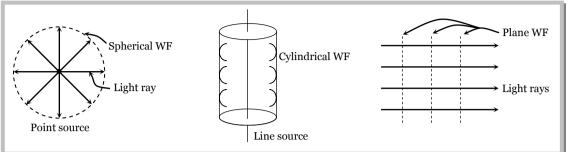
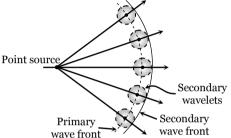


Light Propagation


Light is a form of energy which generally gives the sensation of sight.

- (1) Different theories
- (2) Optical phenomena explained ($\sqrt{}$) or not explained (\times) by the different theories of light
- (3) Wave front
- (i) Suggested by Huygens
- (ii) The locus of all particles in a medium, vibrating in the same phase is called Wave Front (WF)
- (iii) The direction of propagation of light (ray of light) is perpendicular to the WF.

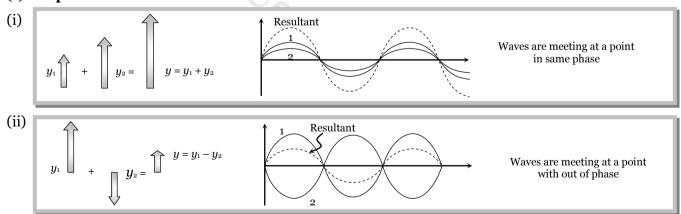
Newtons corpuscular theory	Huygen's wave theory	Maxwell's EM wave theory	Einstein's quantum theory	de-Broglie's dual theory of light
(i) Based on Rectilinear propagation of light	(i) Light travels in a hypothetical medium ether (high elasticity very low density) as waves	(i) Light travels in the form of EM waves with speed in free space $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	(i) Light is produced, absorbed and propagated as packets of energy called photons	(i) Light propagates both as particles as well as waves
(ii) Light propagates in the form of tiny particles called Corpuscles. Colour of light is due to different size of corpuscles	(ii) He proposed that light waves are of longitudinal nature. Later on it was found that they are transverse	(ii) EM waves consists of electric and magnetic field oscillation and they do not require material medium to travel	(ii) Energy associated with each photon $E = hv = \frac{hc}{\lambda}$ $h = \text{planks constant}$ $= 6.6 \times 10^{-34} J - \text{sec}$ $v = \text{frequency}$ $\lambda = \text{wavelength}$	(ii) Wave nature of light dominates when light interacts with light. The particle nature of light dominates when the light interacts with matter (microscopic particles)


S. No.	Phenomena	Theory						
		Corpuscula r	Wave	E.M. wave	Quantum	Dual		
(i)	Rectilinear Propagation	V	√	√	√	√		
(ii)	Reflection	√	V	√	√	√		
(iii)	Refraction	$\sqrt{}$	V	\checkmark	√	√		
(iv)	Dispersion	×	√	√	×	√		
(v)	Interference	×	V	√	×	√		
(vi)	Diffraction	×	√	√	×	√		
(vii)	Polarisation	×	$\sqrt{}$	√	×	√		
(viii)	Double refraction	×	$\sqrt{}$	√	×	√		
(ix)	Doppler's effect	×	$\sqrt{}$		×	V		
(x)	Photoelectric effect	×	×	×	√	√		

(iv) Types of wave front

(v) Every point on the given wave front acts as a source of new disturbance called secondary wavelets. Which travel in all directions with the velocity of light in the medium.

A surface touching these secondary wavelets tangentially in the forward direction at any instant gives the new wave front at that instant. This is called secondary wave front


 $\underline{\text{Note}}: \square$ Wave front always travels in the forward direction of the medium.

- ☐ Light rays is always normal to the wave front.
- ☐ The phase difference between various particles on the wave front is zero.

Principle of Super Position

When two or more than two waves superimpose over each other at a common particle of the medium then the resultant displacement (y) of the particle is equal to the vector sum of the displacements (y_1) and y_2 produced by individual waves. *i.e.* $\vec{y} = \vec{y}_1 + \vec{y}_2$

(1) Graphical view:

(2) Phase / Phase difference / Path difference / Time difference

- (i) Phase : The argument of sine or cosine in the expression for displacement of a wave is defined as the phase. For displacement $y = a \sin \omega t$; term $\omega t =$ phase or instantaneous phase
- (ii) Phase difference (ϕ): The difference between the phases of two waves at a point is called phase difference *i.e.* if $y_1 = a_1 \sin \omega t$ and $y_2 = a_2 \sin(\omega t + \phi)$ so phase difference = ϕ
- (iii) Path difference (Δ): The difference in path length's of two waves meeting at a point is called path difference between the waves at that point. Also $\Delta = \frac{\lambda}{2\pi} \times \phi$

Division of wave front	Division of amplitude
The light source is narrow	Light sources is extended. Light wave partly reflected (50%) and partly transmitted (50%)
The wave front emitted by a narrow source is divided in two parts by reflection of refraction.	The amplitude of wave emitted by an extend source of light is divided in two parts by partial reflection and partial refraction.
The coherent sources obtained are imaginary <i>e.g.</i> Fresnel's biprism, Llyod's mirror Youngs' double slit <i>etc</i> .	The coherent sources obtained are real <i>e.g.</i> Newtons rings, Michelson's interferrometer colours in thin films
$S = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$	M_1 Reflection coating M_2 M_2 M_2

(iv) Time difference (T.D.): Time difference between the waves meeting at a point is $T.D. = \frac{T}{2\pi} \times \phi$

(3) Resultant amplitude and intensity

If suppose we have two waves $y_1 = a_1 \sin \omega t$ and $y_2 = a_2 \sin(\omega t + \phi)$; where $a_1, a_2 =$ Individual amplitudes, $\phi =$ Phase difference between the waves at an instant when they are meeting a point. $I_1, I_2 =$ Intensities of individual waves

Resultant amplitude : After superimposition of the given waves resultant amplitude (or the amplitude of resultant wave) is given by $A = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\phi}$

For the interfering waves $y_1 = a_1 \sin \omega t$ and $y_2 = a_2 \cos \omega t$, Phase difference between them is 90°. So resultant amplitude $A = \sqrt{a_1^2 + a_2^2}$

Resultant intensity: As we know intensity ∞ (Amplitude)² $\Rightarrow I_1 = ka_1^2$, $I_2 = ka_2^2$ and $I = kA^2$ (k is a proportionality constant). Hence from the formula of resultant amplitude, we get the following formula of resultant intensity $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\phi$

Note: \square The term $2\sqrt{I_1I_2}\cos\phi$ is called interference term. For incoherent interference this term is zero so resultant intensity $I=I_1+I_2$

(4) Coherent sources

The sources of light which emits continuous light waves of the same wavelength, same frequency and in same phase or having a constant phase difference are called coherent sources.

Two coherent sources are produced from a single source of light by adopting any one of the following two methods

Note Laser light is highly coherent and monochromatic.

Two sources of light, whose frequencies are not same and phase difference between the waves emitted by them does not remain constant *w.r.t.* time are called non-coherent.

- ☐ The light emitted by two independent sources (candles, bulbs *etc.*) is non-coherent and interference phenomenon cannot be produced by such two sources.
- The average time interval in which a photon or a wave packet is emitted from an atom is defined as the **time of coherence**. It is $\tau_c = \frac{L}{c} = \frac{\text{Distance of coherence}}{\text{Velocity of light}}$, it's value is of the order of 10⁻¹⁰ sec.

Interference of Light

When two waves of exactly same frequency (coming from two coherent sources) travels in a medium, in the same direction simultaneously then due to their superposition, at some points intensity of light is maximum while at some other points intensity is minimum. This phenomenon is called Interference of light.

(1) **Types:** It is of following two types

Constructive interference	Destructive interference			
(i) When the waves meets a point with same phase, constructive interference is obtained at that point (i.e. maximum light)	(i) When the wave meets a point with opposite phase, destructive interference is obtained at that point (<i>i.e.</i> minimum light)			
(ii) Phase difference between the waves at the point of observation $\phi = 0^{o}$ or $2n\pi$	(ii) $\phi = 180^{\circ} \text{ or } (2n-1)\pi$; $n = 1, 2,$ or $(2n+1)\pi$; $n = 0,1,2$			
(iii) Path difference between the waves at the point of observation $\Delta = n\lambda$ (i.e. even multiple of $\lambda/2$)	(iii) $\Delta = (2n-1)\frac{\lambda}{2}$ (i.e. odd multiple of $\lambda/2$)			
(iv) Resultant amplitude at the point of observation will be maximum	(iv) Resultant amplitude at the point of observation will be minimum			
$a_1 = a_2 \Rightarrow A_{\min} = 0$	$A_{\min} = a_1 - a_2$			
$If a_1 = a_2 = a_0 \implies A_{\text{max}} = 2a_0$	$If a_1 = a_2 \Rightarrow A_{\min} = 0$			
(v) Resultant intensity at the point of observation will be maximum	(v) Resultant intensity at the point of observation will be minimum			
$I_{\max} = I_1 + I_2 + 2\sqrt{I_1 I_2}$	$I_{\min} = I_1 + I_2 - 2\sqrt{I_1 I_2}$			
$I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2$	$I_{\min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$			
If $I_1 = I_2 = I_0 \Rightarrow I_{\text{max}} = 2I_0$	If $I_1 = I_2 = I_0 \Rightarrow I_{\min} = 0$			

(2) Resultant intensity due to two identical waves :

For two coherent sources the resultant intensity is given by $I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$

For identical source $I_1 = I_2 = I_0 \implies I = I_0 + I_0 + 2\sqrt{I_0 I_0} \cos \phi = 4I_0 \cos^2 \frac{\phi}{2}$ [1 + \cos \theta

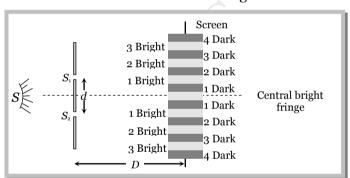
$$=2\cos^2\frac{\theta}{2}$$
]

Note:
In interference redistribution of energy takes place in the form of maxima and minima.

- ☐ Ratio of maximum and minimum intensities :

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}}\right)^2 = \left(\frac{\sqrt{I_1/I_2} + 1}{\sqrt{I_1/I_2} - 1}\right)^2 = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2 = \left(\frac{a_1/a_2 + 1}{a_1/a_2 - 1}\right)^2 \text{ also }$$

$$\sqrt{\frac{I_1}{I_2}} = \frac{a_1}{a_2} = \left(\frac{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}} + 1}{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}} - 1}\right)$$


If two waves having equal intensity $(I_1 = I_2 = I_0)$ meets at two locations P and Q with path difference Δ_1 and Δ_2 respectively then the ratio of resultant intensity at point P and Q will be

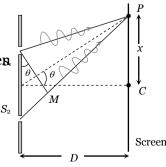
$$\frac{I_P}{I_Q} = \frac{\cos^2\frac{\phi_1}{2}}{\cos^2\frac{\phi_2}{2}} = \frac{\cos^2\left(\frac{\pi\Delta_1}{\lambda}\right)}{\cos^2\left(\frac{\pi\Delta_2}{\lambda}\right)}$$

Young's Double Slit Experiment (YDSE)

Monochromatic light (single wavelength) falls on two narrow slits S_1 and S_2 which are very close together acts as two coherent sources, when waves coming from two coherent sources (S_1, S_2) superimposes on each other, an interference pattern is obtained on the screen. In YDSE alternate bright and dark bands obtained on the screen. These bands are called Fringes.

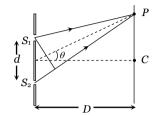
d = Distance between slits D = Distance between slits and screen λ = Wavelength of monochromatic light emitted from source

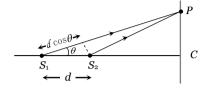
- (1) Central fringe is always bright, because at central position $\phi=0^{\,o}$ or $\Delta=0$
- (2) The fringe pattern obtained due to a slit is more bright than that due to a point.
- (3) If the slit widths are unequal, the minima will not be complete dark. For very large width uniform illumination occurs.
- (4) If one slit is illuminated with red light and the other slit is illuminated with blue light, no interference pattern is observed on the screen.
- (5) If the two coherent sources consist of object and it's reflected image, the central fringe is dark instead of bright one.


(6) Path difference

Path difference between the interfering waves meeting at a point P on the screen

is given by
$$\Delta = \frac{xd}{D} = d \sin \theta$$


where x is the position of point P from central maxima.


For maxima at $P: \Delta = n\lambda$; where $n = 0, \pm 1, \pm 2, \dots$

and For minima at $P: \quad \Delta = \frac{(2n-1)\lambda}{2}$; where $n = \pm 1, \pm 2, \dots$

Note: \square If the slits are vertical, the path difference (Δ) is $d \sin \theta$, so as θ increases, Δ also increases. But if slits are horizontal path difference is $d \cos \theta$, so as θ increases, Δ decreases.

(7) More about fringe

(i) All fringes are of

equal width. Width of each fringe is $\beta = \frac{\lambda D}{d}$ and angular fringe width $\theta = \frac{\lambda}{d} = \frac{\beta}{D}$

(ii) If the whole YDSE set up is taken in another medium then λ changes so β changes

e.g. in water
$$\lambda_w = \frac{\lambda_a}{\mu_w} \Rightarrow \beta_w = \frac{\beta_a}{\mu_w} = \frac{3}{4} \beta_a$$

(iii) Fringe width $\beta \propto \frac{1}{d}$ i.e. with increase in separation between the sources, β decreases.

(iv) Position of n^{th} bright fringe from central maxima $x_n = \frac{n\lambda D}{d} = n\beta$; n = 0, 1, 2...

(v) Position of n^{th} dark fringe from central maxima $x_n = \frac{(2n-1)\lambda D}{2d} = \frac{(2n-1)\beta}{2}$; $n = 1, 2, 3 \dots$

(vi) In YDSE, if n_1 fringes are visible in a field of view with light of wavelength λ_1 , while n_2 with light of wavelength λ_2 in the same field, then $n_1 \lambda_1 = n_2 \lambda_2$.

(vii) Separation (Δx) between fringes

Between n^{th} bright and m^{th} bright fringes $(n > m)$	Between $n^{ ext{th}}$ bright and $m^{ ext{th}}$ dark fringe
$\Delta x = (n - m)\beta$	(a) If $n > m$ then $\Delta x = \left(n - m + \frac{1}{2}\right)\beta$
$\Delta x = (i - m)p$	(b) If $n < m$ then $\Delta x = \left(m - n - \frac{1}{2}\right)\beta$

(8) Identification of central bright fringe

To identify central bright fringe, monochromatic light is replaced by white light. Due to overlapping central maxima will be white with red edges. On the other side of it we shall get a few coloured band and then uniform illumination.

(9) Condition for observing sustained interference

(i) The initial phase difference between the interfering waves must remain constant : Otherwise the interference will not be sustained.

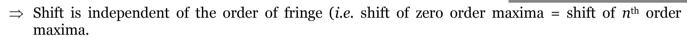
(ii) The frequency and wavelengths of two waves should be equal: If not the phase difference will not remain constant and so the interference will not be sustained.

(iii) The light must be monochromatic: This eliminates overlapping of patterns as each wavelength corresponds to one interference pattern.

(iv) The amplitudes of the waves must be equal: This improves contrast with $I_{\text{max}} = 4I_0$ and $I_{\text{min}} = 0$.

Screen

(v) The sources must be close to each other: Otherwise due to small fringe width $\left(\beta \propto \frac{1}{d}\right)$ the eye can not resolve fringes resulting in uniform illumination.

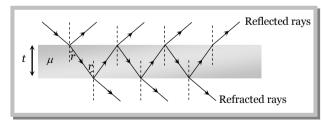

(10) Shifting of fringe pattern in YDSE

If a transparent thin film of mica or glass is put in the path of one of the waves, then the whole fringe pattern gets shifted.

If film is put in the path of upper wave, fringe pattern shifts upward and if film is placed in the path of lower wave, pattern shift downward.

Fringe shift =
$$\frac{D}{d}(\mu - 1)t = \frac{\beta}{\lambda}(\mu - 1)t$$

- \Rightarrow Additional path difference = $(\mu 1)t$
- \Rightarrow If shift is equivalent to *n* fringes then $n = \frac{(\mu 1)t}{\lambda}$ or $t = \frac{n\lambda}{(\mu 1)}$


 \Rightarrow Shift is independent of wavelength.

Illustrations of Interference

Interference effects are commonly observed in thin films when their thickness is comparable to wavelength of incident light (If it is too thin as compared to wavelength of light it appears dark and if it is too thick, this will result in uniform illumination of film). Thin layer of oil on water surface and soap bubbles shows various colours in white light due to interference of waves reflected from the two surfaces of the film.

(1) **Thin films:** In thin films interference takes place between the waves reflected from it's two surfaces and waves refracted through it.

Interference in reflected light	Interference in refracted light				
Condition of constructive interference (maximum intensity)	Condition of constructive interference (maximum intensity)				
$\Delta = 2\mu \ t \cos r = (2n \pm 1) \frac{\lambda}{2}$	$\Delta = 2\mu t \cos r = (2n)\frac{\lambda}{2}$				
For normal incidence $r = 0$	For normal incidence				
so $2\mu t = (2n \pm 1)\frac{\lambda}{2}$	$2\mu t = n\lambda$				

Condition of destructive interference (minimum intensity)

Condition of destructive interference intensity)

(minimum

$$\Delta = 2\mu t \cos r = (2n)\frac{\lambda}{2}$$

$$\Delta = 2\mu t \cos r = (2n \pm 1)\frac{\lambda}{2}$$

For normal incidence $2\mu t = n\lambda$

For normal incidence $2\mu t = (2n \pm 1)\frac{\lambda}{2}$

Doppler's Effect in Light

The phenomenon of apparent change in frequency (or wavelength) of the light due to relative motion between the source of light and the observer is called Doppler's effect.

If v = actual frequency, v' = Apparent frequency, v = speed of source w.r.t stationary observer, c = speed of light

Source of light moves towards the stationary observer ($v << c$)	Source of light moves away from the stationary observer $(v << c)$					
(i) Apparent frequency $v' = v \left(1 + \frac{v}{c} \right)$ and	(i) Apparent frequency $v' = v \left(1 - \frac{v}{c} \right)$ and					
Apparent wavelength $\lambda' = \lambda \left(1 - \frac{v}{c}\right)$	Apparent wavelength $\lambda' = \lambda \left(1 + \frac{v}{c}\right)$					
(ii) Doppler's shift : Apparent wavelength < actual wavelength,	(ii) Doppler's shift : Apparent wavelength > actual wavelength,					
So spectrum of the radiation from the source of light shifts towards the red end of spectrum. This is called Red shift	So spectrum of the radiation from the source of light shifts towards the violet end of spectrum. This is called Violet shift					
Doppler's shift $\Delta \lambda = \lambda \cdot \frac{v}{c}$	Doppler's shift $\Delta \lambda = \lambda \cdot \frac{v}{c}$					

Note: \square Doppler's shift $(\Delta \lambda)$ and time period of rotation (T) of a star relates as $\Delta \lambda = \frac{\lambda}{c} \times \frac{2\pi r}{T}$; r = radius of star.

Applications of Doppler effect

- (i) Determination of speed of moving bodies (aeroplane, submarine etc) in RADAR and SONAR.
- (ii) Determination of the velocities of stars and galaxies by spectral shift.
- (iii) Determination of rotational motion of sun.
- (iv) Explanation of width of spectral lines.
- (v) Tracking of satellites. (vi) In medical sciences in echo cardiogram, sonography etc.

Concepts

- The angular thickness of fringe width is defined as $\delta = \frac{\beta}{D} = \frac{\lambda}{d}$, which is independent of the screen distance D.
- © Central maxima means the maxima formed with zero optical path difference. It may be formed anywhere on the screen.
- All the wavelengths produce their central maxima at the same position.
- The wave with smaller wavelength from its maxima before the wave with longer wavelength.
- The first maxima of violet colour is closest and that for the red colour is farthest.

Fringes with blue light are thicker than those for red light.

In an interference pattern, whatever energy disappears at the minimum, appears at the maximum.

In YDSE, the nth maxima always comes before the nth minima.

In YDSE, the ratio $\frac{I_{\max}}{I_{\min}}$ is maximum when both the sources have same intensity.

For two interfering waves if initial phase difference between them is ϕ_0 and phase difference due to path difference between them is ϕ' . Then total phase difference will be $\phi = \phi_0 + \phi' = \phi_0 + \frac{2\pi}{2}\Delta$.

Sometimes maximm number of maximas or minimas are asked in the question which can be obtained on the screen. For this we use the fact that value of $\sin \theta$ (or $\cos \theta$) can't be greater than 1. For example in the first case when the slits are vertical

 $\sin \theta = \frac{n\lambda}{d}$

(for maximum intensity)

 $\sin \theta \geqslant 1$: $\frac{n\lambda}{d} \geqslant 1$ or $n \geqslant \frac{d}{2}$

Suppose in some question d/λ comes out say 4.6, then total number of maximus on the screen will be 9. Corresponding to $n = 0, \pm 1, \pm 2, \pm 3$ and ± 4 .

Shape of wave front

If rays are parallel, wave front is plane. If rays are converging wave front is spherical of decreasing radius. If rays are diverging wave front is spherical of increasing radius.

Example

If two light waves having same frequency have intensity ratio 4:1 and they interfere, the ratio of Example: 1 maximum to minimum intensity in the pattern will be

(d) 16:25

Solution: (a)

By using
$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{\sqrt{\frac{I_1}{I_2}} + 1}{\sqrt{\frac{I_1}{I_2}} - 1}\right)^2 = \left(\frac{\sqrt{\frac{4}{1}} + 1}{\sqrt{\frac{4}{1}} - 1}\right)^2 = \frac{9}{1}$$
.

In Young's double slit experiment using sodium light ($\lambda = 5898\text{Å}$), 92 fringes are seen. If given Example: 2 colour ($\lambda = 5461\text{Å}$) is used, how many fringes will be seen

(a) 62

(d) 99

Solution: (d)

By using $n_1 \lambda_1 = n_2 \lambda_2 \implies 92 \times 5898 = n_2 \times 5461 \implies n_2 = 99$

Two beams of light having intensities I and 4I interfere to produce a fringe pattern on a screen. The Example: 3 phase difference between the beams is $\frac{\pi}{2}$ at point A and π at point B. Then the difference between the resultant intensities at A and B is

(a) 2I

(c) 5I

(d) 7I

Solution: (b)

By using $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \phi$

At point A: Resultant intensity $I_A = I + 4I + 2\sqrt{I \times 4I} \cos \frac{\pi}{2} = 5I$

At point B: Resultant intensity $I_B = I + 4I + 2\sqrt{I \times 4I} \cos \pi = I$. Hence the difference $= I_A - I_B = 4I$

If two waves represented by $y_1 = 4 \sin \omega t$ and $y_2 = 3 \sin \left(\omega t + \frac{\pi}{3} \right)$ interfere at a point, the amplitude of the Example: 4 resulting wave will be about

(a) 7

(b) 6

(d) 3.

Solution: (b)

By using $A = \sqrt{a_1^2 + a_2^2 + 2a_1a_2\cos\phi} \implies A = \sqrt{(4)^2 + (3)^2 + 2 \times 4 \times 3\cos\frac{\pi}{2}} = \sqrt{37} \approx 6$.

Two waves being produced by two sources S_1 and S_2 . Both sources have zero phase difference and Example: 5 have wavelength λ . The destructive interference of both the waves will occur of point P if $(S_1P - S_2P)$ has the value

[MP PET 1987]

(a) 5λ

(b) $\frac{3}{4}\lambda$

(d) $\frac{11}{2}\lambda$

For destructive interference, path difference the waves meeting at P (i.e. $S_1P - S_2P$) must be odd Solution: (d) multiple of $\lambda/2$. Hence option (d) is correct.

Two interfering wave (having intensities are 9I and 4I) path difference between them is 11 λ . The Example: 6 resultant intensity at this point will be

Path difference $\Delta = \frac{\lambda}{2\pi} \times \phi \implies \frac{2\pi}{\lambda} \times 11\lambda = 22\pi$ *i.e.* constructive interference obtained at the same Solution: (d)

So, resultant intensity $I_R = (\sqrt{I_1} + \sqrt{I_2})^2 = (\sqrt{9I} + \sqrt{4I})^2 = 25I$.

In interference if $\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{144}{81}$ then what will be the ratio of amplitudes of the interfering wave Example: 7

Solution: (b)

By using $\frac{a_1}{a_2} = \left(\frac{\sqrt{\frac{I_{\text{max}}}{I_{\text{min}}}} + 1}{\sqrt{\frac{I_{\text{max}}}{I_{\text{m}}}} - 1}\right) = \left(\frac{\sqrt{\frac{144}{81}} + 1}{\sqrt{\frac{144}{81}} - 1}\right) = \left(\frac{\frac{12}{9} + 1}{\frac{12}{5} - 1}\right) = \frac{7}{1}$

Example: 8 Two interfering waves having intensities x and y meets a point with time difference 3T/2. What will be the resultant intensity at that point

(a) $(\sqrt{x} + \sqrt{y})$

(b) $(\sqrt{x} + \sqrt{y} + \sqrt{xy})$ (c) $x + y + 2\sqrt{xy}$ (d) $\frac{x + y}{2xy}$

Time difference T.D. $=\frac{T}{2\pi}\times\phi\Rightarrow \frac{3T}{2}=\frac{T}{2\pi}\times\phi\Rightarrow \phi=3\pi$; This is the condition of constructive Solution: (c) interference.

So resultant intensity $I_R = (\sqrt{I_1} + \sqrt{I_2})^2 = (\sqrt{x} + \sqrt{y})^2 = x + y + 2\sqrt{xy}$

In Young's double-slit experiment, an interference pattern is obtained on a screen by a light of Example: 9 wavelength 6000 Å, coming from the coherent sources S_1 and S_2 . At certain point P on the screen third dark fringe is formed. Then the path difference $S_1P - S_2P$ in microns is [EAMCET 2003]

(a) 0.75

(b) 1.5

(c) 3.0

(d) 4.5

For dark fringe path difference $\Delta = (2n-1)\frac{\lambda}{2}$; here n=3 and $\lambda = 6000 \times 10^{-10}$ m Solution: (b)

So
$$\Delta = (2 \times 3 - 1) \times \frac{6 \times 10^{-7}}{2} = 15 \times 10^{-7} m = 1.5 \text{ microns.}$$

In a Young's double slit experiment, the slit separation is 1 mm and the screen is 1 m from the slit. For a Example: 10 monochromatic light of wavelength 500 nm, the distance of 3rd minima from the central maxima is

- (b) 1.25 mm
- (c) 1.50 mm

Distance of n^{th} minima from central maxima is given as $x = \frac{(2n-1)\lambda D}{2d}$ Solution: (b)

So here
$$x = \frac{(2 \times 3 - 1) \times 500 \times 10^{-9} \times 1}{2 \times 10^{-3}} = 1.25 \, mm$$

The two slits at a distance of 1 mm are illuminated by the light of wavelength 6.5×10^{-7} m. The interference Example: 11 fringes are observed on a screen placed at a distance of 1 m. The distance between third dark fringe and fifth bright fringe will be

[NCERT 1982; MP PET 1995; BVP 2003]

- (a) 0.65 mm
- (b) 1.63 mm
- (c) 3.25 mm
- (d) 4.88 mm

bright and $m^{\rm th}$ dark fringe (n >m) is given Solution: (b) Distance between $n^{
m th}$ $x = \left(n - m + \frac{1}{2}\right)\beta = \left(n - m + \frac{1}{2}\right)\frac{\lambda D}{d}$

$$\Rightarrow x = \left(5 - 3 + \frac{1}{2}\right) \times \frac{6.5 \times 10^{-7} \times 1}{1 \times 10^{-3}} = 1.63 \, mm \ .$$

Example: 12 The slits in a Young's double slit experiment have equal widths and the source is placed symmetrically relative to the slits. The intensity at the central fringes is I_0 . If one of the slits is closed, the intensity at this point will be [MP PMT 1996]

- (b) $I_0/4$
- (d) $4I_0$

By using $I_R = 4I\cos^2\frac{\phi}{2}$ {where I = Intensity of each wave} Solution: (b)

At central position $\phi = 0^{\circ}$, hence initially $I_0 = 4I$.

If one slit is closed, no interference takes place so intensity at the same location will be I only i.e. intensity become $s \frac{1}{4} th$ or $\frac{I_0}{4}$.

Example: 13 In double slit experiment, the angular width of the fringes is 0.20° for the sodium light ($\lambda = 5890 \text{ Å}$). In order to increase the angular width of the fringes by 10%, the necessary change in the wavelength is

- (b) Decrease of 589 \mathring{A} (c) Increase of 6479 \mathring{A}

By using $\theta = \frac{\lambda}{d} \Rightarrow \frac{\theta_1}{\theta_2} = \frac{\lambda_1}{\lambda_2} \Rightarrow \frac{0.20^{\circ}}{(0.20^{\circ} + 10\% \text{ of } 0.20)} = \frac{5890}{\lambda_2} \Rightarrow \frac{0.20}{0.22} = \frac{5890}{\lambda_2} \Rightarrow \lambda_2 = 6479$ Solution: (a)

So increase in wavelength = 6479 - 5890 = 589 Å.

Example: 14 In Young's experiment, light of wavelength 4000 Å is used, and fringes are formed at 2 metre distance and has a fringe width of 0.6 mm. If whole of the experiment is performed in a liquid of refractive index 1.5, then width of fringe will be

[MP PMT 1994, 97]

- (a) 0.2 mm
- (b) 0.3 mm
- (c) 0.4 mm
- (d) 1.2 mm

 $\beta_{medium} = \frac{\beta_{air}}{\mu} \implies \beta_{medium} = \frac{0.6}{1.5} = 0.4 mm$. Solution: (c)

Two identical sources emitted waves which produces intensity of k unit at a point on screen where Example: 15 path difference is λ . What will be intensity at a point on screen at which path difference is $\lambda/4$ [RPET 1996]

(a) $\frac{k}{4}$

- (b) $\frac{\kappa}{2}$
- (c) k

(d) Zero

By using phase difference $\phi = \frac{2\pi}{2}(\Delta)$ Solution: (b)

For path difference λ , phase difference $\phi_1 = 2\pi$ and for path difference $\lambda/4$, phase difference $\phi_2 = \pi/2$.

Also by using
$$I = 4I_0 \cos^2 \frac{\phi}{2} \implies \frac{I_1}{I_2} = \frac{\cos^2(\phi_1/2)}{\cos^2(\phi_2/2)} \implies \frac{k}{I_2} = \frac{\cos^2(2\pi/2)}{\cos^2(\frac{\pi/2}{2})} = \frac{1}{1/2} \implies I_2 = \frac{k}{2}.$$

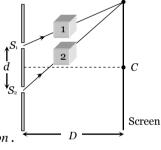
A thin mica sheet of thickness 2×10^{-6} m and refractive index ($\mu = 1.5$) is introduced in the path of the Example: 16 first wave. The wavelength of the wave used is 5000Å. The central bright maximum will shift [CPMT 1999]

(a) 2 fringes upward

- (b) 2 fringes downward (c) 10 fringes upward
- (d) None of these
- By using shift $\Delta x = \frac{p}{\lambda}(\mu 1)t \implies \Delta x = \frac{\beta}{5000 \times 10^{-10}}(1.5 1) \times 2 \times 10^{-6} = 2\beta$ Solution: (a)

Since the sheet is placed in the path of the first wave, so shift will be 2 fringes upward.

In a YDSE fringes are observed by using light of wavelength 4800 Å, if a glass plate ($\mu = 1.5$) is Example: 17 introduced in the path of one of the wave and another plates is introduced in the path of the ($\mu = 1.8$) other wave. The central fringe takes the position of fifth bright fringe. The thickness of plate will be


(a) 8 micron

- (b) 80 micron
- (c) 0.8 micron
- (d) None of these
- Shift due to the first plate $x_1 = \frac{\beta}{2}(\mu_1 1)t$ Solution: (a)

and shift due to the second $x_2 = \frac{\beta}{\lambda}(\mu_2 - 1)t$ (Downward)

Hence net shift = $x_2 - x_1 = \frac{\beta}{2} (\mu_2 - \mu_1) t$

$$\Rightarrow 5p = \frac{\beta}{\lambda}(1.8 - 1.5)t \Rightarrow t = \frac{5\lambda}{0.3} = \frac{5 \times 4800 \times 10^{-10}}{0.3} = 8 \times 10^{-6} m = 8 \, micron \,.$$

In young double slit experiment $\frac{d}{D} = 10^{-4}$ (d = distance between slits, D = distance of screen from Example: 18 the slits). At a point P on the screen resulting intensity is equal to the intensity due to individual slit I_0 . Then the distance of point P from the central maxima is ($\lambda = 6000 \text{ Å}$)

(a) 2 mm

- (b) 1 mm
- (c) 0.5 mm
- By using shift $I = 4I_0 \cos^2(\phi/2) \Rightarrow I_0 = 4I_0 \cos^2(\phi/2) \Rightarrow \cos(\phi/2) = \frac{1}{2} \text{ or } \frac{\phi}{2} = \frac{\pi}{3} \Rightarrow \phi = \frac{2\pi}{3}$ Solution: (a)

Also path difference $\Delta = \frac{xd}{D} = \frac{\lambda}{2\pi} \times \phi \Rightarrow x \times \left(\frac{d}{D}\right) = \frac{6000 \times 10^{-10}}{2\pi} \times \frac{2\pi}{3} \Rightarrow x = 2 \times 10^{-3} m = 2mm.$

Two identical radiators have a separation of $d = \lambda/4$, where λ is the wavelength of the waves emitted Example: 19 by either source. The initial phase difference between the sources is $\pi/4$. Then the intensity on the screen at a distance point situated at an angle $\theta = 30^{\circ}$ from the radiators is (here I_0 is the intensity at that point due to one radiator)

(a) I_0

- (b) $2I_0$
- (c) $3I_0$
- (d) $4I_0$
- Initial phase difference $\phi_0 = \frac{\pi}{4}$; Phase difference due to path difference $\phi' = \frac{2\pi}{4}(\Delta)$ Solution: (a)

where $\Delta = d \sin \theta \Rightarrow \phi' = \frac{2\pi}{\lambda} (d \sin \theta) = \frac{2\pi}{\lambda} \times \frac{\lambda}{\lambda} (\sin 30^{\circ}) = \frac{\pi}{\lambda}$

Hence total phase difference $\phi = \phi_0 + \phi' = \frac{\phi}{4}$. By using $I = 4I_0 \cos^2(\phi/2) = 4I_0 \cos^2(\frac{\pi/2}{2}) = 2I_0$.

Example: 20 In *YDSE* a source of wavelength 6000 Å is used. The screen is placed 1 *m* from the slits. Fringes formed on the screen, are observed by a student sitting close to the slits. The student's eye can distinguish two neighbouring fringes. If they subtend an angle more than 1 minute of arc. What will be the maximum distance between the slits so that the fringes are clearly visible

(c)
$$2.06 \times 10^{-3} \, mm$$

Solution: (a) According to given problem angular fringe width
$$\theta = \frac{\lambda}{d} \ge \frac{\pi}{180 \times 60}$$
 [As 1' = $\frac{\pi}{180 \times 60}$ rad]

i.e.
$$d < \frac{6 \times 10^{-7} \times 180 \times 60}{\pi}$$
 i.e. $d < 2.06 \times 10^{-3} m \implies d_{\text{max}} = 2.06 \, mm$

Example: 21 the maximum intensity in case of interference of n identical waves, each of intensity I_0 , if the interference is (i) coherent and (ii) incoherent respectively are

(a)
$$n^2 I_0, n I_0$$

(b)
$$nI_0, n^2I_0$$

(c)
$$nI_0, I_0$$

(d)
$$n^2 I_0, (n-1)I_0$$

Solution: (a) In case of interference of two wave
$$I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$$

(i) In case of coherent interference ϕ does not vary with time and so I will be maximum when $\cos \phi = \max = 1$

i.e.
$$(I_{\text{max}})_{co} = I_1 + I_2 + 2\sqrt{I_1I_2} = (\sqrt{I_1} + \sqrt{I_2})^2$$

So for n identical waves each of intensity I_0 $(I_{\max})_{co} = (\sqrt{I_0} + \sqrt{I_0} +)^2 = (n\sqrt{I_0})^2 = n^2 I_0$

(ii)In case of incoherent interference at a given point, ϕ varies randomly with time, so $(\cos \phi)_{av} = 0$ and hence $(I_R)_{Inco} = I_1 + I_2$

So in case of n identical waves $(I_R)_{Inco} = I_0 + I_0 + \dots = nI_0$

Example: 22 The width of one of the two slits in a Young's double slit experiment is double of the other slit. Assuming that the amplitude of the light coming from a slit is proportional to the slit width. The ratio of the maximum to the minimum intensity in interference pattern will be

(a)
$$\frac{1}{a}$$

(b)
$$\frac{9}{1}$$

(c)
$$\frac{2}{1}$$

(d)
$$\frac{1}{2}$$

Solution: (b)
$$A_{\text{max}} = 2A + A = 3A \text{ and } A_{\text{min}} = 2A - A = A \cdot \text{Also } \frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{A_{\text{max}}}{A_{\text{min}}}\right)^2 = \left(\frac{3A}{A}\right)^2 = \frac{9}{1}$$

Example: 23 A star is moving towards the earth with a speed of $4.5 \times 10^6 m/s$. If the true wavelength of a certain line in the spectrum received from the star is 5890 Å, its apparent wavelength will be about $[c = 3 \times 10^8 m/s]$

[MP PMT 1999]

(a)
$$5890 \, \text{Å}$$

(b)
$$5978 \, \text{\AA}$$

Solution: (c) By using
$$\lambda' = \lambda \left(1 - \frac{v}{c} \right) \implies \lambda' = 5890 \left(1 - \frac{4.5 \times 10^6}{3 \times 10^8} \right) = 5802 \text{ Å}.$$

Example: 24 Light coming from a star is observed to have a wavelength of 3737 Å, while its real wavelength is 3700 Å. The speed of the star relative to the earth is [Speed of light = $3 \times 10^8 m/s$] [MP PET 1997]

(a)
$$3 \times 10^5 m/s$$

(b)
$$3 \times 10^6 m/s$$

(c)
$$3.7 \times 10^7 m/s$$

(d)
$$3.7 \times 10^6 m/s$$

Solution: (b) By using
$$\Delta \lambda = \lambda \frac{v}{c} \Rightarrow (3737-3700) = 3700 \times \frac{v}{3 \times 10^8} \Rightarrow v = 3 \times 10^6 \text{ m/s}$$
.

Example: 25 Light from the constellation Virgo is observed to increase in wavelength by 0.4%. With respect to Earth the constellation is [MP PMT 1994, 97; MP PET 2003]

- (a) Moving away with velocity $1.2 \times 10^6 m / s$
- (b) Coming closer with velocity $1.2 \times 10^6 m / s$
- (c) Moving away with velocity $4 \times 10^6 m / s$
- (d) Coming closer with velocity $4 \times 10^6 m / s$

Solution: (a) By using
$$\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$$
; where $\frac{\Delta \lambda}{\lambda} = \frac{0.4}{100}$ and $c = 3 \times 10^8 \text{ m/s} \Rightarrow \frac{0.4}{100} = \frac{v}{3 \times 10^8} \Rightarrow v = 1.2 \times 10^6 \text{ m/s}$

Since wavelength is increasing *i.e.* it is moving away.

Tricky example: 1

In YDSE, distance between the slits is $2 \times 10^{-3} m$, slits are illuminated by a light of wavelength 2000Å -9000 Å. In the field of view at a distance of $10^{-3} m$ from the central position which wavelength will be observe. Given distance between slits and screen is 2.5 m

- (a) 40000 Å
- (b) 4500 Å
- (c) 5000 Å
- (d) 5500 Å

Solution: (b)
$$x = \frac{n\lambda D}{d} \Rightarrow \lambda = \frac{xd}{nD} = \frac{10^{-3} \times 2 \times 10^{-3}}{n \times 2.5} \Rightarrow \frac{8 \times 10^{-7}}{n} m = \frac{8000}{n} \mathring{A}$$

For
$$n = 1, 2, 3...$$
 $\lambda = 8000 \text{ Å}, 4000 \text{ Å}, \frac{8000}{3} \text{ Å} ...$

Hence only option (a) is correct.

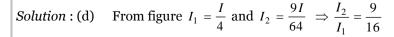
Tricky example: 2

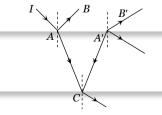
I is the intensity due to a source of light at any point *P* on the screen. If light reaches the point *P* via two different paths (a) direct (b) after reflection from a plane mirror then path difference between two paths is $3\lambda/2$, the intensity at *P* is

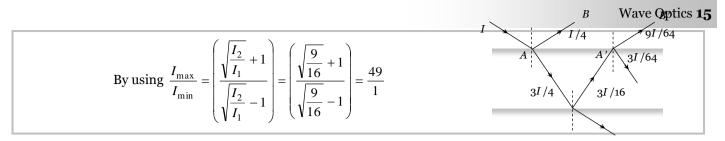
(a) I

- (b) Zero
- (c) 2I
- (d) 4I

Solution: (d) Reflection of light from plane mirror gives additional path difference of $\lambda/2$ between two waves

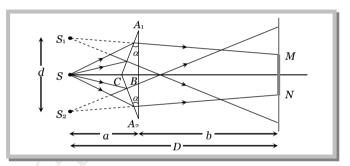

$$\therefore \text{ Total path difference} = \frac{3\lambda}{2} + \frac{\lambda}{2} = 2\lambda$$


Which satisfies the condition of maxima. Resultant intensity = $(\sqrt{I} + \sqrt{I})^2 = 4I$.


Tricky example: 3

A ray of light of intensity I is incident on a parallel glass-slab at a point A as shown in figure. It undergoes partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays AB and A'B' undergo interference. The ratio I_{\max} / I_{\min} is

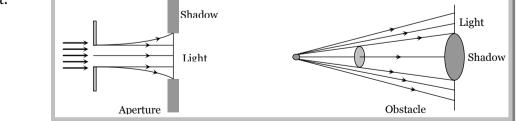
- (a) 4:1
- (b) 8:1
- (c) 7:1
- (d) 49:1



Fresnel's Biprism

- (1) It is an optical device of producing interference of light Fresnel's biprism is made by joining base to base two thin prism (A_1BC and A_2BC as shown in the figure) of very small angle or by grinding a thick glass plate.
 - (2) Acute angle of prism is about 1/2° and obtuse angle of prism is about 179°.
- (3) When a monochromatic light source is kept in front of biprism two coherent virtual source S_1 and S_2 are produced.
- (4) Interference fringes are found on the screen (in the *MN* region) placed behind the biprism interference fringes are formed in the limited region which can be observed with the help eye piece.
 - (5) Fringe width is measured by a micrometer attached to the eye piece. Fringes are of equal width and

its value is
$$\beta = \frac{\lambda D}{d} \Rightarrow \lambda = \frac{\beta d}{D}$$



Let the separation between S_1 and S_2 be d and the distance of slits and the screen from the biprism be a and b respectively i.e. D = (a + b). If angle of prism is α and refractive index is μ then $d = 2a(\mu - 1)\alpha$

$$\lambda = \frac{\beta [2a(\mu - 1)\alpha]}{(a+b)} \quad \Rightarrow \quad \beta = \frac{(a+b)\lambda}{2a(\mu - 1)\alpha}$$

Diffraction of Light

It is the phenomenon of bending of light around the corners of an obstacle/aperture of the size of the wavelength of light.

Note : □ Diffraction is the characteristic of all types of waves.

- $\hfill \Box$ Greater the wavelength of wave, higher will be it's degree of diffraction.
- ☐ Experimental study of diffraction was extended by Newton as well as Young. Most systematic study carried out by Huygens on the basis of wave theory.

- The minimum distance at which the observer should be from the obstacle to observe the diffraction of light of wavelength λ around the obstacle of size d is given by $x = \frac{d^2}{4\lambda}$.
- (1) **Types of diffraction:** The diffraction phenomenon is divided into two types

Fresnel diffraction	Fraunhofer diffraction				
(i) If either source or screen or both are at finite	(i) In this case both source and screen are				
distance from the diffracting device (obstacle or	effectively at infinite distance from the				
aperture), the diffraction is called Fresnel type.	diffracting device.				
(ii) Common examples: Diffraction at a straight	(ii) Common examples : Diffraction at single slit,				
edge, narrow wire or small opaque disc etc.	double slit and diffraction grating.				
Source Slit Screen	$\begin{array}{c c} & & & \\ & & & \\ Source \\ \text{at} \infty & & \\ & & \\ Slit & & \\ \end{array}$ Screen				

(2) **Diffraction of light at a single slit :** In case of diffraction at a single slit, we get a central bright band with alternate bright (maxima) and dark (minima) bands of decreasing intensity as shown

- (i) Width of central maxima $\rho_0 = \frac{1}{d}$, and angular width $= \frac{1}{d}$
- (ii) Minima occurs at a point on either side of the central maxima, such that the path difference between the waves from the two ends of the aperture is given by $\Delta = n\lambda$; where $n = 1, 2, 3 \dots$

i.e.
$$d \sin \theta = n\lambda \implies \sin \theta = \frac{n\lambda}{d}$$

(iii) The secondary maxima occurs, where the path difference between the waves from the two ends of the aperture is given by $\Delta = (2n+1)\frac{\lambda}{2}$; where n=1,2,3...

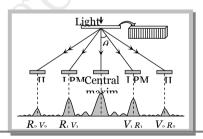
i.e.
$$d \sin \theta = (2n+1)\frac{\lambda}{2} \Rightarrow \sin \theta = \frac{(2n+1)\lambda}{2d}$$

(3) Comparison between interference and diffraction

Interference	Diffraction
Results due to the superposition of waves from two coherrent sources.	Results due to the superposition of wavelets from different parts of same wave front. (single coherent
	source)

All fringes are of same width $\beta = \frac{\lambda D}{d}$	All secondary fringes are of same width but the central maximum is of double the width				
	$\beta_0 = 2\beta = 2\frac{\lambda D}{d}$				
All fringes are of same intensity	Intensity decreases as the order of maximum				
	increases.				
Intensity of all minimum may be zero	Intensity of minima is not zero.				
Positions of <i>n</i> th maxima and minima	Positions of <i>n</i> th secondary maxima and minima				
$x_{n(\text{Bright})} = \frac{n\lambda D}{d}, x_{n(\text{Dark})} = (2n-1)\frac{\lambda D}{d}$	$x_{n(\text{Bright})} = (2n+1)\frac{\lambda D}{d}, x_{n(\text{Dark})} = \frac{n\lambda D}{d}$				
Path difference for <i>n</i> th maxima $\Delta = n\lambda$	for <i>n</i> th secondary maxima $\Delta = (2n+1)\frac{\lambda}{2}$				
Path difference for <i>n</i> th minima $\Delta = (2n-1)\lambda$	Path difference for <i>n</i> th minima $\Delta = n\lambda$				

(4) **Diffraction and optical instruments:** The objective lens of optical instrument like telescope

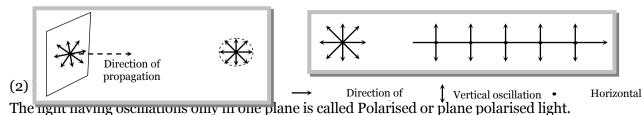

or microscope etc. acts like a circular aperture. Due to diffraction of light at a circular aperture, a converging lens cannot form a point image of an object rather it produces a brighter disc known as Airy disc surrounded by alternate dark and bright concentric rings.

The angular half width of Airy disc = $\theta = \frac{1.22 \lambda}{D}$ (where D = aperture of lens)

The lateral width of the image = $f\theta$ (where f = focal length of the lens)

Note:
Diffraction of light limits the ability of optical instruments to form clear images of objects when they are close to each other.

(5) **Diffraction grating :** Consists of large number of equally spaced parallel slits. If light is incident normally on a transmission grating, the diffraction of principle maxima (PM) is given by $d \sin \theta = n\lambda$; where d = distance between two consecutive slits and is called grating element.



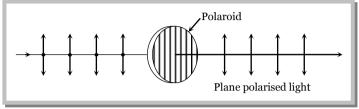
Polarisation of Light

Light propagates as transverse EM waves. The magnitude of electric field is much larger as compared to magnitude of magnetic field. We generally prefer to describe light as electric field oscillations.

(1) Unpolarised light

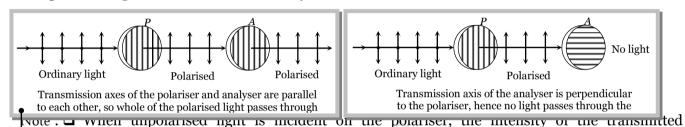
The light having electric field oscillations in all directions in the plane perpendicular to the direction of propagation is called Unpolarised light. The oscillation may be resolved into horizontal and vertical component.

- (i) The plane in which oscillation occurs in the polarised light is called plane of oscillation.
- (ii) The plane perpendicular to the plane of oscillation is called plane of polarisation.

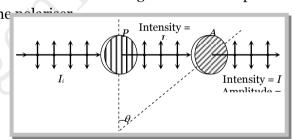

(iii) Light can be polarised by transmitting through certain crystals such as tourmaline or polaroids.

(3) Polaroids

It is a device used to produce the plane polarised light. It is based on the principle of selective absorption and is more effective than the tourmaline crystal. or


It is a thin film of ultramicroscopic crystals of quinine idosulphate with their optic axis parallel to

each other.


(i) Polaroids allow the light oscillations parallel to the transmission axis pass through them.

(ii) The crystal or polaroid on which unpolarised light is incident is called polariser. Crystal or polaroid on which polarised light is incident is called analyser.

polarised light is half the intensity of unpolarised light.

(4) **Malus law** This law states that the intensity of the polarised light transmitted through the analyser varies as the square of the cosine of the angle between the plane of transmission of the analyser and the plane of the relation

Partial polarised

(i)
$$I = I_0 \cos^2 \theta$$
 and $A^2 = A_0^2 \cos^2 \theta \Rightarrow A = A_0 \cos \theta$

If
$$\theta = 0^{\circ}$$
, $I = I_0$, $A = A_0$, If $\theta = 45^{\circ}$, $I = \frac{I_0}{2}$, $A = \frac{A_0}{\sqrt{2}}$, If $\theta = 90^{\circ}$, $I = 0$, $A = 0$

(ii) If I_i = Intensity of unpolarised light.

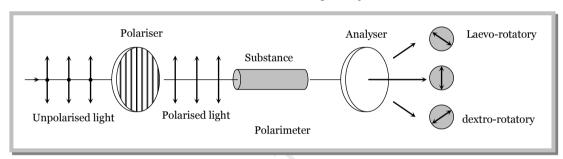
So $I_0 = \frac{I_i}{2}$ *i.e.* if an unpolarised light is converted into plane polarised light (say by passing it through a plaroid or a Nicol-prism), its intensity becomes half. and $I = \frac{I_i}{2} \cos^2 \theta$

Note: Percentage of polarisation =
$$\frac{(I_{\text{max}} - I_{\text{min}})}{(I_{\text{max}} + I_{\text{min}})} \times 100$$

(5) **Brewster's law**: Brewster discovered that when a beam of unpolarised light is reflected from a transparent medium (refractive index = μ), the reflected light is completely plane polarised at a certain angle of incidence (called the angle of polarisation θ_p).

Also $\mu = \tan \theta_p$ Brewster's law

(i) For $i < \theta_P$ or $i > \theta_P$


Both reflected and refracted rays becomes partially polarised

(ii) For glass $\theta_P \approx 57^{\circ}$, for water $\theta_P \approx 53^{\circ}$

(6) Optical activity and specific rotation

When plane polarised light passes through certain substances, the plane of polarisation of the light is rotated about the direction of propagation of light through a certain angle. This phenomenon is called optical activity or optical rotation and the substances optically active.

If the optically active substance rotates the plane of polarisation clockwise (looking against the direction of light), it is said to be *dextro-rotatory* or *right-handed*. However, if the substance rotates the plane of polarisation anti-clockwise, it is called *laevo-rotatory* or *left-handed*.

The optical activity of a substance is related to the asymmetry of the molecule or crystal as a whole, *e.g.*, a solution of cane-sugar is dextro-rotatory due to asymmetrical molecular structure while crystals of quartz are dextro or laevo-rotatory due to structural asymmetry which vanishes when quartz is fused.

Optical activity of a substance is measured with help of polarimeter in terms of 'specific rotation' which is defined as the rotation produced by a solution of length 10 cm (1 dm) and of unit concentration (i.e. 1 g/cc) for a given wavelength of light at a given temperature. i.e. $[\alpha]_{t^{\rho}C}^{\lambda} = \frac{\theta}{L \times C}$ where θ is the rotation in length L at concentration C.

(7) Applications and uses of polarisation

- (i) By determining the polarising angle and using Brewster's law, *i.e.* $\mu = \tan \theta_P$, refractive index of dark transparent substance can be determined.
 - (ii) It is used to reduce glare.
- (iii) In calculators and watches, numbers and letters are formed by liquid crystals through polarisation of light called liquid crystal display **(LCD)**.
- (iv) In CD player polarised laser beam acts as needle for producing sound from compact disc which is an encoded digital format.
 - (v) It has also been used in recording and reproducing three-dimensional pictures.
 - (vi) Polarisation of scattered sunlight is used for navigation in solar-compass in polar regions.
 - (vii) Polarised light is used in optical stress analysis known as 'photoelasticity'.
- (viii) Polarisation is also used to study asymmetries in molecules and crystals through the phenomenon of 'optical activity'.

12.

possible intensities in the resulting beam are

Assignment

				Nature of lig	ht and	interferen	ce of light (
1.	The dual nature of light is	exhibited by		[KCET 1999; AIIM	S 2001; E	3HU 2001; Bih	ar CEE 2004]
	(a) Diffraction and photo	pelectric effect	(b)	Diffraction and reflec	tion		
	(c) Refraction and interf			(d)	Pho	otoelectric effe	ct
2.	Huygen wave theory allow	vs us to know					[AFMC 2004]
	(a) The wavelength of the	e wave		(b)	The	velocity of the	e wave
	(c) The amplitude of the	wave	(d)	The propagation of wa	ave fronts	3	
3.	When a beam of light is us	sed to determine the position of an ob	oject, tł	ne maximum accuracy	is achieve	ed if the light is	[AIIMS 2003]
	(a) Polarised	(b) Of longer wavelength	(c)	Of shorter wavelength	(d)	Of high inten	sity
4.	Which of the following ph	enomenon does not show the wave n	ature o	f light	[:	RPET 2003; M	IP PMT 2003]
	(a) Diffraction	(b) Interference	(c)	Refraction	(d)	Photoelectric	effect
5.	As a result of interference	of two coherent sources of light, ener	rgy is		[3	MP PMT 2002	; KCET 2003]
	(a) Increased						
	(b) Redistributed and the	e distribution does not vary with time	9				
	(c) Decreased						
	(d) Redistributed and the	e distribution changes with time					
6.	To demonstrate the pheno	omenon of interference, we require tv	vo sour	ces which emit radiation	on		[AIEEE 2003]
	(a) Of the same frequence	y and having a definite phase relation	nship				
	(b) Of nearly the same fr	equency					
	(c) Of the same frequence	У					
	(d) Of different waveleng	yths					
7•	Consider the following sta						
	Assertion (<i>A</i>): Thin film white light.	as such as soap bubble or a thin laye	r of oil	on water show beauti	ful coloui	rs, when illum	inated by
	Reason (R): It happens	due to the interference of light reflect	ted froi	n the upper surface of	the thin f	ïlm.	
	Of these statements						[AIIMS 2002]
	(a) Both A and R are true explanation of A	e but R is a correct explanation of A	(b)	Both A and R are	true bu	it R is not	a correct
	(c) A is true but R is false	2	(d)	A is false but R is true			
	(e) Both <i>A</i> and <i>R</i> are fals	e					
8.	When light passes from or	ne medium into another medium, the	en the p	hysical property which	does no	t change is	
	[CPMT 1990;	MNR 1995; AMU 1995; UPSEAT 199	9, 200	o; MP PET 2002; RPE	Г 1996, 2	003; AFMC 19	93, 98, 2003]
	(a) Velocity	(b) Wavelength	(c)	Frequency	(d)	Refractive in	dex
9.	The frequency of light ray	having the wavelength $3000 \mbox{\normalfont\AA}$ is					[DPMT 2002]
	(a) 9×10^{13} cycles/sec	(b) 10 ¹⁵ <i>cycles/sec</i>	(c)	90 cycles/sec	(d)	3000 cycles/	sec
10.		different intensities send waves which ities of the sources are in the ratio	ch inter	fere. The ratio of max		•	ninimum [PSEAT 2002]
	(a) 25:1	(b) 5:1	(c)	9:4	(d)	25:16	
11.	What is the path difference	ee of destructive interference					[AIIMS 2002]
	(a) <i>nλ</i>	(b) $n(\lambda + 1)$	(c)	$\frac{(n+1)\lambda}{2}$	(d)	$\frac{(2n+1)\lambda}{2}$	

Two coherent monochromatic light beams of intensities I and 4I are superposed. The maximum and minimum

[IIT-JEE 1988; AIIMS 1997; MP PMT 1997; MP PET 1999; KCET (Engg./Med.) 2000; MP PET 2002]

				genius	PHYSICS	by 1	Pradeep Ks	shetrapal
				8011140		~ <i>y</i>		e Optics 21
(a) 5 <i>I</i> and <i>I</i>	(b) 5 <i>I</i>	and aI	(c)	9I and I		(d)	9 <i>I</i> and 3 <i>I</i>	o o pulos =1
Laser beams are used to meas			(0)	91 and 1		(u)	91 unu 31	[DCE 2001]
(a) They are monochromatic			(b)	They are	highly polarised			
(c) They are coherent			(d)	They have	e high degree of	parall	lelism	
Wave nature of light is verifie								[RPET 2001]
(a) Interference		otoelectric effect		Reflection			Refraction	
If the wavelength of light in va		λ , the wavelength in a med	diun	ı of refract	ive index <i>n</i> will l	oe[Ul	PSEAT 2001;	MP PET 2001]
(a) $n\lambda$	(b) $\frac{\lambda}{n}$		(c)	$\frac{\lambda}{n^2}$		(d)	$n^2\lambda$	
Newton postulated his corpus		omy on the basis of		n²		F	IDSEAT	NCET aggs!
(a) Newton's rings	scular tile	ory on the basis of	(h)	Colours	f thin films	L	UPSEAT 200	01; KCET 2001]
(c) Rectilinear propagation (of light				n of white light			
Two coherent sources of inter		and I_2 produce an inter-				inter	nsity in the in	nterference
pattern will be		2 F		P				MP PET 2001]
-	(b) I_1^2	$+I^2$	(c)	$(I_1 + I_2)^2$			$(\sqrt{I_1} + \sqrt{I_2})^2$	
	-	_	(0)	$(1_1 + 1_2)$		(u)	•	
Which one among the following		-	(-)	D - f +-		(4)		E PM/PD 2001]
(a) Photo electric effect		terference		Refractio			Polarization	
For constructive interference should be	e to take p	place between two monoc	hron	natic light	waves of wavel	ength	λ , the path	difference
						[MN	R 1992; UPS	EAT 2001]
() a 1) \(\lambda\)	(I.) (2	. λ	()	4		(1)	Ωλ	
(a) $(2n-1)\frac{\lambda}{4}$	(b) (2 <i>i</i>	$(n-1)\frac{\pi}{2}$	(c)	$n\lambda$		(a)	$(2n+1)\frac{\lambda}{2}$	
In a wave, the path difference	correspon	nding to a phase difference	e of q	∌is			I	[MP PET 2000]
(a) $\frac{\pi}{2\lambda}\phi$	(b) $\frac{\pi}{\lambda}$	φ	(c)	$\frac{\lambda}{2\pi}\phi$		(d)	$\frac{\lambda}{\pi}\phi$	
270	,,,) ~ ~ ~			π	
A beam of monochromatic blu					r, its wavelength			UPSEAT 2000]
(a) 2800Å	(b) 56		(c)	3150Å		(d)	4000Å	F===== 1
Wave front originating from a	-		(-)	pl		(4)	C1-:1	[RPET 2000]
(a) CylindricalWaves that can not be polaris	(b) Sp	nericai	(c)	Plane		(a)	Cubical	[KCET 2000]
(a) Transverse waves		ngitudinal waves	(c)	Light way	7 P S	(d)	Electromag	
(a) Transverse waves	(b) L0	ngituumai waves	(0)	Light wav	ics .	(u)	Electroniag.	netic
According to Huygen's wave t	theory, po	int on any wave front may	be r	egarded as	3		[J	& K CET 2000]
(a) A photon	(b) An	electron	(c)	A new sou	arce of wave	(d)	Neutron	
The light produced by a laser	is all the f	following except					Į.	JIPMER 2000]
(a) Incoherent				Monochr				
(c) In the form of a narrow b				Electrom	-			
The phenomena of interferen								AT 1994, 2000]
(a) Longitudinal mechanical		ly	(b)		se mechanical wa		-	t C
(c) Electromagnetic waves of	nıy			(d)		All	the above	types of

(a) Transverse waves (b) Longitudinal waves waves According to Huygen's wave theory, point on any wave front ma 24. (a) A photon (b) An electron

25. (a) Incoherent

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

29.

The phenomena of interference is shown by [MNR 1994; MP PM 26.

(c) Electromagnetic waves only

If the ratio of amplitude of two waves is 4:3, then the ratio of maximum and minimum intensity is 27.

[MP PMT 1996; AFMC 1997; RPET 2000] (d) 94:1

(a) 16:18 (b) 18:16 (c) 49:1

If the distance between a point source and screen is doubled, then intensity of light on the screen will become 28.

[RPET 1997; RPMT 1999] (a) Four times (b) Double (c) Half (d) One-fourth

Soap bubble appears coloured due to the phenomenon of

[CPMT 1972, 83, 86; AFMC 1995, 97; RPET 1997; CBSE PMT 1997; AFMC 1997]

(d) Reflection

(b) Diffraction (a) Interference (c) Dispersion

Two waves are known to be coherent if they have [RPMT 1994, 95, 97; MP PMT 1996; MNR 1995] 30.

(a) Same amplitude

(b) Same wavelength

(c) Same amplitude and wavelength (d) Constant phase difference and same wavelength

Laser light is considered to be coherent because it consists of

44.

	T . T	_	. •
22	Way	e Or	otics

	wave optics			
31.	film should be			he approximate thickness of the oil [DPMT 1987; JIPMER 1997]
	(a) 100 Å	(b) 10000 Å	(c) 1 mm	(d) 1 cm
32.	If L is the coherence l	ength and c the velocity of light, the	ne coherent time is	[MP PMT 1996]
	(a) <i>cL</i>	(b) $\frac{L}{c}$	(c) $\frac{c}{L}$	(d) $\frac{1}{Lc}$
	D	C	L	
33.	By a monochromatic (a) A single ray	wave, we mean	(b) A single ray of a sin	[AFMC 1995]
	(c) Wave having a si	ngle wavelength	(d) Many rays of a single ray or a single ray	_
34.	-	-		tween them is[MP PMT 1994; CPMT 1995
•	(a) 2π	(b) π	(c) $\pi/2$	(d) o
35∙	Which one of the follo	owing statements is correct	,	[KCET 1994]
	(a) In vacuum, the s	peed of light depends upon freque	ency	
	· ·	peed of light does not depend upo	-	
	· ·	peed of light is independent of free	-	
		peed of light depends upon wavele	• •	
36.	Figure here shows P and PQ is 5.0 m and phase	and Q as two equally intense cohe	erent sources emitting radiations oby 90°. A , B and C are three distant	of wavelength 20 m . The separation nt points of observation equidistant [NSEP 1994]
	(a) 0:1:4			
	(b) 4:1:0			
	(c) 0:1:2			$P \mid Q$
	(d) 2:1:0		\overline{c}	$A \parallel$
37.	In Huvgen's wave the	ory, the locus of all points in the s	ame state of vibration is caned	[CBSE PMT 1993]
0,	(a) A half period zon	-	(c) A wavefront	(d) A ray
38.	_	um nature of light has emerged in		[CPMT 1990]
	(a) Interference		(b) Diffraction	. ,,,
	(c) Radiation spectro	um of a black body	(d) Polarisation	
39.	The necessary conditi	on for an interference by two sour	rce of light is that the	[RPMT 1988; CPMT 1989]
	(a) Two monochrom	atic sources should be of same an	plitude but with a constant phase	
	(b) Two sources show	uld be of same amplitude		
	(c) Two point source	es should have phase difference va	rying with time	
		uld be of same wavelength		
40.	interference will be	e waves observed by two coheren	•	of resultant waves in constructive [RPET 1988]
	(a) 2 <i>I</i>	(b) 4 <i>I</i>	(c) I	(d) None of these
41.				sition <i>CD</i> after refraction through a s with respect to air will be equal to [CPM
	(a) $\frac{\sin \theta}{\sin \theta'}$		θ	B
	(b) $\frac{\sin \theta}{\sin \phi'}$		$x \xrightarrow{A} \phi$	$\frac{D}{\theta'}$ y
	(c) (<i>BD/AC</i>)		C	
	(d) (<i>AB/CD</i>)			
42.	Four independent wa	-		
	(i) $y_1 = a_1 \sin \omega t$ (ii) $y_2 = a_2 \sin 2\omega t$	(iii) $y_3 = a_3 \cos \omega t$ (iv) $y_3 = a_3 \cos \omega t$	$y_4 = a_4 \sin(\omega t + \pi/3)$
	The interference is po			[CPMT 1986]
	(a) (i) and (ii)	(b) (i) and (iv)	(c) (iii) and (iv)	(d) Not possible at all
43.	Colour of light is known		(a) Engage	[MP PMT 1984]
	(a) Velocity	(b) Amplitude	(c) Frequency	(d) Polarisation

[CPMT 1972]

(b) Uncoordinated wavelengths

TA7	0	. :	00

	(c) Coordinated waves of	exactly the same wavelength	(d) Divergent beams		
45.	A laser beam may be used	to measure very large distances b	ecause		[CPMT 1972]
	(a) It is unidirectional	(b) It is coherent	(c) It is monochromati	c (d) It is not absor	bed
46.	-	ot observed in thick films, because			
		ght intensity is observed within the	ne film		
	(b) A thick film has a high(c) The maxima of interfe	rence patterns are far from the m	inima		
		rlapping of colours washing out t			
47.		ce is not observed by two sodium	-	cause both waves have	
•/	(a) Not constant phase di		(b) Zero phase differen		
	(c) Different intensity		(d) Different frequencie		
			Yo	oung's double slit exp	periment
		Bas	ic Level		V
48.		periment, the separation between			
	source of light used is	cond dark fringe at a distance of	1 mm from the central irrilge,	the wavelength of monoch	inomatic
	U				[KCET 2004]
	(a) 500 <i>nm</i>	(b) 600 nm	(c) 450 nm	(d) 400 nm	
49.		of light is used for the formation		-	
	Young's double sitt mica is	interposed in the path of one of t	ne interiering beams man	ا	AIIMS 2004]
	(a) The fringe width incre	nene	A \ Y		
	_				
	(b) The fringe width decre	eases			
	(c) The fringe width rema	ins the same but the pattern shift	CS		
	(d) The fringe pattern disa	appears			
50.		speriment the fringe width is 0.2		-	
		ts is also increased by 10%, the fri		_	P PMT 2004]
	(a) 0.20 mm	(b) 0.401 mm	(c) 0.242 mm	(d) 0.165 mm	
51.		ne distance between the slits is noted idth[IIT 1981; MP PMT 1994; RP.			
	(a) Will not change	(b) Will become half	(c) Will be doubled	(d) Will becom	_
	times	(3)	(0)	(9)	
52.	In an interference experim	ent, third bright fringe is obtaine	d at a point on the screen with	a light of 700 <i>nm</i> . What s	hould be
	the wavelength of the light	source in order obtain 5th bright	fringe at the same point		[KCET 2003]
	(a) 500 <i>nm</i>	(b) 630 nm	(c) 750 nm	(d) 420 nm	
53 ·	-	eriment the fringe width is β . If ϵ	entire arrangement is placed i	-	
	fringe width becomes				[KCET 2003]
	(a) $\frac{\beta}{n+1}$	(b) $n\beta$	(c) β/n	(d) $\beta/n-1$	
			1		
54.	If the separation between	slits in Young's double slit experi	ment is reduced to $\frac{1}{3}rd$, the	fringe width becomes n tin	mes. The
	value of n is			[M	IP PET 2003]
	(a) 3	(b) $\frac{1}{3}$	(c) 9	(d) $\frac{1}{9}$	
= =		3 late of thickness <i>t</i> and refractive i	ndey uis placed in the path of		waves of
55.	light, then the path differen		μ is placed in the path of	-	waves of P PMT 2002]

(a) Many wavelengths

(b) $(\mu - 1)t$

(a) $(\mu + 1)t$

(c) $\frac{(\mu+1)}{t}$

(d) $\frac{(\mu-1)}{t}$

genius PHYSICS by Pradeep Kshetrapal

<u> </u>			
24	↓ Wave Optics		
56.	In a Young's double slit experiment, the source illuminating the slits	is changed from blue to viol	
		_	[Kerala CET (Med.) 2002]
		Becomes unequal	(d) Remains constant
5 7•	In Young's double slit experiment, the intensity of light coming from		
	The ratio of the maximum intensity to the minimum intensity on the	interierence iringe pattern	
	(a) 34 (b) 40 (c)	0.7	[KCET (Med.) 2002]
	., .	25	(d) 38
58.	In Young's double slit experiment the wavelength of light was change between the slits which of the following is not true for this experimen		hile doubling the separation [Orissa JEE 2002]
	(a) The width of the fringes changes		
	(b) The colour of bright fringes changes		
	(c) The separation between successive bright fringes changes		
	(d) The separation between successive dark fringes remains unchan	ged	
5 0		~	[VCET (Enga) accol
59.			[KCET (Engg.) 2002]
		As it is narrower than other	-
	(c) As it is wider than other bright fringes (d) fringes	As it has a greater inter	nsity than the other bright
60.	Interference was observed in interference chamber when air was pre is used, a careful observer will see		acuated and if the same light F 1993; DPMT 2000; BHU 2002]
	(a) No interference		
	(b) Interference with bright bands		
	-		
	(c) Interference with dark bands	_	
	(d) Interference in which width of the fringe will be slightly increase	.d	
61.	A slit of width a is illuminated by white light. For red light ($\lambda = 650$	(A). The first minima is ob-	otained at $\theta = 30^{\circ}$. Then the
	value of a will be		[MP PMT 1987; CPMT 2002]
	(a) 3250Å (b) $6.5 \times 10^{-4} \text{mm}$ (c)	1.24 microns	(d) 2.6×10^{-4} cm
62.	In the Young's double slit experiment with sodium light. The slits	are $0.589 m$ apart. The ans	gular separation of the third
	maximum from the central maximum will be (given $\lambda = 589 mm$)		[Pb. PMT 2002]
	(a) $\sin^{-1}(0.33 \times 10^8)$ (b) $\sin^{-1}(0.33 \times 10^{-6})$ (c)	$\sin^{-1}(3\times10^{-8})$	(d) $\sin^{-1}(3\times10^{-6})$
63.		th is least [MP PMT 100	94; UPSEAT 2001; MP PET 2001]
٠,٠		Blue	(d) Yellow
64.			
-4.	distance D of the screen from the slits should be made		[AMU (Engg.) 2001]
	(a) $\frac{D}{2}$ (b) $\frac{D}{\sqrt{2}}$	2D	(d) 4 <i>D</i>
65.	Consider the following statements		
სე.	Assertion (A): In Young's experiment, the fringe width for dark fringe	gos is different from that fo	r bright fringes
	Reason (<i>R</i>): In Young's double slit experiment performed with a		
	observed	source of winte light, only	black and bright fringes are
	Of these statements		[AIIMS 2001]
		Both A and R are tru	e but R is not a correct
	explanation of A	Both 11 tha 11 the tra	o but it is not a correct
		A is false but R is true	
	(e) A is true but R is false		
66.		ormed in a certain segmen	t of the screen when light of
	wavelength 600 <i>nm</i> is used. If the wavelength of light is changed		
	segment of the screen is given by	, , ,	[IIT-JEE (Screening) 2001]
		24	(d) 30
67.		•	ced in the ray from the first
,	source S_1 . By how much distance the fringes pattern will be displace		[RPMT 1996, 97; JIPMER 2000]

68. Young's double slit experiment is performed with light of wavelength 550 *nm*. The separation between the slits is 1.10 *mm* and screen is placed at distance of 1 *m*. What is the distance between the consecutive bright or dark fringes **[Pb. PMT 2000**]

(c) $\frac{d}{(\mu-1)D}$

(d) $\frac{D}{d}(\mu-1)$

(b) $\frac{D}{d}(\mu-1)t$

(a) $\frac{d}{D}(\mu-1)t$

ашасер	1011001	apai
Wa	ve Opt	ics 25

							wave	Optics 25
	(a) 1.5 n	ım	(b) 1.0 m	(c)	0.5 mm	(d)	None of thes	e
69.	In interfe	erence obtained by two	o coherent sources, the fringe wid	th (β) has the following relation			.) IP PMT 2000]
	(a) $\beta \propto$	λ^2	(b) $\beta \propto \lambda$	(c)	eta \propto 1/ λ	(d)	$eta \propto \lambda^{-2}$	
70.	interference (a) The (b) The	nce pattern intensities of both the intensity of maxima ir	stead of taking slits of equal wid maxima and the minima increase acreases and the minima has zero	e inter	ısity			nen in the eening) 2000]
			ecreases and that of the minima in					
		•	ecreases and the minima has zero ent with a source of light of wavel		•	: 11		
71.	III Tourig	s double siit experiin	ent with a source of light of waver	engu	i 0320A, tile first maxima w	in oc		Roorkee 1999]
	(a) Path	difference is 9480 $ extit{Å}$		(b)	Phase difference is 2π rad	ian		,,,,,
	(c) Path	difference is 6320 $\mbox{\normalfont\AA}$		(d)	Phase difference is π radia	n		
72.	Young's o		fractive index μ = 1.5 and thickn t, how much will be the shift in the screen is 100 cm					
	(a) 5 cm	!	(b) 2.5 cm	(c)	0.25 cm	(d)	0.1 <i>cm</i>	
73.	If a torch	is used in place of mo	onochromatic light in Young's exp	erim	ent what will happens			
		ge will appear for a mo	oment then it will disappear pear		[MH CET of Fringes will occur as from No fringes will appear			T (Med.) 1999] ght
74.	When a t	hin metal plate is plac	ed in the path of one of the interfe	ering	beams of light		[KCET (Eng	g./Med.) 1999]
		ge width increases	(b) Fringes disappear	(c)	Fringes become brighter	(d)	Fringes	become
blurre 7 5 •			nite light in Young's double slit ex					
	(b) Only (c) Cent (d) None	ht fringes are obtained bright and dark fring ral fringe is bright and e of these	es are obtained d two or three coloured and dark t	fringe	es are observed			
76.	_	experiment is perform remain same	ed in air and then performed in w (b) Will decrease		Will increase		Will be infin	
			it is covered with a blue filter an					
77•	pattern	s experiment, one si	it is covered with a blue litter an	iu tiit	e other (sht) with a yellow	mici.	. Then the m	terrence
							[MP]	PET 1997]
	(a) Will		(b) Will be yellow		Will be green		Will not be fo	
78.	2w. If the	e distance D is now do	pattern which is observed on a so ubled, the fringe width will		•		Ĩ	e width is MP PET 1997]
	(a) Becc	,	(b) Remain the same		Become w		Become 4w	
79.	system is	dipped in water, then	nent, angular width of fringes is angular width of fringes becomes	S	_			[RPET 1997]
80.	(a) 0.11°		(b) 0.15°	` ,	0.22°	` '	0.30°	volonatha
80.	in the rat plane of t		Young's double slit experiment, fr he ratio of the slit separation in t n in the two set-ups is			of the	distances be [Kurukshe	
0.	(a) 4:1		(b) 1:1	٠,	1:4	(d)	2:1	AD DIATE
81.	(a) Brig	-	nent, the central point on the scre (b) Dark		First bright and then dark	(d)	_	MP PMT 1996] and then
bright	_		(b) Durk	(0)	That bright and their dark	(4)	THE GUIN	una men
82.	If the frin	nge width on the scree	ent, the distance between sources n is 0.06 <i>cm</i> , then $\lambda =$					rce is 1 <i>m</i> . [CPMT 1996]
Qo.	(a) 6000		(b) 4000Å ment, the distance between two co		1200 Å		2400 Å	n the clite
83.	and the s	creen is 20 cm. If the	wavelength of light is 5460 $ extit{Å}$ ther	n the	distance between two conse	cutiv	e maxima is	
	(a) 0.51	itiit	(b) 1.1 <i>mm</i>	(c)	1.5 <i>mm</i>	(u)	2.2 mm	

genius PHYSICS by Pradeep Kshetrapal

(a) The fringe width will be doubled

reduce to half

26 Wave Optics

84.

	shown	in figure, then the displa	aceme	ent of the fringe system is					[CPMT 1995]
	(a) $\frac{L}{3}$	Ot d			Γ		P	1	
	(b) $\frac{L}{5}$	$\frac{\partial t}{d}$				S_1			
	(c) $\frac{L}{4}$	$\frac{\partial t}{\partial d}$				S_2 D	→		
	(d) $\frac{2}{5}$	<u>Dt</u> 5 <u>d</u>			Ť		_	_	
85.		ouble slit experiment, t en the two paths is	he fir	st minimum on either side	of th	ne central maximum occu	ırs wh	ere the path	difference [CPMT 1995]
	(a) $\frac{\lambda}{4}$	<u>.</u>	(b)	$\frac{\lambda}{2}$	(c)	λ	(d)	2λ	
86.		ing's double slit experim will be $(\lambda = 6000 \text{Å})$	ent, tl	he phase difference between	the l	ight waves reaching third	bright		the central [MP PMT 1994]
	(a) Ze	ero	(b)	2π	(c)	4π	(d)	6π	
87.		m light $(\lambda = 6 \times 10^{-7} m)$ en the two interfering wa		ed to produce interference pains is	atte	rn. The observed fringe	width	is 0.12 <i>mm</i> .	The angle [CPMT 1993]
	(a) 5	$\times 10^{-1} rad$	(b)	5×10^{-3} rad	(c)	1×10^{-2} rad	(d)	1×10^{-3} rad	
88.	The co	ontrast in the fringes in a	ny int	erference pattern depends or	n			İ	[Roorkee 1992]
		ringe width istance between the slits				Intensity ratio of the sou Wavelength	rces		
89.	and th		from	arried out with light of wave the slits. The central maxin be at x equal to				um (taking	
	(a) 1.	67 cm	(b)	1.5 cm	(c)	0.5 cm	(d)	5.0 <i>cm</i>	
90.		ces the second dark fring		ent sources are placed $0.90 r$ a distance of $1 mm$ from the					
	would	be						[C	BSE PMT 1992]
	(a) 6	$0 \times 10^{-4} cm$	(b)	$10 \times 10^{-4} cm$	(c)	$10 \times 10^{-5} cm$	(d)	$60 \times 10^{-5} cm$	n
91.	In Fre	snel's biprism, coherent	sourc	es are obtained by	. ,		,		[RPET 1991]
	(a) D	ivision of wavefront	(b)	Division of amplitude	(c)	Division of wavelength	(d)	None of the	se
92.		ang's experiment, the rat erent sources is	io of 1	maximum and minimum into	ensit	ies in the fringe system is	9:1.	The ratio of	amplitudes [NCERT 1990]
	(a) 9	: 1	(b)	3:1	(c)	2:1	(d)	1:1	
93.	wavele the fri	ength 5000 $ ilde{A}$ is used. Kenge width will be	eping	al arrangement interference g the set up unaltered, if the	sour	ce is replaced by another	source	of waveleng	
	(a) o.			1.0 <i>mm</i>		1.2 mm		1.5 <i>mm</i>	
94.		ing's double slit experim na will be	ent, i	f the slit widths are in the ra	tio 1	: 9, then the ratio of the	intens	-	a to that at [MP PET 1987]
	(a) 1		(b)	1/9	(c)	1/4	(d)	1/3	
95.	The Yo	oung's experiment is per n fringe from the centre i	forme s x, th	ed with the lights of blue (λ : nen	= 43	60 Å) and green colour (λ	l = 540	60 Å). If the	distance of [CPMT 1987]
	(a) x	(Blue) = x (Green)	(b)	x(Blue) > x(Green)	(c)	x(Blue) < x(Green)	(d)	$\frac{x(\text{Blue})}{x(\text{Green })} =$	5460 4360
06	In You	ıng's experiment, keepin	the o	distance of the slit from scree	n co	onstant if the slit width is r	educe	d to half the	n [CPMT 1086]

(b)

The fringe width will

If a thin mica sheet of thickness t and refractive index $\mu = (5/3)$ is placed in the path of one of the interfering beams as

(c) The fringe width will not change

(d)

The fringe width

become $\sqrt{2}$ times

In Young's experiment, if the distance between screen and the slit aperture is increased the fringe width will 97.

[RPET 1986]

(a) Decrease

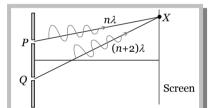
- (b) Increases but intensity will decrease
- (c) Increase but intensity remains unchanged
- (d) Remains unchanged but intensity decreases
- In Fresnel's biprism experiment, the two coherent sources are 98.

[RPET 1985]

(a) Real

(b) Imaginary

(c) One is real and the other is imaginary


- (d) None of these
- In Fresnel's experiment, the width of the fringe depends upon the distance

[RPET 1985]

- (a) Between the prism and the slit aperture
- (b) Of the prism from the screen
- (c) Of screen from the imaginary light sources
- (d) Of the screen from the prism and the distance from the imaginary sources
- 100. In the Young's double slit experiment, the ratio of intensities of bright and dark fringes is 9. This means that

[IIT-JEE 1982]

- (a) The intensities of individual sources are 5 and 4 units respectively
- (b) The intensities of individual sources are 4 and 1 units respectively
- (c) The ratio of their amplitudes is 3
- (d) The ratio of their amplitudes is 2
- The figure below shows a double slit experiment. P and Q are the slits. The path lengths PX and QX are $n\lambda$ and $(n+2)\lambda$ respectively where n is a whole number and λ is the wavelength. Taking the central bright fringe as zero, what is formed at X

- (a) First bright
- (b) First dark
- (c) Second bright
- (d) Second dark
- A plate of thickness t made of a material of refractive index μ is placed in front of one of the slits in a double slit experiment. What should be the minimum thickness t which will make the intensity at the centre of the fringe pattern zero

(a)
$$(\mu-1)\frac{\lambda}{2}$$

(b)
$$(\mu - 1)\lambda$$

(c)
$$\frac{\lambda}{2(\mu-1)}$$

(d)
$$\frac{\lambda}{(\mu-1)}$$

103. The thickness of a plate (refractive index μ for light of wavelength λ) which will introduce a path difference of $\frac{3\lambda}{4}$ is

(a)
$$\frac{3\lambda}{4(\mu-1)}$$

(b)
$$\frac{3\lambda}{2(\mu-1)}$$

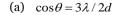
(c)
$$\frac{\lambda}{2(\mu-1)}$$

(d)
$$\frac{3\lambda}{4\mu}$$

Advance Level

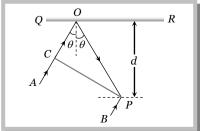
In the Young's double slit experiment, if the phase difference between the two waves interfering at a point is ϕ , the intensity at that point can be expressed by the expression (where A + B depends upon the amplitude of the two waves)

[MP PMT/PET 1998; MP PMT 2003]


(a)
$$I = \sqrt{A^2 + B^2 \cos^2 \phi}$$
 (b) $I = \frac{A}{B} \cos \phi$

(b)
$$I = \frac{A}{B} \cos \phi$$

(c)
$$I = A + B \cos \phi / 2$$


(d)
$$I = A + B \cos \phi$$

105. In the adjacent diagram CP represents wavefronts and AO and BP the corresponding two rays. Find the condition on θ for constructive interference at P between the ray BP and reflected ray OP [IIT-JEE (Screening) 2003]

(b)
$$\cos\theta = \lambda/4d$$

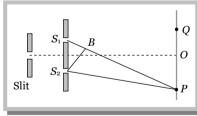
(c)
$$\sec \theta - \cos \theta = \lambda / d$$

- (d) $\sec \theta \cos \theta = 4\lambda/d$
- 106. When one of the slits of Young's experiment is covered with a transparent sheet of thickness 4.8 *mm*, the central fringe shifts to a position originally occupied by the 30th bright fringe. What should be the thickness of the sheet if the central fringe has to shift to the position occupied by 20th bright fringe [KCET (Engg.) 2002]
 - (a) 3.8 mm
- (b) 1.6 mm
- (c) 7.6 mm
- (d) 3.2 mm
- 107. In the ideal double-slit experiment, when a glass-plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass-plate is **[IIT-JEE (Screening) 2002)]**
 - (a) 2λ

(b) $\frac{2\lambda}{3}$

(c) $\frac{\lambda}{3}$

- (d) λ
- 108. In an interference arrangement similar to Young's double slit experiment, the slits S_1 and S_2 are illuminated with coherent microwave sources each of frequency 10⁶ Hz. The sources are synchronized to have zero phase difference. The slits are separated by distance d = 150 m. The intensity $I(\theta)$ is measured as a function of θ , where θ is defined as shown. If I_0 is maximum intensity, then $I(\theta)$ for $0 \le \theta \le 90^\circ$ is given by

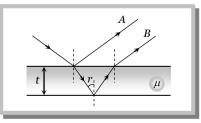


- (a) $I(\theta) = I_0$ for $\theta = 90^\circ$
- (b) $I(\theta) = I_0 / 2 \text{ for } \theta = 30^{\circ}$
- (c) $I(\theta) = I_0 / 4$ for $\theta = 90^{\circ}$
- (d) $I(\theta)$ is constant for all values of θ
- 109. In Young's double slit experiment, white light is used. The separation between the slits is b. the screen is at a distance $d(d \gg b)$ from the slits. Some wavelengths are missing exactly in front of one slit. These wavelengths are [IIT-JEE 1984; AIIMS 1995]
 - (a) $\lambda = \frac{b^2}{d}$
- (b) $\lambda = \frac{2b^2}{d}$
- (c) $\lambda = \frac{b^2}{3d}$
- (d) $\lambda = \frac{2b^2}{3d}$
- 110. In a two slit experiment with monochromatic light fringes are obtained on a screen placed at some distance from the sits. If the screen is moved by $5 \times 10^{-2} m$ towards the slits, the change in fringe width is $3 \times 10^{-5} m$. If separation between the slits is $10^{-3} m$, the wavelength of light used is [Roorkee 1992]
 - (a) 6000 Å
- (b) 5000 Å

- (c) 3000 Å
- (d) 4500 Å

[CPMT 1986, 92]

- In the figure is shown Young's double slit experiment. Q is the position of the first bright fringe on the right side of O. P is the 11th fringe on the other side, as measured from Q. If the wavelength of the light used is $6000 \times 10^{-10} m$, then $S_1 B$ will be equal to
 - (a) $6 \times 10^{-6} m$
 - (b) $6.6 \times 10^{-6} m$
 - (c) $3.138 \times 10^{-7} m$
 - (d) $3.144 \times 10^{-7} m$



- In Young's double slit experiment, the two slits act as coherent sources of equal amplitude A and wavelength λ . In another experiment with the same set up the two slits are of equal amplitude A and wavelength λ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is **[IIT-JJE 1986]**
 - (a) 1:2

(b) 2:1

(c) 4:1

- (d) 1:1
- **113.** When light of wavelength λ falls on a thin film of thickness t and refractive index n, the essential condition for the production of constructive interference fringes by the rays A and B are (m = 1, 2, 3,)
 - (a) $2nt \cos r = \left(m \frac{1}{2}\right)\lambda$
 - (b) $2nt\cos r = m\lambda$
 - (c) $nt\cos r = m\lambda$
 - (d) $nt \cos r = (m-1)\lambda$
- 114. Four light waves are represented by
 - (i) $y = a_1 \sin \omega t$
- (ii) $y = a_2 \sin(\omega t + \phi)$
- (iii) $y = a_1 \sin 2\omega t$
- (iv) $y = a_2 \sin 2(\omega t + \phi)$

Interference fringes may be observed due to superposition of

- (a) (i) and (ii)
- (b) (i) and (iii)
- (c) (ii) and (iv)
- (d) (iii) and (iv)
- In Young's double slit experiment the y-coordinates of central maxima and 10th maxima are 2 cm and 5 cm respectively. 115. When the YDSE apparatus is immersed in a liquid of refractive index 1.5 the corresponding y-coordinates will be
 - (a) 2 cm, 7.5 cm
- (b) 3 cm, 6 cm
- (c) 2 cm, 4cm
- (d) 4/3 cm, 10/3 cm
- The maximum intensity in Young's double slit experiment is I_0 . Distance between the slits is $d = 5 \lambda$, where λ is the wavelength of monochromatic light used in the experiment. What will be the intensity of light in front of one of the slits on a screen at a distance D = 10 d
 - (a) $\frac{I_0}{2}$

(b) $\frac{3}{4}I_0$

- A monochromatic beam of light falls on YDSE apparatus at some angle (say θ) as shown in figure. A thin sheet of glass is inserted in front of the lower slit S_2 . The central bright fringe (path difference = 0) will be obtained
 - (a) At O
 - (b) Above O
 - (c) Below O
- 0
- (d) Anywhere depending on angle θ , thickness of plate t and refractive index of glass μ
- In Young's double slit experiment how many maximas can be obtained on a screen (including the central maximum) on both sides of the central fringe if $\lambda = 2000 \text{ Å}$ and d = 7000 Å

(c) 18

- Young's double slit experiment is made in a liquid. The 10th bright fringe in liquid lies where 6th dark fringe lies in vacuum. 119. The refractive index of the liquid is approximately

(b) 1.54

(c) 1.67

- Light of wavelength λ_0 in air enters a medium of refractive index n. If two points A and B in this medium lie along the path of this light at a distance x, then phase difference ϕ_0 between these two points is
 - (a) $\phi_0 = \frac{1}{n} \left(\frac{2\pi}{\lambda_0} \right) x$

- (b) $\phi_0 = n \left(\frac{2\pi}{\lambda_0} \right) x$ (c) $\phi_0 = (n-1) \left(\frac{2\pi}{\lambda_0} \right) x$ (d) $\phi_0 = \frac{1}{(n-1)} \left(\frac{2\pi}{\lambda_0} \right) x$
- In a Young's double slit experiment, the slits are 2 mm apart and are illuminated with a mixture of two wavelength $\lambda_0 = 750 \, nm$ and $\lambda = 900 \, nm$. The minimum distance from the common central bright fringe on a screen 2m from the slits where a bright fringe from one interference pattern coincides with a bright fringe from the other is
 - (a) 1.5 mm
- (b) 3 mm

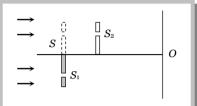
- In the ideal double slit experiment, when a glass plate (refractive index 1.5) of thickness t is introduced in the path of one of the interfering beams (wavelength λ), the intensity at the position where the central maximum occurred previously remains unchanged. The minimum thickness of the glass plate is

(b) $\frac{2\lambda}{3}$

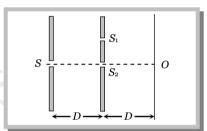
- Two wavelengths of light λ_1 and λ_2 are sent through a Young's double slit apparatus simultaneously. If the third order λ_1 bright fringe coincides with the fourth order λ_2 bright fringe then
 - (a) $\frac{\lambda_1}{\lambda_2} = \frac{4}{3}$
- (b) $\frac{\lambda_1}{\lambda_2} = \frac{3}{4}$
- (c) $\frac{\lambda_1}{\lambda_2} = \frac{5}{4}$
- (d) $\frac{\lambda_1}{\lambda_2} = \frac{4}{5}$
- A flake of glass (refractive index 1.5) is placed over one of the openings of a double slit apparatus. The interference pattern displaces itself through seven successive maxima towards the side where the flake is placed. if wavelength of the diffracted light is $\lambda = 600nm$, then the thickness of the flake is
 - (a) 2100 nm
- (b) 4200 nm
- (c) 8400 nm
- (d) None of these
- In a double slit experiment, instead of taking slits of equal widths, one slit is made twice as wide as the other. Then in the 125. interference pattern
 - (a) The intensitites of both the maxima and the minima increase
 - (b) The intensity of the maxima increases and minima has zero intensity
 - (c) The intensity of the maxima decreases and that of minima increases
 - (d) The intensity of the maxima decreases and the minima has zero intensity

- **126.** In Young's experiment the wavelength of red light is 7800 Å and that of blue light is 5200 Å. The value of n for which the (n+1)th blue bright band coincides with the nth red band is
 - (a) 4

(b) 3


(c) 2

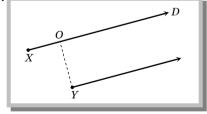
- (d) 1
- 127. In a double slit experiment if 5th dark fringe is formed opposite to one of the slits, the wavelength of light is
 - (a) $\frac{d^2}{6D}$


(b) $\frac{d^2}{5D}$

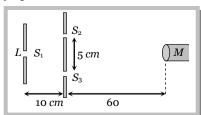
(c) $\frac{d^2}{15D}$

- (d) $\frac{d^2}{9D}$
- 128. In a Young's double slit experiment one of the slits is advanced towards the screen by a distance d/2 and $d=n\lambda$ where n is an odd integer and d is the initial distance between the slits. If I_0 is the intensity of each wave from the slits, the intensity at
 - O is
 - (a) I_0
 - (b) $\frac{I_0}{4}$
 - (c) 0
 - (d) $2I_0$

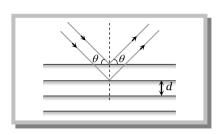
- **129.** Two ideal slits S_1 and S_2 are at a distance d apart, and illuminated by light of wavelength λ passing through an ideal source slit S placed on the line through S_2 as shown. The distance between the planes of slits and the source slit is D. A screen is held at a distance D from the plane of the slits. The minimum value of d for which there is darkness at O is
 - (a) $\sqrt{\frac{3\lambda D}{2}}$
 - (b) $\sqrt{\lambda D}$
 - (c) $\sqrt{\frac{\lambda D}{2}}$
 - (d) $\sqrt{3\lambda D}$



- **130.** In a double slit experiment interference is obtained from electron waves produced in an electron gun supplied with voltage V. if λ is the wavelength of the beam, D is the distance of screen, d is the spacing between coherent source, h is Planck's constant, e is charge on electron and m is mass of electron then fringe width is given as
 - (a) $\frac{hD}{\sqrt{2meV}} \frac{d}{dx}$
- (b) $\frac{2hD}{\sqrt{meV} d}$
- (c) $\frac{hd}{\sqrt{2meV}D}$
- (d) $\frac{2hd}{\sqrt{meV}D}$
- **131.** In a double slit arrangement fringes are produced using light of wavelength 4800 Å. One slit is covered by a thin plate of glass of refractive index 1.4 and the other with another glass plate of same thickness but of refractive index 1.7. By doing so the central bright shifts to original fifth bright fringe from centre. Thickness of glass plate is
 - (a) $8 \mu m$

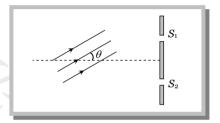

(b) 6 μm

(c) 4 µm


- (d) 10 µm
- 132. Two point sources X and Y emit waves of same frequency and speed but Y lags in phase behind X by $2\pi l$ radian. If there is a maximum in direction D the distance XO using n as an integer is given by
 - (a) $\frac{\lambda}{2}(n-l)$
 - (b) $\lambda(n+l)$
 - (c) $\frac{\lambda}{2}(n+l)$
 - (d) $\lambda(n-l)$

- 133. A student is asked to measure the wavelength of monochromatic light. He sets up the apparatus sketched below. S_1, S_2, S_3 are narrow parallel slits, L is a sodium lamp and M is a micrometer eye-piece. The student fails to observe interference fringes. You would advise him to
 - (a) Increase the width of S_1
 - (b) Decrease the distance between S_2 and S_3
 - (c) Replace L with a white light source
 - (d) Replace *M* with a telescope

- **134.** A beam with wavelength λ falls on a stack of partially reflecting planes with separation d. The angle θ that the beam should make with the planes so that the beams reflected from successive planes may interfere constructively is (where n = 1, 2,)
 - (a) $\sin^{-1}\left(\frac{n\lambda}{d}\right)$
 - (b) $\tan^{-1} \left(\frac{n\lambda}{d} \right)$
 - (c) $\sin^{-1}\left(\frac{n\lambda}{2d}\right)$
 - (d) $\cos^{-1}\left(\frac{n\lambda}{2d}\right)$


In a double slit experiment the source slit S is at a distance D_1 and the screen at a distance D_2 from the plane of ideal slit cuts S_1 and S_2 as shown. If the source slit is shifted to by parallel to S_1S_2 , the central bright fringe will be shifted by

(a) y (b) -y (c) $\frac{D_2}{D_1}y$ (d) $-\frac{D_2}{D_1}y$

136. A parallel beam of monochromatic light is used in a Young's double slit exper and the screen is placed parallel to the plane of the slits. The angle which the the plane of the slits to produce darkness at the position of central brightness is

- (b) $\cos^{-1} \frac{2\lambda}{d}$
- (c) $\sin^{-1}\frac{\lambda}{d}$
- (d) $\sin^{-1} \frac{\lambda}{2d}$

- 137. In a Young's double slit experiment, let β be the fringe width, and let I_0 be the intensity at the central bright fringe. At a distance x from the central bright fringe, the intensity will be
 - (a) $I_0 \cos\left(\frac{x}{\beta}\right)$
- (b) $I_0 \cos^2\left(\frac{x}{\beta}\right)$
- (c) $I_0 \cos^2\left(\frac{\pi x}{\beta}\right)$
- (d) $\left(\frac{I_0}{4}\right)\cos^2\left(\frac{\pi x}{\beta}\right)$
- **138.** In Young's double slit experiment the distance d between the slits S_1 and S_2 is 1 mm. What should be the width of each slit be so as to obtain 10 maxima of the two slit interference pattern with in the central maximum of the single slit diffraction pattern
 - (a) 0.1 mm
- (b) 0.2 mm
- (c) 0.3 mm
- (d) 0.4 mm

Diffraction of light

139. When light is incident on a diffraction grating the zero order principal maximum will be

[KCET 2004]

(a) One of the component colours

(b) Absent

(c) Spectrum of the colours

- (d) White
- 140. A beam of light of wavelength 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of the central bright fringe is

[IIT-JEE 1994; KCET 2004]

- (a) 1.2 mm
- (b) 1.2 cm

- (c) 2.4 cm
- (d) 2.4 mm

141. Consider the following statements

Assertion (*A*): When a tiny circular obstacle is placed in the path of light from some distance, a bright spot is seen at the centre of the shadow of the obstacle.

Reason (*R*): Destructive interference occurs at the centre of the shadow.

Of these statements

(a) Roth A and P are true and P is a correct over

[AIIMS 2002]

- (a) Both *A* and *R* are true and *R* is a correct explanation of *A* explanation of *A*
- (b) Both A and R are true but R is not a correct

(c) A is true but R is false

(d) A is false but R is true

(e) Both A and R are false

(a) oo

(b) 15°

(a) It is not absorbed by the atmosphere

32 \	Wave Optics							
142.		\mathring{A} is incident on a slit of width o. minima, the angular is approximat		n perpendicu	ılarly sit	uated at a (distance (P PMT 19	of 9 <i>m</i> and the 987; Pb. PMT 2002]
	(a) 0.36°	(b) 0.18°	(c)	0.72°		(d)	0.08°	
143.	A diffraction pattern is obtain	ed using a beam of red light. What	happ	ens if the re	d light is	-		ht) 2000; BHU 2001]
	(a) No change together		(b)	diffraction	bands	become n	arrower	and crowded
	(c) Bands become broader ar	nd farther apart	(d)	Bands disa	ppear			
144.	Angular width (β) of central m (a) Distance between slit and	naximum of a diffraction pattern of I source		ngle slit does Wavelengtl				[DCE 2000, 2001]
	(c) Width of the slit		(d)	Frequency	of light t	ısed		
145.	In order to see diffraction the	thickness of the film is						[J&K CEE 2001]
	(a) 100 Å	(b) 10,000 Å	(c)	1 mm		(d)	1 cm	
146.	What will be the angle of diffr 550 <i>nm</i> and slit of width 0.55	acting for the first minimum due t mm	o Fra	unhoffer diff	raction	with source	s of light	of wave length [Pb. PMT 2001]
	(a) 0.001 <i>rad</i>	(b) 0.01 <i>rad</i>		1 rad		(d)	0.1 <i>rad</i>	
147.	The bending of beam of light a	around corners of obstacles is calle						
	(a) Reflection	(b) Diffraction	(c)	Refraction		(d)	Interfer	
148.	Diffraction effects are easier to	o notice in the case of sound waves	than	in the case of	of light w	vaves becau	se [RPE	T 1978; KCET 2000
	(a) Sound waves are longitud	linal	(b)	Sound is pe	erceived	by the ear		
	(c) Sound waves are mechan	ical waves	(d)	Sound wave	es are of	longer wav	elength	
149.	Direction of the first secondar the slit)	ry maximum in the Fraunhofer di	ffract	ion pattern a	at a sing	le slit is giv	ren by (a	is the width of
								[KCET 1999]
	(a) $a\sin\theta = \frac{\lambda}{2}$	(b) $a\cos\theta = \frac{3\lambda}{2}$	(c)	$a\sin\theta = \lambda$		(d)	$a\sin\theta =$	$=\frac{3\lambda}{2}$
150.	A slit of size 0.15 <i>cm</i> is placed diffraction pattern will be	d at $2.1 m$ from a screen. On illum	ninate	ed it by a lig	ht of wa	velength 5	$\times 10^{-5}$ cm	. The width of [RPET 1999]
	(a) 70 mm	(b) 0.14 <i>mm</i>	(c)	1.4 cm		(d)	0.14 cm	!
151.	Yellow light is used in a single observed pattern will reveal	e slit diffraction experiment with a	slit o	of 0.6 mm. If	yellow l	light is repla	aced by <i>x</i>	c-rays, than the [IIT-JEE 1999]
	(a) That the central maxima	is narrower	(b)	More numb	er of fri	nges		
	(c) Less number of fringes		(d)	No diffracti	ion patte	ern		
152.	A parallel monochromatic be	am of light is incident normally of irection of incident beam. At the fathe edges of the slit is	nan	arrow slit. A	A diffrac	tion patteri	ern the pl	
	(a) o	(b) $\frac{\pi}{2}$	(c)	π		(d)	2π	
153.	Diffraction and interference o (a) Nature of light is electro- (c) Nature is quantum			Wave natur		ansverse	[CPMT	`1995; RPMT 1998]
154.	A light wave is incident norrecentral maxima is 30°. What i	nally over a slit of width 24×10^{-5} s the wavelength of light	⁻⁵ cm	. The angula	ır positio	on of secon	d dark f	ringe from the [RPET 1995]
	(a) 6000 Å	(b) 5000 Å	(c)	3000 Å		(d)	1500 Å	
155.		a 600 nm from a distant source fallen 2 m away. The distance between	lls on	a single slit		wide and	the result	
	(a) 1.2 cm	(b) 1.2 <i>mm</i>	(c)	2.4 cm		(d)	2.4 mm	
156.		matic light of wavelength 5000 Å a convex lens on a screen placed o						

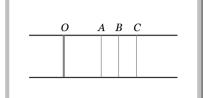
(c) 30°

(b) It is reflected by the atmosphere

157. Light appears to travel in straight lines since [RPMT 1997; AIIMS 1998; CPMT 1987, 89, 90, 2001; KCET (Engg.) 2002; BHU 2002]

(d) 60°

Wave	Optics	33


c)	It's wave	leng	th is	very	small	ĺ						((d)					It's	velo	city	is ve	ery l	arge
a .	11.1	c	1		-	1	c	1.00	 c		- 1		. 1	1	1	1.	c	 • 1		.1	1	1	111

158. The condition for observing Fraunhofer diffraction from a single slit is that the light wavefront incident on the slit should be

[MP PMT 1987]

- (a) Spherical
- (b) Cylindrical
- (c) Plane
- (d) Elliptical

159. The position of the direct image obtained at *O*, when a monochromatic beam of light is passed through a plane transmission grating at normal incidence is shown in fig.

The diffracted images *A*, *B* and *C* correspond to the first, second and time order dimaction when the source is replaced by an another source of shorter wavelength [CPMT 1986]

- (a) All the four shift in the direction C to O
- (c) The images C, B and A will shift toward O
- **160.** To observe diffraction the size of an obstacle
 - (a) Should be of the same order as wavelength
 - (c) Have no relation to wavelength

- (b) All the four will shift in the direction *O* to *C*
- (d) The images *C*, *B* and *A* will shift away from *O*

[CPMT 1982]

- (b) Should be much larger than the wavelength
- (d) Should be exactly $\frac{\lambda}{2}$

161. The first diffraction minima due to a single slit diffraction is at $\theta = 30^{\circ}$ for a light of wavelength 5000 Å. The width of the slit is

[CPMT 1985]

- (a) $5 \times 10^{-5} cm$
- (b) $1.0 \times 10^{-4} cm$
- (c) $2.5 \times 10^{-5} cm$
- (d) 1.25×10^{-5} cm

162. Radio waves diffract pronoucedly around buildings while light waves which are also electromagnetic waves do not because [PPE 1978]

- (a) Wavelength of the radio waves is not comparable with the size of the obstacle
- (b) Wavelength of radio waves is of the order of 200-500 m hence they bend more than the light waves whose wavelength is very small
- (c) Light waves are transverse whereas radio waves are longitudinal
- (d) None of the above

163. One cannot obtain diffraction from a wide slit illuminated by a monochromatic light because

[PPE 1978]

- (a) The half period elements contained in a wide slit are very large so the resultant effect is general illumination
- (b) The half period elements contained in a wide slit are small so the resultant effect is general illumination
- (c) Diffraction patterns are superimposed by interference pattern and hence the result is general illumination
- (d) None of these

164. In the far field diffraction pattern of a single slit under polychromatic illumination, the first minimum with the wavelength λ_1 is found to be coincident with the third maximum at λ_2 . So

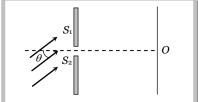
- (a) $3\lambda_1 = 0.3\lambda_2$
- (b) $3\lambda_1 = \lambda_2$
- (c) $\lambda_1 = 3.5\lambda_2$
- (d) $0.3\lambda_1 = 3\lambda_2$

- **165.** In case of Fresnel diffraction
 - (a) Both source and screen are at finite distance from diffracting device
 - (b) Source is at finite distance while screen at infinity from diffraction device
 - (c) Screen is at finite distance while source at infinity from diffracting device
 - (d) Both source and screen are effectively at infinity from diffracting device

166. Light of wavelength $\lambda = 5000$ Å falls normally on a narrow slit. A screen placed at a distance of 1 m from the slit and perpendicular to the direction of light. The first minima of the diffraction pattern is situated at 5 mm from the centre of central maximum. The width of the slit is

- (a) 0.1 mn
- (b) 1.0 mm

- (c) 0.5 mm
- (d) 0.2 mm


167. Light falls normally on a slit of width 0.3 *mm*. A lens of focal length 40 *cm* collects the rays at its focal plane. The distance of the first dark band from the direct one is 0.8 *mm*. The wavelength of light is

- (a) 4800 Å
- (b) 5000 Å

- (c) 6000 Å
- (d) 5896 Å

168. A parallel monochromatic beam of light is incident at an angle θ to the normal of a slit of width e. The central point O of the screen will be dark if

- (a) $e \sin \theta = n\lambda$ where n = 1, 3, 5 ...
- (b) $e \sin \theta = n\lambda$ where n = 1, 2, 3 ...
- (c) $e \sin \theta = (2n-1)\lambda/2$ where $n = 1, 2, 3 \dots$

(d) $e \cos \theta = n\lambda$ where n = 1, 2, 3, 4......

180. The transverse nature of light is shown by

Polarization of Light

169.	The angle of incidence at which	h reflected light is totally polar	rized for re	eflection from air to glas	ss (refraction index	n) is [AIEEE 2004]
	(a) $\sin^{-1}(n)$	(b) $\sin^{-1}\left(\frac{1}{n}\right)$	(c)	$\tan^{-1}\left(\frac{1}{n}\right)$	(d) $\tan^{-1}(n)$	
170.	Through which character we c	an distinguish the light waves	from soun	d waves	[CBSE PMT 199	00; RPET 2002]
	(a) Interference	(b) Refraction	(c)	Polarisation	(d) Reflection	
171.	Which of following can not be	polarised			[Ke	rala PMT 2001]
	(a) Radio waves	(b) Ultraviolet rays	(c)	Infrared rays	(d) Ultrasonic	waves
172.	A polaroid is placed at 45° to polarisation would be	an incoming light of intensit	$\mathbf{y} I_0$. Now	v the intensity of light	passing through po	laroid after [CPMT 1995]
	(a) I_0	(b) $I_0/2$	(c)	$I_0/4$	(d) Zero	
173.	Plane polarised light is passed one complete rotation about the	l through a polaroid. On viewi he direction of the light, one of		_	that when the polar	iod is given [MNR 1993]
174.	(b) The intensity of light grad(c) There is no change in inte(d) The intensity of light is twOut of the following statement	ensity vice maximum and twice zero	and remai	ins at maximum	olarised	[CPMT 1991]
175.		e principle of double refraction to produce and analyse polari th doubly refracting crystals the surface of a glass plate at an	n and total sed light angle of in	internal reflection	ster's angle ϕ . If μ	represents [CPMT 1989]
	(a) $90 + \phi$	(b) $\sin^{-1}(\mu\cos\phi)$	(c)	00°	(d) $90^{\circ} - \sin^{-1}$	$(\sin \phi / \mu)$
176.	Figure represents a glass plate the polarising angle of 57° with the plane of incidence in a	e placed vertically on a horizon	tal table w	ith a beam of unpolaris	sed light falling on it	s surface at
	•					
	(a) Vertical plane					
	(b) Horizontal plane				S S	
	(c) Plane making an angle of	45° with the vertical		\longrightarrow		
	(d) Plane making an angle of	57° with the horizontal		743		
177.	A beam of light AO is incident through a Nicol prism on view				The reflected ray O	<i>B</i> is passed [CPMT 1986]
150	(b) The intensity reduces down(c) There is no change in intensity gradually re	educes to zero and then again i	ncreases	33° O	N B B 33°	[CDMT -00-1
178.	Polarised glass is used in sun g	giasses because sity to half an account of polari	sation	(b)	It is fashionable	[CPMT 1981]
	(a) It reduces the light intens (c) It has good colour	ity to han an account of polari		(b) It is cheaper	it is iasmonable	

179. In the propagation of electromagnetic waves the angle between the direction of propagation and plane of polarisation is [CPMT 1978]

(c) 90°

(d) 180°

[CPMT 1972, 74, 78; RPMT 1999; MP PMT 2000; AFMC 2001; AIEEE 2002; MP PET 2004]

Wave Optics 35

181.	(a) Interference of light A calcite crystal is placed over	(b) Refraction of lighta dot on a piece of paper and re		Polarisation of light	(d) Dispersion of light cite one will be see [CPMT 1971]								
101.	(a) One dot	a dot on a piece of paper and re		Two stationary dots	cite one will be see [CIMI 19/1								
	(c) Two rotating dots			One dot rotating about	the other								
182.	In a doubly refracting crystal,	optic axis is a direction along w	hich										
	(a) A plane polarised beam does not suffer deviation												
	(b) Any beam of light does no	ot suffer any deviation											
	(c) Double refraction does no	ot take place											
	(d) Ordinary and extraordina	ary rays undergo maximum devi	iation										
183.	Which is incorrect with refere	ence to polarisation by reflection	Ŀ										
103.	(a) The degree of polarisation varies with the angle of incidence												
		ing light in the reflected beam is		test at the angle of polar	risation								
		olarised in the plane of incidence	_	0 1									
		olarised in the plane perpendicu		ane of incidence									
182. 183. 184. 185. 186.													
	(a) 55°18'	(b) 144°22'		Both of these	(d) None of these								
185.	The polaroid is	(*) -11	(-)		(4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,								
100.	(a) Celluloid film		(b)	Big crystal									
	(c) Cluster of small crystals a	nrranged in a regular way	(d)		s arranged in a haphazard way								
186.	Light from the cloudless sky i		(4)	oractor or critical organia.	o arrangea in a mapmanara way								
1001	(a) Fully polarised	(b) Partially polarised	(c)	Unpolarised	(d) Can not be said								
	(a) 1 and Farmana	(a) - a			(4)								
)	Doppler's Effect of Light								
					Doppier o Impect of Light								
ŕ	comparing from a terrestrial s(a) Stationary with respect to(b) Approaching the earth w(c) Receding from the earth	o the earth ith velocity of light	<i>,</i>		[MP PMT 1993, 2003								
	(d) Receding from the earth	with a velocity equal to 1.5×10^6	m/s										
188.	In hydrogen spectrum the wa is 706 <i>nm</i> . Estimated speed of	n the spectrum of a dist	ant galaxy. H_{α} line wavelength [IIT-JEE 1999; UPSEAT 2003										
	(a) $2 \times 10^8 m/s$	(b) $2 \times 10^7 m/s$		$2\times10^6 m/s$	(d) $2 \times 10^5 m/s$								
400					• •								
189.	-	avelength. Its appears blue to ar			[DPMT 2002								
	(a) Star is going away from t			Star is stationary									
	(c) Star is coming towards ea			None of the above									
190.	The 6563 Å line emitted by receding from the earth is	hydrogen atom in a star is four	nd to be	red shifted by 5 Å. Th	e speed with which the star is [Pb. PMT 2002								
	(a) $17.29 \times 10^9 m/s$	(b) $4.29 \times 10^7 m/s$	(c)	$3.39\times10^5 m/s$	(d) $2.29 \times 10^5 m/s$								
191.	Three observers A , B and C r	neasure the speed of light comi	ng from	a source to be v_A , v_B	and v_C . The observer A moves								
	towards the source, the observer C moves away from the source with the same speed. The observer B stays stationary. The surrounding space is vacuum very where. Then [Kerala CET (Med.) 20												
	(a) $v_A > v_B > v_C$	(b) $v_A < v_B < v_C$	(c)	$v_A = v_B = v_C$	(d) $v_A = v_B > v_C$								
192.	A star emitting light of wavel	ength 5896 Å is moving away from $c = 3 \times 10^8 m / \text{sec}$ is the speed of	rom the										
	-	_	_	Dooroogs by =c %									
		(b) Increase by 5966.75 Å		Decrease by 70.75 Å	(d) Increase by 70.75 Å								
193.		of a certain star is 22 days and er shift will be (1 day = 86400 se		is is $7 \times 10^8 m$. If the wa	welength of light emitted by its [MP PET 2001								

geni	us PHYSICS by	Pradeep Kshetrapal												
36 V	Wave Optics													
	(a) 0.033 Å	(b) 0.33 Å	(c) 3.3 Å	(d) 33 Å										
194.		eding from earth such that the fra			[DCE 2000]									
	(a) C	(b) $\frac{3C}{5}$	(c) $\frac{C}{5}$	(d) $\frac{2C}{5}$										
195.	A star is going away from (a) Decreased (b) Increased	om the earth. An observer on the e	earth will see the wavelength of li	ght coming from the s	ar [MP PMT 1999									
	(c) Neither decreased nor increased													
	(d) Decreased or increased depending upon the velocity of the star													
196.	If the shift of wavelength of light emitted by a star is towards violet, then this shows that star is [RPET 1996; RPMT 1]													
	(a) Stationary incomplete	(b) Moving towards ear	th (c) Moving away from	n earth (d) Informat	ion is									
197.	When the wavelength of light coming from a distant star is measured it is found shifted towards red. Then the conclusion is [JIPMER 1999]													
	(a) The star is approa	ching the observer	(b) The star recedes a	way from earth										
	(c) There is gravitatio	-	(d) The star remains s	•	_									
198.		nt of a luminous heavenly body the is 4700 Å. The relative velocity of		t to earth will be (velo										
	(a) $3 \times 10^5 m/s$ moving	ng towards the earth	(b) $3 \times 10^5 m/s$ moving											
199.	(c) $3 \times 10^6 m/s$ moving towards the earth (d) $3 \times 10^6 m/s$ moving away from the earth The wavelength of light observed on the earth, from a moving star is found to decrease by 0.05%. Relative to the earth the													
199.	star is													
				[M	P PMT/PET 1998]									
	(a) Moving away with	a velocity of $1.5 \times 10^5 m/s$	(b) Coming closer wit	h a velocity of 1.5×10^5	$\frac{1}{2}m/s$									
	(c) Moving away with a velocity of $1.5 \times 10^4 m/s$ (d) Coming closer with a velocity of $1.5 \times 10^4 m/s$													
200.	Due to Doppler's effect, the shift in wavelength observed is 0.1 Å for a star producing wavelength 6000 Å. Velocity of recession of the star will be [KCET 1998]													
	(a) 2.5 km/s	(b) 10 km/s	(c) 5 km/s	(d) 20 km/s										
201.	A rocket is going away from the earth at a speed of $10^6 m/s$. If the wavelength of the light wave emitted by it be 5700 Å, what will be its Doppler's shift [MP PMT 1990, 94; RPMT 1990]													
	(a) 200 Å	(b) 19 Å	(c) 20 Å	(d) 0.2 Å										
202.	A rocket is going away from the earth at a speed 0.2 c , where c = speed of light, it emits a signal of frequency $4 \times 10^7 Hz$. What will be the frequency observed by an observer on the earth [RPMT 1996]													
	(a) $4 \times 10^6 Hz$	(b) $3.3 \times 10^7 Hz$	(c) $3 \times 10^6 Hz$	(d) $5 \times 10^7 H$	z									
203.	A star moves away from	m earth at speed 0.8 \emph{c} while emit	ting light of frequency $6 \times 10^{14} H$	$oldsymbol{\mathcal{L}}$. What frequency wi	ll be observed									
	on the earth (in units of	of $10^{14} Hz$) ($c = \text{speed of light}$)			[MP PMT 1995]									
	(a) 0.24	(b) 1.2	(c) 30	(d) 3.3										
204.	earth, will show	out its own axis. The spectral lin	es emitted from the two ends of	f its equator, for an ob	server on the [MP PMT 1994]									
	(a) Shift towards red													
	(b) Shift towards violet end													
		end by one line and towards viole	t end by other											
	(d) No shift													

205. The time period of rotation of the sun is 25 days and its radius is $7 \times 10^8 m$. The Doppler shift for the light of wavelength

(c) $4.00 \, \text{\AA}$

[MP PMT 1994]

(d) $40.0\,\text{\AA}$

6000 Å emitted from the surface of the sun will be

(b) $0.40 \, \text{Å}$

(a) $0.04 \, \mathring{A}$

206. The apparent wavelength of the light from a star moving away from the earth is 0.01 % more than its real wavelength. Then the velocity of star is [CPMT 1979]

(a) 60 *km/sec*

(b) 15 km/sec

(c) 150 km/sec

(d) 30 km/sec

												1		ı	1	1	1	ı	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	d	С	d	b	a	c	c	b	C	d	c	d	a	b	c	d	a	c	c
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	3 7	38	39	40
c	b	b	c	a	d	c	d	a	d	b	b	c	b	c	d	c	c	a	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	5 7	58	59	60
c	d	c	c	a	d	a	b	c	a	d	d	c	a	b	b	a	d	a	d
61	62	63	64	65	66	67	68	69	70	71	7 2	73	74	75	76	77	78	79	80
c	d	c	c	c	b	b	c	b	a	b, c	b	d	b	c	b	d	d	b	a
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
a	a	b	a	b	d	b	b	b	d	a	c	c	c	c	a	b	b	d	b,d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
c	c	a	d	b	d	a	a,b	a,c	a	a	b	a	a,d	c	a	d	b	a	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	a	a	С	a	С	d	С	С	a	a	b	b	С	d	d	С	b	d	d
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
С	a	b	a	b	a	b	d	d	b	a	С	b	a	d	С	С	С	С	a
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
b	b	a	c	a	a	c	b	d	c	d	b	d	a	c	a	d	a	a	c
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	с	С	с	С	d	d	b	c	d	С	d	a	a	b	b	b	d	b	c
201	202	203	204	205	206														
b	b	b	c	a	d														