enius PHYSICS

e Tension **69**

Practice Problems

Problems based on Cohesive and adhesive force

						_	_
1.	Mercury does not wet glass				_		995; MP PET 1997]
	(a) Cohesive force is less t	han adhesive force	(b)	Cohesive force is greater	r tha	n adhesive for	ce
	(c) Angle of contact is less	than 90°	(d)	Cohesive force is equal t	to ad	hesive force	
2.	The force of cohesion is						[CPMT 1996]
	(a) Maximum in solids	(b) Maximum in liquid	(c)	Same in different matter	rs	(d)	Maximum in gases
3.	What enables us to write or	n the black board with chalk					
	(a) Gravity	(b) Cohesion	(c)	Adhesion	(d)	None of the	above
4.	Intermolecular forces decre	ease rapidly as the distance betwee	n the	molecules increases and	do so	o much more	
	(a) Slowly than demanded	l by the inverse square law of the di	istanc	e			
	(b) Rapidly than anticipat	ed through the inverse square law o	of the	distance			
	(c) According to inverse so	· ·					
	(d) It actually remains the	-					
	(-)	Problems based o	n Cı	unfano toncion			
		1 robtems bused b					
5.	The spherical shape of rain	-drop is due to					
0		CPMT 1976, 90; CPMT 2001; NCEF	RT 19 8	82; AIIMS 1998; MHCET	200	0; DCE 1999;	AFMC 1999, 2001]
	(a) Density of the liquid	(b) Surface tension		Atmospheric pressure		Gravity	
6.	At which of the following te	emperatures, the value of surface to	ensior	n of water is minimum		[]	AP PMT/PET 1998]
	(a) $4^{o}C$	(b) $25^{\circ}C$	(c)	$50^{\circ}C$	(d)	75°C	
7.		rcular plate of 5 <i>cm</i> radius from wa					<i>cm</i> , is [MP PMT 1991]
,	(a) 30 <i>dynes</i>	(b) 60 <i>dynes</i>		750 dynes		750π dynes	
8.		dipped in a liquid. On taking it out					f the liquid is <i>T</i> , the
	force acting on the frame w						[MP PMT 1990]
	(a) 2 <i>TL</i>	(b) 4 <i>TL</i>		8TL	(d)	10 <i>TL</i>	
9.		depend respectively upon the princ	iple o	f			
	(a) Surface tension and vis	-		Surface tension and grav	-		
	(c) Gravitation and surfac			Surface tension and sur			
10.	Which graph represents the	e variation of surface tension with t	tempe	erature over small temper	ratur	e ranges for w	vater
	(a) ↑↑	(b) \uparrow	(c)	↑ ↑	(d)	↑	
	S.T.	^(D) S.T.	(0)	S.T.	(u)	S.T.	
	$\overset{ }{\longrightarrow}$	$ \longrightarrow $		$ \longrightarrow $			\rightarrow
	Temp —	→ Temp →		Temp \longrightarrow			Temp \longrightarrow
11.		a density of 1.4 g per cm^3 . If it is			ace to	ension 44 <i>dyr</i>	<i>ne</i> per <i>cm</i> , then the
	maximum radius of the wir	e which can float on the surface of	the li	quid is			
	(a) $\frac{1}{7}$ cm	(b) 0.7 <i>cm</i>	(ല	$\frac{10}{14}$ cm	(d)	$\frac{10}{28}$ cm	
	7	(~, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		14	(u)	28	

12.	A water drop of $0.05cm^3$ is squeezed between two glass plates and spreads into area of $40cm^2$. If the surface tension of water is 70 <i>dyne/cm</i> then the normal force required to separate the glass plates from each other will be									
	(a) 90 N	(b) 45 N	(c) $22.5 N$	(d) 450 N						
13.	The main difference b	etween a stretched membrane	and the liquid surface is							
	(a) The liquid surface	e has a tendency to contract bu	t the stretched membrane does no	t						
	(b) The surface tension	on does not depend on area bu	t on the tension of the stretched m	embrane does						
	(c) The surface tension	on increases with increases in a	area							
	(d) Surface tension in	ncreases irregularly with tempe	erature							
14.	On bisecting a soap bu	ıbble along a diameter, the for	ce due to surface tension on any of	its half part will be						
	(a) 4 <i>πRT</i>	(b) $\frac{4\pi R}{T}$	(c) $\frac{T}{4\pi R}$	(d) $\frac{2T}{R}$						
15.	The addition of soap c	hanges the surface tension of	water to $\sigma_1^{}$ and that of sugar chan	ges it to σ_2 . Then						
	(a) $\sigma_1 = \sigma_2$		(b) $\sigma_1 > \sigma_2$							
	(c) $\sigma_1 < \sigma_2$		(d) It is not possible to	o predict the above						
16.		inum whose external and inter he maximum weight of disc ca		is floating on the surface of a liquid w	hose					
	(a) $2\pi(R+r)T$	(b) $2\pi(R-r)T$	(c) $4\pi(R+r)T$	(d) $4\pi(R-r)T$						
		Problems b	ased on Surface energ	ર્ય						
17.	8000 identical water energy of all the drops		a big drop. Then the ratio of the	final surface energy to the initial su	rface					
	(a) 1:10	(b) 1:15	(c) 1:20	(d) 1:25						
18.	8 mercury drops coale	esce to form one mercury drop,	the energy changes by a factor of	[DCE 2	000]					
	(a) 1	(b) 2	(c) 4	(d) 6						
19.	Which of the following	g statements are true in case w	hen two water drops coalesce and	make a bigger drop [Roorkee 1	999]					
	(a) Energy is released	1								
	(b) Energy is absorbe	ed								
	(c) The surface area of	of the bigger drop is greater th	an the sum of the surface areas of	both the drops						
	(d) The surface area		on the sum of the sumface areas of	both the drops						
20.	(u) The surface area (of the bigger drop is smaller th	an the sum of the surface areas of	both the drops						
		<i>1cm</i> is sprayed into 1000 smal		e surface tension of oil drop is 50 <i>dyn</i> [RPET 1						
	An oil drop of radius	<i>1cm</i> is sprayed into 1000 smal		e surface tension of oil drop is 50 <i>dyn</i>						
21.	An oil drop of radius then the work done is (a) $18\pi ergs$	1 <i>cm</i> is sprayed into 1000 smal (b) 180 <i>πergs</i> blowing a bubble of radius <i>R</i>	l equal drops of same radius. If th (c) 1800 $\pi ergs$	e surface tension of oil drop is 50 <i>dyn</i> [RPET 1	990] s 2 <i>R</i>					
	An oil drop of radius then the work done is (a) 18 <i>π ergs</i> If work <i>W</i> is done in	1 <i>cm</i> is sprayed into 1000 smal (b) 180 <i>πergs</i> blowing a bubble of radius <i>R</i>	l equal drops of same radius. If th (c) 1800 $\pi ergs$	e surface tension of oil drop is 50 dyna [RPET 1 (d) 18000 π ergs prk done in blowing a bubble of radiu	990] s 2 <i>R</i>					
	An oil drop of radius : then the work done is (a) $18\pi ergs$ If work <i>W</i> is done in from the same solutio (a) <i>W</i> /2	1 cm is sprayed into 1000 smal (b) $180\pi ergs$ blowing a bubble of radius <i>R</i> n is (b) $2W$	l equal drops of same radius. If th (c) $1800\pi ergs$ from a soap solution, then the we	e surface tension of oil drop is 50 dyna [RPET 1 (d) 18000 π ergs ork done in blowing a bubble of radiu [MP PET 1 (d) $2\frac{1}{3}W$	990] s 2 <i>R</i>					
21.	An oil drop of radius : then the work done is (a) $18\pi ergs$ If work <i>W</i> is done in from the same solutio (a) <i>W</i> /2	1 cm is sprayed into 1000 smal (b) $180\pi ergs$ blowing a bubble of radius <i>R</i> n is (b) $2W$	l equal drops of same radius. If th (c) $1800\pi ergs$ from a soap solution, then the we (c) $4W$	e surface tension of oil drop is 50 dyna [RPET 1 (d) 18000 π ergs ork done in blowing a bubble of radiu [MP PET 1 (d) $2\frac{1}{3}W$	990] s 2 <i>R</i>					
21.	An oil drop of radius then the work done is (a) $18\pi ergs$ If work <i>W</i> is done in from the same solutio (a) <i>W</i> /2 A liquid drop of radius (a) <i>N</i>	1 <i>cm</i> is sprayed into 1000 smal (b) 180 π ergs blowing a bubble of radius <i>R</i> n is (b) 2 <i>W</i> s <i>R</i> is broken up into <i>N</i> small d (b) $N^{2/3}$	l equal drops of same radius. If th (c) $1800\pi ergs$ from a soap solution, then the we (c) $4W$ roplets. The work done is proport	e surface tension of oil drop is 50 <i>dyne</i> [RPET 1 (d) 18000 π ergs ork done in blowing a bubble of radiu [MP PET 1 (d) $2\frac{1}{3}W$ ional to (d) N^0	990] s 2 <i>R</i>					

70 Surface Tension

(a) $8\pi R^2 T$ (b) $24 \pi R^2 T$ (c) $48 \pi R^2 T$ (d) $8\pi R^2 T^2 / 3$

1000 drops of water all of same size join together to form a single drop and the energy released raises the temperature of the 24. drop. Given that T is the surface tension of water, r the radius of each small drop, ρ the density of liquid, J the mechanical equivalent of heat. What is the rise in the temperature

						Surface Tension 71
	(a) <i>T/Jr</i>	(b)	10 <i>T/Jr</i>	(c)	100 <i>T/Jr</i>	(d) None of these
			Problems based	l on E:	ccess pressure	
2 5 .	Two bubbles <i>A</i> and <i>B</i> 2002]	(<i>A > B</i>) are	joined through a narrow	tube. The	en	[UPSEAT 2001; Kerala (Med.)
	(a) The size of A will	increase			(b)	The size of B will increase
	(c) The size of <i>B</i> will	increase un	til the pressure equals	(d)	None of these	
26.	Excess pressure of on	e soap bubb	ole is four times more tha	n the oth	er. Then the ratio of vo	olume of first bubble to another one is
						[CPMT 1997; MH CET 2000]
	(a) 1:64	(b)	1:4	(c)	64:1	(d) 1:2
7.	The pressure of air in soap solution is	a soap bul	oble of 0.7 <i>cm</i> diameter i	s 8 <i>mm</i> o	f water above the pres	ssure outside. The surface tension of the [MP PET 1991; MP PMT 1997]
	(a) 100 <i>dyne/cm</i>	(b)	68.66 <i>dyne/cm</i>	(c)	137 dyne/cm	(d) 150 <i>dyne/cm</i>
8.			er is at a depth <i>h</i> below t f water respectively, the p			nt. If <i>P</i> is atmospheric pressure, <i>d</i> and <i>D</i> be [Roorkee 1990]
	(a) $P+hdg-\frac{4T}{r}$	(b)	$P + h dg + \frac{2T}{r}$	(c)	$P + h dg - \frac{2T}{r}$	(d) $P+hdg+\frac{4T}{r}$
9.		-	-	-		hich supplies a fixed volume of air every de the bubble varies with time as shown ΔP^{\uparrow}
	(a) (a)	(b)		(c)		(d) (d) (d) (d)
		\xrightarrow{t}				\rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow
		\overrightarrow{t}	Problems based	l on Ai	t ngle of contact	\rightarrow \downarrow \downarrow t
; 0.	A liquid does not wet				•	
;0.	A liquid does not wet		Problems based a solid, if the angle of co	ntact is	ngle of contact	Haryana CEE 1998; RPMT 1999; 2003
;0.	A liquid does not wet (a) Zero	the sides of	Problems based a solid, if the angle of co	ntact is 2 1988, M	ngle of contact	Haryana CEE 1998; RPMT 1999; 2003
	-	the sides of (b)	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°)	ntact is 2 1988, M	ngle of contact	Haryana CEE 1998; RPMT 1999; 2003
	(a) Zero	the sides of (b) cury in the c	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°)	ntact is 2 1988, M (c)	ngle of contact	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°°
;1.	(a) Zero The meniscus of merc	the sides of (b) cury in the c (b)	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave	ntact is 2 1988, M (c)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90°	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°° [MP PET/PMT 1988]
1.	(a) ZeroThe meniscus of merce(a) Convex	the sides of (b) eury in the c (b) between glas	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave	ntact is 2 1988, M (c)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90°	Haryana CEE 1998; RPMT 1999; 2003) (d) 90 ⁰⁰ [MP PET/PMT 1988 (d) Uncertain
1. 2.	 (a) Zero The meniscus of merce (a) Convex The angle of contact be (a) 0° 	the sides of (b) eury in the c (b) etween glas (b)	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is	ntact is 2 1988, M (c) (c) (c)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90° Plane	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°° [MP PET/PMT 1988 (d) Uncertain [MP PMT 1987]
1. 2.	 (a) Zero The meniscus of merce (a) Convex The angle of contact be (a) 0° 	the sides of (b) eury in the c (b) etween glas (b)	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is 30°	ntact is (c) (c) (c) (c) a liquid	ngle of contact NR 1998, KCET 1998, Acute (Less than 90° Plane	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°° [MP PET/PMT 1988 (d) Uncertain [MP PMT 1987]
1. 2.	 (a) Zero The meniscus of merce (a) Convex The angle of contact be (a) 0° When the temperature (a) Increases 	the sides of (b) eury in the c (b) between glas (b) e is increase	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is 30°	ntact is (c) (c) (c) (c) (a liquid (b)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90° Plane 90°	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°° [MP PET/PMT 1988 (d) Uncertain [MP PMT 1987 (d) 135°
1. 22.	 (a) Zero The meniscus of merce (a) Convex The angle of contact be (a) 0° When the temperature (a) Increases (c) Remains the same 	the sides of (b) oury in the c (b) etween glas (b) e is increase e	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is 30° ed the angle of contact of	ntact is (c) (c) (c) (c) a liquid (b) (d)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90% Plane 90° Decreases First increases and th	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°° [MP PET/PMT 1988] (d) Uncertain [MP PMT 1987] (d) 135° hen decreases
1. 22.	 (a) Zero The meniscus of merce (a) Convex The angle of contact be (a) 0° When the temperature (a) Increases (c) Remains the same 	the sides of (b) oury in the c (b) oetween glas (b) e is increase e ch do not we	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is 30° ed the angle of contact of	ntact is (c) (c) (c) (a liquid (b) (d) atio of col	ngle of contact NR 1998, KCET 1998, Acute (Less than 90% Plane 90° Decreases First increases and the nesive force and adhes	Haryana CEE 1998; RPMT 1999; 2003) (d) 90°° [MP PET/PMT 1988] (d) Uncertain [MP PMT 1987] (d) 135° hen decreases
;1. ;2. ;3.	(a) Zero The meniscus of merce (a) Convex The angle of contact b (a) 0° When the temperatur (a) Increases (c) Remains the sam For those liquids which (a) Greater than $\frac{1}{\sqrt{2}}$	the sides of (b) oury in the c (b) etween glas (b) e is increase e ch do not we (b)	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is 30° ed the angle of contact of et the solid surface, the ra Greater than $\sqrt{2}$	ntact is (c) (c) (c) (a liquid (b) (d) atio of col	ngle of contact NR 1998, KCET 1998, Acute (Less than 90% Plane 90° Decreases First increases and the nesive force and adhes	Haryana CEE 1998; RPMT 1999; 2003) (d) 90^{00} [MP PET/PMT 1988] (d) Uncertain [MP PMT 1987] (d) 135 ° hen decreases ive force will be
31. 32. 33.	(a) Zero The meniscus of merce (a) Convex The angle of contact b (a) 0° When the temperatur (a) Increases (c) Remains the sam For those liquids whice (a) Greater than $\frac{1}{\sqrt{2}}$ The water proofing ag	the sides of (b) oury in the c (b) etween glas (b) e is increase e ch do not we (b) gent makes a	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave and mercury is 30° ed the angle of contact of et the solid surface, the ra Greater than $\sqrt{2}$ an angle of contact	ntact is (c) (c) (c) (c) (c) (c) (d) (d) (d) (c)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90°) Plane 90° Decreases First increases and the hesive force and adhest Lesser than $\frac{1}{\sqrt{2}}$	Haryana CEE 1998; RPMT 1999; 2003) (d) 90^{00} [MP PET/PMT 1988] (d) Uncertain [MP PMT 1987] (d) 135^{0} hen decreases ive force will be (d) Lesser than $\sqrt{2}$
30. 31. 32. 33.	(a) Zero The meniscus of merce (a) Convex The angle of contact b (a) 0° When the temperatur (a) Increases (c) Remains the sam For those liquids which (a) Greater than $\frac{1}{\sqrt{2}}$	the sides of (b) oury in the c (b) etween glas (b) e is increase e ch do not we (b) gent makes a to obtuse a	Problems based a solid, if the angle of co [MP PAT 1990; AFMC Obtuse (More than 90°) apillary tube is Concave ss and mercury is 30° ed the angle of contact of et the solid surface, the ra Greater than $\sqrt{2}$ an angle of contact ingle	ntact is (c) (c) (c) (c) (c) (c) (d) (d) (d) (c) (c) (b)	ngle of contact NR 1998, KCET 1998, Acute (Less than 90% Plane 90° Decreases First increases and the nesive force and adhes	Haryana CEE 1998; RPMT 1999; 2003) (d) $90^{\circ\circ}$ [MP PET/PMT 1988] (d) Uncertain [MP PMT 1987] (d) 135° hen decreases ive force will be (d) Lesser than $\sqrt{2}$

genius PHYSICS

72 5	Surface Tension		
5.	A glass plate is partly dipped vertically in the mercury and of contact will	angle of contact is measured. If the plate is incl	ined, then the angle
	(a) Increase (b) Remain unchanged	(c) Increase or decrease (d) Decrease	
	Problems bas	l on Capillarity	
•	The surface tension for pure water in a capillary tube experience	ent is	[MH CET 2002]
	(a) $\frac{\rho g}{2hr}$ (b) $\frac{2}{hr\rho g}$	(c) $\frac{r\rho g}{2h}$ (d) $\frac{hr\rho g}{2}$	
	If capillary experiment is performed in vacuum then for a		
	(a) It will rise (b) Will remain same	(c) It will fall (d) Rise to the t	-
).	A surface tension experiment with a capillary tube in wa earth, water will rise in the capillary tube upto a height of	-	evolving around the [Roorkee 1992]
	(a) 0.1 m	(b) 0.2 <i>m</i>	
	(c) 0.98 m	(d) Full length of the capillary tube	-
D.	When a capillary is dipped in water, water rises to a height	If the length of the capillary is made less than n ,	
	(a) The water will come out	(b) The water will not come out	[MP PAT 1990]
	(c) The water will not rise	(d) The water will rise but less than height of	canillary
•	A long cylindrical glass vessel has a small hole of radius ' <i>r</i> in the deep water bath (surface tension <i>T</i>) without any wat	its bottom. The depth to which the vessel can b	
	(a) $4T/\rho rg$ (b) $3T/\rho rg$	(c) $2T/\rho rg$ (d) $T/\rho rg$	
•	Water rises to a height of 10 <i>cm</i> in capillary tube and merc	falls to a depth of $3.112cm$ in the same capillary	v tube. If the density
	of mercury is 13.6 and the angle of contact for mercury is	$^{\scriptscriptstyle o}$, the ratio of surface tension of water and merc	ury is [MP PET/PMT
	(a) 1:0.15 (b) 1:3	(c) 1:6 (d) 1.5:1	
•	Water can rise to a height h in a capillary tube lowered ve l and $l < h$, then water will rise in the capillary to a height		surface of water be
	(a) <i>h</i> (b) <i>l</i>	(c) $l - h$ (d) $l + h$	
••	The height upto which water will rise in a capillary tube wi		
	(a) Maximum when water temperature is $4^{\circ}C$	(b) Maximum when water temperature is 0°	С
	(c) Minimum when water temperature is $4^{\circ}C$	(d) Same at all temperatures	
•	The exact expression for surface tension of liquid which ris		
	(a) $T = rhdg / 2$ (b) $T = rhdg / 2 \cos \theta$		$\frac{3)dg}{\theta}$
•	If a wax coated capillary tube is dipped in water, then water		
	(a) Rise up	(b) Depress	
	(c) Sometimes rise and sometimes fall	(d) Rise up and come out as a fountain	
,	Capillaries made from various materials but having the sar	sore are dipped in the same liquid, then	
	(a) Liquid will not rise in any of them(b) Liquid will rise in all upto same height		
	(c) Liquid will not rise in all upto same height		
	(d) Liquid will rise in all and height of liquid columns will	inversely proportional to the density of materia	lused
•	A straight capillary tube is immersed in water and the w height of water column will be		
	-		1
	(a) 5 <i>cm</i>	h	
	(b) Less than 5 <i>cm</i>	······	1
	(c) Greater than 5 <i>cm</i>		1
	(d) $4 \cos \alpha$		1
			10 C

(d) $4 \cos \alpha$

Water rises in a capillary tube through a height h. If the tube is inclined to the liquid surface at 30° , the liquid will rise in the 49. tube upto its length equal to

genius PHYSICS

- (a) $T = \frac{hdg}{r_2 r_1}$
- (b) $T = \frac{(r_2 r_1)hdg}{2}$
- (c) $T = \frac{(r_1 + r_2)hdg}{2}$

(d)
$$T = \frac{hdg}{2} \frac{(r_1 r_2)}{r_2 - r_1}$$

74 Surface Tension

Answer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	а	с	b	b	d	d	с	с	b
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
а	b	b	а	с	а	с	с	a, d	с
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
с	с	b	d	а	а	b	b	b	b
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
а	d	b	b	a	b	d	a	d	b
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
с	с	b	с	d	b	с	a	с	с
51.	52.	53.	54.						
с	d	b	d						