Pnlm are plotted in

Figs. 16.3 and 16.4.

P

r/a

200

o3+ 5

Figure 16.4 Probability function of the electron in the state (nlm) = (200).
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Interesting properties of the probability function Pnlm:

(1) For n = 1, the probability has one maximum exactly at r = ao,

the orbital radius of the first energy level in the Bohr model.

(2) For (n = 2, l = 0, m = 0), the probability shows two maxima

located at r �= n2ao.

(3) Only for states such that n = l + 1, the probability shows one

maximum located at r = n2ao, the orbital radius of the nth

energy level in the Bohr model.

Remark on the difference between Bohr’s and Schrödinger’s models
of the hydrogen atom: We have seen that according to Schrödinger’s

model of the hydrogen atom, the energy of the electron is quantized

and the energy spectrum is exactly the same as that predicted by

Bohr’s model.

An essential difference between Bohr’s and Schrödinger’s mod-

els is that there are three (ignoring spin) quantum numbers, n, l , m,

rather than the one number n describing a state of the electron.

Moreover, in Bohr’s model the atom is, at each instant, in one and

only one energy state, i.e., at each instant, the state of the atom

is definite, but according to Schrödinger’s model, the atom can

exist in a superposition of states. In other words, the atom can be

simultaneously in more than one energy state at a given instant. This

is clearly incompatible with Bohr’s model.

Worked Example

The normalized wave function for the ground state of a hydrogen

atom has the form

� (r) = Ae−r/ao ,

where A = 1/
√

πa3
o is a constant, ao = 4πε0�

2/me2 is the Bohr

radius, and r is the distance between the electron and the nucleus.

Show the following:

(a) The expectation value of r is 3
2

ao.

(b) The most probable value of r is r = ao.
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Solution

(a) From the definition of expectation value, we find

〈r〉 =
∫

�∗ (r) r� (r) dV = 4π A2

∫ ∞

0

r3e−2βr dr ,

where β = 1/ao, and we have transformed the integral over dV
into spherical coordinates with dV = 4πr2dr .

Performing the integration, we obtain

〈r〉 = 4π A2 6

(2β)4
= 24

16

π A2

β4
= 3

2
π

1

πa3
o

a4
o = 3

2
ao .

Thus, the average distance of the electron from the nucleus in

the state � is 3/2 of the Bohr radius.

(b) The most probable value of r is that where the probability of

finding the electron is maximal.

Thus, we first calculate the probability of finding the electron at

a point r :

P (r) = 4πr2|� (r) |2 = 4πr2 A2e−2βr = 4r2

a3
o

e−2βr .

Maximum of P (r) is where d P (r)/dr = 0. Hence

d P (r)

dr
= 8r

a3
o

e−2βr − 8βr2

a3
o

e−2βr .

Thus

d P (r)

dr
= 0 when βr = 1 ,

from which, we find

r = 1

β
= ao .

Note that this result agrees with the prediction of the Bohr

model that the radius of the n = 1 orbit is equal to ao.

The maximum of the probability at r = ao is

Pmax(ao) = 4a2
o

a3
o

e−2 = 4

e2ao
.
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In summary of the solution: The expectation and most probable

values of r are not the same. This is because the probability

curve P100(r) is not symmetric about the maximum at ao (see

Fig. 16.3). Thus, values of r greater than ao are weighted

more heavily in the equation for the expectation value than

values smaller than ao. This results in the expectation value 〈r〉
exceeding ao for this probability distribution.

Discussion Problems

Problem D7 Explain why an external (static) magnetic field affects

the motion of the electron described only by the quantum number m,

i.e., the azimuthal component of the motion, and leads to a splitting

of the energy levels corresponding to different m (the Zeeman

effect).

Problem D8 One can see from Eq. (16.49) that the solutions to the

Schrödinger equation for the angular part of the wave function

are not spherically symmetric except for l = 0. Explain, how the

solutions are not spherically symmetric despite the fact that the

potential V (r) is spherically symmetric.

Tutorial Problems

Problem 16.1 According to the Bohr model of the hydrogen atom,

the smallest distance of the electron from the nucleus is equal to the

Bohr radius ao, i.e., when the electron is in the n = 1 state.

What does the quantum wave mechanics say about it? Calculate the

probability of finding the electron closer to the nucleus than the

Bohr radius.

Problem 16.2 Extension of the above worked example to a hydrogen-
like atom with nuclear charge Z e.
The normalized wave function of the ground state of a hydrogen-like

atom with nuclear charge Z e has the form

|�〉 = Ae−βr ,
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where A and β are real constants, and r is the distance between the

electron and the nucleus. The Hamiltonian of the atom is given by

Ĥ = − �
2

2m
∇2 − Z e2

4πε0

1

r
.

Show that

(a) A2 = β3/π .

(b) β = Z /ao, where ao is the Bohr radius.

(c) The energy of the electron is E = −Z 2 E0,

where E0 = e2/(8πε0ao).

(d) The expectation values of the potential and kinetic energies are

2E and −E , respectively.

Problem 16.3 Angular momentum operator

Consider the angular momentum operator �̂L = �̂r × �̂p. Show that:

(a) The operator �̂L is Hermitian.

(Hint: Show that the components Lx , Ly , Lz are Hermitian).

(b) The components of �̂L (Lx , Ly , Lz) do not commute.

(c) The square of the angular momentum �̂L
2

commutes with each of

the components Lx , Ly , Lz.

(d) In the spherical coordinates, the components and the square of

the angular momentum can be expressed as

Lx = −i�
(

− sin φ
∂

∂θ
− cos φ cos θ

sin θ

∂

∂φ

)
,

Ly = −i�
(

cos φ
∂

∂θ
− sin φ cos θ

sin θ

∂

∂φ

)
,

Lz = −i�
∂

∂φ
,

L2 = −�
2

[
1

sin2 θ

∂2

∂φ2
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
.

Problem 16.4 Particle in a potential of central symmetry
A particle of mass m moves in a potential of central symmetry,

i.e., V (x , y, z) = V (r). The energy of the particle is given by the
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Hamiltonian

Ĥ = − �
2

2m
∇2 + V̂ (r) .

Show that Ĥ commutes with the angular momentum �̂L of the

particle.

Problem 16.5 Quantized motion of a rotating mass
Suppose that a particle of mass m can rotate around a fixed point A,

such that r = constant, and θ = π/2 = constant.

(a) Show that the motion of the particle is quantized.

(b) Show that the only acceptable solutions to the wave function

of the particle are those corresponding to the positive energies

(E > 0) of the particle.

Problem 16.6 Transition dipole moments
The electron in a hydrogen atom can be in two states of the form

�1(r) =
√

2Ne−r/ao ,

�2(r) = N
4ao

re−r/(2ao) cos θ ,

where r = (x2 + y2 + z2)
1
2 , cos θ = z/r , N = 1/

√
2πa3

o , and ao is the

Bohr radius. Using the spherical coordinates, in which

x = r sin θ cos φ ,

y = r sin θ sin φ ,

z = r cos θ ,

and ∫
dV =

∫ ∞

0

∫ π

0

∫ 2π

0

r2 sin θdrdθdφ ,

(a) Show that the functions �1(r), �2(r) are orthogonal.

(b) Calculate the matrix element (�1(r), �̂r�2(r)) of the position

operator �̂r between the states �1(r) and �2(r).

(The matrix element is related to the atomic electric dipole

moment between the states �1(r) and �2(r), defined as

(�1(r), �̂μ�2(r)) = e(�1(r), �̂r�2(r)).)

(c) Show that the average values of the kinetic and potential

energies in the state �1(r) satisfy the relation 〈Ek〉 = − 1
2
〈V 〉.
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Problem 16.7 The wave functions of the electron in the states n = 1

and n = 2, l = 1, m = 0 of the hydrogen atom are

�100 = 1√
πa3

o

e−r/ao ,

�210 = 1√
32πa3

o

r
ao

e−r/(2ao) cos θ ,

where ao is the Bohr radius.

(a) Calculate the standard deviation σ 2 = 〈r2〉−〈r〉2 of the position

of the electron in these two states to determine in which of these

states the electron is more stable in the position.

(b) The electron is found in a state

� =
√

8

πa3
o

e−2r/ao .

Determine what is the probability that the state � is the ground

state (n = 1) of the hydrogen atom.

Challenging Problem: Eigenfunctions of the angular momentum

The eigenfunctions of the angular momentum L̂ of the electron in a

hydrogen atom for l = 1 are

Y10 (θ , φ) =
√

3

4π
cos θ , Y1±1 (θ , φ) = ∓

√
3

8π
sin θe±iφ .

(a) Show that the eigenfunctions are also eigenfunctions of the L̂z

component of the angular momentum.

(b) Show that the eigenfunctions are not eigenfunctions of the L̂x

component of the angular momentum.

(c) Find the matrix representation of L̂x in the basis of the

eigenfunctions of L̂.

(d) Find the eigenvalues and eigenfunctions of L̂x in the basis of the

eigenfunctions of L̂.
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Chapter 17

Quantum Theory of Two Coupled
Particles

In the preceding chapter, we have studied the theory of the hydrogen

atom as a single-particle problem, an electron moving in a spherical

potential. The hydrogen atom can be considered a two-particle

system, an electron and a proton, with the Coulomb potential acting

between them. In this chapter, we will show how to solve the

Schrödinger equation for the wave function of the two-particle

system. We will introduce the coordinates of the center of mass,

which will allow us to split the Schrödinger equation into two

independent equations, one for the center of mass motion and

another for the relative motion of the electron and proton.

17.1 Center of Mass Motion

Consider a system composed of two particles of masses m1 and

m2 moving in potential forces that depend on the positions of the

particles and time, V = V (�r2 − �r1, t), where �r2 = (x2, y2, z2) and

�r1 = (x1, y1, z1) are position vectors of the particles.
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The Schrödinger equation for the particles has the following form

− �
2

2m1

∇2
1� − �

2

2m2

∇2
2� + V (�r2 − �r1, t)� = i�

∂�

∂t
, (17.1)

where � = �(�r1, �r2, t), and

∇2
i = ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

, i = 1, 2. (17.2)

We may introduce coordinates of center of mass, which can allow

us to reduce the wave equation for two particles into the wave

equation for a single (global) particle moving in a potential field. The

center of mass coordinates are defined as

X = m1x1 + m2x2

m1 + m2

, Y = m1 y1 + m2 y2

m1 + m2

, Z = m1z1 + m2z2

m1 + m2

,

(17.3)

and a relative (mutual) distance between the particles

�r = �r2 − �r1, (17.4)

where x = x2 − x1, y = y2 − y1, z = z2 − z1.

For simplicity of notation, denote by M = m1 + m2 the total

mass of the particles, and �( �R , �r , t) = �(�r1, �r2, t) in which �R =
�R(X , Y, Z ) and �r = �r(x , y, z).

We now transform the Schrödinger equation from the �r1 and �r2

coordinates to the center of mass coordinates, determined by �R and

�r . This requires to transform the Laplacians ∇2
1 and ∇2

2 to the new

coordinates. Thus, using the chain rule, we get for the first-order

derivative

∂�

∂x1

= ∂�

∂ X
∂ X
∂x1

+ ∂�

∂x
∂x
∂x1

= m1

M
∂�

∂ X
− ∂�

∂x
. (17.5)

Then the second-order derivative is

∂2�

∂x2
1

= ∂

∂x1

∂�

∂x1

= ∂

∂x1

(
m1

M
∂�

∂ X
− ∂�

∂x

)

=
(

∂ X
∂x1

∂

∂ X
+ ∂x

∂x1

∂

∂x

)(
m1

M
∂�

∂ X
− ∂�

∂x

)

=
(m1

M

)2 ∂2�

∂ X 2
− m1

M
∂2�

∂ X ∂x
− m1

M
∂2�

∂x∂ X
+ ∂2�

∂x2
. (17.6)

Thus

∂2�

∂x2
1

=
(m1

M

)2 ∂2�

∂ X 2
− 2m1

M
∂2�

∂ X ∂x
+ ∂2�

∂x2
. (17.7)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Center of Mass Motion 261

Similarly, for the y1 and z1 components

∂2�

∂y2
1

=
(m1

M

)2 ∂2�

∂Y 2
− 2m1

M
∂2�

∂Y ∂y
+ ∂2�

∂y2
,

∂2�

∂z2
1

=
(m1

M

)2 ∂2�

∂ Z 2
− 2m1

M
∂2�

∂ Z ∂z
+ ∂2�

∂z2
. (17.8)

Thus, the Laplace operators ∇2
1 and ∇2

2 can be written as

∇2
1� =

(m1

M

)2

∇2
c � − 2m1

M

(
∂2�

∂ X ∂x
+ ∂2�

∂Y ∂y
+ ∂2�

∂ Z ∂z

)
+ ∇2�,

∇2
2� =

(m2

M

)2

∇2
c � + 2m2

M

(
∂2�

∂ X ∂x
+ ∂2�

∂Y ∂y
+ ∂2�

∂ Z ∂z

)
+ ∇2�,

(17.9)

where

∇2
c = ∂2

∂ X 2
+ ∂2

∂Y 2
+ ∂2

∂ Z 2
,

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (17.10)

Moreover,

1

m1

∇2
1� + 1

m2

∇2
2� = 1

M
∇2

c � + 1

μ
∇2�, (17.11)

where

1

μ
= 1

m1

+ 1

m2

(17.12)

is the so-called reduced mass.

Thus, the Schrödinger equation can be written as

− �
2

2M
∇2

c � − �
2

2μ
∇2� + V (�r , t)� = i�

∂�

∂t
. (17.13)

Assume that the potential V is independent of time. Then the left-

hand size of the Schrödinger equation depends solely on the spatial

variables, whereas the right-hand size depends solely on time. In this

case, both sizes are independent of each other but are equal to the

same constant, say E T . Each size can be solved separately.

The wave function can be written as a product of the spatial and

time-dependent parts. Thus, it can be written as

�( �R , �r , t) = �( �R , �r)�(t) = �( �R , �r)e− i
�

E T t , (17.14)

where E T is the total energy of the particles.
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Hence, the Schrödinger equation reduces to

− �
2

2M
∇2

c � − �
2

2μ
∇2� + [V (�r) − E T ] � = 0. (17.15)

It is very similar in form to the Schrödinger equation for

the hydrogen atom except it involves two Laplacians. Since the

Laplacians act on separate variables, we may try to solve the

Schrödinger equation using the method of separate variables, in

which we write the wave function as

�( �R , �r) = �c( �R)�r (�r). (17.16)

In this case, the Schrodinger equation can be written as

− �
2

2M
1

�c
∇2

c �c = −
[
− �

2

2μ

1

�r
∇2�r + V (�r) − E T

]
. (17.17)

The left-hand side of the equation depends solely on the center

of mass variables, whereas the right-hand side depends solely on �r .

Therefore, the sides are independent of each other and are equal

to a constant, say Ec . Hence, we can write Eq. (17.17) as two

independent equations, each dependent only on one variable

− �
2

2M
1

�c
∇2

c �c = Ec ,

−
[
− �

2

2μ

1

�r
∇2�r + V (�r) − E T

]
= Ec . (17.18)

The equations can be rewritten in the form

�
2

2M
∇2

c �c + Ec�c = 0, (17.19)

− �
2

2μ
∇2�r + [V (�r) − E ] �r = 0, (17.20)

where E = E T − Ec . Let us summarize our findings.

Equation (17.19) is the equation of motion of a free particle of

mass M. Thus, Ec is the kinetic energy of the center of mass. If the

center of mass is stationary, then Ec = 0.

Equation (17.20) is of the same form as the Schrödinger equation

for the hydrogen atom, a single particle of mass μ moving in the

potential V (�r). We have solved this equation in the chapter on the

quantum theory of hydrogen atom.
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Tutorial Problems

Problem 17.1 Suppose that a particle of mass m can rotate around a

fixed point A, such that r = constant, and θ = π/2 = constant.

(a) Show that the motion of the particle is quantized.

(b) Show that the only acceptable solutions to the wave function

of the particle are those corresponding to the positive energies

(E > 0) of the particle.
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Chapter 18

Time-Independent Perturbation Theory

In many situations in physics, the Hamiltonian Ĥ of a given system

is so complicated that the solution to the stationary Schrödinger

equation is practically impossible or very difficult. Therefore, some

approximation methods are required. In this chapter, we present

the time-independent perturbation theory, the procedure of finding

corrections to non-degenerate eigenvalues and eigenvectors to a

part (called unperturbed part) of the Hamiltonian of a given system.

The perturbation theory is appropriate when the Hamiltonian

can be split into two parts

Ĥ = Ĥ0 + V̂ , (18.1)

such that we can solve the eigenvalue equation for Ĥ0, i.e., we can

find eigenvalues E (0)
n and eigenvectors |φ(0)

n 〉 of the Hamiltonian Ĥ0,

and we can treat the part V̂ as a small perturber to Ĥ0.

Thus, the problem of solving the eigenvalue equation

Ĥ |φ〉 = (Ĥ0 + V̂
) |φ〉 = E |φ〉 (18.2)

reduces to find E and |φ〉 when we know the eigenvalues E (0)
n and

the eigenvectors |φ(0)
n 〉 of Ĥ0.

Since V̂ appears as a small perturber to Ĥ0, we will try to find E
and |φ〉 in the form of a series

|φ〉 = |φ(0)
n 〉 + |φ(1)

n 〉 + . . . ,

E = E (0)
n + E (1)

n + . . . , (18.3)
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where |φ(1)
n 〉 is the first-order correction to the unperturbed

eigenstate |φ(0)
n 〉, and E (1)

n is the first-order correction to the

unperturbed eigenvalue E (0)
n . The subscript n indicates that the

Hamiltonian Ĥ0 can have more than one eigenvalue and eigenvector.

18.1 First-Order Corrections to Eigenvalues

Substituting the series expansion (18.3) into the eigenvalue equa-

tion (18.2), we obtain(
Ĥ0 + V̂

) (|φ(0)
n 〉 + |φ(1)

n 〉) = (E (0)
n + E (1)

n

) (|φ(0)
n 〉 + |φ(1)

n 〉) . (18.4)

Expanding both sides of Eq. (18.4) and equating terms of the

same order in V̂ , we obtain

Ĥ0|φ(0)
n 〉 = E (0)

n |φ(0)
n 〉, zeroth order in V̂ , (18.5)

Ĥ0|φ(1)
n 〉 + V̂ |φ(0)

n 〉 = E (0)
n |φ(1)

n 〉 + E (1)
n |φ(0)

n 〉, first order in V̂ .

(18.6)

Equation (18.5) is the stationary Schrödinger equation whose

solution is known. In order to solve Eq. (18.6), we write the equation

in the form (
Ĥ0 − E (0)

n

) |φ(1)
n 〉 = E (1)

n |φ(0)
n 〉 − V̂ |φ(0)

n 〉 . (18.7)

Assume that the eigenvalues E (0)
n are non-degenerated, i.e., for a

given E (0)
n , there is only one eigenfunction |φ(0)

n 〉.

Multiplying Eq. (18.7) from the left by 〈φ(0)
n |, we obtain

〈φ(0)
n |Ĥ0|φ(1)

n 〉 − 〈φ(0)
n |E (0)

n |φ(1)
n 〉 = E (1)

n 〈φ(0)
n |φ(0)

n 〉 − 〈φ(0)
n |V̂ |φ(0)

n 〉.

(18.8)

Since

〈φ(0)
n |Ĥ0|φ(1)

n 〉 = 〈φ(1)
n |Ĥ0|φ(0)

n 〉∗ = E (0)
n 〈φ(0)

n |φ(1)
n 〉, (18.9)

the left-hand side of Eq. (18.8) vanishes, giving

E (1)
n = 〈φ(0)

n |V̂ |φ(0)
n 〉 = 〈n|V̂ |n〉. (18.10)

Thus, the first-order correction to the eigenvalue E (0)
n is equal to

the expectation value of V̂ in the state |φ(0)
n 〉.
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18.2 First-Order Corrections to Eigenvectors

In order to find the first-order correction to the eigenstate |φ(0)
n 〉, we

expand |φ(1)
n 〉 state in terms of |φ(0)

n 〉, using the completeness relation

as

|φ(1)
n 〉 =

∑
m

|φ(0)
m 〉〈φ(0)

m |φ(1)
n 〉 =

∑
m

cmn|φ(0)
m 〉 , (18.11)

where cmn = 〈φ(0)
m |φ(1)

n 〉.

We find the coefficients cmn from Eq. (18.7) by multiplying this

equation from the left by 〈φ(0)
m | (m �= n) and find

〈φ(0)
m |Ĥ0|φ(1)

n 〉 − E (0)
n 〈φ(0)

m |φ(1)
n 〉 = E (1)

n 〈φ(0)
m |φ(0)

n 〉 − 〈φ(0)
m |V̂ |φ(0)

n 〉 .

(18.12)

Since

〈φ(0)
m |φ(0)

n 〉 = 0

and

〈φ(0)
m |Ĥ0|φ(1)

n 〉 = E (0)
m 〈φ(0)

m |φ(1)
n 〉 , (18.13)

we get

cmn = 〈φ(0)
m |φ(1)

n 〉 = 〈φ(0)
m |V̂ |φ(0)

n 〉
E (0)

n − E (0)
m

. (18.14)

Hence

|φ(1)
n 〉 =

∑
m�=n

〈φ(0)
m |V̂ |φ(0)

n 〉
E (0)

n − E (0)
m

|φ(0)
m 〉 . (18.15)

Since we know E (0)
n and |φ(0)

n 〉, we can find E (1)
n from Eq. (18.10)

and |φ(1)
n 〉 from Eq. (18.15).

The perturbation theory can be applied to analyze the quantum

properties of particles trapped in two closely coupled potential

wells. By closely coupled wells, it is meant that these two wells are

separated by a barrier, as illustrated in Fig. 18.1. This is a typical

situation in the studies of quantum dynamics of Bose–Einstein

condensates. The perturbation theory is particularly useful here, as

the following example will demonstrate.
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V

V1

–a/2             0        d    a/2                    x

Figure 18.1 Infinite potential well with a small potential (perturber)

barrier V1.

Worked Example

Consider a particle in an infinite one-dimensional potential well,

as shown in Fig. 18.1. Assume that inside the infinite well there is

a small potential barrier of high V1 and thickness d. Treating the

barrier V1 as a small perturber, find the eigenvalues and eigenstates

of the particle valid to the first order in V1.

Solution

We have learned in Section 8.1 that the eigenstates of the particle in

the infinite well, without V1, are

|φ(0)
n 〉 =

√
2

a
sin
(

n
πx
a

)
, (18.16)

with the corresponding eigenvalues

E (0)
n = n2 π2

�
2

2mpa2
, (18.17)

where mp is the mass of the particle.

Thus, the first-order correction to the eigenvalue E (0)
n is

E (1)
n = 〈φ(0)

n |V̂1|φ(0)
n 〉 = 2V1

a

∫ d

0

dx sin2
(nπx

a

)
. (18.18)
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To find the first-order correction to the eigenstate |φ(0)
n 〉, we have

to calculate the matrix element

Vmn = 〈φ(0)
m |V̂1|φ(0)

n 〉 = 2V1

a

∫ d

0

dx sin
(mπx

a

)
sin
(nπx

a

)
,

(18.19)

where m �= n.

Performing the integrations in Eqs. (18.18) and (18.19), we get

E (1)
n = V1

a

[
d − 1

2a
sin (2dα)

]
, (18.20)

Vmn = V1

a

{
1

α − β
sin [(α − β) d] − 1

α + β
sin [(α + β) d]

}
,

(18.21)

where α = nπ/a and β = mπ/a.

Hence, the first-order correction to the eigenstate φ(0)
n is

|φ(1)
n 〉 = 2mpa2

π2�2

∑
m�=n

Vmn

n2 − m2
|φ(0)

m 〉 . (18.22)

Tutorial Problems

Problem 18.1 In an orthonormal basis, a linear operator Â is

represented by a matrix

Â =
(

2λ 1 + λ
1 + λ λ

)
,

where λ is a small real parameter (λ� 1).

The operator Â can be written as a sum of two operators Â =
Â0 + λV̂ , where

Â0 =
(

0 1

1 0

)
, V̂ =

(
2 1

1 1

)
.

Using the first-order perturbation theory, find the eigenvalues

and eigenvectors of Â in terms of the eigenvalues and eigenvectors

of Â0.

Notice that Â0 is the σ̂x operator defined in Chapter 13.
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Chapter 19

Time-Dependent Perturbation Theory

In this chapter, we continue our study of perturbation methods for

the solution to the Schrödinger equation and turn our attention to

the case where the perturber V̂ depends explicitly on time. Just as

in the case of the time-independent perturbation theory, we find

the corrections to the eigenvalues and eigenvectors of a system

described by a time-dependent Hamiltonian.

19.1 Iterative Method

In the time-independent perturbation theory, we have found

corrections to the stationary (time-independent) eigenvalues and

eigenstates of the Hamiltonian Ĥ by solving the stationary part of

the Schrödinger equation

Ĥ |φ〉 = E |φ〉. (19.1)

In the non-stationary (time-dependent) case, in which the

Hamiltonian of the system depends on time, we find the time

evolution of the state vector �(�r , t) by solving the time-dependent

Schrödinger equation

i�
∂

∂t
|�(t)〉 = Ĥ (t)|�(t)〉, (19.2)
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where for simplicity of the notation |�(t)〉 ≡ |�(�r , t)〉 and Ĥ (t) ≡
Ĥ (�r , t).

Direct integration of Eq. (19.2) gives

|�(t)〉 = |�(0)〉 + 1

i�

∫ t

0

dt′ Ĥ (t′)|�(t′)〉. (19.3)

Since the right-hand side of Eq. (19.3) depends on |�(t′)〉, this is

not the final solution to |�(t)〉. The final solution to |�(t)〉 should be,

for example, in terms of the initial state |�(0)〉.

To get the solution in this form, we can use the iteration method.

In this approach, we substitute the solution given by Eq. (19.3) back

into the right-hand side of the Schrödinger equation (19.2) and

obtain

i�
∂

∂t
|�(t)〉 = Ĥ (t)|�(0)〉 + 1

i�
Ĥ (t)

∫ t

0

dt′ Ĥ (t′)|�(t′)〉. (19.4)

Integrating the above equation, we get

|�(t)〉 = |�(0)〉 + 1

i�

∫ t

0

dt′ Ĥ (t′)|�(0)〉

+
(

1

i�

)2 ∫ t

0

dt′
∫ t′

0

dt′′ Ĥ (t′)Ĥ (t′′)|�(t′′)〉. (19.5)

Proceeding further in this way, we obtain

|�(t)〉 = |�(0)〉 + 1

i�

∫ t

0

dt′ Ĥ (t′)|�(0)〉

+
(

1

i�

)2 ∫ t

0

dt′
∫ t′

0

dt′′ Ĥ (t′)Ĥ (t′′)|�(0)〉
...

+
(

1

i�

)n ∫ t

0

dt′ . . .

∫ tn−1

0

dtn Ĥ (t′) . . . Ĥ (tn)|�(tn)〉. (19.6)

Note the time ordering in the integration, t ≥ t′ ≥ t′′ ≥ . . . tn ≥ 0.

If the time tn is short or the state |�(tn)〉 does not change much

under the action of Ĥ (t′) . . . Ĥ (tn), we can approximate |�(tn)〉 by

|�(0)〉. Then, the iterative solution (19.6) can be accepted as the final

solution to the wave function of the system.

The iterative solution (19.6) involves the total Hamiltonian of the

system Ĥ (t). It may result in complicated expressions to evaluate.
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A simpler way to proceed, which is a common practice in quantum

physics, is to write the total Hamiltonian as the sum of two terms

Ĥ (t) = Ĥ0 + V̂ (t), (19.7)

where Ĥ0 is the time-independent (stationary) part of the Hamil-

tonian, and V̂ (t) is the part containing all time-dependent terms,

usually called the time-dependent interaction Hamiltonian or time-

dependent perturber.

If V̂ (0) = 0, the state of the system at t = 0 is determined by the

Hamiltonian Ĥ0, which satisfies the time-independent Schrödinger

equation

Ĥ0|�(0)〉 = E0|�(0)〉. (19.8)

In other words, the initial state of the system is given by the

stationary eigenstates of Ĥ0.

The splitting of the total Hamiltonian into stationary and time-

dependent parts allows to work in the interaction picture and find

|�I (t)〉 = |�(0)〉 + 1

i�

∫ t

0

dt′V̂ (t′)|�(0)〉

+
(

1

i�

)2 ∫ t

0

dt′
∫ t′

0

dt′′V̂ (t′)V̂ (t′′)|�(0)〉
...

+
(

1

i�

)n ∫ t

0

dt′ . . .

∫ tn−1

0

dtnV̂ (t′) . . . V̂ (tn)|�(0)〉,

(19.9)

where we have used the fact that |�I (0)〉 = |�(0)〉.

19.2 Solution in Terms of Probability Amplitudes

The iterative solution (19.9) for the state vector of a system is

in the operator form. We would prefer the solution in a number

form rather than in the operator form. We can find the solution by

finding first the unperturbed state of the system, |�0(t)〉, which is

the solution to the Schrödinger equation

i�
∂

∂t
|�0(t)〉 = Ĥ0(t)|�0(t)〉. (19.10)
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The solution to Eq. (19.10) is of a simple form

|�0(t)〉 = e− i
�

Ĥ0t|�(0)〉. (19.11)

Assume that |φn〉 are the eigenstates of Ĥ0 with eigenvalues En.

Then, we can write

|�0(t)〉 =
∑

n

cne− i
�

Ent|φn〉, (19.12)

where we have expanded the state vector |�(0)〉 in terms of the

eigenstates of Ĥ0:

|�(0)〉 =
∑

n

cn|φn〉, (19.13)

and next by the Taylor expansion of the exponent, we find

e− i
�

Ĥ0t|φn〉 =
[

1 − i
�

Ĥ0t + 1

2

(
− i

�
Ĥ0t
)2

+ . . .

]
|φn〉

=
[

1 − i
�

Ênt + 1

2

(
− i

�
Ênt
)2

+ . . .

]
|φn〉

= e− i
�

Ent|φn〉, (19.14)

in which we have used the fact that Ĥ0|φn〉 = En|φn〉.

If we write the Hamiltonian as the sum of two terms, Eq. (19.7),

then the time-dependent Schrödinger equation can be written as

i�
∂

∂t
|�(t)〉 = Ĥ0|�(t)〉 + V̂ (t)|�(t)〉. (19.15)

Since the right-hand side of Eq. (19.15) has two terms and

we know the solution when only the first term is present,

Ĥ0|�(t)〉, we can solve the Schrödinger equation in the manner

one solves an inhomogeneous differential equation. Namely, we

may treat Ĥ0|�(t)〉 as the homogeneous part and V̂ (t)|�(t)〉 as the

inhomogeneous part of the differential equation. Then, we can solve

the equation by making the coefficients cn dependent on time and

write the solution as

|�(t)〉 =
∑

n

cn(t)e− i
�

Ent|φn〉, (19.16)
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where cn(t) are unknown functions of time. To find the explicit time

dependence of cn(t), we substitute Eq. (19.16) into Eq. (19.15) and

get

i�
∑

n

(
ċn(t) − i

�
Encn(t)

)
e− i

�
Ent|φn〉

=
∑

n

cn(t)e− i
�

Ent En|φn〉 +
∑

n

cn(t)e− i
�

Ent V̂ (t)|φn〉, (19.17)

which simplifies to

i�
∑

n

ċn(t)e− i
�

Ent|φn〉 =
∑

n

cn(t)e− i
�

Ent V̂ (t)|φn〉. (19.18)

Multiplying from the left by 〈φm|, we obtain

i�ċm(t)e− i
�

Emt =
∑

n

cn(t)e− i
�

Ent Vmn(t), (19.19)

where

Vmn(t) = 〈φm|V̂ (t)|φn〉, (19.20)

and we have used the fact that |φn〉 are orthonormal, 〈φm|φn〉 = δmn.

We see from Eq. (19.18) that the coefficients cn(t) satisfy a set of

n ordinary differential equations

ċm(t) = − i
�

∑
n

Vmn(t)cn(t)eiωmnt , (19.21)

where ωmn = (Em − En)/�.

In general, the set of the differential equations (19.21) can be

solved exactly when n ≤ 4. For n > 4 approximate methods are

required. In the later case, we may find a solution by expanding cn(t)

in powers of Vmn(t):

cn(t) = c(0)
n (t) + c(1)

n (t) + c(2)
n (t) + . . . (19.22)

Substituting Eq. (19.22) into Eq. (19.21), we get

ċ(0)
m (t)+ċ(1)

m (t)+ċ(2)
m (t)+ . . .

= − i
�

∑
n

Vmn(t)eiωmnt(c(0)
n (t)+c(1)

n (t)+ . . .
)

. (19.23)
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Comparing the coefficients at the same powers of Vmn(t), we

obtain

ċ(0)
m (t) = 0,

ċ(1)
m (t) = − i

�

∑
n

Vmn(t)eiωmntc(0)
n (t),

ċ(2)
m (t) = − i

�

∑
n

Vmn(t)eiωmntc(1)
n (t),

...

ċ( p)
m (t) = − i

�

∑
n

Vmn(t)eiωmntc( p−1)
n (t). (19.24)

We see that if we know the zeroth-order coefficient c(0)
n (t),

then we can find all the remaining coefficients by a successive

substitution of the solution to the higher-order coefficient. Let us

illustrate the procedure of the solution to Eq. (19.24) up to the

second order, c(2)
n (t).

Integrating the differential equation for c(0)
m (t), we get

c(0)
m (t) = c(0)

m (0), (19.25)

which is a constant independent of time. Assume that initially the

system was in one of the eigenstates of Ĥ0, say |φk〉. Then

c(0)
m (0) = 〈φm|φk〉 = δmk. (19.26)

Substituting the solution (19.26) into the differential equation

for ċ(1)
m (t), we get

ċ(1)
m (t) = − i

�
Vmk(t)eiωmkt . (19.27)

An integration gives

c(1)
m (t) = − i

�

∫ t

0

dt′Vmk(t′)eiωmkt′
. (19.28)

Note that k is the initial and m is the final state of the system.

If Vmk(t) is independent of time, then

c(1)
m (t) = − i

�
Vmk

1

iωmk

(
eiωmkt − 1

)
= − Vmk

Em − Ek

(
eiωmkt − 1

)
. (19.29)
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Thus, the first-order correction to the probability amplitude is

proportional to Vmk.

To find the second-order correction, we substitute the solution

to c(1)
m (t), Eq. (19.29), into the differential equation for c(2)

m (t) in

Eq. (19.24) and obtain

ċ(2)
m (t) = i

�

∑
n

VmnVnk

En − Ek

(
eiωnkt − 1

)
eiωmnt

= i
�

∑
n

VmnVnk

En − Ek

(
eiωmkt − eiωmnt) . (19.30)

Note, since m is the final state and k is the initial state, the sum

over n is the summation over all intermediate states.

Integrating Eq. (19.30), we get

c(2)
m (t) =

∑
n

VmnVnk

En − Ek

[
eiωmkt − 1

Em − Ek
− eiωmnt − 1

Em − En

]
. (19.31)

Worked Example

Consider a harmonic oscillator with a time-independent perturber

V̂ = α
(

â + â†) , (19.32)

where α is a small real constant. Find the first- and second-order

corrections to the probability amplitude of the transition |0〉 → |2〉.

Solution

In order to find the first-order correction to the probability

amplitude, we have to calculate the matrix element V20. From

Eq. (19.32) and using the properties of the annihilation and creation

operators, â|0〉 = 0, â†|0〉 = |1〉, we find

V20 = 〈2|V̂ |0〉 = α〈2|(â + â†)|0〉 = α〈2|1〉 = 0. (19.33)

Thus, the first-order correction to the transition amplitude is

zero.
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For the second-order correction, we need matrix elements V21

and V10, which are found as

V21 = 〈2|V̂ |1〉 = α〈2|(â + â†)|1〉 = α〈2|2〉 = α,

V10 = 〈1|V̂ |0〉 = α〈1|(â + â†)|0〉 = α〈1|1〉 = α. (19.34)

Hence

c(2)
2 (t) = α2

E1 − E0

[
eiω20t − 1

E2 − E0

− eiω21t − 1

E2 − E1

]
. (19.35)

19.3 Transition Probability

To the first order, the transition amplitude (probability amplitude)

is given by

c(1)
m (t) ≡ c(1)

k→m(t) = − Vmk

Em − En

(
eiωmkt − 1

)
. (19.36)

Then the transition probability is

Pk→m(t) = |c(1)
k→m(t)|2 =

∣∣∣∣ Vmk

Em − En

(
eiωmkt − 1

)∣∣∣∣
2

. (19.37)

Since ∣∣eiωmkt − 1
∣∣2 = 4 sin2

(
1

2
ωmkt
)

, (19.38)

the transition probability simplifies to

Pk→m(t) = 4

∣∣∣∣ Vmk

Em − En

∣∣∣∣
2

sin2

(
1

2
ωmkt
)

. (19.39)

Notice the reversibility of the transition probability

Pk→m(t) = Pm→k(t). (19.40)

Thus, for the same system and in the same time interval, the

transitions k → m and m → k occur with the same probability.

This property is known in the literature as the principle of detailed
balance.

Let us look at the transition probability Pk→m(t) more closely.

Since

Em − Ek = �ωmk, (19.41)

the expression (19.39) for the transition probability reduces to
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Figure 19.1 The variation of the function sin c2x with x = 1
2
ωmkt.

Pk→m(t) = |Vmk|2

�2

sin2
(

1
2
ωmkt
)

(
1
2
ωmk
)2

= |Vmk|2t2

�2

sin2
(

1
2
ωmkt
)

(
1
2
ωmkt
)2

. (19.42)

We see that the probability exhibits a sin c2x behavior, where sin

cx = sin x/x , and x = ωmkt/2.

Figure 19.1 shows the variation of sin c2x function with x . We see

that the function has a pronounced peak centered at x = 0 (ωmk =
0). The zeroth of the function are at x = ±nπ, (n = 1, 2, . . .).

The width of the peak is 2π/t showing that the probability depends

inversely on the transition (observation) time. The width of the peak

narrows with an increasing transition time. This is consistent with

the time–energy uncertainty relation.

For short times (x � 1), sin c2x ≈ 1, and then

Pk→m(t) ≈ |Vmk|2

�2
t2. (19.43)

Notice the proportionality of the transition probability to t2.

19.3.1 Fermi Golden Rule

The result (19.43) that the probability varies quadratically with time

is not consistent with experimental observations. The experiments

show that the probability is proportional to t rather than to t2.

Where this inconsistency comes from?

In the derivation of Pk→m(t), we have taken into account only two

energy levels, k and m. However, electrons in atoms can be in many
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energy levels, in fact, in an infinite number of levels. For a short

transition time, the uncertainty of energy to which the transition

occurs is very large. Thus, we cannot be sure to which atomic level

the electron can be transferred over a short time t. In this case, we

have to assume that after an excitation, the atom can be found in one

of the large number of excited levels. Hence, the probability of an

excitation of the atom to one of its energy levels is the sum of the

probabilities of transitions from k to all the excited levels

Pk→m(t) =
∑

m

∣∣∣c(1)
k→m(t)

∣∣∣2 . (19.44)

If the number of energy levels is large, we may approximate them

by a continuum of levels and replace the sum by an integral

Pk→m(t) =
∫ E+d E

E

∣∣∣c(1)
k→m(t)

∣∣∣2 dm, (19.45)

where dm is the number of energy levels in the energy width d E .

We can express the number of energy levels in the continuum by

the density of energy levels in the continuum

dm = ρ(ωmk)d E = �ρ(ωmk)dωmk, (19.46)

where ρ(ωmk) is the density of the energy levels. Hence

Pk→m(t) = �

∫ ∞

−∞
dωmkρ(ωmk)

∣∣∣c(1)
k→m(t)

∣∣∣2

=
∫ ∞

−∞
dωmkρ(ωmk)

|Vmk|2t2

�

sin2
(

1
2
ωmkt
)

(
1
2
ωmkt
)2

. (19.47)

If Vmk and ρ(ωmk) vary slowly with ωmk, we may consider them as

constant functions over ωmk and take them out of the integral. Then,

we obtain

Pk→m(t) = |Vmk|2t2

�
ρ(ωmk)

∫ ∞

−∞
dωmk

sin2
(

1
2
ωmkt
)

(
1
2
ωmkt
)2

= 2|Vmk|2t
�

ρ(ωmk)

∫ ∞

−∞
dx

sin2 x
x2

, (19.48)

where x = ωmkt/2. Since∫ ∞

−∞
dx

sin2 x
x2

= π, (19.49)
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we finally get the following expression for the transition probability:

Pk→m(t) = 2π |Vmk|2

�
ρ(ωmk)t. (19.50)

This is the famous Fermi Golden Rule, which shows that in an

atom composed of a large number of energy states, the probability

of a transition is proportional to time. Thus, per unit time of the

transition probability is constant and proportional to |Vmk|2.

An interesting observation: Shift of the energy levels

Consider the probability amplitude of the k → m transition for V̂
independent of time. To the first order that the electron makes, a

transition from k to m is

ck→m(t) = c(0)
k→m(t) + c(1)

k→m(t) = δkm − Vmk

Em − Ek

(
eiωmkt − 1

)
.

(19.51)

For short times (t � 1), the transition amplitude (19.51) reduces

to

ck→m(t) = δkm − i
�

Vmkt. (19.52)

The transition amplitude exhibits interesting properties. Namely,

the probability amplitude that the system will remain in the state k
is

ckk(t) ≡ ck→k(t) = 1 − i
�

Vkkt. (19.53)

The probability amplitude that the system will make a transition

to a state m is

ckm(t) ≡ ck→m(t) = − i
�

Vmkt. (19.54)

Note that the amplitudes ckk(t) and ckm(t) depend on different

matrix elements Vkk and Vmk, respectively. Thus, even if the system

does not make transitions to other states (Vmk = 0), the probability

that the system remains in the state k may change in time.

How to understand it?

In the derivation of ckm(t), we have assumed that V̂ is inde-

pendent of time. Hence, the time-dependent perturbation theory
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should lead to results one could expect from the time-independent

perturbation theory.

In the time-independent perturbation theory, Vkk contributes to

the first-order correction to the energy of the state k. Thus, even if

the system does not make transitions to other states, the perturber

can still perturb (shift) energy of the initial state.

In order to show that there is a shift of the unperturbed energy

Ek, we consider the exact equation of motion for ck(t):

ċk(t) = − i
�

∑
n

Vkncn(t)eiωknt . (19.55)

We may extract from the sum over n the term n = k, so we can

write

ċk(t) = − i
�

Vkkck(t) − i
�

∑
n �=k

Vkncn(t)eiωknt . (19.56)

If the system does not make transitions to n �= k, i.e., Vkn = 0, and

then

ċk(t) = − i
�

Vkkck(t). (19.57)

The solution to Eq. (19.57) is

ck(t) = ck(0)e− i
�

Vkkt . (19.58)

Substituting the solution (19.58) into the expression for the state

vector, Eq. (19.16), we obtain

|�(t)〉 =
∑

n

cn(t)e− i
�

Ent|φn〉 =
∑

n

cn(0)e− i
�

(En+Vnn)t|φn〉. (19.59)

This clearly shows that the energy of the nth state of the system

is shifted from its unperturbed value En by Vnn.

An useful comment: How do in practice we observe (detect) that an

electron makes transitions between different energy states?

When the electron makes a transition from a lower energy state

to a higher energy state, an energy is absorbed from the external

perturber, and vice versa, when the electron makes a transition from

a higher energy state to a lower energy state, an energy is emitted.

In a laboratory, we measure the absorbed or emitted energy. Usually,

the absorbed or emitted energy is in the form of a radiation. A
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detector measures the square of the amplitude of the field falling on

it, |E |2, whose average value 〈|E |2〉 is called intensity.

We can show, using the time-dependent perturbation theory, that

the intensity of the absorbed or emitted radiation is proportional to

the probability of the transition between two energy states of the

absorbing or emitting system.

The probability that a system will be found at time t in a state |m〉
is given by

Pm(t) = |〈m|�(t)〉|2 , (19.60)

where |�(t)〉 is the state vector of the system. If the system

interacts with an external perturber described by an operator V̂I ,

we know from the perturbation theory that to the first order in the

perturbation, the state vector of the system evolves in time as

|�(t)〉 = |�(0)〉 + 1

i�

∫ t

0

dt′V̂I (t′)|�(0)〉. (19.61)

Suppose that the external perturber is linearly coupled to the

system, i.e., the interaction Hamiltonian is of the form

V̂I (t) = −i� [E(t)Smk − E∗(t)Skm] , (19.62)

where E(t) is the amplitude of the external perturber, which by

acting on the system forces the electron to make a transition

between the energy states k and m. The transitions are described

by the transition (projection) operators Smk = |m〉〈k| for the “up”

k → m transition, and Skm = |k〉〈m| for the “down” transition m → k.

Assume that the initial state of the system plus the detected field

is a product state, i.e., the system and the detected field are initially

independent of each other

|�(0)〉 = |�F 〉|k〉, (19.63)

where |�F 〉 is the initial state of the detected field. Then, we find

using Eqs. (19.61) and (19.62) that a projection of |m〉 on |�(t)〉
results in a state

〈m|�(t)〉 = −E(t)|�F 〉t. (19.64)

Hence, the probability that under the interaction with the

perturber the system makes a transition to the state |m〉 is

Pm(t) = |〈m|�(t)〉|2 = 〈�F |E∗(t)E(t)|�F 〉t2

= 〈�F ||E(t)|2|�F 〉t2 = IF (t)t2, (19.65)

where IF (t) = 〈�F ||E(t)|2|�F 〉 is the intensity of the detected field.

Clearly, the probability of the k → m transition in the system is

proportional to the intensity of the absorbed field.
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Tutorial Problems

Problem 19.1 Consider a two-level atom represented by the spin

operators σ̂±, σ̂z, interacting with a one-dimensional harmonic

oscillator, represented by the creation and annihilation operators â†

and â. The Hamiltonian of the system is given by

Ĥ = 1

2
�ω0σ̂z + �ω0

(
â†â + 1

2

)
− 1

2
i�g
(
σ̂+â − σ̂−â†) . (19.66)

The Hamiltonian can be written as

Ĥ = Ĥ0 + V̂ , (19.67)

where

Ĥ0 = 1

2
�ω0σ̂z + �ω0

(
â†â + 1

2

)
,

V̂ = −1

2
i�g
(
σ̂+â − σ̂−â†) . (19.68)

The eigenstates of Ĥ0 are product states

|φn〉 = |n〉|1〉, |φn−1〉 = |n − 1〉|2〉, (19.69)

where |n〉 is the photon number state of the harmonic oscillator and

|1〉, |2〉 are the energy states of the atom.

(a) Write the state vector of the system in terms of the eigenstates

of Ĥ0.

(b) Assume that initially at t = 0, the system was in the state |φn〉.

Find the probability, using the time-dependent perturbation

theory, that after a time t, the system can be found in the state

|φn−1〉.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Chapter 20

Relativistic Schrödinger Equation

Thus far our principal task has been the development of the

fundamentals of quantum physics for non-relativistic (stationary

or slowly moving) particles. Now we proceed to introduce the

concepts of the relativistic theory to basic problems of quantum

physics, in particular, the extension of the Schrödinger equation to

a relativistic form. We will see that this is not an easy task and

faces a considerable complication. We will find a controversy of

how to implement the concepts of relativity to derive a relativistic

form of the Schrödinger equation. Starting from the fundamental

laws of relativity, we first derive the Klein–Gordon equation and

investigate if the equation can be considered a generalization of the

non-relativistic Schrödinger equation to the case of the relativistic

energy. We will find that the wave function, which is a solution to the

Klein–Gordon equation, cannot be connected with the probability

wave function. For this reason, we will derive the Dirac equation,

which solves the problem faced by the Klein–Gordon equation. The

Dirac equation also includes the spin.

Consider a free particle for which the non-relativistic

Schrödinger equation

Ĥ � = E�, (20.1)

Quantum Physics for Beginners
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is obtained from the non-relativistic formula for the energy

(Hamiltonian)

Ĥ = p2

2m
, (20.2)

by using Jordan’s rules

E → −�

i
∂

∂t
, �p = �

i
∇ . (20.3)

When applying Jordan’s rules to the Hamiltonian (20.2), we get

Ĥ = p2

2m
= − �

2

2m
∇2, (20.4)

and then the Schrodinger equation takes the form

i�
∂

∂t
� + �

2

2m
∇2� = 0. (20.5)

20.1 Klein–Gordon Equation

Consider now the relativistic formula for the energy of a free particle

E 2 = c2 p2 + m2c4, (20.6)

that

E = ±
√

c2 p2 + m2c4. (20.7)

The formula (20.7) is not convenient for the quantization

because there is minus sign in the square root. This indicates that

even before the quantization, the classical kinetic energy could be

negative.

Therefore, we consider the square of the energy, as given by

Eq. (20.6), which is positive and write it as

E 2 − c2 p2 − m2c4 = 0. (20.8)

We now apply Jordan’s rules. Since the relativistic energy formula

involves E 2 and p2, taking the square in Eq. (20.3), we obtain

E 2 = −�
2 ∂2

∂t2
, p2 = −�

2∇2. (20.9)

Then Eq. (20.8) takes the form

−�
2 ∂2

∂t2
+ c2

�
2∇2 − m2c4 = 0, (20.10)
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which can be rewritten as

∂2

∂t2
− c2∇2 + m2c4

�2
= 0, (20.11)

or

1

c2

∂2

∂t2
− ∇2 + m2c2

�2
= 0. (20.12)

Introducing the notation

1

c2

∂2

∂t2
− ∇2 ≡ �, (20.13)

which is a four-vector (t, x , y, z) operator, called the d’Alembertian

operator, we obtain a wave equation(
� + m2c2

�2

)
� = 0. (20.14)

This equation is called the Klein–Gordon wave equation.

20.2 Difficulties of the Klein–Gordon Equation

A question arises: Can we consider the Klein–Gordon equation as a

relativistic form of the Schrödinger equation?

If yes, then |�|2 should correspond to the probability density and

then the wave function � could be interpreted as a probability wave

function. Let us check if |�|2 could be interpreted as the probability

density.

This would be the case if the Klein–Gordon equation could be

transformed to the continuity equation

∂

∂t
ρ + div�J = 0. (20.15)

Let us try to transform the Klein–Gordon equation into the

continuity equation. From the Klein–Gordon equation, we get

�∗� − (�)∗� = 0, (20.16)

which can be written as

�∗
(

1

c2

∂2�

∂t2
− ∇2�

)
−
(

1

c2

∂2�∗

∂t2
− ∇2�∗

)
� = 0. (20.17)
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Grouping the time-dependent terms and spatial terms, the above

equation takes the form

1

c2

[
�∗ ∂2�

∂t2
− �

∂2�∗

∂t2

]
+ [(∇2�∗)� − �∗∇2�

] = 0. (20.18)

Since

∂

∂t

(
�∗ ∂�

∂t

)
= ∂�∗

∂t
∂�

∂t
+ �∗ ∂2�

∂t2
, (20.19)

and

∂

∂t

(
�

∂�∗

∂t

)
= ∂�

∂t
∂�∗

∂t
+ �

∂2�∗

∂t2
, (20.20)

we have

�∗ ∂2�

∂t2
− �

∂2�∗

∂t2
= ∂

∂t

(
�∗ ∂�

∂t

)
− ∂�∗

∂t
∂�

∂t
− ∂

∂t

(
�

∂�∗

∂t

)

+∂�

∂t
∂�∗

∂t
. (20.21)

Hence

�∗ ∂2�

∂t2
− �

∂2�∗

∂t2
= ∂

∂t

(
�∗ ∂�

∂t
− �

∂�∗

∂t

)
. (20.22)

Similarly(∇2�∗)� − �∗∇2� = −∇ · (�∗∇� − �∇�∗) . (20.23)

Thus, we obtain

∂

∂t

[
1

c2

(
�∗ ∂�

∂t
− �

∂�∗

∂t

)]
− ∇ · (�∗∇� − �∇�∗) = 0, (20.24)

or

∂

∂t

[
i�

2mc2

(
�∗ ∂�

∂t
− �

∂�∗

∂t

)]
+∇ ·

[
�

2im
(�∗∇� − �∇�∗)

]
= 0.

(20.25)

This equation has a form of the continuity equation, so that

ρ = i�
2mc2

(
�∗ ∂�

∂t
− �

∂�∗

∂t

)
,

�J = �

2im
(�∗∇� − �∇�∗) . (20.26)

Note that ρ does not have to be positive. Therefore, ρ cannot be

interpreted as the probability density.
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Therefore, we cannot connect the solution to the Klein–Gordon

equation with probability. The source of this problem is in the fact

that the Klein–Gordon equation is second order in t, whereas the

Schrödinger equation is first order in t.

Note that the Klein–Gordon equation for a free particle has only

one solution for � , i.e., gives only a single value of � . For this reason,

the Klein–Gordon equation cannot be an equation for a particle that

has a nonzero spin, e.g., electron, as it cannot take either + or −
value. Therefore, the Klein–Gordon equation can describe particles

without spin.

20.3 Dirac Equation

We now turn to obtain a relativistic wave equation, which could be

applicable for an arbitrary particle that may or may not possess a

spin and the wave function could be interpreted as a probability

wave function.

Consider a wave function of a particle whose spin could have

different values

� =

⎛
⎜⎜⎜⎜⎝

�1

�2

.

.

�N

⎞
⎟⎟⎟⎟⎠ , (20.27)

i.e., particle that can exist in N different states.

Define the probability density

ρ =
N∑

s=1

|�s |2, (20.28)

and consider the Schrödinger equation

i�
∂

∂t
� = H �. (20.29)

In quantum mechanics, we require for the Hamiltonian to be

always linear and Hermitian. We may choose the Hamiltonian of the

form

H = c�α · �p + βmc2, (20.30)
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where (�α, β) are four operators acting on the components of

the wave function. The explicit form of the operators has to be

determined such that the Hamiltonian H satisfies the Schrödinger

equation.

If we now apply Jordan’s rules to the Hamiltonian (20.30), we get

for the Schrödinger equation H � = E�:(
−�

i
∂

∂t
− c�α ·

(
�

i

)
∇ − βmc2

)
� = 0, (20.31)

which can be written as(
�

i
∂

∂t
+ �c

i
�α · ∇ + βmc2

)
� = 0, (20.32)

or equivalently (
E − c�α · �p − βmc2

)
� = 0. (20.33)

Since in the relativistic theory

E 2 = c2 p2 + m2c4, (20.34)

we require that the solution to either Eq. (20.32) or Eq. (20.33)

satisfy the relation for E , Eq. (20.34).

How to achieve it?

Let us act on Eq. (20.33) with the operator

E + c�α · �p + βmc2, (20.35)

and get (
E − c�α · �p − βmc2

) (
E + c�α · �p + βmc2

)
� = 0, (20.36)

which after performing the multiplication takes the form{
E 2 − c2 (�α · �p )2 − mc3 [(�α · �p) β + β (�α · �p)] − β2m2c4

}
� = 0.

(20.37)

However,

�α · �p = αx px + αy py + αz pz, (20.38)

so that

(�α · �p )2 = (αx px + αy py + αz pz
) (

αx px + αy py + αz pz
)

= α2
x p2

x + α2
y p2

y + α2
z p2

z + (αxαy + αyαx
)

px py

+ (αyαz + αzαy
)

py pz + (αzαx + αxαz) pz px . (20.39)
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Substituting Eqs. (20.38) and (20.39) into Eq. (20.37), we get{
E 2 − c2

[
α2

x p2
x + α2

y p2
y + α2

z p2
z + (αxαy + αyαx

)
px py

+ (αyαz + αzαy
)

py pz + (αzαx + αxαz) pz px
]

−mc3
[
(αxβ + βαx ) px + (αyβ + βαy

)
py + (αzβ + βαz) pz

]
−β2m2c4

}
� = 0. (20.40)

We require this equation to be equal to(
E 2 − c2 p2 − m2c4

)
� = 0. (20.41)

Comparing terms in Eqs. (20.40) and (20.41), we see the

following.

Since

p2 = p2
x + p2

y + p2
z , (20.42)

we see that the second term in Eq. (20.40), which is multiplied by c2,

will be equal to p2 if

α2
x = α2

y = α2
z = 1, (20.43)

and (
αxαy + αyαx

) = 0,(
αyαz + αzαy

) = 0,

(αzαx + αxαz) = 0. (20.44)

The third term in Eq. (20.40), which is multiplied by mc3, is

absent in Eq. (20.41). Therefore,

αxβ + βαx = 0,

αyβ + βαy = 0,

αzβ + βαz = 0. (20.45)

Finally, comparing the forth term in Eq. (20.40) with Eq. (20.41),

we see that

β2 = 1. (20.46)

Operators �α and β satisfying the conditions (20.43)–(20.46) are

called the Dirac α matrices. Notice that the conditions (20.43)–

(20.46) are the same as for the Pauli spin 1
2

matrices. The operator β

also satisfies the anti-commutation relations, Eq. (20.45) and β2 =
1, so it also represents a spin.
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The equation (
E − c�α · �p − βmc2

)
� = 0, (20.47)

together with the conditions (20.43)–(20.46) is called the Dirac
equation.

The advantage of the Dirac equation over the Schrödinger and

Klein–Gordon equations is that it naturally includes the spin. In the

Schrödinger and Klein–Gordon equations, the spin is not present

and has to be added to the wave function manually whenever the

wave function determines a system with the spin. The Dirac equation

involves a system composed of N particles with spin and, as such

mathematically, is in the form of 2N differential equations.

20.4 Dirac Spin Matrices

Dimensions of the operators �α and β depend on the dimension of

the wave function � , i.e., the number of particles (spins) involved

in a given system. Since spin has two values, the operators can be

represented by 2N × 2N matrices.

Let us illustrate this on examples of N = 1 and N = 2 systems.

For a system composed of a single particle (N = 1) with spin up,

|2〉, and spin down, |1〉, the components of �α represented in the basis

of the states |2〉 and |1〉 are the Pauli spin matrices

αx =
(

0 1

1 0

)
, αy =

(
0 −i
i 0

)
, αz =

(
1 0

0 −1

)
. (20.48)

What is the matrix form of the operator β?

Since β anti-commutes with all components of �α and β2 = 1, it

must be a diagonal matrix but not the unit matrix. (The unit matrix

commutes, not anti-commutes, with all the matrices of �α.) Therefore,

the form of the matrix β , which satisfies that property, is

β =
(

1 0

0 −1

)
. (20.49)

Consider now the case involving two particles, N = 2. An

extension of the matrix (20.49) to the case of N = 2 particles is a
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4 × 4 matrix

β =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ . (20.50)

In order to have the α matrices to anti-commute with β , we write

the α matrices in the following basis,

rows {|2〉1, |1〉1, |2〉2, |1〉2} and columns {|2〉2, |1〉2, |2〉1, |1〉1},

and find the following forms

αx =

⎛
⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎠ , αy =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

⎞
⎟⎟⎠ , αz =

⎛
⎜⎜⎝

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

⎞
⎟⎟⎠ ,

(20.51)

or shortly

�α =
(

0 �σ
�σ 0

)
. (20.52)

20.5 Verification of the Continuity Equation

Consider now if the Dirac equation satisfies the continuity equation

and if we may interpret the wave function � as a probability wave

function.

Consider the Dirac equation in the form

�

i
∂

∂t
� + �c

i
�α · ∇� + βmc2� = 0. (20.53)

Take the Hermitian conjugate

−�

i
∂

∂t
�∗ − �c

i
�α · ∇�∗ + βmc2�∗ = 0. (20.54)

Multiply Eq. (20.53) from the left with �∗, and Eq. (20.54) with

� , and next subtract both equations from each other. We then get

−i�
(

�∗ ∂�

∂t
+ �

∂�∗

∂t

)
− ic� [�∗ �α · ∇� + ∇�∗ · �α�] = 0.

(20.55)
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Since

�∗ ∂�

∂t
+ �

∂�∗

∂t
= ∂

∂t
|�|2, (20.56)

and

�∗ �α · ∇� + ∇�∗ · �α� = ∇ · (c�∗ �α�) , (20.57)

we can write Eq. (20.55) as
∂

∂t
|�|2 + ∇ · (c�∗ �α�) = 0, (20.58)

which is in the form of the continuity equation. Hence,

|�|2 = ρ and c�∗ �α� = �J . (20.59)

Notice that both ρ and �J are real and ρ ≥ 0. Thus, we can

interpret ρ as the probability density. Therefore, we may conclude

that the Dirac equation is a relativistic form of the Schrödinger

equation for the probability wave function.

Tutorial Problems

Problem 20.1 Show that the Klein–Gordon equation for a free

particle is invariant under the Lorentz transformation. The Lorentz

transformation is given by

x ′ = γ (x − βct),

y′ = y,

z′ = z,

ct′ = γ (ct − βx),

where γ = (1 − β2
)−1/2

is the Lorentz factor, β = u/c, and u is the

velocity with which an observer moves.

Problem 20.2 Act on the Dirac equation(
E − c�α · �p − βmc2

)
� = 0

with the operator

E + c�α · �p + βmc2

to find under which conditions the Dirac equation satisfies the

relativistic energy relation

E 2 = c2 p2 + m2c4.

Here, �α = αx î +αy ĵ +αzk̂ is a three-dimensional Hermitian operator

and β is a one-dimensional Hermitian operator. The operator β does

not commute with any of the components of �α.
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Problem 20.3 Verify the anti-commutation relations (20.45) for a

system composed of two particles N = 2, for which β is given by

Eq. (20.50) and α matrices are given in Eq. (20.51).
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Chapter 21

Systems of Identical Particles

In this final chapter, we study the properties of systems of identical

particles. We will find wave functions of a system composed of N
identical and independent particles. From the properties of the wave

functions, we will find that identical particles can be characterized

by symmetric as well as antisymmetric wave functions. As a result,

we will distinguish two kinds of particles: bosons and fermions.

Consider a system composed of N parts (subsystems), e.g., a

system of N identical and independent particles, whose Hamiltonian

is given by

Ĥ =
N∑

i=1

Ĥi , (21.1)

and the wave function is

�(r) = φ1(r1)φ2(r2) . . . φN(rN) , (21.2)

where φi (ri ) is the wave function of the i th particle located at the

point r j , or equivalently we can say that φi (r j ) is the wave function

of the j th particle being in the i th state.

However, the wave function �(r) is not the only eigenfunction of

the system. For example, a wave function

�(r) = φ1(r2)φ2(r1) . . . φN(rN) , (21.3)

Quantum Physics for Beginners
Zbigniew Ficek
Copyright c© 2016 Pan Stanford Publishing Pte. Ltd.
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is also an eigenfunction of the system with the same eigenvalue.

Proof: Consider the eigenvalue equation with the eigenfunction

(21.2):

Ĥ �(r) =
N∑

i=1

Ĥi �(r)

=
N∑
i

Ĥi φ1(r1)φ2(r2) . . . φN(rN) =
N∑

i=1

Ei �(r) .

Consider now the eigenvalue equation with the eigen-

function (21.3):

Ĥ �(r) =
N∑

i=1

Ĥi �(r) =
N∑
i

Ĥi φ1(r2)φ2(r1) . . . φN(rN) .

Since

Ĥ1φ1(r2) = E1φ1(r2) , and Ĥ2φ2(r1) = E2φ2(r1) ,

we get Ĥ �(r) =∑N
i=1 Ei �(r).

Even if

Ĥ1φ1(r2) = E2φ1(r2) , and Ĥ2φ2(r1) = E1φ2(r1) ,

we get

Ĥ �(r) =
N∑

i=1

Ei �(r) , (21.4)

as required.

In fact there are N! permutations of φi (r j ), which are eigenfunc-

tions of the system. Moreover, an arbitrary linear combination of the

wave functions φi (r j ) is also an eigenfunction of the system.

We will illustrate this for N = 2.

21.1 Symmetric and Antisymmetric States

Consider an arbitrary linear combination of two wave functions

�(r) = 1√
|a|2 + |b|2

[a�(r12) + b�(r21)] , (21.5)



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

Symmetric and Antisymmetric States 299

where �(r12 = φ1(r1)φ2(r2) and �(r21 = φ1(r2)φ2(r1). Then

Ĥ �(r) = (Ĥ1 + Ĥ2

)
�(r)

= 1√
|a|2 + |b|2

[a (E1 + E2) �(r12) + b (E1 + E2) �(r21)]

= (E1 + E2) �(r) . (21.6)

We know that in the linear combination, |a|2/(|a|2 + |b|2) is the

probability that the particle “1” is at the position r1 and the particle

“2” is at r2. Equivalently, for r1 = r2, we can say that this is the

probability that the particle “1” is in a state |1〉, and the particle “2”

is in a state |2〉.

Similarly, |b|2/(|a|2 + |b|2) is the probability that the particle “1”

is at the position r2, and the particle “2” is at r1.

Note that in general, the probabilities are different. However, for

two identical particles, the probabilities should be the same as we

cannot distinguish between two identical particles.

Thus, for two identical particles, |a| = |b|. Hence, the parameters

a and b can differ only by a phase factor: b = a exp(iφ), where φ is a

real number:

�(r) = 1√
2

[
�(r12) + eiφ�(r21)

]
. (21.7)

If we exchange the positions of the particles (r1 ↔ r2) or energy

states (|1〉 ↔ |2〉), then we obtain

� ′(r) = 1√
2

[
eiφ�(r12) + �(r21)

]
. (21.8)

Thus, the exchange of r1 ↔ r2 or |1〉 ↔ |2〉 is equivalent to

multiplying �(r) by eiφ and taking e2iφ = 1. Hence

eiφ = ±1 , (21.9)

and therefore the wave functions of identical particles are either

symmetrical or antisymmetrical

�s (r) = 1√
2

[�(r12) + �(r21)] ,

�a(r) = 1√
2

[�(r12) − �(r21)] . (21.10)

Note that

�s (r12) = �s (r21) ,

�a(r12) = −�a(r21) . (21.11)
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Properties of symmetrical and antisymmetrical functions

Property 1. If Ĥ = Ĥ12 = Ĥ21, i.e., the Hamiltonian is symmetrical,

then Ĥ �(r) has the same symmetry as �(r).

Proof: Take �(r) = �s (r). Denote f12 = Ĥ12�s (r12), then

f21 = Ĥ21�s (r21) = Ĥ12�s (r12) = f12 .

Take now �(r) = �a(r). Then

f21 = Ĥ21�a(r21) = Ĥ12 (−�s (r12)) = − f12 ,

as required.

Property 2. Symmetry of the wave function does not change in

time, i.e., the wave function initially symmetrical (antisymmetrical)

remains symmetrical (antisymmetrical) for all times.

Proof: Consider the evolution of a wave function �(t) in a time dt:

�(t + dt) = �(t) + ∂�

∂t
dt .

Thus, symmetry of the wave function depends on the symmetry

of ∂�/∂t. From the time-dependent Schrödinger equation

i�
∂�

∂t
= Ĥ � ,

we see that ∂�/∂t has the same symmetry as Ĥ � . From the

property 1, we know that Ĥ � has the same symmetry as � .

Therefore, �(t + dt) has the same symmetry as �(t), as required.

Difference between symmetric and antisymmetric functions

Antisymmetric function can be written in a form of a determinant,

called the Slater determinant:

�a(r) = 1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) . . . φ1(rN)

φ2(r1) φ2(r2) . . . φ2(rN)

.

.

.

φN(r1) φN(r2) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (21.12)

where 1/
√

N! is the normalization constant.
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If two particles are at the same point, r1 = r2, and then

two columns of the determinant (21.12) are equal, giving �a(r)

= 0. Thus, two particles determined by the antisymmetric function

cannot be at the same point. Similarly, if two particles are in the

same state, φ1(r1) = φ1(r2), and again two columns are equal giving

�a(r) = 0.

A symmetrical function cannot be written in the form of a

determinant. Thus, particles that are determined by symmetrical

functions can be in the same point or in the same state.

Hence, particles can be divided into two types: those determined

by antisymmetric functions (called fermions) and those determined

by symmetrical functions (called bosons).

Examples of fermions and bosons

Fermions: electrons, protons, neutrons, neutrinos.

Bosons: photons, phonons, π mesons, α particles.

From experiments, we know that we can distinguish between

fermions and bosons by looking at their spins. Fermions have half-

integer spin (1/2, 3/2, etc., in units of �), whereas bosons have

integer spin (0, 1, 2, etc.).

Since an arbitrary number of bosons can occupy the same state,

atoms with integer spin (atomic bosons) can abruptly condensate

into a single ground state when the temperature of the atoms goes

below a certain critical value. We call this process Bose–Einstein
condensation.a

21.2 Pauli Principle

In atoms, a limited number of electrons (fermions) can occupy the

same energy level. How many electrons does it take to fill an energy

aReaders wishing to learn more about Bose–Einstein condensation are referred to a

book by L. Pitaevskii and S. Stringari, Bose–Einstein Condensation (Clarendon Press,

Oxford, 2003).
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level? The answer to this question is given by the Pauli principle,a

also called exclusion principle.

Pauli principle

No two electrons can have the same quantum numbers
(n, l , m, s) in a multi-electron atom.

It is also known as the exclusion principle, for the simple reason

that if an electron has the quantum numbers (nlms), then at least

one of the quantum numbers of any further electrons must be

different.

In an atom, for a given n, there are 2(2l + 1) degenerate states

corresponding to l = 0, 1, 2, . . . , m = −l , . . . , l , and s = − 1
2

, + 1
2

.

Thus, for a given n, the total number of electrons in the energy state

�nlm is

l=m∑
l=−m

2(2l + 1) = 2n2 . (21.13)

Following the Pauli principle, we can find the numbers of

electrons in the energy states

1s, 2s, 2 p, 3s, 3 p, 4s, 3d , 4 p , 5s , 4d , 5 p

2 2 6 2 6 2 10 6 2 10 6

The Pauli principle prevents the energy states being occupied by

an arbitrary number of electrons. The state 1s can be occupied by

two electrons. Hence, as more electrons are added, the energy of the

atom grows along with its size. Thus, the Pauli principle prevents

all atoms having the same size and the same energy. This is the

quantum physics explanation of atomic sizes and energies.

Since the number of electrons on given energy levels is limited,

we get different ground state configurations for different atoms. The

ground state of a many-electron atom is that in which the electrons

occupy the lowest energy levels that they can occupy.

If the number of electrons for a given nl is 2(2l + 1), we say that

there is a closed shell. Examples: Helium, Beryllium, Neon.

aPauli was granted the Nobel Prize in 1945 for the discovery of the exclusion principle

(also called Pauli principle).
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Since the chemical properties of atoms depend on the number

of electrons outside the closed shells, the atoms with similar outer

configurations will have similar chemical properties. Examples:

The Alkali metals: lithium (1s)22s , sodium (1s)2(2s)2(2 p)63s , and

potassium (1s)2(2s)2(2 p)6(3s)2(3 p)64s .

This is the explanation from quantum physics of the periodic

structure of the elements.

21.3 Symmetric and Antisymmetric States of N > 2
Particles

For a system composed of two particles, the question of which of

the two possible functions �12 and �21 should contribute to the

antisymmetric combination with the positive and which with the

negative sign is not a problem. However, for N > 2 particles, it is

a problem which wave functions contribute with the positive and

which with the negative sign. There is a rule for choosing the sign,

which we will illustrate on an example of N = 3 particles.

Consider a system of N = 3 independent particles. The number

of possible permutations is 3! = 6, so that we have 6 possible wave

functions

�123, �231, �312, �213, �132, �321. (21.14)

The symmetric function of the three particles

�s = 1√
3!

(�123 + �231 + �312 + �213 + �132 + �321) . (21.15)

The antisymmetric function of the particles

�a = 1√
3!

[(�123 + �231 + �312) − (�213 + �132 + �321)] .

(21.16)

For the symmetric function, all six terms have the positive sign so

that they can be added in an arbitrary order. For the antisymmetric

function, three terms have the positive sign and three terms have

the negative sign. A question then arises: Which functions should be

contributing with the positive and which with the negative sign? The

rule of finding the sign of a particular term is as follows.



March 21, 2016 11:51 PSP Book - 9in x 6in Zbigniew-Ficek

304 Systems of Identical Particles

The rule is how many times do we have to change a pair of

numbers until the sequence 123 is obtained. For example:

(231) → (213) → (123) (21.17)

so that two changes were made to get the sequence (123). Since

the number of changes was an even number, the sign of the term

is chosen (+). If the number of changes is an odd number, the sign of

the term is chosen (−). For example, take the term (321):

(321) → (312) → (132) → (123) (21.18)

so we had to make 3 changes of the numbers, an odd number of

changes. The sign of the term is, therefore, (−).

21.4 Identical (Nondistinguishable) and Nonidentical
(Distinguishable) Particles: Degeneracy of Wave
Function

Consider a system of N independent particles each of energy Ei

determined by the integer number ni .

For example, if a particle is represented by harmonic oscillators,

then Ei = ni �ω = ni E0. Total energy is E = (n1 + n2 + . . .)E0, and

the wave function of the system is

�n1, n2, n3, ··· = φ1(n1)φ2(n2)φ3(n3) · · · (21.19)

We see that the energy E and the wave function � are specified by

a set of integer numbers (n1, n2, n3, . . .). Thus, there might be few

wave functions corresponding to the same energy E . If it happens,

we say that the energy level is degenerate, and the number of states

corresponding to this energy is called degeneracy.

Worked Example

Consider a system of three identical and independent harmonic

oscillators. If the oscillators are in their lowest energy states, for

which n1 = n2 = n3 = 1, the total energy of the oscillators is E =
3E0 and there is only one combination of the numbers (n1, n2, n3) =
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(1, 1, 1). Thus, there is only one wave function corresponding to this

energy, �1, 1, 1. We say that the level has degeneracy 1.

If the oscillators have the total energy E = 4E0, there are three

combinations of n1, n2, and n3 which sum to 4. These combinations

are (n1 = 2, n2 = 1, n3 = 1), (n1 = 1, n2 = 2, n3 = 1), and

(n1 = 1, n2 = 1, n3 = 2). Thus, there are three wave functions

corresponding to this energy: �2, 1, 1, �1, 2, 1, and �1, 1, 2. In this case,

we say that the energy level has degeneracy 3.

Tutorial Problems

Problem 21.1 Consider a system of three identical and independent

particles.

(a) What would be the level of degeneracy if the particle 1 of energy

n1 = 2 would be distiguished from the other two particles?

(b) What would be the level of degeneracy if the distinguished

particle has energy n1 = 1?

Problem 21.2 Two identical particles of mass m are in the one-

dimensional infinite potential well of a dimension a. The energy of

each particle is given by

Ei = n2
i
π2

�
2

2ma2
= ni E0. (21.20)

(a) What are the values of the four lowest energies of the system?

(b) What is the degeneracy of each level.

Problem 21.3 Redistribution of particles over a finite number of

states

(a) Assume we have n identical particles, which can occupy

g identical states. The number of possible distributions, if

particles were bosons, is given by the number of possible

permutations

t = (n + g − 1)!

n!(g − 1)!
(21.21)

For example, n = 3 and g = 2 give t = 4. However, this is

true only for identical bosons. What would be the number of
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possible redistributions if the particles were fermions or were

distinguishable?

(b) Find the number of the allowed redistributions if the particles

were:

(i) Identical bosons

(ii) Identical fermions

(iii) Nonidentical fermions

(iv) Nonidentical bosons

Illustrate this on an example of n = 2 independent particles that can

be redistributed over 5 different states.
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Final Remark

Although this textbook focused on a small part of quantum physics,

it should nevertheless be appropriate to close by emphasizing the

importance of quantum phenomena in the development of new

areas in science and technology. The predictions of quantum physics

have turned research and technology into new directions and have

led to numerous technological innovations and the development of

a new technology on the scale of single atoms and electrons, called

quantum technology or nanotechnology. The ability to manufacture

and control the dimensions of tiny structures, such as quantum

dots, allows us to engineer the unique properties of these structures

and predict new devices such as quantum computers. A quantum

computer can perform mathematical calculations much faster and

store much more information than a classical computer by using the

laws of quantum physics. The technology for creating a quantum

computer is still in its infancy because it is extremely difficult to

control quantum systems, but it is developing very rapidly with little

sign of the progress slowing.

We have seen in our journey through the backgrounds of

quantum physics that despite its long history, quantum physics

still challenges our understanding and continues to excite our

imagination. Feynman, in his lectures on quantum physics, referred

in the following way to our understanding of quantum physics:

I think I can safely say that nobody understands quantum
mechanics.

In summary of the book, I think I can safely say:

If you think you now know quantum physics, it means you do
not know anything.
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Appendix A

Derivation of the Boltzmann distribution
function Pn

Assume that we have n identical particles (e.g., photons), each of

energy E , which can occupy g identical states. The number of

possible distributions of n particles between g states is given by

t = (n + g − 1)!

n!(g − 1)!
. (A.1)

For example: n = 3, g = 2 gives t = 4, as it is illustrated in

Fig. A.1.

We will find maximum of t with the condition that nE = constant,

where E is the energy of each particle.

Taking ln of both sides of Eq. (A.1), we get

ln t = ln(n + g − 1)! − ln n! − ln(g − 1)! . (A.2)

Using Sterling’s formula

ln n! = n ln n − n , (A.3)

Figure A.1 Example of possible distributions of three particles between

two states.
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and assuming that g � 1, i.e., g − 1 ≈ g, we obtain

ln t = g ln
n + g

g
+ n ln

n + g
n

. (A.4)

We find maximum of ln t using the method of Lagrange
undetermined multipliers. In this method, we construct a function

K = ln t − λnE , (A.5)

where λ is called a Lagrange undetermined multiplier, and find the

extremum
∂ K
∂n

= 0 . (A.6)

Thus, we get

ln
n

n + g
+ λE = 0 , (A.7)

from which, we find

n = g
eλE − 1

. (A.8)

This is the Bose–Einstein distribution function. Since n is

dimensionless, λ should be inverse of energy. We choose λ = 1/

(kB T ), where kB T is the energy of free, noninteracting particles.

When g/n � 1, we can approximate Eq. (A.8) by

n = ge
− E

kB T , (A.9)

which is known in statistical physics as the Boltzmann distribution.

This gives the number of particles n of energy E .

If there are particles, among N particles, that can have different

energies Ei , then
ni

N
= g

N
e

− E
kB T (A.10)

is the probability that ni particles of the total N particles have energy

Ei .

Thus, we can write

Pn = ae
− E

kB T , (A.11)

where a is a constant.

Since the probability is normalized to one (
∑

n Pn = 1), we finally

get

Pn = e
− E

kB T∑
n e

− E
kB T

. (A.12)

The sum
∑

n e
− E

kB T is called the partition function.
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Appendix B

Useful Mathematical Formulae

Some useful properties of trigonometrical functions:

sin(α ± β) = sin α cos β ± sin β cos α

cos(α ± β) = cos α cos β ∓ sin α sin β

sin2 α = 1

2
(1 − cos 2α)

cos2 α = 1

2
(1 + cos 2α)

cot
α

2
= sin α

1 − cos α∫ π

0

sin3 θ dθ = 4

3∫ 2π

0

sin(mφ) sin(nφ) dφ =
{

0 for m �= n
π for m = n

∫ 2π

0

cos(mφ) cos(nφ) dφ =
{

0 for m �= n
π for m = n

∫ 2π

0

sin(mφ) cos(nφ) dφ = 0 for all m and n
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Useful integral expressions

∫ ∞

0

x3

ex − 1
dx = π4

15
,

∫ ∞

−∞
e−αx2

dx =
√

π

α
,

∫ ∞

−∞
xe−αx2

dx = 0 ,

∫ ∞

−∞
x2e−αx2

dx = 1

2α

√
π

α
.

∫ ∞

0

rne−αr dr = n!

αn+1
,

from which, we find∫ ∞

0

e−αr dr = 1

α
,

∫ ∞

0

re−αr dr = 1

α2
,

∫ ∞

0

r2e−αr dr = 2

α3
,

∫ ∞

0

r3e−αr dr = 6

α4

Taylor series

ωk = ωk0+β = ω0 +
(

dω

dβ

)
k0

β + 1

2

(
d2ω

dβ2

)
k0

β2 + . . .

e±x = 1 ± x + x2

2!
± x3

3!
+ . . .

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ . . .

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ . . .

Kronecker δ function

δmn =
{

1 if m = n
0 if m �= n .

Dirac delta function

δ(x) =
{

0 if x �= 0

∞ if x = 0,
such that

∫ ∞

−∞
f (x)δ(x)dx = f (0),

for any function f (x).
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Appendix C

Physical Constants and Conversion
Factors

Bohr magneton mB = 9.724 × 10−24 [J/T]

Bohr radius ao = 5.292 × 10−11 [m]

Boltzmann constant kB = 1.381 × 10−23 [J/K]

charge of an electron e = −1.602 × 10−19 [C]

permeability of vacuum μ0 = 4π × 10−7 [H/m]

permittivity of vacuum ε0 = 8.854 × 10−12 [F/m]

Planck’s constant h = 6.626 × 10−34 [J.s]

= 4.14 × 10−15 [eV.s]

(Planck’s constant)/2π � = 1.055 × 10−34 [J.s]

= 6.582 × 10−16 [eV.s]

rest mass of electron me = 9.110 × 10−31 [kg]

rest mass of proton mp = 1.673 × 10−27 [kg]

Rydberg constant R = 1.097 × 107 [m−1]

speed of light in vacuum c = 2.9979 × 108 [m/s]

Stefan–Boltzmann constant σ = 5.670 × 10−8 [W/m2 · K4]

1 Å=10−10 [m] ; 1 fm=10−15 [m] ; 1 eV=1.602 × 10−19 [J]

1 J = 6.241 × 1018 [eV] ; π = 3.142 ; e = 2.718 .
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