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FOREWORD
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interactively with better diagrams and visual appeal ofthe content. Each chapter has variety oftheoretical and numerical
problems to test the knowledge acquired by students. The book also includes solution to all practice exercises with several new
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Iam sure the book will widen the horizons ofknowledge in Physics and will be found very useful by the students for developing
in-depth understanding of the subject.
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PREFACE

For a science student, Physics is the most important subject, unlike to other subjects it requires logical reasoning and high
imagination ofbrain. Without improving the level ofphysics itis very difficult to achieve agoal in the present age ofcompetitions.
To score better, one does not require hard working at least inphysics. Itjust requires a simple understanding and approach to
think aphysical situation. Actually physics isthe surrounding ofour everyday life. All the six parts ofgeneral physics-Mechanics,
Heat, Sound, Light, Electromagnetism andModem Physics aretheconstituents ofoursurroundings. If you wish tomake the
concepts ofphysics strong, you should tryto understand core concepts ofphysics inpractical approach rather than theoretical.
Whenever you try tosolve aphysics problem, first create ahypothetical approach rather than theoretical. Whenever you try to
solve aphysicsproblem, first create ahypothetical world in your imagination about the problem and try to think psychologically,
what the next step should be, the best answer would be given by your brain psychology. For making physics strong inall respects
and you should trytomerge and understand all the concepts with thebrain psychologically.

The book PHYSICS GALAXY is designed in a totally different and fi*iendly approach to develop the physics concepts
psychologically. The book is presented in four volumes, which covers almost all the core branches ofgeneral physics. First
volume covers Mechanics. It is the most important part ofphysics. The things you will leam in this book will form a major
foundation for understanding ofother sections ofphysics as mechanics is used in all other branches ofphysics as a core
fimdamental. In this book everypart ofmechanics is explained in asimple and interactive experimental way. The book is divided
in seven major chapters, covering thecomplete kinematics anddynamics ofbodies with both translational androtational motion
then gravitation and complete fluid statics and dynamics iscovered with several applications.

The best way ofunderstanding physics isthe experiments and this methodology I am using inmy lectures and I found that it
helps students a lot in concept visualization. In this book Ihave tried to translate the things as I used in lectures. After every
important section there are several solved examples included with simple and interactive explanations. Itmight help astudent in
a way that the student does not require to consult any thing with the teacher. Everything is self explanatory and in simple
language.

One important factor in preparation ofphysics Iwish to highlight that most ofthe student after reading the theory ofaconcept
start working out the numerical problems. This isnot the efficient way ofdeveloping concepts in brain. To get the maximum
benefit ofthe book students should read carefully the whole chapter at least three or four times with all the illustrative examples
and with more stress on some illustrative examples included in the chapter. Practice exercises included after every theory section
ineach chapter is for the purpose ofin-depth understanding ofthe applications ofconcepts covered. Illustrative examples are
explaining some theoretical concept in the form ofan example. After athorough reading ofthe chapter students can start thinking
on discussion questions andstart working on numerical problems.

Exercises given at the end ofeach chapter are for circulation ofall the concepts inmind. There are two sections, first is the
discussion questions, which are theoretical and help in understanding the concepts at root level. Second section is ofconceptual
MCQs which helps in enhancing the theoretical thinking ofstudents and building logical skills in the chapter. Third section of
numerical MCQs helps in the developing scientific and analytical application ofconcepts. Fourth section ofadvance MCQs with
one ormore options correct type questions isfor developing advance and comprehensive thoughts. Last section istheUnsolved
Numerical Problems which includes some simpleproblems and some tough problems which require the building fundamentals of
physics fi-om basics toadvance level problems which areuseful inpreparation ofNSEP, INPhO orIPhO.

In this second edition ofthe book I have included thesolutions to.all practice exercises, conceptual, numerical and advance
MCQs tosupport students who are dependent on their selfstudy and not getting access toteachers for their preparation.

This book has taken a shape just because ofmotivational inspiration by my mother 20 years ago when I just thought towrite
something for my students. She alwaj^ motivated and was on my side whenever I thought to develop some new learning
methodology for my students.



I don'thave words for my best friend mywife Anuja for always being together with metocomplete this book intheunique style
and format.

I would like to pay my gratitude to Sh. Dayashankar Prajapati in assisting me to complete the task in Design Labs of
PHYSICSGALAXY.COM and presentingthebookin totallynewformatofsecondedition.

Atlastbutthemost important person, myfather who hasdevoted hisvaluable time tofinally present thebook in such a format
anda simple language, thanks is averysmall word for hisdedication in thisbook.

In this second edition I have tried my best to make this book error free but owing tothenature ofwork, inadvertently, there is
possibilityoferrors left untouched. I shall be grateful tothe readers, ifthey point out me regarding errors and oblige me by giving
theirvaluable andconstructive suggestions via emails forfurther improvement ofthe book.

Date: May, 2016 Ashish Arora

PHYSICSGALAXY.COM

B-80, Model Town, Malviyal)lagar,Jaipur-302011
e-mails: ashisharora@physicsgalaxy.com

ashash 12345@gmail. com
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Heat and Thermal Expansion

FEW WORDS FOR STUDENTS

Thermal Physics is the branch ofPhysics which deals with the theory
and application of thermal energy. In this chapter we'll mainly deal
with the measurement of temperature and the different effects which
takes place on changing the temperature of body or due to supply of
thermal energy. In next chapters we'll discuss somefundamental laws
of thermal physics related to heat exchange between bodies, called
thermodynamic laws. This chaptergivesyoua thorough understanding
of basic ideas needed in understanding thermodynamic laws in depth.

CHAPTER CONTENTS

1.1 Heat and Temperature

1.2 Temperature andStates ofMatter

1.3 Thermometry

1.4 Thermal Equilibrium

1.5 Thermal Expansion

1.6 Calorimetry

COVER APPLICATION

Figure (a) Figure (b)

1
Id-

Pressure Gauge

To avoid damage in over-bridges caused by thermal expansion as shown in figure-(b), during construction steel girders with slots are fitted
leaving gap between these as shown in figurc-(a). In summers due to expansion this gap decreases and keeps the bridge safe.
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In previous chapters till now we have discussed only three
fundamental quantities i.e. length, mass and time. All other
mechanical quantities such as force, energy, momentum can
be expressed in terms ofthese quantities. We now start another

phenomena, the heat phenomenon which requires a fourth
fundamental quantity called temperature to express a physical
quantity of heat phenomenon in terms of ftindamental
quantities.

When we touch a body, we sense its coldness or hotness
relatively with respect to our body and we say it is cool or
warm. This property ofthe object as well as our body by which
we are revising whether it is hot or cold, called temperature.
The hotter it feels, the higher is the temperature.

1.1 Heat and Temperature

To define temperature quantitatively some systems are used in
which a measurable property ofsystem varies with hotness or

coldness of the system. A simple example is a liquid (like
mercury or alcohol) in a bulb attached to a thin tube as shown
in figure-1.1. When the system becomes hot due to thermal
expansion the volume of liquid increases and the length of

liquid in the tube increases. The scale used to measure length
of liquid column can be calibrated from an arbitrarily fixedpoint
for measurement of temperature. Another simple system is
quantity of gas in a constant volume container as shown in
figure-1.2. the pressure of the gas measured by a pressure
gauge or by a manometer increases or decreases as the gas
becomes hot or colder. Another example ofsuch a system is an
electrical resistance ofa wire, which also varies with hotness

or coldness of surrounding. In each of these examples, the
quantity describing the varying state of the system, such as

the length, the pressure or the resistance R is called a state
coordinate of the system. Such systems which are used to
measure temperature are called thermometers.

C) vsiv—- '

Figure 1.1

1.1.1 Thermal Partitions

Figure 1.2

When two bodies A and B with thermometers and attached

to them as shown in figure-1.3(a) at different hotness level are
placed in contact as shown in figure-1.3(b). Their state
coordinates changes due to different energy content of the
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bodies. The one which is hotter than other is said to have more

energy content and will start loosing this extra energy to the
colder body, hence state coordinates of the bodies start
changing as they come in contact depending on the relative
hotness or coldness level. Qualitatively, we say that initially
one is hotter then the other and each system changes the state
ofthe other.

(a)

O

(b)

Figure 1.3

Ifthe two system (bodies.^ and B) are separated by an insulating

material such as wood, plastic foam or fibre glass, they influence
each other much more slowly.Such a separator or an insulating

wall through which the energy content of a body, which we
call thermal energy or heat, can not flow is called an adiabatic

separator or an adiabatic wall. Due to such a separator the
state coordinates of both the system vary independently of

each other. Such a partition is an idealized model which can be

only approximatelyrealized in real world.

The opposite ofan adiabatic wall is a partition that does allow

the two systems on opposite sides to influence each other or

which allows the heat to flow through it, such a wall is called a

diathermic wall or a diathermic separator.

1.2 Temperature and States of Matter

Ifwe talk about water, we know it can exist in form ofice (solid),
water (liquid) or steam (gas). Many other material can exist as

solid, liquid or gases. Such distinct forms or states of matter

are called phases. The change from one state or phase to
another, such as melting of ice, is usually caused by a transfer
ofthermal energy.

The molecules of a gas move about freely, except when they
collide with other gas molecules or the walls ofthe container.
The average separation between molecules is large compared
with their own size, and as a result, a gas has no definite volume.
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Consequently a gas may be compressed or expanded and will
fill a container of any shape or size. In a liquid, the average
separation between molecules is comparable to their own
diameters. Individual molecules are free to move about, but

because of the forces between them they move so that the
average separation between the neighbouring molecules
remains same. As a result, a liquid is virtually incompressible
and has a definite volume, although its shape can change to
match the shape of its container. In solids the separation
between molecules are comparable to that in liquids but binding
forces are so strong that the atoms in a solid are not free to
move about fixed positions. Thus a solid has not only a definite

volume but a definite shape as well.

In every state of matter with the motion of molecules of the

matter some energy is associated. What we've discussed in

previous article about temperature is that it gives us a feeling
for how hot or cold the object is depending on its temperature
and temperature of an object can be measured by a device
called thermometer. Changes in temperature, changes the
energy associated with the different types of motion (linear,
rotation and vibrational) depending on the state ofmatter (solid,
liquid or gas). Changes in one state to another are also the
changes in energy of the atoms and molecules that compose
the material. The energy ofmolecules ofa bodycan be measured,
quantitatively as dependent on temperature. But it doesn't
mean the two different bodies at same temperature have same
energy content in their molecules. What we can say for one
body is, ifwe increase its temperature, total energy associated
with its molecule will increase. Ifkinetic energy ofmolecules
increases then it means the temperature ofbody increases. If
the phase of substance is changing, it is due to change in
potential energy of the molecules, which exist due to inter
molecular forces ofthe body.

As we've discussed that thermometers are used to measure

temperature of a body quantitatively what a human body can
feel qualitatively. But range ofmeasurement ofthermometers
can be extended for beyond the sense of touch. The range of
thermometers extends from temperature low enough to freeze
the gases ofair to the enormous temperature at the interior of
sun.

1.3 Thermometry

The science and measurement of temperature is thermometry.
The basis of thermometry is that some physical properties

vary with temperature in a quantitative and repeatable fashion.
Some of these thermometric properties are the volume of a gas
or liquid, the length ofa metallic strip, the electric resistance of
a conductor and the light transmitting properties ofa crystal.
Some crystal has their transmission coefficient or light
dependent on their temperature thus as temperatiue ofcrystal

changes, the amount of light transmitted through it changes.
Any physical system whose properties change with
temperature can be used as a thermometer. The choice of
thermometer depends primarily on range of temperature to be
measured. We measure the change in some property, say the
length ofa column ofliquid, and there associate the change in
temperature with our measurement ofthe change in length of
liquid column.

The most popular thermometer is liquid in glass thermometer.
In this thermometer a liquid is sealedintoa glass capillary tube
having a glass bulb at one end. When temperature increases,
both the volume of the glass bulb and the volume of liquid
increases. If the liquid expended at the same rate as that of
glass, we would observe no change. But as liquid expands at a
greater rate then glass does, the liquid will rise in the capillary
connected to bulb as the temperature increases. By using a
large bulb and a narrow tube, it is possible to make a
thermometer that wecan read easily fi-om a scale scribedon the
glass. The common feverthermometer is made this way.

As discussed, some

thermometers determine

temperature by measuring
the amount of light,
transmitted by a crystal as
shown in figure-1.4. The

amount of light
transmitted by the crystal
depends on the
temperature and is

reproducible. This type of
thermometer is used in

medical applications that
require a small, remotely
readable thermometer.

Light out
to detector

Light in

Optical fibre

Casing

Crystal

Figure 1.4

Any thermometer, whether liquid in glass or one that depends
on other thermal properties, must be calibrated to make it a
useful instrument. While calibrating the scale marked on
thermometer it must be having the range of temperatures to
measure temperature between standard or reference

temperatures.

For example in case ofliquid in glass thermometer temperature
betweenreference marks are interpreted as proportional to the
length ofliquid column. There are so many temperature scales
are defined for measurement oftemperatures for thermometers.
First we discuss the most common one-

Celsius temperature scale.*The twofixed points lower andupper



for references of measurement are chosen as ice point and
steam point ofwater. The icepointisdefined as theequilibrium
temperature of a mixtureof ice and water at a pressure of one
atmosphereand the steam point is defined as the equilibrium
temperature ofwater andsteam at apressure ofoneatmosphere.
The numbers assigned to these point in the Celsius scale are
arbitrarily chosen as 0 for the ice point and 100for the steam
point.

Assuming the cross-section of the
thennometercapillaryis uniformandrate
of expansion of the liquid with change
in temperature is constant then we can
mark the distance between ice point and
steam point into ICQ equal parts and
each part we call degree. At any
temperaturewe can easily comparethe
level of the liquid to the nearest mark.
This scale was originally known as the
centigrade scale because it has one
hundred divisions between the principal
reference marks.

100°c-

T- , -I-

O'C- A\

Figure 1.5

Figure-1.5 shows a Celsius scalethermometer at temperature T,
atwhich the liquidis extended toa distance Lbeyond thezero
position. Thushere temperature can becalculated by
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In both the Fahrenheit and Celsius temperature scale, the
assignment of thezeropointis arbitrary. We can readilyachieve
temperatures below these zero points. However, one
temperature scalehas morefundamental choice ofzeropoint.
This was givenbyLordKelvinfromthe studyof gases. Kelvin
scale uses intervals equal to those of the Celsius degree but
with zero set at the lowest theoretical temperature that a gas

can reach. The scale is based on the fact that a gas at 0°Cwill

Iose/^73.15 ofitsvolume for a PCdrop intemperature. Ifthis
reduction in volume were to continue with decreasing
temperature and if the gas did not liquefy, the volume would
become zero at-273.15°C. This is a temperature called absolute
zero. The temperature scale based on this zero is the Kelvin
temperature scale. Ifweuseequation-(l .2)toestablish arelation
intemperatures measured inCelsius scale T^^and Kelvin Scale

Tj^ we have

or

Tc-a -273.15
100-0 " 373.15-273.15

r^ = r^+273.I5 ...(1.4)

Thistemperature in Kelvin scale is used with aunitofKelvin
(K) andit isnotwritten with a degree sign. Thetemperature in
Kelvin is called absolute temperature.

# Illustrative Example 1.1

What are-the following temperature on the Kelvin scale:
(a)37°C,(b) 80°F,(c)-I96°C?

T= X 100 .••(1.1) Solution

Although the Celsius temperature scale is widelyused, there
is nothing fundamental about choosing the icepointto be 0°
and thesteam pointas 100°. The Fahrenheit temperature scale
assigns a value of 32° to the ice point and 212° to the steam
point, a difference ofexact 180°. Similarlytherecanbesomany
temperature scales having different numerical values assigned
for icepoint andsteam point respectively. It iseasy totransform
temperature in one system into temperatures in the other
system. Thegeneraltransformation formula usedfor this is

Temperature in X Scale - ice point in X Scale
Steam point in X Scale — ice point in X Scale

= constant for all temperature Scales

The above formula, ifwe use to transform a temperature in
Celsius scale to its value 7), in Fahrenheit scale, wehave

Tc-0 Tp-32

100-0 212-32
...(1.2)

or Tp=- T^+32 ...(1.3)

(a) Temperature onKelvin scale is related totemperature
on Celsius scale as

7; = 7;+273

or- 7; = 37+273

= 310K

(b) Temperature onKelvin scale andTp onFahrenheit scale
are related as

7>-273 7>-32

or

or

373-273 212-32

Tfc-212 Tp-32

100 180

'̂ K=J (V32)+273

Here 7).= 80° 7^ thus

(80-32)+ 273

=299.66K
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(c) Again from relation used in part (a)

=-196+273

=77K

Illustrative Example 1,2

Typical temperatures in the interior of the earth and sun are
about4 X10^ °C and 1.5 x 10^ "C, respectively, (a) What are
these temperature in Kelvins ? (b) What percentage error is
made in each case if a person forgets to change °C to K ?

Solution

(a) Temperature on Kelvin scale are

r^=7;+273

ForT;= 4000°C, wehave T^=4000+ 273 = 4273 Kandfor
1.5x'lO'°Cwehave

r.=(1.5xlO' + 273)K

(b) Percentage error can be given as

For

%error =
Tk-T.

t:

273
X 100 =

r=4000°C, wehave

% error =
273

4000

For r=1.5x lO''°Cwehave

273
% error = :r x ] 00

1.5x10^

= 1.82 X 10-3%

X 100 = 6.825%

X 100
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Practice Exercise 1.1

(i) (a) "Room temperature" is often taken to be 68° F; what
will it be on Celsius scale ? (b) The temperature ofthe filament
in a light bulb is about 1800°C; what will it be on Fahrenheit
scale ?

((a) 20"C, (b) 3272"F]

(ii) If a temperature scale defined the freezing point of water
as 100° and the boiling point as 0°. What temperature on this
scale corresponds to 25°C ?

[75=]

(ill) In an alcohol-in-glass thermometer, the alcohol column
has length 12.45 cm at 0.0°Cand length 21.30 cm at 100.0°C.

What is the temperature ifthe column has length (a) 15.10 cm,
and (b) 22.95 cm.

[(a) 29.94°C, (b) 118.64°C]

(iv) At what temperature will the Fahrenheit and Centigrade
scales yield the same numerical value ?

[ - 40"]

1.4 Thermal Equilibrium

When two different system at different temperatures are kept
in contact fora longdurationor connectedthrough a diathennic
wall for a long duration till all the changes in their temperature
are ceased, this'situation is called thermal equilibrium.

The condition of thermal equilibrium can be simply related by
the temperature ofrespective bodies. Earlier we've discussed
that temperature ofa body determines the total kinetic energy
ofall the molecules of the body.When two bodies at different
temperature are connected by a heat conducting material,
thermal energystarts flowingfrom a high temperature bodyto
the body at lower temperature. This energy which flows from
one body to another due to its thermal properties, is called
heat. Remember the word "heat" is only used for the energy
which is being transferred or energy in flow from or to a body
due to its thermal properties. The word "heat" can never be
used for energy stored in a body whether or not due to its
thermal properties.

As stated above when two bodies at different temperatures
are connected by a diathennic material, heat starts flowing
between them from high temperature body to the lower
temperature body till their temperature becomes equal and after
that no net heat flow takes place between them. They are now
said to be in thermal equilibrium. Thus we can state that when
two bodies in thermal equilibrium (at same temperatures) are
connected, no'net heat flow takes place between them. On the
basis of this concept a law is defined called zeroth law of

thermodynamics and is stated as

"When two different bodies are in thermal equilibrium with a
third body independently then both ofthese are also in thermal
equilibrium."



1.5 Thermal Expansion

When a body is heated, its temperature rises and as we've
discussed that on increasing temperature totalkinetic energy
ofits molecules increases. In a solid, molecules can onlyhave
thermal agitation (random vibrations). Astemperature ofa body
increases, the vibrations of molecules will become fast and

duetothis therateofcollision among neighbouring molecules
increases. As the collisions between neighbouring molecules
increases, it develops a thermal stress in the bodyand due to
this the intermolecular separation increases which results in
thermal expansion ofbody. In thesimilar waytheblock diagram
shown in figure-1.6 explainsthe wayhowthermalexpansion
takes place.

Temperature Thermal vibration Rate ofcollision

of energy of between neighbouring
Body Increases molecules increases moleeules inereases

Thermal

expansion
takes place

Interatomic

separation
increases

Figure 1.6

Thermal expansion of a substance can be classified in three
broad categories, theseare (i) Linear Expansion (ii) Superficial
Expansion and (iii)Cubical Expansion or Volume Expansion

1.5.1 Linear Expansion

This is expansion in dimension of length of a solid body. It
takes place only in solids. To explain linear expansion we take
a simpleexampleofa ruler scale.Figure-1.7showsa ruler scale
of length L at temperature T. If the temperature of scale
increases, due to thermal expansion, its length also increase. It
isobserved that on increasing temperature byAT, the expansion
in its length AZ, isdirectly proportional tothe risein temperature
AT as

ALxAT ...(1.5)

AtJ

at temp.
• T

L+AL

at temp.

T+ AT

Figure 1.7
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It is alsoobserved that expansion oflargeobject ismoredueto
morenumberofmolecule andequalincreasein all intermolecular
spacing increases the dimensions proportionally, thuswecan
saythat the expansion in its lengthAL is also proportional to
the initial length of the scale as

AT. PC I.

From equation-(1.5)and (1.6), wehave

ALozLAT

or AL = oLAT

...(1.6)

...(1.7)

Thus the final length at higher temperature can be given as

L^=L +AL

L^=L(l +aA7) ...(1.8)or

Here a is the proportionality constant which depends on the
material ofthebodyin simple cases, and is called coefficientof
linear expansion. Theoretically a is supposed to be a constant
but practically it is seen that the value of a varies with

temperature and its relation also changes with temperature
dependingon the range of temperatures.But fora short range
of temperature a can be taken as a constant.

The aboverelation given by equation-(1.8) isnot only valid for
the length of an object but it can also be used to obtain the
enclosed length of an object or distance between two points
on an object. For example consider the disc ofradius R shown

in figure-1.8. If temperature ofthis disc increases, its size will
also increase, as we have discussed, any change in length due
to temperature variation can be given by equation-(1.8), we
can use the same result to find the final radius of the disc as

R' = R{\ + aAT)

temperature = T

R'

temperature = T+ AT

Figure 1.8

...(1.9)

Similarly this expression can also be used to find the distance
between any two points on a body. For example figure-1.9
shows a copper rod bent in the form ofa semicircle. We consider
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twopointson it markedasA and B. Letthe separation between
the two is / at a temperature T. If the temperature of rod is
increasedbyAT. It will expandand hencethe length/ will also
increaseand become /'. As hereA&B art the pointson a body
made of similar molecules and one lattice structure, the
separation between A and B follows the similar law of linear

expansion. Thus /' can be gives as

/' = /(I+aA7) ...(1.10)

Where a is the coefficient of linear expansion of material of
rod.

temperature = T

temperature = T+M

Figure 1.9

Similarly the same result can also be used for lengths and
dimensions ofan object enclosed by a material like radius ofa
hole in a discor radiusof a sphericalcavityin a solidobject.
While applying the conceptof linear expansion in such cases
actually the length is that ofair section but we use the coefficient
of linear expansionfor the material enclosing this air section.
Now we take some examples for understanding the linear
expansion In detail.

1.5.2 Stress in Objects Due to Thermal Expansion

In thermal expansion the inter molecular separation between
molecules ofan object increases. It resultsseveralapplications.
For exampleconsider a metal wire of length /, just taut between
tworigid clamps atsame separation /asshown infigure-1.10(a).
If the temperatureof surroundingincreases, the length ofwire
willincrease duetothermal expansion andtherewill bea sag
in the wire as shown in figure-1.10(b). If the temperature of
wirewilldecrease, it willtendto contract butdueto clampsat
the ends, it is not allowed to contract. If due to fell in temperature
AT, its contraction would be AL= aLATthen this change in
length will be balanced by the elastic strain in the wire. As
temperature starts decreasing, intermolecular spacing between
moleculesof wire tend to decrease but due to clamps, a tension
starts developing in the wire which stretches the wire,by the
same amount to keep its length constant. If total drop in

temperature is AT, change in length dueto thermal expansion
can be written as

AL = OiLAT

rigid clamps

temperature = T

(a)

temperature 7"+ AT

(b)

Figure 1.10

temperature T-AT

Figure 1.11

...(1.11)

As shown in figure-1.11 if wire is not clamped at end B, its
newlength should become^Cwhich isL- AL. Ifit isexternally
stretched and the end C is tied to clampB, this AL will be the
extension instring lengthdue to its elasticity. If cross-sectiorial
area ofwire is S and F" be the tension developed in wire due to
stretching. Thus the stress developed in the wire due to this
tension F is given as

F
stress = —

5
...(1.12)

Strain produced in wire due to its elasticproperties is

AL
strain = oAT

Lj
...(1.13)

IfYoung's modulus of the material ofwire is Y, wehave

stress

or

or

Y=
strain

Y=
F/S

aAT

F= YSaAT ...(1.14)

Equation-(1.14) gives the expression for tension in the wire
due to decrease in its temperature by AT. This result gives the
tensionin wireif initiallywire isjust taughtbetween clamps.If
it alreadyhas sometension in it then this expressionwill give
the increment in tension in the wire.



Figure-1.12(a) shows anothersimilarexample. Arodofcross
sectional area S and length L is supported between two rigid
walls at a separation exactlyequal to that of length of rod so
that rod just fits between the two walls.

Area = S

r.'rigid walls

"i
•N

temperature = T

(a)

N' îN

temperature = r+AT"

(b)

Figure 1.12

If surroundingtemperaturedecreases, the rod contractsand it
will fall down as the separation between the wall does not
change. But if temperature of surrounding increase, the rod
will tend to expand and start pushing the two walls with a
normal force as shownin figure-1.12(b) and as temperatureof
system increases, themagnitude ofnormal force between walls
and rod is also increased. As rigid walls do pot allow rod to
expand from itsoriginal lengthZ,, as temperature increases, N
will increase to producean elastic strain in it due to which at
any higher temperature the increment in length ofrod due to
thermal expansion is exactly compensated by the elastic
compression intherod due to normal reaction acting on itb^
the walls.

If temperature of surrounding increases by AT, the natural
increase in length due to thermal expansionis given as

AL = aLAT

UN is the normal reaction on rod's cross-section then due to

walls, elastic stress on rod is

N
stress= —

O

...(1.15)

As length of rod remains constant, this implies that due to the
normal reaction on rod, it is elastically compressed by exactly
the same amount by which it would thermally expand. Thus
elastic strain in rod is given as

AL
strain ='~z~ ~ oAT ...(1.16)
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If Yis the Young's modulus of the material of rod then from
equation-(l. 15)& (1.16),wehave

or

stress
y=-

NIS

strain AL! L

N=YSaAT ...(1.17)

Similar to the previous case the expression in equation-(l. 17)
givesus incrementin normalreactionbetween wallsand rodif
initially some normal force between the two exists.

1.5.3 Variation in Time Period of Pendulum Clocks by

Thermal Expansion

In pendulum clocks, their oscillation perioddepends on length
of pendulum and the acceleration due to gravityand is given
as

t=2n ...(1.18)

Ifapendulum clock istaken toa region where temperature isAt
abovethis temperature. The new time period of oscillationof
pendulumat higher temperature is givenas

or t'=2K
/(l+aoAT)

[If is the coefficient of linear expansion of material of
pendulum rod]

or
1/2t' = t{\ + a,AT)

or 1

[As ttQ isvery small (1 +aQAT)^^^ (1 + —a^AT)]

Change in period of oscillation can be given as

t'-t=ja^tAT ...(1.19)

Equation-(1.19) gives the increase in period of oscillation of
the pendulumand we can see that the increase in time period
depends on the rise in temperature as well as the initial time
period ofoscillations.

Here ifwe find the change in time per second, we get

^=|a„Ar ...(1.20)
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Equation-(1.20) gives the time lost per second by the pendulum
clock. IfAris the fall intemperature, same equation will give
the timegainedbythe clockper second as its oscillation will
become faster due toreduction in its length.

Now we take some numerical examples to understand the
applications ofthermal expansion ina better way.

# Illustrative Example 1.3

In an aluminium sheet there is a hole of diameter 2 m and is
horizontally mounted on astand. Onto this hole an iron sphere
ofdiameter 2.004 misresting. Initial temperature ofthis system
is 25°C. Find atwhat temperature, the iron sphere will fall down
through the hole in sheet. The coefficients oflinear expansion
for aluminium and iron are 2.4 x1Q-s j 2_x ]Q-s respectively.

Solution

As value of coefficient of linear expansion for aluminium is
morethan that for iron, it expendsfasterthen iron. Soat some
higher temperature when diameter ofhole will exactly become
equal tothat ofiron sphere, the sphere will pass through the
hole. Let it happen at some higher temperature T. Thus we
have at this temperature T,

(diameter ofhole)^ =(diameter ofsphere);^^

2[1 +a^(r-25)] =2.004 [1 +a.^,{T-2S)]

2a^,(T-25) =0.004 +2.004 a. „{T-25)

or T=
0.004

2a,,-2.004a:.
-+ 25

or T=
0.004

2x2.4x10-^-2.004x1.2x10"^
+ 25

or
AZ- 0.05

a. =
LM 25x100

= 2x 10-5 °C-'

For rod B, we have AL= ar,LST
15

or

At

AL 0.04

LAL 40x100

= 10-5oc-i

Ifrod Cis made ofsegments ofrod^ and Soflengths /, and/2
respectively then we have at ®C.

/, + /2=50cm ...(1.21)

r=50°c

/,' + /2'= 50.03 cm

Thus a./,Ar+a,,/,Ar=0.03

or 2X10-5 X/jX50 + 10-5 X X50 =0.03 cm

or
. 0-03

2/,+/.= ^^xio5 = 60cm•1 • *2 5Q ...(1.22)

Solving-(1.21) and (1.22) we get /j =10 cm and =40 cm

# Illustrative Example 1.5

Two straight thin bars, oneofbrass andthe other ofsteel are
joined together side by side by short steel cross-pieces atQ-C,
one cm long, the centre lines ofthe bars being one cm apart.
When heated to 100°C, thecomposite barbecomes bent into
the arc ofa circle. Calculate theradiusof thiscircle.

or r=i9i.rc

# Illustrative Example 1.4

and

Solution

a for brass = 19 x 10-^per®C,

a for steel = 11 x 10-^per°C.

A metal rod Aof25cm length expends by0.05 cmwhen its
temperature is raised from 0°C to 100°C. Another rod 5 of a
different metal oflength 40cm expands by0.04 cm for the same
rise in temperature. Athird rod Cof50 cm length is made up of
pieces ofrods Aand Bplaced end toend expands by 0.03 cm
on heating from 0°C to SO '̂C. Find the length ofeach portion of
composite rod C.

Solution

From the given data for rod A,we have

AL = a^LA7'

Astheexpansion ofbrass isgreater andhence thecombination
will bend with brass rod outside as shown in figure-1.13.

steel cross pieces

R. \

\
Figure 1.13
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In figure, AB isbrass barandCD issteel bar.

Let OC=R and /.COD=%.

Length ofsteel cross pieces at 100 °C

= 1(1 + II X10"^X 100)=1.0011 cm

At 30° clock is loosing time, thus

Now (24= (/?+1.0011) cm

and

9
II

>3

...(1.23)

and AB= {R+l.00n)Q ...(1.24)

Also, ^ =Lo(l +19xl(r6xi00) ...(1.25)

and CD=i(j(l + llxlCf^xlO0) ...(1.26)

From equation-(1.23), (1.24), (1.25) and (1.26), we have

AB R+\.OOn (1 +19x10"^ xlOO)
(1 +11x10"^ xlOO)

i.oul i + iyxiu i.uuii Qxiu^
1 +or

or

CD

1.001

R

R

1+19x10^ 1.0011
1+11x10'" R 1+11x10'"

-4-

i? = (1.0011)
(1 +11x10"^)

8x10
-4

= 1252.8 cm

# Illustrative Example 1.6

Aclock with a metallic pendulum is5seconds fast each day at
a temperature of 15°C and 10 seconds slow each day at a
temperature of30°C. Find coefficient oflinear expansion for
the metal.

Solution

We've discussed that time lost or gained per second by a
pendulum clockis givenby

5r =Y a^T

Here temperature ishigher then graduation temperature thus
clock will loose time and if it is lower then graduation
temperature willgaintime.

Thus time lost or gained per day is

&=—aArx 86400 [As 1day= 86400s.]
2

Ifgraduation temperature ofclock is Fq then wehave

At 15°C, clock is gaining time, thus

110=-j a(30-ro)x86400 ...(1.28)

Dividingequation-(l.28)by (1.27),weget

2(7^0-15) =(30-Tq)

or

Thus fromequation-(l .27)

5=— Xax [20-15] X86400a
2

=2.31x10-5°C-'

# Illustrative Example 1.7

Whatshould bethe lengths ofsteel andcopper rodsothat the
length ofsteel rod is5cm longer then the copper rod atall the
temperatures. Coefficients oflinear expansion for copper and
steel are

ac„= 1.7 X10-5°C-' and ^

Solution

Itisgiven that the difference in length ofthe two rods isalways
5cm. Thus theexpansion inboth therods must besame for all
temperature difierences. Thus we can say that atall temperature
differences, we have

^Cu ^ ^steel

or

[If /j and are the initial lengths ofCm and steel rods]

or

or

It is giventhat - l^=5cm

From equations-(1.29) and(1.30) wehave

or

1.7/1 = 1.1/2

5x1.1
/, =~ , =9.17cm

0.6

Now fromequation-(l .30)

...(1.29)

...(1.30)

5=y •a-(Fo-15)x86400 ...(1.27)
/2= 14.17 cm
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Illustrative Example 1,8

A steel wire ofcross-sectional area 0.5 mra^ is held between
tworigid clampsso that it isjust taut at 20°C. Find the tension
in the wire at 0"C. Given that Young's Modulus of steel is

^ dynes/cm^ and coefficient oflinear expansion
ofsteel is ttj,= 1.1 x 10'̂ ®C"'.

Solution

and

dl^= a, AT

dl^ = l^a^AT

...(1.33)

In case ofequilateral triangle /,= =1^ =/(say) and 0=60° and
forsmallchangein anglei/9= AO

From equation-(I.32) and(1.33), weget

2Bcos (60°) ttj A7'+ 2Bcos (60°) a,AT-1B sin (60°) AO

=2/2ttj AT+ 2/2 ttj AT-iBa^AT

a. a,
^AT+^Ar-— AO

^ Z 2

= aiAr+a,Ar-a2Ar

a,A7-— A0 =2aiAr-a2A7'

(a2-a,)A7'=—- AO

AT=

if- Illustrative Example 1.10

43 AQ
2(a2 - a,)

We know thatduetodrop intemperature, thetension increment
in a clamped wire is

T=YAaAT

= 2.1 XIQi^xO.Sx 10-2x 1,1 X10-5x20

= 2.31 XIQ-^ dynes.

# Illustrative Example 1.9

Three rods A, Band C, having identical shape and size, are
hinged together atends toform an equilateral triangle. Rods A
and B aremade ofsame material having coefficient of linear
thermal expansion ttj while that ofmaterial ofrod Cis By
how many kelvin should the system of rods be heated to
increase theangle opposite torod C by AO.

Solution r-

When the system isheated, the rods expand and the triangle
does not remain equilateral. Let lengths ofrods A, Band Cbe
/j, /j and /3 respectively. Then

Apendulum clock and adigital clock both are synchronized to
beep correct time at temperature 20°C in the morning on P'
March, 2003. At 12:00 noon temperature increases to40°C and
remains constant for three months. Now on D' June, 2003, at
12:00 noon temperature drops to 10°C andremains constant
for a very long duration. Find thedateandtimeonwhich both
theclocks will again besynchronized for a moment.

Solution

As a digital clock (if ideal) always keeps correct time. Buton
increasing temperature on March 12:00 noon, the pendulum
clock slows down andstart loosing time. We know that time
lost by a pendulum clock per second isgiven as

&=YaAr

[Ifa is the coefficient oflinear

expansion for thematerial ofpendulum]

a(20)

Inthree months (March+April + May=92days) itlooses time

S'92 days ^ Ct X20 X92 X86400

On PUune, 12:00 noon,temperature drops to IO°C which is 10°
less then the temperature at which clock keeps correct time,

Figure 1.14

/, +/| -Ij
21,1,

cos 0 =

or 2 /, cos Q= lf-i- /| - /|

Differentiating equation-(1.30), we get

2 /, cos Qdl^ + 2 /j cos Qdl^-2 /, 1^ sin 0 dQ

=2l,dl^+2dl, -2/3 dl^ .(1.32)

Let the temperature ofthe system be increased byAT. Then

dl,=l, a, AT

...(1.31)
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thus nowclockstarts gainingtime and if after//days it gains
exactly thetime lost during previous three months, it shows
right time again for amoment. Thus time gained by theclock in
N days is

=Y 86400

We have (lost) = (gained)

or y xax20x92x8640a =Y 10xiVx86400

or //=184da)«.

Thusafter184 days from P' June2003, pendulum clock will
show correct time and both the clocks will be in synchronization

for amoment andafter 184 days means thedate is2"'' Dec. 2003
and time is 12:00 noon.

# IllustrativeExample 1.11

Atroom temperature (25®C) thelength ofasteel rod ismeasured
using a brass centimeter scale. Themeasured length is20cm.
If the scale is calibrated to read accurately at temperature 0®C.
Find the actual length of steel rod at room temperature

Solution

The brass scale is calibrated to read accurately at 0°C, this
means at 0°C, each division of scale has exact 1 cm length.
Thus at higher temperature thedivision length ofscale will be
more than 1 cm due to thermal expansion. Thus at higher
temperatures the scale reading for length measurement isnot
appropriate and as athigher temperature the division length is
more, thelength this scale reads will be lesser than the actual
length tobe measured. For example inthis case the length of
each division on brass scale at 25°C is

/,,^^ =(lcm)[l+a,^(25-0)]

= l+aJ25)

It is given that at 25°C the length of steel rod measured is
20 cm. Actually it isnot20 cm, it is 20 divisions onthebrass
scale. Now we can find the actual length of the steel rod at
25°C as

Heat andThermal Expansion]

# Illustrative Example 1.12

AvodiAB oflength / ispivoted atanend.4 andfreely rotated in
a horizontal plane at anangular speed co about a vertical axis
passing through^; Ifcoefficient oflinear expansion ofmaterial
ofrodis a, find thepercentage change in its angularvelocity if
temperature ofsystem is increased byAT.

Solution

Iftemperature ofsurrounding increases by AT, thenew length
of rod becomes

/' = /(l+aA7')

Duetochange in length, moment ofinertia ofrodalso changes
M'^

and it is about an end Aand is given as ^
Asnoexternal force or torque is actingonrodthus its angular
momentum remains constant during heating thus we have

[IfCO' isthefinal angular velocity ofrod after heating]

or

or

Ml^ Ml\\ +aATy • ,
C0 = ^ CO

3 " 3

co'= CO {1 - 2aA7')

[Using binomial expansion for small a]

Thus percentage change in angular velocity of rod due to
heating can be given as

Aco= ^ 100%
CO

= 2aATx 100%

# Illustrative Example 1.13

or /..nv. =20[I+a,^(25)] ...(1.34)

A compensated pendulum shown in
figure-1.15 is in theform ofanisosceles
triangle of base length /, = 5 cm and
coefficient of linear expansion
a, = 18 X10"^ and side length /j and
coefficient of linear expansion

02= 12 X10"^. Find so that the distance
of centre of mass of the bob from

suspension centreOmayremain thesame
at all the temperature.

Solution

Figure 1.15

The above expression is a general relation using which you
can find the actual lengths ofthe objectsof which lengths are
measured bya metallic scale at some.temperature other than
the graduation temperature of the scale.

First we must knowwhat is a compensatedpendulum.We've
discussed thatduetochange in temperature thetimeperiod of
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apendulum clock changes. Due to this in pendulum clocks, to
make a pendulum somespecific metals are used which have
verylowcoefficient ofexpansion so that the error introduced
in their time is very small. The other alternative ofminimizing
the error in time measurement, is to use compensated pendulum.
This is a pendulum made up oftwo or moremetals of such an
arrangement in which theeffective lengthofcentreof mass of
the whole body remains unchanged. Such asituation is given
in figure-1.15.

In this case the distance of centre ofmass from suspension
point O is

h=k-^
At some higher temperatureA/,newvalue of/i will become

•^^2(l +a2A0^+-^(l+aiA0^
As we require h - h', we have

/2 ,2
'I ='2 (1 +2a, A;) (1 +2a, AO

/2

22 A I

'2 2 Va.or

13

Figure-l.I7 shows the final situation of rods at higher
temperature A/. In figure, Ais the initial position ofjunction
and B is its finalposition.

h-x-*i

D / B C

Figure 1.17

Ifonly brass rod ispresent, expansion in it due to increase in
temperature by AT is

~ '0

Which is equal to AC in figure-1.17. But finally the rod is
expanded byx, thusthe elastic compression in the roddueto
stress between thetwo rods is BC, which isgiven as

BC=ajQlCr~x

Thus elastic strain in brass rod is

{Strain\rass = L
[Asa^/gAris small]

Similarly ifsteel rod alone is there, it would have been expanded
by . .

# Illustrative Example 1.14

Two sarne length rods of brass and steel of equal, cross-
sectional area are joined end to end as shown in figure-1.16
and supported between two rigid vertical walls. Initially the
rods are unstrained. Ifthe temperature ofsystem is raised by
Af. Find thedisplacement ofthejunction oftworods. Given
that the coefficients oflinear expansion and young's modulus
ofbrass and steel are a^, (a^ >a^), and respectively.

A/^ = a^/,Ar

Which is equal toAD in figure-1.17. But finally steel rod is
compressed hyx, thusthe elasticcompression in steelrod due
to stress between the two rods isBD, which isgiven as

BD^aJ^AT+x

Thus elastic strain in steel rod is

aJffAT-x

Brass Steel

h ' * '0 "

Figure 1.16

Solution

the initial lengths ofthe two rods are and as >a^, we
can directly state that thejunction ofthe two rods isdisplaced
toward right. Due to this brass rod issome what expanded but
less as compared to free expansion and steel is overall
compressed dueto the stressdeveloped between the tworods.

(Strainl^^er
L

[Asa^/gAris small]

As the two rods are in contact, stress developed in the two
rods must be equal thus we have

or Y,

• ^0
= Y

or x =

aJpAT + x

L

(yb+Ys)
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Practice Exercise 1.2

(!) Asteel tape measures thelength ofa copper rod as90.0 cm
and when both are at 10°C, which is the graduation temperature
ofthetape. What would thetape read for the length ofthe rod
when both are at 30°C.Given that coefficientof linear expansion
ofsteel is 1.2 x 10'̂ °C"^ and that ofcopper is1.7 x 10"^ °C"'.

[90.01cm]

I

(ii) In the construction ofa flyover, steel girders of length
12mareused toplace oneafter another. How much gap should
be left between the two at their junction so that in summers
when peak temperature isabout 48®C, there should notbeany
compression. Given that the construction is done in peak
winters when temperature is 18®C. Given that thecoefficient of
linear expansion ofsteel is l.I x 10"^°C~h

[3.96 X iQ-^m]

(iii) Asteel rod isclamped between two rigid supports atlO^C.
If the temperature of rod increases to 50°C, find the strain
developed in the rod due to this. Given that thecoefficient of
linear expansion ofsteel is1.2 x 10'̂ ®C"h
[- 3.6 X lO-*]

(iv) Figure-1.18 shows a steel rod of cross sectional area
2 X10"^ m^is fixed between two vertical walls. Initially at 20®C,
there is no forcebetweenthe ends ofthe rodand the walls. Find
the forcewhich the rod will exert on walls at 100°C. Given that
the coefficient oflinear expansion ofsteel is 1.2 x 10"^ and
its Young's modulus is2 X10"N/m^.

Figure 1.18

[384 N]

Heat and Thermal Ejq^ansion •

(vi) Acylindrical steel component machined on an engine lathe
isheated totemperature of80°C. Thediameter ofthecomponent
shouldbe5 cmattemperature of1O^C andthepermissible error
should not exceed 10 microns from the specified dimension.
Dowe needcorrectionsforthe thermal expansioncomponentbe
introduced during the process of machining ? If so, what
diameter should beprepared ?Take: = 12 x 1Q-^ °C"'.

[Yes, 5.0052cm]

(vii) At a certain temperature the pendulum of a clock keeps
correct time. The coefficient of linear expansion for the
pendulum material isa = 1.85 x 10-5K"'.Howrauch will the
clock gain or lose in24hours iftheambient temperature is 10°C
higher?

[7.992 s]

(viil) Aclock pendulum made ofinvar hasa period of0.5 s at
20°C. Ifthe clock is used in a climate where average temperature

is30®C, whatcorrection maybenecessary at theendof30 days,
a- =7xlO-7(°C)-h

tnvar ^ ^

[9 s (to be added)]

(ix) The time period of a physical pendulum is given by

r= 2jr,M— .where/« =mass ofthe pendulum,/= momentof\ mgl

inertia about the axisof suspension, / = distance ofcentre of
mass of bob from the centre of suspension. Calculate the
change in time period when temperature changes byAT. The
coefficient oflinear expansion ofthematerial ofpendulum isa.

[7C oAr, ]
V'ng/

(x) Two rods ofmaterialAfsandwich another rod ofmaterial 7
asshown in figure-1.19. Attemperature 7,the three rods arein
astateofzerostrainandoflengthLandriveted toeachotherin
thisstate. If the temperature of thesystem increases to 7 + AT,
find thefinal length ofthesystem ofthe three rods. Given that
the coefficients of linear expansions of the rods and their
Young's modulus for material X and 7 are a^, o^, 7^ and 7^
respectively. Consider a^> a^.

privets

(v) Aglass window istobe fitted inan aluminium frame. The
temperature on the working day is 40°C and thesize of the
glass piece isarectangle ofsides 20cm and30cm. What should
be the dimensions of the aluminium frame so that in winters
glass does not experience any stress when temperature drops
to 0®C. Given that the coefficients of linear expansion for
glass is 9X10"^ °C"' and that for aluminium is 2.4 x lO'̂ ^t^"'-
[20.012 cm and 30.018 cm]

[L 1 + -
tyYy+2axYx

Yy+2Y,
•AT

Figure 1.19
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1.5.4 Superficial Expansion

This is expansion in surface of a body or two dimensional
expansion ofan object. Figure-1.20 shows a rectangular plate
ofsize / Xb,when itstemperature increases from TioT+AT,
both ofits length and width increases as thermal expansion
takesplace uniformlyin all direction in a material. Ifa be the
coefficient oflinear expansion for thematerial ofplate, itsfinal
length andwidth athigher temperature can be given as

volume ofbody also increases. Consider abox oflength, width
and height l^b^h.lfits temperature increases by AT, and the
coefficient oflinear expansion for the material ofbox isa, the
finalvolume ofboxwillbegivenas

Vf=lbh{\+(iATf

K^-F;.(l +3aA7)
[Where V.-Ibh andforaAr« I]

or

V^=V.{\+^AT)
/' = /(!+ aA7)

b' = b(l+oiAT)

...(1.35)

...(1.36)

or ...(1.39)

Here y=3a is called coefficient ofvolume or cubical expansion
ofthe material ofbody. In case ofexpansion ofliquids, length
and area do not have any significance and so for a liquid we
can only define coefficient ofvolume expansion. In liquids
molecules are more mobile ascompared tosolid thus expansion
of liquids is always morethan that ofsolids, thusthevalue of
Yis also higher for liquids than solids.

1.5.6 Variation in Density of a Substance

We know volume of a substance increases with rise in
temperature. Thus we can obviously state that the density of
object decreases with rise in temperature as its mass is a
constant. For example ifa body ofmass mhas density pj and
volume Vj attemperature T, then atsome higher temperature
T+ A[T thevolume ofbody can begiven as

F2=F,(1+yA7) ...(1.40)

Ifthe density ofbody now becomes it can be given as

Pi^^i

Ab = baAT

AI=laAT

Figure 1.20

Final area of plate is

A' = rb' = ibil+aA7f

A'^ A(I + \ oATf- [Initial area^= /Z)]

A'=A(l-i-2aAT)
' [As oAT« I, using binomial expansion]

A'=A(l +^AT) ...(1.37)

or

or

or

Here p=2a iscalled coefficient ofsuperficial expansion for the
material ofobject. Insome objects iflinear expansion coefficient
a is not very small (which is very rare), we can not use p=2a
for that material as binomial expansion can not be used and
value ofp canonlybeexperimentally evaluated.

From equation-(1.37) itcan be seen that temperature ofabody
ifdecreases, its final area at lower temperature can be given as

^ (l+PAT)
For small p we can write this expression as

A^=A{\-^ATr^=A{\-^AT) ...(1.38)

1.5.5 Cubical or Volume Expansion

Aswe know when temperature of a body increases, thermal
expansion takesplace uniformlyin all directions. Due to this

or

or

P2 =

P7 =

m

V2 V,{\ + yAT)

Pi

l + yAT

P2 =p,(i+YAr)-i=p,(i-YAr)

...(1.41)

...(1.42)

[As forYA7«l]

We have discussed that with temperature expansion rate of
liquids is faster than solids thus some times in case ofliquids
when coefficient ofexpansion yisnot avery small value, above
equation-(1.42)will not be valid, as we can not use binomial
approximation asyATis notverylessthan 1.Thenvariation of
density ofsuch liquids is given by equation-(1.41) only.

1.5.7 Weight Thermometer

This isaverygood application ofthermal expansion. Inancient
times this device was used to measure surrounding temperature
of a region. In it a liquid is taken in a container as shown in
figure-1.21. Initially the liquid isfilled to completelyfill up the
container and both have initial volume Vq. Iftemperature of
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region [container] isincreased by Ar, final volume ofliquid
andcontainer willbecome respectively. Ify^ and are
the coefficient of volume expansion of liquid and container
then Fj and aregiven as

and

Figure 1.21

V^=F^(l+y^AT)

...(1.43)

...(1.44)

As y, >y^, liquid will expand more than container and some
liquid will expel from the container. The volume ofoverflow
liquid can be given as

= ^o(Y/-Vc)^^ ...(1.45)

Here this volume Al^can be taken as apparent expansion of
liquid relative tocontainer and the term (y, - y^) iscalled as
coefficient ofapparent expansion ofliquid with respect toglass
and can also be denoted by y,^, thus we can write thevolume
of liquid overflowis

AV=y^r;^AT ...(1.46)

Thedensity ofliquid at thishigher temperature isgiven as

P/
P/ (I + Y/AT)

Mass ofliquid overflowis Aw-AKx p/

^o(r/-yc)^^Pr
Am ~ I + Y/AT

or Am + YjAm AT= Vq (Yi - Yc) A3"p/

Heat and Thermal E)q3ansion

in all direction. But this is not alwaystrue, the expansionof a
body in different direction depends on the lattice structure of
thematerial ofbody. Inmost ofthesolids, atoms arearranged
at uniform interatomic distances thus expansion takes place
uniformly in all directions. But in some solids interatomic
separations indifferent dimensions are different. For example
ingraphite, the separation ofcarbon atoms inlayers isdifferent
then the separation between layers as shown in figure-1.22.
Thuswhen graphite is heated and its temperature increases,
the expansion inthe plane oflayers ofcarbon atoms isuniform
but only in two dimensional plane buttheexpansion along z
direction in figure-1.22 i.e. inthedirection normal tolayers the
expansion isdifferent. Ifacube made ofgraphite isheated, we
can conclusively state that at some higher temperature two
opposite faces ofthecube out ofsixremains expanded squares,
other four faces become rectangular.

4i

Figure 1.22

Thuswhen a solid expands uniformly inall three dimensions,
this iscalled isotropic expansion ofsolid. Inisotropic expansion
the coefficient of linearexpansion a remainssameinall three
dimension andthusthevolume coefficient of thermalexpansion
can be written as

y=3a ...(1.48)

or AT=
Am

.^6(Y/-yc)-Awy/_
— .•.(1.47)

When expansion ofsolid isdifferent in the three dimensions
due to atomic arrangement in solid lattice structure, this is
termed as anisotropic expansion of solids. In anisotropic
expansion the coefficient oflinear expansion ofsolid isdifferent
in different dimensions of solid. For example in a piece of
graphite if a, is the linear expansion coefficient in x and y
direction (along theplane ofcarbon layers) anda2isthelinear
expansion coefficient in zdirection (normal to graphite layers)
then the coefficient of cubical expansion of solid is given as

y=2a| + a2 ...(1.49)

Some tim^ the value ofa is different in all three dimensions in
a solid say a,, a-^ and then in that case the value ofy is
given as

y= ttj + a2+ ttj ...(1.50)

If we weight themass ofliquid overflown, then using this in
expression ofequation-(l .47) wecan find therise intemperature.

1.5.8 Isotropic and Anisotropic Expansion

We've discussed that when a substance is heated, its
temperature rises and thermal expansion takes place uniformly



Given that densityof sphereis

m

nr'

250

^x3.14x(3.5)
Y =1.396 gm/cm^
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Itis given that density ofliquid at 0°C is = 1.527 gm/cm^ ify
isthe coefficient ofcubical expansion ofliquid then its density
at35®C is given as

_ Po
P3" l+y(35)

At 35^0, as sphere begins to sink, we have

density of sphere = densityofliquid

1.527

1+ y(35)

[As sphere does not expand, its density remains constant.]

('-527 1or Y= 1 X —
U.396 J 35

= 2.681 X I0-3ocri

# Illustrative Example 1.17

JHeat and Thermal Expansion

As we've observed the anisotropic expansion is due to the
properties ofa lattice structure in atomic arrangement, it can be
seenonlyin solids not in liquids or gases.

Now we take some examples todiscuss thermal expansion in
detail. —

Illustrative Example 1.15

Aonelitreclosed flask contains some mercury. It is found that
at different temperatures the volume of air inside the flask
remains thesame. What is the volume ofmercury in flask ?
Given coefficient oflinear expansion ofglass = 9 x 10"^ "C"'.
Coefficient ofvolume expansion ofHg= 1.8x 10"^ °C"'.

Solution '

Herethe volume of air in the flask remains the same. This is
only possible when theexpansion offlask isexactly thesame
as the expansion of mercury in the flask.

Here coefficient ofcubical expansion ofglass is

yg =3a=3x9x 10-^ =27 x 10"^

Here to keep thevolume ofair in flask constant, we have
I

Expansion offlask =Expansion ofmercury

(1000)Y^Ar=x.Y^,AT

[Let Xbe thevolume ofmercury inthe flask] Apieceofmetal weighs 46 gminair.When it is immersed in a
liquid ofspecific gravity 1.24 at 27 "C, itweighs 30 gm. When
the temperature ofthe liquid is raised to 42 °C, the metal piece
weighs 30.5 gm. The specific gravity ofthe liquid at42 "C is
1.20. Calculate the coefficient oflinear expansion ofthe metal.

Solution

Here we first calculate the volume ofthe metal piece at27"C as
well asthe volume ofmetal piece at42®C. It isgiven that

Weight ofthe piece ofmetal inair=46gm

Weight ofthe piece ofmetal in liquid at27 °C =30 gm

Thus loss ofthe weight ofthe piece ofmetal in liquid = 46 -30
= 16gm= weight of liquiddisplaced

or

Ym

27x10"^
—1000 X ^ —150 cm^.

-4
1.8x10

# Illustrative Example 1.16

Asphere ofradius 3.5 cm and mass 250 gm floats in a liquid at
20°C. As the temperature is raised, the spherejust begin to sink
at a temperature of 35T. If the density of liquid at 0°C is
1.527 gm/cm^, find the coefficient ofcubical expansion ofthe
liquid.Neglect expansion of the sphere.

Solution

It is given that at 20''C, sphere is floating in liquid but at 35°C it volume ofmetal piece at 27''C is
begins to sink as on increasing temperature liquid expands
and its density decreases. At35®C, its density becomes equal
tothatofsphere and then thebuoyancy force onsphere isjust
equal to theweight ofsphere andit is fully submerged in the
liquid.

_ weight of liquid displaced _ 16
density 1.24

cm3

cm^
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Similarly, the volume of the piece of metal at 42 ®C can be

calculated in the following way:

Weight ofthe piece ofmetal in air = 46 gm

Weightofthe piece of metal in liquid at 42 °C= 30.5 gm

Loss of the weight of the piece of metal = 46 - 30.5 = 15.5gm

Weightofthe volume displaced of liquid at 42 °C= 15.5 gm
Now the volume ofthe liquid displaced

weight of the liquid displaced

15.5

1.20
cm-*

density

Thus the volume ofpiece ofmetal at 42 °C

15.5

Applying the formula yAT),we have

15.5 16

or

1.20 1.24
(l+y.l5)

, 15.5 1.24I + 15 Y = ^
^ 1.20 16

15

15.5 1.24 ,
•X 1

1.20 16

[As A7'=42-27 = 15]

_1_ J_
15 960

1
a =

3x15x960
= 2.315 X 10"^ "C"'.

# Illustrative Example 1.18

Asinker ofweight Wq hasanapparent weight fV^ when weighed
in a liquidat a temperature T, and IFj when weighed in the
same liquid, at a temperature Tj- The coefficient of cubical
expansion of the material of the sinker is p. What is the

coefficient ofvolume expansion ofthe liquid ?

Solution

Here, weight ofsinker in air =

Weight ofsinker in liquid at temperature

Weight of sinker in liquidat temperatureTj=

(i) At temperature

Loss ofweight ofthe sinker in liquid =

Heat and Thermal Ei^ansionJ

Weight ofthe liquiddisplaced = Wq-W^

Volume of liquid displaced

weight of liquid displaced

density

...(1.51)

Where r/, is the density ofthe liquid at temperature Tj.

(1!) At temperature

Similarly, we can calculate the volume of liquid displaced at

temperatureT2.

V- =
^2

...(1.52)

Where d2 is the densityof the liquidat temperature T2

We know that

V,^=V,^{\+y{T2-T,)-\

Where y is the coefficient ofcubical expansion ofsinker

According to the given problem y = P, thus

^7-2='̂ T,n+P(T2-r,)] ...(1.53)

Substituting the value ofVj.^ and we have

[i+P(r,-r,)] ...(1.54)

But =
d, Vr^ ^r,n+Yi(T2-71)]

di MtV. K K.

or

^2
= [l+yjr,-r,)] ...(1.55)

Where y^ is the coefficient ofcubical expansion ofthe liquid.

From equations-( 1.54) and (1.55), we have

[i+y,(r2-ri)] =
fFo-fVi

[i + P(r,-r,)]

Solving we have

^ (^2-^) + P(^o-^i)(7^2-7])
(fVo~^2)(T2-Ti)
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# Illustrative Example 1.19

A barometer reads75cmon asteelscale. Theroomtemperature
is 30°C. The scale is correctly graduated for 0°C.Find thecorrect
atmosphericpressure.Giventhat coefficient of linearexpansion
of steel is 1.1 x 10"^ and that of cubical expansion of
mercury is 1.8x 10*^ °C~'. Neglect expansion ofglasstube.

Solution

For steel scale at 30°C, length of 1 cm division will become

^cmat30"C = O Cm) [1 + X(30)]

= 1 + 1.1 X 10-5x30

= 1.00033 cm '

Thus actual length of mercury column at 30°Cwill be

^Hg at 30"C =1-00033 X75 =75.02 cm
Ifarea of crosssectionof capillarytube is^ length of mercury
column at 0°C can be given as

^HgsXZtfC ^ ^ ^//gat30"C ^ ^ ^ T//g (^0)]
[Giventhat Adoesnot change with temperature]

. . ' 75.024
or //gato°c (1 +1.8x10-^x30) = 74.62 cm.

Atmospheric pressure ismeasured intermsoflength ofmercury
columnat 0"C thusthe correctbarometric pressureis 74.62cm.

# Illustrative Example 1.20

A cylindrical Can can made up ofaluminium contains 500 cm^
of beer. The area of cross-section of Can is 125 cm^ at 10"C.

Find the rise in levelof beer if temperature of Can increases to
80"C. Given that coefficientsof linear expansion of aluminium
is =2.3 X10-5 °C-' andthatfor cubical expansion ofbeer is

Solution

It is given that at 10 "C, volume ofbeer is 500 cm^ and the area
ofcrosssection ofCan is 125 cm^. Thusheightofbear level is

500
/,=—=4cm

Now at 80", volume ofbeer becomes

K,o.c = 50a(l+Y,,,,x70)

=500(1+3.2x 10-^x70)

= 511.2 cm^

At 80", area of cross-section ofCan becomes

^goT= 125[l+2a,,x70]

= 125[1+2 X2.3 X10-5x70]

= 125.402 cm2

Thus new height ofbeer level at 80"C is
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h'=-
K. 511.2

Asooc 125.402
=4.076 cm

Thus rise in level of beer is

Ah = h'-h

=4.076-4.0

= 0.076 cm

Illustrative Example 1.21

A steelball initiallyat a pressureof 10^ Pa is heated from 20"C
to 120"C keeping its volume constant. Findthe finalpressure
inside the ball. Given that coefficient of linear expansion of
steel is 1.1 x 10"5 and Bulk modulus of steel is
1.6x IQiiN/ml

Solution

On increasing temperature ofball by100°C (from 20"C to120"C),
the thermalexpansion in its volume canbegivenas

AK=Y,,KAr

= 3 VST ...(1.56)

Here it is given that no change is volume is allowed. This
implies that the volume increment by thermal expansion is
compressed elastically by external pressure. Thus elastic
compression in the sphere must be equal to that given in
equation-(1.56). Bulk modulus ofa material is defined as

^ _increase in pressure SP
volume strain

Heretheexternally applied pressure tokeepthevolume ofball
constant is given as

AV
AP=5x—=5(3a^,A7)

= 1.6xl0"x3xl.1x10-5x100

= 5.28xl08N/m2

= 5.28x108 Pa

Thus this must be the excess pressure inside the-ball at 120°C
to keep its volume constant during heating.
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Practice Exercise 1.3

(i) In a mercury in glass thermometer the cross-section ofthe

capillaryis Aq and volume of the bulbis Vq at CC. If mercury
just fills the bulb at O^C, find that the length ofmercury in the

capillary at temperature t °C. Given that p = coefiicientofcubical

expansion of mercury and a = coefficient of linear expansion

of glass.

Ko(P-3a)f

l.4o(l +2aO^

(if) A one litre flask contains some mercury. It is found that at

different temperatures the volume of air inside the flask remains

the same. What is the volume ofmercury in flask ? Given that

the coefficient oflinearexpansion ofglass= 9 x 10"^ °C"' and
coefficient ofvolumeexpansion of mercury= 1.8 x 10^°C"'.

[150 cm^]

(Hi) Some steel balls are fixed at the bottom of a silica bulb of

negligible expansivity. The bulb holds 340 gm ofmercury at

0®C when filled, in the absence ofthe steel balls and 255 gm of

mercury, when the steel balls are inside. On heating the bulb

and its contents (steel balls and mercury) to lOCC, 4.8 gm of

mercury overflows. Find the coefficient of linear expansion of

steel.y^^=]80x I0-6-C-'. •
[11.76 X 10-« "C"']

(iv) Ifa liquid is contained in a long narrow rigid vessel so it

an expand in essentially one direction only, show that the

effective coefficient of linear expansion a of liquid is

approximately equal to the coefficient of volume expansion p
ofliquid.

(v) In observing the real expansion ofa liquid a certain part of

glass vessel is to be filled with a liquid of volume expansion
Y= 18 X 10~^ in order to exclude the effect of the change in

remaining volume ofthe vessel during heating. What fraction

ofthe vessel should be filled with the liquid ? The coefficient

oflinear expansionofglass is a =9.0 x IQ-^.

VAo]
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(vi) A clock with a metallic pendulum gains 6 seconds each
day when the temperature is 20°C and loses 6 second when the
temperature is 40°C. Find the coefficient oflinear expansion of

the metal.

[a= 1.4 X 10-5 °C-']

(vii) The coefficient ofapparent expansion ofa liquid when
determined using two different vessels A and B are Yj and Y2
respectively. Ifthe coefficient of linear expansion ofthe vessel

A is a,, Find the coefficient oflinear expansion ofthe vessels.

Y|-y;+3a,

(viii) A solid whose volume does not change with temperature

floats ina liquid. Fortwo different temperatures Tjand ofthe
liquid, fractions /, and/2 of the volume of the solid remain
submerged in the liquid. Find the coefficient of volume
expansion ofthe liquid.

/2-/1
/ir2-/27i ]

(ix) A small quantity of a liquid which does not mix with
water sinks to the bottom at 20^C, the densities of the liquid

and water at that temperature being 1021 and 998 kg m"^,
respectively. Towhattemperaturemust the mbcture beuniformly
heated in order thatthe liquid form globules which just float on
water ? The coefficient of cubical expansion ofthe liquid and
water over the temperature ranges are 85 x IQ-^ and
45 X10"^ °C"^ respectively.

[79.15°C]

1.6 Calorimetry

The process of measurements of heat exchanges between
bodies and system is known as calorimetry in early ages some
chemists ofthe time found that when a hot object such as an
iron ball, was immersed in a water bath, the resulting change in
temperature ofthe water depend on both the mass and initial
temperature ofthe ball The temperature change was interpreted
as a measure of the heat contained in the object. Further
experiments showed that when two similar iron blocks at the
same initial temperature were immersed in identical water baths,

the more massive block caused a greater temperature change.

Similarly for two identical blocks at different temperatures, the
hotter block gave rise to a greater temperature change in the
bath. Finally, for blocks of same mass and same initial

temperature, the change in temperature of both was different
for different materials. Thus the amount ofheat supplied by a
body depends on its mass, initial temperature and its material.

Lets discuss the things in details and in scientific terms.
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1.6.1 Specific Heat and Absorption ofHeat

When heat is supplied to a substance it increases the energy

ofits molecule and hence its temperature increases. The rise in

temperature ofsubstance is proportional to heat supplied to it

and also depends on the mass and material ofthe substance. If

AQis the amount of heat supplied to a bodyof mass m and due
to this ifits temperature increases by AT,then this heat supplied

AQ and the rise in temperature ATare related as

AQ = msAT ...(1.57)

Where j is a constant for material of body known as specific

heat ofthe material ofbody, from above expression in equation-

(1.57), ifm= 1gm and Ar= 1°Cthen 5 = A0 thus specific heat

ofa material is defined as "the amount ofheatfor unit mass of

a body to raise its temperature by 1°C" Thus material with a

high specific heat requires a lot of heat to change its

temperature, while a material with a low specific heat requires

little heat to change its temperature. Ifan object cools, then the

temperature change is taken negative and heat AQ is given by

the object. The units ofspecific heat are cal/gm **0 or J/kg ®C.

Specific heats ofsome common materials used in general life

are given in the lists shown in table-1.1

Table-1.1

Substance Specific heal Specific heat

J/kg "C Cal/gm °C

Water 4187 1.00

Ice 2090 0.50

Steam 2010 0.48

Wood 1700 0.40

Aluminium 900 0.215

Glass 840 0.200

Iron 448 0.107

Copper 390 0.092

Lead 128 0.0305

In the expression shown in equation-( 1.57), the term ms, the

product of mass of body and specific heat of its material is

described as the heat capacity ofthe body which is the amount

ofheat required to change an objects temperature by 1°C.

Thus bodies ofthe same material but ofdifferent masses have

heat capacities proportional to their mass.

In most ofthe materials, with temperature their specific heat

varies slightly but for short temperature ranges we can take it

to a constant. All the specific heats given in Table -1.1 are at

temperature 25°C.
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1.6.2 Mechanical Equivalent of Heat

At the time ofdiscovery ofheat and temperature, the distinction
between the two was not clear and the two were often confused.

At that time it was generally taught that heat was some kind of

fluid, which could be added to or taken away from a substance
to make it hot or cold. We know that heat is a form of"Energy
Transfer" that occurs when there is a temperature difference
between objects.A common example ofthe distinction between
heat and temperature is taken by comparing a candle flame and

a warm hot water radiator in a cool room. The candle flame is at

a much higher temperature then the radiator but we can not

expect it to appreciably warm the room. Although the radiator
is at much lower temperature then the candle but enough heat

flows from it to keep the whole room warm. In both cases
energy (Heat) is transferred from an object at a higher
temperature to surrounding at a lower temperature.

In year 1842 Julius Mayer suggested that heat and mechanical
work were equivalent and that one could be transformed into
the other, he also showed that the temperature of water could
be raised by TC or more bymechanical agitation alone. But he
failed to determine the amount of work required for such a
change.

The conclusive relation between heat flow and work was

demonstrated by James Prescott Joule in 1843.

He demonstrated by his experiments that mechanical energy
can be directly converted into thermal energy and he also
measured the numerical factor relating mechanical units to
thermal units. Acommon unit of energywas devised and given
name in the honor ofJoule's contribution to science. This unit

joule is equal to roughly one fourth the size ofcalorie as

1calorie = 4.187 joules

This relation is called "Mechanical equivalent ofheat" and
denoted by . The calorie is not accepted unit ofenergy as SI
units. The appropriated SI unit for energy is joule. But calorie
is still used in several practical applications. Therefore we use
both wants in our examples.

1.6.3 Water Equivalent of a Substance

Water equivalent of a substance is defined as the quantity of

water which requires the same amount of heat which the

substance requires for same rise in temperature. For example if
a body ofmass m and specific heat 5 is heated from temperature
T] to Tj then the amountofheat requiredfor the purpose is

Q = ms{T^-T^ ...(1.58)
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If isthemass ofwater which requires thesame heatgiven in
equation-{1.58), to range its temperaturefrom to thenwe
have

Q= ms{T^-T;) = m^s^{T^~T;).

or
ms

'"co=t: ...(1.59)

Equation-(1.59) gives the water equivalent of thebody. Now
we take some examples to understand the heat flow and
variation in temperature of different bodies.

# Illustrative Example 1.22

A leadballat 25°C isdropped from a heightof2 km. It is heated
due to air resistance and it is assumed that all of its kinetic

energy is used in increasing the temperature of ball. If
specific heat of lead \s s= 126 Joule/kg °C, find the final
temperature ofball.

Solution

If there is no air resistance,velocityofball on reachingground
is

V=^2gh =-v/2x10x2000 ^200m/s

Kinetic energy ofball is

K= —
2

= — Xm X(200)^ = 2 X10** XmJoule

[Ifmass m is in kg]

If all the kinetic energy is absorbed by the ball as heat and due
to this temperature of ball is increased by AT, we have

K-msAT

or 2x l(yxw = wx I26xAr

2x10''
or Ar=——— = 158.73 °C

126

# Illustrative Example 1.23

The temperatureof equalmassesofthree differentliquids/I, B
and Care 15''C,20®C and 3C'C respectively, Whenand5are
mixed, their equilibrium temperature is 18®C. When B and Care

mixed, it is22°C. Whatwillbetheequilibrium temperature when
liquids A and Care mixed.
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Solution

Let specific heats ofliquids are s^,Sg and respectively. Then
for mixing of liquids Aand B, we have

heat lost by5 = heat gained by^

or mx 5^x(20-18) =mx5^x(l8-15)

2Sg 35^

For mixing of liquids B and C, wehave

heat lost by C = heat gained by B

m X X(30-22) = mX5^ X(22-20)

8^^ = 2sg

or

Fromequation-( 1.60) and (1.61),weget

85^. = 35^

...(1.60)

...(1.61)

...(1.62)

Nowifliquids AandCaremixed, lettheirequilibrium temperature
in Fp thenwehave ^

Heat lost by C = heat gained byA

mxj^x(30-r;) =mxj^x(7;-15)

3s^
or

or

or

or

•^x(30-r;=.,x(r^-i5)

90-37; = 8r-120
e e

11 r = 210

210
7;=—= 19.09T

# Illustrative Example 1.24

Ametal block ofdensity 5000 kg/m^ andmass 2kgissuspended
bya spring offorce constant 200Nt/m. Thespringblock system
is submerged in a water vessel. Total mass ofwater in it is300g
and in equilibrium the block is at a height 40 cm above the
bottom of vessel. If the support is broken. Find the rise in
temperature ofwater. Specific heat ofthe material of block is
250 J/kg K and that of water is 4200 J/kg K. Neglect the heat
capacities ofthe vessel and the spring.

Solution

When the block is in equilibrium in the water and spring is
stretched by a distance x and the spring force balances the
effective weight ofblock i.e. weight ofblock minus thebuoyant
forceon block.Thus for equilibrium ofblock in water, wehave
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kx+ weight of liquid displaced = weight ofblock

200 a:+

or

or

5000
X lOOOx 10 = 2x 10

20-4 16
X =—rrr~ =~r77" =0.08m = 8cm

200 200

Thus in equilibrium, energy stored in spring is

=y X200 X(0.08)2 =0.64-Joule

When the support is broken, the mass fall down to the bottom
of vessel and the potential energy stored in spring and the
gravitational potential energy ofblock is released and used in
heating the water and block. Thus we have

0.64+ mg(0.4) = X XAr+ X Xat

or 0.64+ 2X 10x0.4 = [0.3x4200+ 2x250] AT

8.64
AT= =0.0049°C

1760

# Illustrative Example 1.25

A copper cubeofmass 200 gm slides down on a rough inclined
plane of inclination 37° at a constant speed. Assume that any
loss in mechanical energy goes into the block as thermal energy.

Find the increase in temperature of block as it slides down
through 60 cm. Given that specific heat of copper is 420 J/kg.K.

Solution

As block slides at constant speed, Iriction on block exactly
balances the gravitational pull on it, mg sin 0. Thus

/= mg sin 0 = 0.2 X10 Xsin 37°

3
=2xy-1.2N

As block slides 60 cm distance, work done by it against fi"iction
is

W=f-l
*

= I.2x0.6=0.72J

This energy is only used in increasing the temperature ofcopper
block, thus

Q.12 = m.s.tsT

0.72
or AT=

• ms

0.72

~ 0.2x420
= 0.0085rC
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# Illustrative Example 1.26

A metal container ofmass 500 gm contains 200 gm ofwater at
20°C. A block ofiron also ofmass 200 gm at 100°C is dropped
into water. Find the equilibrium temperature of the water. Given
that specific heats of metal of container and iron and that of
water are 910 J/kg K, 470 J/kg K and 4200 J/kg K respectively.

Solution

Here container and water are at 20°C, thus when iron block is

dropped into water it will looseenergy to it and its temperature
willfall. Ifequilibrium temperature is T^, thenwehave

heat lost by iron block = heat gained by water plus container

m,x.,.(100-To) = m^x,JT,-20) + «,^ +.^(T„-20)

(100) + (20 + (20)
or 7-0 =

0.2x470x100 + 0.2x4200x20+0.5x910x20

0.2x470 + 0.2x4200 + 0.5x910

9400 + 16800 + 9100

94 + 840 + 455

35300

1329
= 26.56 °C
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Practice Exercise 1.4^

(i) A canofwaterofvolume 0.5 m^ at a temperature 30°Cis
cooled to 15°C.Neglect heat capacity of the can. If the amount
ofheat released by water is used to lift a box ofweight 10 kg,
find the height to which it can be lifted. Given that specific heat
ofwater is4200J/kg°C.Takeg = 10m/s^.

13.15 X 105

(ii) Equal masses ofthree liquids have temperatures 10°C,25°C
and 40°C respectively. IfFirst two liquids are mixed, the mixture
has a temperature of 15°C. If second and third are mixed, the
equilibrium temperature is 30°C. Find the final temperature if
first and third liquids are mixed.

[16°C]
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(iii) Awaterheater can generate 8500kcal/hr.Howmuchwater
can it heat from 10°C to 60°C per hour ? Use specific heatof
water 4200 J/kg°C.

[170 kg/hr]

(iv) Whena290gmpieceofironat 180°Cisplacedina 100gm
aluminium calorimeter cup containing 250 gmofglycerin at
lO^C, the final temperature is observedto be 38°C. What is the
specific heat ofglycerin ?Use specific heat ofiron 470J/kg K
and that ofaluminiumis900J/kgK.

[2405 J/kg K] /

(v) The specific heat ofmany solids at^ow temperatures varies
with absolute temperature Taccording to therelation 5= aT^,
where a isa constant. Findtheheatenergy required toraisethe
temperature ofa mass m ofsuch a solid from 0 to 20K.

[4 X IC ma]

(vi) A certain calorimeter has a water equivalent of 4.9 gm.
That is, inheat exchanges, the calorimeter behaves like 4.9gm
ofwater. Itcontains 40gmofoilat 50.0®C. When 100 gmoflead
at 30.0®C is added, the final temperature is 48.0°C.What is the
specific heat capacity of the oil ?
[Take 1cal/gm-C,5,^^=0.305 cal/gm^C]

[0.563 cal/gm''C]

1.6.4 Phase Transformation

When heatis supplied toa substance, its temperature increases
and simultaneously the agitation (vibration energy) of-its"
moleculesalso increases. If the substance is a solid, we have
discussed that in a solid intermolecular forces are strong
enough to make the positionof moleculefixed in the lattice and
the substance has a definite shape unlike to liquid or gases.
When thermal agitation of molecules increases with rise in

temperature,molecules start exerting an additional forceonto
each other and with temperature this forcealso increases. When
temperature of a substance attains a value at which this force
due to thermal agitation exceeds the cohesive force due to
which molecules are bounded to each other, the molecules
start becoming free and the heat energy due to which
temperature of body was increasing will be now used in
breaking the molecules from the latticeand fiarther supplyof
heat will break more molecules from the lattice and this

phenomenon is called melting of solid and during melting
temperature of substance do not increase with furthersupply
of heat. During melting supplied energy is used to break the
bonds between molecules to melt the substance. Thus no
temperature rise take place until the whole substance is melt.
The amount of heat required to melt a given mass of a solid
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substance is measured in terms of Latent Heat which is

characteristic property ofa solid substance. It is defined as the
amountofheat required to melta unit massofsolid, denoted
by/.^and termed as latent heat offusion. Ifg isthe heat, which
melt amass mofasolid substance with latent heat offusion Zy,
then we have

Q=mLj. ...(1.63)

aim, * aim, aim

Figure 1.23

A similar phenomenon vaporization can also be defined, for
transformation of a liquid to vapour. Figure-l .23 showssome
liquid in a container, we have already discussed that at a
temperatureeverymolecule has somethermal agitation energy
which isproportional to theabsolutetemperatureof substance.
Due to this, molecules on the surface of liquid are in
continuous random oscillations as shown in figure-1.23. Some
surface molecules randomly jumps in atmosphere from the
surface but dueto atmospheric pressure comes backto liquid
surface. Due to thermal agitation the surface molecules
repeatedly bounce from the surface and exert a pressure on
atmosphere above the liquid surface, this pressure is called
vapoure pressure of the liquid which is exerted by those

'molecules which leave the surface of liquid for a short time
randomly andrepeatedly which maybetreated as the vapour
ofliquid for thetime these areinair. This vapour justabove the
liquid surface exerts a upward pressure on atmospheric air
molecules as shown in figure-1.23. As temperature of liquid
increases, due to increase in thermal agitation its vapour
pressure will-also increase. When vapour pressure of liquid
exceeds atmospheric pressure, liquidmolecules start escaping
from surface to atmospheric air.This is calledvaporization of
liquid. At this stage if heat is supplied to the liquid, its
temperature would not increase and the amount of energy
supplied is taken by molecules on liquid surface in
vapourization. The amountofheat required to vapourizeunit
mass of a liquid is called as latent heat of vapourization of
theliquidand isdenoted byL^,. Theamount ofheat required to
vapourize a liquid ofmass m is

Q = mL ...(1.64)

To understand the application of latent heat offusion and
vapourization, we take fewexamples.
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# Illustrative Example 1.27

Find the result of mixing 0.5 kg ice at 0°C with 2 kg water at
30°C. Given that latent heat of ice is Z, = 3.36 x 10^ J kg^' and
specificheat of water is 4200 Joule kg"' k~'.

Solution

In such mixing problems, it is advisable to first convert all the
phases ofmixing substance into a single phase at a common
temperature and keep the excess or required heat for this aside
and finally supply or extract that amount ofheat to get the final
equilibrium temperature of the mixture.

As in this problem 0.5 kg ofice is given at 0°C. To convert it
into water at 0®C ifwe require amount ofheat, the we have

Q,--mL^=-0.5x3.36xl0^

=-1.68x105 Joule[- vesignforheatrequired]

The water 2 kg is available at 30°C, to convert it into 0®C, it
release some heatsayQ2' thenwehave

Q2 = msAT

= 2 X4200 X30 = 2.52 X 105Joule

Thus we have the final mixture as

Final mixture = 2.5kg waterat 0°+ 2.52 x lO^J-l.bS x IQ^J

= 2.5 kg water at 0°+8.4 XlO'̂ J

Thus finally we can supply the available heat to the 2.5 kg
water at O^C to get the final temperature ofmixture as

2.5 X4200 x(r-0) = 8.4x10''

or r^=8°c

Thus final result is 8®C of 2.5 kg water after mixing.

# Illustrative Example 1.28

When 2 kg block ofcopper at 100°Cis put in an ice container
with 0.75 kg of iceat 0°C,find the equilibrium temperature and
final composition of the mixture. Given that specific heat of
copper is 378 J/kg K and that ofwater is 4200 J/kg K arid the
latent heat of fusion oficeis"3.36 x 10^ J/kg.

Solution

Here in the given mixture initially we have

Mixture = 2 kg copper at 1OO^C + 0.75 kg of ice at 0°C

Now heat released by copper to attain 0°C is

0, =2X 378X 100=7.56 x 10"Joule

^ 25^1

Heat gained by ice to melt is

e2=-0.75x3.36x 105 =-25.2x 10" Joule

Thus mixture contains

Mixture= 2 kg copperat 0®C + 0.75kg

water at 0°C +7.56 X 10''J-25.2x 10''J

= 2 kg copper at 0°C+ 0.75 kg water at 0®C -17.64 x 10'* J

Here the available heat is negative which implies that whole ice
willnot melt here we can fi-eeze the available water at 0®C upto
the extent when the available negative heat is balanced.
17.64 X 10''J heat is released when w mass ofwater is fi-ozen

thus m is given as

17.64x10
— = 0.525 kgm = -

3.36x10

Thus final mixture contains

Mixture=2 kg copper at 0°C+ 0.525 kg
\

ice at 0"C + 0.225 kg water at 0°C

Thus it is obvious that the equilibrium temperature is 0''C.

§ Illustrative Example 1.29

Howshould 1kg ofwater at 50®C is divided in twoparts sothat
ifone part is turned into ice at 0®C, it would release sufficient
amount ofheat to vaporize the other part. Given that latent
heat of fusion of ice is 3.36 x lO^ j/kg, latent heat of
vapourization ofwater is 22.5 x 10^ J/kg and specific heat of
water is 4200 J/kg K.

Solution

Let x kg ofwater is fi-ozenthen the amount ofheat it releases is

=x X4200 X 50 +x X3.36 x lO^Joule

=xx5.46x 105 Joule

The heat required to vapourizethe (1 -x) kg ofwater from50^0
is

02=022.5 X105

Here we've taken heat required to vapourize the water as only
mass Xlatent heat of vapourization and not the heat required
to first raise the temperature of(l -x) kg ofwater from 50® to
I00°plus the mass x latent heat similar as when heat is supplied
to water from an external source, it first reaches 100®Cthen its

vaporization starts but when heat is taken by water itself it
vapourize (evaporation) at 50®C as in this case. The similar
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case we see in our general life in cooling ofwater in a pitcher,
drying ofcloths hanging in open air etc.

Thus heat Q.^ mustbeprovided byfirst part ofwater, wehave

22 = 2,

(1~x) X22.5 X105 =xx546 x lO^

or 22.5-22.5x = 5.46x

22.5
or x =

27.96
= 0.805 kg

# Illustrative Example 1.30

In a pitcher when water is filled some water comes to outer
surface slowly through its porous walls and gets evaporated.
Most of the latent heat needed for evaporation is taken from
water inside and hence this water is cooled down. If 10-kg
water is taken in the pitcher and 12 gm water comes out and
evaporated per minute. Neglect heat transfer by convection
and radiation to surrounding, find the time in which the
temperature ofwater in pitcher decreases by S^C.

Solution

It is given that 12 gm water is evaporated per minute, thus heat
required per minute for it is

= 12 X 540 = 6480 cal/min

After time /, mass ofinside water is

m= 10000-12/

If in further time dt, dm = 12 dt, mass is vapourized, and the
temperature ofinside water falls by dT, we have

(10000- 12 0 X1 XdT= 12rf/540

dt
or 12x540

10000 -12/

Integrating the above expression in proper limits, we get,

7b-5

or

jc/r =12 X540 Xj dt

10000-12/

5 = 540 In

,5/540.

10000

,10000-12/

10000

10000-12/
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or ,=i^ [ei'ios-l]
-1.12)1 minutes

Alternative method

As here the amount of water vaporized is very small, we can

assume that the quantity of water inside remains constant.

Thus to reduce the temperature of inside water, amount ofheat

to be rejected is

Q= n?lsT

= 10000x 1 x5

= 50,000 calories

As obtained from the given data that 6480 calories of heat is

required per minute to vapourize 12gm water thus ifin time/

minutes, temperature of inside water falls by 5°C, we have

50000 = 6480/

or / =
50000

6480

= 7.716 minutes

Which is approximately same as obtained earlier. But students

should note that this method will give the correct answer ifthe
mass of inside water actually remains constant i.e. when the
rate of evaporation is very very low.

Web Reference at www.phvsicsgalaxv.com

Age Group - High School Physics 1 Age 17-19 Years
Section - HEAT & THERMODYNAMICS

Topic - Calorimetry
Module Numbers - 7 to 11

Practice Exercise 1.5

(i) 5g ice at 0®C is mixed with 5g ofsteam at 100®C. What is the
final temperature?

[lOOX]

(ii) A block of ice of mass M= 50 kg slides on a horizontal
surface. It starts with a speed v= 5.0 m/s and finally stops after

moving a distance ^ = 30 m. What is the mass of ice that has
melted due to friction between block and surface ? Latent heat

offusion ofice isL^= 80 cal/g.

[1.86 g]



-Heat and Thermal Expansion

(iii) The temperature of a body rises by 44°C when a certain
amount of heat is given to it. The same heat when supplied to
22 gofice at-8°C, raisesits temperatureto 16°C. Find thewater
equivalent of the body.
[Given : = 1cal/gX & 80 cal/g, = 0.5cal/g°C]

[50g]

(iv) In a mixtureof 35 g of iceand 35 g ofwater in equilibrium,
4 gmsteam ispassed. Thewholemixture is ina copper calorimeter
ofmass 50 g. Find the equilibrium temperature ofthe mixture.
Giventhat specificheat ofwateris4200J/kgKand that ofcopper
is420J/kgKandlatentheat offusion 6ficeis3.36 x lO^J/kgand
latent heat ofvaporization ofwater is2.25 x lO^J/kg.

[0°C, mixture = 3.22 g of ice + 70.78 g water]

(v) A lead bullet melts when stoppedbya wall. Assuming that
25% of the energy is absorbed and distributed in the wall. Find
the velocity of the bullet if its temperature first rises by 300K
and then it melts. Given that the specific heat of lead is
0.03 cal/gm®C and latent heat of fusion of lead is 6000 cal/kg.

[409.87 m/s]

(vi) An aluminium container of mass 100 g contains 200 g of
ice at - 20°C. Heat is added to the systemat the rate 100 calories
per second. What is temperature of the system after four
minutes? Specific heatof ice= 0.5 cal/g°C"' and latentheat of
fusion of ice = 80 cal/gmg-and specific heat of aluminium is
0.215cal/g''Cr'.

[27.08°C]

(vii) 1kg ofice at CC is mixedwith 1kg of steamat 100°C. Find
the equilibrium temperature and the final composition of the

27

mixture. Given that latentheatoffusionofice is3.36 x 10^J/kg
andlatent heatofvaporizationofwateris2.27 x lO^J/kg. Specific
heatofwater is4200J/kg^C"'.

[100°C, mixture = 1335 g water + 665 g steam]

(viii) When a block of metal of specific heat 0.1 cal/g °C and

weighing 110gm isheatedto IOCCand then quicklytransferred
to a calorimeter containing 200 g of liquid at IO°C, the resulting
temperature is 18°C.On repeating the experiment with 400 g of
same liquid in the same calorimeter at the same initial

temperature, the resulting temperature is M.S^C. Find:

(i) specific heat of the liquid

(ii) the water equivalent ofthe calorimeter.

= 0.481 cal g-' "C"'; = 16.55 g]

(ix) A pitcher contains 10 kg ofwater at 20°C. Water comes to
its outer surface through its poms walls and gets evaporated.
The latent heat required for evaporation is taken from the water
inside the pitcher, thus the inside water is cooled down. It is
given that the rate of evaporation is 0.2 g/s. Calculate the time
in which the temperature of the water inside drops to 15°C.
Given that the specific heat of water is 4200 J/kg°C and latent
heatofvaporization ofwateris2.27 x lO^J/kg.

[Approx. 462 s]

(x) A pitcher contains 1kg water at 40°C. It is given that the
rateofevaporation ofwaterfrom thesurface ofpitcher is50gm/s.
Find the time it will take to cool down the water inside to 30°C.

Given that latent heat ofvaporization of water is 540 cal/g and
specific heat ofwater is 1 cal/g °C.

[20 (1 - e-"") s]

>{(:{< ^
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Discussion Question

Q1-1 Explainwhysomerubber-like substances contractwith
increase in temperature.

Q1-2 Two thermometers areconstructed inthesameway except
that one has a spherical bulb and the other has a cylindrical
bulb ofsame radius. Which onewillrespond faster totemperature
changes.

Q1 -3 Two large holes are cut in a metal sheet. If this sheet is
heated, what will happen to the distancebetween the centres of
the two holes.

Q1-4 A long metal rodisbentto form aringwith a small gap
left between two ends ofthe rod. Ifthis rod is heated what will

happen to this gap.

Q1-5 Temperature of a body is increasing, is it necessarily
absorbing heat.

Q1-6 Why a small gap is left between rails at the time of
installation.

Q1-16 Onmoon if icecubes are placed whatwillhappen to it.

Q1-17 Insummers water kept ina pitcher iscooler ascompared
to waterkept in a brassvesselbut in rainy seasonwaterkept in
brass vessel is cooleras comparedto that in pitcher. Why ?

Q1-18 Wet clothes dryfaster ona winter daythanona summer
day.Explain.

Q1-19 Whydoes fog generally disappears before noon?

Q1 -20 Whydoes it take longer to cookfood in the mountains
than in the plains ?

Q1-21 A flatuniform cylinder ofleadfloats in mercury at 0®C.
Will the lead float higher or lower when the temperature is
raised ?

Q1-22 The Pyrexglass is havingverylowcoefficient oflinear
expansion. It is also used as a very good transparent heat
resistor as compared to ordinary glass. Explain ?

Q1-7 A tightened glass stopper can be taken out easily by Q1-23 Alchohol evaporates more quicklythan water atroom
pouringhotwateraroundtheneckofthe bottle. Whyit is so ? temperature. Why?

Q1-24 The heating system such as radiators uses some
substancewith large specificheat like water. Explain.

Q1-25 Why does water in a steel container stay cooler if a
cloth jacket surrounding the container is kept moist ?

Q1-26 Explain why bums causedbysteam ontheskin is more
severe than that by boiling water.

Q1-27 A thermometer is laid out in direct sunlight. Does it
measure the temperature of the air, or that of sun or what it
measures ?

Q1-8 "The coefficient of linear expansion is proportional to
the heat capacity ofa substance." Explain.

Q1-9 The latent heat of fusion of a substance is always less
than the latent heat ofvaporization or latent heat ofsublimation
of the same substance. Explain.

Q1-10 Equal quantities of a salt are dissolvedin two identical
vessels filled with water. In one vessel, the salt is in the form of

powder and in other it is in form ofa crystal of same mass. In
which vesselwill the temperature of the solutionbe higher after
the salt is completely dissolved.

Q1-11 Doesevaporation causecooling. Explain. Q1-28 Thermometers sometimes contain red or blue liquid,
which is often ethanol. What advantages and disadvantages

Q1-12 Isboiling ofa liquid ispossible without suppling heat ? does thishave compared tomercury.

Q1 -13 Why an ice block melt at the bottom first ?

Q1-14 Ona planet ifthere'is noatmosphere canwe findwater
on it ? Water vapour on it ?

Q1-15 In summers the air is hot than how fans are used in

summer to produce a cooling effect ?

Q1-29 Coolentsare used in automobiles to coolengine.What
can you say about the specific heat ofmaterial used for coolent
high or low.

Q1-30 Water coolers usedto coolroombyblowing air in room
through a water soaked dry grass filter. How does this work.
Wouldit work well in a high humidity climate ?
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Q1-31 Why do frozen water pipes burst ?

Q1-32 Glasses containing alcoholic drinks sometimes form frost
on the outside. How does this happen?

Q1-33 A solid material is supplied with heat at a constant
rate. Thetemperature ofthematerial ischanging with theheat
input as shown in figure-1.24. Study thegraph carefully and
answer the followingquestions :

Heat Input X

Figure 1.24

29_'

(i) What do the horizontal regions .4C and CD represent ?

(ii) If CZ) = 2 what do youinfer ?

(iii) What does slope DE represent ?

(iv) The slope of OA > the slope of BC. What does this
indicate ?
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ConceptualMCQsSingle Option Correct

1-1 A vertical glass jar is filled with water at 10®C. It has one
thermometer at the top and another at the bottom. The central
region ofthejar is gradually cooled. It is found that the bottom
thermometer reads 4®C earlier than the top thermometer. And

the top thermometer reads 0®C earlier than the bottom
thermometer. This happens because:
(A) The top thermometer is faulty
(B) The bottom thermometer is faulty
(C) Desnityofwaterismaximumat4®C
P) Density of water is minimum at 0°C

1-2 Twospheres are made of same metal and have same mass.
One is solid and the other is hollow. When heated to the same

temperature, which of the followingstatements is correct about
the percentage increase in their diameters ?
(A) It will be more for hollow sphere
(B) It will be more for solid sphere
(Q It will be same for both spheres
P) It may be more or less depending' on the ratio of the

diameters of the two spheres

1-3 Ifwater at CC, kept in a container with an open top, is
placed in a large evacuated chamber :
(A) All the water will vaporize
p) All the water will freeze
(Q Part of the water will vaporize and the rest will freeze
P) Ice, water and water vapour will be formed and reach

equilibrium at the triple point

1-4 What determinesthe ratio of specific heat capacityto molar
heat capacity ofa compound ?
(A) Universal gas constant
P) Mass of the compound

(Q Molecular weight of the compound
P) None of the above

1-5 A bimetal made of copper and iron strips welded together
is straight at room temperature. It is held vertically in the hand
so that iron strip is towards the left hand and copper strip is
towards the right hand side. This bimetal is then heated by
flame. Given that the coefficient ofthermal expansion ofcopper
ifs more than that ofiron. The bimetal strip will:
(A) Remainstraight p) Bend towards right •
(C) Bend towards left P) No change

1-6 When a copper sphere is heated percentage change :
(A) Is maximum in radius
P) Is maximum in area
(C) Is maximum in density
p) Is equal in radius, area and density

1-7 A metal ball immersed in water weighs at 0°Cand at
50°C. The coefficient of cubical expansion ofmetal is less than
that ofwater. Then :

(A) W^>W^ (B) W^<W^
(Q JVj = W2 P) Data is insufficient

1-8 Which ofthe following phenomena gives evidence of the
molecular structure ofmatter ?

(A) Brownian movement P) Diffusion
(Q Evaporation P) All th^ above

1-9 Which one of the following statements is NOT true about
the evaporation process ?
(A) Evaporation takesplace from the surfaceof a liquidat all

temperature

p) The rate of evaporation depends upon the area of the
exposed surface of the liquid, nature of the liquidand its
temperature

(C) The rate of evaporation is independent of the pressure to
which the liquid is subjected

p) The coolingproduced in evaporationis a consequence of
the face that a liquid has latent heat

1-10 Two spheres of same metal have the same volume. But
one is solid and the other is hollow. When the change in
temperature of both of them is same, which of the following
statements about the change in their diameters is true ?
(A) More for solid sphere P) More for hollowsphere
(C) Samefor bothspheres P) It cannotbe predicted

1-11 A sourceof heat suppliesheat at a constant rate to a solid
cube. The variation of the temperature of the cube with heat
suppliedis shown in figure-1.25. The portionDE ofthe graph
represents conversion of:

(A) Solid into liquid
(Q Solid into vapour

Heat supplied

Figure 1.25

P) Liquid into vapour
p) Vapour into liquid
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1-12 Abimetallic strip is made oftwo strips^ and B, having
co-efiicient oflinear expansion as and a^. If >a^, which
ofthe following describes the behaviour ofthe metallic strip
when heated ?

(A) Itwill bend butwill notelongate
(B) It will bend the metal A s the outer side

(Q It will bend with metal B as the outer side

G^) It will bend onlywhen

1-13 In acylindrical glass container asolid silica silica is placed
verticallyat its bottom and remaining space is filled with mercury
upto the top level ofthe silica cylinder asshown inthe figure-1,26.
Assume that thevolume ofthesilica remains unchanged due to
variation intemperature. The coefficient ofcubical expansion
ofmercury isyand coefficient oflinear expansion ofglass isa,
Ifthetop surface ofsilicaand mercury level remain at thesame
level with thevariation in temperature thentheratioofvolume
ofsilicato the volume ofmercury is equalto :

(Q f--i
2a

Figure 1.26

P)
3̂a

P) -1
3a

1-14 The heat (0 supplied to a solid, which is otherwise
thermally isolated fi-om its surroundings, isplotted asa function
ofits absolute temperature, 0. It isfound that they are related
bythe equation, Q= ae^+ Z>04 (a, b areconstants). The heat
capacity of the solid is :

(A) a~ + b—
3 5

(Q a--\-b—
^ ^ 3 5
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(B) a0 + 603

P) 2^0 + 4603

1-15 The coefficient oflinear expansion ofan inhomogeneous
rod changes linearly fi-om aj toa^ firom one end tothe other
end oftherod. The effective coefficient oflinear expansion of
rod is:

(A) a, +

(C)

P)
aj +a2

P) a,-a,

1-16 A graph between the temperature read on the Celsius
Scale and thaton theFahrenheit Scale, when plotted, gives the
following:

(A) P)

op

(C) P)

op
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NumericalMCQs Single Options Correct

1-1 Two rods, one hollow and the other solid, made of the

same material have the same length of20 cm and radius of2 cm.

When their temperature is increased through the same amount
of50°C,their expansion ratio willbe:
(A) 1:8 (B) 1:4

(Q 1:1' P) 1:2

1-2 Two rods oflengths/j and/j aremade ofmaterials whose
coefficients of linear expansion are a, and respectively. If
the difference between the two lengths is independent of

temperature, then:

a-

(A) y- = ^
/•) a,

h cti
(Q 7• = —^ /-j a.

(B) /fa2 = /|ai

P)

1-3 The loss in weight of a solid when immersed in a liquid

at 0®C is Wq and at fC is W. If the coefficients of volume
expansion of the solidand the liquidbe and y, respectively,
then:

(A) W=W,[{y-y)] P) W=W^{\^{y-y)f\

(Q W=
Y/-Y,

P) ^=^o[1-(Ys-Y/)^]

1^ Xwo liquids areat temperature 20°C and40''C. When same

mass ofboth ofthem is mixed, the temperature of the mixture is

32''C. What is the ratio oftheir specific heats ?

(A) 1/3 P) 2/3
(Q 1/5 P) 2/5

1-5 The densities oftwo materials X and Y are in the ratio 1:3.

Theirspecific heatsareintheratio 3 :1. Ifwetakesame volumes
ofthe two substances, the ratio oftheir thermal capacities will

be:

(A) 1:1 P) 1:3
(Q 1:6 p) 1:9

1-6 Given thatthespecific heatincal/g isc = 0.61^, where t is
the temperatureon the celsiusscale. If the temperatureof 10g
of water is raised through 15° C, what is the amount of heat
required ?

(A) 60cal p) 200cal
(Q 0.6kcal P) 6750cal

1-7 A metallic container is completely filled with liquid. The
coefficient oflinearexpansion ofthemetal is2.0 x l&"^per°C
and the coefficient of cubical expansion of the liquid is
6.0 X10"^ per°C.Onheatingthevessel:
(A) The liquid will overflow
P) The levelofthe liquid will fall
(Q The levelofthe liquidwill remainunchanged
p) The levelofliquidwill rise or falldepending on thenature

ofthe metal and ofthe liquid

1-8 At 40°C, a brass rod has a length 50 cm and a diameter
3.0 mm. it isjoined to a steelrod ofthe same lengthand diameter
at the sametemperature. What is the changein the lengthofthe
composite rod when it is heated to 240°C? The coefficients of
linear expansion of brass and steel are 2.0 x 10"^ °C~' and
1.2 X10"^ °C"' respectively:
(A) 0.28cm P) 0.30cm
(Q 0.32cm p) 0.34cm

1-9 A uniform solidbrass sphere is rotating with angular speed
cOq about a diameter. If its temperature is now increased by
100°C. What will be its new angular speed.
(Given = 2.0x 10"^ per° C)
(A) 1.1 cOq P) 1.01 cOq
(Q 0.996 cOq P) 0.824 cOq

1-10 An aluminium measuring rod, which is correct at 5°C
measures the length of a line as 80 cm at 45°C. If thermal
coefficient oflinear expansion ofaluminiumis2.50 x lCf^per°C.
The correct length of the line is :
(A) 80.08 cm P) 79.92cm
(Q .81.12cm p) 79.62cm

1-11 A thin copperwire of length I increasesin length by 1%
when heated fi-om 0°C to 100°C. If a thin copper plate ofarea
2/ X/ is heated from0°Cto 100°C, the percentage increasein its
area will be:

(A) 1% P) 2%
(C) 3% P) 4%

1-12 Which one ofthe following would raise the temperature
of20 gm ofwaterat 30°Cmostwhen mixed with :
(A) 20 gm of water at 40°C P) 40gmofwaterat35°C
(C) l0gmofwaterat50°C p) 4gmofwaterat80'*C

1-13 The lowerand upper fixed points of a faultythermometer
are 5° and 99°respectively. If the reading ofthe thermometer is
52°, the temperature on the Fahrenheit scale is:
(A) 132T (B) 122°F
(Q 154°F p) 151°F
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1-14 A constant volume gas thermometer shows pressure
reading of 50 cm and 90 cm of mercury at 0''C and lOO^C
respectively. When the pressure reading is 60 cm ofmercury,
the temperature is;

(A) 25°C (B) 40°C

(Q 15'C (D) use

1-15 Thetemperature ofa body onKelvin scaleis found to be
XK. When it is measured bya Fahrenheit thermometer, it is
found to be x°F. Then x is :

(A) 301.25 (B) 588.45

(Q 313 P) 40

1-16 Aone litre flask contains some mercury. Itisfound that at
differenttemperature the volumeof air inside the flaskremains
thesame. Whatis thevolume ofmercury in the flask ?Given the
coefficient of linear expansion ofglass= 9 x 10~^ ®C"':
(A) 50cm^ (B) lOOcm^
(Q 150 cm^ p) 200 cm3

1-17 The readings of air thermometer at 0°C and 100®C are
50 cm and 75 cm of mercury column respectively. The
temperature atwhich itsreadingis 80cmofmercurycolumn is :
(A) 105°C p) 110^

(Q 115°C p) I20°C

1-18 Awire ofcross-sectional area^^ at temperature Tisheld
tautwith negligible tension between two rigidsupports. Ifthe
wire is cooled to a temperature (T ~ AT), what tension is

developed inthewire ?The coefficient oflinear expansion isa
and the Young's modulus of the wire is Y:

(A) YAaAT

(C)
AaAT

(B)

P)

YaAT

YA

aAT

1-19 Adrilling machineofpowerP watts isused todrill ahoie
in copper block ofmass Mkg. Ifthespecific heat ofcopper is
s J kg"' °C"' and 40% ofthe power is lost due to heating ofthe
machine, the rise in the temperature of the block in Tseconds

willbe(in''C):

(A)

(Q

Q.6Pr

Ms

o.4Pr

Ms

(B)

P)

0.6P

MsT

0.4P

MsT
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1-20 Acopper block ofmass 2kg is heated to atemperature of
SOO^C andthenplaced ina large block oficeat 0°C. What is the
maximum amount ofice that can melt ? The specific heat of
copper is 400 J kg"' "C"' and latent heat of fusion of water is
3.5x lO^Jkg-':

(A) f kg

(C) ykg

P) 5kg

P) ykg

1-21 5gofsteam at 100°C ispassed into 6gofice at0°C. Ifthe
latent heats ofsteam and ice are 540 cal/g and 80cal/g, then the
final temperature is;
(A) (fC (B) 5(fC
(Q 30°C p) lOOPC

1-22 Awater fall is84mhigh.Assuming thathalf thekinetic
energy of falling water get converted to heat, the rise in
temperature ofwater is :
(A) 0.098^ (B) 0.98"C
(C) 9SX: p) 0.0098^C

1-23 The density ofa liquid ofcoefficient ofcubical expansion
y isp at 0®C. When theliquid isheated toa temperature T, the
change in density will be:

(A) -
pyT

(l + yT)

pQ+yn
yT

(Q -

P)

P)

pyT

(l + yT)

p(i+yn
yT

1-24 Two rods of different materials having coefficients of
thermal expansion a, and Oj and Young's modulii 7, and 72are
fixedbetweentworigid and massive walls.The rods are heated
to thesametemperature. Ifthere is nobending of therods, the
thermal stresses developed in them areequal provided :

P) =

/i a, Y a-

1-25 Aglassflaskofvolume lOOOcm^iscompletelyfilledwith
mercuryat0°C. Theco-efficient ofcubical expansion ofmercury
is 182.x 10^/°C andthatofglass is 30 X10-6/°C, how much
mercury will over flow ? "Wlien heated to 100°C."

(A) 30cm^ p) 18.2cm3
(Q 15.2 cm^ p) 3cm^
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1-26 The density ofwater at20^0 is998 kgm"^ and that at40fC
is992kgm"^. Theco-efBcient ofcubical expansion ofwater is :
(A) 0.2 X10"^ «C-i (B) 0.4X KT'oc-'
(Q 0.6xl0^°C"' (D) Noneof the above

1-27 A metal ball-bearing of specificheat capacity c, moving
withspeed v,isbrought torest. Allitskinetic energy isconverted
into thermal energy which it absorbs, causing a temperature
rise AO. What was the value ofv :

(A) ^ cA0

(Q

(B) 2cA0

(D) V2c AG

1-28 When x grams ofsteam ismixed withy grams of ice at 0°C,
weobtain (x+y) grams ofwater at 100°C. What is the ratioy/x ?
(A) I (B) 2
(C) 3 (D) 4

1-29 Heat required to convert 1 g of ice at 0®C into steam at
100°C is(Latent heatofsteam= 536calg"')
(A) 100cal (B) 0.01kcal

(Q 716cal (D) Ikcal

1-30 A piece of metal floats on mercury. The coefficients of
volume expansion of the metal and mercury are y, and Yj
respectively. If their temperature is increased byAT, thefraction
of the volume of metal submerged in mercury changes by a

factor:

(A)

(Q

1-1-Y2Ar

I-HYiAT

i-Y2Ar
LI +YiAT

(B)
1-fYzAT"
I-YiAT

(D)
Ŷi

1-31 Heatrequired to melt 1goficeis80cal.Amanmelts69g
ofice by chewing in one minute. His power is :

(A) 4800W P) 336W
(Q 1.33W p) 0.75W

1-32 A rod of length 20 cm made of a metal A expands by
0.075 cm wenits temperatureis raised from0°Cto 100°C. Another
•rod ofa different metal B having the same length expands by
0.045 cm for the samechange in temperature.A third rod ofthe
same length is composed of two parts, one of metal A and the
other of metal B. This rod expands by 0.060 cm for the same

changein temperature. The portion madeof metals has length :
(A) 20cm P) 10cm

(Q 15cm P) 18cm

Heat and Thermal Expansionj

1-33 When a metallic bar is heated from OT to lOO^C, its

length increases by 0.05%. What is the coefficient of linear
expansion of themetal ?

(A) 5x 10-3°C-' (B) 5x lO- '̂-C-i
(C) 5 X10"^ "C"' (D) 5 X10-^°C-'

1-34 In Q. No. I-33 above, what is thepercentageincreasein

the volume ofthe bar ?

(A) 0.1% (B) 0.15%

(Q 02% P) 0.25%

1-35 A thin metal square plate has length /. When it is heated

from O^C to lOO^C, its length increases by 1%. What is the

percentage increase in the area of the plate ?

(A) 2.00% (B) 2.02%

(Q 2.03% P) 2.01%

1-36 How many grams ofice at O^C should be mixed with 240 g

ofwater at 40°C so that the ice completely melts and the final

temperature is ofO^C ?

(A) 120g P) 240g

(C) 360 g P) 480 g

1-37 Three liquids with ma^esw,, arethoroughlymixed.
Iftheirspecific heats ares-j, s.^, andtheirtemperatures are0j,
©2, 03 respectively, then thetemperature ofthemixture is:

(A)

(Q

.^101 -i-5'202 +-5303
/Wi^i -1-^353

Wl0i +^202 +^363

5,01+5202+^303

P)

P)

^15,01 +m25202 +^35363
m,5j + W252 +W3-y3

wPi + W202 +^363
5i0j +5202 +>^303

1-38 An electrickettle contains 1.5kg ofwater at 100°Candis

powered bya 2.0kWelectric element. If the thermostat of the
kettle fails to operate, approximately how long will the kettle

take to boil dry ? (Take the specific latent heat of vaporisation

ofwateras 2000kJkg"'):

(A) 500 s P) 1000 s

(Q 1500s p) 3000 s

1-39 Celsius and a Fahrenheit thermometer are put in hot water.

The reading ofthe Fahrenheit thermometeris threetimes that of

the Celsius thermometer. What is the reading of Fahrenheit

thermometer ?

(A) 80/3 p) 80

(Q 160/3 P) 160
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1-40 Theftindamental interval, that is thenumberofdivisions
between LFP & UFP on the two scales^and Tare 50 and 150

respectively. The ice point on both the scales is at 0® If the
temperature onthe^-scaleis 15°, thenwhat isthetemperature
on the 7-scale ?

(A) 30° (B) 45°
(C) 60° ' (D) 75°

1-41 A cylinder ofdiameter exactly 1cmat30°C istobeinserted
intoa hole in a steelplate.The holehasa diameterof0.99967 cm

at30°C. Ifa for steel is l.I x 10"^ °C"', towhat temperature must
the plate be heated ?

(A) 4(fC (B) 5Crc

(Q 6(rc P) 7(rc

1-42 A linear accelerator consists of a hundred brass discs

tightly fitted into a steel tube. At 40°C the diameter ofeach disc

is 10.02 cm. The systemis assembledby cooling the discs in
dry ice at - 60°C to enable them to slide into the close fitting
tube. Ifthe coefficientofexpansionofbrass is 2 x 10"^ °C"^ the

diameter ofeach disc in dry ice will be:

(A) 9.94cm (B) 9.96cm
(Q 9.98cm (D) 10.00cm

1-43 At the topofthe mountainthe temperatureis-13°C and
thebarometer reads 68cmofHg. Atthebottom thetemperature
is27°C andthebarometer reads70cmofHg.What isthe ratioof
the densities ofthe air at the mountain to that at the sea level ?

(A) 1.03 (B) 1.12

(Q 1.15 P) 1.24

1-44 A newscaleoftemperature calledX-scaleis defined with
icepointas-10°X andsteam pointas90°X. Whattemperature
on the X-scale will correspond to 40°C?
(A) 20% P) 30°X

(Q 40°X P) 50%

1-45 300g ofwater at25°C isadded to 100 g oficeat 0°C. The
final temperature of the mixture is:

(A)-|°C
(Q -5°C

P) -|°C
P) 0°C ,

1-46 100goficeat0°Cismixedwith 100gofwater80°C. The
final temperature ofthe mixture will be:

(A) OC p) 20'€

(Q 40^ P) 6(7C

1-47 Thermocouples are used tomeasure temperature inthe
linear parts of the emf versus temperature graph with cold
junction at 0°C. The thermo-electric power of Pt, Ni
thermocouple are - 4 and - 20microvolt per°C respectively.
What will bethe magnitudes ofemfs ofthethermocouple when
the coldjunctionis at 0°C and the hotjunctionis at 100°C ?
(A) 4mV p) 2mV
(Q 32mV p) I.6mV

1-43 When aplatinum resistance thermometer isputincontact
with ice, steamand a liquid, the resistances of platinum wire
recorded are2.56 ohm, 3.56 ohm and5.06 ohm respectively. The
temperature ofthe liquid is:
-(A) 100°C p) 250°C
(Q 40%: p) 25%:

1-49 When a Celsius thermometer reads 90°C, a faulty
Fahrenheit thermometer reads 190°F. The correction to be made

in the latter scale is :

(A) +2°F p) -2°F
(Q -4°F p) +4°F

1-50 The upper and lower fixed points of a faulty mercury
thermometer are210°F and34°F respectively. Whattemperature
read by this thermometer would be correct ?

(A) 22T p) 80°F
(Q 10(7F p) 122°F

1-51 Two straight metallic strips each ofthickness /andlength /
arerivettedtogether. Their coefficients oflinear expansions are
a, and a2. If they are heated through temperature AT, the
bimetallic strip will bend to form an arc ofradius:
(A) t/ia^+ a^) p)
P) t(a^i-a^AT p) /(ttj-ajjAT

1"52 A metalcubeoflength 10.0mm at0°C isheatedto200°C.
Given : its coefficient of linear expansion is 2 x IQ-^ K"'. The
percent change ofits volume is :
(A) 0.1 p) 02
(Q 0.4 p) 12

1-53 Twothermometersxandy have fundamental intervalsof
80° and 120°. When immersed in ice,theyshowthe readingsof
20°and 30°.Ify measuresthe temperatureof a bodyas 120°, the
reading ofxis:
(A) 55° p) 65°

(Q 75° p) 80°

1-54 Whichofthe following temperatures is the highest ?
(A) lOOK P) -13°F
(Q -20°C P) -23°C



1-55 A difference of temperature of 25®C is equivalent to a
difference of:

(A) 45T (B) 72T
(C) 32°F (D) 25*T

1-56 A thermometer has wrong calibration (ofcourse at equal
distances and thecapillaryisof uniformdiameter). It readsthe
melting pointoficeas- 10°C. It readsbO^C inplace of50°. The
temperature ofboilingpointofwateronthis scaleis :
(A) 10(fC • (B) BOC
(Q 110°C (D) 120PC

1-57 A fixed mass of an ideal gas is maintained at constant
volume. The pressure of the gas at the triple point of water is

What is the thermodynamictemperature of the gas when its
pressure is p ?

(A) 273.16

(C) 273.16

P
K

p-f'rr

Pir

(B) 273.161— K

K (D) 273.16
(P-P.r

K

1-58 A graph is plottedbetween the temperatureof a copper
cube in °C versus °F. The sine of the angle made by the graph
with °F axis is:

(A)
4^

(B)
-Jm

(Q
Vio6

P)
4m

1-59 At what temperature do the Kelvin and Reaumer scales
agree ?

(A) OP P) 3°

(C) -9° P) They never agree

1-60 The upper fixed point and lower fixed point of a
thermometerarewronglymarkedas 96°Cand-2°C respectively.
Thereadingof this thermometer is (correct thermometer reads
50°C):
(A) 37PC P) 40°C
(Q 42"C ' p) 47°C

1-61 The resistance ofthe platinum resistance thermometer at

the triple point ofwater is 15.00H and that when put inside the

furnace is found to be 30.00 Q. What is the temperature ofthe
fiimace ?

(A) 136.58K P) 273.16K

(C) 409.74K P) 546.32K
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1-62 An ironmetre rod isallowedan errorof 1partper million.
Ifthecoefficient oflinear expansion ofiron is1x l(f"^°C"\ what
isthemaximum variation intemperature thattherodcould have?
(A) ±0.01 K (B) ±0.10K
(Q ±1.00K P) ±10.0K

1-63 On a hypothetical scaled, the ice point is 40°and the
steam pointis 120°. Foranother scale Y, the icepointandsteam
point are - 30° and 130° respectively. If X reads 50°, then Y
would read:

(A)-5° (B) -8°
(Q -10° p) -12°

1-64 A Fahrenheit thermometer reads 113°F while a faulty

Celsius thermometer reads 44°C. The correction required to be

applied to the Celsius thermometer is :
(A)-1°C (B) +1°C
(Q +2°C p) -2°C

1-65 A steel scale measures the length of a copper rod as L cm

when both are at 20°C, the calibration temperature for the scale.

Ifthe coefficients oflinear expansion for steel and copper are

and respectively, what would be the scale reading (in cm)
when both are at 21 °C ?

(A) L
(i+gj
O+g^)

a,
(Q I —
^ ^ a.

g^
P) L —
^ ' a.

P) I

1-66 Iftemperature ofa pendulum clock changes from 0, toBj,
the fractional change in the period of a pendulum clock is:

(A) ^a(02-0,)2 P) 2a(0,-0,)

(C) ^ a (02-0,) P) 2a(02-e,)2

1-67 The density of a substance at 0°C is 10g cm"^ and at
100°C, itsdensity is9.7 gcm"^. Thecoefficient oflinear expansion
of substance is :

(A) 0.0001 °c-' p) 0.001 °cr'
(C) 0.00001 °c-' p) 0.1 °cr'

1-68 A sphere made of iron is rotating about its diameter as

axis, a = I x 10"^ °C~'. Ifthe temperature rises by 100°C, the
percentage increase in its moment of inertia is:
(A) 0.1% P) 0.2%

(Q 0:5% p) 0.002%
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1-69 Asolid occupies 1000 cm^ at 20°C. Itsvolume becomes
1016.2 cm^ at 320°C. Coefficient of linear expansion of the
material is:

(A) 18x lO- '̂̂ C"' (B) lexio-^'-c-'
(Q12xi(H°c-i p) 36x

1-70 A clock with a metal pendulum beating seconds keeps

correct time at 0®C. If it loses 10 second a day at 20®C, the

coefficient oflinear expansion ofmetal of pendulum is:

(A)
43200

. or^-l (B)
1

86400
oc-

(C)
1

64800
P) loxia-^'^c^'

1-71 A clockwhichkeepscorrect time at 25°Chas a pendulum

made of a metal. The temperature falls to 0°C.If the coefficient
oflinear expansion ofthe metal is1.9 x 10~^ per °C, then number
of second the clock gains per day is :

(A) 10.25 s 'P) 20.52s
{Q 30.75 s p) 41 s

1-72 A faultythermometerhas its fixedpoints marked5"and

95®. This thermometer reads the temperature ofa body as 59®.

Then correct ternperature on Celsius scale is:

(A) 59® P) 48.6®

(Q 60® P) 58®

1-73 At what temperature, the Fahrenheit and Celsius scales
will give numerically equal (but opposite in sign) values:
(A)-40®Fand40®C ' P) 11.43®Fand-11.43®C

(C) -11.43®Fand+11.43°C P) +40®Fand-40"C

1-74 0.93 watt-hour of energy is supplied to a block of ice
weighing 10 g. It is found that:

(A) Halfofthe block melts.

P) The entire block melts and the water attains a temperature

of4®C

(Q The entire block just melts

p) The block remains unchanged

1-75 The coefficient oflinear expansion of iron is 0.000011®K.
An iron rod is 10 metre long at27°C. The length ofthe rod will

bedecreased by 1.1mm when the temperature ofthe rod changes

to:

(A) 0^ P) \(rc

(Q 17^ P) 20®C
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1-76 A uniform metal rod of 2 mm^ cross-section is heated

from 0®C to 20®C. The coefficient oflinear expansion of the rod
is 12 X1 per ®C, Y = 10 '̂ N/m^. The energystoredper unit

volume ofthe rod is :

(A) 1440J/m3 P) ISOOJ/m^
(Q 2880J/m^ P) 5760 J/m^

1-77 A beaker contains 200 g of water. The heat capacity of
beaker is equal to that of20 g ofwater.The initial temperature of

water in the beaker is 20®C. If 440 g of hot water at 92®C is

poured in, the final temperature, neglecting radiation loss, will

be:

(A) 58®C P) 68®C

(C) 73'C P) 78X:

1-78 A sphere of diameter 7 cm and mass 266.5 g floats in a
bath of liquid.As the temperatureis raised, the sphere is about
to sink at 35®C. If the density of liquidis 1.527 g cm"^ at 0®C,
the coefficientof cubicalexpansionofthe liquid willbe(neglect
the expansion ofsphere)
(A) 8.486X 10-3®C p)8.48xl0^«C
(C) 8.486X IQ- '̂-c p) 8.486X IQ- '̂-C

1-79 The real coefficient of volume expansion of glycerine is
0,000597per ®C and the linear coefficientof expansion ofglass
is 0.000009 per ®C. Then the apparent volume coefficient of
expansion ofglycerine in glass will be:

(A) 0.000606per®C p) 0.000588per®C

(C) 0.00057per®C P) 0.00027per ®C

1-80 10g of iceat - 20®C isaddedto 10g ofwater at 50®C. The
amount ofice in the mixture at resulting temperature is (Specific

heatof ice= 0.5calg"' ®C"' and latentheatofice = 80calg"')
(A) lOg P) 5g
(C) Og P) 20g

1-81 10g of icecubesat 0°C is releasedin a tumblercontaining
water (waterequivalent55 g) at 40®C. Assumingthat negligible
heat is taken from surroundings, the temperature ofwater in the
tumblerbecomes (L= 80 calg"'):
(A) 3\°C P) 21.5*€
(Q 19^ P) 15®C

1-82 Steam at 100®C is passed into 1.1kg ofwater contained in
a calorimeter of water equivalent 0.02 kg at 15®C, till the

temperature of the calorimeter and its contents rises to 80®C.
The mass of steam condensed (in kg) is (Take latent heat of
steam= 540 calg"'):
(A) 0.130 P) 0.065
(C) 0^60 P) 0.135
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1-83 The temperature ofequal masses ofthree different liquids
and Care IT'C, 19''C and28°Crespectively. Thetemperature

when A and B are mixed is 16°Cand when B and C are mixed is
23®C. Thetemperature when AandCaremixed is;
(A) 18.2''C (B) 20.3°
(Q 22.2X: (D) 24.2°C

1-84 Hailstone at 0°Cfellsfroma heightof 1kmon an insulating
surface converting whole of its kineticenergyintoheat.What
part ofitwill melt ?(Given ;g= 10 ms~^):

33
(B)

(Q (D) All ofit willmelt

1-85 If the reading of the Reaumer scale is numerically less
than that of Celsius scale by 3, then the reading of the Celsius
scale is:

(A) 5° . (B) 10°
(C) 15° P) 20°
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1-86 5 g ofwater at 30°C and 5 g of ice at -20°C are mixed
together in a calorimeter. Neglect thewater equivalent ofthe
calorimeter. The final temperature of the mixture is (Specific
heatofice = 0.5calg"' °C"')
(A) (TC (B) -2a°G
(Q -10°C P) +1.2°C

1-87 In Q.No. 1-86,theamountoficemeltedis:
(A) Og P) 0.25 g
(Q 0.50g P) 1.25 g

1-88 Onegramoficeat0°C isaddedto5gramofwaterat 10°C.
If the latentheatoficebe 80cal/g,then the finaltemperature of
the mixture is:

(A) 5°c p) crc
(Q -5®C P) None of these

1-89 Onegramoficeis mixed withonegramofsteam. After
thermal equilibrium,the temperatureof the mixture is:
(A) (TO P) lOffC
(Q 55^ P) S(fC
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AdvanceMCQs with One orMoreOptions Correct
1-1 Which of the following statements arenot true?
(A) Size of degree is smallest on Celsius scale

(B) Size of degree is smallest on Fahrenheit scale

(Q Sizeof degreeis equal on Fahrenheit and Kelvin scale
P) Size of degree is equal on Celsius and Kelvin scale '

1-2 Whichof the following statementsare true ?
(A) Rubber contracts on heating

(B) Waterexpandson freezing
(Q Watercontractson heating from0°C to4°C
P) Waterexpands on heating from 4°C to 100°C

1-3 A metalliccirculardischavinga circularholeat its centre
rotates about an axis passing through its centre and
perpendicular to its plane. When the disc is heated;

(A) Its angular speed will decrease

P) Its diameter will decrease

(C) Itsmomentofinertiawillincrease

P) Its angular speed will increase

1-4 Dueto thermalexpansion, with rise in temperature:
(A) Metallic scale reading becomes lesser than true value
P) Pendulum clock becomes fast

(Q A floating body sinks a little more

P) The weight of a body in a liquid increases

1-5 Two identical beakers are filled with water to the same level

at4°C. Ifone say^ is heated while the other 5 is cooled, then :
(A) Water level in/I will rise p) Water level in 5 will rise

(Q Water leveling will fall P) WaterlevelinB will fall

1-6 Thermal capacity of a body depends on :
(A) The heat supplied

P) The temperature raised ofbody

(Q The mass of the body

p) The material of the body

1-7 Specific heat ofa substance can be :

(A) Finite P) Infinite

(Q Zero p) Negative

1-8 When two samples of finite specific heats at different

temperatures are mixed the temperature of the mixture may be:
(A) Lesser than loweror greater than higher temperature
P) Equal to loweror higher temperature
(Q Greater than lowerbut lesser than higher temperature
P) Average of lower and higher temperatures

1-9 Which ofthe following statements are true ?
(A) Water in a test tube can be made to boil by placing it in a

bath of boiling water
p) Heat cannotbe stored in a body
(C) With increase in pressure melting pointdecreases
P) Vapour can be directlyconvertedinto solid

1-10 A metal rod is shaped into a ring with a small gap. If
this is heated :

(A) The length of the rod will increase

P) The gap will decrease
(C) The gap will increase
P) The diameterofthe ring will increase in the sameratio as

the length of the rod

1-11 Heat is supplied to a certain homogenous sample of
matter, at a uniform rate. Its temperature is plotted against time,
as shown.Whichofthe following conclusions can be drawn ?

Temp.

Time

Figure 1.27

(A) Its specific heat capacity is greaterin the solidstate than
in the liquid state

P) Its specific heatcapacity is greater in the liquid state than
in the solid state

(Q Its latentheat ofvaporization is greaterthan its latentheat
of fusion

p) Its latent heat of vaporization is smaller than its latent heat
of fusion

1-12 Two rods of length and are made of materials of
coefficients of linear expansions a, and respectively such
thatZ-ja, = L2O.2. Thetemperature of therods is increased by
ATandcorrespondingly thechange in their respective lengths
be AZ,j and AZji
(A) ALj AI2
p) ALj = AL2
(C) Difference in length (Z, - L^) is a constant and is

independent of rise of temperature
p) Data is insufficient to arrive at a conclusion

1-13 A bimetallic strip is made up of two metals with
different a:

(A) On heating, it bends towards the metalwith high a
P) On heating, it bends towards the metal with low a
(Q On cooling, it bends towards the metal withhigh a
P) On cooling, it bends towards the metal with low a
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1-14 Aboltispassed through apipeanda nutisjust tightened.
Coefficients oflinearexpansion forboltandpipematerial are
and respectively. If the assembly is heated then :

(A) A tensile stress will be induced in the bolt if

(B) A compressive stress will be induced in the bolt if

(C) A compressive stress will be induced in the bolt is a. = a
b p

P) No stress will be induced in the bolt if

1-15 A uniform cylinder ofsteel ofmass Af, radius isplaced
on frictionless bearings and set to rotate about its vertical axis

with angular velocity cOq. After the cylinder has reached the
specified stateof rotation it is heated without anymechanical

contact from temperature to +AT". If ^ is the fractional
change in moment of inertia of the cylinder and be the

fractional change in the angular velocity of thecylinder anda
be the coefficient of linear expansion, then :

(A) ^ ^
/ ©n

A© (D)f

1-16 A bimetallic strip is formed out oftwo identical strips
one of copper and the other ofbrass. The coefficients of linear

expansions of the two metals are and respectively. On
heating, the temperature of the strip goes up by AT and the
strip bends to form an arc ofradius of curvature R. Then R is :

(A) Proportional to AT

(B) Inversely proportional to AT

(Q Proportional to | [

P) Inverselyproportional to ] |

1-17 A body of mass m hasgram specific heat c :
(A) Heat capacity of the body is mc
p) Water equivalent of the body is m

(C) Water equivalent of the body is mc
P) Heat capacity of the body is c

1-18 A thermos bottle contains coffee. The thermos bottle is

vigorously shaken. Consider the coffee as the system. Choose
the correct statement (s) :

(A) Its temperature would rise

P) Heat has been added to it

(C) Work has been done on it

P) Its internal energyhas changed
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1-19 When mgram ofwater at 100°C is mixed with mgram of
ice at 0°C, which of the following statements are false ? Take

specific heat of water 1 cal/gm®C and latent heat of ice is
80 cal/gm.

(A) The temperature of the system will be given by the
equation w x 80 + w x 1 x (T-0) = w x ] x (lOO-T)

P) Whole of ice will melt and temperature will be more than
CC but lesser than 100°C

(C) Wholeof ice will melt and temperature will be 10°C
p) Whole of ice will not melt and temperaturewill be 0°C

1-20 The temperature ofan isotropic cubical solid oflength I,
density d and coefficient of linear expansion a per degree
Kelvin, is raised by 10°C. then, at this temperature, to a good
approximation :

(A) Length is L (1 + lOct)
P) Total surface area is (1 + 20a)
(C) Density is (I + 30a)

p) Density is cf/(l + 30a)

1-21 Specific heat of a substance can be :

(A) Finite p) Infinite
(C) Zero p) Negative

1-22 5g of steam at 100°C is mixed with IOg of ice at 0®C.
Choose correct alternative/s) : (Given = 1 caI/g°C,
Lp = 80 cal/g, Ly = 540 cal/g)

(A) Equilibriumtemperatureof mixture is IbCC

P) Equilibrium temperature of mixture is 100®C

(Q At equilibrium, mixture contain 13 ^g ofwater
2p) At equilibrium, mixture contain 1y gofsteam ^

1-23 The temperature of an isotropic cubical solid of
length /q, density and coefficient of linearexpansion a is
increased by 20°C. Then at higher temperature, to a good
approximation:

(A) Length is (I+20a)
P) Total surface area is (I + 40a)
(Q Total volume is (1 + 60a)

PoP) Density is
1 + 60a

1-24 In a pressure cooker the cooking is fastbecause :
(A) The boiling point of water is raised by the increased

pressure inside the cooker

p) The boiling pointofwater is lowered bypressure
(C) More steam is available to cook the food at 100°C

P) None of these
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1-25 There isa rectangular metal plate in which two cavities
in the shape ofrectangle and circle are made, asshown with
dimensions. Pand Qare centres of these cavities. On heating
theplate, which ofthe following quantities increase ?

(A)

(Q R

Figure 1.28

(B) ab

(D) b

_41J

1-26 Atemperature Tis measured by aconstant volume gas
thermometer:

(A) Tis independent ofthe gas used for.all pressures
(B) Tis independent ofthe gas used only at low pressure
(C) The ideal gas scale agrees with the absolute scale of

temperature

(D) The ideal gas scale does not agree with theabsolute scale
oftemperature
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UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO &IPhO
Fordetailedpreparation oflNPhO andlPhO students can refer advance study material on wmv.physicsgalaxy.com

1-1 In a verticalU-tubecontaining a liquid,
the two arms are maintained at different

temperatures, and Tj. The liquid
columns in the two arms have heights /,
and I2 respectively as shown in figure-1.29.
Find the coefficient ofvolume expansion
ofthe liquid.

Ans. 1
/,-/2

hiTj-n)

T

Figure 1.29

1-2 How manykilograms ofcopperwill experience the same
temperature riseas 10 kgofwater when thesame amount of
heat is absorbed ? = 0.09 cal/g "C)

Ans. [1.11 x 10^ kg]

1-3 Ifcoal gives off7000 kcal/kg when it isburnt, how much
coal will be needed toheat a house that requires 4.2 x 10^ kcal
for the whole winter ?Assume that an additional 30 percent of

the heat is lost up the chimney.

Ans. [7.8 X 10^ kg]

1-4 How much water would have to evaporate from the skin
per minute to take away all the heat generated by the basal
metabolism (60 kcal/h) of a 65 kg person ?

Ans. [1.85 g/min]

1-5 During exercise, aperson maygiveoffISOkcalofheatin
30min byevaporation ofwater from theskin. How much water
has been lost ? Given that latent heat of vaporization ofwater
is 540 cal/gm.

Ans. [333.34 gm]

1-6 A 55.0 kg ice skater moving at 8.5 m/s glides to a stop.
Assuming the ice is at 0®C and that 50 percent of the heat
generated by friction is absorbed by the ice, how much ice
melts ?

Ans. [2.95 gm]

1-7 Thedesign ofsome physical instrument requires that there
be a constant differencein length of 10cm betweenan iron rod
anda copper cylinder laid side bysideatall temperature. Find
their lengths. Given that coefficient oflinearexpansion ofiron
is 1.1 X10"^ °C"^ and that ofcopper is1.67 x 10"^
Ans. [/| = 29.4 cm, = 19.4 cm]

1-8 Asteel rod 25 cm long has across-sectional area of0.8 cml
What force would be required to stretch this rodby the same
amount as the expansion produced by heating it by lO^C ?
Giventhat forsteelcoefficient oflinear expansion andYoung's
modulus are given as 1.1 x10~^°Cr' and 7=2 xlo"Nm ^
Ans. [1.76 X 10^ N]

1-9 How should1kg ofwaterat 5°C bedivided intotwoparts
sothat ifone part turned into ice at0°C, itwould release enough
heat to vaporize the other part ? Latent heat of steam
=540 cal g~^ and latent heat ofice =80 cal g"'.
Ans. [864 g + 136 g]

1-10 A steel wire ofcross sectional area 5x10"^ m^ is tied
between two rigidclamps. It isgiven thatat 30°C, wire isjust
taut. If the temperature ofwire is decreased to 10°C, find the
tension in the wire. Given that the coefficient of linear
expansion ofsteel is l.I x and itsYoung's modulus
is2x 10"N/ml

Ans. [30 N]

1-11 A box measured with a vernier caliper is found to be
180 mm long. Thetemperature during themeasurement is1CC.
What will the measurement error be ifthe scale of the vernier
caliper has been graduated at a temperature of 20°C ? The
coefficient of linear expansion of the material of vernier
= 11 X10^ "C"'.

Ans. [0.0198 mm]

1-12 The brass scale of a mercury barometer has been
graduated at 0®C. At 1ST thebarometer shows a pressure of
760 mm. Reduce the reading of the barometer to O^C. The
coefficient oflinear expansion ofbrass= 1.9 x 10"^ =1and the
coefficient ofvolume expansion ofmercuryy= 1.8 x10" '̂'C~'.

Ans. [757.3 mm]

-1 -13 Apiece ofmetal weights 46gm inair. When it isimmersed
in a liquid of specific gravity 1.24 at 37"C it weighs 30 gm.
When the temperature ofthe liquidis raisedto42®C, themetal
piece weighs 30.5 gm. The specific gravity oftheliquid at42''C
is 1.20.Calculatethe coefficient of linearexpansion ofthe metal.

Ans. [23 X 10"^ X"']

1-14 Calculate thepercentage increase inthemoment ofinertia
ofa ring ofiron. Given that =11x10"** °C"' and rise in
temperature is 20°C.

Ans. [0.044%]
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1-22 A bimetallic strip consists of two metal strips with
different coefficients of linear expansion a, and a^, each of
small thickness dand length at T^. They are bonded together
and,witha changein temperature AT, willcurvein a circular
arc, as shown in figure-1.30. Show that the radius of curvature
R is givenapproximately by

d
Ji =

(ttj -a^Ar

Thin metallic

strips
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1-15 A gasheated geyser consumes 1.8 ofmethane
(CH4) in an hour. Find the temperature ofthe water heated by
thegeyser if the waterflows outat the rate ofv= 50 cm/s. The
diameter ofthe stream Z) = 1cm, the initial temperature ofthe
water andthegas is/j = 1rc andthecalorific value ofmethane
is = 13 kcal/g. The gas in the tube is under a pressure of
1.2 atm. Theefficiency oftheheater isti =60%.

Ans. [93°C]

1-16 Amixture of250 gofwater and 200 gofice at0°C is kept
in acalorimeter which has awater equivalent of50 g. If200 gof
steam at 100®C is passed through this mixture, calculate the
final temperature and the weight of the contents of the
calorimeter. Latent heatoffusion of ice= 80 cal/gand latent
heat ofvaporisation of= 540cal/g.

Ans. [lOOT, 572.2 g]

1-17 An earthenware vessel loses 1 g of water per second
due toevaporation. The water equivalent ofthe vessel is0.5 kg
and thevessel contains 9.5 kgofwater. Find thetime required
for thewater in thevessel to cool to28''C from SOT. Neglect
radiation losses. Latent heat of vaporisation of water in this
range oftemperature is 540 cal/g.

Ans. [ = 37.5 sec]

1-18 A steel rule is calibrated at 22°C against a standard so
thatthedistance between numbered divisions is 10.00 mm. (a)
What is the distance between these divisions when the rule is
at - 5T ? (b) Ifa nominal lengthof 1m ismeasuredwith the rule
at this lower temperature, what percent error ismade ?(c) What
absolute erroris madefora 100m length ?
[a^,= l.Ixl0-=''Cr']
Ans. [(a) 9.997 mm; (b) 3%; (c) 3 cm]

1-19 An iron cube floats in abowl ofliquid mercuryatOT. (a)
Ifthetemperature israised toSOT, will thecube float higher or
lower in the mercury ? (b)Bywhatpercent willthe fi-action of
volume submerged change ?

Ans. [(a) More of the cube is submerged, (b) 0.54%]

1-20 A precise steeltapemeasurehasbeencalibrated at 20T.
At 40T, (a) will it read high or low, and (b) whatwillbe the
percentage error ?

Ans. [(a) low, (b) 0.024%]

1-21 An 18-g ice cube (at 0°C) is dropped into a glass
containing 200g ofwater at 25T. If there is negligible heat
exchange withthe glass,what is the temperature after the ice
melts ?

Ans. [le.SSX]

Figure 1.30

1-23 Athin smooth tube oflength 2mcontaining a small pallet
ofmercury init israpidly inverted 50times. Ifcapillaryeffect is
neglected find theapproximate increase in temperature ofthe
mercury. Given that thespecific heatofmercury is30cal/kgK.

Ans. [7.8''C]

1-24 From what height must ablock ofice fall tojust melt by
theimpact, if50% oftheheat generated isabsorbed by theice.
Given thatlatent heat offusion ofice is80cal/gm.

Ans. [68570 m]

1-25 Ahole isdrilled into ablock oflead ofmass 10 kg byadrill
machine. The drill machine isoperated at30rpm and the torque
exerted by the electric motor on drill is 10N-m. Calculate the rise

in temperature ofthe lead block in 10 minutes. Given that specific
heat oflead is0.03 cal/gm°C and that ofwater is1caFgm°C.

Ans. [I4.96°C]

1-26 Amercury thermometer istobe made with glass tubing
of internal bore 0.5 mm diameter and the distance bet\veen the
fixed points is to be 20 cm. Estimate the volume ofthe bulb

below the lower fixed point,given that thecoefficient ofcubical
expansion of mercury is 0.00018 and the coefficient of

linearexpansion ofglass is 0.000009 T~'

Ans. [2.57 cm^]
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1-27 A lump of ice of0.1 kg at- 10°Cisputin 0.15 kg of water
at 20°C. How much water and ice will be found in the mixture

when it has reached thermal equilibrium ? Specific heat of
ice = 0.5 kcal kg"' °C"' and its latent heat of melting
=80kcalkg~'.

Ans. [Final temperature is O^C with 0.07 kg of ice and 0.18 kg of water]

1-28 A metallic bob weighs 50 g in air. If it is immersed in a
liquid at a temperature of 25°C its weighs 45 g. When the
temperature ofthe liquid is raised to lOO^C, it weighs 45.1 g.
Calculate the coefficient of cubical expansion of the liquid
assuming thelinearexpansion ofthemetal to be 12 x 10~^®C~'.

Ans. [Y| = 3 X lO-" °C-']

1-29 A copper calorimeter of mass 190 g contains 300 g of
water at 0°C and 50 g ofice at 0°C. Find the amount ofsteam at
100®C requiredtoraise the temperatureof this mixtureby 10®C.
Given that the specificheat of copper is420 J/kg^C, latent heat
of vaporization of water is 2.25 x 10^ J/kgand latent heatof
fusion oficeis3.36 x 10^J/kg.

Ans. [12.27g]

1-30 Using a condenser coil 10 kg of water is to be heated
from 20°Cto 80°Cper hour.For the purpose, steam at 150®C is
passed from the condenser which is immersed in water and
steam condenses in the coil and comes out at 90^0. Find the

amount of steam required per hour for this purpose. Given that
specificheat of water is4200 J/kg°Cand latent heat of steam is
2.25 X10^J/kg.

Ans. [1 kg]

1-31 In the past, it waspractice to measure temperature using
so called 'weight thermometer' which consistsof a glass sphere
having a narrow flow-out tube. Such a certain weight
thermometer is completely filledwith 14.578 g of liquid at 15°C.
It is foundthat 1.232g of liquidoverflows when the temperature
is raised to 100°C. How much more liquid will overflow when
the temperature is further raised to 200®C ?

Ans. [1.449 g]

1-32 A barometer having a brass scale reads 77.24 cm at a
temperature of 20®C. The scale is graduated to be accurate at
0°C. What would be the reading at 0°C ? Coefficient ofcubical
expansion ofmercury= 18 x 10"^°C~'and linear expansion of
brass= 19 X

Ans. [76.99 cm]

1-33 A horizontal thin copper ring has a diameter exactly
1.00000inch at temperature 0°Cand is fixed to a non-conducting
stand. An aluminium sphere of diameter exactly 1.00200 inch at
100®C is placed on the top of the ring. When the two attain
temperature equilibrium, the sphere just passes through the
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ring. Assuming that the whole heat energy remains within the
ring-sphere system, find:
(ac„=1.67xlO-5''C-'; a^r2.4x lO-^X"')
(i) the final equilibrium temperature

(ii) the ratio of the mass ofthe ring to that of the sphere.

Ans. [57.MX, 1.643]

1-34 Aniline is a liquid which does not mix with water. When
a small quantity ofit is poured into a beaker of water at 20°C, it
sinks to the bottom. The densities ofaniline and water at 20°C

are1021 kgm"^and 998 kgm"^ respectively. Find theminimum
temperature to which the mixture is to be heated so that aniline
will form a globule and just starts floating.

= X10-'°C-';y.,„„,=45 x
Ans. [79.15°C]

1-35 During light activity, a 70 kg person may generate
200 kcal/hr. Assuming that 20 percent ofthis goes into useful
work and the other 80 percent is converted to heat, calculate
the temperature rise ofthe body after 1.00 ifnone ofthis heat
is transferred to the environment. Assume specific heat of the
human body is 450 cal/kg®C.

Ans. [5.08"C]

1-36 A^'makkiki m//"has 100kcal ofthermal energy. What a
man of60 kg eats five such roti, how many meters can he climb
by using this energy. Given thatthe working efficiency ofman
is 30% of the total energy gain by eating.

Ans. [1.072 km]

1-37 A copper calorimeter ofnegligible thermalcapacity isfilled
with a liquid.The mass ofthe liquid is250 gm.A heating element
of negligible thermal capacity is immersed in the liquid. It is
found that the temperature ofthe calorimeter and its contents
rises from 25°C to 30°C in 5 minutes when a current of2.05 A is

passed through it at a potential difference of5 volts. The liquid
is thrown off and the heater is switched on again. It is now
found that the temperature of the calorimeter alone remains
constant at 32®C when the current through the heater is 0.7 A at
the potential difference 6 volts. Calculate the specific heat
capacity of the liquid. The temperature of the surrounding is
25^0.

Ans. [2100 J/kgK]

1-38 A long horizontal glass capillary lube open at both ends
contains a mercury thread 1 m long at 0"C. Find its length at
100°C. A scale is etched (marked) on the glass tube. This scale
is correct at O^C. Find the length of the mercury thread, as read
on this scale, at 100®C. Given that the coefficient of volume

expansion of mercury is 1.8 x 10"^ ®C"' and the coefficient of
linearexpansion ofglassis8.5 x 10"^ °C"'.

Ans. [1.0154 m]
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1-39 Ice ofmass 600 gand attemperature-10°C isplaced into
a copper vessel heated to 350®C. As a result, the vessel now

contains 550 g ice mixed with water. Find the mass ofthe vessel.
The specificheat of copper c = O.I cal/gm®C. Specific latent
heatofice =80 cal g"', specific heat ofice =0.5 cal/g^C.

Ans. [200 g]

1-40 A metal rod of length 5 m is placed on a smooth table.
Given that Young's modulus of the material of the rod is
1.6 X10"N/m^ and the its coefficient oflinear expansion is
1.2 X10"^ °C*'. Iftemperature ofrod ischanged fi-om 20°C to
80®C, find the elastic stress developed in the rod.

Ans. [0]

1-41 An ice block ofvolume 3.2x 10"^ m^ and attemperature
0°C is put in 200 gm water at 10°C. Find the temperature and
composition of mixture when thermal equilibrium is attained.
Given that density ofice is900 kg/m^ specific heat ofwater is
4200 J/kg^C and latent heat offusion ofice is 3.4x lO^J/kg.

Ans. [0°C, mixture = 4.1g ice + 224.7g water]

1-42 A bodymade up of analloy (40%copper-t- 60% nickel)of
mass 0.1 kg is placed in a container ofwater equivalent 10 gm
which contains 90 g of water at 10°C. If the equilibrium
temperature is 20®C, find the initial temperature of the body.
Given that specific heat of water is 4200 J/kg®C and that of
copper is 420 J/kg®C and that ofnickel is 460 J/kg"C.

Ans. [114.6°C]

1-43 A blockof 10kg massis thrownona rough surfacehaving
friction coefficient 0.3 with an initial speed of5 m/s. Find the
amount by which the intemal energy of the block and the surfece
will increase. If this block is seen from a frame moving at a
speed of5 m/s in the direction of its velocity then it is observed
that the block is gently put on the rough surface moving in
oppositedirectionat speed5 m/s.Find the gain in kineticenergy
ofthe block as seen from this fi-ame.

Ans. [125J, 125J]

1-44 A glass container is filled with 500 g of water and 1 kg
mercury. When 21200 cal ofheat is given to it, 3.52 g ofwater
overflows. Calculate the coefficient of volume expansion of
mercury.Given that the coefficientofvolume expansion ofwater
is1.5 X10"^®C~', relative density ofmercury is13.6 and specific
heatofmercury is 0.03 cal/g°C"' and thatofwateris 1cal/g®Cr'.
Neglect the expansion ofglass.

Ans. [1.7 X lO-^^C"']

1-45 When a certain quantity ofIiquid bismuth at its melting
point of27 rC is transferred to a calorimeter containing oil, the
temperature of oil rises from 13.4®C to 28.5^0. When the

45^

experiment is repeated under identical conditions except that
bismuthis in solidform, the temperatureof oil rises to IP^C. If
thespecific heatofbismuth is 0.134 J g""' °C"',findthe latent
heat of fusion of bismuth.

Ans. [58.56 J g~']

1-46 An iron plug is to beplacedin a ring madeofbrass. At
room temperature28''Cthe diameterof the plug is 9.114 cm and
that of the inside of the ring is 9.097 cm. To what common
temperature these both be brought in order to fit ? Given that

coefficientoflinearexpansionofiron is 1.1 x 10"^and that
ofbrassis 1.9 x 10"^"C*'.

Ans. [262.2°C]

1-47 The 0.50kg headofa hammerhasa speedof5.0 m/sjust
before it strikes a nail and is brought to rest. Estimate the
temperature rise of a 15 g iron nail generated by ten such
hammer blows done in quick succession. Assume the nail
absorbs all the "heat."

Ans. [9.3°C]

1-48 Two metal spheres (10 kg and 30 kg) moving towards
each other at speeds 10 m/s and 20 m/s respectively. They
collide inelastically. What is the rise in temperature of the
combined body after collision if all the energy lost appears in
the formofheat. Giventhat specificheat of the metal ofspheres
is 0.03 cal/g^C.

Ans. [0.65°C]

1-49 A 25 g lead bullet traveling at 400 m/s passes througha
thin iron wall and emerges at a speed of250 m/s. If the bullet
absorbs 50 percent of the heat generated, (a) what will be the
temperature rise of the bullet ? (b) If the ambient temperature is

20°C, will the bullet melt, and if so, how much ? Given that
specific heat of lead is 0.03 cal/gm®C and latent heat of fusion
of lead is 6000 cal/kg. It is also given that melting point of lead
is320''C.

Ans. I194.38''C, No]

1-50 About5 g waterat 30®C and 5 g iceat - 20°Care mixed in
a container of negligibleheat capacity. Find the final temperature
and composition ofthe mixture.Giventhat specificheatofwater
is4200 J/kg°Cand that ofice is 2100 J/kg°Cand latent heat of ice
is3.36xi05j/kg.
Ans. [0°C, 3.75 g ice + 6.25 g water]

1-51 A brass pipe that is 10 cm in diameter and has a wall
thickness of 0,25 cm carries steam at 100°C through a vat of
circulating water at 20°C. How much heat is lost per meter of
pipe in 1 s ?

Ans. [1.06 MJ]
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i-52 (a) The tube ofa mercury thermometer has an inside
diameter of0.120 mm. The bulb has avolume of0.250 cmlHow
far will the thread of mercury move when the temperature
changes from 10.0''C to 20.0*'C ?Take into account expansion
ofthe glass (Pyrex). (b) Determine aformula for the length of
themercury column interms ofrelevant variables.

Ans. [(a) 3.78 cm; (b) (approx) (p^g - Pgi)Ar f'buib/'̂ '̂ tubel

1-53 200 g ofwater and equal volume ofanother liquid ofmass
250 gare placed inturn inthesame calorimeter ofmass 100 g
and specific heat capacity 420 J/kgK. The liquids which are
constantly stirred are found to cool from 60°C to 20°C in 3
minutes and 2 minutes 20 seconds, respectively. Find the
specific heat capacity of the liquid. The temperature of the
surroundings is 20°C.

Ans. [2576 J/kgK]

1-54 Figure-1.31 shows a wheel pivoted atitscenter inawater
tank containing 1kgwater. Alight string iswound ontheshaft
of the wheel and its other end is connected to a hanging block
of mass 12 kg as shown. It is observed that the block falls
slowly bya distance 0.7 ra. Find therisein temperature ofthe
water. Alsofindthe amountofheat supplied to thewater. Given
that the specific heat ofwater is4200 J/kg®C and that ofwheel is
negligible.

&

mg

Figure 1.31

Ans. [0.02°G, 0]
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1-57 A12.4 kg solid iron cylindrical wheel ofradius 0.45 mis
rotating about its axle in frictionless bearings with angular
velocity co = 32.8 rad/s. Ifits temperature is now raised from
20®C to80°C, what isthe fractional change in co ? Given that
coefficient oflinear expansion ofiron is 1.1 x10'̂ °C"'.

Ans. [1.32 X 10-5]

1-58 Whena man doesexerciseon a treadmillmachine,work
done by him issupplied in the form ofheat to an ice bath. Find
how much work he has to do to converta piece of5 gm of iceat
-3°C to steam at 100°C. Given that the specific heat ofice is
0.5 cal/gm°C, latent heat offusion ofice is80 cal/gm and latent
heatofvaporization ofwateris 540cal/gm.

Ans. [15079.35 J]

1-59 A steel ball, ofmass 10g andspecific heat 100 cal/kg^C,
ispushed out after being heated inside a furnace. It isquickly
caught inside a thick copper vessel ofmass 200 gand relative
specific heat 0.09 at 50°C and the vessel is dropped into a
calorimeter ofwaterequivalent 20 g containing 180g ofwater
at 20°C.The thermometerin the calorimetershowsa maximum
temperature of26°C. Calculate thetemperature ofthefurnace
andfind by calculation whether there was any local boiling in
the calorimeter.

Ans. [794''C]

1-60 Ata temperature of20"C, thevolume ofa certain glass
flask, up to areference mark on the cylindrical stem ofthe flask
isexactly 100 cml Theflask isfilled tothispoint with a liquid
ofcoefficient ofcubical expansion 120 x 10"^ when both
the flask and the liquid are at 20''C. The cross-section of the
stem is 1mm^and the coefficientoflinear expansion of glass is
8 X]0"^°C"\ Find the rise or fall ofthe liquid level in the stem,
whenthe temperatureis raised to 40°C.

Ans. [235.12 cm]

1-61 Findthefinal temperature andcomposition ofthemixture
of1kg oficeat 0°C and 1.5 kg ofwater at 45°C. Given that
specific heat ofwater is4200 J/kgK and latent heat offusion of
iceis3.36x lO^J/kg.

Ans. [CC, mixture = 156.25 g ice+ 2.343 kg of water]

1-62 A solid substanceof mass 10 g at -1 O^C was heated to
- (still inthesolid state). The heat required was 64calories.
Another 880 calories was required to raisethe temperature of
thesubstance (now intheliquid state) to l^C, while 900 calories
was required toraise the temperature from—2°C to3°C. Calculate
the specific heat capacities of thesubstance in thesolid and
liquid state incalories perkilogram perkelvin.

Ans. [0.8 cal/g ®C, 1 cal/g ®C]

1-55 0.6kgof iceat- 10°C isplace ina copper calorimeter at
350°C.Aftersometimewhenthermalequilibriumis attained,
calorimeter contains 550 g of ice with somewater. Find the
water equivalent ofthecalorimeter. Given that thespecific heat
ofcopper is420 J/kgK, and that ofice is 2100 J/kgT and latent
heatofice is3.32 x lO~^J/kg.
check the answer

Ans. [20 g]

1-56 Two pendulum clocks, onehaving an iron pendulum and
the otherhavinga brasspendulum arekeeping correct timeat
5°C. How much per day will they differ at 25°C ?

«i„„= 12 10"'°C"'. «b^s= 18-7 X10^-C-'.
Ans. [5.79 s]



1-69 Find the final temperature and composition ofthe mixture
of 1kg of iceat- 10®C and4.4 kg ofwaterat 30°C. Given that
specificheatofwater is4200 J/kg®C andthatoficeis2100 J/kg®C
andlatentheatofflisionoficeis 3.36 x lO^J/kg.

Ans. [mixture = 5.4 kg water at 8.7''C]

1-70 Suppose that40 g ofsolid mercury at its fi"eezing point
(- 39°C) is dropped into a mixture ofwater and ice at 0°C.After

equilibrium is achieved, the mercury- ice - water mixture is
still at 0°C.Howmuchadditional ice is producedbythe addition
ofthe mercury ?

. Ans. [2.04 g]

1-71 Some iceisputinacalorimeter. Determine theheatcapacity
ofthe calorimeteras 2.1 kJ of heat is required to heat it together
with its contents form 270 Kto 272 K, and 69.72 kJ ofheat is

required to raise its temperature of272 K to 274 K. Latent heat
offusion ofice is3.36 x 10^ J/kg and specific heat capacity of
ice is 2100 J/kg.

Ans. [630 J/K]

1-72 A steel drill making 180revolutionsper minute is usedto
drill a hole in a block ofsteel. The mass ofthe steel block and

drill is 180 g. If the entire mechanical work is used up in
producing heat and the rate of rise oftemperature ofthe block
is 0.5°C per second, find

(a) The rate ofworking ofthe drill in watts and

(b) The torque required to drive the drill.

(Specific heatofsteel = 0.1 calg~'

Ans. [(a) 37.8 W; (b) 2 Nm]

1-73 A substance is in the solid form at 0°C. The amount of

heat added to this substance and its temperature are plotted in
the following graph.
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1-63 The.volume of a mixture of ice and water is found to
decrease by 1.25 x 10~^m^ without change intemperature when
a smallmetalblockofmass 10gm and at temperature100®C is
putinto it.The density ofice is917 kg/m^. Find thespecific heat
ofthe metal block.

Ans. [464 J/kgK]

1-64 Water ina fall falls through 1.0kmconsidering thisas
a thermodynamical process, calculate the difference in
temperature of water at the top and bottom of the fall. Specific
heat ofwater c = 1000 cal/kg°C and 7=4.2 J/cal.

Ans. [2.3''C]

1-65 A calorimeter ofspecific heat 0.42J/gm°C andweighing
40 g contains 50 g ofwater mixed with 50 g ofice. Dry steam at
1OO^C is passed into the mixture until the temperature rises to
20°C. Find the mass of steam condensed.

Ans. [9.8 g]

1-66 Howmuch steam at 100°C isneeded to change40 g ofice
at —10®C to water at 20°C ifthe ice is in a 50 g copper can ?
Assume that the can maintains the same temperature as the ice
and water. Given that specific heat of copper is

Sqj = 0.09 cal/gm ®C andspecific heatoficeiss.^^=0.5 cal/gm °C.

Ans. [7.01 g]

I -67 A vertical, steel I-beamat the base of a building is 6.0 m
tall,hasa mass of300 kg,andsupports a load of3.0 x 10^ N. If
the beam's temperature decreases by 4.0°C, calculate the
change in its internal energy using the facts that for steel is
0.11 kcal/kg "C and the coefficient of linear expansion is
II X10-6

Ans. [- 5.5 X 10' J]

1-68 A heav7 brass bar has projections at its ends as shown
in the flgure-1.32. Two fine steel wires, fastened between the
projections, arejust taut (zero tension) when the whole system
is at 0°C. What is the tensile stress in the steel wires when the

temperature ofthe system is raised to 300°C ? Make simplifying
assumptions that you think are justified, but state what they
are.

Given that

Figure 1.32

= 20x 10"^"C"'

«««;= 12 X10^°C-'
i;,„r2xlO"Nm-^

a
brass

Ans. [48 X lo' Nm"^]
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Figure 1.33

If the relative specific heat capacity of the solid substance is
0.5, find fi-omthe graph (i) the mass ofthe substance; (ii) the
specific latent heat ofthe melting process, and (iii) the specific
heat of the substance in the liquid state.

Ans. [(1) 0.02 kg, (ii) 4000 cal kg"', (iii) 700 cal kg"' K"']
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1-74 Steam at 100®C is passed into a calorimeter of water
equivalent 10 mg containing 74 cc ofwater and 10 g of ice at
0°C. Ifthe temperature ofthe calorimeter and its contents rises
to 5°C, calculate the amount of steam passed. Latent heat of
steam = 540 kcal/kg, latent heat offusion = 80 kcal/kg.

Ans. [2 g]

1-75 Anelectron beam travelling at a speed of 10^ m/s strikes
a metal target and absorbed by it. If the mass of the target is
0.5 g and its specific heat is 100 cal/kg°C, find the rate at which

its temperature rises. Given that the electron beam current is

0.048 A.

Ans. [65°C/s]

1-76 Somewaterat O^C is placed in a large insulatedenclosure
(vessel). The water vapour formed is pumped out continuously.
What fi'action of the water will ultimately fi^eeze, if the latent

heat ofvaporization is seven times the latent heat of fusion ?

Ans. [7/8]

1-77 The apparatus shown in thefigure-1.34 consists of four
glass columns connected by horizontal sections. The height
oftwo central columns B and Care 49 cm each. The two outer

columnsAand D are open to atmosphere.Aand Care maintained
at a temperature of 95 °C while the columns B and D are

maintained at 5 "C. The height ofthe liquid in AandD measured
fi^om the base line are 52.8 cm and 51 cm respectively. Determine
the coefficient ofcubical expansion of the liquid.

D

95'
95'

V7777777777777777777777777777777777777777777777ZV7.

Figure 1.34

Ans. [2 X IQ-^'C-']

Heat and Thermal Expansion

1-78 A non-conducting vessel, thermally insulated fi"om its
surroundings, contains 100 g of water of 0°C. The vessel is
connected to a vacuum pump to pump out water vapour. As a
result of this, some water is frozen. If the removal of water

vapour is continued, what is the maximum amount ofwater
that can be frozen in this manner ? Latent heat of vaporisation
of water = 22.5 x 10^ J kg"' and latent heat of fusion of
ice-3.36x lO^Jkg"'.

Ans. [87 g]

1-79 A mercury-in-glass thermometer has a stem of internal
diameter 0.06 cm and contains 43 gm ofmercury. The mercury
thread expands by 10 cm when the temperature changes from
O^C to 50''C. Find the coefficient ofcubicalexpansionofmercury.
Relative density ofmercury=13.6 and ag;^^ =9.0 x IO"^°C"'.-
Ans. [1.9 X lO-*]

1-80 A loaded and completely sealed glass bulb weighs
156.25 gmin air at 15°C, 57.5 gm when completely immersed in
a liquid at I5®C and 58.57 gm when completely immersed at
52''C. Calculate the mean coefficient ofreal expansion of the
liquid between IS^C and52°C. a^/ojj =9x10"^ °C"'.
Ans. [32.335 x lO"' X"']

1-81 A certain amount of ice is supplied heat at a constant
rate for 7 minutes. For the first 1 minute, the temperature rises
uniformly with time, then it remains constant for the next
4 minutes and again rises at a uniform rate for the last
2 minutes. Explain qualitatively these observations and
calculate the final temperature. of ice = 336 x lo^ J kg"'
3nd5„=4200Jkg '

Ans. [40'C]

-1

1-82 Two cylinders ofequal masses, one made ofaluminium
and the other of copper, with their lateral surfaces thermally
insulated, are heated to 50®C and placed on two large blocks of
ice at 0®C. Ifboth the cylinders have the same height, find the
ratio of their depths ofpenetration in the ice. Assume that no
heat is lost to the surroundings. Given that

s^i=0.22 cal gm~' °C"', p^^=2.7 gmcm"^

^Cti ~ Pch^

Ans. [-^l



Kinetic Theory of Gases and Gas Laws

FEW WORDS FOR STUDENTS

In this chapter we'lldiscuss about thegeneralbehaviour ofgases. We use
thebasic ideas that we've discussed inprevious chapter andsome concept of
mechanics tounderstand thegasbehaviour. Mainly how agasexertspressure " i ^
and its relation with volume and temperature ofgas and the total energy \
possessed bygas and its relation to the temperature ofgas.
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Warmer air rises in cooler air is the basis of how hot air balloon works. This is because hot air is lighter than cool air as it has lower density.
The actual balloon (called an envelope) has to be so large as it can take a large amount of heated air to lift it off the ground. For example;
to lift 1000 pounds worth of weight you would need almost 65,000 cubic feet of heated air! To help keep the balloon in the air and rising,
hot air needs to be propelled upwards into the envelope using the burner (see separate section on burners for more information.)
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In this chapter, mainly we'll deal with the behaviour of gases. In
fact a gas is composed oflarge number of molecules in random
motion. Characteristics of a gas depends on the properties of
the motion ofthese molecules. The analysis of a gas at such a
microscopic level is called kinetic theory ofgases.

2.1 Postulates ofKinetic Theory of Gases

Before proceeding for investigations on properties of a gas
from the point of viewofkinetic theory,we firstdefine an idealized
model ofa gas. For such a model ofan ideal gas we make some
assumptions for molecules of a gas. These assumptions are
called basic postulates of kinetic theory ofgases. These are :

(i) In a gas size of molecules is negligible or the average
separation between them is large compared with their
dimensions. This means that the volume of the molecules is

negligible when compared with the volume ofthe container.

(ii) Each molecule is considered to bea hard sphere and collide
elastically with the other molecules and container walls. The
pressure that a gas exerts on the walls of its container is a
consequence of the repeated collisions of the gas molecules
with the walls.

(ill) It is assumed that molecules obey Newton's Laws of
motion but during motiontheydo not interact each otherexcept
during collisions and these are not deformed during collisions
thus forces between molecules are short range forces which
only acts during collisions.

(iv) As during motion moleculesdo not interact, the total energy
of a gas can be considered as the sumofkinetic energies of all
ofits molecules and hence a gas contain zero potential energy.

(v) During collisionthe time of contact is negligiblecompared
to the time between two successivecollision of a gas molecule,
which is called relaxation time.

(vi) As a whole molecules move randomly. By "randomly" we
mean that any molecule can move in any direction at any speed.
The direction of motion of gas moleculeschanges only when it
collides with the other gas molecule or the container wall. This
results a random zig-zag path ofa moleculeshown in figure-2.1.

Figure 2.1
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This typeof random motion is termed "Brownion Motion". We
also assume that the distribution of speeds does not change in
time, despite the collisions between molecules. That is at any
given moment, a certain percentage ofmolecules move at high
speeds, a certain percentage move at low speeds and so on.

(vii) The gas under consideration is assumed a pure substance.
That is, all ofits molecules are identical.

(viii) Effect of gravity on gas molecules in a container is
neglected. That is in a container we assume throughout its
volume density ofgas is same.

(ix) At all temperature and pressures, all gases obeyideal gas
law which relates the microscope characteristics of a gas i.e.
pressure, volume and temperature. The ideal gas law is stated
as

PV^nRT ...(2.1)

Here n are the number of moles of a gas and R is universal gas
constant. In next sections of the chapter we'll discuss gas law
in details.

Generally real gases obeyideal gas law PV = nRTonly at very
high temperature and very low pressure as at very high
temperature kinetic energy of the gas molecules is so high that
even if some interaction between molecules is present, it will
not contribute any energy and at very low pressure, separation
between molecule is very large thus reduces their interaction.
So we can say that at high temperature and low pressure, real
gases behave like ideal gases.

2.2 Gas Laws

In mathematical analysis and behaviour of gases, three
parameters are important in describing the properties of a gas.
These are pressure, volume and temperature. Several
experiments are done for analysis ofa gas and to relate these
parameters. Some laws are established on the basis of these
experiments forrelating these parameters. These laws areknown
as gas laws. Now we'll discuss these laws in details with some
examples.

2.2.1 Boyle's Law

This law is an experimental result obtained by Boyle between
the pressure and the volume ofan enclosed gas at a constant
temperature. Boyle's Law states that the pressure exerted by a
gas at constant temperature is inversely proportional to the
volume in which it is enclosed. Thus Boyle's law is written as

1
Pec-

or PV= constant ...(2.2)
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Where P is the gas pressure, V its volume and the value of
constant depends on the gas temperature and its quantity. The
complete statement ofBoyle's law includes the condition that
both the temperature and the amount of gas must be held
constant.

Alternatively Boyle's law may be written as

P,V, = P,V, ...(2.3)

Where the subscripts 1 and 2 refer to different physical states

of the same sample ofgas with the temperature held constant.
The variation of pressure and volume of gas at constant

temperature is shown in graph in figure-2.2.

Figure 2.2

Another important point about Boyle'e law is to be noted that
while Boyle's law is applicable over a wide range of pressure
but it does not alwaysapply. For example, if the temperature is
low enough, a sample of gas will be condensed to a liquid at
sufficiently high pressure. In further sections we'll discuss
about liquification of gases in detail.

If we find the volume of one mole molecules of gas using gas

law,at standard pressure 1atm and standard temperature 273 K,
we get

PF=nPT

or F=
1x8.314x273

1.013x10

= 2.2406x10-2

=22406 cm^

=22.4 litre

Thus we can state that one mole ofall gases occupy a volume
of22.4 litre at standard pressure and temperature.

2.2.2 Charles and Gay-Lussac Law

Boyle's law relates the pressure and the volume of a gas at
constant temperature. However, we can also investigate the
effect oftemperature change on the volume ofa gas at constant
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pressure. The apparatus for such an experiment is shown in
figure-2.3.

Temperature = T,

(a)

•: Gas

• -area = S

Thermometer

Thermometer

Temperature = T,

lT,>r,)

(b)

Figure 2.3

We introduced a gas into a cylinder and place a weight on the

piston of mass M This arrangement if in equilibrium at a
temperature T, as shown in figure-2.3(a) develops a constant
pressure in the gas. For equilibrium ofpiston, the gas pressure
can be given as

P =/'- +
gas aim s

...(2.4)

ifgas isheated this pressure remains constant asfor equilibrium
the gas expands tomaintain the pressure.Nowafter heating the
gas to different temperatures and recording its data for
temperatureand corresponding volume, we plot a graph. The
respective graph is shown in figure-2.4.

Volume

—273.15 "C Temperature (°C) T

Figure 2.4
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If the data is recorded for a gas A we get line-1 shown in
figure-2.4 and ifwe repeat the experiment with another gas B,
with the same initial volume and temperature, we get the same
results and obtain line-1. But if we use gas B with different
initial volume, we obtain data producing a new line, line-2.
Whatever gas we use the behaviour is same. The graph will
always be a straight line.

Here we can see that these straight lines if extended intersect
with temperatureaxis at - 273.15°C. Theoreticallyit showsthat
the volume of gas becomezero at this temperature. The reason
already we've assumed that the size of molecules is negligible
and at - 273.15°C or 0 K temperature, the kinetic energy of
molecules become zero or all motions are frozen at 0 K

temperature thus no movement is there in gas molecules of
negligible sizeat this temperature. If thegraphshown in figure-
2.4 is again plotted with Kelvin scale we get one as shown in
figure-2.5.

This scale is absolute scale with the sense that its zero

(- 273.15°C) is the lowerlimit fortemperatureand in practical
nature to attain a temperature belowthis is not possible due to
the reason discussed above. In further analysis of gases we
will use Kelvin scale.

or

Temperature (K)

Figure 2.5

Thus iftemperature is expressed in Kelvins, we find that when
the pressureis held constant,the volumeis proportionalto the
temperature. This statement in the law of Charles and Gay-
Lussac. This can beexpressed mathematicallyas

r,

V2 n
V

— = constant
T

...(2.5)

...(2.6)

As with Boyle's law, the amount of gas also must be held
constant for equation-(2.5) and (2.6) to be valid.

2.2.3 Ideal Gas Law

Boyle's law and the law of Charles and Gay-Lussac are thie
Particular cases of a more general expression called the ^'ideal
gas laW\ It can be written as

PV=nRT ...(2.7)
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Here, P Vand T stand for pressure, volume and temperature
respectively and i? is a constant that is same for all gases and
so is called the universal gas constant and n are the number of
moles of gas. If pressure is measured in SI units of units of
pascal, volume in cubicmeters, and temperature in kelvins, then
R has a value 8.314 Joule/mole-K. If in a state gas pressure,
volume and temperature are P^, F, and T, and after some
experiment on same sample ofgas if its pressure, volume and
temperature areP^, and T^, thenfrom equation-(2.7) wehave

PV-. P2V2
...(2.8)

As number of moles in initial and final state are equal.

The amount of a gas isgenerally measuredin moles,given as n.
A mole(mol) is the amountofmaterialwhosemassin gramsis
numerically equal to the molecular mass of substance. For
example molecular mass ofO2 is32, Thus amole ofoxygen is32
grams.

2.2.4 Avogadro's Number and AvogadroHypothesis

We've discussed that the gas constant R, has the same value
forall gases. This fact was firstrecognised in a slightlydifferent
form, by an Italian Scientist Ameodeo Avogadro. Avogadro
stated that equal volumes of gas at the same pressure and
temperature contain equal numbers ofmolecules. This statement
is called Avogadro's hypothesis. We can see that this statement
is consistentwith R being the same for all gases.

The number of molecule in a mole is known as Avogadro's
number, N^. Although Avogadro was not able to actually
determine thevalue ofN^, several methods have been devised
to measure and the acceptable valUe found is

= 6.023 X 10^ molecules/mole

Thus in n moles of a gas total number of molecules of the gas
are

N=nN^

or number of moles ofa gas can be given as

N m'N _ m
M

...(2.9)

n =

N. m' N. T7 -(2.10)

Here m' is the mass ofeach molecule, m is the total mass of gas
and Mis the mass of 1moleofmolecules ofgas i.e. its molecular
mass.

From gas law, we have

PV=nRT

N
or PV=

PV=NkT ^or

m

RT= — RT
M

...(2.11)
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R
Where

N
is the Botzmann's constant and has the value

Ay

/c=1.38x iO-22j/K

Thisequation-(2.11) isanother form ofideal gaslawwhich is in
terms oftotal number of molecules ofgasW instead ofmoles n.

2.2.5 Dalton's Law of Partial Pressures

This law states that the total pressure of a mixture of gases is
equal to the sum of the partial pressures of the gases in the
mixture. In a container ofvolume Vifn differentgases are taken
at a common temperature independently at pressure
P^, then on mixing all these gases in the same container at the
sametemperamre, thetotalpressure of themixtureis given by

...(2.12)

2.2.6 Different Forms of Ideal Gas Law

Asdiscussed thepressure volume andtemperature ofa gas in
a state related by ideal gas law given as

PV=nRT ...(2.13)

Where n are the number of molesof gas in the enclosedvolume
V. Ifwmass ofagas(molecular mass = A/) istaken inthecontainer
ofvolume V, wehavenumber of molesof gas as

n =

m

M

Now from equation-(2.13)

or

or

m

PV= — RT
• M

P =
m

VM

pRJ

M

RT

...(2.14)

...(2.15)

Equation-(2.15) isamodified form ofideal gas law which relates
gas pressure, its density and temperature in a physical state.
Equation-(2.13) istermed ascontainer form ofGas Law as it is
generally used when a gas is enclosed in a container and
equation-(2.15) istermed asatmospheric form ofgas law as it
relates density ofgaswiththepressure and temperature and is
used widely for open atmosphere or ina region where gas isnot
enclosed.

2.2.7 Real Gases and Change of Phase

Theideal gas lawPF= «i?Tgives thebehaviour ofa gas aslong
as its pressure is not too high, asdiscussed earlier. To discuss
this in depth look at /Tgraph shown in figure-2.6 for a given
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amount of gas. These curves shows how pressure of gas varies
with the change in volume at constant temperatures. Here the
dotted curves represent the behaviour ofan ideal gas at PV =
Constant. The solid curve represents the behaviour of a real
gas at the same temperature. Notice that at high pressure the
volume in a real gas is less than that predicted by the ideal gas
law and the deviation is more when gas is about to liquefy.

Students should also note that at high pressure, the molecules
of the gas are closetogether,particularlyat lowertemperatures,
the potential energy associated with the attractive forces
betweenmolecules,which weignore (assumptionsof KTG)are
nowno longernegligible compared to the lowkineticenergyof
molecules. These attractive forces tend to pull the molecules
close together so that at a given pressure the volume ofgas is
lessthen expected from idealgas law. If wesee at further lower
temperatures, theseforces cause liquification of the gas.

Vap
region

Figure 2.6

Infigure-2.6, curve-4 represents thesituation when liquification
occurs. At lowpressure on curve-4, the substance is a gas and
occupies large volume. Asthepressure is increased, thevolume
decreases till pointB. Beyond pointB, the volume decreases
without change in pressure. In this region thegas isgradually
changing to liquid upto point ^4. Atpoint Agas is completely
liquefied. Further ifwe increase thepressure, volume changes
slightly as liquids are almost incompressible so here curve is
verysteep. Theregion, where gas andliquid phase exist together
in equilibrium.

Ifwecarefully look oncurve-3, wecanseethatatpointC,curve
is almost horizontal and it happens only at this point. This
point Ciscalled critical point andthegastemperature ofcurve-
3is called critical temperature ofthegas. Critical temperature of
a gas is defined as - "A gas will change to liquidphase if its
temperature is less then critical temperature if sufficient
pressure isapplied onthegas^\ Above critical temperature, no
matters whatever be the amount of pressure applied, the gas
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can not be liquefied. As pressure is increased, gas becomes
denser and denser and acquires the properties resembling to a
liquid but does not condense. A distinction is made between
"gas" and "vapour", students should keep in mind that a
substance below its critical temperature in gaseous state is
called"vapour" (whichcan be liquefied on applyingsufficient
pressure on it) and a substance aboveits critical temperature in
gaseous state is called "gas" (which can not be liquefied).

# Illustrative Example 2.1

A cylindrical container is shown in figure-2.7 in which a gas is
enclosed. Its initial volume is Vand temperature is T. As no
external pressure is applied on the light piston shown, gas
pressure must be equal to the atmospheric pressure. If gas
temperature is doubled, find its final volume. In its final state if
piston is clamped and temperature is again doubled, find the

final pressure of the gas.

• Gas

Figure 2.7

Solution

In the initial state the pressure, volume and temperature ofgas
Pq Vand Trespectively ifPg is the atmospheric pressure.

It is given that temperature of gas is increased to double its
value i.e. up to 2T. As in initial and final state pressure ofgas

remains constant as initially as well as finally the piston is
exposed to atmospheric pressure. Thus we have from charls
and Gay Lussac Law

r. T.

Here ^2 =
r.

= 2V

[As V. = V,T. = TandT.=2T]

Thus after increasing the gas temperature to 2T, its volume

becomes 2V. Now the piston is clamped that means, now the
volume of gas remains constant. Again its temperature is
doubled firom 2Tto4r, let thepressure changes from PqtoP'.
Thus we have

A = A
T, Tn.
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or P. = P' =-y^=2P,

[As P, = Po, r, = 2rand7'2 =47]

Thus in final state gas pressure becomes 2Pq.

# Illustrative Example 2.2

Two glass bulbs of equal volume are connected by a narrow
tube and are filled with a gas at 0°Cand a pressure of 76 cm of
mercury.One of the bulbs is then placed in melting ice and the
other is placed in water bath maintained at 62°C. What is the
new value of the pressure inside the bulbs ? The volume of the
connecting tube is negligible.

Solution

Ifwe assume the volume ofeach bulbs is V, the number ofmoles

present in each bulb initially is

n =

PV _ (76cm)K
RT ~ P(273)

Thus total number of moles in the two connected bulbs is

2-x.{iecm)V
2n =

i?(273)
when one bulbs is placed in melting ice (273 K)

and other is placed in.water at 62''C (62 + 273 = 335 K) still total
number of moles in the two bulbs will be equal to the initial

moles i.e. 2n. IfPj. be the final pressure in the two bulbs we have

P.{2V)

(76cm) (2K)

273

or

EiL

EjL
273

2x76

+

EiL
Tf2

EjL
335

273x335

273 608

-83.75 cmof/fg

# Illustrative Example 2.3

Two closed containers of equal volume of air are initially at
1.05 X 10^ Pa, and 300 K temperature. If the containers are
connected by a narrow tube and one container is maintained at

300 K temperature and other at 400 K temperature. Find the final
pressure in the containers.

Solution

Similar to previous example final pressure in both the containers
remain same as they are connected. If initial pressure volume

and temperatures of the two containers are denoted by Pq Vq
and Tq and Pp Vq F, and P^ Tj are thefinal pressure volume
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and temperature in the two containers then according to gas
law and constant number ofmoles, we have

or

P/Pq PjPq
— + —

2P.

Here it is given that Pq - 105 k Pa, Tq = 300k, T, = 300K,
7^2 = 400k, thenweget

2x105x10^x400
Pr= = 120kPa^ 300 + 400

%Illustrative Example 2.4

\
Equal masses of a gas are sealed in two vessels, one ofvolume
and other of volume 2Fq, If the first vessel is at temperature
300 Kand the other is at 600 K. Find the ratio ofpressures in the
two vessels.

Solution

As number ofmoles in the two vessels are equal, we have

Pi P2

ItisgiventhatFj^KQ, ^2 = 2^0 and Fj=3a0K, 7^2 = 600 K

Thus we have

PiPo . ^2(2^0)

or

or

300

P,=P.

Pi
P.

= 1

600

# Illustrative Example 2.5

A glasscontainer encloses a gasat a pressure of8 x ]0^ Paand
300 K temperature. The container walls can bear a maximum
pressure of 10^ Pa. If the temperature ofcontainer isgradually
increased, find the temperature at which container will break.

Solution

From gas law, we have for a constant volume container

or

71

T =-'2 yPij
T,

Given that P^=S^\O^Pa, 7', =300K,

^2= 10^ Pa, then we have

10'

8x10-
X 300-375 K

# Illustrative Example 2.6

55

Find the minimum attainable pressure ofone mole ofan ideal
gas ifduring its expansion its temperature and volume are related
as r= Fq + aJ^ where and a are positive constants.

Solution

Given that one mole ofgas is used, thus fi"om gas law, we have

PV=RT

or

RT R

P=~f =yiPo^^^)

Here pressure P will be minimum when

dP
= 0

[As T=T. + al^]

or

dV

dP

dV

El + C(7? = 0

or V=,\^
a

Thus pressure ofgas is minimum when its volume is F=

and at this volume its temperature is given as

7'=7'o + a

/ i—

a
V • /

Thus minimum value ofpressure is

RT R{2Tq)
P . =mm y

# Illustrative Example 2.7

= 2T.

=2R^jf^

A smooth vertical tube having two different cross section is

open from both the ends but closed by two sliding pistons as
shown in figure-2.8 and tied with an inextensible string. One
mole of an ideal gas is enclosed between the pistons. The
difference in cross-sectional areas ofthe two pistons is given

AS. The massesof piston are w, and for larger and smaller
one respectively. Find the temperature by which tube is raised
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SO that the pistons will be displaced by a distance I. Take
atmospheric pressure equalto Pq.

'GW-.

Figure 2.8

Solution

If initial pressure ofgas isP and let 5*1 and ^2 are the cross-
sectional areas of the larger and smaller piston then for
equilibrium ofthe two pistons we have

For larger piston

[Ifris the tension in string] ...(2.16)

For smaller piston

PS^ + m^ = T+P^S^ ...(2.17)

Adding equation-(2.16) and-(2.17), weget

Pq (5, - + m^g + m^g^P (S^ - S^)

m, +m^

...(2.18)

Ifgas temperature isincreased from Tj to Tj the volume ofgas
increases from VtoV+ IASas I is thedisplacement ofpistons,
then from gas law we must have

P- V=RT^ [For initial state] ...(2.19)

P(V+IAS)=RT2 [For final state] ...(2.20)

According to equation-(2.18)

Pressure of gas does not change as it does not depend on
temperature

From equation-(2.19) and (2.20), ifwe subtract these equation,
we get

P-IAS =R(T2-T{)

PIAS
or T.-T,=2 I ^

Kinetic Theory of Gases and Gas Laws

= I I
AS R

= [PQAS+{m^+m2)g] —
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Practice Exercise 2,1

(i) Arubber balloon isfilled with airat2 XlO^N/m^ pressure at
a temperature20°C. When its temperatureis increasedto40°C,
the volume of balloon is increased by 2%. Find the final air
pressure inside the balloon at40®C.

[2.095 X lO^N/m^]

(ii) There are two containers, each of volume Vcontaining
idealgases. The pressure and temperature of the gasesin the
two vessels are p^, T, and pj, respectively. Ifthevessels are
now connected by a thin long tube of negligible volume, the
final temperature of the two after mixing is T. Find the final
pressure of the gas.

'T
PL^P2..\ j
Tj 72

(iii) Avessel ofvolume K=20 litre contains amixture ofHj and
Heat 20"C and pressure P = 2 atm. The mass ofthe mixture is
m=5^. Find the ratio ofmasseswj//«2 where Wj =mass ofH2
and Wj = massof He.

t/ii

(iv) The temperature of a gas contained in a closed vessel
increases by 1°C when pressure ofthe gas is increased by 1%.
Findthe initialtemperature ofthegas.

[100 K]

(v) A vessel, contains a mixture ofnitrogen (wj = 1 g) and
carbon dioxide (wj = 11 g-) at a temperature r= 290 K and
pressure/?^ = 1atm. Find the densityof this mixture, assuming
the gases to be ideal.

[1.494 kg m-3]
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(vi) Avessel ofvolume V= 30 litre isseparated into 3 equal
parts bystationary semipermeable partitions. Theleft, middle
and right parts are filled with Wj = 30 g ofhydrogen (H^),

= 160 g ofoxygen and m3 - 70 g ofnitrogen (^2)
respectively. The leftpartition lets onlyhydrogen, while the
rightpartition lets through hydrogen andnitrogen. What will
be thepressure in each part ofthe vessel after the equilibrium
has been set in ifthe vessel iskept at a constant temperature
r=300K?

Figure 2.9

[/»[ = 12.471 X10^ Pa, Pj = 28.06 x lO^ Pa, P^ = 15.589 x lO' Pa]

(vii)A vessel of volume 30 litres contains ideal gas at a
temperature 63''C. After a portion of the gas has been let out,
the pressure in the vessel decreased by0.415 bar.If density of
gas at STPis 1.3gm/ltr, find the mass of gas released from the
vessel.

[13.14 g]

(viil) A vessel of volume 8.3 litres contains a mixture ofideal

gases attemperature 300K,0.1 molofnitrogen, 0.2molofoxygen
and 0.3 mol ofcarbondioxide. Find the pressure and molecular
weight ofthe mixture.

[1.8 X 10= Pa;,37.33]

(ix) Two glassbulbsofvolume3 litresand 1litre, respectively,
are connected by a capillary tube. Air at a pressure of 76 cm of
mercur}'at 30^0 is contained in the apparatus which is then
hermetically sealed. If the 31itre bulb is immersed in steam at
100°C, theotherremaining at30°C, whatwould bethepressure
of the air in the bulbs ? Neglect expansion of the 3-litre bulb.

[88.45 cm of Hg]

(x) A freelymovingpiston dividesa vertical cylinder, closed
at both ends, into two parts each containing 1 mole of air. In
equilibrium, at T=300K,volume oftheupper part ist]= 4 times
greater than the lowerpart.At what temperaturewill the ratio of
these volumes be equal to t]' = 2 ?

[750 K]

2.3 Pressure ofAir

Figure-2.10 showsa Toricellian tube, the principle of today's
barometer. Ifaglasstube, closed at oneend, iscompletelyfilled
with mercury and then inverted into a bowl of mercury, the

column ofmercury in the tube drops until itreaches aheight of
about 76 cm above the lower surface asshown in figure-2.10
this iswhat Torricelli predicted before experiment. According to
Pascal's principle, thepressure oftheatmosphere onthesurface
ofthe mercury in the bowl atpoint Ais equal to the pressure
due totheweight ofmercury inthetube atpoint Bifthis were
not so, the mercurywould flow because it would not be in static
equilibrium. Thespace between thetop ofliquid andtheendof
the tube contains no air and was named the Torricellian vacuum.

76 cm

Figure 2.10

Thisishowbarometer works andtheheight ofmercury column
in the tube gives the atmospheric pressure of air. If cross-
sectional areaoftube isAthen theweight ofmercury column is

W= hApg

Thus pressure at its bottom is given as

W
p = hpg ...(2.21)

Ingeneral theheightofmercury column inopen atmosphere in
standard conditions is about 76cm, thusatmospheric pressure
ofair is given as

p = hpg

= (0.76) X(13.6 X103) X(9.8i)w/m2

= 1.01 X105N/m2

Pair~ ^ 105Pa= 1atm

Thispressure isatmospheric pressure. Anatmosphere(l atm)
is a unit of pressure equal to the pressure of the earth's
atmosphere at sea level.

2.3.1 Barometric Relation

After Torecelli's experiments, pascal suggested that the
atmosphere is likea bigocean ofair, inwhich pressure isgreater
at the bottom than at higher altitudes. This assumption was
verified and confirmed when a Torricallian tube was carried

fromsea levelto a mountain top and the mercurycolumnwas
observed to be shorter at higher elevations.



; 58 ^

Maxwell developed a relation to find atmospheric pressure asa
fimction ofheight from ground level (more precisely sea level).
The relationis namedBarometricRelation.We firstderivethe
relation mathematically and than we'll discuss some uses and
applications of thisrelation.

We consider an atmospheric layer of width at a height
abovethe earth surfaceas shownin figure-2.11. Accordingto
Pascal's assumption aswe goupinair, pressure decreases thus
ifjust below this elemental layer ifpressure isP and just above
it is P-dP, thendP is the pressure difference due to this small
layerofwidth fit. Thus wecan write

dP = ~dxpg ...(2.22)

Figure 2.11

Here minus sign indicates thatthepressure decreases asaltitude
increases where p is the air densityin the elemental layerat a
height dx. According to gas law the pressure at this layer P is
given as

RT
P = p-

or

M

Fromequation-(2.22) and (2.23)

, PM
dP = '-dx ~zzrg

RT

Mg
— =-^dx
dP_ _
P RT

Integrating thisexpression within proper limits, gives

...(2.23)
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ataheight habove the earth surface and is called as Barometric
formula. Using this we can also find the atmospheric airdensity
at a heighth above the groundlevel.

Usingequation-(2.23) wehave

PM

or

or

RT

PqM

RT

Mgh

'"iF

P = Po ^

Mgh

...(2.26)

Here p^ = can be taken as atmosphere air density atthe
ground level. Another form ofBarometric formula can be written
intermsofnumberofmolecules perunitvolume orthemolecular
density in atmosphere and can begiven as

n = Hr,e

Mgh

RT ...(2.27)

Above equation-(2.25), (2.26) and (2.27) are used with the
assumption that the atmospheric temperature T and the
acceleration dueto gravityg remains constant within thelimits
ofintegration ofexpression inequation-(2.24). Ifinsome region
temperature gradient (dT/dh) exist thentheabove formula can
bemodified while integrating theexpression inequation-(2.24).

#Illustrative Example 2.8

A vertical cylinder ofheight 100 cm contains air at a constant
temperature and its top is closed by a frictionless piston at
atmospheric pressure (76 cmofHg) asshown infigure-2.12. If
mercury isslowlypoured onthepiston, due toitsweight air is
compressed. Findthemaximum height ofthemercury column
which can be put on the piston.

Po,m (76 cm of Hg)

LiJ
P„„(76 cm oiHg)

I I I I

P h^dP _ cMg
J P J RT

dx ...(2.24)
100 cm

or

P Mgh

'[Assuming throughout the
atmosphere temperature T= constant]

(a)

100-x

(b)

Figure 2.12

or

Mgh

P^PqB ... (2.25) Solution

Here P^ is the atmospheric pressure on ground-level or sea-
level andequation-(2.25) gives thepressure ofatmospheric air

Whenmercuryis poured onthe top ofthe piston, dueto increase
inpressure, the volume ofairwill decrease according toBoyle's
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Law. Iffinal mercurycolumn ofheights ispouredonthepiston Hereinitialpressure, volume and temperatureof gasare
then gas pressure in equilibrium can be given as

P^={76 +a:) cm ofHg

As atmospheric pressure is equivalent to the pressure due to a

mercury column ofheight 76 cm. \iA be the area of cross section

ofcylinder then we have according to Boyle's Law

p V = p V

or

or.

or

(76cm) (100A) = (76 +x) (100-;c) A

7600 = 7600 + 24x-:c2

x=24cm

# Illustrative Example 2.9

A vertical hollow cylinder ofheight 1.52 m is fitted with a movable

piston of negligible mass and thickness. The lower part of
cylinder contains an ideal gas and the upper part is filled with

mercury as shown in figure-2.13. Initially the temperature of
system is 300 K and the lengths of gas and mercury columns

are equal. Find the temperature to which system is raised so

that half of mercury overflows. Take atmospheric pressure is

76 cm ofHg and neglect thermal expansion ofmercury.

Figure 2.13

Solution

Figure 2.14

Final state ofgas is shown in figure-2.14 after half of mercury
overflows. Let this temperature be T. Then from gas law for
initial and final state ofgas we have

7.F, ' P,V-r 1

71

2*^2

T,

h
P, =76 + —=76 + 76= 152cmofHg

V^ = -A = 16A

rj=300K

Similarlyafter heating pressure, volume and temperature ofgas
are

^- = 76 + — -76 + 38 = 114cm of%

3h
K,= — ^ = 114^

i 4

Thus from gas law, we have

\52xl6A 114><114y4

300

or 72=337.5 K

# Illustrative Example 2.10

A very tall cylindrical vesselwith an ideal gas ofmolar mass M,
filled in it is placed in a uniform gravitational field. It is given
that the temperature of gas varies with height in such a manner
that its density remains same throughout the container. Find

the temperature gradient in the container .

Solution

dx

Figure 2.15

In the container shown in figure-2.15, consider a layer ofwidth
at a heightx above its bottom. If/* is the pressure just below

this layer then just above this layer, we can consider pressure
to be P-dP. Here dP is the pressure due to the gas layer of
width dx which can be given as

dP = -dx pg

[If p is the density, of gas]

From open atmospheric form of gas law,we have

pRT
P =

M

...(2.28)



'^60^

As it is given that density ofgas is constant, we have

pR
dP=^dT

M

From(2.28)and (2.29)wehave

-^dT=-dxpg
M

...(2.29)

or

or

or
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76x8^ = (24+;c)xjcT

608-24x+x2

x2 + 24x-608 = 0

or

dT

dx

Mg

R

UIllustrative Example 2.11

An open glass tube is immersed inmercury in such a way that
the length of 8 cmextends above themercury level. Now the
open endofthetube is closed bya finger andraised byfurther
by44 cm.Whatwillbethe lengthofaircolumn above mercury
in the tube. Takeatmosphericpressureto be 76 cmofmercury.
Neglectcapillary effect.

Solution

Onsolving, weget x = 15.4 cm or x — 39.4cm

Thus theacceptable value offinal aircolumn is 15.4 cm.

#Illustrative Example 2.12

A uniform tube closed at one end, contains a pallet ofmercury
10 cm long. When thetube iskept verticallywith the closed end
of tube upward, the length of air column trapped by mercury
and the closed end of the tube is 20 cm. Ifthe tube is inverted so
that itsopen endbecomes upward. Find thefinal length ofthe
air column trapped. Take atmospheric pressure tobe76 cmof
Hg.

52 cm J-

(a) (b)

Figure 2.16

Figure-2.16(a) shows thetube ininitial state then it isclosed at
top and raised up so that its length above mercury becomes
g +44 = 52 cm as shownin figure-2.16(b). As initially tube is
open to atmosphere, pressure ofairinside is76 cm oIHg and its
vol ume is 8^4 \fA is the cross-sectional area ofthe tube.

Whenitsupperend isclosed and raisedup, situation is shown
infigure-2.16(b). Let theaircolumn beoflength xthen its final
volumewill bex/4.Pressureat the mercurylevelin the container
isequaltoatmospheric pressure 76cm ofHg andtheair column
is separated byanother mercury column ofheight 52-x above
this level which will oppose the atmospheric pressure thus
pressure inside the column will be76- (52 -x) = (24 +x)cmof
mercury.

Asduringtheprocess temperature ofsystem remains constant,
thus we can use Boyle's law for the initial and final states as

Solution

r\ T
20 cm

10 cm

i

76 cm of Hg

(a)

76 cm of Hg

T
10 cm

Wi

(b)

Figure 2.17

Figure-2.17(a) shows the initialstateofthe tube. Here pressure
belowthemercutypallet istheatmospheric pressure. 76cm of
Hgand due to opposite ofpallet's weight thepressure ofair
column is 76 -10 = 66 cm oiHg.

When the tube is inverted with its open end upward, situation
is shown in figure-2.17(b). If the lengthofair column isx and
thepressureon this air columnisatmosphericpressureplanes
theweight ofmercurypallet which becomes 76 + 10= 86 cmof
Hg, then accordingto Boyle'sLawwehave

PyV\ = P-^j

66x20^=86xx4

[IfA is the crosssectionalarea of tube]

or x = 15.35 cm
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# Illustrative Example 2.13

Figure-2.18 shows a horizontal cylindrical container oflength
30 cm, which is partitioned by a tight fitting separator. The
separator isdiathermic butconducts heatvery slowly. Initially
the separator is in the .state shown in figure-2.18. The
temperature of leftpart ofcylinder is 100 Kand thaton right
part is400K. Initiallytheseparatoris in equilibrium. Asheat is
conducted from right to left part, separator displaces to the
right.Findthedisplacement ofseparator aftera longtwo when
gases on the parts of cylinder are in thermal equilibrium.

TO cm -20 cm

1 -

f Gas

Or'-
/

Figure 2.18

Solution

It is given that initially the separator is in equilibrium thus
pressure on both sides of gas are equal say, it is P.. IfA be the
area of cross-sectionof cylinder,number of moles of gas in left
and right partand can be given as

__5(1M
and

' . ^(100) 2. ^^400)

Finally ifseparator is displacedtoright bya distancex, wehave

P^(10 +xM , Pj{l(i-x)A
n, =

RT.
and =

RT
f

If/^and Tj-he the final pressure and temperature on both sides
after a long time.

Now ifwe equate the ratio ofmoles

we get
"2

in initial and final state

3-
«2

10^

100 _(10 +x^
20A] {20-x)A
400

or 2(20—x) = 10+x

or x = 10cm

Thus in final state when gases in both parts are in thermal
equilibrium, the piston is displaced to 10 cm right from its initial
position.
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Practice Exercise 2.2
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(I) A glass tube, which is closed at one end, is completely
submerged with open enddownward in a vessel ofmercury, so
thatair column oflength /= 10cmis entrapped insidethetube.
To what height must the upper end ofthe tube be raised above
thelevel ofmercury in thevessel so thatthe level ofmercury in
the tube coincides with that in the vessel ? Also calculate the

mass of the air ifthe temperature remains constant at = 2TC.
The area ofcross-section ofthe tube is a = 1.0 cm^. Given that

atmosphericpressurepQ= 1.013 x 10^ Pa=76cm of//g, molecular
weight ofair = 29.

T
/

i

/' =

Figure 2.19

[/' = 11.315 cm, m = 13.32 mg]

(ii) An ideal gas is enclosed in a tube and is held in the vertical
position with the closedendupward.The lengthof thepelletof
mercury entrapping the gas is /i = 10 cm and the length of the
tubeoccupied bygas is / = 40 cm.Calculate the lengthoccupied
bythegaswhen itis himedthrough 0 = 60° and90°. Atmospheric
pressure, H= 16 cm ofraercury.

T

i

[37.18 cm, 34.73 cm]

/ \
/ I

. ' /

/' /

Figure 2.20

(iii) A glass tube of length / = 50 cm and cross-section
A= 0.5 cm^ is sealed at oneend and submerged intowateras
shown in the figure-2.21. What force should be applied to hold
the tube under the water ifthe distance from the surface ofthe
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water to the closedend is /? = 20 cm and the atmospheric pressure
is 10^ Pa ? The weight of the tube is 15 gm.

Figure 2.21

[0.084 N]

(iv) Anideal gasofmolar massMis contained ina tall vertical
cylindrical vessel whose base area is S and height h. The
temperature of the gas is T, its pressure on the bottom base is
Pq. Assuming the temperature and the free-fall acceleration ^ to
be independentof the height, findthe massofgas in thevessel.

[m = (l -e- '̂sh'RT)f,^s/g]

(v) An idealgas is trappedbetween a mercurycolumnandthe
closed end ofa narrow vertical tube ofuniform bore. The upper
end of the tube is open to the atmosphere(atmosphericpressure
= 76cmofmercury). Thelengths ofthemercuryandthetrapped
gascolumns are20 cmand43 cmrespectively. Whatwillbethe
length of the gas column when the tube s turned slowly in a
vertical planethroughanangleof60°? Assume thetemperature
to be constant

[48 cm]

(vi) An ideal gas of molar mass Mis contained in a very tall
vertical cylindricalvessel in the uniformgravitational field in
which the free-fall acceleration equals g. Assuming the gas
temperature, to be the same and equal to T, find the height at
which the centre of gravity of the gas is located.

[RT/Mg]

(vii) A barometergiveswrongreadings becauseof someair in
the space abovethe mercurycolumn. At a pressure75.5 cm Hg
the barometer shows 74.8 cm, and at 74 cm it shows 73.6 cm.

Find the length / of the barometer tube above the surface of
mercury.

Figure 2.22

[94.1 cm]
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(viii) Ahorizontal cylinder closed from one end isrotated with a
constant angular velocity©about avertical axis passing through
theopen end ofthecylinder. Theoutside airpressure isequal
toPq, the temperature to T, and the molar mass ofair to M. Find
theair pressure as a function ofthedistance r from therotation
axis. The molar mass is assumed to be independent ofr.

\p=p„

(ix) An ideal gas of molar mass M is located in the uniform
gravitational field inwhich thefree-fall acceleration isequal to
g. Find'the gaspressure as a function ofheight h, ifp =/7q at
h = 0, and the temperature varies with height as

{a)T-T^il-ah); ib)T= + ah)

[(a) p = Pq(\ - ah)", h < Ma-, (b) p= p^^l {\ + ah)". Here ti= MglaRT^

2.4 Distribution of Molecular Speeds

The molecules in a gas are assumed to be in random motion,
which means that many molecules have speeds less then the
average speedand others have speedsgreater than the average.
On the basis of kinetic theoryand experimentsMaxwellplotted
a graphofvariation ofspeeds withrelative numberofmolecules
as shown in figure-2.23. The graph shows how the speeds of
molecules in a gas are distributed. This is known as Maxwell
distribution of speeds. The speeds vary from zero up to many
times the average speed, but as can be, seen from the graph,
most molecules have speeds that are not far from the average.

Relative

number

of

molecules

Figure 2.23

speed V

The exact distribution of speeds is described by a distribution
functionbyMaxwell,whodefineda function named probability
distribution function / (v), so that, of the N molecules in a
gaseous system, the number dN molecules which have range
of speeds between v and v dv oi in the very short
neighbourhood of v is given by

dN =/(v) dv ...(2.30)

Thus/(v) is the number ofmolecules per unit range ofspeeds.
As we have discussed that the speeds of molecules vary in a



Kinetic Theory of Gases and Gas Laws

widerangefrom zeroto infinity, from equation-(2.30), wecan
write for total number ofmolecules as

- Jf(v) d\N ...(2.31)

Thedistribution function/(v) wasobtained bystastical analysis
and found out as

/(v) = 47cA'v^
M

ItzRT

3/2

« 2RT ...(2.32)

Where R is universal gas constant and A/is the molar mass;
using equation-(2.32) we can write

f(v)dv = 47zNv^
M

2tiRT

3/2

e~ dv ...(2.33)

Heref(v) dvisthenumberof molecules that havespeedsbetween
Vand V+ dv and this equation-(2.33) is called as analytical
Maxwell Boltzmann distribution function. Figure-2.24(a) shows
the function computed for oxygen, neon and helium gases at
300 K temperature.

Here we can observe that the peak ofeach curve represents the
speed, the maximum number ofmolecules have and it is called

the most probable speed for that gas at particular temperature.
This most probable speed is exhibited by large nurnber of
molecules ofa gas at a given temperature.

/(V), 0,

Relative

number

of

molecules

Relative

number

of

molecules

(a)

7'=300K

(b)

Figure 2.24

7"= 300 K

speed V

T= 1000 K

speed V
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It can also be seen from figure-2.24(a) that more massive
molecules have lower most probable speed. Fora given gas,
the most probable molecular speed becomes greater with
increase in temperature asshown in figure-2.24(b). It can also
be seen that more molecules have high speeds and fewer
molecule have lower speeds throughout the range ofspeeds.

2.4.1 Different Speeds For Molecules of a Gas

(i) Average velocity of Gas Molecules

Initiallywe'vediscussed thatallmolecules ofagasina container
are in brownion motion, thus due to randomness the directions

ofmotion ofdifferent molecules are random and continuously
changing due to repeated collisions randomly. If Vj, Vj

are the instantaneous velocityvectors of all N moleculesof
a gas, the average velocity vector of these N molecules can be
written as

<v> =
V, +v, +, . + v N

N
= 0 ...(2.34)

It isobvious that as all vectorsare randomlyscatteredin space
thus their sum i.e. the numerator of expression in equation-
(2.34) can be approximated to zero. Thus the averagevelocity
vector ofmolecules in a gas is always taken as zero.

(ii) Root-Mean-Square Velocity of GasMolecuIes

As the name impliesthis is the square root of mean of squares
ofvelocities of all the molecules of a gas. Meanof squarescan
be simply written as

fi.T 12 . , - ,2

<v^> =
+ V-> +.

N

and <v^ >

^'v, P +[v, p +.
N

ViV P

- .2 ^
I ...(2.35)

Mathematically its value can be calculated by using the
distribution function and taking the average of the square of
the speed. Since/(v) dv is the number of moleculeswith speed
Vin the range dv, the mean square speed can be given as

|vV(v)rfv
<v2> =

N
...(2.36)

Integrating the expressionin equation-(2.36),we finallyget

3RT
<\P-> =

M
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So that rms speed can be given as

l3RT
...(2.37)

In most of numeric calculation and analysis ofkinetic theory we
use rms velocity for gas molecules.

(iii) Mean Speed of Gas Molecules

We have discussed that due to randomness average velocity

vector ofall the molecules ofa gas comes out zero. But it is not
same in case of mean or average speed. We obtain the mean
speed by averaging the speed ofthe molecules. Ifcan be simply
defined as

<V> =
V, + Vi +.

N
...(2.38)

Using distribution function we can calculate the mean speed as

CO

jvf(v)c/v
<V> =

N

Integrating expression in equation-(2.39) results

8/iT

kM

...(2.39)

...(2.40)

We can see on comparing equation-(2.37) and equation-(2.40)

V < V
/nea/2 rms

(iv) Most Probable Speed of Gas Molecules

As discussed this is the speed maximum number ofmolecules
have, and this is the speed corresponding to which distribution

function has maximum or peak value, It's value can be obtained
by differentiating the distribution function/(v) and setting the
derivative equal to zero. The final result obtained is

V =
mp

2RT

M
...(2.41)

Comparing equation-(2.37), (2.40) and (2.41) we can see

V <V < V
mp mean rms

2.5 Pressure Exerted by a Gas

When a gas is enclosed in a rigid container, we have discussed

that the molecules ofgas are in Brownion motion and randomly
collide with each other and container walls. All these collisions

are assumed to be perfectly elastic. Due to these continuous

collisions oflarge number of gas molecules with container walls,
a pressure is exerted on the walls. Now we calculate this pressiu^e
analytically. Consider N molecules of a gas enclosed in a
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container as shown in figure-2.25. The length, width and height

ofcontainer are /, wand h respectivelyalonga:,yandz direction.
Out of several molecules, we consider one gas molecule of
mass m' which is moving at an instant with a velocity v. This
velocity has three components v^, and v. along x, y andz
directions respectively.

y

volume ofcontainer V = Iwh

E

'̂ Y
F

B
\/" ^ V

H

mN.

Figure 2.25

Let us first consider the motion ofthis molecule in x direction

only.Ifit is moving with a velocity towards the wall EFGH. It
collides with the wall elastically and rebonds with the same
speed v^. Nowit is travelling towards thewallABCD. Duringa
collisionthe momentuih impartedto the wall bythe molecule is

Ap =2 w'v ...(2.42)

Now the molecule strikes the wall ABCD after travelling a
distance / and strike again onto the wall EFGHwith same speed

v^. The average time between two collisions on same wall by
the molecule is

21
At= —

V.

1
A« = — = —

At 21

• ...(2.43)

Thus the frequency ofcollision by the molecule on same wall is

...(2.44)

Thus the momentum imparted to the same wall by this molecule
per second or the force exerted by this molecule in A:-directionis

F =
APx 2w'v^ m'vl
At 21 I

The pressure exerted by this molecule on wall ABCD is

F. m'vl m'vl
P =

^ wh Iwh V

...(2.45)

...(2.46)

Similarly we can write the pressure exerted by the molecule on
walls in y and z direction can be given as

m'vl
...(2.47)
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and
m V.

P =

65 I

We consideracubeCofunit volume I m^ nearthewallshown.
...(2.48) Total number ofmolecules in this cube are (molecular density)

and each molecule isassumed to be moving in arandom direction
with thermsspeed v. Due torandomness it can beassumed that

toward every face ofthe cube % molecules are moving with
this speed. Thus number ofcollisions with acontainer wall per
secondper square meter of its surfacecan be written as

The average pressure bythe molecule on container walls is

or

or

I m'
P=-7 — (v/ +v/+v/)

1 m' ,
P=- —

3 V
...(2.49)

Where +v.^ is the root mean square (rms) velocity
ofagas molecule we've already discussed. Equation-(2.49) gives
the average pressure on container walls due to motion ofonly
onemolecule. There are total molecules of gasenclosed in
the container. Thus total average pressure exerted by a gas on
its container walls is

1 m'
P=- — v^x N

3 V

or
^ 1 'w -
P=- -y2

3 V

[Where m=^m' N is thetotal mass ofgas]

or P=-pv^

m

[Where p = — is the density of gas]

Here we can also write

2 f 1 2
p= — —pv

3 l2^

...(2.50)

...(2.51)

Here e represents the average kinetic energy of gas per unit
volume oraverage kinetic energy density ofgas pressure ofa
gasina container canalsobederived inanother way asshown
in figure-2.26. Figure shows a container wall and the gas
moleculesin its neighbourhood. If total number ofmoleculesin
the container are W, then the molecular density «g can be given
as

N

Container wall

Figure 2.26

...(2.52)

^ 6
...(2.53)

Equation-(2.53) gives the number ofcollision per unit area of
container wall in contact with a gas. As collisions are elastic,
the momentum transferred to wall in each collision by amolecule
is

Ap - 2m' V [Ifm' is the mass ofeach

molecule]

Thus momentum transferred toacontainer wall per second per
unit ofits surface area or average pressure can be given as

rtnv 1
P= ~7~ X2m'v= —pv^

3 ^
6 ...(2.54)

[AsWg.= p density of gas]

Thus we can see that equation-(2.54) isidentical with equation-
(2.50). Equation-(2.50) was derived for abox shaped container
but in derivation ofequation-(2.54) we haven't taken anyspecific
shapeofcontainer. Thiis, this relation ofaverage pressure always
remains same irrespective oftheshape ofcontainer.
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2.6 Kinetic Energy of Gas Molecules

We've discussed that all gas molecules in a container are in
continuous random motion repeatedly colliding with
neighbouring molecules and container walls elastically^ As all
collisions areconsidered to beperfectly elastic wecan assume
that the total kinetic energy of all the gas molecules remains
constant and all molecules are assumed to be alwa^^ moving
with their rms velocity. Inthis situation kinetic energy ofagas
molecule ofniass m' can be given as

or E^= —m'
^ 2

( 3RT^

M J ...(2.55)
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By definition, the molecular mass ofa gas molecule can be
given as

M=m'N^y [TV^^^AvogadroNumber] ...(2-56)

From equation-(2.55) and(2.56)

r

E^= ^m' 3RT

m'NAV )
- — T=-kT ...(2.57)
2 2

HereA- ^^^ =1.38x 10"^^ Joule/molecule, is auniversal
constant called Boltzmann's constant. This equation-(2.57)
gives the kinetic energy ofa moving gas molecule ina gas at
absolute temperature 7.Ifwe find the total kinetic energy ofall
the molecules of a gas, it is given as

Ej= jtrxA
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Now we take few example tounderstand the molecular speeds
and their kinetic energy in detail.

#Illustrative Example 2.14

(a) Calculate (i) root mean square speed and (ii) the mean
kinetic energy ofone mole of hydrogen at S.T.P. (given that
density ofhydrogen is0.09 kg/m^).

(b) Given that the mass of a molecule of hydrogen is
3.34x10"^^ kg.Calculate Avogadro's number.

(c) Calculate Boltzmann'sconstant.

Solution

(a) (i) We know that the pressure ofa gasis given as

[If are thetotal no. ofgas molecules inacontainer]

If n molesofgas are there in a container,we have

Thus

or

N=n^N
AV

R3
F= —

T 2 N AV J

Et= — nRT
^ 2

Txji>^N
AV

.(2.58)

As we've discussed that total energy of a gas is the sum of
kinetic energy ofallofits molecules. Equation-(2.58) thusgives
the total energy of a gas in its molecular motion or the
expression in equation-(2.58) gives the total tranislational
energy ofallthegas molecules atabsolute temperature T.

2.7 Microscopic Interpretation of Temperature

Inprevious section we've discussed that the average molecular
translational kinetic energy and absolute temperature are
proportional. The higher the temperature ofasystem. The greater,
proportionally, istheaverage translational kinetic energy ofthe
molecules ofthatsystem. Thusin terms ofaverage kinetic energy
ofagas molecule Ej,the temperature can be given by equation-
(2.57) as

2 Ej
T=

3 k
...(2.59)

Thustheaverage translational kinetic energy ofgasmolecules
in an ideal gas depends onlyon the temperature, not on the
pressure or type of gas. Thus equation-(2.58) shows that
temperature is~a measure of kinetic energies of molecules or
temperature is a large-scale manifestation of motion at the
molecular level of gases, liquids and solids.

.3

3x0.76x13.6x10^x9.;

0.09

= 1837 m/sec = 1.837 km/sec

1
(ii) Kinetic energy = ~^^rms

Here M=2gm = 2x 10 ^kg.

or KE.= ^x2x10-3x(1837)2
= 3374.56joules

(b) Massofone moleculeofH2 =3.34 XIQ-^^kg

Molecular mass ofhydrogen = 2 x 10"^ kg

TheAvogadro's number N^, which isthenumber ofmolecules
inonegram molecule ofhydrogen is given by

2x10"^
A = 3.34x10-27

= 5.988 X 10^3molecules.

R
(c) Weknowthat k-~^ =

8.3

A^ 5.988x10"
= 1.37 X 10-22J/mol.K
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# Illustrative Example2.15

Calculate the number ofmolecules in 1cm^ ofan ideal gas at
2TCand apressure of10 mm ofmercury. Mean kinetic energy
ofa molecule at2TC is4 x 10 '̂'* erg; the density ofmercury is
I3.6gm/c.c.

Solution

Thepressure exerted bya gas is given by

or

Here

/'= j (K.E. per unit volume)

K.E. =^ P
2

10mmofmercu;y= 1cmofmercury,
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During collision change in momentum of each molecule or
momentum imparted towallbyeachmolecule is

SPq= 2wqV cos0

IfSis the cross-sectional area ofbeam and vbe the velocity of
molecules in the beam then number of molecules incident on
wall per second are

[«Q = molecular density]

Thus total momentum imparted tothe wall per second by the
beam or the force exerted on wall is

APo
F- = 2wqV cos 0 Xn^vS ...(2.60)

Asequation-(2.60) gives thattotal momentum imparted tothe
wall persecond, this is thenetforce exerted bybeam onwall.

1X13.6 X980 1.33 X10'̂ dynes/cm^ Thus the pressure on wall by beam is

Thus, we have K.B. = —x I.33 x i(yx 1= 1.99 x iCergs

Asmean kinetic energypermolecule is4 x IQ-'̂ gj-gg^ number
ofmoleculewillbe

1-99x10'' ,
^ -4.9 XlO'̂ wS XlO'̂ molecules.

4x10

# Illustrative Example 2.16

A parallel beam of nitrogen molecules moving with velocity
V= 400 m/simpinges on a wallat an angle0 = 30® toitsnormal.
The concentration ofmoleculesinthebeam«Q=0.9 x10'̂ cm"^.
Find thepressure exerted bythebearn onthewall assuming the
collisions ofmolecules with thewall areperfectlyelastic.

Solution

Wall

I
Figure 2.27

Figure-2.27 shows a beam ofmolecules incylindrical form striking
the wall.Accordingtoelasticcollision, eachmoleculeis reflected
fi"om the wall at the same angle of incidence as shown with
same speed. If is the mass of each nitrogen molecule,
momentum ofeach molecule is

Po= /WoV

P - — = 2 cos 0. Hq

28x10"^
= 2 X — X9 X1024 X(400)2 Xcos^ (30®)

6.023x10^^

= 10^ Po s 1 atm

# Illustrative Example 2.17

Calculate the temperature atwhich rms velocityofagas molecule
issameas thatofa molecule ofanothergasat 47®C. Molecular
weight offirst and second gases"are 64and 32respectively.

Solution

We know rmsspeed of a gasmolecule isgiven as

v =

3RT

nr
For first and second gas iftemperature are T, and respectively,
we have

or

or

or

^rmsl

P2
M, Ml

Pi 320

64x10"^ 32

r, = 640 K

# Illustrative Example 2.18

Figure-2.28 shows a cylindrical container which is divided in
twoequalparts bya clamped diathermicpiston.Different ideal
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-33,2PV 32x1.5x10^x10gases are filled in the two parts. It is found that the rms speed of
molecules in the lower part is equal to the mean speed of
molecules in the upper part. Find the ratio ofmass ofmolecule
ofgas in lower parttothatofthegas inupper part.

or m, -
1 RT

= 1.443gm

8.314x400

Finally ifm^ mass ofOj is left in the container, from gas law we
have

mj
PK= — RT

32PF
or -

2 RT

32x10^x10"Figure 2.28

Solution

As piston is diathermic the two gases must be in thermal
equilibrium. IfMj and be the molecular masses ofthe gases
filled inlower and upper partofthe container, the rms speed of
gasmolecules in lower part is

3/?r

Themean speed ofgas molecules inupper partis

%RT

...(2.61)

...(2.62)

From equation-(2.61) and (2.62), according to the given situation,
we have

or

or

= V
mean

3RT • ISRT

M, l| 71M2
/W, 3n:

= -=1.178
Ml

Asratioofmassesofmolecules and that ofmolecular massesis
same, it is 1.178.

#Illustrative Example 2.19

In a closed container of volume 10~^ m^, O2 gas is filled at
temperature 400 Kand pressure 1.5 atm. Asmall hole is made in
the container from which gas leaks out to open atmosphere.
After some time the temperature and pressure of container
become equals to that of surrounding. Find the mass of gas
that leaks out from the container. (Atmospheric temperature
= 300K)

Solution

Ifinitially there is mass of gas inthecontainer, from gas
law we have

m,

PV= RT

8.314x300

Thus mass of gas leaked out is

Am= mj-W2

= 1.443-1.283 = 0.16gm

# IllustrativeExample 2.20

Inacertain region ofouter space there are only 100 molecules
per cm^ on an average. The temperature there is about 3 K.
What is the average pressure of thisverydilutegas.

Solution

Weknow that the gas pressure is given as

1
P— ~•* 3

Now we can write the density ofgas asp= Wq N, where is
the mass ofthe gas molecule andiVis the number ofmolecules
in 1 m^of the gas.

= 1.283gm

In the present case
100x10^

1
or

As we knowrms velocityof gas molecules is givenas

V = Trrms tl ^
3RT 3kT

mo

R
[AsM=mQN^yand — k]

iV ,• ••

1
So, we have P - ~ x (lOO x 10^) ^3kT

= (100 X10^) AT

=(100xl06)(l.38xlO-23)(3) [As r=3K]

= 41.4 X 10-'^

= 4.14 X lO-'^Pa
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# Illustraiive Example 2.21
69

Onegram-mole ofoxygen at 2TC and one atmospheric pressure
is enclosed in avessel. Assuming the molecules to be moving

find the number of collisions per second which the
molecules makes withonesquare meterareaofthevessel wall.

Solution
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From gas law we have

or

PV=~RT
m

r.rrPV=— RT
m'NAV

[If/w' =Mass ofone moleculeandA= total number ofmolecules]

or PV=NkT

or P^n^kT

[As
R

N AV

...(2.63)

Here«Q- ^/y the number ofmolecules per unit volume ofgas.
Students should note that equation (2.63) relates the gas
pressure, temperature and molecular density. This expression
can be used as a standard equationin severalnumerical cases
as an alternative form ofgas law.

Thus here moleculardensity is given as

P

kT

(1atm)

(1.38xl0"^^)x(300)

10-

1.38x10-^^x300

Therms speed ofgas molecules is givenas

= 2.44x1025 m-3

ZRT

M

3x8.314x300

32x10-^

Now number of collision per square metre of vessel wall is
given as

N=
2.44x10^^x433.4

6 6

= 1.97x1027 m-2

Practice Exercise 2.3

(i) The rms velocity of hydrogen molecules at a certain
temperature is 300 m/s. If the temperature is doubled and
hydrogen gas dissociates into atomic hydrogen. Find the rms
speed of the gas molecules now.

[600 m/s]

(it) In a container, the molecular density ofanenclosed gas is
1026 molecules/m2, each ofmass 3x 10-27 j^g velocity of
the gas molecules is 2000 m/s, find the number ofmolecules
hitting per square meter ofthe container wall every second and
the pressure exerted on thewalls ofcontainer bythemolecules.

[3.33 X 1028 s-',4 X 105 N/m^]

(Hi) An ideal gas is enclosed between the closed end of a
uniform cross-sectional tube and apellet ofmercury oflength
/? = 10 cm. The length ofthe tube occupied by the gas when
held vertical with the closed end upward is /j =40 cm. When it
isturned through 6=60° the length occupied by the gas isonly
^2 = 38 cm.Calculate thefrictional force between thewallofthe
tube and mercury pellet. The radius of the tube is r = 2 mm.
Take g = 10 m/s2 and density ofmercury 13600 kg/m^.
[0.026 N]

(iv) The average translational kinetic energy ofO^ at aparticular
temperature is 0.048 eV. Findtheaverage translational kinetic
energy of^2 molecules in eKatthesame temperature.
[0.048 eV]

(v) Find the numberof molecules per unit volume of air at
temperature 0°C and a pressure of;? = 1.013 x 10^ Pa and the
average distance between molecules. Boltzmann constant is'
A: = 1.38x10-23

[2.688 X 1025 3.31 x lO"'' m]

(vi) Evaluate thespeeds v <v), for (a) at 300 Kand
(b) O2at 300 K.

[(a) 1579.3 m/s, 1782.5 m/s, 1934.25 m/s (b) 394.83 m/s, 445.63 m/s,
483.56 m/s]

(vii) Twelve molecules have the following speeds, given in
arbitrary units :5,2,2,6,0,4,1,3, 5,1,7,3,. Calculate (a)the
mean speed and (b) the rms speed.

[(a) 3.25 m/s, (b) 3.86 m/s]
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(viii) What is therms speed ofnitrogen moleculescontained in
an 8.0 m"^ volume at 2.1 atm if the total amount of nitrogen is
1300 mol?

[374.68 m/s]

2.8 Degrees ofFreedom and Equipartition ofEnergy

In previous section we've derived a relation among temperature
and average translational kinetic energy of a gas molecule as

J_
2

£•7.= -

Initially we have discussed that if a molecule has v^, v and v,,
X y .

average velocity components in three dimensional co-ordinate
system,

We have

=v
r y 2

As for a single molecule in space the three directionsx, andz
are identical in all respect, we can assume that the average

values of v^, v and mustbesame, hence

222

Thus, the average kinetic energies of a gas molecule in the three
directions respectively can be given as

^ 2 1 2 1 2 1- mv^= - wv/= - wv2= -kl ...(2.64)

The three kinetic energies in expression ofequation-(2.64) are

the three parts of total kinetic energy of a gas molecule used
corresponding to the three velocity components in the three

directions in space.

Thus a gas moleculeuses its total translational kineticenergy
in three ways oftranslations. These wa>s are called translational

degrees of freedom. Here each degree of freedom corresponds
to the ability ofa molecule to participate in a one dimensional

motion which contributes to the total mechanical energy ofthat
molecule. Since there are three spatial directions in which the
molecule can move, a gas molecule has three translational

degrees offreedom and from equation-(2.64) it can be seen that

energy associated with each degree of freedom is kT. It is

further observed that energy associated with each degree of
freedom whether it is due to translational motion, rotational

motion or any type of motion is always kT, irrespective of

type ofmotion. This is called as law ofequipartition ofenergy,
stated as

Kinetic Theory of Gases and Gas Laws '

'T/je total energy of an ideal gas molecule is distributed
equally among all of its degrees offreedom and ener^

associated with each degree offreedom is kT."

2.9 Internal Energy of a Gas

Law ofequipartition ofenergy states that the total energy ofa
gas molecule is equally divided among all of its degrees of
freedom or the number of ways in which the molecule can
contribute to its mechanical energy, and energy in each

contribution type is kT.

Thus ifa gas molecule has/degrees offreedom or it can move
in/number of ways, the total energy of that molecule can be

given as

£=/x - kT= — kT
^2 2

...(2.65)

Ifan ideal gas having / degrees offreedom and have n moles in

a container than total energy of this gas is given as

/

or

U^^kT^n^N^y

/
nRT

2
[As kN.y=R] ...(2.66)

The expression in equation-(2.66) gives the sum oftotal kinetic

energies of all types of motion of all the molecules of a gas,
called as total internal energy ofa gas. Our initial assumption
for an ideal gas was, its molecules do not interact thus no

potential energy exist for gas molecules thus energy given by

equation-(2.66) is the net amount ofenergy a gas can contain
i.e. the internal energy ofgas and it depends only on absolute
temperature ofthe gas.

2.9.1 Degrees of Freedom and Internal Energy For Different
Types of Gases

Monoatomic Gases

The molecule ofa monoatomic gas is just a single atom. It can
have several types ofmotion shown in flgure-2.29.

. y

M ..

Figure 2.29
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A singleatom, cantranslateinx,;; andz direction withspeeds
v^, v^, and respectively as discussed earlier and hence has
three translational degrees of freedom and energies in these

three degrees offreedom can be written as and

respectively. Similar to this translational motion the

atom can also spin about the three co-ordinate axes as shown
with respective angular speeds co^, co^ and co^. Thus this gas
molecule mustalsohas threerotational degreesoffreedomand
energy in these three degrees of freedom can be given as

and • Here/isthemomentofinertiaof

the gas molecule. According to our initial assumption for an
idealgas, we neglect the size of a gas molecule. If sizeor radius
of an atom is neglected, we must take its moment of inertia
negligible which is proportional to the square of its radius.
Thus in a monoatomic gas molecule we can consider that no
energy is contributed by its rotational motion hence a
monoatomic gas molecule has only three degrees of freedom
and all these are called translational degrees offreedom.

Thus total internal energy of n moles of a monoatomic gas at a
temperature T is given as

Diatomic Gases

nRT=- nRT ...(2.67)
2 2 ^ ^

The molecule ofa diatomic gas consists oftwo atoms connected
by a bond or interatomic forces between the two atoms. Figure-
2.30 shows a rough sketch of such an atom. In free space this
atomis freetomovein the threedimensional co-ordinate system,
hence has three velocity components along the three axes
shown in figure-2.30 thus it has three translational degrees of
freedom.In fact all type of molecules, irrespectiveof its atomic
configuration has three translational degrees of freedom in
space. Here also if we consider the rotational motion of the
molecule about x,yand z axis from figure-2.30 we can see that
the rotation ofthis molectile abouty and z axis in this situation
is significant as the bond length between the two atoms can
not be neglected however,we are ignoring the radii of individual
atoms. Masses of individual atoms are concentrated at their

position thus moment of inertia of this molecule abouty andz
axis is a significant value but when we consider the rotation of
this molecule about x-axis in the coordinate system shown in
figure-2.30, its moment of inertia is again negligible thus rotation
ofthe molecule aboutx-axis does not contribute any energy to
the total energy ofmolecule so here we can state that a diatomic
gas molecule has two rotational degrees offreedom in addition
to three translational degrees of freedom. Thus in general, a
diatomic gas molecule has five degrees offreedom.

71

Figure 2.30

Sometimes vibrational motion ofmolecules can also contribute

to the totalmechanicalenergyof a gas molecule as the molecular
bonds are not rigid, they can stretch bend, may behave like a
spring as shown in figure-2.30. This result lead to additional
degrees of freedom and as well as energy. For most diatomic
gases, however the vibrational motion does not contribute

appreciably to the total energy ofa gas molecule. The reason
forthis involves the concept ofquantummechanics andbeyond •
the scope of this book. Briefly, vibrational energy of an atom
can change only in some finite steps in a quantized manner. If
the energy change of the first step is much larger then the
energy possessed by most molecules, then nearly all the
molecules remain in the minimum energy state ofmotion and so
at lowtemperature, changingthe temperaturedoesnot change
their average vibrational energy appreciable and do not

contribute any energy change to the total mechanical energy of
a gas molecule. At low temperature the vibrational degrees of
freedom are said to be frozen out and not included in total

energy calculation and changes of energy. But at very high
temperatures like 5000 K and above the atoms ofthe diatomic
gas starts vibrating at their local position appreciablyand bond
behaves like a spring as shown in figure-2.31 and then after we
include two additional vibrational degrees of freedom for a
diatomic gas.

Y

—• •

!;"((♦ gnniKi >00001) *'•1^ "X

"7'
Figure 2.31

According to quantum mechanical properties, rotational energy
of a molecule also changes in finite steps, but these steps are
usually very small. Thus the freezing out ofrotational degrees
offreedom isveryrare for example in hydrogen gas it isobserved
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practically that at very low temperature about 50 K or below
only translational energy is at a significant value and rotational

energies are almost negligible and so in laboratory calculations
only three translational degrees of freedom are used for gas
at temperatures below 50 Ktemperature. Thus total mechanical
energyor internalenergyofan idealdiatomic gas at a temperature
T is given as

/
U= — nRT

2

At low temperatures /=5,thus

U=- nRT
2

At very high temperatures /=7, thus

7
nRT

2

...(2.68)

...(2.69)

Polyatomic Gases

A polyatomic gas molecule should also have three translational
degrees of fi-eedom and the number of rotational degrees of
fi^eedom depending on the geometry of the molecule. If the
molecule isalinear one like CO2 then ithasonly two rotational
degrees of freedom due to the obvious reason discussed in

previous section, and ifit isanon linear molecule like/fjO, CH^
etc. then it has three rotational degrees offi"eedom as about all
three co-ordinate axes,somesignificantmomentof inertiaexists.
Number ofvibrational degrees offreedom in complex polyatomic
molecules varies in different ways. Thereisnosimple theoretical
wayto calculatethe exactnumberof activevibrationaldegrees
offi-eedom in a polyatomic molecule.

Thus the total internalenergyofn molesofa polyatomic gasat
a temperature T is given as

For a linear molecule

U=^nRT= (~\nRT ...(2.70)

WhereXare the number ofvibrationaldegreesof fieedoms

For a non linear molecule which has x number of vibrational

degrees of freedom

/
U=~nRT=

2

' 6 + x
nRT ...(2.71)

2.9.2 Equivalent Degrees of Freedom For a Gaseous Mixture

Weknow if two substances at same temperature are connected
or mixed, they do not exchange any thermal energy and the
temperature ofmixture remains same.

Kinetic Theory of Gases and Gas Laws ]

IfN gases with degrees offreedom /p/2,/3... aremixed with
^3 ••• at same temperature Tthen their total

internal energy beforemixing can be given as

U.= ^ r,,RT+^n^T+...+ ^„J{T ...(2.72)
If afterhomogeneous mixing,foranalytical purposeweassume

are the number ofdegrees offreedom for the mixture then
ato mixingthe internalenergyof this mixturecan begivenas

feqUj^^{n^+n2 +...n^)RT ... (2.73)
As no energy loss is taking place during mixing of gases, we
have fromequation-(2.72) and (2.73)

U-Uf

or n,RT+ ^ ... +~n^RT
fe

= -Y •••n^RT

2.9.3 Mixing of Gases at Constant Volume

When somegasesat differenttemperatureare mixedat constant
volume ina thermally insulated vessel, thetotalinternal energy
of all the gases remains constant.For exampleif77 gaseswith

n^,... moles at temperature F,, Fj... F^ aremixed in a
containerand if the gaseshavedegreesoffreedom
thenthe total internal energy ofgasesbefore mixingis

[/.= ^ «,7i r, +|- n^R 7-J+ +̂ ... (2.75)
Ifafter mixing temperature ofmixture become Tj-then thetotal
internal energyofgas after mixing ofgases is

+̂ 7} ... (2.76)
As total internal energy of the gaseous mixture must remains
constant thus we have fromequation-(2.75) and (2.76),

or r,,RT^+^n^RT^+ +~n„7?7}.

= +

or T= '''A "2 ^2 +-"/n '̂ n
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energy is given as

Illustrative Example 2.22 u- f 5 ^^ ^i 2 2 "^^[^sfo'"^d'atomicgas/=5]
Calculate (a) the average kinetic energy oftranslation ofan

_oxygen molecule at 27°C,(b) the totalkinetic energyofan oxygen ^T ^ ^8.314x300
molecule at 2TC, (c) the total kinetic energy in jouleofone mole
ofoxygen ailTC. Given Avogadro number =6.02 x 10^3 and ^3340.45 joule
Boltzraann's constant - 1.38 x 10-23 j/molecuIe-K.

Finally when gas temperature is raised to 1200 K, its internal
Solution energy isgiven as

(a) An oxygen molecule has three translational degrees of Uj.= —nRT^
freedom, thus the average translational kinetic energy of an ^
oxygen molecule at27''C is given as 5 15

3 3 — x8.314x1200
Y^r=Y X1.38x10-23x300

- 6.21 X10-21 j/jnole

(b) An oxygen molecule has total five degrees offreedom,
hence its total kinetic energy is given as Ag= C^-t/.= 10021.35 joule

^ ^ ^300 #Illustrative Example 2.24

10.35 X10" j/mole 1gmofheliumhaving/mjvelocityofmolecules 1000m/sand4

(0 Total kinetic energy ofone mole ofoxygen is its internal ofmolecules 1000 m/s are
energy, which can be given as >n«ed ma contatnerwh,ch isthermallyisolated. Whataretherms velocities ofhelium and oxygen molecules after equilibrium

U=-„RT is attained?
2

5 Solution
=Y xIx8.314x300

=6235.5J/mole Given that rms velocity ofHe molecules is lOOOm/s.Ifgasisat
temperature r, we have

# Illustrative Example2.23 IdRT

Ml
15 gm ofnitrogen is enclosed in avessel at temperature T= 300 K.
Find the amount ofheat required to double the root mean square 13x8 314x7'
velocity ofthese molecules. <3r 1000 = J ^^

V 2x10"^

Solution

We know rms speed ofgasmolecules isgiven as

iSRT is given that rms velocityofoxygen molecules is also 1000 m/s.
Iftemperatureofthisgasisr2,wehave

is directly proportional to VF, to double rms speed, v =
temperaturemust beraised four times to7L-1200 K. V ^2

-13361.6jouIe

Increase in internal energy or amount ofheat supplied is

2xl0~^xl0^
3x8.314

^ 4m ^ i\J AlU

. .... =80.186K
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or

or

1000 =
3x8.314x7,

32x10
-3

_ 32x10"^ xlO^
^2" 3x8.314 = 1282.976 K

It is given that 1gm ofHe and 4gm ofO2 is mixed. Iftheir
number ofmoles are j and then

„, = -and«,= —- g

We know that gases at different temperature are mixed at
constant volume (or inacontainer), thetotal internal energyof
system remains constant before and after mixing. Ifin this case
final temperature ofmixture is 7^ then we have

^ /l«1+/2«2-

Here we have^ 3, - 5, k, - X»"2 ^ , 7, 80.186 and
72=1282.76

Thusfinal temperature ofmixtureis given as

3x)4x80.186 +5x)^x1282.76
3x)^+5xj^

120.28x801.725

2.125
= 433.89 K

Thus final rmsvelocityofHe gas molecules is

\3RT,

^rms V jV/

3x8.314x433.89

2x10
-3

= 2326.17 m/s

Final rms velocity ofOjgas molecules is

3RT,

M.

3x8.314x433.89 ,
33 =581.54 m/s

32x10"

# Illustrative Example 2.25

Kinetic Theory of Gases and Ga^aws_

Solution

Given that volumepfcontainer = 1m^ .
Temperature ofgas= 300K

Amount of gas = 1 mole

(a) If be the number ofmolecules per unit volume, we have

«Q = 1mole

= 6.023 XlO^^m-^

The rms velocity ofmolecules at300 Ktemperature is

3j?r

M

3x3.314x300
-3

28x10

=516.75 m/s

Weknow that number of collisionsper secondper square meter
of wallis given by

HnV

N=

E,= -Mv^

_ 6.023x10^x516.75
6

= 5.187xl025s-'m-^

(b) When container is moving at speed v, the kinetic energy in
the nitrogen molecules is

A cubical vessel of side 1 m contains one mole ofnitrogen at a
temperature of300 K. If themolecules areassuming tomove
with therms velocity (a) find thenumber ofcollisions persecond
which the molecules maymakewiththewallofthe vessel, (b)
further if the vessel now thermally insulated moved with a
constant speed v and then suddenly stopped and this results
in rise oftemperatureby2®C, findv.

= — x28x10-^xv2
2

[Mass of1mole ofgas =28x 1 kg]

When thecontainer is suddenly stopped, thiskinetic energy is
transformed into thermal energy and increases the internal
energyofgas ascontainer isinsulated. Iftemperature increment
ofgas isA7, rise in its internalenergy is

f
At/= — nRST

2

or

or

or

Af/= — nR AT
2

= — xlx8.3I4x2
2

= 41.57 joule



[Kinetic Theory of Gases and Gas Laws

From energyconservation, we have

y x28 xI0-3xy2=4i.57

or V -

41.57x2

28x10
-3

= 54,5 m/s

# Illustrative Example 2.26

75

Thusfrom equation-(2.78)

or
5x3x250+3x5x470

5x3+3x5

Tj.=360K

Thus final mixture ofthe two gases is at temperature 360 K. If
final rms angular velocity ofdiatomic gas molecules is a)„
according to law ofequipartition ofenergy, we have rmsf

or COI ^
rms f

2kT

1

2x1.38x10-23x360

2.76x10"''^

lO'^rad/s

Web Reference at www.phvsicsealaxv.com

Age Group - High School Physics | Age 17-19 Years
Section - HEAT.& THERMODYNAMICS

, Topic-Kinetic Theory of Gases
Module Number- 26 to 32

Practice Exercise 2.4

An adiabatic vessel contains Wj —3 mole ofa diatomic gas.
Momentofinertiaofeachmoleculeis/=2.76 x lO^kgm^and
root mean square angular velocity is co^ = 5 x 10'2 rad/sec.
Another adiabatic vessel contains = 3 mole ofa monatomic
gasat a temperature 470K. Assume gases to beideal, calculate
rootmeansquareangularvelocityofdiatomicmolecules when
the two vessels are connected by a thin tube ofnegligible
volume. Boltzmann constant^= 1.38 x 10-23 j/molecule.

Solution

We know according to law ofequipartition ofenergy, each gas
molecule has kT energy associated with each ofits degrees
of freedom. As a diatomic gas molecule has two rotational

degrees offreedom, its total rotational energy must be 2 x
kT=kT.

Ifinitial temperature ofdiatomic gas is T,, we have
(i) The ratio oftranslational and rotational kinetic energy at
1OOK temperature is3:2.Find the internal energy ofone mole
gas at this temperature.

[2075 J]

(ii) The temperature of a gas consisting of rigid diatomic
molecules is r=300K. Calculate the angular root mean square
velocity ofarotating molecule ifits moment ofinertia is equal to
/=2.Ixl0-39kgm2.

[1.985 X 10® rad/s]

(iii) Anonlinear polyatomic gas at650 Khasmolecules with 12
active degrees offreedom, (a) Evaluate the average molecular
mechanical energy, (b)Whatis thevalue of ?Take mass of
one molecule ofgasm= 1.3 x 10-23 kg. (c)Howmanyvibrational
degrees of freedom are active ?

[(a) 5.382 X 10-20 j 455.03 m/s (c) 6]

(iv) The first allowed excited state ofhydrogen atom is 10.2 eV
above its lowest energy (ground) state. To what temperature-
should hydrogen gas be raised so that inelastic collisions may
excite anappreciable number ofatoms totheirfirstexcited state?

[7.88 X 104

or T=1^
' 2k'

^ (2.76x10'̂ ^)(5x10'̂ )^
2x1.38x10-23

rj=250K

When the two vessels containing diatomic and monoatomic
gases are connected, these gases exchange this thermal energy
butno energy is lost to surrounding as vessels are adiabatic.
Thus this mixing ofgases tables place atconstant volume, total
internal energy ofsystem remains constant. If 7} be the final
temperature ofthe system, we have

^ yi"|T[ +72^2^2
/,«] +/2«2 ...(2.78)

Here for diatomicgas

« = 3andr,=250K

For monoatomic gas

/•y = 3, «, = 5and7; = 470K
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(v) A cylindrical containerofvolume Kisdivided in twoequal.
partsbya fixed diathermic partition. Identical gas isfilled in the
two partsat initial pressure and temperaturepj, andp^,
{T^ > 7'j) respectively. After a long time when thetwo gases are
in thermalequilibrium, findthefinal temperature andpressure
of the gases in the two parts.

, P\T2{P\+ P2) +P2) 1

^1^2 + Pl^\ ' P\^1 Pl^\ ' P\^2 ^2^1

(vi^ Find the amount ofheat supplied by gas in one part to that
in other part in previousquestionif gas taken is monoatomic.

^PxPiih-W

2.10 Path of Molecules and Mean Free Path

If we find the mean speed of a molecules of air at room
temperature 25°C, we get

V =

%RT

TtM V3.14x29x10

=466.54 m/s

It shows that in general average speedof a common gas molecule
or air moleculesis comparableor more than the speedof sound.
In this situation a question arises, why the smell of a scent
appears to spread in a room at much slower then this. If the
speed of the molecules of the scent were of the order of about
500 m/s then the molecules of the scent should have taken

almost no time to reach any corner of the room. The reason
behind this is the explanation of pressure by kinetic theory
assumptions. In assumptions of kinetic theory for an ideal gas
we've ignored the size ofgas molecules. If all the molecules of
a gas are assumed point sized, they will never collide during
their motion but in fact molecules are finite in size so they

repeatedly collide with the neighbouring molecules randomly.

A molecule in its path undergoes a number of collisions so the
path traversed by it is not a straight line but somewhat zigzag
as shownin figure-2.32. As a result ofthis zigzag motion, its net
displacement per unit time is comparatively small. So the scent

takes more time to reach a place then the time predicted by
kinetic theory. Between two successive collisions a molecule
however travels in a straight line with uniform velocity.As shown
in figure-2.32, the motion is random thus the distance travelled

by the molecule between two successive collisions are not
always equal. Due to this we use a parameter to describe this
random motion. This is mean free path ofthe molecules, denoted

by X.As the name implies it is the average distance traversed by
a molecule between two successive collisions. We expect X to

8x8.314x298

-3
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vary inversely with the molecular density ^/y, the number of
molecules perunitvolume. Thelargerthemolecular density is,
the more collisions there should be in the dense gas and the

smaller the mean freepath. Wealso expectXto vary inversely
with the size of molecules. If the molecules were point sized,
theywould never collide andthemeanfree pathwould beinfinite.
Thus the larger the molecules are, the smaller the mean free
path.

OOo^OqOO O0 Oo 0 0 O

oOO O \o

O o o

00 OqOooo'-'o

Figure 2.32

The exact expression for mean free path is turned out to be

1

42md^{NlV)
Here m is the mass ofmolecules and d is the molecular diameter.

FromgasIawwehavePF=«i?7'orPK=A7:7'as -r,— =k\fN
^ ^AV

are the total number of molecules in a gas, thus equation-(2.79)
now become

X=
kT

^Jlrnd^P

...(2.79)

...(2.80)

2.II Vander Walls Gas Equation

In the beginning of chapter we've discussed the assumptions
ofkinetictheoryforidealgases. In theseassumptions the volume
of gas molecules as well as the interaction between them are
neglected. But in practical or real gases this is not true. Due to
the size ofthe gas molecules, actual volume available for motion

ofmolecules is less than the container in which gas is enclosed.
Similarly the pressure which the molecules exert on container
walls, we've derived in equation-(2.50) should also be different
due to the interaction between the neighbouring molecules
during their collisions.

The ideal gas equation in equation-(2.7) can be used for different
ideal gases but not for real gases due to the above reason. This
ideal gas law can be modified for real gases and by introducing
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some appropriate corrections, wecan develop another equation
ofstate for a realgas.Thisequation was developed byDutch
physicist J.D. Vander Walls. The equation is named vander
wallsgas equationafter him and is givenas

P +
an

(V-nb) = nR T ...(2.81)

Here a and b are empirical constants, different for different
gases. Roughlyb is the volume ofonemole of molecules, thus
the totalvolume ofmolecules in n moles ofa gas is thennb,and
the total volume available for the molecules to move around in

the gas is {V- n b). The constant a depends on the attractive
intermolecular forces, which reduces the pressure of gas for
given values ofn, Vand Thypulling themolecules together as
theypushthewallsofcontainerduringcollisions. The decrease
in pressure isproportional tothe number ofmolecules perunit
volume ina layer nearthewall which arecolliding andexerting
pressure on walls and is also proportional to the number per
unitvolume inthenextlayer beyond thewall which areattracting
the first layermolecules. Hencethe decreasein pressuredue to

intermolecular forces is proportional to "^2 -

When a gas is at very low pressure, (^) for the gas is very
smallorwecansaythat thegas is dilute, the separation between
the gas molecules is large, the correlations in the vander walls
equationbecome insignificantand equation-(2.81) reducesto
ideal gasequation. Sometimesat veryhigh temperature when
kinetic energy of gas molecules is very high, the effect of
molecular interaction isnegligible. Thuswecansaythatatvery
lowpressureor at veryhigh temperature realgasesmaybehave
like ideal gases.

2.12 Diffusion

Ifwe care fullyplacea dropof ink in a glassofwater,we'll find
that the ink colour spreads throughout the water. Aftera long
timeeventually the colour will become uniform. This mixing
occurs because ofthe random movement ofthe molecules and

is called diffusion. Diffusion also occurs in gases. Common
examples ofdiffusion is thespreadingofsmellofa perfume in a
roomor smokediffusing in air,although convection often plays
a greater role in this spreading then does dilTusion. In all cases
the diffusing substance moves from a region where its
concentration is high to one where its concentration is low.
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The simplestexplanation of diffusion is on the basisofkinetic
theory and the random motion ofmolecules. We take asimple
example to understand this. Consider a long tube of cross-
sectional areaAasshown infigure-2.33. Containing molecules
ina higher concentration on theleft than on.the right. According
to the kinetic theory molecules are in brownion motion. Ifwe
consider a smallelemental lengthAcofthe tubethenmolecules
from both regions left and right cross into this section oflength
Ax due to their random motion. Since there is higher
concentration on left side, more molecules cross into this
elemental section from left side then to the right side. Thus
there is a net flow of molecules from left to right, from high
concentration toward low concentration. When after sometime

thetwo sideconcentration become equal, the flow stillcontinues
but equal from both the sides thus there is no net flow of

molecules from either side when concentration on both sides

become equal.

Mi

B

-Ax

- area - A

Figure 2.33

Detailed mathematical analysis ofdifftision isbeyond thescope
of this book.At elementary level we discuss the Adolf formula
which gives the average rate of diffusion from one region of
concentration Cj to another region of concentration
separated by a central section of width zir, as discussed in
figure-2.33, is given as

Q ^2
Ax

J=DA ...(2.82)

Here (Cj - C2)/Ax is the change in concentration per unit
distance and some times written as dCtdx for mathematical

analysis,and is called as concentration gradient.

HereD is the proportionality constant calleddiffusionconstant
and the above equation-(2.82) is called as ""Adolfformula" or
"AdolfPick's Lawof Dijfusion". Above equation is not only
valid for a gas diffusing in itself called self diffusion but also
applicable for a gas diffusing in a second gas. If the
concentrations C, and here are in mole/m^ then J is the
number of molespassing a given area per second.The diffusion
constant D will depend on the properties of the substances
involved, and also on the temperature and the external pressure.

* *
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Discussion Question

Q2-1 Twoballoons of the same volume are filled with gasesat
thesame pressure, one with hydrogen and theother with helium.
Which of the two has the greater buoyancy and what is the
ratio of the two buoyancies.

Q2-2 Among hydrogen, helium, nitrogen andoxygen, which
is the most ideal as a thermometric substance.

Q2-3 Why is the climate ofcoastal cities milder than thatof
cities in the midst oflarge land areas ?

Q2-4 Whatwouldhappenifwetakea barometer to the bottom
of a swimming pool? Whatwould happen if we takeit to the
moon ?

Q2-5 Ifthe atmosphere weremadeofonlyoxygen, instead of
primarilynitrogen, would barometers readhigheror lower than
they do now ?

Q2-6 It is advisable to measure the tyre pressures in a car
before going for a long drive. What difference would it make if
thepressure were measured after driving several miles at speed.

Q2-7 In theassumptions ofkinetictheoryofgasesweconsider
elastic'coUisions between gasmolecules. Whatdifference would
be there on our kinetic theory model of a gas if collisions are
assumed inelastic.

Q2-8 At high altitude, the ratio ofnitrogento oxygen in the
atmosphere increases above the ratioat sea level. Why?

Q2-9 Inanopen room atatmospheric pressure, thetotal kinetic
energy ofall the air molecules is morewhen theroomiswarm
than the total kinetic energy of the molecules in the same room
when it is cool. Justify this statement.

Q2-10 Some potatoes areputincontainer withwater. Ifpressure
in the container is reduced, potatoes will cook faster.

Q2-11 Whydoes food cook faster ina pressure cooker thanin
boiling water ?

Q2-12 In the ideal gas equation, could Celsius temperature be
used instead of Kelvin ifan appropriate numerical value ofthe
gas constant R is used.,?

Q2-13 "Desert areas often have exceptionally large day-night
temperature variations" Comment on this statement.

Q2-14 Helium gasfound innatureisa mixture oftwo isotopes
having atomic weights 3 and 4, which atom move faster on
average and why ?

Q2-15 When two gases aremixed andif theyare in thermal
equilibrium, they must have the same average molecular speed.
Justify this statement.

Q2-16 Weknow accordingthe kinetic theory modelof a gas
the temperature ofan ideal gas is directly proportional to the
average kinetic energy of itsmolecules. Ifa container ofideal
gasis moving at a speed of2500m/s, is thetemperature ofthe
gas higher than itwould beifthe contain were at rest. Explain.

Q2-17 In the chemistry lab when you are standing at one
corner and at the other end of the lab, the lab assistant opens
the valve of a gas container, you can hear the sound of the
escaping gasalmost immediately, but it takes several seconds
before you can smell the gas. Why ?

Q2-18 A flaskis closedbya stopvalve. The valveallowsonly
those air molecules that are moving faster than a certain speed
to move out ofthe flask and allows only air molecules that are
moving slower than that speedto enterthe flask fi-om outside.
What effect would this filter have on the temperature ofthe air
in the flask.

Q2-19 If agasis made upentirely offree electrons. Would the
temperature ofsuch agas rise, fall orremains same ifitundergoes
free expansion.

Q2-20 An idealdiatomicgas,withoutvibrationslosesheat Q
toa system inaprocess. Is theresulting decrease intheinternal
energyofthe gasgreaterif the loss occurs in isochoric process
or in isobaric process.

Q2-21 We know the mechanical energy of a body is a frame
dependent property. Is temperature of a substance is also a
frame dependent property.

Q2-22 "Fora constantvolume gas thermometer, thegasshould
befilled in itat lowpressure andhightemperature". Justify this
statement.

02-23 LPG gasisfilled ina cooking gascylinder incompressed
form. When it is used the pressure of gas remains same but
starts fallingwhen it is becomingempty. Why?

02-24 What we can say about the specific heat of a boiling
water or melting ice.
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ConceptualMCQsSingle Option Correct
2-1 The following four gases areat thesame temperature. In
which gas do the molecules have the maximum root mean square
speed ?

(A) Hydrogen (B) Oxygen
(Q Nitrogen p) Carbondioxide

2-2 Cooking vegetables and other food in a pressure cooker
saves time and fuel because :

(A) Under increased pressure, water can be made to boil at a

temperature much higher than 100°C
(B) Under increased pressure, water can be made to boil at a

temperature much lower than lOO'̂ C
(Q Heat losses are reduced to a minimum

p) Condensation of steam is prevented

2-3 A gas takespart in twoprocesses in which it is heatedfrom
the same initial state 1 to the same final temperature. The
processes are shown on the P-Vdiagram by the straight line
1 - 2 and 1- 3.2 and 3 are the points on the same isothermal

curve. and are the heat transfer alongthe twoprocesses.
Then:

(A) =

(Q Q^>Q2

isothermal

Figure 2.34

(B) Q,<Q^
p) insufficient data

2-4 If water at 0°C, kept in a container with an open top, is
placed in a large evacuated chamber:
(A) All the water willvaporize
p) All the water will freeze

(Q Part of thewaterwillvaporizeandthe rest will freeze
P) Ice, water and water vapour will be formed and reach

equilibriumat the triple point

2-5 Which ofthefollowing iscorrect for themolecules ofa gas
in equilibrium temperature?

(A) All have the same speed
P) Molecules have different speed distribution of which

average remain constant

(Q They have a certain constant average speed
p) They do not collide with one another

2-6 P-Tdiagram is shown below then choose the corresponding
V-Tdiagram

D

(A)

(Q D

Figure 2.35

V

P) .

P)

D

2-7 and respectively represent theaverage kinetic energy
of a moleculeof oxygen and hydrogen. If the twogases are at
thesametemperature, which ofthe following statements istrue ?

(A) E^>E,
(B)
(Q
P) Nothing can be said about the magnitude of£'Q and£^^ as

the information given is insufficient

2-8 When an ideal gas is compressed isothermally then its
pressure increases because :

(A) Its potential energy increases
P) Its kinetic energyincreasesand molecules moveapart
(C) Itsnumberofcollisions per unit area withwalls ofcontainer

increases

P) Molecular energy increases

2-9 Threeclosed vessels A,B and C at the sametemperature
T and contain gases which obey the Maxwellian distribution
ofvelocities. Vessel A contains only O2, B only Aj and C a
mixtureof equal quantities of O2 and Aj. If the averagespeed
ofthe O2 molecules in vessel Ais Vj, thatoftheAj molecules
in vessel B is Vj, the average speed of O2 molecules in vessel
C is : (Take M is the mass of an oxygen molecule)
(A)(Vi+ V2)/2 P) V,

^0= ^.

1/2
(Q (V, - vA P) ^j3kT/M
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2-10 The pressure p oio. gas is plotted against its absolute
temperature T for two different constant volumes and V^,
where V^> ^2.^15 plotted onthe^'-axisandTontheAr-axis;
(A) Thecurve for Fjhasgreater slope than thecurve for Fj
(B) Thecurve for F2 hasgreater slope than thecurve for Fj
(Q The curves must intersect at some point other than 7"=0
(P) The curves have the same slope and do not intersect

2-11 Pressure versus temperature graph ofan ideal gas ofequal

number of moles ofdifferent volumes are plotted as shown in

figure-2.36. Choose the correct alternative:

Figure 2.36

(A) F, = F2, F3=F4 and F2>F3
(B) F,= F2,F3-F, and F2<F3
(C)

(P) v,>v,>v^>v,

2-12 A gas is contained in a metallic cylinder fitted with a

piston. The piston is suddenly moved in to compress the gas

and is maintained at this position. As time passes the pressure
ofthe gas in the cylinder :

(A) Increases

(B) Decreases

(Q Remains constant

(D) Increases or decreases depending on the nature ofthe gas

2-13 The figure shows two paths for the change of state of a
gas fromA to B. The ratio ofmolar heat capacitiesin path 1and
path 2 is:

(A) >1
(C) I

Figure 2.37

P) <1
P) Data insufficient

Kinetic Theory of Gases and Gas Laws

PV
2-14 A graph is plotted with on_y-axisandmassofthe

gas along x-axis for different gases. The graph is:

(A) A straight line parallel tox-axis for all the gases

(B) A straight line passing through origin with a slope having

a constant value for all the gases

(Q A straight line passing through origin with a slope having

different values for different gases

p) A straight line parallel toy-axis for all the gases

2-15 Volume F of air is saturated with water vapours. The

pressure exerted by the moist air is p. If the volume of the

mixture is reducedto F/2 isothermally, what will bethe pressure
exerted by the air now ?

(A) More than 2p (B) Less than 2p

(C) Equal to 2p P) Equal to/)

2-16 Twosample A and B are initially kept in the same state.
The sampleis expanded through an adiabatic process and the
sample B through an isothermal processto the same finalvolume.

The final pressiues insamples^ andBarep^ andp^respectively,
then:

Pa^Pb
(B) Pa=Pb
(Q Pa<Pb
P) Therelation between p^ andp^ cannotbededuced.

2-17 Agashasmolar heatcapacity C=r 24.9 J mol"' K~' inthe
process P^T=constant. Then {R =8.3 J/mol k)
(A) Gasismonoatomic P) Gas is diatomic

(Q Gas is trialomic p) Atomicity ofgas is 4

2-18 A horizontalcylinderhas twosectionsofunequalcross-
sections, in which two pistons can move freely.The pistons are

joined by a string. Some gas is trapped between the pistons. If
this gas is heated, the pistons will:

Figure 2.38

(A) Move to the left

P) Move to the right

(Q Remain stationary
P) Either (A) or (B) depending on the initial pressure ofthe

gas
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2-19 Pressure versus temperature graph ofan ideal gas are as
shown in figure-2.39. Choose thewrong statement

Figure 2.39

(A) Given process is isobaric
(B) Density ofgas is constant
(Q Volumeofgas is increasing
(D) None of these

2-20 Pressure versus temperature graph ofan ideal gas is as
shown in figure-2.40. Densityoftlie gas atpoints isp^. Density
at B will be :

(A) |p„

(Q fpo

Figure 2.40

(B) fpo

(D) 2p.

PV
2-21 Thequantity{^=Boltzmann's constant) represents :

(A) Number of moles ofthe gas
(B) Total mass ofthe gas
(Q Number ofmolecules in the gas
(D) Density of the gas

2-22 The equation of state for a real gas such as hydrogen,
oxygen, etc. is called the Van der Waal's equation which reads

{V-b)==nRT,

where a and b are constants ofthe gas. The dimensional formula
of constant a is :

(A) ML^T-^
(B) ML^T-i
(Q
(D) a being a constant, is dimensionless

- 81 i

2-23 Astationary vertical cylindrical container ofvery large
height filled with agas ofmolar massMatconstantTemperature.
The pressure at the bottom is P, and at the top is P^. If the
acceleration due to gravity is assumed to be constant for the
whole cylinder, which is equal tog. Then the height of the
cylinder is:

(Q

RT

Mg
1(A) In —

2RT, P
In —

Mg P2

RT ,
2Mg °P2

(D) ^^•in^
3Mg P2

2-24 The coefficient oflinear expansion ofaninhomogeneous
rod changes linearly fi-om a, toaj fi"om one end tothe other
endofthe rod. Theeffective coefficient oflinearexpansion of
rod is:

(A) a, + a2

(Q

(B)
tti +a2

P) a,-a,

2-25 Agas is expanded fi-om volume to 2Vq under three
different processes. Process I is isobaric process, process 2
is isothermal and process 3is adiabatic. Let AC/j, AU^ and At/3,
bethe change in internal energy ofthe gas is these processes.
Then :

^0 2Ko

Figure 2.41

(A) At/, > At/j > At/3
(Q At/2 < -^^1 < ^^3

(B) At/, < At/2 ^
(P) At/2 < ^^3 <

2-26 Someofthe thermodynamic parameters arestatevariables
while some are process variables. Some grouping of the
parameters are given. Choose the correct one.

(A) State variables
Process variables

(B) State variables

Process variables

(C) State variables

Process variables

(D) State variables
Process variables

Temperature, No ofmoles
Internal energy, workdonebythegas.
Volume,Temperature
Internalenergy, wotL donebythegas.
Work done by the gas, heat rejected
by the gas
Temperature, volume.

Internal energy, volume
Work done by the gas, heat absorbed
by the gas.
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2-27 P-T graphs ofan ideal gas are asshown in figures-2.42
below. Choose the wrong statement from the options given:

(1) (2)

(3)

Figure 2.42

(A) Densityofgas is increasing in graph (1)
(B) Densityof gas decreasingin graph (2)
(Q Densityof gas is constant in graph (3)
(D) None of the above

Kinetic Theory of Gases and Gas Laws
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NumericalMCQsSingle Options Correct
2-1 One mole ofO^ gas having avolume equal to22.4 litre at
0°C and 1atmospheric pressure iscompressed isothermally so
that its volume reduces to II.2 litre. The work done in this

process is nearly;
(A) 1672.5 J (B) 1728 J
(C) -I728J P) ~1570J

2-2 If ^ is the Boltzmann constant, the average translational
kinetic energyof a gas molecules at absolutetemperatureT\s:
(A) k T/2 (B) 3 k 774
(Q kT • (D) 3 k T/2

2-3 The mass ofan oxygen molecule is about 16 times that ofa

hydrogen molecule. At room temperature the rms speed of
oxygenmolecules is v.The rms speedofthe hydrogenmolecule
at the same temperature will be:
(A) v/16 (B) v/4

(C) 4v P) 16v

2-4 The averagekineticenergyofhydrogen molecules at 300 K
is E. At the same temperature, the average kinetic energy of
oxygen molecules will be:

(A) E/\6 P) E/4

.(C) E (P) 4 E

2-5 A jar. contains gas G, ar pressure p, volume Vand
temperature T. Another jar contains gas at pressure 2p,
volume V/2 and temperature 2T. What is the ratio of the number
ofmolecules ofG, tothat ofG2 ?
(A) 1

(Q 3

(B)
(D)

2-6 It2 molesofan idealmonoatomic gas at temperature7). is
mixed with 4 moles of another ideal monoatomic gas at
temperature 2Tq, thenthe temperature ofthemixture is:

(A) (B)

(Q (D)

2-7 A vessel contains a mixture of I mole of oxygen and two
moles ofnitrogen at 300 K. The ratio ofthe rotational kinetic

energyper molecule to thatper N2 molecule is :
(A) 1:1 . X
P) 1:2

(C) 2:1

P) Depends on the moment of inertia ofthe two molecules

2-8 The equation of state of a gas is

P +
aT

2 ^

V
X V^={RT+b)

where a, b, c and R are constants. The isotherms can be
represented by

P = AV"'~BV"

where and5 depend onlyon temperature and
(A) m= -c,n = -\ (P) m = c,n=\
(C) m= -c,n=\ p) m=c,n=-\

2-9 The rms speed ofhydrogen at 27°C is v. Whatwill be the
rms speed of oxygen at 300 K ?
(A) 4v P) 2v
(Q v/2 p) v/4

2-10 Same volumes ofhydrogen and oxygen at the same
temperature and pressure are mixed together so that the volume
ofthemixture is sameas the initialvolume ofthe eithergas. If
the initial pressure bep, then the pressureof the mixture will
be:

(A) 4p p) 2p
(Q p/l p) pl4

2-11 2 m^ ofhydrogen and 2 m^ of oxygen are at the same
temperature. If the pressure of hydrogen be p, then that of
oxygen will be:

(A) 2p p) 4p
(C) 8p p) \p

2-12 A flask contains hydrogen and helium gasesinthe ratio
1 : 3 at temperature 300 K. The masses ofheliumand hydrogen
molecule are in the ratio 2:1. What will be the ratio ofthe

average kinetic energies ofthese molecules at 600 K ?

(A) 6 p) 3
(C) 2 p) 1

2-13 Themeanrotational kinetic energyofa diatomic molecule
at temperature 7'is:

(A) \kT P) kT

(C) 2kT P)

2-14 An ideal gas undergoes aprocess in which T= T^ +aV^,
where and "a" are positive constants and Vis molar volume.

The volume for which pressure will be minimum is :

(C)
a

27;

1/3

2/3

(B)

P)

T
-'0

3c_

a

1/3

>2/3
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2-15 In above question, minimum pressure attainable is:

(A) (B)

(Q
3(^„2^2/3j.^3/4,4„3

2-16 Ifagas/degrees offreedom, the ratio CJC^ ofthe gas is

1+ /
(A) (B) 1+ Y

1
(Q y+/ P) 1+ /

2-17 Agas atpressure Pq iscontained inavessel. Ifthemasses
of all the molecules are halved and their speeds doubled, the
resulting pressure would be :

(A) 4^0 (B) 2Po

(Q P, P) Y

2-18 The root mean square speed of the molecules of an
enclosed gas is v.What will be the rootmean squarespeedif
thepressure is doubled, thetemperature remaining thesame ?
(A) v/2 P) V
(Q 2v P) 4v

2-19 Two containersof equalvolumecontain the samegas at
pressures and P2 and absolute temperatures T, and
respectively. Onjoiningthevessels, thegasreaches a common
pressurep anda common temperature T. TheratiopITisequal
to;

P\ ^P2
(A)

(Q
PiPi + PiPi

71 + 7-2

P)

P)

Pl^Pi
iTi 7-2 j

a72 Pi^i
Tx-Ti

2-20 The root mean square speedof the molecules of a gas at
absolute temperature T is proportional to :

(A) 1/r P) VF
(Q T P)

2-21 A monoatomic gas at 2TC is suddenly compressed to
one eighth of its original volume. The temperatureof the gas
sample is:

(A) 2rC P) 300PC
(C) 32TC P) None of the above

Kinetic Theory of Gases and Gas LaW^

2-22 Three moles ofoxygen ismixed with two moles ofhelium.
What will betheratio ofspecific heats atconstant pressure and
constant volume ofthe mixture ?

(A) 1.67 P) 1.5
(Q 1.4 (D) None of the above

2-23 The weight ofaperson is60 kg. Ifhegets 10^ calories of
heatthrough food andtheefficiency ofhisbody is28%, then
upto how much height he can climb ?Take g= 10 ms"^:
(A) 100m P) 196m
(Q 400m P) 1000m

2-24 Twoidenticalcontainersjoined bya small pipe initially
contain the same gas at pressure and absolute temperature
Tq. One container isnow maintained at thesame temperature
while theother is heated to IT^. Thecommon pressure ofthe
gases will be:

(A) 2^0 (B) |po

(Q ^Po P) 2po

2-25 In the previous question, let Vq be the volume of each
container. All other details remain he same. The number ofmoles

of gas in the containerat temperature271, *

— Po^o
(A)

(Q

2RT.

2/?o^o
3RT.

P)

P)

RTr,

PoPq
3RT,

2-26 Four molecules ofa gas have speeds 1,2,3 and 4kms ^
The value of the root mean square speed of the gas molecule
is:

(A) -JlS km s"'

(Q 2.5kms-'

P) YVio km S-'

P) /15/2 kmS-'

2-27 The average kinetic energy of a molecule of a gas at
absolute temperature Tis proportional to :

(A) 1/r P) VF
(Q r P) 7-2

2-28 An ideal gaswithpressurep iscompressed isothermally
till the meanseparation between molecules ofthegas is reduced
to halfofthe original value. The final pressure will be:
(A) p P) 2p
(Q 8p P) 4p
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2-29 The equation of state of n moles of an ideal gas is
nRT, where Risa constant. The SI unit for R is;

(A) Jkg-iK-i (B) Jg-'K-'
(C) JK"'mor' p) J K~'per molecule

2-30 The reading of a barometer containing someair above
the mercury column is 73cm while that of a correct one is 76cm.
Ifthe tube ofthefeulty barometer ispushed down into mercury
untilvolume ofair in it is reduced tohalf, thereading shown by
it will be;

(A) 70cm (B) 72cm
(Q 74cm P) 76cm

Paragraphfor Question No. 31 to 33

In a cylindrical containerofsufficiently largeheight, twoeasily
moving pistons enclose certain amount of same ideal gas in
two chambers as shown in the figure-2.43.

Upper chamber

20 cm

i
Lower chamber

Is cm

Figure 2.43
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Theupperpistonisat a height20 cm from the bottom and lower
piston is at a height 8 cm from the bottom. The mass of each
piston is mkg and cross sectional areaof eachpiston isA vc?,

mg
where and Pq is the atmospheric pressure

^IxlO^N/ml

The cylindrical container and pistons are madeof conducting
material. Initially the temperature of gas is 27®C and whole
system is inequilibrium. Nowif theupperpistonis slowly lifted
by 16cmandheldin that position withthehelpofsomeexternal
force. As a result, the lowerpiston rises slowlyby /cm.

2-31 The value of/is :

(A) 2cm (B) 4cm
(C) 8cm P) 6cm

2-32 Find the ratio of volumeof gas in upper chamberto that
ofin lower chamber in final state:

(A) 2:1 P) 1:2
(Q 4:1 P) 1:4

2-33 Find the pressure ofgas in lower chamber in final state:
(A) 1.0X105 N/m2 p) 2.0x 10^ N/m^
(Q 3.0XlO^N/m^ p) 4.0X ipN/m^
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Advance MCQs with One or More Options Correct

2-1 Three identical adiabatic containers A, B and C co
helium, neon and oxygen respectively at equal pressure
gases are pushed to half their original volumes:
(A) The final temperature in the three containers will bethe

same.

(B) Thefinal pressures inthethreecontainers will bethe
(C) Thepressure ofheliumand neon willbethe samebi

of oxygen will be different.
(D) The temperatureofhelium and neon will be the sani

that ofoxygen will be different.

ntain

The

lame.

tthat

e but

2-2 A closed vessel contains a mixture oftwo diatomic gases^

and B. Molar mass ofis 16 times that of5 and mass of gas
contained in the vessel is 2 times that of B. Which if the
following statements are true?
(A) Average kinetic energy per molecule ofAis equal totthat of

B

(B) Root mean square value oftranslational velocity o|f B is
four times that of^

(Q Pressure exerted by B is eight times of that exerted yyA
p) Number of moleculesofB in the cylinder is eight timt:sthat

of^

2-3 The quantity

of the gas)
(A) Temperature ofthe gas
(Q Pressure of the gas

mkT

V
of an ideal gas depends on {m=

(B) Volume of the gas
P) Nature of the gas

mass

p) Each particle in a gas has average translational kinetic

energy and the equation establishes the
relationship between the average translational kinetic
energy perparticle andtemperature ofan ideal gas.Itcan
be concluded that single particle has a temperature.

(C) Temperature ofanideal gas isdoubled from 100°Cto200°C.
Theaverage kinetic energy ofeachparticle isalsodoubled,

p) It is possible for both the pressure and volume of a
monoatomic ideal gas to change simultaneouslywithout
causing the internal energy of the gas to change.

2-7 From the following statements, concerning ideal gas at
any given temperature T,selectthe correctone(s):
(A) The coefficient ofvolume expansion at constant pressure

is same for all ideal gases
P) The average translational kineticenergyper molecule of

oxygen gas is 3KT(ATbeing Boltzmannconstant)
(Q In a gaseous mixture, the average translational kinetic

energyof the moleculesof each component is same
P) Themeanfree pathofmolecules increases withthedecrease

in pressure

2-8 Agasincontainer^ is inthermal equilibrium withanother
gas in containerB, bothcontain equalmassesof the twogases
in the respective containers. Which of the following can be
true:

(A)P^V^=P,Vs (^) Pa=Pb-^a^^b

2-4 Which of the following quantities is/are independ
the nature ofthe gas at same temperature :

(A) The number ofmolecules in 1 mole
P) The numberof molecules in equalvolume
(C) The translationalkineticenergyof 1mole
p) The kinetic energy of unit mass

:ntof (C) P^^PB,yA=^B P) V,

2-5 During experiment, an ideal gas is found to
condition /^/p = constant [p = densityof the gas]. The
initially at temperature T, pressure P and density p.Tlk
expands such that density changes to p/2 :
(A) The pressure ofthe gas changes to yflP
P) The temperature ofthe gas changes to ^flT
(C) The graph of the above process on the P-T diagi

parabola
p) The graph of the above process on the P-T diagiam is The value of is 2N.

hyperbola

2-6 Pick the correct statements (s):

(A) The rms translational speed for all ideal-gas molec
the same temperature is not the same but it depends
mass.

obey a

gas is
e gas

am is

lies at

Du the

2-9 Graph shows a hypothetical speed distribution for a

dNsample ofW gas particle (for V> Vq, -jy =0)

Speed K

Figure 2.44

p) The ratio Fq is equalto 2/3.

(C) The ratio Vq is equal to 1/ ^/2
P) Threefourth of the totalparticlehas a speedbetween 0.5 Vq

and Vq.
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2-10 A piston ofmass m can movewithout friction in a uniform
cylinder, closed at one end. A gas is enclosed in it. Then :
(A) Pressure ofthe gas will be equal to that of the surrounding

ifaxis is not horizontal

(B) Pressure ofthe gas may be equal to that ofsurrounding if
axis ofthe cylinder is not horizontal

(Q Pressure of the gas may be less than that ofsurrounding if
axis ofthe cylinder is not horizontal

(D) Pressure of the gas cannot be less than that of the
surrounding, if axis of the cylinder is not horizontal

2-11 Aclosed vessel contains a mixture oftwo diatomic gases

A and B. Molar mass of^ is 16 times that ofB and mass ofgas
A, contained in the vessel is 2 times that of B. Which of the
following statements is/are correct ?
(A) Averagekinetic energyper moleculeof^ is equal to that of

B

(B) Root mean square value of translational velocity of B is
four times that ofA

(C) Pressure exerted by5 is eight times of that exerted by.4
(D) Number ofmoleculesofB in the cylinder iseight times that

of^ .

2-12 Which ofthe following statements is (are) correct ?
(A) A real gasbehaves as an idealgasat high temperatureand

low pressure

(B) Liquid state ofan ideal gas is impossible
(C) An ideal gas obeys Boyle's and Charle's laws at all

temperature

(D) The molecules of a real gas do no exert any force on one
another

2-13 The RMS speed of the molecules of a given mass of an
ideal gas will increase by increasing the:
(A) Pressure keeping the volume constant
(B) Pressure keeping the temperature constant
(Q Temperature keeping the volume constant
P) Temperature keeping the pressure constant

2-14 Two tanks of equal volumes contain equal masses of
hydrogen and heliumat the sametemperature. Then :
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(A) The pressure of hydrogen is half that ofhelium
(B) The pressure of hydrogen is double that of helium
(Q The translational kinetic energy of all the molecules of

hydrogen is double ofthat of all the molecules ofhelium

P) The total kinetic energy ofall the molecules ofhydrogen is
more than double ofthat ofall the molecules ofhelium

2-15 A container holds 10^^ molecule/m^, each of mass

3 X10"^^ kg. Assume that ofthe molecules move with velocity

2000 ms~' directly toward one wall ofthe container while the

remaining ofthe moleculesmove either awayfrom the wall or

in perpendicular direction, and all collisions of the molecules
with the wall are elastic:

(A) Number ofmolecules hitting 1m^ofthe wall every second

p) Number ofmolecules hitting 1m^ofthewalleverysecond
is2x 10^^

(C) Pressureexertedonthewallbymoleculesis24 XlO^Nm"^
P) Pressure exerted on the wall by molecules is4 x 10^ Nm"^

2-16 Consider a collision between one oxygen molecule and a
hydrogen moleculein a mixtureof oxygen and hydrogenkeptat
room temperature. Which of the following are possible ?
(A) The kinetic energies ofboth the molecules increase.
P) The kinetic energies ofboth the molecules decrease.
(Q The kinetic energy ofthe oxygen molecule increases and

that of the hydrogen molecules decreases.
P) The kinetic energy of the hydrogen molecules increases

and that of the oxygen molecule decreases.

2-17 An ideal gas can be expanded from an initial state to a
certain volume through two different processes

(i) PV^ = constant and
(ii) P = KV^ where AT is a positive constant. Then:
(A) Final temperature in (i) will be greater than in (ii)
P) Final temperature in (ii)will begreater than in (i)
(C) Total heat given to the gas in (i) case is greater than in (ii)
P) Total heat given to the gas in (ii) case is greater than in (i)
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UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO &IPhO
Fordetailedpreparation oflNPhO andIPhO students can refer advance study material on www.physicsgalaxy.com

2-1 An electron tube was sealed oifduring manufacture at a
pressure of1.2 x 10"' mm ofmercury at2TC. Itsvolume is
1GO cm^.What is the number ofmolecules that remain the tube ?

Ans. 13.814 x lO"]

2-2 The mass ofahydrogen molecule is 3.23x1 kg. If10^^
hydrogen molecules strike 2 cm^ ofa wall per second at an
angle of 45° with the normal when moving with a speed of
10^ cm s"', whatpressure dotheyexertonthe wall ?

Ans. [2.284 x lO^ N m-^]

2-3 A lampofvolume50ccwassealedoffduringmanufacture
at a pressure0.1newtonper squaremetreat 27°C. Calculatethe
mass of the gas enclosed in the lamp. Molecularweight of the
gas= 10andi2 = 8.3 Jmor' K"'.

Ans. [2 X 10-" kg]

2-4 An electric bulb of 250 cc was sealed off during
manufacture at a pressure of 10"^ mm of Hg and at 27°C.
Computethe number of air molecules in the bulb. (Avogadro
constant = 6 x 10^mol"' and7? = 8.3 J mol"' K"'). Calculate the
mean distance between the molecules at this pressure.

Ans. [8.05 X lo"^, 3.1 x IQ-' m]

2-5 Calculate the kinetic energy oftranslation ofthe molecules
of20gofCO2at27°C.

Ans. [1700.6 J]

2-6 A cubic box ofvolume 8.0 x 10"^ m^ is filled with air at
atmospheric pressure at 20°C. Theboxis closed and heatedto
150°C. What is the net force on each side ofthe box ?

Ans. [5774.7 N]

2-7 Calculate the number ofmolecules/m^ inan ideal gasat
STR

Ans. [2.69 x 10^^ molecules/m^]

2-8 The lowest pressure attainable using the best available
vacuum techniques is about 10"'̂ N/m^. At such a pressure,
how many molecules aretherepercm^ at 0°C ?

Ans. [2.6 X 10^ molecules/cm^]

2-9 In outer space the density ofmatter is about one atom per
cm^, mainly hydrogen atoms, and the temperature is about
3.4 K. Calculate the average speed of these hydrogen atoms,
and the pressure (in atmospheres).

Ans. [Vf„5 » 300 m/s. P » 5 x lO"^^ atm]

2-10 Calculatethe densityof oxygen at STP using the ideal
gas law.

Ans. [1.41 kg/m']

2-11 Atankcontains 28.0 kgofOjgas ata gauge pressure of
6.80 atm. If the oxygen is replacedbyhelium, howmanykg of
the latter will be needed to produce a gauge pressure of
8.25 atm ?

Ans. [4.246 kg]

2-12 A house has a volume of 600 m^ (a) What is the total
mass ofair inside the house at 0°C ? (b) If the temperature rises

to 25''C, what mass ofair enters or leaves the house ?

Ans. [(a) 774 kg, (b) 65 kg leaves]

2-13 A tire is filled with air at 15°C to a gauge pressure of
1.9 X10^ Pa. If the tire reaches a temperature of40''C, what
fraction of the original air must be removed if the original
pressure of1.9 x 10^ Pa istobemaintained ?

Ans. [0.080 (8.0%)]

2-14 Anelectric bulb ofvolume 250 cm^ was sealed offduring
manufacture at pressure 10"^ mm oftheHgat27°C. Compute
the number ofair molecules in the bulb.

Ans. [8.02 X lo'^]

2-15 A column ofmercury of 10 cm in length is contained in
the middle of a narrow horizontal 1 m along tube which is

closed at both ends. Both the ends contain air at a pressiue of
76 cm of mercury. Bywhat distancewill the column ofmercury
be displaced ifthe tube is held vertically ?

Ans. [3 cm]

2-16 Two chambers containing m, and of an idealgas at
pressure and are put into communication. What will be
the pressure ofthe mixture ?

Ans.
mi P2 + P\

2-17 Ina toy truck the volume ofitstyre tube is2000 cm^ in
which airisfilled atapressure of2 x lO^N/m^ When thetube
gets punctured, its volume reduces to500 cm^. Find the number
of moles of air leaked out in the puncture. Given that the
atmospheric pressure is 1 x 10^ N/m^ and atmospheric
temperature is 27°C.

Ans. [0.14 moles]
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2-18 The volume expansion coefficient of an ideal gas at a

constant pressure is observed as Find the value ofn.

Ans. [I]

2-19 The temperature ofa room ofvolume Krise from T, to Tj.
How much will the mass ofthe air in the room changes if the
atmospheric pressureisp^.The molecular weightof the air is
M

Ans. [Am =
PoMV fj i_

R [ t; t;

2-20 When the bulb ofa constant volume air thermometer is

immersed in ice, the mercury level in the open tubeis 15 cm
higher than the fixed index. When the bulb is immersed in
boiling water the difference in the two levels increases to 48.3
cm.Whenthebulbis immersed in a hot liquid,thedifference in
levels decreases to 21 cm. What is the temperature of the hot
liquid ?

Ans. [IS^C]

2-21 The pressure in a helium gas cylinder is initially 30
atmospheres. After many balloons have been blown up, the
pressure has decreased to 6 atm. What fraction ofthe original
gas remains in the cylinder ?

Ans. [0.2]

2-22 In figure-2.45, a uniform tubewithan openstopcock is
lowered into mercury so that 12 cm ofthe tube remains unfilled.
After the stopcock is closed, the tube is lifted 8 cm. What is the
height y of the mercury in the tube ? Assume standard
atmospheric conditions. In standard condition atmospheric
pressure is 76 cm oiHg.

20 cm

12 cm

Figure 2.45

Ans. [6.82 cm]

2-23 A beam of particles, each of mass and speed v, is
directed along thex axis. The beam strikes an area I mm square,
with 1 XlO'̂ particles striking persecond. Find thepressure
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on the area due to the beam if the particles stick to the area
when they hit. Evaluate for an electron beam in a television
tube, where Wo = 9.11 x lO" '̂ kgandv =8x lo'm/s.
Ans. [10 '̂/MpV; 0.0729 Pa]

2-24 A cylinderof length 42 cm is divided into chambers of
equal volumes and each half contains a gas of equal massat
temperature 27®C. The separator is a frictionless piston of
insulating material. Calculate thedistancebywhich thepiston
will be displaced if the temperature of one half is increased to
51°C.

Ans. [1 cm]

2-26 Two identical vessels are connected by a tube with a
valve letting the gas pass from one vessel into the other ifthe
pressure difference is AP. Initially there was a vacuum in one
vessel while the other contained ideal gas at a temperature
T, and pressure Pj. Then both vessels were heated to a
temperature T^. Up to what value will the pressure in the first
vessel (which had vaccum initially) increase ?

Ans. [/' =X (^1^2 'T\ - ^)]

2-26 A chamber of volume V is evacuated bya pumpwhose
evacuation rate equals C. How soon will the pressure in the
chamber decrease by rj (t| > 1)?

Ans. [/ = {VIC) In ti]

2-27 A vertical cylinder closed from both ends is equipped
with an easily moving piston dividing the volume into.two
parts, each containing one mole ofair. Inequilibrium at Tq the
volume of the upper part is r| times greater than that of the
lowerpart. At what temperature will the ratio ofthese volumes
be equal to rj' (r|'> t]) ?

Ans. [T= ToTi' (ti^ - I) / (ti'̂ - 1)]

2-28 Suppose thepressure/)and the densityp ofair arerelated
asp/p" - constant regardless of height {n is a constant here).
Find the corresponding temperature gradient.

Ans. [dTIdh = - Mg (« - 1) / nR]

2-29 Avessel ofvolume K=5.01 contains/w= 1.4g ofnitrogen
at a temperature 7= 1800 K. Find the gas pressure, taking into
account that t) = 30% ofmolecules are disassociated into atoms
at this temperature.

Ans. [1.9 atm]

2-30 Under standard conditions the density of the helium and
nitrogen mixture equals p = 0.60 g//. Find the concentration of
helium atoms in the given mixture.

Ans. [1.6 X 10'' cm"^]
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2-31 Aglass bulb ofvolume 100 cm^ isconnected byanarrow
tube ofnegligible volume to another bulb ofvolume 300 cm^.
The apparatus is filled withair at a pressure of76 cmofmercury
and a temperatureof 12°C, and then sealed. The smallerbulbis
then immersed in melting icewhilst the larger bulb is placed in
boiling water.Calculate the fraction of the total mass of air in
the larger bulb, ignoring the expansion ofthe bulbs.

Ans. [0.69]

2-32 A horizontal cylinder closed at both ends is divided into
two parts by a thermally insulated piston. Both halves of the
cylinder contain equal massesof a gas at a temperature of 27°C
and a pressure of 1 atm. What distance from the centre of the
cylinder will the piston move ifthe gas in one section is heated

to 57''C ? What will be the final pressure in each section ofthe

cylinder ? The initial length ofeach section ofthe cylinder is

42 cm.

Ans. [2 cm, 1.05 atm]

2-33 Computethe temperature at which the rms speed is equal
to the speed of escape from the surface of the earth for
hydrogen and for oxygen. The temperature of the uper

atmosphere is about 1000 K. Wouldyou expect to find a lot of
hydrogen there or a lot ofoxygen ?

Ans. [1.01 X 10"* K, 16.2 x 10^ K, we would expect more oxygen]

2-34 A spherical vessel of radius r = 5 cm contains hydrogen

(Hj) atatemperature T=300 Kand pressure/j = 10^ Pa. How
many molecules collide on the vessel in 1 s ?

Ans. [3.37 x lo"]

2-35 Air at 273 K and 1 atm pressure contains 2.70 x 10^^
molecules per cubic metre. How many molecules per cubic
metre will there be at a place where the temperature is 223 K

and the pressure is1.33 x IO"'Nm"^?(l atm= 1.01 x lO^Nm"^)

Ans. [4.35 x lO'^ m"^]

2-36 Assume that air (molecular weight = 29) is under standard

conditions close to the earth's surface. Find the air pressure at
a height 5 km above the surface and in a mine at a depth 5 km

below the surface. Assume that the temperature and the molar

mass of air are independent ofheight.

Ans. [0.53 atm, 1.87 atm]

2-37 A cylindrical tube of uniform cross sectional area A is

fitted with two frictionless pistons, as shown in figure-2.46.

The pistons are connected to each other by a metallic wire.

Initially the pressure of the gas is equal to atmospheric
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pressure Ppand temperature isT^. Ifthetemperature ofthe gas
is increased to2Tq, find thetension inthewire.

Figure 2.46

Ans. [PqA]

2-38 Figure-2.47 showsa cylindrical containerof radius 5cm
and a piston is fittedin it to enclosea length of20 cm in it.The
cylinder contains an ideal gas at a pressure of 1 atmosphere
and 300 K temperature. The cylinder is slowlyheated and it is
found that the piston starts displacing when the gas temperature
reaches 600 K. It is given that the fi"iction coefficient between
the piston sides and the container wall is 0.2. Find the normal
force acting between piston sides and the container wall per
unit length of its circumference.

H= 0.2

Figure 2.47

Ans. [1.25 X lO** Nt/m]

2-39 Two glass spheres of equal volume are connected by a
small tube containing a small amount ofmercury. The spheres
are sealed at 20°C with exactly 1 litre ofair in each side. If the

cross sectional area of tube is 5 x lO^m^, how far will the
mercury be displaced ifthe temperature ofone sphere is raised
by 0.1°C while the other is maintained at 20°C.

Ans. [3.4cm]

2-40 A planet of mass Mand radius a is surrounding by an
atmosphere of constant density consisting of a gas of molar
mass p. Find the temperature Tofthe atmosphere on the surfece
ofthe planet if the height ofthe atmosphere is h « a.

GMh
Ans. [T = •

a'-R
where G = gravitational constant]

2-41 One mole of a gas at standard temperature and pressure

(STPcorresponds to7=273K and p= 1.01 x 10^ Pa) occupies
a volume of 22.5 /. Suppose the container is in the shape ofa
cube, (a) Determine the length of the cube edge, (b) What
force is exerted by the gas on each face of the container ?

Ans. [(0.282 m; (b) 8.03 kN]
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2-42 Ifaskin diver fills his lungs tofiill capacity of5.5 Lwhen
12 mbelowthesurface, towhat volume would his lungs expand
if he quickly rose to the surface ? Is this advisable ?

Ans. [1 1.9L, No]

2-43 An air bubble at the bottom ofa lake 16 m deep has a
volume of 1.10 cml Ifthe temperature at thebottom is5.5°C
andat thetopitis 17.0°C, what is thevolume ofthebubblejust
before it reaches the surface ?

Ans. [2.92 cm^]

2-44 A vessel of volume Vcontains a mixture of hydrogen
and helium at a temperature Tand pressurep. The mass of the
mixture isequal tom. Findtheratioofthemass ofhydrogen to
that of helium in the given mixture. Take molar masses of
hydrogen and helium to beA/, andAf2 respectively.

•Ans. [wi/wj = (1 - a/Mj) / (a/A/, - 1) = 0.50, where a = mRTIpV]

2-45 The density ofargon is1.6 kgm~^ at27°C and atapressure
of 75 cm of mercury. What is the mass of the argon in an
electric bulb ofvolume 100 cm^ if thepressure inside is75cm
ofmercurywhenthe averagetemperatureof the gas is 150°C ?

Ans. [1.135 X 10"^ kg]

2-46 A closed container ofvolume 0.02 m^contains a mixture
ofneon and argongases, at a temperatureof27°C and pressure
ofl XlO^Nm"^. The total mass ofthe mixture is28 gm. Ifthe
gram molecular weights of neon and argon are 20 and 40
respectively, find the masses of the individual gases in the
container,assuming them to be ideal. (Universalgas constant
i?-8.314Jmor'K).

Ans. [23.928 g; 4.072 g]

2*47 A 20 cmlongcylindrical test tube is invertedandpushed
vertically down into water. When the closed end is at the water

surface, how high has the water risen inside the tube ?

Ans. [0.374 cm]

2-48 Apieceofdryice, COjisplaced in a test tube, which is
then sealedoff. If the mass of dry ice is 0.36 g and the sealed
testtube hasa volume of20cm^, what isthefinal pressure of
the CO2 in thetubeifallthe CO2 vaporizes andreaches thermal
equilibrium with the surroundings at 2TC ?

Ans. [1.02 MPa]

2-49 Two vessels of volumes 5 and 3 litres contain air at

pressure of 3 and 7 atmospheres, respectively. What will be
the resultant pressure when they are connected through a
small-bore tube ?Assume that the temperature remains constant
throughout.

Ans. [4.5 atm]

2-50 At the top of a mountain, a thermometer reads TC and a
barometer reads 70 cm ofHg. Atthebottom ofthemountain,
they read 27°C and 76 cm ofHg. Calculate the ratio the density
ofthe air at the top with that at the bottom.

Ans. [0.9868]

2-51 Athin walled cylinder ofmass m, height h,cross-sectional
areaS is filled with agasandfloats partofthecylinder inwater.
As a result of the leakage ofwater fi-om the lower part of the
cylinder, the depth of submergence has increased by Ah.
Determine the initialpressureof the gas in the cylinder, ifthe
atmospheric pressure is p^, and the temperature remains
unchanged.

mg
Ans. [ Po + 1-

A/j

2-52 A thin tube of uniform cross-section is sealed at.both

ends. It lieshorizontally, themiddle5 cmcontaining mercury
and the twoends containing air at the same pressureP. When
the tubeis heldat an angle of60*^ withthe vertical direction, the
lengthof the air column above andbelow the mercury column
are46 cmand 44.5cm respectively. Calculate the pressureP in
cmsofmercury. The temperatureis kept at 30°C.

Ans. [75.4 cm]

2-53 20 g ofhelium {M=4) in a cylinder undera piston are
transferred infinitelyslowlyfrom astate ofvolume K, =0.032 m^
andpressurep, =4.1 atmtoastate ofvolume = 0.009 m^ and
P2= 15.5 atm.Whatmaximumtemperature willthegas reachif
the pressure decreases linearly with volume ?

Ans. [474.5 K]

2-54 In a high altitude cosmic station on a mountain at an
altitudeof3250 m abovesea level,calculatethe pressureof air
at this station. Take the temperature of the air constant and
equalto5°C. Themassofonekilomole ofair is 29 kg/kmole and
thepressure at sea level is 760 mm ofmercury.

Ans. [« 506.3 mm of Hg]

2-55 Avessel ofvolume Vcontains ideal gasatthetemperature
0°C.After a portion of the gas the been let out, the pressure in
the vessel decreased by Ap (the temperature remaining
constant). Find the mass of the released gas. The gas density
under the normal conditions p.

Ans. [m = pV A/j/pg, where pg is the standard atmospheric pressure]

2-56 Findthepressurein an air bubble ofdiameterd= 4.0 pm,
located in weather at a depth h = 5.0 m. The atmospheric
pressure has the standard valuep^.

Ans. [2.2 atm]
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2-57 The mass of a 250 cm^ flask is 287 mg morewhen it is
filled with an imknown gas than when it is evacuated. When
theflask isfilled, thegas isat 20°C and1.00 x 10^ Pa. What is
the molecular mass ofthe gas molecules.

2-58 Both limbs ofa 'U' tube are ofequal length. One ofthe
limbs is sealed and contains a column of 28 cm of air at

atmosphericpressure.The air is separatedfrom the atmosphere
by mercury.What will be the height of air in the sealed limb, if
the other limb is now filled to the top with mercury ?
Atmospheric pressure is 76 cm ofmercury.

Ans. [21.77 cm]

2-59 A glass tube sealed at one end and containing a quantity
ofair is immersed in mercury until the sealed end is 10 cm from
the surface ofmercury. At 0®C the level ofmercury in the tube

is 5 cm above the level ofmercury in the vessel. The length of
the tube is 15 cm. To what temperature should the air in the
tube be raised as to fill the tube completely ? The atmospheric
pressure is 75 cm of Hg. Neglect any change in the level of
mercury in the vessel.

Ans. [663"C]

2-60 A column ofmercury 10cm long is contained in the middle

of a narrow, horizontal 1 m long tube which is closed at both
ends. Both the halves of the tube contain air at a pressure of
76 cm of mercury. By what distance will the column ofmercury
be displaced if the tube is held vertically ?

Ans. [by 3 cm downwards]

Kinetic Theory of Gases and Gas Laws \

2-61 Modern vacuum pumps permit the pressures down to
p = A.\ 0~'̂ atm tobereached at room temperatures. Assuming
that the gas exhausted is nitrogen, find the number of its
molecules per 1 cm^ andthe mean distance between them at
this pressure.

Ans. [rt = pIkT = 1.10^ cm~^; ( / ) = 0.2 mm.]

2-62 The diameter ofa gas bubble formed at the bottom ofa
pond is = 4.0 pm. When the bubble rises to the surface its
diameter increases k = 1.1 times. Find how deep is the pond at

that spot. The atmospheric pressure is standard, the gas
expansion is assumed to be isothermal.

Ans. [5 m]

2-63 Determine the gas temperature at which

(a) the root mean square velocity of hydrogen molecules
exceeds their most probable velocity by Av = 400 m/s;

(b) the velocity distribution function F (v) for the oxygen

molecules will have the maximum value at the velocity
v = 420 m/s.

Ans. [(a) 380 K; (b) 340 K]

2-64 At what temperature ofa nitrogen and oxygen mixture
do the most probable velocities of nitrogen and oxygen
molecules differe by Av = 30 m/s ?

Ans. [370 K]
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FEW WORDS FOR STUDENTS

In this chapter we'll discuss the fundamental laws of thermodynamics. These
laws are the basicsfor us to understandflow ofheat and energy as in mechanics
thefundamentals to understand motion are energy and momentum conservation
laws. These thermodynamics laws are very useful in explaining the physical
behaviour ofa system when it responds to theflow ofheat or thermal energy.

The two. lawSf first and second laws of thermodynamics completely govern the
flow ofthermal energy in nature.
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Refrigeration, or cooling process, is the removal of unwanted heat from a selected object, substance, or space and its transfer to another
object, substance, or space. The main components of the refrigeration system are condenser, evaporator and compressor. Removal of heat
lowers the temperature and may be accomplished by use of ice, snow, chilled water or mechanical refrigeration. Figure-(a) is the industrial
setup of a refrigeration system and Figure-(b) is the block-diagram of different units and assembly of a refrigeration system.



Thebranch ofphysics thermodynamics isconcerned with the
relationships between heatandwork. In previous chapters of
calorimetry andkinetic theory ofgases, wehave discussed the
measurements of heat or thermal energy in the form of kinetic
energy of gas molecules. Thermodynamics is the study of

' thermalenergyin different forms and it is based on twobasic
laws. First is that youcan not get more energyout of a system
than you put into it in all forms. That is the basic law of
conservation of energy. Second law says that the transfer of
energy by heat flow has a direction generally from high
temperature region to a low temperature region or in other
words we can say that processes in nature are not reversible.

Theprinciples ofthermodynamics were developed ineighteenth
and nineteenth century and these are the most useful relations
established between heat and work which are used very widely
in different experiments and researches.

3.1 Thermal Equilibrium and Zeroth Law of
Thermodynamics

In previous chapters we've discussed that two objects in
thermal contact can exchange heat as long as they are at
different temperatures. The hot object cools and colder one
getswarm until theyreacha common temperatureat whichno
further change takes place. These two objects in this state are
said to be in thermal equilibrium.

Basedon thermal equilibriumearlierwe've defined the zeroth
law of thermodynamicsas if two bodiesare independentlyin
thermal equilibrium with a third body then those two bodies
are also in thermal equilibrium witli each other. This is called
zeroth law of thermodynamics because this is the logical basis
of first and second laws of thermodynamics.

In further sections of this chapter we'll discuss about the
concept of a thermodynamics system and about energy into or
out of the systemin the form of heat or work.Athermodynamic
system is a collection of objectsconsidered together and rest
of the environment is called surrounding of system. A
thermodynamic system interacts with its surrounding by
exchange of energy in the form of heat transfer or work. As a
result ofthis exchange ofenergy, the system's internal energy
may change. We've discussed that by internal energy we mean

the total kinetic energy and potential energy associated with
the internal state ofatoms composing the system. In addition
to internal energy a system ma> have kinetic and potential
energies due to the outside forces acting on system.

3.2 First Law of Thermodynamics

The first law of thermodynamics is based on the idea that
energy is neither created nor destroyed in any thermodynamic
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system. In theusual formulation offirst law, we consider the
transfer of heat into a system,the workperformedby the system
and the change in the system's internal energy.

Thislaw simply states thatthetotal amount ofheatsupplied to
a gaseous system is used in two parts. Apart ofsupplied heat
increases the kinetic energy of gas molecule or increases the
temperature of system and the other part of supplied heat is
used to do work against surrounding.

\idQ is theheatsupplied toa gasduringa heatingprocess and
due to this internal energy of a gas increases by dU and gas
does a work dWagainst surrounding then according to first
law ofthermodynamics, we have

dQ=dU+dW ...(3.1)

This equation-(3.1) is called differential form of first law of
thermodynamics. If a gas is heated fi^om an initial state to a
final state by a process and if total heat supplied in the heating
is AQ, total work done by the gas is AIFand total change in
internal energy of the gas is AU then we have

AQ=AW+AU ...(3.2)

Equation-(3.2) isstateform offirst lawofthermodynamics and
is used to relate the heat, work and change in internal energy
of gas between initial and final states of a thermodynamics
heating process.

3.2.1 Specific Heat Capacities of Gases

In solids and liquids we define specific heat as the amount of
heat required forperdegreerise in temperatureofunit mass of
substance. In the same sense we can define specific heat for a
gas.Specific heat ofa gascanbedefined as the amount ofheat
requiredfora unit mass ofa gas to raise its temperaturebyone
degree. Ifinstead ofunit mass we take onemoleofgas then it
is termed as molar specific heat or molar heat capacity of the
gas. It is denotedby C and if« molesof a gas is heated on dQ
supplyofheat,and ifgastemperature increases bydT,thenwe
have

dQ = nC-dT ...(3.3)

If temperature of gas charges from T, to T^. Then total heat
supplied is

Q=^dQ - ^nCdT =nC{T^-f) ...(3.4)
n

In solids and liquids generally specific heat remains constant
for a material or varies slightly with temperature. But the case
is not same for gases. In gases their specific heat also depends
on the way ofheating. If the process changes by which heat is
suppliedto a gas, it will alsochange the amountof heat required
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for agiven amount ofgas to change its temperature by aspecific
value. Before discussing the specific heats of a gas, we first
discuss thephenomenon ofheating a gas orhow heat supplied
to a gas is used by it.

3.2.2 Heating ofa Gaseous System andWorkdone bya Gas

Figure-3.1(a) shows a cylindrical container in which a gas is
enclosed and top of the container is closed bya lightpiston.
Initiallypiston isinequilibrium as thepressure exerted bygas
due to collisions ofmolecules isbalanced bytheatmospheric
pressure due to air molecules outside. In this state ifsome heal

is supplied tothe gasbythe burner asshown in figure-3.1 say
a small amount dQ heat is supplied to the gas as shown in
figure-3.1(b). Ifduetothis dQamount ofheat, thetemperature
of gas is also slightly increased, say byamount dT.Thus this
increase intemperature increases thekinetic energy ofmoving
gas molecules due to which pressure exerted bygas on piston
increases and pistonwillstartdisplacing upward till again the
pressure of gas becomes equal to atmospherepressure. If the
piston is displaced up by a distance dx, and this is due to the
pressure of gas. We can say that in displacement of piston,
work done by the gas is dW,which is given as

or

(a)

dW=P^^^S.dx

dlV=P dV
gas

Figure 3.1

[6" = area ofpiston]

...(3.5)

[dV= Sdx is the increase in volume of gas]

(b)

If during heating total volume ofgas changes from V^ to
then the net work done in the heating process is

^2

W= {PJ •' gas
y\

dV ...(3.6)

Equation-(3.5) gives the net work done in heating a gaseous
system. In different cases during heating, pressure of gas may

_95'

varyin different wayswhichresultsin different totalworkfrom
integral in equation-(3.6) however the volume of initial and
final state remain same.

As discussed, whenever volume ofgas increases, we can say
thework isdone bythegas and when agasiscompressed, we
saywork isdone onthegas byatmosphere orbysome external
agent responsible for the compression of gas.

3.2.3 Change in InternalEnergyofa GasonHeating

Inprevious section we've discussed thatwhen heatissupplied
to a system, it maybe possible that gasexpands. If it expands,
we say gas does work against surrounding. It means some
energy out of supplied heat goes to the surrounding in this
work done. Similarly it maybepossible thata partofsupplied
heat increases the kinetic energyofgas molecules. This means
thetemperature ofgasincreases. Iftemperature ofgasincreases
bya small amount Jf, we cansaythatthetotal internal energy
of gasis alsoincreased bya smallamount, saydU^ whichcan
be given as

dU=^nRdT ...(3.7)

Similarly if in acasegastemperature decreases, thenequation-
(3.7) gives the decrement in internal energyand wewrite this
equation witha negativesign on either side of equality.

Iftotal change intemperature ofgas isfrom 7, to then total
change in its internal energy from initial to final state is

or

Ti

At/= ^dV - ^^nRdT

MJ-^nR{T^-T,)

# Illustrative Example 3.1

...(3.8)

One mole of an ideal gas is heated from 0 °C to 100 °C at a
constant pressure of 1 atmosphere. Calculate the work done in
the process.

Solution

One mole ofgas occupies a volume of22400 cm^ at 0 °C and at
1 atmosphere pressure. Thus, the initial volume of the gas is
F,- 22400 cm3 =22400 x lO"^ m^ =0.0224 m^. Thefinal volume

can be calculated by using gas laws as

r, T.



Here ri=0°C=273K

r2 = 100°C = 373K

P =P^=\ atmosphere = 0.76mofHg

= 0.76 X9.8 X13600Nm-2

= 1.013 xlO^Nm-^

Tor ^^2=^1^

373
Thus we have = 0.0224 x = 0.0306

Weknow work done in the process can be calculated as

Vl f2

W= ^PdV =P Jc/K[As Pis constant]

= P{V^-V,)

= 1.013 X105(0.0306-0.0224)

= 830.7 J

Here as gas expands, work is done by the gas.

#Illustrative Example 3.2

In thermodynamicsysteminternal energy decreasesby400 J
while it is doing 250 J of work. What net heat is taken in bythe
system in the process.

Solution

Here it is given that

At/=~400J

and r= + 250J

Now from first law ofthermodynamics, we have

Q^W+W

= (-400) + (+250)=-15aJ

The amount of heat Q is negative thus in the process this

thermodynamic system rejects 150J ofheat to the sunoundings.

# Illustrative Example 3.3

An ideal gas in a cylindrical vessel is confined by a piston at a
constant pressureof 10^ Pa. When 2 x 10"* J ofheat is addedto
it, the volume ofgas expands from 0.15m^ to 0.25m^. (a)What
is the work done by the system in this process, (b) What is the
change in internal energy ofthe system.
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Solution

(a) We know thatwork done bya gasin a process isgiven as

Vj

W=\PdV =P(K2-Pj)
fi

[As P = constant here]
= 10^ [0.25-0.15] = 10^^!

(b) Fromfirstlawofthermodynamics, in the process wehave

Q = hU+W

Here 2x lO^^AtZ+lC

or A(7=I0''J.

#Illustrative Example 3.4

A vertical hollow cylinder contains an ideal gas. The gas is
enclosed by a 5 kg movable piston having a cross-sectional
area of5 x 10"^ m^. Now the gas is heated from 300 K to 350 K
and the piston rises by 0.1 m. The piston is now clamped in
this position and the gas is cooled back to 300 K.. Find the
difference between the heat energy added during heating and
the heat energy lost during cooling. (1 atmospheric pressure =
10^Nm~^andg= lOms"^).

Solution

Given,mass ofpiston M= 5 kg, cross-sectionalarea ofpiston
.4 = 5 X 10"^ m^, g = 10 ms"2 and atmospheric pressure
PQ=105Nm-^

The initial pressure of the gas in the cylinder is

P = atmospheric pressure + pressure due to weight Mg of
piston

Mg , 5x10 . .=P^+^ or P=\Q^+ ;^=l.lxl05Nm-2
5x10

When the piston rises hyx = 0.1 m, the increase in the volume
of the gas is

AK=^ = (5 X10-5)x0.1 = 5x lO-^m^

Thus work done by the gas is

yi

W= jPdV

or = P(V^-V,)

= 1.1 X IQSxSx 10-^ = 55J
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If AC/is the increasein the internalenergyduringheating,then
fromthe first lawofthermodynamics, the heat energysupplied
to the gas is given as

AC/+(AC/+55) joule

Since the piston is clamped, the volume of the gas remains
constant during cooling. Hence work done during cooling is
zero.

As the gas is cooledback to the initial temperature, the change
in the internal energy during cooling is

AU'=-AU

Thus heat energy lost by the gas during cooling is

Q '= AU'+ W' = - AU+ 0=-AU

The difference between heat energy added during heating and
heat energy lost during cooling is

^Q = Q~Q' = (AC/+ 55) - AU= 55joule.

if Illustrative Example 3.5

Gaseous hydrogen initiallyat STP in a container ofvolume 5 ^
10"^ m^ is cooledby 55 K. Find the change in internal energy
and amount of heat lost by the gas.

Solution

Initially in standard conditions the gas pressure is

P=lO^Pa.

Gas temperature is r=273K

Gas volume is K= 5 x 10"^ m^

Ifn moles ofgas are there, then from gas law, we have

PV^nRT

PV 10^x5x10"^
or n =

RT
= 0.22 mole.

8.314x273 N

Thus change in internal energy in a process is given as

/
AC/= — nRAT

2

= — X 0.22x8.314x55 = 251.51.
2

As gas is enclosed in a container its volume remains constant
during theprocess thus work done in this process is zero and
accordingto first law ofthermodynamics, we have

Q=AU=~251.51

Thus the decrease in internal energy is lost by the gas in the
form ofheat to the surrounding.
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Practice Exercise 3.1

(i) A gas undergoes a change of state during which 100 J of
heat is supplied to it and it does 20 J of work. The system is
brought back to its original state through a process during
which 20 J of heat is rejected by the gas. Find the work done by
the gas in the second process.

[60 J]

(ii) A sample ofan ideal gas is taken through a process ABCD.
It absorbs 50 J of energy during the process AB which is an
isometric process, no heat during BC and it rejects 70 J ofheat
during isobaric process CD. It is also given that 40 J ofwork is
done on the gas during the process BC. Internal energy ofgas
in state A is 1500 J. Find the internal energy ofgas in state C.

[1590 J]

(iii) In a gaseous system, a gas expands from
10"^ m^ to2 X10^ while itspressure remains constant at 10^
Nt/m^. Calculatethe amountofheat absorbedbythe gas in the
expansion. [y=1.67]

[24.92 J]

(iv) At atmospheric pressure, w = 1g ofwater boils into steam
which occupiesa volumeof = 1671 cmL The latent heat of
vapourisation of Z. = 539 cal/g and specific volume of water

1cm^.Find the increasein internal energyof the system.
Atmospheric pressure isPq = 1.013 x 10^ Pa. Take 1cal=4.2J

[2094.63 J]

(v) Nj is confined in a cylindrical vessel witha movable piston
exposed to open atmosphere. If25 kcal of heat is added to it and
the internal energy ofthe gas increases by 8 kcal, find the work
done by the gas.

[17 kcal]

(vi) A sample of an ideal diatomic gas is heated at constant
pressure. If an amount of 100 J of heat is supplied to the gas,
find the work done by the gas.

[28.57 J]
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3.3 State of a Gas and Indicator Diagram

Whena gas is heated its thermodynamic parameterspressure,
volume andtemperature changes. Thesethreeparameters ofa
gas at an instant, pressure P, volume Vand temperature T,
combinely define the state of a gas. Whenever the state of a
gas (P, V, T) is changed, we say the gaseous system is
undergone a thermodynamic process. The graphical
representation of the change in state of a gas by a
thermodynamic processis called indicator diagram. Indicator
diagram is plotted generally in pressure and volumeof a gas.
Figure-3.2 shows a general PFindicator diagram. This indicator
diagram representing the change of state ofa gaseous system
from state-1 (Pj P,) to state-2 {P^ T^. Each point on
indicatordiagram representsa unique state ofgas. In the figure-
3.2 shown when gas is in its state-1 its pressure, volume and
temperature are P,, E, and P, respectively. Now thegas state is
to be changed to state-2 with pressure, volume and temperature

Pj, Kj and respectively. Figure-3.2 shows three different
paths along which the gas can betaken from state-1 to state-2.
In path-I, initiallyvolume of gas iskeptconstantat Kj and its
pressure is increased from P, to Pj then pressure P^ is kept
constant andvolume isincreased to Fj- In path-Illfirst pressure
is kept constantand volume is increased to then volume is
keptconstant at V2 andpressure is increased to P^- In path-II
both pressure and volume are changed simultaneously along
the curve shown to attain the desired values of pressure and

volume ofstate-2. Here each path from which a gas is carried

from initial to final state is called a thermodynamic process.

There are infinite ways or thermodynamic processes bywhich
state ofa gas can be changed from given initial to final state. It
can also be stated that when a gas is carried from one state to
another, there are several adjacent intermediate states exist

between initial and final states of the gas. Thus an indicator'

diagram curve represents the locus of all intermediate states
between the two terminal states.

Figure 3.2
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• 3.3.1 Properties ofan Indicator Diagram

Figure-3.3 shows a general indicator diagram for a
thermodynamic process for heating of a gas from state-1 to
state-2. The path of this process is shown in figure-3.3 from
initial to final state. Some standard characteristic ofa P-Vcurve

plotted for a thermodynamicprocessare

(i) Each point on an indicator diagram represents a unique
state of a gas. In a P-K diagram, each points gives a specific
value of pressure and volumeof a gas and if number ofmoles
are known, we can get its temperature using gas law. Hence a
PV curve is the locus of the states of a gas during a
thermodynamic process between initial and final states.

p

p=av)

Figure 3.3

(li) The path of a thermodynamic process on a P-V diagram
relates pressure and volumeofgas during the heating process.
Each curve on P-V diagram has a characteristic function
between Pand FasP=/(F)- This function between pressure
and volume is called as process equation or equation of the
thermodynamic process between state-1 and state-2.

(iii) In a thermodynamic process, the work done by the gas,
we've already discussed, is given as

72
W= jpdV ...(3.9)

If the process equation is known we can solve the integral in
equation-(3.9) as

y2

Jf(V) dV
y\

...(3.10)

This equation-(3.10) gives the work done by the gas during
the process between state-1 and state-2 and mathematically
this equation gives the area under the P-V curve on indicator
diagram. As shown in figure-3.4(a)and 3.4(b),when finalvolume
ofgas is more then its initial volume, the area below the P-V
curve gives the work done by the gas as it expands and when
final volume ofgas is lesser then its initial volume the curve is
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drawn from right to leftasshown in figure andtheareabelow
the P-Vcurve gives the work done on the gas and is taken
negative in numerical calculations.

p

2N^

work done
by the gas
(^itlve)

(a)

work done

on the gas
(negative)

^2

(b)

Figure 3.4

3.3.2 State Variable and Path Variables

When a gasis takenfrom its initialstate(Pj, Fj,Tj) toa final
state (P2, V2, T^, out of the threethermodynamic variables,
heat supplied Q and work done by the gas W, depend on the
path along which the gas is taken from initial to final state.
Dependency on path means it depends on the function P=f
(V) or the way how pressure and volume of gas are related
during the process.Thus bothQ and Ware calledpath variables.
Unlike to these internal energy of a gas only depends on its
temperature or only on the initial and final state temperatures
(Tj and T2) of the gas irrespective of how gas is heated, to
change itstemperature from to T2. Thus internal ^ergyofa
gas is called state variable.

If a gas is taken from a state-1 to another state-2 by several
different paths and the heat supplied and work done in the
respective pathsare(Q^, W^), IV^, (Q^, fV^)... andsoon
then according to first law ofthermodynamics, we have

AU,2=Q,-W, = Q2-W2= (3.11)

3.3.3 Cyclic Processes

A thermodynamic process in which initial and final state are
same are called cyclic processes. Figure-3.5 shows an indicator
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diagramof a cyclic process. A gas in state-1 is heated and is
expand to change its state to state-2 shown in figure along
path-I. Nowit is compressed alongpath-II and takenbackto
its initial stateto restoreitspressure, volume and temperature
to its initial values.

Figure 3.5

In a cyclic process wecansaythat no changein internalenergy
takes place as it is a state function and here also AT= 0, thus
A(7=0. But asheat suppliedandworkdoneare path functions,
wecan numericallyobtainthesevariableseasilyusing firstlaw
of thermodynamics for paths I and II respectively.

= work done by the gas

(a)

iFj = work done on the gas

(b)

F, V,

fVj-W2 = net work done by the gas in cycle

(c) .

Figure 3.6

Figure-3.6(a) shows the expansion of gas from state-1 to state-
2 along path-I, here during expansion work is done by the gas

and is given by the area below the curve as shown in this

figure-3.6(a) say it is Wy When the gas is taken back to its
initial state from state-2, during compression work is done on
the gas and it is given by the area below the PVcurve of path-II
asshown in figure-3.6(b)sayitis 11^. From figure-3.5 it is clear
that is more then W2 hencein the complete cyclenetworkis
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done by the gas and it is given by the area enclosed by the PV-
curve ofAe completecycleas shown in figure-3.6(c).Thus net
work done by the gas in a cyclic process is

W^~W2 =Area enclosed bythePV-cwrve ofthe cyclic process

As discussed initially that in a cyclic process net change in
internal energy of gas is zero thus the total work done is equal
to the total amount of heat supplied to the gas. In fact during
first part of the cycle i.e. during expansion of gas, heat is
supplied'and work is done by the gas, say heat supplied to the
gas is 0j. In second part of the cycle i.e. during compression
of gas, work is done on the gas and some heat is rejected by
the gas to its surrounding saythis amountis QyAstotalwork
is done by the gas thus we generally have so total heat
supplied to the gas can be written as

Ae=e,-a ...(3.12)

This must be equal to the total work done by gas as At/= 0 in
the complete cycle. Thus

tQ = Q^-Q^ = lsW=W,-W2 ...(3.13)

3.3,4 Positive and Negative Cycles

In previous section we have discussed that net work done by
a gas in a cyclic process is equal to the area enclosed by its
PK-curve on indicator diagram. We've taken example shown
by the curve in figure-3.5 andfigure-3.6. Ifwe carefully look
on the path ofprocess, it is clockwise. Another cyclic process
can also be realized of which PV curve can be anticlockwise.

Such a process is shown in figure-3.7. There it can be clearly
seen that during expansion the work done by the gas along
path-I is less then the work done on the gas during its
compression along path-II. Thus in cyclic processes having

anticlockwise cycles, net work is done on the gas during the
complete cycle and is again given by the area enclosed by the
cyclic curve as shown by figure-3.7. Again as no net change in
internal energytakesplace in a cyclicprocess, in anticlockwise
cycles net heat is rejected by the gas to the surrounding and is
equal to the net work done on the gas.

= work done on the gas
during complete cycle

Figure 3.7
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Cyclicprocessesin which PV curve is clockwise, net work is
done by the gas, such cycles are called heat engine cycles.
And those processes in which PV curve is anticlockwise, net
work is done on the gas and heat is rejected by the gas to the
surrounding, such cycles are called refi-igeration cycles. In
further sections we'll discuss these cycles in more details.

# Illustrative Example 3.6

When a thermodynamic system is taken firom an initial state/
to a final state F along the path lAF, as shown in figure-3.8, the
heat energy absorbed by the system is ^ = 55 J and the work
done by the sj^tem is 25 J. If the same system is taken
along the path IBF, the value of = 35 J.

Figure 3.8

(a) Find the work done along the path IBF.

(b) If - 15 J for the curved path FI, how much heat energy
is lost by the system along this path ?

(c) Ift/^=10J,whatis(7^?

(d) If Ug = 20 J, what is Q forthe processes BF andIB ?

Solution

The first law ofthermodynamics states that

AQ = At/+Aff or Q= {Up-U;)^W

Here Ujand Upare the internal energies in the initial and the
final state. Given that, for path lAF, Q = 55 3 and W= 25 J.
Therefore,

AU= Up- Uj= Q- W= 55-25 = 30 J

The internal energy is independent of the path; it depends

only on the initial and final states of the system'. Thus the
internal energy between I and F states is 30 J irrespective of

the path followed by the system.

(a) For path IBF, Q=35 3 and AU = 30 J. Therefore,

W=Q-AU=35-30^53

(b) Forpath//, 15J,butAt/=.-.30J

Therefore W+AU=-15-30=-45 J
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(c) Given C/^= 10 J.Therefore, L/^-A17+= 30+10=40J

(d) The process BF is isochpric, i.e. the volume is constant.
Hence W= 0. Therefore

Q= (AC/)5^=t/^-t/g=40-20 = 20J

The process IB is isobaric (constant pressure). Therefore,

2=(0W-(0fiF=35-2O=15J.

# Illustrative Example 3.7

Figure-3'.9 shows an idealgas changing its statefromstateAto
state C by two different paths ABC and ^C.

V{m)

Figure 3.9

(a) Find the path along which the work done is the least.

(b) The internal energy ofthe gas at ^4 is 10 J and the amount

of heat supplied to change its state to C through the path ylC
is 200 J. Find the internal energy at C.

(c) The internal energy ofthe gas at state B is 20 J. Find the

amount ofheat supplied to the gas to go from state ^4 to state B.

Solution

(a) We know work done is given by the area below PVcurve

thus by observing the two PV curves and ABC,we can say
that work done in path^C is less then that in path ABC.

(b) Work done in path y4Cby the gas is

W^^=areaof^ CFEDA

= area of.,4Ci*' + Area ofAFED

= — x(15-5)x(6-2) + (6-2)x5

= 20 + 20 = 40J

It is giventhat heat supplied in process is Q^(.-200 T

101J

Thuschange in internal energy ofgasin path/4C is from first
law ofthermodynamics, givenas

Qac'^^ac^^^ac

^^..c-e^c-^^c=200-40=160Jor

As it is given that at state^4, internalenergyofgasis 10Jthus
at state C, its internal energy is

^^AC=^C-^A

or t/c = Af/^c+iy^=160+ 10=170J

(c) As in processAB,no volume change takes place thus no
work is done byor onthegasduring path.45.Thusaccording
to first law of thermodynamics, we have

Qab = ^Uab-'^as

o'" e,B=t/s~f/^+o

or G^^= 20-I0=10J
[As it is given that = 20 J]

# Illustrative Example 3.8

A gas is taken from state-1 to state-2 along the path shown in
figure-3.10. If 70 cal ofheat is extracted from the gas in the
process, calculate the change in internal energy ofthe system.

2.5 X 10

X 0

2x 10 5 X 10
P(N/m )

Figure 3.10

Solution

We know work done by a gas is given by the area under PV-
curve or the area between 5F-curve and the volume axis.

Generally we take volume on x-axis while plotting 5F-curve
but in figure-3.10 it is taken on>'-axis thus the work done is
given by the shaded area shown in figure-3.11. In this process

volume ofgas decreases thus work is done on the gas and it is
given as

W=- Y ^1-5 X10^ X(2 +5) X105

= -52.5J
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2.5 X 10

X 10

2x10 5x10

Figure 3.11

It is given that heat extracted in the process is 70 cal thus

Q=-70 cal = 70x4.2J

= -294J

Now from first law ofthermodynamics, we have

Q=W+AU

or AU=Q-W

= {-294)-(-52.5)

= -241.5J

Thus in the process internal energy ofgas decreases by 241.5 J

# Illustrative Example 3.9

Figure-3.12 shows a process ^5Cv4 performed on one mole of
an ideal gas. Find the net heat supplied to the gaseous system
during the process.

V

5xr^

Solution

300K 500K

Figure 3.12

As we know in a cyclic process gas finally returns to its initial
state hence total change in internal energy of gas is zero thus
the total heat supplied to the gas is equal to the work done by
the gas. Now we find the work done by the gas in different
paths of the cycle.

In Process AB

As shown in graph during process AB,volume of gas remains
constant thus work done by gas is zero

^AB=0

Thermodynamics Laws & Heats of Gases \

In Process BC

Inprocess BC, volume ofgas changes from =2m? to Fj=5
thus work done can be obtained as

w,^=lpdr

As in process BC, temperature of gas remains constant at

500 K, thus we can write pressure ofgas from gas law as

P =
RT 500

V
[As n = 1 mole]

Now work done is

500
dV

=500R/n IY

In Process CA

As in this process path is a straight line passing through origin

thus Fx For pressure ofgas remains constant and we know if

gas pressure is constant work done is given as

W^^nR - Fj)= nR (300 - 500) = - 200R

This is negativeas gas is being compressedfi"om volume5,m^
to 2m^ or workis doneon the gas.

N,

Nowwecan find the total work done by the gas in the complete

cyclQABCA as

= 0 + 500R/k -200 R

=J?(500/«%-200)

= 2146.22 J = heat supplied to the gas

a Illustrative Example 3.10

An ideal gas is taken round a cyclic thermodynamic process

ABCA as shown in figure-3.13. Ifthe internal energy ofthe gas

at point A is assumed zero while at B it is 50 J. The heat

absorbed by the gas in the process BC is 90 J.
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P (Nm )

K(m')

Figure 3.13

(a) What is the internal energy of the gas at point C ?

(b) How much heat energy is absorbed by the gas in the
process AB ?

(c) Find the heat energy rejected or absorbed by the gas in
the process CA.

(d) What is the net work done by the gas in the complete
cycle/i5Cyl?

Solution

Given that t/^ = 0, Cb= 50J and 0g,.= 9OJ.Also

Pa 10Nm-2,P^-30Nm-2,

= 1m^ and Fg ^ 3m^.

(a) In process BC as volume of gas remains constant, work
done by gas in this process is zero, thus

Heatabsorbed by the gas is Qg(^ = 90 J. Fromthe first lawof
thermodynamics.

(AOgc= U^- U, = q^^-W^c =90J-0 = 90J. ,

or t/c = (ALOgc+^5 = 90J+ 50J= 140 J

(b) In process AB, we have

= 50-0 = 50J

Work done is given as

Wa^ - areaun'der AB'mP-Vdiagram

== area ofrectangle

=AB^AD = {3m^-lm^)^ lONm-^

= 20J

Thus heal absorbed by the system is

(c) For process CA

iAU)c^ = U^-Uc = 0-U0=-H0J

Work done is given as

= area ^C£D

= area oftriangle ACB + area ofrectangle ABED

1
= - xAB^BC+AB^AD

2

103J

= - x(3-l)m^x(30-10)Nm-2 + 20

= 20 + 20 = 401

In this process, the volume decreases, the work is done on the
gas. Hence, the work done is negative. Thus

\

Thus heat rejected by the gas is

2c, = (AC)^ + —140-40 =-180 J.

(d) Net work done in the complete cyclic process ABCAis

ir=areaoftriangle^flC=x2x20 = 20J

As the cycle is anticlockwise, net work is done on the gas.

# Illustrative Example 3.11

A sample of 2 kg of monoatomic helium (assumed ideal) is
taken through the process ABC and another sample of2 kg of
the same gas is taken through the process ADC as shown in
figure-3.14. Given, molecular mass ofhelium = 4.

P(10^ Nm'̂ )
B C

k

A

E F

10

10 20
V(m')

Figure 3.14

(a) What is the temperature ofhelium in each ofthe states A,

S, CandO?

(b) Is there any way of telling afterwards which sample of
helium went through the process ABC and which went through
the process ADC ? Write yes or no.

(c) How much is the heat involved in each of the process
^SCand^DC?
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Solution

Given that mass ofhelium used in the process is w = 2 kg thus
number ofmoles can be given as

m

n =
M 4x10"^

= 500

At different states, the pressure and volume of gas are also
given, from figure-3.14

i'^=P^=5x lO'̂ N/m^

Pg=Pc=105N/m2

V,= V,-lOm'

Vc=VD =20m'

(a) From gas law, we have

P,V, SxlO'^xlO
, = = 120.3 K

and

Tc=

nR 500x8.314

PbVb 10^x10

nR 500x8.314

10^x20

nR 500x8.314

PdVd 5x10^^x20

= 240.6 K

^ =481.IIK

r^=
^ nR 500x8.314

= 120.3 K

(b) Since the gas is taken from same initial state to same final
state C no matters whatever be the path, the answer is No.

(c) In process ABC, the change in internal energy is

= — X500 X8.314(481.11-120.3)

= 2.25xl0«J

Net work done in process ABC is

^ABC=^AB+^BC

= 0 + area below curve BC

= 0+10^x10
\

= IO^J

Thus from first law ofthermodynamics, heat supplied in process
ABCis I

Q=W+AU

Thermodynamics Laws & Specific Heats of

or 2=10^+2.25x106

= 3.25xl06j

Similarly in processADCas being a state functionchange in
internal energy remains same as initial and final states are same.
Thus

A^<i,c=2.25x10'J

Thus work done by the gas in process ADC is

^ADC=^AD+^DC

= area below curve AD + 0

= 5x10^x10 + 0

= 0.5 X 106J

Thus from first law of thermodynamics, heat supplied in the
process ADC is given as

Q=W+AU

or =0.5x106 + 2.25x106

= 2.75xl06j

^Illustrative Example 3.12

One mole ofan ideal monatomic gas is taken round the cyclic
process.(45C4 as shown in figure-3.15. Calculate

p

3A
B

r
t

1

t

1

(

r

^0 2Fo

Figure 3.15

(a) the workdone by the gas
(b) the heat rejected by the gas in the path CA and the heat
absorbed by the gas in the path AB

(c) the net heat absorbed by the gas in the path BC

(d) the maximum temperature attained by the gas during the
cycle.

Solution

(a) Th^ workdone by the gas is equal to the area under the
closed curve. Thus workdone in cycle is
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^=2 <2^0-^o) (3^0) (3^0-^0)

= 2

= ^0^0

(b) Heat rejected in path CA is given as

Qca ~ "H "-p "H 2'̂ )

'Po^Vo PoVo
= 1x5/2./?

~ — p y
2 ^0 *^0

R R

Heat absorbed in path AC

Qac '̂̂ ^pC^b-'̂ a)

= \x - Rx
2

^PqPq Pg Pq
R R

[As n = 1 mole]

(c) For cycle ABC, we have

Heat supplied = workdone by the gas

or =-f ^o^o +3/'„K„+e^c=P„K„
Heat supplied in path EC is given by

!3.c=̂ o^o+fn ^0-3^^0
= ^o^(/2

(d) Weknowthat/'F/7= constant.So,whenPVis maximum,
T is also maximum. PV is maximum for part BC. Hence

temperaturewill bemaximum betweenB and C.

Let equation of5Cbe as

P = k'V+ l<f satisfying both the point B and C

ForpointB, 3 Pq= k Vq + k'

ForpointC, Po~^ (2 Pq) + ^

Solving these equations, we get

k=-2(P^VQ) and^ = 5/'o

So, the equation for time BC is

^0P — 2 — XV+5Pq

or

RT

V

2PqV
—— + SP

0

105.

or T= —
R

5V-2— ...(3.14)

For maximum, dT/dV= 0

dT P. ^ 4K

4F
Hence 5- —= 0 or 5Fq-4F=0

or ^=4 ^0 ...(3.15)

Substituting the value of Ffrom equation-(3.15) in equation-
(3.14), we get

r _ "^0
max

5x\-V,
\

-2
(5Po]

J I 4 J
1

25 V, 25 P, 25 Vr,

R

25P,Po

8/?
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Practice Exercise 3,2

(i) A thermodynamic system undergoes cyclic process
1423451 as shown in figure-3.16. Find the work done by the
system.

Figure 3.16

[0]
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(ii) n moles ofan ideal gas undergoes a thermodynamic process
in which pressure ofgas varies linearly with the volume ofgas
as shown in figure-3.I7. Find the maximum temperatureofthe
gas during the process.

2P,

2Fn

Figure 3.17

^ 4nR •'

(iii) The PVdiagram shownin figure-3.18 fora thermodynamic
process is a semicircle. Find the work done on the gas in the
process ABC.

P(atm)

V(nire)

Figure 3.18

[jr/2 atm-ltr]

(iv) The figure-3.19 showsp-Fdiagram of the thermodynamic
process of an ideal gas. Compute from this graph : (a) work
done in the procQssQS A->B,B^C,C^D, dxi&D^A. (b)
work done in the completecycle. 1 atm = 1.0 x 10^ N/m^.

2 atm

2 litre

Figure 3.19

[2400 J, 0, -600 J, 0; 1800 J]

5 litre

Thermodynamics Laws & Specific Heats of Gases ^

In the figure-3.20, CA is parallel to the K-axis and BCis parallel
to the T-axis.

(\i) Figure-3.21 shows thePFdiagram for a gas confined to a
cylinder by a piston. How much work does the gas do as it
expands from to C along the curve ?

p

340

-5- 300
a.

I 200

^ 100

0

B C

• y
i

1 "T^
1 1

1 1

1 1 .
0 0.7 1 2 2.6

Volume (m')

Figure 3.21

[421 kJ]

(vii) The volume of a monoatomic ideal gas increases linearly
withpressure,as shownin the figure-3.22. Calculate(a) increase
in internal energy, (b) work done by the gas, and (c) heat
supplied to the gas.

xlOPa

4xlO-^Pa

0-5 m^

Figure 3.22

[6.6 X 105, ] 8 X iqs^ 8.4 X 105]

0-8m'

3.4 Molar Specific Heats of a Gas

As we have already discussed that depending on ways of
supplying heat to a gas, it may have infinite different molar
specific heats. But as a characteristic property a gas has two
standard molar specific heats or molar heat capacities. These
are

(v) Acyclicprocess./45C.,4 shown in F-Tdiagram(figure-3.20)
is performed with a constantmass of an ideal gas. Showthe (i) Molar heat capacityat constantvolume
sameprocess on aP-Fdiagram. , ,

(ii) Molar heat capacity at constant pressure (C^

3.4.1 MolarHeatCapacityat ConstantVolume (C^)

This is the amount of heat required for one mole of a gas to
J raise its temperature by one degree at constant volume. This is

denoted by Cy.Figure 3.20
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Ifa gas isheated at constant volume, we cansimply statethat
nowork isdone bythe gasor onthe gasduring heating. Thus
if we apply first law of thermodynamics to such type of a
heating process, we get

or

or

or

dQ = dU-^dW

dQ = dU [As V= constant, {:/ir=0]

/n CydT= — nRdT [As dQ = nCydT\

Cy-^R ...(3.16)

Above relation states that when volume of a gas is constant
during'heating, no work is done. This implies that the total
amountofheat suppliedto thegas is usedin increasing internal
energy ofgas, that is to raise the temperature.

Hereequation-(3.16) gives the characteristic property of a gas,
the molar specificheat at constantvolume.For differenttypes
of gasesvalues of C^are listed in table-3.1

Table-3.1

Type of Gas No. of degrees Molar heat capacity

of freedom at constant volume

/ c.

Monoatomic gas 3
3
-R
2

Diatomic gas at 5
5
-R

lower temperature 2

Diatomic gas at 7
7
-R

higher temperature 2

Polyatomic gas linear molecule 5 + a; (vib.) m-
Polyatomic gas 6 + JT (vib.)

6 + x
R

non linear molecule
2

3.4.2 MolarHeatCapacityat ConstantPressure(Cp)

It is the amount of heat required for one mole ofa gas to raise
its temperature byone degreeat constant pressure. It is denoted
byC^.

When a gas is heated at constant pressure, with rise in
temperature volume of gas must increase by gas law as

PV=nRT

Differentiating gas law gives

PdV^ VdP^nRdT

Thisequation-(3.17) iscalled '"''dijferentialform ofgaslaW. If
during heating pressure of gas is a constant, second term on
lefthand side of equalitywill be zero thus we have

PdV=nRdT

[As dP = 0, for constant pressure]

Which is also the elemental work done by the gas. This is a
process when gaspressuredoesnot changeduringheating, if
volume ofgaschanges from to andtemperature changes
from Tj to Tj, the total workdone is given as

Vl T2

jpcJV =jnRdT
f, r,

W=P(V,-V^) = nR (7^2 - Tj) ... (3.18)or

According to first law of thermodynamics, if dQ is the heat
supplied to a gaseous system at constant pressure, dU is the

increase in internal energy and if dWis the work done by the
gas, then we have

dQ = dU+dW

If Cp is the molarheat capacity for this gas then wehave

/n CpdT= 'T-nRdT+ PdV [As dQ= fiCpdl]

or

or

or

/n CpdT= dT+nRdT

[as PdV= nRT for constant pressure]

...(3.19)

...(3.20)

/ (f+A

Cp=Cy+R

Equation-(3.19) givesanother characteristicpropertyof a gas,
the molar specificheat at constant pressure. Equation-(3.20)
gives a relation among the molar specificheats of a gas. This
relation is called Mayor's Relation. It shows that always values

of Cp are higher then Cy for a gas because when a gas is
heated at constant pressure, more heat is required to raise the

temperature ofgas as compared to the case when it is heated at

constant volume because at constant pressure some amount

of supplied heat is used to do work against surrounding where
in heating at constant volume total amount of supplied heat is
used in increasing internal energy i.e. the temperature ofgas.

...(3.17) Table-3.2 givesthe valuesof Cpfor different typesof gases.
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Type of Gas

Monoatomlc gas

Diatomic gas at lower
temperature

Diatomic gas at higher
temperature

•Polyatomic gas '
linear molecule

Polyatomic gas non

linear molecule

Table 3.2

No. of degrees of
freedom /

5 + x (vib.)

6 + X (vib.)

Molar heat capacity

at constant Pressure

5
~R
2

7
-R
2

9
~R
2

'l + x

K 2

8+x

3.4.3 -Ratio ofHeat Capacities ofa Gas

In previous sectionwe've obtained C^and Cpas

f

/ + 2and Cp =—r^— R

The values of Cpand Cyare the characteristic properties of a
gas. One more characteristic property is widely used in analyzing
the behaviour of gas. This is ratio ofthe two specific heats of
a gas and is termed asadiabatic exponent ofa gas. It is denoted

by y as

Cy f
...(3.21)

Later we'll see that y is very useful property of a gas in
calculating different thermodynamic parameters ofa gas when

it undergoes a thermodynamic process. From equation-(3.21),
we can find the values ofy for different types ofgases.

Table-3.3 gives the values ofy for different types ofgases

TabIe-3.3

Type of Gas No. of degrees of
freedom / '

Ratio of specific
heat y

Monoatomic gas 3
5
- = 1.67

Diatomic gas at lower
temperature

5
7
3 =1.4

Diatomic gas at higher
temperature

Polyatomic gas

linear molecule

Polyatomic gas non
linear molecule

7

5 + .r (vib.)

6 + a; (vib.)

j = 1.28

7+Ar

5 + a:

S+x

6 + x

nThermodynamics Laws & Specific Heats of G^eSj

From equation-(3.21),we can represent number of degreesof
freedom in terms ofy as

/= y-1
...(3.22)

Using equation-(3.22) wecanrepresent Cp andCyinterms of
y as

and

or

/ ^
2 y-1

Cp= yCp,=
y-1

Equation-(3.23) and (3.24) are commonly used in wide range of
numerical problems so students are advised to keep these
results on their tips.

3.4.4 Ratio ofSpecific Heats for a Mixture ofGases

In previous chapter we've discussed that if N gases of «, «2
moles are mixed at a common temperature T,the internal

energy ofthe mixture remains constant. If these N gases have
valuesof Cj^as Cj,,, Cj

yR

•yi' ^^2
then we have

ftfCy^T-h

= («i+«2+
eg

=

'eg .

niCy^ +«2S
Wi +«-,+•

...(3.23)

...(3.24)

...(3.25)

...(3.26)

WhereCy isthe equivalent molarspecific heat forthemixture
'eg

of gases at constant volume similarly Cp for the mixture of
eg

gases can be given as

«lCpj+«2Cp2+ +
or

'eg , «| +•
...(3.27)

If y, yj y^ are the ratio of specific heats for these
independent gas then from equation-(3.25) we have

niRT n^RT
-i— + - +
Ti-l 72-1

?1fgRT

= («, + «2+
R R

Here y^^ istheequivalent adiabatic exponent for the mixture of
gases and given by the equation

+ •

Yi-i Y2-I
+ ...+

n, +••• + «,

Y//-1 yeg -1
...(3.28)
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#Illustrative Example 3.13

Calculate the heatabsorbed bya system in going through the
cyclicprocessshownin figure-3.23.

F(m cm )

Solution

I X 10 3x10

Figure 3.23

/•(N/m')

In the figure-3.23 shown, the cycle is clockwise, thus net work
is done by the gas. As in a cyclicprocess no change in internal
energy takes place thus heat supplied is equal to the work
done by the gas in one complete cycle so in this case heat
supplied to the gas is given as

2 = Work done by the gas W

= Area ofellipse

= nab

Where a and b are senii majorand semi-minoraxis of the ellipse
which are given from figure-3.23 as

and

a = 1.0xl05N/m

6 = 100xl(^6m3

Thus area ofellipse is

2=ff=jcx l.Ox lO^x 100x10-6

-3.14X 10

= 31.4J.

# Illustrative Example 3.14

An ideal gas has a specific heat at constant pressure
Cp- (5 RH). The gas is kept in a closed vessel of volume
0.0083 m^, at a temperature of 300 K and a pressure of
1.6 X10^ N/m^. An amount of 2.49 x lO^ J ofheat energy is
supplied to the gas. Calculate the final temperature and pressure
of the gas.

Solution

Given that initial pressure, volume and temperature ofgas is

P, = 1.6xl06N/m2

r,-0.0083

rj=300K

109

From gas law we can find the number of moles of gas in the
container as

n =

PV 1.6x10^x0.0083

RT 8.314x300

16
= — mole

It is given that molar specificheat of gas at constant pressure
is

2

Thus gas is monoatomic, hence its molar specific heat at
constant volume is given as

C
2

As gas is heated in a closed vessel i.e. at constant volume, if
its temperature is raised from 7, to then, we have heat
supplied to the gas is

or

or

Thus

Q=nCy{T^-T,)

, 16 32.49X 104= X-- ^{(rj-SOO)

3x2x2.49x10^
r- = 300 +

^ 16x3x8.314

= 300 + 374.36

I = 674.36 K

For constant volume process, we have

674.36

300

= 3.6x lO^N/m^

X 1.6 X 106

^Illustrative Example 3.15

Figure-3.24 shows a cylindrical container containing oxygen
gas and closed by a piston of mass 50 kg. Piston can slide
smoothly in the cylinder. Its cross sectional area is 100 cm^and
atmospheric pressure is 10^ Pa. Someheat is supplied to the
cylinder so that the piston is slowly displaced up by 20 cm.
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Find the amount ofheat supplied to the gas.

Solution

O, Gas

Heat

Figure 3.24

As here piston is open to atmosphere, the gas is under a
constant pressure given as

Mgf> =/> + —^
gas aim g

50x10
= 105+

100x10"^ _
= 105 + 5x10"= 1.5x105 Pa

It is given that the piston moves out by 20 cm, thus increment
is its volume is given as

= I00xio^x20xl0-2m5

= 2 X 10-3

Thus in the process work done by gas is

W=P AV
gas

[As = constant]

= 1.5x 105x2x 10-3

= 300J

For a process is which gas pressure is constant, work done
can also be given as

^=nRAT=P AK
gas

or nRAr=300J

As in the process gas pressure is constant thus heat supplied
in raising the temperature by ATis given as

Q^nCpAT

1
=n\-R\AT

IR
[Asfor 0^ as being diatomic gas C„ ]

e,= Y X300

= 1050J

Thermodynamrcs Laws & Specific Heats of Gases ^

illustrative Example 3.16

Two moles ofan ideal monoatomic gas are confined within a
cylinder by a massless spring loaded with a frictionless piston

ofnegligiblemass and ofcross-sectional area 4 x 10-3
spring is initially in its relaxed state. Now the gas is heated by
a heater for some time. During this time the gas expands and
does 50 J of work in moving the piston through a distance of
0.1 m. The temperature ofthe gas increases by 50 K. Calculate
the spring constant and the heat supplied by the heater.

Solution

; GasL

Figure 3.25

Referto figure-3.25. A is the initial (equilibrium)positionof the
piston when the spring is relaxed. When the gas is heated, it
expands and pushes the piston up by a distance, say, x. The
spring is compressed, if k is the force constant of the spring
and A the area ofcross-section ofthe piston (which is equal to
the cross-sectional area ofthe cylinder), the force in the spring
is F = fcr and the pressure exerted on the gas by the spring is

F kx

A ~ A

If Pqis the atmospheric pressure, at equilibrium ofpiston the
pressure of the gas in the cylinder is

^='Po +^. =-Po+'7
The increase in the volumeofthe gas by infinitesimal movement
dx of the piston is

dV==Adx

Thus work done is given as

W=\pdv =\{p,+!^ Adx

or

A

=Pf)A ^dx+k ^xdx

W=P^Ax+ — kx^
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Given ^ =4^10"^ j;=0.1 m, W= 50 J. The atmospheric
pressure = 0.76 m of Hg = 0.76 x 9.8 x 13600 =
1.013 X10^ Nm"^. Using these values inabove expression of
work and solving for k, we get

A = 1896Nm-^ ,

To find heat energyQ suppliedby the heater, we use the first
lawof thermodynamics.

Now

Q=AU+W

fAU= Y nRAT=nCyAT

AU= — nR AT
2

=Y x2x8.31 x50 =1246.5J

[For a monoatomic gas wehave Cy=/?]

Thus we have, heat supplied given as

2=1246.5 + 50=1296.51.

# Illustrative Example 3.17

Consider the cyclicprocess shown in figure-3.26. An
idealgas of2 moles is undergonethis process.A total of 1200
J heat is rejected by the gas in the complete cycle. Find the
work done by the gas during the process BC.

500 K

300 K.

Figure 3.26

Solution

As we can see that in figure-3.26 CA is a process wheregas
volume remains constant thus no work is done in this process
and in process AB gas pressure remains constant as Tec V.
Work done by die gas in this process can be given as

[As ifP=constant W=P{V2~ K,) =

=2 X8.314X (500-300)

=2x8.314x200

= 3325.6 J

Asthecycle isanticlockwise, network isdone onthegasand
the equal amount of heat must be rejected bythe gas as in
complete cycle nochange in internal energy takes place. Thus
heat rejected by the gas in complete cycle is givenas

' 2~Net Work done on gas

or

or

-1200=3325.6+1^3^+0

4525.61

# Illustrative Example 3.18

Anideal monoatomic gasisconfined ina cylinder bya spring
loaded piston ofcross-section 8x10"^ m^. Initiallythe gasisat
300Kand occupies avolume of2.4 x 10"^ andthe springis
in its relaxed (imstretched, uncompressed) state (see figure-
3.27). The gas is heated by a small electric heater until the
piston moves out slowly by 0.1 m. Calculate the final
temperature of the gas and the heat supplied (in joule)bythe
heater. The force constant ofthe spring is8000 N/m, atmospheric
pressure is 1 x lo^ N/m^. The cylinder and the piston are
thermally insulated. The piston is massless and there is no
friction between the pistonandthe cylinder. Neglect heat-loss
through the lead wires of the heater. The heat-capacityofthe
heater coil is negligible.Assumethe spring to bemassless.

/////////////////////////////A<^X>^'^
Atmosphere

^ Rigid
^Support

Piston

Figure 3.27

Solution

Initially, thepressureofthegas in the cylinder is atmospheric
pressure as spring is in relaxed state. Therefore

P, = atmospheric pressure = 1.0x lO^N/m^

Fj= initial volume =2.4x 10^

Tj= initialtemperature = 300K

When heat is suppliedbythe heater, the piston is compressed
by0.1 m. The reaction forceof compression of spring is equal
to A" Xwhich acts on the piston or on the gas as

P = Ax= 8000 X0.1 =• 800 Nt

Pressure exerted on the piston by the spring

F
AF= —=

A 8x10

800

-3 = lxl05N/m2
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The total pressure g^s inside cylinder is

= 2x 10^N/m2

Since the piston has moved outwards, there has been an
increase AF in the volume of the gas

AF=^xx = (8x 10-3)x(O.D

= 8xl0^m3

The final volume ofthe gas

Fj = K, +AF=2.4 X10"'+ 8X10"^

= 3.2 X 10-3

LetT2 bethe final temperature ofgas. Then

P, Fi A F-

or

2 "2

1 ^2

T=T ^
' ' /'l F,

2x10^x3.2x10"^
= 300x

-310^x2.4x10

= 800K

Let the heat supplied by the heater be Q. This is used in two
parts: a part is used in doing external work IFdue to expansion
of the gas and the other part is used in increasing the internal
energy of the gas. Hence

Now

or

Further

Q=W+AU

Adx

[As pressure is (P + kxIA) and dV=Adx'\

kx'

= 120 joule

U=nC.AT

10'x(8xl0-^)(0.1) +
8000 X(0.1)^
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Thus change in internal energyof gas is given as

AU^n\l^P\AT

[As formonoatomicgasCj,= — R]

or U= 0.096 X — X 8.314 X500 = 598.6 Joule
2

Heat supplied by heater

= (120 + 598.6)

= 718.6joule

Illustrative Example 3.19

A monoatomic ideal gas is taken through the process ABC as
shown in figure-3.28. The temperature at the pointy4 is 300 K.
Find the temperatures at points B and C. Also find the work
done and heat supplied to the gas in paths ABand BC.

PQi/rn^)

2x 10

I X 10

Solution

100 150

Figure 3.28

F(cm')

At initial state pressure, volume and temperature of gas is
given as

P^ = 1x105Pa

F^ = 100xl0-6m3

r^=300K

Thus fi-om gas law, we can find number of moles of gas, as

PaVa
RTj

n =

lO'xlO"^

8.314x300
= 0.004 mole

Thus at point 5, gas temperature is given by
Number ofmoles ofgas can be obtained from initial conditions „ „

' A B
and gas law as tt" = -r;—

_ PV_ _ 1x10^x2.4x10-3
^ RT ~ 8.314x300

= 0.096 mole

or PB=-f^PA
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2x10-

10^
X300

= 600K

Similarlyat point C,gas temperature isgiven by

Vr

or

Vn

it.
X

-6150x10

~ 100x10"®

= 900K

x600

Now in process AB, gas volume is constant thus no.work is
done by the gas and heat supplied to the gas can be given as

Q-uCAT,-T,)

= «

or

2

3/2
[As for a monoactomic gas Cy- —— ]
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3.5 Different Type of Thennodynamic Processes

We've already discussed that a thermodynamic process is a
way of heating a gas or doing work on it by which state of a
gas can be changed from one to another by a specific path.
Each thermodynamic processcan be representedbya specific

T = f (y) curve on a P-V indicator diagram. In each
thermodynamic process, there are three variable related. Heat
supplied to a gas, change in its internal energy and work done
by a gas. According to first law of thermodynamics a part of
supplied heat is used as rise in internal energy of gas and rest
is used to do work against surrounding. As we change the
process of heating, the fraction of heat supplied which is used
to increase the internal energy of gas and the fraction of heat
supplied consumed in doing work will change. These three
variables heat supplied Q, change in internal energy of a gas
AUand work done Ifare called thermodynamic variables for a
process.

Thereare somestandardthermodynamic processes, commonly
used in practice, these are

2^0.004x y x8.314x [600-300]

= 14.96 J
(I) Isochoric or Isometric Process

In the process BC, gas pressure is constant thus work done by Isobaric Process
the gas can be given as

iv-PAVc-v,)

= 2x 105[150-100]x I(H

= 10J

The heat supplied to the gas in this constantpressure process
BC can be given as

Q = nCp{T^~TjA

2
(Tr-T,)

(3) Isothermal Process

(4) Adiabatic Process

We first discuss the above processes in detail, then we'll
discuss about, some other thermodynamic processes as a
special case.

3.5.1 Isochoric or Isometric Process

In this process volume of gas remains constant during heating
or state changing process on a gas. Thus during the heating
process, we have

[As for monoatomic gas thevalue ofCy, = ^ /2]
clV=0 [During the process f= constant]

Af-0 [AsV^ = V^]

=0.004 Xy X8.314 X(900 - 600)

= 24.94 J

As no change in volume is taking place, work done by the gas
in the process is zero. Some time in few processes AV= 0 but
dV^ 0. We can not treat these processes as isochoric because
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in suchprocesses initial and final volume of the gas are same
but during the process, volume change takesplace. We can
differentiate these processes easily by looking carefully on
their PFdiagrams as shownin figure-3.29.

Figure-3.29(a) shows aPVdiagram ofan isochoric process in
which, when agas iscarried from state-1 tostate-2, itsvolume V
remains constant during heating, only increase in pressure
takes place asshown andtheeffective areabelow thePF-curve
is also zero which shows no work is done during the process.

w=o

y V

= work done on gas

(b)

y V

JVj = work done by gas
(c)

Figure 3.29

Figure-3.29(b) and (c) shows a process in which the stateof
gasis changedfrom samestate-1 to state-2andthe volume of
gasat boththe statesis same V. Butwecanseethat duringthe
process first thevolume ofgasis compressed from Vto Vthen
it is expended from Vto V. Figure-3.29(b) shows theareabelow
the graph during the process when gas is compressed from
volume Fto V. This area represents the work fT, done onthe
gas(-ve) uptothisintermediate statewithvolume Vfrom initial
state-1.Figure-3.29(c) showsthe area belowthe graph during
the process wheh gas is expanded from this intermediate state
to the final state tbi restore the volume Fofthe gas. This area
during expansion of gas represents the work W2 doneby the
gas from this intermediate state with volume Vto the final
state-2. It is clear that W2 > W^ hence the total work in this
process is done by the gas and is given as
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Heat supplied in Isochoric Process

If« moles ofa gasisheated from temperature T, to keeping
its volume constant during heating, the total amount of heat
supplied tothe gas can be obtained byusing molar heat capacity
of gas at constant volume as

and

dQ = n CydT

72

Q^^dQ =\nCydT
7i

Q=nCyiT^-T^)

=^iT^-T,)
Y-1

Work done in Isochoric Process

...(3.29)

As discussed earlier, no change in volume implies no work
done, thus

Change in Internal Energy in Isochoric Process

...(3.30)

As discussedearlier, internal energyis a state variable so in all
process if a gasisheated from temperature T, to change in
internal energy is given by

or

/At/= y nR AT= nCyAT

n R
...(3.31)

This is same as equation-(3.29) becauseaccordingto first law
of thermodynamics if no workis donein a process, whole of
supplied heat to a gas will appear as increase in its internal
energy.

As we knowinternal energyof a gas is a state function, in all
the process the change in internal energy is always given by
equation-(3.31). As in isochoric process, volume ofgasduring
the process remains constant from gas law the pressure and
temperature of gas between its initial and final state can be
related as

^ =^ ...(3.32)

3.5.2 Isobaric Process

In this process during change of state of a gas, its pressme
remains constant. Thus

Althoughin the process AF'=0 but theprocess is not isochoric.

dP = 0

AP=(K
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Again some process can be there in which AP = 0 but 0.
Such process can not be taken as isobaric process. We can
discuss these by their PV- diagrams shown in figure-3.30.
Figure-3.30(a) represents anisobaric process inwhich agasis
taken from state-1 tostate-2 and during the process only volume
of gas is being changed from to pressure remains
constant at P. Thus the area below the curve P -

gives thework done in theprocess. But in figure-3.30(b) and
(c), the gas is taken from same state-1 to state-2 bydifferent
paths in which during the process, the pressureof gas is not
constant thus in these processes, even AP = 0 but c/P9^ 0 and
due to this work done or area below these PFcurves are either

lessor morethan thecasewhenthepressure remainsconstant
i.e. in an isobaric process.

(a)

iV,<P(V,-VA

iV,>P{V,-V,)

(b)

Figure 3.30.

Heat Supplied in Isobaric Process

If n moles of a gas is heated at constant pressure from
temperature Pj to Pj the amount ofheat supplied canbeeasily
calculated by using molar heat capacity of gas at constant
pressure, thus

dQ= nCpdT

Ti

or

or

Q=̂dQ=̂ nCpdT

Q=nCp{T^~T,)

nj R
...(3.33)
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Work Done by gas in Isobaric Process

Atthe beginning ofchapter we've discussed that when a gas
isheated from volume to Fj, work done can be calculated as

= \PdVjdW= j

As pressure of gas is constant, we have

V2 T2

or

or

W= jpdV =j/jRdr
• Ti

[As PdV= nRdTfor constant pressure]

W=P{V^~V,)

= nR{T^-T^) ...(3.34)

Change in Internal Energy in Isobaric Process

Ifnmoles ofagas isheated from temperature P, to Tj, as being
a state variable, change in internal energy can be given as

Aiy=«C^(P2-P,)

n R
...(3.35)

Frcnn equation-(3.33), (3.34) and (3.35) wecanalsoverify that
these three thermodynamic variablesare satisfyingfirst law of
thermodynamics.

3.5.3 Isothermal Process

In this process temperature of gas remajns constant during
heating. Thus during the process

t/P=0

and AP=0

If temperature ofgasdoes notchangethenit implies that there
is no change in internal energy ofgas during the processthus
in an isothermal process, we also have

and

dU=0

At/=0

Asno changeistherein internalenergyofa gas, thenaccording
to first lawofthermodynamics we cansaythat the totalamount
of heat supplied to a gas is used in doing work against
surrounding i.e. in expending the gas.
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Indicator diagrams for an Isothermal Process

Toplotan indicator diagram wemustrequirea process equation
which can be given bygas law, in case of an isothermal process.

According to gas law

PV=nRT

As in isothermal process gas temperature remains constant,

thus, we have

1
Pa-

or

k

^=V ...(3.36)

Thus according to equation-(3.35), it is clear thatPI'curve on

an indicator diagram is a rectangular hyperbola as shown in

figure-3.31. Figure-3.32 shows a gas undergoes several

isothermal processes at different temperatures. Here we can

see that all curves for these processes are almost parallel to

each other and no two curves can intersect as these are at

different temperatures these curves are called '''Isotherms". If a

gas undergone a process in which AT = 0 but then it is

obvious that during the process gas temperature is changing.
The PVcurve for such a process must intersect with the series

of isotherms shown in figure-3.32 such a process is shown in
figure-3.33 this type of a process can never be taken as

isothermal process, however in this process also internal

energy ofgas in its initial and final state are same.

Figure 3.31

Figure 3.32
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Isotherms

Figure 3.33

Heat Supplied and Work done in Isothermal Process .

As discussed, in isothermal process temperature of gas does
not change thus the total heat supplied to the gas is used in
doing work against surrounding. If during the process volume
of gas increases from to then pressure also very
simultaneously with it and as temperature remains constant
we can use Boyle's law to relate pressure and volume of the

gas as

P,V^ = P^V^ ...(3.37)

[IfP, and 7^2 initialand finalpressures ofgas]

Work done by the gas can be calculated as

f2

w= jpdr

[As P =

heating]

or

nRT

V

yi

w= j nRT

y
dV

at every intermediate state of gas during

W=nRT In

f P
= nRTln ...(3.38)

As change in internal energy in the process is zero, we have
heat supplied

Q= W=nRTln

= n RT In \ —
Pi
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Here we can also write

P^V^=P2V^ = hRT [As 7= constant]

Q=W=P^V^ln
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ofa gas pressure,volumeand its temperature.For examplefirst
we derive the process equation for an adiabatic process.

For adiabatic process the differential form of first law of

thermodynamics can be written as

= P2 V2 In
V,

1 y

...(3.39) or

dW^-dU

PdV=-nC„dT

3.5.4 Adiabatic Process

In this process no heat is supplied to the gaseous system
during the process. More preciselythe system remains thermally
insulated so that no heat can be given to it or can be taken out
from it during the process. Thus here AQ= 0 as well asc/Q = 0.

If no heat is supplied to a gas then according to first law of
thermodynamics, during the process we have

dlV+ciU=0

or dW=-dU ...(3.40)

Equation-(3.40) shows that if a gas expands in such a process
or work is done by the gas, then by the same amount internal"
energy of gas decreases. It is obvious that if gas is doing work
against surrounding then the amount of energy required in
this work is extracted from the internal energy ofgas as there is

no external heat supply. This is called adiabatic expansion and
in adiabaticexpansion alwaysthe gas is cooled. Similarlywhen
some external work is done on the gas, by the same amount its
internal energy must increase as there is no rejection ofheat in
adiabatic process. Thus in adiabatic compression always gas
temperature increases.

Indicator Diagram for an adiabatic process

To plot an indicator diagram we must have the relation in
pressure and volume of a gas undergoing the process at one
of its intermediate state during the process or the process
equation for the process. In previous three standard
thermodynamicprocesses,the process equations are directly
given by the gas laws. Nowwe first discusshowto obtain the
process equation in a general thermodynamic process.

How to derive the process equation for a thermodynamic
process

In a general thermodynamic process to derive its process
equation, we generally try to develop a relation in heat, work
and change in internal energy for the process and then solve
this relation with differential form of gas law to obtain the

desired relation in any two of the thermodynamic parameters

or

n R
PdV=- dT

y-1
...(3.41)

Equation-(3.41) is the differential form of first law of

thermodynamics in terms ofgas parameters pressure, volume

and temperature.

Differential form ofgas law can be written as

PdV+ VdP = nRdT

Now from equation-(3.41) and (3.42), we get

PdV+VdP = (\-y)PdV

VdP= -yPdV

If-4
dV

V

...(3.42)

...(3.43)or

or

or

or

or

or

lnP = -yln V+C

[C constant of integration]

lnPV'! = C

PV'f = constant ... (3.44)

Equation-(3.44) shows how pressure of gas vary with its
volume during the process. From equation-(3.43) wecan get

the slope ofPKcurve plotted according to equation-(3.44) as

dV

f T)\

:_y
V

...(3.45)

Equation-(3.45) gives the slope of the PF-curve plotted for a
gas undergone an adiabatic process. Similarly we can find the
slopeof an isothermalcurveby differentialformof gas law as

PdV+ VdP^O

[As T= constant in an isothermal process]

or

dP

dV
...(3.46)



118

Comparing this with equation-(3.45). We can see that in
magnitudeslopeof an adiabaticcurveisy timesmore then the
slope ofan isothermal curve as

dp dP

dV adiabatic
= y

dV isothermal
processprocess

. ...(3.47)

From equation-(3.47) wecan statequalitativelythat an adiabatic
curve is always steeper then an isothermal curve. If we note
the values ofy for a gas then it is maximum for a monoatomic
gas. If we compare the isothermal and adiabatic curves for
different types of gases starting with same initial state ofa gas,

we can see that the curve of a monoatomic gas in adiabatic
process is the steepest and the curve for an isothermal process
(independent from y) for a gas is having least slope. Figure-

3.34 shows the comparison. We can also note that the work
done, the area below theP- Kcurve is minimum for the steepest
graph.

for isothermal curve

p,v,^p,y.

y.=1.67 y=1.4 y=1.3

Figure 3.34

We have derived that the process equation for an adiabatic
process, which can be written as

PV^ = constant

From gas law we can write

nRT

Thus

or

nRT

r

fy7-i = constant

P =
V

V = constant

Similarlyvolume ofgas can be written as

nRT
V=——

or yrpi Y= constant

...(3.48)

...•(3.49)

...(3.50)

Equation-(3.48), (3.49) and (3.50) represent the same process
equation for an adiabatic process in terms of different gas
parameters.

One more important point students should keep in mind that in
nature if a process occurs very fast, like bursting of a tyre,
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sudden compression or expansion ofa gas, these are regarded
as approximatelyan adiabaticprocessas flowofheat is a slow
and gradual process. It is assumed that in sudden
thermodynamic changes, there is no sufficient time available
so hardly any heat flow can take place. Similarly if a
thermodynamic process is very slow and it is given that the
systemis in goodthermal contact with the surrounding then in
such processes it is assumed that during the process gas
remains in thermal equilibrium with the surrounding and thus it
can be regarded as an isothermal process.

Heat Supplied in Adiabatic Process

We've discussed that in an adiabatic process no heat flow

takes place between system and surrounding during the
process (expansion or compression) thus

e-0

Work done and change in internal energy in adiabatic process

As already discussed, according to first law ofthermodynamics
the amount of work done by gas in an adiabatic process is
equal to the negative of change in internal energy between

final and initial state of the process. We know that internal
energy is a state function thus does not depend as to how the

state of a gas is changed. If gas temperatures are T^ and T2
before and after the process or in its initial and final states then
the change (increase) in internal energy can be given as

f ^fnR
dT

nR

y-1
(Ty-T,)

Thus is adiabatic process work done by the gas can be written

as

or

W=-AU=-
nR

y-1

PlV,-P2V2''
W=

y-1

[AsP,K, = rtr, andP^ V^^nR T^]

These four process we've discussed are the most common
processes realized in practice. Biit initially we've discussed
that there can be infinite ways ofheating a gas are there thus

there is no limitation on number of thermodynamic processes
for a gas. Now we first take few examples to understand the
above discussed processes in details then we will discuss a

(T2-T,)

...(3.51)
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general thermodynamic process named polytropic process,
there after we'll see that the above four processes are also the

special cases of polytropic process.

# Illustrative Example 3.20

The volume ofan ideal diatomic gas with y = 1.5 is changed
adiabatically from 16 litre to 12 litre. Find the ratio ofthe final
and initial pressures and temperatures.

Solution

We know in an adiabatic process pressure and volume of
different states ofa gas are related as

Thus here =

or

>'2 )

12

1.5 .4M.5
j\ =1.533

Similarly in an adiabatic process gas volume and temperature

of its different states are related as

or

'-1T^vy-^ = T^VJ-

Fi

2 y

16

12

0.5

§ Illustrative Example 3.21

4

v3y
= 1.153

A sample of diatomic gas with y = 1.5 is compressed from a
volume of 1600 cc to 400 cc adiabatically. The initial pressure

ofgaswas 1.5x10^ Pa.Findthe final pressure and workdone
by the gas in the process.

Solution

We know in an adiabatic process, pressure and volume ofgas
of its different sates are related as

or ^2 = V^2

f1600Y
400 J X 1.5 X 105

119

= (4)'-5x 1.5x105

-1.2x lO^Pa

For an adiabatic process work done by a gas is given as

• p^y^-PiVi
w=

y-l

1.5x10^ xlbOOxlO"^ -1.2x10^ x400xl0"^

240-480

0.5

1.5-1

= -480J

Here work done by gas comes out a negative value thus we
can state that as gas is being compressed, work is done on the
gas and so work done by gas is - 480 J.

# Illustrative Example 3.22

Twomoles of a certain ideal gas at temperature = 300 K were
cooled isochorically so that the gas pressure reduced
T) = 2.0 times. Then, as a result ofthe isobaric process, the gas
expanded till its temperature get back to the initial value. Find
the total amount of heat absorbed by the gas in this process.

Solution

In the first process, under isochoric process W= 0 (as AF= 0).
From gas law, if the pressure is reduced to t) times, then the
temperature is also reduced to t) times i.e., the new
temperature becomes Tq/t).

Thus from first law ofthermodynamics,'we have

or

nR
g,=At/, = «C^AT= — AT

e.=
nR

y-l
^0 f

- I A
"^7;)(i-n)

Ti(y-l)

During second process (imder isobaric process), workdone is
equal io PSV=nR AT. And fromfirst lawof thermodynamics,
we have

nRAT
a = Af/, + r nRAT^2 2 2 Y-l

1
= nRAT •+1

y-l

nRy

y-l
'p (j
^0

= nRAT
y-l

ffj?y(T1-l)

Ti(y-l)
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Now total amount of heat supplied is

Q=Q^^Q^

_ nRT^ (1-Ti) ni;y(Ti-l)
ri(Y-l) Ti(y-i)

. nj
= nRT.

« = 2,/? =8.3, 7jj = 300A!'andri =2

2=2x 8.3 x300! 1-^jj
Here we have

Thus

or = 24901 = 2.5 kJ.

# Illustrative Example 3.23

One mole of a gas is isothermally expanded at 2TC till the
volume is doubled. Then it is adiabatically compressed to its
original volume. Find the total work done.

(Y= 1.4 and7; = 8.4joule/mole/°K).

Solution

In case of isothermal expansion, the workdone is given by

dW^=RT.ln{Vj.lV)

Thermodynamics Laws & Specific Heats of Gases

Total workdone

= -(M-l) (395.85^300)

1992.24 J

= -1728.47-1992.24

=-263.11 J.

# Illustrative Example 3.24

Calculate the work done when one mole ofan ideal monoatomic

gas is compressed adiabatically. The initial pressure and volume

ofthegasare 10^ N/m^ and6 litre respectively. Thefinal volume
ofthe gas is 2 litres. Molar specific heat ofthe gas at constant
volume is 3R/2.

Solution

For an adiabatic change

p vy = p yy

or P = P

<^2

HerePj =10^N/m^, I |̂ =61itre, I^2'̂ 21itreandforamonoatocmic
gas, we have

Here R = 8.314, T= 21 °C = 273 + 27 = 300 % 3R

3R 5R

or i/r,=8.314x300x/rt(2) and

= 8.314x300x0.693 5R/2 5
U1

^ CL-i/ 3R/2 3
= 1728.48 J.

Now the gas is adiabaticallycompressedto its original volume.
Initially at the beginning of adiabatic compression, the
temperature of the gas is 300 K and at the end of adiabatic

compression, the temperature becomes Tj because the
temperature is changed. The initial volume of the gas is 2V^
and after compression it again becomes the original volume
i.e., v.. For an adiabatic process, we know temperature and

volume are related as

T^

or 300 X(2 F;.)i'-' = r2x(j/.)7-i

or 300x(2)'''-' = r2(l)'-^-i

or 7^2 =300 X(2)0-'' =395.85 K

Workdone during adiabatic process is

^2" (y_l) (^2~ |̂)

.5/3

Thus /',= I05x|- = 105 X(3)5/3

We know that work done on gas AlVin adiabatic change is
given by

P2V2-P,V,

Y-I

^ 10^x(3)^^^x(2xl0"^)-I0^x(6xr0"^)
(5/3)-l

[Here V.^ =2 litre =2 x 10"^ and = 6litre=6x 10"^ m^]

2xI02[(3)5/5_3j

(2/3)-

2xl0^[6.19-3]
(2/3)

= 957J.

= 3 X102x(3.19)
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# Illustrative Example 3.25

An ideal gas at 75 cm mercury pressure is compressed
isotliermallyuntil its volume is reduced to three quarters of its
original volume. It is then allowed to expand adiabatically to a
volume 20% greater than its original volume. If the initial
temperature of the gas is 17 °C,calculate the final pressure and
temperature (y= 1.5).

Solution

First of all the gas is compressed isothermally. UsingBoyle's
law

or

HereP, = 75 cm ofmercuryand ^2" T

Thus
75^1 .

" (3/4) =100 cm ofmercury

The gas is now expanded adiabatically to 20% greater of its
original value. Under adiabatic change the pressure and volume

of gas are related as

or

Here

Thus

p VI

P =Pj-3
V-3 j

3 120
V = — V and V V2 4 ^3 100 '

V 4 ,

1.5
100

P3=I00x
120K

ly

= 100x1-

1.5

\ 5 1
X —

UJ

1.5

=100X(-

- 100 X0.494=49.4 cm ofmercury

Let the final temperature after adiabatic change be then from
the relation of temperature and volume in an adiabatic process,
we have

1.5

Now T^V^y-^ = T^Vy-^

7-,= 17"C =(273+27) = 290 K

Now
V,

NY-l

= 290x
3K.

= 290x

1.5-1

121

/ n1.5-I
100

120KI J

= 229.3 K

Hencethe final temperature will be- 43.7

HIllustrative Example 3.26

One mole of a certain ideal gas is contained under a weight
lesspiston of a vertical cylinderat a temperature T. The space
over the piston opens into the atmosphere. What work has to

beperformedin order to increaseisothermallythe gas volume
under the piston t| times by slowly raising the piston ? The
friction of the piston against the cylinder walls is negligibly
small.

Solution

As gas expands from its initial volume (say F) to rj time of
initial volume (t| V) we can say that work is done by the gas in
this expansion.As this expansion is isothermal,workdone by
the gas is simply given as

f
W=nRTln

Heren=l mole. 1^2 = •ft Fj thus

RTln Ti ...(3.52)

Asgas is expanding, it is doingworkand some external agent
is pulling the piston up to increase the volume of gas we can
say that gas is supporting the external agent and atmosphere
is opposingthis expansion thus work is done on atmosphere.
As atmospheric pressure to be constant, and change in volume
of gas is from Kto qF, the work done on atmosphere is

Initially the piston was in equilibrium thus gas pressure was
equal to atmospheric pressure so, we have

or

PV=RT

Knn=-Rny\-\)

[As n = 1 mole]

...(3.53)
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If is the work donebyexternal agent in pulling the gas here
we must have

^exf + ^gos\ ~ IWatm\

w =IV -W
exi aim gas

...(3.54)

W^=RT{n-l)~RTIrtT\

Here equation-(3.54) the basic equation we've encountered
several times in mechanics as ifsome work is being done then
at least two objectsare to be involved in the system, one who
is doing the work (energy supplier) and the other on which
work is done (energy accepter). Only one body can never do
anywork. Thiswe'll discuss in next section andthen we'll take
some more examples on such concepts.

3.6 Free Expansion of a Gas

When heat is added to a thermodynamics system, it undergoes
a change of state which depends on the path from the initial
state to final state. We take an example of it. Figure-3.35 shows
an ideal gas contained in a cylinder with a piston having an
initialvolumeof5 litreat temperature 300K. Wewant to increase
its volume from 5 litre to 8 litre. We put this cylinder on to a
heater at same temperature 300 K Heater supplies heat to the
gas and the gas expands slowly and after expending in the
slow and isobaric manner, the gas reaches its final volume of8
litre. In this process gas absorbs a definite amount ofheat.

*
m

• / J ' ^

' 8;0 litre

, 5;0.liffe

wm

Heater

at 300 K

Figure 3.35

CMm

Heater

at 300 K

Figure-3.36 showsa differentprocess leading to similar final
state. In this case an insulated cylinder is divided in two parts

by a thin massless fixed piston. The volume of lower
compartment is 5.0 litre and that of upper is 3.0 litre. In the
lower part we place the same amount ofthe same gas used in
previous case at same temperature 300 K. The initial state is
same as before. In the upper part there is vacuum or no pressure
region. If we release the piston. It undergoes a sudden
expansion due to vacuum on other side and the gas fills the
whole space of 8.0 litre volume of cylinder rapidly. In this
expansion we can see that no heat is supplied to the gas as
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walls are insulated. During such an expansion gas does no
work because it is not pushing any thing during expansion or
in this case there is nothing (vacuum) on which work can be
done. Thus if no heat is supplied and no work is done by the

gas, its internal energy will also remain constant. Such an
expansion of gas is called "free expansion'''' of gas.As during
free expansion temperature of gas remains constant, Boyle's
law will remain valid in such cafees; thus

Here subscript 1 and 2 are used for the state of gas beforeand
after the free expansion.

3.0 litre

Vacuum

y/////////////\

5.0 litre

gas

at 300 K

Figure 3.36

#Illustrative Example 3.27

at 300 K

Figure-3.37 showsa cylindricalcontainerofvolume V. Whose
walls are adiabatic. Initially a light adiabatic piston dividesthe
container in two equal parts as shown. In left part there is n
moles of an ideal gas with adiabatic exponent y is filled at
temperature and in other part there is vacuum.Ifthe piston
is released, the gas fillsthe wholecontainer uniformly. Find the
final pressured and temperature of gas. Now if the piston is
slowly displacedexternallybackto its initialposition. Findthe
final pressure and temperatureofgas.

"Gas

/////////////,

Figure 3.37

Solution

When the piston is releasedthe gas expands to fill the complete
volume ofcontainer. As there is nothing in the other part of
cylinder, this is the free expansion of gas hence no work is
done by the gas and as container is thermally insulated from
surrounding, the gas temperature remains constant and thus
according to Boyle's Law as the volume of gas is doubled so
its final pressure is reduced to half. Thus

P=fL-
V 2
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Initial pressure P. of gas can begivenbygas lawas

nRT

Thus, we have
f 2 V

Now if piston is-displaced back to its initial position, this is
adiabatic compression of gas in which gas volume decreases

tohalfi.e. %. As we know in an adiabatic process, pressure
and volume ofgas in different states are related as

Here

and

p,v:<=p,v^

nRT

^2 = Y thus

V

P = P^2 ^1

=P, (2)^

=(2)y
nRT

V

Similarlyin adiabatic process, gasvolume and temperature in
different states are related as

or

Here

and

T = TI2 -<1
y

NY-l

r, = r, v^ = v

V

-1T^ = T{2)y

# Illustrative Example 3.28

There are two thermally insulated vessel. One with 0.025 moles
of helium and other with n moles ofhydrogen. Initially both
the gasesare at room temperature.Nowequal amount of heat
is supplied to both the vessels. It is found that in both the
gases temperature rises by same amount. Find the number of

moles of hydrogen in second vessel

Solution

As the gases arc enclosed in closed vessels, the heating can
be taken as isochoric heating and as heat supplied to both

123 :

vessels are same, we have

or

Q=n^Cy^^T=n^

3 5
RAT^n — R^T

2 2

[As for He, Cy^ = Rand Cy^= %R]

0.025x3
or n = = 0.015 mole

# Illustrative Example 3.29

There are two vessels. Each of them contains one mole of a

monatomicidealgas. Initial volume ofthegas in eachvesselis
8.3 X10'̂ m^ at2TC,Equal amount ofheat issupplied toeach
vessel. In one of the vessels, the volume of the gas is doubled
without change in its internal energy, whereas the volume of
the gas is held constant in the second vessel. The vessels are
now connected to allow free mixing of the gas. Find the final
temperature and pressure of the combined gas system.

Solution

According to first law of thermodynamics

AQ=AU+AW

For vessel I, A(/=0 [As no change in temperature]

or AQ = AW

Vl

e=or

From gas law, we have

Vl

e=! nRT
dV =nRTln

V,

= nRTIn{2) [AsF2 = 2Kj] ...(3.55)

For second vessel,A1F=0 (as volume is constant)

Thus heat supplied is given as

Q= nCyAT=n

[Asformonoatomicgas Cy- 3/2 . i?]

From equation-(3.55)and (3.56),we get

nRTln{2)=2n fAT

«I Ar ...(3.56)
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or AT-- - X300 X 0.693 = 138.6 K

This is the change in the temperature of the gas of second
vessel.

Now the final temperature of the gas in secondvessel is

T' = T+ AT= 300 +13 8.6 = 43 8.6 K

Let after mixing, JJ-and Pj-he the final temperature and pressure
respectively. Then as molesare equal, we have

T + iT + AT) 300 + 438.6
^ ' 2

= 369.3 K

For a gas system from gas law, we have

Pj-Vj^nR

or

nRTf 2x8.3x369.3

^ Vf 2x8.3x10"^+8.3x10"^

= 2.46x lO^N/m^

# Illustrative Example 3.30

Twomoles of helium gas undergo a cyclicprocess as shown in
figure-3.38. Assuming the gas to be ideal, calculate the
following quantities in this process.

P

2 atm.

1 atm

A B

D c

300 K 400 K '

Figure 3.38

(a) The net change in the heat energy.

(b) The net work done.

(c) The net change in internal energy.

Solution

As we know in a cyclic process, the change in heat energy or
heat supplied to the gas is equal to the net work done by the
gas.

Here AB is isobaric process. Hence work done during this
process from ^ to 5 is

W^, = P{V^-V,) = nRiT^-T,)

or X8.314 x (400-300)= 1662.8joule
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Workdoneduring isothermalprocessfrom5 to C

W^c =nR ln{VjV^) = nR In {P^/P^)

= 2x8.3I4x400x/«(2)

= 2x8.314x400x0.693

=4610.2 joule

Workdoneduring isobaric process from C to D

^ - T'c) =2 X8.314 X(300 -400)

=-1662.8 joule

Workdone during isothermalprocessfromDtoA

W^, = nRT^ln{P^/P^)

= nRT^ln (2)

=-2x8.314x300x0.693

=-3457.7jQule

Net workdone

=

= 1662.8 + 4610.2-1662.5-3457.7

= 1152.5 joule

Now from first law ofthermodynamics

AQ=AU+AW

Here AU= 0, thus we have

AQ= AfV=1152.5joule

So the heat given to the system is 1152.5joule

Asthegasreturnsto itsoriginal state, hence thereis nochange
in internal energy.

# Illustrative Example3.31

Two moles ofhelium gas (y= 5/3) are initially at temperature
27 "Cand occupya volumeof20 litres.The gas is firstexpanded
at constant pressure until the volume is doubled. Then it
undergoes an adiabatic change until the temperature returns
to its initial value.

(i) Sketch the process on a P- F diagram.

(ii) What are the final volume and pressure of the gas ?

(iii) What is the work done by the gas ?

Solution

For a perfect gas

PV=nRT
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Given that

2.5 X 10"

0.44 X 10

V=20 litres

-20 X 10-3

7'=27 **C = 300 Kand number ofmolecules

rt =2

Thus initial pressure is given as

fiRT 2x8.3x300
p=

y 20x10'^

= 2.5x105 N/m2

(i) Figure-3.39 shows the indicator diagram of the complete
process.

P(N/m2)-

A B_
(/", n

(P", n

20 X IC' 40 X 10 113.14 X 10"

Figure 3.39

(ii) At point B,

Pressure P' =P=2.5 x lO^N/m^,

f" = 2F=40xlO-3m3

As pressure is constant in the process ^5, making its volume
doubled, its temperature will also be doubled.

Thus temperature at point B'lsT' = 600 K

The gas now undergoes adiabatic expansion to cool down to

r" = r-300K

We know for an adiabatic process T ' = constant

T' = j" (Vy-^

F(/h')

T") 1,300J
=(2)3/2 =272

Thus final volume is

K"-(2V2)K'

= 2x i.414x40x 10-3

= 113.14 X 10-3 m3

Similarly final pressure is given byprocess equation as

p' yy= p" p'y

or

f V'

7"

= 2.5 X 105 x

= 4.42x lO'^Pa

^ 40x10'^
-3

113.14x10

(iii) Work done under isobaric process AB is

or

or

or

W^=P^V

fPj =2.5 X105 X(40-20) X10-3

=4980J

Workdone during adiabatic process BC is given as

or W.= —[P-TA
7-1

2x8.3

[l-(5/3)]
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5/3

or [300-600] =7470J

Total work done = 1^1 + 1^2=4980 + 7470

-12450J

# Illustrative Example 3.32

Figure-3.40showson adiabaticcylindricalcontainer ofvolume
Fq divided byan adiabatic smooth piston in two equal parts.

An ideal gas(=y) isata pressure P^ andtemperature T,

in leftpart andgas at pressure P^and temperature in right
part. The piston is slowly displaced and released at a position
where it can stay in equilibrium. Find the final pressure, volume
and temperature ofthe two parts.

pj, P.T,

Figure 3.40

Solution

As finally the piston is in equilibrium, both the gases must be
atsame pressure Pj.Let the displacement ofpiston be in final
state X and if A is the area of cross-section of the piston the
final volumes ofthe left and right part finally can be given by
figure-3.41 as

and V.= ^-Ax
^ 2
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Pf^u PfPif

Figure 3.41

As it is giventhat the containerwalls and piston are adiabatic
in left side the gas undergoes adiabatic expansion and on right
side the gas undergoes adiabatic compressive. Thus we have
for initial and final state ofgas on left side

Y / NY

' I, 2

Similarly for gas on right side, we have

Dividing equation-(3.57) by (3.58), we get

or
-Ax p\iy =

or

Nowfrora equation-(3.57)

Pr

or

or Pr

or Pr

2

•\Y

oX_pK

Xpr+p.

Vo . Vo
Pi -Pi

2 2 (pK+pK

PAp/'+p/-'

(2)'X

p/'+p/'"''̂

...(3.57)

...(3.58)
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le final temperatures ofthe t\
respectively then for left part, we have
Similarly the final temperatures ofthe two parts are Ty and

or

or

T-1

V

'H +Io.
^ ^ ^p/'+p/'

y-1

Y-l

'p/^-p/^j

Y-l

X
pr^Pz

Ti
T = —
/ P

Similarly for right part of gas, we have

or

or

r TP NY-i

tJ

T ~
2/

Y-l

-Ax

TiH
Y-l

Vo Vo
p/1 _ p/
M ^2

2 2

T = —
f A

p̂/-<+p/'
Y-1

# Illustrative Example 3.33

...(3.59)

Y-l

...(3.60)

Y-l

A piston can freely move inside a horizontal cylinder closed
from both ends. Initially, the piston separates the inside space
ofthe cylinder intotwoequal partseach ofvolume F^, in which
an idealgasis contained underthe same pressure Pq andat the
same temperature. What work has to be performed in order to
increase isothermally the volume of one part of gas Tj times
compared to that of the other by slowly moving the piston ?

Solution

As the piston is displaced externally some external work is
done in the process. Ifpiston is displaced toward right the gas
on left side expands and does some work. Similarly gas on
right is compressed and on it work is done. As discussed earlier,
here we have
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I^gasin/e/i parfj | ^exl\ \^gas in right pan\ ...(3.61)

Here | |=magnitude ofwork done by gas in left part

IW^i I=magnitude ofwork done by external agent

Î gas in right part \=magnitude ofwork done on gas in right part

It is giventhat initialvolume ofboth theparts is and in the
process final volume of one part is r\ times that of the other
part. If the final volume of rightpart is Vthenthat of leftpart
will become x] V. Astotal volume ofcontainer is2V^, then we
have

V+r\V=^2V.

or
2^0
tl + l

Forgas in leftpartworkdone bygas in isothermal expansion is

r|F

^0

[As fromgas law forgas on leftpart K = nH 7]

= P,F,/^
2r]

Ti + 1
...(3.62)

Similarlyforgasin rightpart,workdoneonthegas in isothermal
compression is

Kngas =-^r/,~

= P,V,ln

=-^0^0 I 2

II-fl

il + l

Nowfromequation-(3.61), (3.62)and (3.63),wehave

I^exl I~]^by gas in left part I I^on gas in right part j

= P,V,ln (Tl + 1)'
4r\
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Practice Exercise 3.3
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(1) One mole of an ideal gas undergoes a process whose
process equation is given as

Pc
P =

Here P^and Vq areconstant. When thevolume ofgas ischanged
from Vq to2 Vq, find thechange in temperature ofthegas.

11^
^ 10/? ^

(li) For a thermodynamic system the pressure, volume and
temperature are related as new gas law given as

P =
aT'

V

Herea is a constant. Find the work done bythe system in this
process when pressure remains constant and its temperature
changes from to2 T^.

[3 aTl]

(iii) Temperature of 1 mole of an ideal gas is increased from
300 K to 310 K under isochoric process. Heatsupplied to the
gas in this process is 25 R. What amount of work has to be done
by the gas if temperature of the gas decreases from 310 K to
300 K adiabatically.

[25 R]

(iv) During the adiabatic expansion of 2 moles of a gas, the
increase in internal energywas found to be equal to -100 J.
Find the workdoneby the gas in the process.

[100 J]

(v) Onelitre ofan idealgas(y= 1.5) at 300K temperature and
10^ Pa pressure, is suddenly compressed tohalf of its original
volume. Find the final temperature ofthe gas. It is then cooled
to300Kbyisobaric process andthenit is expanded isothermally
to achieve its original volume of 1 litre. Calculate the work done
by the gas in each process and also calculate the total work
done in the cycle.

[424.26K, - 82.84J, - 41.4J, 103.95J, - 20.29J]
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(vi) Three identical diatomic gases (y= 1.5) are enclosed in
three identical containers but at different pressures and same
temperatures. These gases are expanded to double their
volumes. In first containertheprocessis isothermal, in second
container theprocess isadiabatic andin thirdcontainer process
is isobaric. Ifthefinal pressures areequal inthethree containers,
find the ratio of the initial pressures in the three containers.

[2 : 2V2 : 1]

(vii) Calculate the workdonewhen 1mole of a perfectgas is
compressed adiabatically. The initial pressure and volume of
thegas are 10^ N/m^ and6 litresrespectively. Thefinal volume
is 2 litres. Molar specificheat ofthe gas at constantvolume is
3R

2 '

[- 974.07 J]

(vlii) An ideal di-atomic gas is heated at constant pressure
such that it performs a work W=2.0 J. Findtheamount ofheat
supplied.

[7 J]

(ix) Two identical gases whose adiabatic exponent isyarefilled
in two identical containers at equal pressures. In both the
containersthe volumeof gas is doubled. In first container it is
done by an isothermal process and in second container it is
done by adiabatic process. Find the condition for which the
work done by the gas in the twoexpansion process is same.

[1 - 2'-T = (y- 1) In 2]

(x) Arectangular boxshown in thefigure-3.42 hasa partition
which can slide without friction along the length of the box.
Initiallyeach of the twochambersof the boxhas one moleofa

monatomic gas at a pressure Pq, volume Vq, and

temperamre T^. The chamber on the left isslowly heated by an
electric heater. The walls of the box and the partition are
thermally insulated. Heat loss through the lead wires is
negligible. The gas in the left chamber expands, pushingthe
partition until the final pressure in both chambers becomes

. Determine: (a) thefinal temperatureofthe gas in each

chamber, (b) the work done by the gas in the right chamber.

I '
I

Figure 3.42

9 7fl7 15
[(a)
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(xi) Onemole ofoxygen, initially at temperature T=290 Kis
compressed adiabatically sothat its pressure increases ti = 10
times. Find the final temperatureand work doneon it.

[559.90K, 5609.87J]

5.7 Polytropic Process

Apolytropic process isone in which themolar specific heatof
a gas during the process (heating) remains constant or does
not change with the gas parameters pressure, volume or
temperature. If fora polytropic process molarspecific heat is
taken C then according to first law of thermodynamics, we
have

or

or

or

or

dQ = dU+dW

nRdT
nCdT=

y-1
+ PdV

PdV

R PdV
C= +

C =

y—1 ndT

From gas law

PdV+ VdP = nRdT

From (3.63) and (3.64)

R RPdV

y-1 PdV^-VdP

...(3.63)

...(3.64)

...(3.65)

C-

V

R
-R

R
C-

P

y-1
VdP

y-1

' m-R

m

R
[Wliere m = C- —- = constant]

y-1

Integrating the expression, we get

m-R^ fdV

or

or

m

In PV

m ;•> V

m-R

[• dV _ edP

In V=-lnP+C^

[C,= integration constant]

m-R

= c

PV" = constant ...(3.66)

W y?
Where n = is another constant which is called

m

polytropic constant whose value depends on y of gas, gas
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constant R and the molar specific heat C of the process which
is taken a constant equation-(3.66) shows that if the process
equation of a process is represented in the form of
PV" = constant then it can be regarded as a polytropic process

and the molar specific heat for a polytropic process can be
defined by using first law of thermodynamics by equation-
(3.65) as

As

R
C =

Y-1 ' PdV + VdP

PV" = const we have

dpVn^„pVn-\ ^y=Q

^ nPdP-ydv

+
RPdV

...(3.67)
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(i) Isochoric Process

Weknow in an isochoric process, the process equation for the
process is

V= constant

The general equation for polytropic process PV" = constant,
approachesthis result whenn —><x) and in this case the molar
specificheat of the process is given byequation-(3.69) as

R R
C= +

As «-^00

y-1 \-n

C= — =Cy
y-I

or

From (3.67) and (3.68) we have

R
C = +

y-1

RPdV

PdV + V\ -—.dV
V

•••(3-68) Which isin favour ofthe process

(ii) Isobaric process

Here in isobaric process the process equation is given as

P = constant

or C =

or C =

R R

y-l l-n

(y-l)(l-n)

...(3.69)

...(3.70)

Equation-(3.69) and (3.70) givesthe molar heat capacityfora
general polytropic process. If the polytropic constant n is
known we can directly find the molar heat capacity C for the
respective process usingequation-(3.69) or (3.70) which directly
givesthe total amountof heat suppliedto a gas as if« molesof
gas are heated fi"om a temperature to then the total heat
supplied for the purpose is given as

Ti

Q= ^nCdT
T\

Q-nCiT^-T^) ...(3.71)

As internal energy change for any process can be given as

AU=nC^,(T^-T^) ...(3.72)

Thus work done in a polytropic process can be written from
equation-(3.72) and (3.73) as

From the general equation of polytropic process PV " =
constant, above equation is obtained by substituting
polytropic constant n = 0. Thus molar specific heat of this
process can be given by equation-(3.69) as

R . R
C +

or

y-1 1-/7

R
C= —7 +R = = Cp

y-1 ^

Hence it is also same as that used for constant pressure heating.

(Hi) Isothermal process

Here during the process temperature of system remains
constant thus the process equation is given as

PV= constant

From general equation of polytropic process here we can see
that for an isothermal process the polytropic constant « = 1.
Thus if we find molar specificheat for isothermal process from
equation-(3.65), we get

R R
C= +

y-1 \-nW=Q-AU

W-n(C-C,){T,^T,) ...(3.73) 'or C >00

This is also obvious that in isothermal process temperature of
gas never changes and molar heat capacity is the amount of
heat required to changethe temperatureforone moleof gasby
one degree. So if we continuously supply heat to a gas
infinitely then also its temperature will not change then it is
undergoing an isothermal process.

3.7.1 Standard Processes as a Special Case of Polytropic
Process

As discussed earlier the four standard processes are the special
cases of general polytropic processes. Now we discuss these
processes again in terms of polytropic process
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(iv) Adiabatic process

In previous section we've derived the process equation of an
adiabatic process, given as

PV^ = constant

Thus foran adiabaticprocess,the polytropicconstant is equal
to the adiabatic exponent ofthe gas,« = y. Now fromequation-
(3.69) we can see that the molar heat capacity for a gas in
adiabatic process is

^ R R
C= +

y-1 \~n

or C=0

Again here it is obvious that in an adiabatic expansion or
compression, temperature of gas changes without any supply
of heat. Thus in this process no heat is required to raise the
temperature ofgas.

3.7.2 Indicator Diagram For a Polytropic Process

The general process equation is

PV" = constant

or

I
—r
V"

We know if« = 1, it becomes an isothermal process, PF-curve
ofwhich is a rectangular hyperbola and the slope ofthe curve
is given as

dP
or

dV

dP

dV

Polytropic
Process

= -n

dP
= n

dV Isothermal

Process

...(3.74)

Thus for a process if polytropic constant n is more then unity
then this curve will be steeper then isothermal curve and if
n < 1then its slopewill be less then isothermal curve.Figure-3.43
shows various PF-curves for different value of n for some

standard and general processes.

Here n = 0

orn> 1

Figure 3.43

Isobaric Process

Isothermal Process

Adiabatic Process

Isochoric Process
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UIllustrative Example 3.34

An amount Q ofheat is added to a monoatomic ideal gas in a
thermodynamic process. In the process gas expands and does

awork ^ on its surrounding. Find the molar specific heat of
gas in this process.

Solution

From first law ofthermodynamics we have

Q=£sU+W

It is given that W= ^

Thus Q=MJ+%

or MJ=% ...(3.75)

IfC is the molar specific heat ofthe gas in this process then the
amount ofheat supplied can be given as

Q=nCM ...(3.76)
[IfATis rise in temperature ofgas]

For change in internal energy ofgas, we can write

AL'"=nC^Ar

or = /7

3R

V 2 ,
AF ...(3.77)

3R
[As for amonoatocm gas j]

Thus from equation-(3.75),(3.76) and (3.77)we have

1
nCy^T= — («CA7)

or C = 2Cj,= 3i?

^Illustrative Example 3.35

Anideal gashasa molar heatcapacity C^atconstant volume.
Find the molar heat capacity of this gas as a function of its
volume F, ifthe gas undergoes the following process :
(a) T= Tq ^ and (b) P = e"

Solution

(a) The process equation for the thermodynamic process is
given as

T= Fp ...(3.78)
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For a general thermodynamic process we know the molar heat
capacity is given by

RPdV

From gas law we can relate pressure and volume of gas as

nRT
P =

From equation-(3.74)

P 77^

Differentiating this equation, we get

PdV+ VdP^nRT^ae'̂ ^dV

From equation-(3.79), (3.80) and (3.81), we get

or

R dr

C= Cy+
nRTo a

R
c= c + —
^ O.V

...(3.80)

...(3.81)

...(3.82)

Euqation-(3.82) gives the molar specific heat of the gas
undergoing the given process and students should note that
this molar specific heat is given a function ofvolume of gas
thus this process is a nonpolytropic process.

(b) In this case the process equation is given as

...(3.83)

Differentiating, we get

dP=P^ae°-^dV ...(3.84)

If C is the molar specific heat of the gas in this process then
from equation-(3.79), (3.83) and (3.84) we have

R{P.e''"^)dV
C = C

/D .aVx jr, , r^/D ....aV

or r= r +
^ 1+aF

R
...(3.85)

Equation-(3.85) gives the molar heat capacity ofthe gas in the
given process and again we can say that this is also not a

polytropic process.

# Illustrative Example 3.36

An ideal gas is taken through a process in which the process
equation is given diS P = kV where k and a are positive
constants. Find the value ofa for which in this process molar
heat capacity becomes zero.
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Solution

For a given polytropic process PV" = constant, we know the
molar heat capacity is given as

R R
C + ^

y-l l-n

In this process equation can be rewritten as

py-o. = ^ (a constant)

Thus in this process value of polytropic constant« is - a. So
molar heat capacity ofgas in this process is directly given as

C- — —
y-I 1+ a

Given that C = 0

or on solving we get

a=-y.

# Illustrative Example 3.37

n moles of a monoatomic ideal gas undergone in a
thermodynamic process along the path shown in figure-3.44
from state-1 tostate-2. Thegaspressure in state-1 isP^. Find
the amount of heat supplied to the gas in this process and
work done by the gas in the process.

P

Figure 3.44

Solution

From indicator diagram shown in figure-3.34 at is clear that the

process equation of this process can be written as

P=kV or (constant) ...(3.86)

[As PVcurve is a straight line passing through origin]

Thus here from equation-(3.86), we can say that the process is

polytropic with the value ofpolytropic constant n = - 1. So the
molar heat capacity of the gas can be given as

R
c-c,+ —

or

1>R R
C= —+ —=2i?

2 2

3R
[As for a monoatomic gas Cy= ]
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If in the processgas temperaturesat state-1 and state-2 are 7",
and T2 then these can be obtained bygas law as

For state-1

PV=nRT

r =Ail
1 nR

For this process from equation-{3.86), we have

or

or

or

-^1 _
V, V2

^ P.2 -0

Thus for state-2 from gas law

r.=
P1V2 V2P0

2 fjR nRV^

If heat supplied in the process in changing the gas state from

1 to 2 is Q, then it is given as

Q=nC(T2~T,)

r2

e = «(2R)
ViP, PoVi
nRVi nR

Q-2P,
K

Work done in a polytropic process is given by

W=niC-Cy)iT2-T^)

or W=n 2R
3R

( 7J-2

nRV^ nR

or
2

V'-V'

Work done in the process can also be obtained by the area

below the PVcurve (in figure-3.45, shaded area), can be given
as

Figure 3.45
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W=-

or

# Illustrative Example 3.38

2 ^V{-V.

V,

One mole of an ideal gas with heat capacity at constant

pressureCpundergoes the process r= a 7, where T^and
a are constant. Find

(a) heat capacity ofthe gas as a function of its volume, i

(b) the amount of heat transferred to the gas, if its volume •
increased from K, to Fj.

Solution

The process equation for the thermodynamic process is given
as

F=ro + aF ...(3.87)

From gas law we have

RT R
P= — = y(T^ +aV) ...(3.88)

[As n = i mole]

(a) The heat capacity of a gas in a thermodynamic process is
given as

RPdV
r= c +

f PdV + VdP •

Differentiating equation-(3.88), we get

PdV+VdP=aRdV

Now from equation-(3.88), (3.89) and (3.90), we have

R

F
C=C,A

R

R

(To + aF)

aRdV

...(3.89) .

...(3.90)

dV

or c=a+
a

(T, + aV)V ^'0

or

or

RTq
c= c + —^
^ aV

C=C„+
RT,

P aV

+ R

[As Cp= Cy+R]

(b) As volume of gas increases from F^ to the
corresponding temperatures of the gas are
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and

The amount of heat supplied to the gas can be given as

Tl

Q= ^dQ =JCdT [As n=1mole]

or

•z

Q=\ Cp +
Rn

aV
dT

From the given relation we have

Thus

V=
T-T,

a

e=] +

T-Tn
dT

-C,{T^-T^) + RT^ln

= CpaiV^-V;) + RT^ln

# Illustrative Example 3.39

T2-T0

n-To

V,

One mole of an ideal gas with adiabatic exponent y whose
pressurechanges with volumeas P= aV, where a isa constant,
is expanded so that its volume increases r) times. Find the
change in internal energy and heat capacity of the gas. Initial
volume ofgas is Vq.

Solution

The processequationof the thermodynamic processin which
gas is undergoing is given as

P = a V

Rearranging we can wite

PV~^ = a (a constant)

...(3.91)

...(3.92)

Equation-(3.92) shows that this is a polytropic process with
the value of polytropic constant n--\. Thus the molar heat
capacity of gas in this process can be given as

or

C= +
y—1' 1—«

y-1 2

y + 1

y-1

[«=-!]
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Ifduringtheprocess, temperature ofgaschanges from T, to
then change in internal energy of gas is given as

MJ=CyM

R

[As n= 1 mole]

y-1
(r^-r,) [AsC^=—] ...(3.93)

Here it isgiven that initialand finalvolumes of thegas are Vq
and T) Vq. Thus the respective pressures in initial and final
states are

and P = aV,

P=aT\ Kg

Thus from gas law we can find initial and final temperatures as

P,r, aKo-Fo

and

T.=

T -
2 R

R R

P2V2 aqFo-TiKo

R
[As n= 1 mole]

Now from equation-(3.93), change in internal energy ofgas is
given as

AC/=
R

y-1

aVn

R R

y-1

# Illustrative Example 3.40

One mole ofan ideal gas, whoseadiabatic exponent equal toy,
is expanded so that the amount of heat transferred to the gas is
equal to the decrease in internal energy. Find;

(a) the molar heat capacity of the gas in this process,

(b) the equation of the process in the variables T, V\

(c) the work performed byone mole ofthe gas when its volume
increasest| times if the initial temperatureof gas is Tq.

Solution

(a) it is given that in the thermodynamic process amount of
heat supplied is equal to the decrease in internal energy ofgas
thus we have in the process

dU=-dQ

or

or

nCydT=-nCdT

C=-C^=- ,
y-1

R
...(3.94)
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(b) Now from first law of thermodynamics, we have in this
process

dQ = dU-^dW

2dQ = dW

dT^PdV

or

or
InR

Y-1
...(3.95)

Wehave differential formof gas law

PdV+VdpA~~\pdV

or

or

or

1+ Y

K 2

f1+y1 dV dP

PdV=- VdP

V 2 ) V P

Integrating this equation we get

1+Y^ r dV _ rdP
2 JJ F J~F

fill]
In ^ ^ =-lnP+C

(Itl]
PV^ ^ ^ = constant

P =
V

Now from equation-(3)

I

or

^nRT^ f-ial
^ = constant

constant

...(3.96)

As we require processequationin Tand F,from gas law

nRT

...(3.97)

[As nR = constant]

Process equation inP and Fwhich isgivenin equation-(3.96)
can be directly obtained by the molar heat capacity as from
equation-(3.94). We can see that the value of C is a constant
not dependingon pressure,volumeor temperatureofgas thus
we can say that this process is a polytropic process whose
molar specific heat can be given as

C= r +
Y^l \-n Y"!

Where n is the polytropic constant of the process

R

or

or

or

or
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R 2R

l-n Y-1

1
(!-«)--Y (Y-1)

2-2n= 1"Y

f'+Y« [ 2

Thus now it is obvious that the process equation of this
thermodynamic process in P and Vcan be simplygiven as

PV"= constant

f—1or py\ 2 constant

Which is same as equation-(3.92)

(c) The work done by a gas in a polytropic process can be
given as

W=niC-Cy)(T^-T^) ...(3.98)

Here initial temperature ofgas is given as Tq and the final
temperaturecan be obtained fromequation-(3.97) for initial
and final state ofgas as

Here T, = and ^2 = 11 V^, thus

1^1 V2 ^2l-Y

Now from equation-(3.98), work done is

W=n(-Cy-C^)(T^-T,)

or

or

2R tL
-rj

W=
2RTa ^

[As n = 1 mole]
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Practice Exercise 3.4

(i) One mole of an ideal gas whose adiabatic exponent is y
undergoes a process in which the volume changes with

temperatures as , where a is constant. Find the amount

ofheat required to raise its temperature by AT.

RAT\

(ii) For the case of an idealgas find the equation of the process
(in the variables T, V) in which the molarheat capacityvaries
as:

(a) C=C^+ar;
(b) C=Cy+m
(c) C= Cy+aP, where a, P,and a areconstants.

[(a) Ve-^™ = const; (b) = const; (c) V- aT = const.]

(iii) A gas consisting of monatomic molecules (degrees of
fi-eedom = 3) was expanded in a polytropic process so that the
rate ofcollisions ofthe molecules against the vessel's wall did
not change. Find the molar heat capacity of the gas in the
process.

[2 R]

(iv) A gasconsisting ofrigiddiatomicmolecules wasexpanded
in a polytropic process so that the rate of collisions of the
molecules against the vessel's wall did not change. Find the
molar heat capacityof the gas in this process.

[3^]

(v) Anideal gashasanadiabatic exponent y. Insome process
its molarheatcapacityvariesas C = aJT,wherea is a constant.
Find:

(a) the work, performed by one mole of the gas during its
hating from the temperature Tq to the temperature r\ times
higher;

(b) the equation of the process in the variablesp, V.

[(a) a In 71 - RFq (ti - 1)/ (y- 1); (b)pFi'e°<r-iyp>'= const.]

(vi) The volume of a gas containing diatomic moleculeswas
increased r\ = 2 times in a polytropic processwith molar heat
capacityC- R. Howmanytimes will the rate of collision of
molecules against the wall ofvessel be reduced as a result of
this process ?

[2*"^ times]

(vii) Onemoleof an idealgas whoseadiabaticexponentequals
yundergoesa process in which the gas pressure relates to the
temperature as/?= aT°-, wherea and a are constants. Find:

135_^

(a) the work performed by the gas if its temperature gets an
increment AT,

(b) the molarheat capacityof the gas in this process; at what
value ofa will the heat capacity be negative ?

1(a) W= (1 - a) R^T; (b) + /? (1 - a); C<0 for a >7:7^](y-1) (Y-1)

(viii) A gas is taken fi-ora state-1 to state-2 fi-om two different
pathsAandBas shown in figure-3.46. Ifmolarheatcapacities
of the gas in the two paths are and respectively then
which molar heat capacity is greater.

Figure 3.46

[C»]

3.8 Second Law of Thermodynamics

Most of the thermodynaraic processes in nature proceed in
one direction but not in opposite direction, for example, we
know heat always flows fi"om a hot body to a colder body,
never the reverse. There are so many examples in which
mechanical energyis completelyconvertedinto heat and also
so many devices exist which convert heat partially into
mechanical energy. But till now there isno machine which can
convert heat completely into mechanical energy. Why ? The
answer to this question is the second law ofthermodynamics.
But before proceeding to second law of thermodynamics, we
first discuss some basic things related to that.

3.8.1 Reversible Processes

Thermodynamic processes that occur in nature are all
irreversibleprocesses.This implies that if a gas is taken from
its initial state to final state along a specifiedpath, in practical
nature it is not possibleto carry the gas back to its initial state
along the samepath in reversedirection. Reversible processes
are idealized in nature and can occur only when the system is
in thermal equilibrium within itselfand with its surroundings.
When two systemsare in thermal equilibrium,any change of
statethat takeplacecanbereversed bymakinga veryelemental
change in the conditions of these systems. For example, heat
flow between two bodies whose temperature differ by a very
small amount can be reversedbymaking a very small variation
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in their temperatures. This we'll discuss in details later. Thus
those processeswhich are reversibleare also calledequilibrium
processes. We know when a system is in thermal equilibrium,
no change of state takes place. As discussed, reversible
process is an idealization that can never be possible in practical
world.

But during a thermodynamic process if the process is carried
out very slowly so that it can be considered to be in thermal

equilibrium always or if it is of a quasi-static nature we can
make such processes approximately reversible and these
processes are called quasistatic processes. On the other hand
all relativelyfastprocesses or like heat flow with a temperature
difference, free expansion of gas or conversion of work to heat
are all irreversibleprocesses, these are called, non equilibrium
processes.

Now we'll discuss the second law of thermodynamics by
considering two broad classes of devices. Heat engines and
Refrigerators. Heatenginesarepartly successful in converting
heat into work, and refrigerators are partly successful in
transporting heat from colder to hotter bodies.

Earlier while discussing cyclic processes we've learned that
the clockwise cycles are called the heat engine cycles and
anticlockwise cycles are the refrigeration cycles. Now we
discuss both in details.

3.8.? Heat Engines

Any device that transforms heat partly into work or mechan ical
energy is called a heat engine. In a heat engine some quantity
of a substance undergoes inflow and outflow of heat,
expansion and compression and sometimes phase changes.
This substance used in heat engine is called working substance
or fuel.

The simplest heat engine is a thermodynamic system undergoes
a clockwisecyclic process. If the cycle is repeated periodically
it leaves the substance in the same state in which it started and

during the process some heat is supplied in the expansion
process and gas does some work and during compression part
of cycle, some work (lesser then first part) is done on the gas
and it rejects some heat to the surrounding, lesser then the
amount absorbed during expansion. Thus according to first
lawof thermodynamics the total workdonebythe gas is equal
to the amount ofheat supplied to the gas minus the heat which
is rejected by the gas during its compression to the initial
state.

A heat engine does not use the same substance and over the
cycles but it is changed after every cycle by some mechanism.
All heat engine absorb heat from a source at a relatively high
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temperature, perform some mechanical work and reject some
heat at relatively lower temperature. As engine is concerned,
the rejected heat is wasted.

When we analyse the heat engine, it helps to think of two
bodies with which the working substance of engine interact.
One is the heat source and other is the heat sink. Heat source

is the one which can supply large amount ofheat to the working
substance during first part ofits cycle and heat sink is the one
to which the workingsubstancecan reject heat after performing
mechanical work during the second part of its cycle. As
discussed heat source is at higher temperature and heat sink is
at lower temperature.

Figure-3.47 shows the basic block diagram of a heat engine
also called energyflowdiagram ofheat engine. In this diagram
engine is represented bythe circular block. During the cycle it
takes a quantity of heat g, from the heat source at high
temperature T,anddoes mechanical workfVand rejects a heat
Q2 to the heat sink at lower temperature T2.

Engine

Tleat
source (T.)

Heat

sink (7,)

Work(JfO

T,>T,

Figure 3.47

Here W iscalled useful power output ofengine and Q2 is the
energy which is wasted. In a heat engine we would like to
convert all inputheat Q^ intoworkbutexperiments showthat
it is impossible to have Q2 = 0. According to conservation of
energy we have

...(3.99)

3.8.3 Thermal Efficiency of a Heat Engine

Thermal efficiency of an engine gives the fraction of heat
supplied to the engine which is transformed into the useful
mechanical work. Thus thermal efficiency ofa heat engine is
given as

W
fi=— ...(3.100)

y]

From equation-(3.99) we have

^=Q-Q2
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Thus
_ Q\ ^Qi ^

01 01
...(3.101)

137

The coefficient of performance of a refrigeration cycle is

01
K= — =

^ Qi-Q^
...(3.105)

or 11 = 1-
0i.

... (3.102) 3.8.5 StatementofSecond Law ofThermodynamics

At the time ofdesigning of the engines, designers always try
to develop a mechanism in which the amount of useful
mechanical work is as wide as possible and to keep the rejected
heat as narrow as possible. As Qj can never be zero and no
engine is having efficiency equal to unity.

3.8.4 Refrigerators

Refrigerator is a device just like a heat engine operating in
leverse fashion. A heat engine takes heat from a hot place and
givesoffbeat to a colderplace.Arefrigeratordoesthe opposite
of this. It takes heat from a place at lower temperature and
gives it off to a place at relativelyhigher temperature.A heat
engine has a net output of mechanical work where as a
refrigerator requires a net input of mechanical work.

Figure-3.48 shows a basicenergy flow diagram ofa refrigerator.
Here the refrigerator draws an amount of heat from the
colderregionwhich is insideof refrigeratorat temperatureT,.
An external mechanical work ITis done on refrigerator due to
which it rejects some amount of heat to a region at higher
temperature T2, which isgenerally theoutside air. According
to energy conservation, for a refrigeration cyclewe can write

or

0,+ ff^=02

f^-02-0]

...(3.103)

...(3.104)

The best refrigeration cycle is one that removes the greatest
amount ofheat from the inside of refrigerator for the least
amount ofmechanical work W. The ratio we call this

ratio the coefficient of performance of a refrigerator, and it
givesthe qualityof refrigeration cycle. The larger this ratio,
the better the refrigerator.

External Work •

W

Heat

sink (Fj)

Heat'

source .(F,)

Figure 3.48

F,<F2

We've discussed that experiments showed that it is impossible
to build a heat engine that converts heat completely to work,
that is an engine with 100% thermal efficiency. This leads to
the basic statement of second law ofthermodynamics. Stated
as

"7/ is impossiblefor any system to absorb heat and convert it
completely into mechanical work leaving the.system in its
initial state from which the process was started."

The analysis ofrefrigerator we've discussed in previous section
forms the basis for an alternative statement ofthe second law

ofthermodynamics. Weknowheatalways flows spontaneously
from hotter to colder bodies, never the reverse. A refrigerator
does take heat from a colder to a hotter region, but its operation
requires an input of mechanical energy or work. Thus we state.

"7r is impossiblefor any process to have only the heat flow
from a colder to a hotter bodywithoutany involvement ofan
external agency."

3.8.6 Carnot Cycle

According to second law of thermodynamics, no heat engine
can have 100% efficiency. Efficiencyof a heat engine depends
on the amount of heat taken in and outflow from the heat

engine. In 1824, a French scientist Carnot developed a
hypothetical, idealizedheatenginethat has maximum possible
efficiencyconsistent with the second law. The cycle of this
engine is calledthe Carnot Cycle. Nowwe'll discuss the basic
theme ofthis cycle.

We know conversion ofwork to heat is an irreversible process
and the purpose of a heat engine is a partial reversal of this
process, the conversion ofheat to workwitha givenefficiency.
The higher the efficiencyis, the better the engine will be. For
maximum efficiencywe must avoid the irreversible processes.
This forms the basis of Carnot cycle.

Heat flow through a finite temperature drop is an irreversible
process. In carnot cycle when engine takes heat from heat
source at temperature T,, the engine temperature or the
temperature ofworking substance is also at same temperature
Tj. Similarly when engine rejects heat tothesinkat thelower
temperature then duringthis rejection ofheat, engineis also
at the same temperature T^. The cycle willbe ideal if engine
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does not exchange any heat during the process when its
temperature is changing thus in a single line we can state that
every process in the idealized carnot cycle must be either
isothermal or adiabatic.

An ideal Camot cycleis accomplishedin four steps, there are:

(1) The gas or working substance expands isothermally at
temperature Tj and absorbs an amount of heat Q, from heat
sourceat temperature 7,.

(2) It expands adiabatically until its temperature dropsto
where is the temperature ofheat sink.

(3) Itiscompressed isothermally attemperature T2 and rejects
an amount of heat to the sink.

(4) Now it is compressedadiabaticallyback to its initial sate
at temperature T",.

Figure-3.49 shows an indicator diagram for an ideal gas
undergoing in camot cycle.

isotherms

7", (temperature of source)

(temperature of sink)

"V

Figure 3.49

As shownin figure-3.49 in a carnotcycle,firstgas starts from
state-A and in its isothermal expansion upto state-B heat
absorbed by the gas is

Q,=^W^, = nRT,ln ...(3.106)

Here and are the volumes ofthe gas at state (A) and state
(B) respectively. Similarlyin isothermal compression of gas
from state (C) to state (D), heat rejectedby the gas is

Q^-K,= nRT,ln
V,D J

...(3.107)

In the adiabatic processes from state (B) to state (C) and from
state (D) to state (A), we can relate temperatures and volumes
of gas as

and

T V T- ' — T y Y-f^ 1 ^2

T V Y~ \ = T V Y-\

...(3.108)

...(3.109)
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From equation-(3.108) and equation-(3.109), we get

- Vd

From equation-(3.106) and (3.107), we get

n RTj In

...(3.110)

£l
Qi

Vd

-„RT,ln\^
— TT ...(3.111)

or

Thus the efficiencyof a camot cycle can be given as

Tl = l-

r| = l- —
' 7;

...(3.112)

This shows that efficiencyof a camot cycle depends only on
the temperatures of heat source and heat sink and is large
when temperature differenceof the two is large and it is very
small when the temperatures are very close to each other.

illustrative Example 3.41

Onemole ofoxygenundergoesa cyclicprocessin whichvolume
ofthegas changes 10times within the cycleas shown in figure-
3.50. The processes AB and CD are adiabatic while processes
BCzndiDA areisochoric. ^Vhat is the efficiencyofthe process ?

Solution

c

B

D

A

-

10K„

Figure 3.50

In the cyclic process the efficiency of cycle can be given as

Qom
q=l

Qi,
...(3.113)

As the process CD and AB are adiabatic, no heat exchange
takes place in these processes. In isochoric process BC as



Thermodynamics Laws & Specific Heats of Gases

temperature increases, the heat is taken in which is given as

=̂ R{T^-T^) ...(3.114)

5
[Asn - 1moleand for O2 Cy= —/?]

Similarly in isochoric process A as temperature decreases heat

is rejected by the gas, which is given as

Qout ^.4)
[Magnitude ofheat rejected]

=^R(T^-T^) ...(3.115)

From equation-(3.113), (3.114) and (3.115), we have

Efficiency
Tp-T,

Tr-Tn
11 = 1- ...(3.116)

As we know in an adiabatic process the volume and temperature
ofgas in initial and final states are related as

r vi-1 = r F7-1
-'r 1 . -'2^2

Here we use the same relation for process CD and AB as

or 7'c=(10i'-i)r^ ...(3.117)

and . W-i = r,(10K,)r-^

or T^ ={W-^)T^ ...(3.118)

Now from equation-(3.116), (3.117) and (3.118), we have

iTp-T^)
Efficiency

or

Ti = l-
(io)^-'ro-(io)^-'r^

1

10^-'

1

1-

= 1- 0.4
10

[As for 0,, Y= 1.4]

= 0.6 = 60%

illustrative Example 3.42

Three moles of an ideal gas (C/> =%/?) at pressure P^ and

temperature is isothermally expanded to twice its initial
volume. It is then compressed at constant pressure to its original
volume. Finally the gas is compressed at constant volume to
itsoriginal pressureP^.
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(a) Sketch P-KandP-rdiagrams for the complete process.

(b) Calculate the new work done by the gas, and net heat
supplied to the gas during the complete process.

Solution

(a) Sketch ofP- VandP-T are shown in figure-3.51 (a) and (b).

V

2V. B

C

PA

(fl)

T'

Ta

TJl

B A

yc

y

P,I2

(4)

Figure 3.51

The initial state of isothermal expansion is represented by A
where pressure is P^and volume is V^. Let the final state is
represented by B where volume is twice of V^. Let the
pressure be Pg.Then

or Pb = Pa
Va

2VAJ 2

When the molecule is compressed to initial volume, the process
is represented by5C. Finallythe gas is compressed at constant
volume to its original pressure. The process is shown by curve
CA.

Similarly, P-Tdiagram can be drawn.

(b) Workdone in the process AB is given by

W^=nRTln{V^V^)

= 3x8.314x7;^x/n2

= 3 X 8.314 X X 0.693 = 17.29

Workdone in the process BC is given by

W2 =P^V=Pg^iV^-Vg)

=-3/?ry2 = -3 X8.314ry2 = -12.471

Workdone during process CA is given by

W^ = P^V=(i

Network 1F= Ifj + + ^3

[As AV=0]

= 17.26 -12.45 = 4.81 T^.
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As initial and final states ofthe gas are same, hence

From first law of thermodynamics

^Q = ^U+^W={)+^W

Q = fFjoulC;

# Illustrative Example 3,43

One mole of a diatomic ideal gas (y= 1.4) is taken through a
cyclicprocess as shown in figure-3.52 starting from pointy^. In
this cyclethe processAB is an adiabatic compression. BC is
isobaric, CD an adiabatic expansion andDy4 is isochoric. The
volume ratios are VJV^= 16andF(yFg = 2and thetemperature
aty4 to r^=306''K. Calculate the temperature ofthegas atthe
point B and D and find the efficiency ofthe cycle.

Solution

Figure 3.52

The respective cyclic process is shown in tigure-3.52. The
expansion and compression ratio are given as

V, Vc
-16 and t;~ = 2

F

In adiabatic process AB, we have

T F T-i = T V y-^
* A*A

or T = T4 D 4 j

V,

= 300 X(16)0-4

=909 K

Similarly for isobaric process BC, we have

Vr V.

r

or

Vn

= 909 x2= 1818K

...(3.119)
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Similarly for adiabatic process CD we have

T F Y-i = r F Y-i

or

As we have thus

V.

V, V

1 1

16 " 8

Thus from equation-(3.119)

/ j nO-4
r^=I818x

= 791.3 K

The efficiency ofcycle can be given as

Qout11=1-
Qin

Here we know in process AB and CD, as being adiabatic
processes no heat exchange takes place and in isobaric process
BC as temperature ofgas increases, heat is taken in (say
and it is given as

Q, = }iCp{T^-T.) ...(3.120)

Similarly in isochoric process DA as temperature of gas
decreases heat is rejected (say and it can be given as

Q, = nCp{T^-T;)
[A magnitude ofrejected heat]

Now efficiency of this cycle can be given as

Ti = l

= 1 -

= 1-

Qin

Ql.
a

Cv{To-T^)
CpiTc-Ts)

Tn-T.

y{Tc-Ts)

(791.3-300)

(1.4) (1818-909)

491.3
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NOTE : While solving the problems related to finding the
efficiency of a cycle students are advised to first check in
which of the path of cycle heat is taken in or heat is rejected
and mansion it byarrows as for aboveproblem Qj and Q2 can
be mentioned as shown in figure-3.53.

Pt
B Q\C

Figure 3.53

# Illustrative Example 3.44

One mole ofa monatomic ideal gas is taken through the cycle
shown in figure-3.54.

Y\

•X

Figure 3.54

A-^B adiabatic, expansion

B-^C cooling at constant volume
C-^D adiabatic compression
D—>A heating at constant volume

The pressure and temperature at A, B etc. are denoted by
Pg,...; Ty, Tg,..., etc. respectively. Given that

= 1000 K,Fg- (2/3) F^andF^- (1/3) F^.

Calculate the following quantities:

(i) The work done by the gas in process A^B

(ii) The heat lost by the gas in process B

(iii) The temperature 7^,

Given that (2/3)^/^ = 0.85

Solution

(i) The workdone in adiabatic process AB is given by

R{Ta-Tb) HTa-Tb)
(5/3)-l

[As for monatomic gas y = 5/3]
' Y-1

or W,= -R{T,-T,) ...(3.121)

For adiabatic change
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2/3 2/5

or

kPb
or

'ay 'ay v^ay

or
(Ta^ Jl'

2/5

[Pba Uy [AsP„ = (2/3)/'J

2/5

or ...(3.122)

= 1000x0.85 = 850K

From equation-(3.121)

r,= X8.31 X(1000-850) =1869.831

(ii) Heat lost by the gas in process BC is given by

=\p(Pb~Pc) -P-iza)
Process BC is under constant volume, hence

X r„
-Pc r -— — or l r~

T„ Tr ^ B J

or =425K
c (2F^/3) ^ 2

From equation-(3.123)

Heatlost=- X8.31 x(850-425) = 5297.63J

(iii) For path/4F

or

p r-1 T -Y= p r-1 r -Y
^A

/ \Y-' Yj \y

^Bj

For pathFC

Pb „ Pc
/ X

\Pb (t ^
or =

Tr\ ^ yTb Tc Wa
For path CD

For path AD

Y-i y.

c J T,c )

(Pa'"
{Pdj Up.

...(3.124)

...(3.125)

...(3.126)

...(3.127)

...(3.128)
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Dividing equation-{3.125) by (3.127), we get

LA_^£c_

kPb Pd

Y-l

Pb T^j
...(3.129)

Dividingequation-(3.128) byequation-(3.126) weget

Pb PdJ
•A

yTs

or

Pb Pd

Y-l \r-i

kTb T^j
...(3.130)

From equation-(3.129) and (3.130)

\Tb \Tb Td

PaPc-PdPb

1000 X425= r^x 850

r^=500K

Y-l

§ Illustrative Example 3.45

Figure-3.55 shows three isothermals attemperature F,=4000 K,
Tj= 2000K, F3 = 1000 K.When onemole ofanideal monatomic
gas is taken through the paths AB, EC, CD and DA, find the
change in internal energyAC/, the workdoneby the gas Wand
the heat Q absorbed by the gas in each path. Also find these
quantities for complete cycle
Given = \ m3andF^=2m3.

Solution

\ \b
A

\
r,=40oo^"\

c \
D ~ ^ Isotherms

1000 a:

Va Vb

Figure 3.55

(i) When one mole of an ideal gas undergoes a change in
temperature AT, thechange in its internal energyequals CyAT,
where Cy is the molar specific heat of the gas at constant
volume. Formonoatomic gas Cy= (3/2) R.Thusthechangeof
internal energy is given by

= (3/2) R (4000 - 2000) = 3000 R

= 3000 X8.31 =24.93 X kPJ

Total

Thermodynamics Laws & Specific Heats of Gases

AU,c=C,{T^~Tb)

= (3/2) R (2000 - 4000)=- 3000 R

=-24.93 xlO^J

~~ ^V^Pd ~ P<^

= (3/2) 7? (1000 - 2000)=-1500 R

= -12.465x 103J

^^DA = CyiT,-T^)

= (3/2) R (2000 -1000) = 1500R

= +12.465 X 103J

At/=0

(ii) Workdone bygas during pathABunder constantpressure

= F (K2 - Fj)= /? (F,- F2) = 8.314X2000

= 16.62 X 103J

No work is done during BC and DA

Workdone on the gas during CD

=R(F2-F,) = 8.314x 1000 = 8.314x 103j

Net workdone by the gas during the cycle

= (16.62 X103-8.314X103) =8.314x I03j

(iii) Heat absorbed during
AB = Cp{T,~T^)

Ry 8.314x(5/3)
7 X2000 = ^ X2000

y-l (5/3)-l

[As y = 5/3 for monoatomic gas]

= 8.314x- X 2000 = 41.55 X 103 j

Heat released during

BC=Cy{T^-T^)

R

y-l
X2000

= 8.314 X - X 2000 = 24.93 X I03j
2

Heat released during

R y
CD=—i-xiooo

y-l

= 8.314x - X 1000
2

= 20.775 X 103j
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Heat absorbed during

DA =
R

Y-1
xlOOO

= 8.314 X - X io3j
2

= 12.465x 103;

Net heat absorbed by the gas during the cycle

= (12.465 + 41.55 -20.775-24.93) x itf J

= 8.314xl03j
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Practice Exercise 3.5

(!) An ideal gas undergoes in a thermodynamic cyclic process
shown in figure-3.56. Find the work done by the gas in

complete cycle.

V{m^)

Figure 3.56

[45 J]
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(ill) Two moles ofan ideal monoatomic gas is taken through a
cycleABCAas shown in thePTdiagram in figure-3.58. During
the process AB, pressure and temperature ofthe gas vary such
thatFT= constant. If Fq = 300K, calculate

'0 AiQ

Figure 3.58

(a) The work done by the gas in the process AB

(b) The heat absorbed or released by the gas in each of the
process.

[(a) - 1200 R; (b) - 2100 R, 1500 R, 831.6 R]

(iv) One mole ofan ideal monoatomic gas is taken round the
cyclic process ABCA as shown in figure-3.59. Calculate

p.

Vo 2V,

Figure 3.59

(a) The work done by the gas.

(b) The heat rejected by the gas in the path CA and the heat
absorbed by the gas in the path AB.

(c) The net heat absorbed by the gas in the path BC.

(d) The maximum temperature attained by the gas during the
cycle.

[(a) P^V^; (b) 2.5 P,V„ 3 P.V,; (c) 0.5 P.V,; (d) 1

(ii) Figure-3.57 shows the VT graph of a thermodynamic (y) Find thework done byan ideal gasduring a closed cycle
process in which gas temperature changes from 300K to 500K. i_4_3_2-l as shown ifP, = 10^ Pa, Pq = 3 x 10^ Pa,
during isochoric part ofthe cycle and volume ofgas is doubled P^ =4x 10^ Pa, ^2- = 100 litre and segments 4- 3and 2-1
during isothermal part ofthe cycle. This graph is plotted for ofthe cycle are parallel tothe K-axis.
2 mole of a gas. Find the total heat rejected by the gas in the

complete cycle.

500/^
•A

300^
D

Figure 3.57
Figure 3.60

[- 2304.64 J], [7500 J]
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(vi) Threemoles of an ideal monoatomicgas perform acyclic isochoric lines. Find the efficiency of the cycle if in the
process as shown in the figure-3.61. The gas temperature in adiabatic process the volume ofthe ideal gas increases «-fold.
different states are = 400 AT, ^ 800 K, = 2400 K, and

= 1200 K. Find the work done during the cycle.

(p„ F„ 7-3) {p., T,)

Figure 3.61
Figure 3.63

[9976.8 J1
-1

(vli) An ideal gas with the adiabatic exponent y goes a cycle
{rigure-3.62) within which the absolute temperature varies («) An ideal gaswhose adiabatic exponent is equal to7goes

through a cycle consisting of two isochoric and two isobaric
lines as shown in figure-3.64. Find the efficiency of such a
cycle, ifthe absolute temperature ofthe gas rises n times both

«-fold. Find the efficiency ofthis cycle.

P

in isochoric heating and in isobaric expansion.

(Pli 7*2) {P\y ^1. 7*1)

Figure 3.62

y+lJ Irt+l

(viii) An ideal gaswith theadiabatic exponent ygoes through [ (y-1)(»-1) j
a direct (clockwise) cycle consisting ofadiabatic, isobaric and ^

Figure 3.64
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Discussion Question
Q3-1 When a thermos flask with some water init isvigorously
shaken. Does its temperature rise. Has some heat added to
water during the process.

Q3-2 Some gas is enclosed in a piston-cylinder system. It is
expanded todouble itsvolume byisobaric orisothermal process.
In which process more work is done by the gas.

Q3-3 In a room if door of refrigerator is kept open, will the
room temperature decrease.

Q3-4 When a blockmovesin a straight line on a rough surface.
Some heat is dissipated. Is this process reversible.

Q3-5 Can we convertmechanical workcompletelyinto heat.

Q3-6 Can we convert heat completely into mechanical work in
a cyclic process.

Q3-7 Drawthe FKdiagram ofthe processshown in figure-3.65
in KTdiagrams.

D

Figure 3.65

Q3-8 When a gas is compressed, it becomes more elastic.
Explain.

Q3-g When we whistle outair on to palm held closeto mouth,
the air feelscold,butwhenwe blowair out frommouth,keeping
it wide open, the air feels hot. Explain.

Q3-10 One mole of an ideal gas changes its state from state-1
to state-2 along the two paths I and II as shown in figure-3.66.
In which of the process is the amount of heat absorbed by the
gas more. Explain.

Figure 3.66

Q3-11 Plot approximate graphs betweenpressure and internal
energy ofa sample ofgas for these processes, (a) isobaric, (b)
isochoric, (c) isothermal and (d) adiabatic.

Q3-12 Represent theCarnot cycle ona ITdiagram.

Q3-13 The molar heat capacity at constant pressure of all
diatomic gases is always same.

Q3-14 A gas is first compressed adiabatically and then
isothermally. In both cases, the initial state of the gas is the
same. Find in which casemore workis doneon the gas.

Q3-15 In the polytropic process PV^ = constant, is the gas
cooled'or heated with increase in volume.

Q3-16 In the following PT-graph shown in figure-3.67, find
what happens to the volumeof gas on increa_sing temperature
of the gas.

Figure 3.67

Q3-17 In the following IT-graph shown in figure-3.68, find
what happens to the pressure of the gas on increasing
temperature ofthe system.

Figure 3.68

Q3-18 What happens to the internal energy of water vapour
in the air that condenses on the outside of a cold glass of
water ? Is work done or heat exchanged ?

Q3-19 When a mountaineer who eats food, gets warm a lot
during a climb and does a lot of mechanical work in raising
himselfupwards. When he descents, again he also gets warm
during descent. Is the source ofthis energy the same as during
the ascent.

Q3-20 The temperature of a gas is increasing, hence its internal
energy also increases. Just be observing initial and final states,
can we determine whether the internal energy increment was
due to work or by heat transfer.
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Q3-21 When a hand pump is used to inflate the tires of a
bicycle, the pump gets warm after a while. Why ?

Q3-22 There are few materials that contracts when their

temperature is increased, such as water between 0®C and 4°C.

Would you expect for such materials to be greater or less
than ?

Q3-23 A discrotated about its central axis and gentlyplaced
on another coaxial disc at rest. Due to friction between the two

first disc retards and the second one starts rotating and after
some time bothwith rotate with a common angular speed. In
this process the total internal energy of the systemof two discs
does not change. State and justify whether this statement is
true or false.

Q3-24 "Whenheat is added to a system, the internalenergy
ofthe system must increase". Justify this statement.

Q3-25 Whenin a thermallyinsulatedcontainergas is filledat
some temperature above room temperature on ground floor and
it is taken to second floor of a building, \vill the temperature of
the gas in it change. Is somework is done by or on the gas in
the process.
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Q3-26 The outer surface of a metallic cylinder is rubbed by a
rough duster, after some. Due to this gas temperature increases.
Is some work is done on the gas in the process or some heat is
transferred to the gas.

Q3-27 When a tyre bursts, it cools down. Why ?

Q3-28 Consider two thermodynamic processes shown in
figure-3.69. In both the processes volume of the gas in initial
and final states are same. In which path work done by the gas is
more.

Figure 3.69
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ConceptualMCQsSingle Option Correct
3-1 A given mass ofa gasexpands from state ^ to5 bythree
different paths 1,2and 3asshowninthefigure-3.70. IfW^, W2
and respectively be the work done by the gas along the
three paths, then :
(A) W^>W2>W^
(B) W^<W2<Wj
(C) fV^ = W2=W^
(D) W^<1V2;WJ<W^

Figure 3.70

3-2 A mass ofan ideal gas undergoesa reversibleisothermal
compression. Its moleculeswillthen havecomparedwith initial
state, the same:

(i) Root mean square velocity

(ii) Mean momentum
(iii) Mean kinetic energy
(A) (i),(ii)& (iii)arecorrect (B) (i)&(ii) are correct
(Q (ii)&(iii) arecon-ect (D) only (i) is correct

3-3 Heat energy absorbed
by a system in going
through a cyclic process
shown in figure-3.71, is:
(A) lO'jTjoule
(B) lO '̂TiJoule
(Q lO^TTjoule
(D) IO"^Tcjoule

V (in litre)

in (kPa) 30 P in (kPa)

Figure 3.71

3-4 In figure-3.72, curvesAB and CD represent the relation
between pressure P and volume Vof an ideal gas. One of the
curves represents an isothermal expansion and the other
represents an adiabatic expansion. Which curve represents an
adiabatic expansion ?

(A) Curved

(Q Both

— V

Figure 3.72

(B) Curve CD

(D) Neither

3-5 Intheisothermal expansion ofanideal gas. Select wrong
statement:

(A) There is nochange in thetemperature ofthegas
(B) Thereis no changein the internalenergyof the gas
(Q Thework done bythegas is equal to the heatsupplied to

the gas
p) The work done by the gas is equal to the change in its

internal energy

3-6 A gas is expanded from volume Vq to 2Vq under three
differentprocesses. Process1is isobaric,Process2 is isothermal
and process 3isadiabatic. Let AU^, AU2 and AC3 be the change
in internalenergy of the gas in these threeprocesses. Then :

Pk

1

(A) At/,>AD2>At/3
(Q At/2<Ai7,<At/3

Figure 3.73

(B) At/,<At/2<AC3
P) A(/2<At/3<AC/i

3-7 Heating ofwaterunderatmospheric pressure is an :
(A) Isothermalprocess (B) Isobaric process
(Q Adiabatic process P) Isochoric process

3-8 Suppose a gasobeysp}^ = constant inaddition tothegas
equation Ifon heating temperature is doubled, what
will be the percentage change in volume ?
(A) Decreases by 50% p) Increases by 50%
(Q Decreases by 100% " p) Increasesby 100%

3-9 Figure-3.74is the P- Vdiagramfor a Carnot cycle. In this
diagram:

Figure 3.74

(A) Curve AB represents isothermal process and BC adiabatic
process

P) Curve^5 represents adiabatic process and BC isothermal
process

(Q Curves CD and DA represent isothermal processes
P) Curves CD and DA represent adiabatic processes
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3-10 A fixedmassofidealgasundergoeschangesofpressure
and volume starting at I, as shown in figure-3.75.

Isothermal

Figure 3.75

Which of the following is correct:

(A) M (B)

M N

(Q (D)

Volume

M

M

N

N

3-11 A fixed mass of gas undergoes the cycle of changes
represented by PQRSP as shown in figure. In some off the
changes, work is done on the gas and in others, work is done
by the gas. In which pair of the changes is work done on the
gas ?

(A) Pgandi?^

(Q giJandAS"

Figure 3.76

(B) PQ and QR
(D) RS and SP

3-12 Figure-3.77showstheP-Kdiagramforafixedmassofan
ideal gas undergoing cyclic process ABCA. AB represents

Thermodynamics Laws & Specific Heats of Gas^s^

isothermal process. Which of the graphs shown in figure
represents theP-T diagram ofthe cyclic process ?

p

2P
A

c 1
1

I

1

V 2V

Figure 3.77

(A) (B)

(Q (D)

3-13 consider the process on a j
system shown in figure3.78.
During the process, the
cumulative work done by the
system :

(A) Continuously increases
Continuously decreases

(Q First increases then decreases
(D) First decreases then increases

Figure 3.78

3-14 Volumeversustemperaturegraph oftwo molesof helium
gas is as shown in figure-3.79. The ratio of heat absorbed and
the work done by the gas in process 1-2 is :

(A) 3

(Q 5/3

Figure 3.79

(B) 5/2
(D) 7/2
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3-15 A thermodynamic process is shown in figure-3.80. The
pressures and volumes corresponding to some points in the
figure are, =3 x lO^Pa, =2 x 10*^ m^Pg= 8 x 10" Pa,
V^=5 XIQ-^ In process600 Jofheat and inprocess PC,
200 J ofheat is added to the system. The change in the internal
energy in process AC would be :

(A) 560J

(C) 600 J

Figure 3.80

(B) 800J

(P) 640J

3-16 Idealgasis takenthrougha process shown in figure-3.81 :

Pi

B

Figure 3.81

(A) In process AB, work donebysystem is positive
p) In processAB,heat is rejected out of the system
(Q In processAB,internal energyincreases
p) In process AB internal energy decreases and in process

PC internal energy increases

3-17 In which of the following processes the system always
returns to the original thermodynamic state ?
(A) Adiabatic P) Isobaric
(Q Cyclic p) Reversible

3-18 For an idealgas, the heat capacityat constant pressure is
larger than that at constant yolume because :
(A) Workis done during expansionof the gas bythe external

pressure

P) Workisdoneduringexpansion bythe gas againstexternal
pressure

(Q Work is done during expansion by the gas against
intermolecular forces at attraction

P) More collisions occur per unit timewhenvolume is kept
constant.
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3-19 A gas has:
(A) One specific heat only

(B) Two specific heats only
(Q -Infinite number ofspecific heats

P) No specific heat

3-20 A gas kept in a container of finite low conductivity is
suddenly compressed. The process :
(A) Must be very nearly adiabatic
(B) Must be very nearly isothermal
(Q Maybe very nearly adiabatic
p) Maybe very nearly isothermal

3-21 Pressure versus temperature graph of an ideal gas is as
shownin figure-3.82 corresponding density(p) versusvolume
(V) graph will be:

Figure 3.82

B, C

(A) (B)
•A.D

(Q (D)

D

c

3-22 An ideal gas (whose -pr = X, and internal energy Uat

absolute zero temp, is equal to zero) undergoes a reversible
adiabatic compression. If V, ^represent theinternal energy,
pressure, volumeand temperature respectivelyofthe idealgas,
then

(A) = const • p) = const

(Q = const P) TU^ ' = const

3-23 For an adiabatic compression (for an ideal gas) the
quantityPK:
(A) increases P) decreases
(Q remains constant P) depends on y
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3-24 Figure-3.83 belowrepresents two processesa and h for a
given sampleof gas. Let AQ^ and AQ2 be the heat absorbed by
the systems in the two cases respectively. Then which of the

following relation is correct ?
(A) AQ^ = AQ2
(B) AQ,<AQ2
(Q AQ^>AQ2
P) AQ,<AQ2

Figure 3.83

3-25 Whenan idealgasundergoesan adiabaticchange causing
a temperature change AT^;
(i) There is no heat gained or lost by the gas
(ii) The work doneon systemis equal to loss in internal energy
(iii) The change in internal energyper mole ofthe gas is AT,

where is the molar heat capacity at constant volume
(A) (i), (ii)& (iii)are correct (B). (i) & (ii) are correct
(Q (i) & (iii) are correct p) only (i) is correct

3-26 The slopesof isothermal and adiabatic curvesare related
as:

(A) Slope of isothermal curve = slope of adiabatic curve
P) Slope of isothermal curve = y x slope of adiabatic curve
(C) Slope of adiabatic curve = y x slope of isothermal curve

p) Slope ofadiabatic curve = -j xslope of isothermal curve

3-27 When a thermodynamic system is taken from state A to
stateBviapathACB (figure-3.84), 100cal isgiven to thesystem
and 60 cal worth work is done. Along the path ADB,the work
done is worth 20 cal; the heat flowing into the system in this
case would be:

(A) 120cal

P) 40 cal

(Q 140cal

P) 60 cal

Figure 3.84

3-28 An idealgas is allowedto expandfreelyagainstvacuum
in a rigid insulated container. The gas undergoes:
(A) An increase in its internal energy
p) A decrease in its internal energy
(Q Neither an increase or decrease in temperature or internal

energy

P) An increase in temperature

3-29 Which one of graphs below best illustrates the
relationship between internal energy U of an ideal gas and
temperature T ofthe gas in AT ?

Thermodynamics Laws & Specific Heats of Gases

u.

(A) P)

(Q P)

3-30 The value ofC^-Cj, is 1.00 Rfora gas sample in state.4
and is 1.08 Rin state B. Letp^, denote the pressure and
and denote the temperature of thestates^ and5 respectively.
Most likely

(A) p^<PgandTA>Ts P) >p^and

3-31 TheP-Rgraph for a thermodynamical systemis shownin
figure-3.85. The work done bythe system in the process.4 to5

is- j,
(A) 90 J

P) 60J I
(Q OJ
P) 30 J

6 12 (inm^)

Figure 3.85

3-32 In Q. No. 3-31, the workdonein the process5 to C is:
(A)-90J P) -60J

(Q OJ p) 30J

3-33 A gas undergoes a process in which its pressure P and
volume V are related as VP" - constant. The bulk modulus of

the gas in the process is ;
(A) nP p) P^'"
(C) P/« P) P"

3-34 During free expansion of an ideal gas which of the
following remains constant ?
(A) Pressure

P) Temperature
(Q Both pressure and temperature
p) Neither pressure nor temperature
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3-35 Logarithms of readings ofpressure and volume for an 3-38 Thedensity (p)versus temperature (7)graph ofanideal
ideal gas wereplotted on a graphas shown in figure-3.86. By gas. undergoing a process AB is as shown in the figure-3.88.
measuringthe gradient, it can be shownthat the gas maybe; Choosethe incorrectoption :

logP {JcPa)

l.IO 1.20 1.30

Figure 3.86

(A) Monoatomic and undergoing an adiabatic change
(B) Monoatomic and undergoing an isothermal change
(C) Diatomic and undergoing an adiabatic change

(D) Triatomic and undergoing an isothermal change

3-36 A thermal engine having three moles ofmono-atomic gas

as its working fluid undergoes the cyclic process as shown in
the figure-3.87. Find the mechanical work over one cycle
approximately {R = 8.314J/mole-K):

PiNIm")

(A) 40 kJ

(C) 20 kJ

400 800 1200

Figure 3.87

(B) 30 kJ

P) lOkJ

2400
r(m^

3-37 The internal energyofa gas is givenby ^/= 2PV.It expands

from to2Kq against aconstant pressure The heat absorbed
by the gas in the process is :
(A) 2P,F, (B) 4F,K,

(Q 3Po^o (D)

(A) P,V,=P,V,
(Q positive

Figure 3.88

(B) Pb>Pa
P) =

3-39 An amount Q ofheat is added to a mono-atomic ideal gas

Q
in a process in which the gas performs a work — on its

surroundings. The molar heat capacity for the process is

(A) 2fl

(Q

5R
(B)

p) none of these

3-40 A gas is found to obeythe law constant. The initial
temperature and volume are Tq and Tq. If the gas expands to a
volume 3Vq, then thefinal temperature becomes :

(A) ^/3ro P) V2ro

(Q V3 (D)
A
V2

3-41 An ideal gas has initial volume Vand pressure P. In
doubling its volume the minimum work done will be in the
following process (of given processes)
(A) Isobaric process P) Isothermal process
(Q Adiabatic process P) None ofthe above ^

3-42 An ideal gas ofadiabatic exponent y is supplied heat at a
constant pressure. Then ratio dQ: dW: dU is equal to:

(A) y:y-l
Y

(Q y:y-l:l

P) l:l:y-l

p) y:l;y-l
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NumericalMCQsSingle Options Correct
3-1 A gas is expandedadiabaticallyat an initial temperatureof
300 K so that its volumeis doubled. The final temperatureofthe
gasis(Y= 1.40):
(A) 227.3 K (B) 500.30K
(Q 454.76K (D) -47°C

3-2 Threesamples of the samegasA,B and C (y= 3/2) have
initially equal volume. Now the volume of each sample is
doubled. The process is adiabatic for A isobaric for B and
isothermal for C. Ifthe final pressure are equal for all three
samples, the ratio oftheir initial pressures are:

(A) 2^2:2:1 (B) 2V2 :1:2

(C) V2 :1:2 P) 2:I:V2

3-3 An idealgasat27°C iscompressedadiabaticallytoof

its original volume. Ify=-j, then the rise in temperature is;
(A) 450PC (B) 375*'C
(C) 225"C p) 405°C

3-4 One mole of an ideal gas at temperature T was cooled

P
isochoricallytill thegas pressurefell fi-omPto —.Then, byan

isobaric process, the gaswasrestoredto the initial temperature.
The net amount of heat absorbed by the gas in the process is :

RT
(A) nRT (B)

(Q Pr(l-M-') P) RT(n-\)

3-5 14 g of nitrogen is contained in a vessel at 300 K. How
muchheat should be taken outofthe gas to half the rmsspeed
ofits molecules ? P = 2 cal/mol K:

(A) 500cal p) 562.5 cal
(Q 2000cal P) 2250cal

3-6 A gas isenclosed ina vessel ofvolume 1000ccat apressure
of72.6 cmofHg.It is beingevacuated with the help ofa piston
pump,which expells 10%gas in eachstroke.The pressureafter
the second stroke will be nearest to : •

(A) 50cm P) 55cm
(C) 60.0 cm p) 66 cm

3-7 Certain amount ofan ideal gas are contained in a closed
vessel. The vessel is moving with a constant velocity v. The
molecular mass of gas is M. The rise in temperature of the gas
when the vessel is suddenly stopped is (y = :

(A)
Mv'

2P(y + l)

(C) 2Py

(B)

(D)

Mv (y-1)

2R

Mv^y
2P(y-i)

3-8 The molar heat capacity in a process ofa diatomic gas ifit
Q

does a work of — when a heat ofQ is supplied to it is :

(A) (B) fP

10(C) yP p)

3-9 If/? be the universal gas constant then, the amount ofheat
required to raise the temperature of 2 mole ofmonoatomic gas
under isobaric conditions from O^C to 100°C will be:

(A) 150/? P) 250/?
(Q 300/? P) 500/?

3-10 When an ideal monoatomic gas is heated at constant
pressure, the fraction of heat energy supplied which increases
the internal energy of the gas is :

(A) f P) I

(Q p) f

3-11 Ageyser, operating onLPG(liquefied petroleum gas)heats
water flowing at the rate of 3.0 litres per minute, from 27®C to
ITC. If the heat of combustion of LPG is 4.0 x IC* J g^' how
much fuel in gram consumed per minute:
(A) 15.25 P) 15.5
(Q 15.75 p) 16

3-12 The ratio ofadiabatic bulk modulus and isothermal bulk

modulus ofa gasis(y= C /C^):
(A) 1

(Q
(Y-1)

P) Y

P)
(Y-1)

Y

3-13 When 20 J ofwork was done on a gas, 40 J of heat energy
was released. If the initial internal energy of the gas was 70 J,
what is the final internal energy ?
(A) 50J p) 60J
(C) 90J P) llOJ

3-14 /'-Kdiagram of a diatomic gas is a straight line passing
through origin. The molar heat capacity of the gas in the process
will be:

(A) 4/? P) 2.5/?

(Q 3/? P) ^
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3-15 An ideal gasatpressure P isadiabatically compressed so
that its density becomes n times the initial value. The final
pressure of the gas will be (y= C /C): -

(A) ri^P (B) n~W •
(Q rtb'-bp P)

3-16 Foran ideal monoatomic gas, theuniversal gasconstant
Risn times the molar heat capacity at constant pressure C^.
Here n is:

(A) 0.67 (B) 1.4

(Q 0.4 P) 1.67

3-17 Unit mass ofa liquid ofvolume K, completely turns into
a gas ofvolume V2 at constant atmospheric pressure P^ and
temperature T. The latent heat of vaporization is L. Then the
change in internal energy of the gas is :
(A)i (^) L-^P^iV^-V,)
(Q L-P^iV^-V,) p) Zero

3-18 Theheight ofa waterfall is84m.Assuming thattheentire
kinetic energy offalling water is converted into heat, the rise in
temperature ofthewaterwillbe: (g= 10m s"^, J=4.2 joule/cal)
(A) Q.TC P)" 1.96tfC
(G) 0.9&C ~ P) 0.0196°C

3-19 One mole of an ideal gas requires 207 J heat to raise its
temperatureby 10 K when heated at constantpressure. If the
samegas is heatedat constantvolumeto raise the temperature
bythe same 10K, the heat requiredwill be{R, the gas constant
= 8.3 JK"' mol-i):
(A) 198.7 J P) 29J
(Q 215.3 J P) 124J

3-20 A gas is expanded to double its volume bytwodifferent
processes. One is isobaric and the other is isothermal. Let

and W2 be the respective work done, then :

(A) '"(2) (B) W2=

(Q ^

In (2)

(P) Data is insufficient

3-21 One mole of monoatomic gas and onemole of diatomic
gas are mixed together. What is the molar specific heat at
constant volume for the mixture? •

(A) f i? p) 2R

(Q f/? p) 3R
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3-22 The equation of state for n .moles of an ideal gas is
PV= n RT, where R isa. constant. The SI unit for /? is :

(A) JK"'per molecule P) Jkg"^K"f
{Q JK-'mol-' p) JK-ig-i

3-23 In rising from the bottom of a lake to the top, the
temperature ofan airbubble remains unchanged, butitsdiameter
isdoubled. If/2 is thebarometric height(expressed in metres of
mercury of relative density p) at the surface of the lake, the
depth of the lake is (in metres)
(A) 8 p/2 P) 4 p/2
(Q 7 p/2 p) 2 p;2

3-24 Heat is supplied to a diatomic gasat constant pressure.
TheratioofAg:Ai7:Affis: '
(A) 5:3:2 p) 5:2:3
(C) 7:5:2 p) 7:2:5

3-25 A vessel contains 0.5 m^ ofhydrogen gas at 300K and
pressure 10^ Pa. Howmuch heat shouldbe addedto it to raise
the temperature to 500K ? Molarspecific heat ofhydrogen is
5 cal/mol K:

(A) 20kcal p) lOkcal
(C) 5kcal p) 2.5kcal

3-26 Given that the interatomic distance between the molecules

ofa diatomic gas remains constant, what is the value ofmolar
specific heat of the gas ?
(A) 3R/2 p) 5R/2 •
(C) 3R i p) 5R

3-27 Ifa triatomic gasisheated isothermally, whatpercentage
of the heat energy is usedto increase the internalenergy?
(A) Zero p) 14%
(Q 60% p) 100

3-28 A monoatomic ideal gas expands at constant pressure,
with heat Q supplied. The fraction of Q which goes as work
done by the gas is :

(A) I

(q|

(B) f
CD) f

3-29 Whenanideal diatomic gasisheated atconstant pressure,
the fraction of the heat energy supplied which increases the
internal energy ofthe gas is :^

(A) f P) f

(Q J (D)
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3-30 Ifonemole ofa monoatomic gas Iy = —| ismixed with

one mole of atriatomic gas J' of7for the
mixture is:

(A) 1.40 (B) 1.44
(Q 1.53 (D) 3.07

3-31 One mole of an ideal gas iCjC^ = y) at absolute
temperature is adiabatically compressed from an initial
pressure P, toa final pressure P2. Theresulting temperature T2
of the gas is given by :

(A)r,=r,i^

(Q =

1

Y-l
(B) 7-2=7-1

(D) 7-2 = ri

r-1

Y

1^17

f^2^ Y-

U.7

3-32 The pressure of the air inside the motor tyre is
2 atmosphereand the temperatureis 2TC. If it suddenlybursts,
the final temperature will be (y= 1.4):
(A) 27 K (B) -\5CrC

(C) -SrC (D) ~2TC

3-33 A certain mass of an ideal gas at pressure is
adiabaticallyexpanded fi-om an initial volume Fjtoa final volume
Vj. Theresulting pressure P^ofthe gas isgiven by:

(A) P^= P, F 2 7

(Q P2=pAy
Id

Y

(B) P2= P,

P) ^2 = ^,

F
i/r

V^2

3-34 5 mol ofoxygen is heated at constant volume from 10°C
to20°C. Given : C = 8 cai/mol/^C and7? = 8.36 J/moI/°C. The

p

amount of heat consumed by oxygen is:
(A) lOOcal

(Q 300 cal
(B) 200 cal

P) 400 cal

3-35 In Q. No. 3-34, the change in internal energy is :
(A) 100 cal (B) 200 cal

(Q 300 cal P) 400 cal

3-36 A gas at pressure P is adiabatically compressed so that
its density becomes twice that of initial value. Given that the
ratio of specific heats at constant pressure and constant volume
is 7/5. What will be the final pressure ofthe gas ?

(A) P p) 2P

(Q 2.6 P P)
IP

5

Thermodynamics Laws & Specific Heats of Gases

3-37 A monoatomic idealgas, initiallyat temperature 7-1, is
enclosed in a cylinder fitted with a frictionless piston. The gas
is allowed to expand adiabatically to a temperature by
releasing the piston suddenly. IfLj and are lengths of the
gascolumn before andafterexpansion respectively, then 7/7-2
is given by;

(A)
L

.2/3

P)
-27 ^2

2/3

(Q
^17

3-38 During the adiabatic expansion of 2 mol of a gas, the

internal energy was found to have decreased by 100 J. The
work done by the gas in this process is :

(A) zero P) -lOOJ

(Q 200J P) lOOJ

3-39 In a thermodynamic process, the pressure ofa fixed mass

ofgas is changed in such a manner that the gas molecules give
out 30 J ofheat and 10 J ofwork is done on the gas. Ifthe initial

internal energy of the gas was 40 J, then the final internal energy

will be:

(A) 0 P) 80J

(Q 20J P) -20J

3-40 A freezer h^s coefficient of performance 5. When

3.6 X10^ J work is doneonthe freezer, what massofwater at O^C
is converted into ice cubes at 0°C :

(A)«5kg P) «3.6kg
(Q ^=54kg P) ===107kg

3-41 An ideal gas undergoes a circular cycle as shown in the
figure-3.89. Find the ratio ofmaximum temperature ofcycle to
minimum temperature of cycle:

(A)

(Q

I+V21
>/2-l^

3-yl2

Figure 3.89

P)

P)

2+V2^

/ t—\2
4+42]
4-V2
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3-42 In a thermodynamic process helium gas obeys the law
7P-2/5 = constant. The heat given to the gas when the
temperature of2 moles ofthegasisraised from Tto4T(Risthe
universal gas constant) is :

(A) 9RT (B) i8;;r
(Q Zero (D) Data insufficient

3-43 For adiabatic expansion ofamonoatomic perfect gas, the
volume increases by2.4%. What is thepercentage decrease in

pressure ?

(A) 2.4%
(Q 4.8%

(B) 4.0%
(D) 7.1%
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3-44 5 moles ofgaswereheated from 1OffiC to 120*'C atconstant
volume. The internal energywas changed by200joule. What is
the specific heatcapacity of the gas?
(A) 5Jmole-'K-i (B) 4Jmole-'K->
(C) 2Jmole-'K-' p) IJmole-iK"'
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AdvanceMCQswith Oneor More OptionsCorrect
3-6 Apartition divides acontainer havinginsulated wallsinto
two compartments I and II.The same gas fills the two
compartments whose initial parameters aregiven. Thepartition
is a conducting wall which can move freely without friction.
Whichofthe following statements is/arecorrect, withreference
to the final equilibrium position ?

3-1 Thepressure P andvolume Vofan ideal gasboth increase
in a process:
(A) Such a process is not possible
(B) The work donebythe system is positive
(Q The temperatureofthe system will increase
p) Heatsupplied to the gas is equal to the changein internal

energy

3-2 In a cyclic process, a gas is taken from stateAtoB via
path-1 as shown in the indicator diagram and taken back to
statek from state Bvia path-ll. In the complete cycle:

Figure 3.90

(A) Work is done on the gas
(B) Heat is rjected by the gas
(Q No work is done by the gas
p) Nothing can be said about work as data is insufficient

3-3 In a process on a system in closed container, the initial
pressureandvolume areequalto the fmal pressure andvolume:
(A) The initialtemperature mustbeequalto the finaltemperature
P) Theinitialinternalenergymustbeequalto thefinal internal

energy

(Q The net heat given to the system in the process must be
zero

P) The net work done by the system in the process must be
zero

3-4 The internal energy of an ideal gas decreases by the same
amount as the work done by the system :
(A) The process must be adiabatic
P) The process must be isothermal
(Q The process must be isobaric
p) The temperature must decrease

3-5 Duringthe meltingof a slaboficeat 273 K at atmospheric
pressure:

(A) Positive work is done by the ice-water system on the
atmosphere.

P) Positive work is done on the ice-water system by the
atmosphere

(Q The internal energy of ice-water system increases
P) The internal energy of the ice-water system decreases

A A T 2P, 2K T
1 11

Figure 3.91

(A) The pressure in the two compartments are equal

W
p) Volume of compartment I is —

nv(Q Volume ofcompartment II is —^

5P
p) Final pressure in compartment 1 is

3-7 Three identical adiabatic containers A, B and C contain

helium, neon and oxygen respectively at equal pressure. The
gases are pushed tohalf their original volumes:
(A) The final temperature in the three containers will be the

same

P) The final pressures in the three containers willbethe same
(Q The pressureofheliumand neonwill bethe same but that

ofoxygen will be different
p) The temperatureofhelium and neon will be the same but

that of oxygen will be different

3-8 Which ofthe following statements is/are correct?

(A) A gas has two specificheats only
p) A material willhaveonlyonespecific heat, ifandonlyifits

coefficient ofthermal expansionis equal tozero.
(Q A gashas infinitenumber of specificheats.
P) None of these

3-9 For an ideal gas:
(A) The change in internal energy in a constant pressure

process from temperature Tj to isequal tonC^ {T^ - T^,
where is the molar specific heat at constant volume and
n the number ofmoles ofthe gas.

P) The change in internal energy of the gas and the work
done by the gas are equal in magnitude in an adiabatic
process.

(Q The internal energy does not change in an isothermal
process j

P) No heat is added or removed in an adiabatic process.
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3-10 A thermally insulated chamber of volume 2 is divided
bya frictionless piston ofarea S into two equalpartsAand B.
PartAhas an ideal gas atpressureand temperature Tq and in
part B is vacuum. A massless spring of force-constant K is
connected with the piston ofcross sectional area 5 and the wall
ofthe container as shown in figure-3.92. Initiallythe springis
unstretched. Thegas in chamber A is allowed to expand. Let in
equilibrium thespring iscompressed byAr^. Then :

Figure 3.92

(A) Final pressure of the gas is
O

1 2(B) Work done by the gas is -r^o

mm

(Q Change in internal energy ofthe gas is

P) Temperature of the gas is decreased

3-11 A sample of gas follows process represented by
= constant. Bulk modulus for this process is B, then which

of the following graph is correct?

(A)

(Q (D)

3-12 When a sample of a gas is taken fi*om state i to state/
along path 'iaf, heat supplied to the gas is 50 cal and work done
byhe gas is 20 cal. Ifit is takenbypath'/6/', then heatsupplied
is 36 cal:

Figure 3.93

: _

(A) Work donebythe has alongpath ibf is 6 cal.
(B) Ifwork done upon hegas is 13 cal for thereturn path 'fi',

thenheatrejected bythe gas alongpath 'fi', is 43 cal.
(C) If internalenergyoftliegasat state/ is 10cal,then internal

energy at state /' is 40 cal.

p) If internal energyat state 'b' is 22 cal and at 'i' is 10 cal then
heat supplied to the gasalongpath 'ib' is 18cal.

3-13 Consider a thermodynamic cycle inaPVdiagram shown
inthefigure performed on one mole ofa monatomic gas. The
temperature at A is and volume at A and B are related as
kg = =21^. Choose thecorrect option(s) from thefollowing.

Figure 3.94

(A) The maximum temperature during thecycle is4Tq
(B) Net work done by the gas during the cycle is0.5 RT^
(Q The heat capacityof the processABis 2R
P) The efficiencyof the cycleis 8.33%

3-14 An idealgas undergoes a processsuch that p cc •—. The

molar heat capacityof this process is 33.24 J/mol K:
(A) The work done by the gas is IRbJ
P) Degree of freedom of the gas is 4
(C) Degreeoffi^eedom of the gas is 3

P) r
C,

Cv

3-15 A rigidcontainerofnegligible heatcapacitycontainsone
mole of an ideal gas. The temperatureofthe gas increases by
1°C if 3.0 cal ofheat is addedto it. The gas maybe:
(A) Helium p) Argon
(C) Oxygen p) Carbon dioxide

3-16 At ordinary temperatures, the molecules ofan idealgas
haveonlytranslational androtational kineticenergies. Athigher
temperatures, theymayalsohavevibrationalenergy. As a result,
at higher temperatures :

(A) = ZRJl for monatomic gas
p) > IRH for raonoatomic gas
{Q < 5RI2for diatomic gas
P) > 5R/2 for diatomic gas



3-17 Whenan enclosed perfectgas is subjected toan adiabatic
process :

(A) Its total internal energy does not change
(B) Its temperature does not change
(Q Itspressure varies inversely asa certain power ofitsvolume
(P) The product of its pressure and volume is directly

proportionalto its absolutetemperature.

3-18 A metal bar of 1 kg is heated at atmosphericpressure
= 10^ N/m^) from20°Cto 70°C. The coefficient of linear

Thermodynamics Laws & Specific Heats of Gases j

expansion, the specific heat and the density of metal are
20X10~^ per°C, 400 J/kg/®C and 1(f kg/m^ respectively. Choose
the correct statement(s)

(A) Thefraction ofheatenergy that isused todowork against
theatmospheric pressure is 1.5 x 10"^

(B) Thefraction ofheatenergy that isused todowork against
theatmospheric pressure is 1.5 x 10~^

(Q The quantity heat supplied to themetalis 20kJ
P) The increase in internal energy of the metal is 20kJ

approximately
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3-1 An ideal gas with adiabatic exponent 1.5 is expanded
adiabatically. How many times has the gas tobe expanded to
reduce the rms velocityof the gas molecules to half.

Ans. [16 times]

3-2 Twodiatomicgasesare mixedin moleratio 1:2. Find the
value ofadiabatic exponent for thismixture ofgases.

Ans. [1.4]

3-3 A gas (y= 1.5)is enclosed in a containerofvolume150cm^
Theinitial pressure andtheinitial temperature are1.5 x lo^ Pa
and300K respectively. Ifthegasisadiabatically compressed to
50 cm^, find the final pressure and temperature and the work
done bythe, gas in theprocess. Also find the total change in
internal energyof the gas in the process.

Ans. [7.8 X 105 pa^ 520 k, - 33 J, 33 J]

3-4 Onemole ofan ideal gasisheated atconstant pressure so
thatitstemperature rises byAr= 72K. Iftheheat supplied is
2 = 1.6kJ, findthe changein its internalenergyand thework
done by the gas.

Ans. [AU= Q-nR 1 kJ; Air= n R Ar= 0.6 kJ]

3-5 What work has tobedone isobaricallyonamole ofdiatomic
gas to increase its rms speedrj= 3 times from = 300 K ?

m

Ans. [— RTq (tF - 1) = 1.8 X IQJ J]

3-6 An engine that operates at halfits theoretical (Carnot)
efficiency, operates between 545°C and 310°C wh ile producing
work at therate of1000 kW. How much heat isdischarged per
hour?

Ans. [2.15 X iQio j/h]

3-7 Agasat20°C and atmospheric pressure iscompressed to
a volume one-fifteenth as largeas its originalvolume and an
absolute pressure of3000 kPa. What isthenew temperature of
the gas ? .

Ans. [307''C]

3-8 A closed vessel 10 litres in volume.contains air under a
pressure of10^ N/m^. What amount ofheat should be imparted
to the air to increase the pressure in the vessel five times ?

Ans. [10" J]

3-9 One cubic metre of air at 27®C and 10^ N m"^ pressure
weighs 1.18 kg. Calculate thevalue ofthegas constant for 1kg
of the gas and calculate the C of air if 168 cal kg"^ and
J=4.2JcaH.

Ans. [282.5 J kg-' K"', 235.3 cal kg"' K"']

com

3-10 As aresult ofheating one mole ofan ideal gas atconstant
pressure by72X, 1600 Jofheat issupplied intheprocess. Find
the workperformed by the gas, the increment of its internal
energyand the value ofy for the gas.

Ans. [597.6J. 1002.4J, 1.6]

3-11 Agas at constant pressure ,volume Fj and temperature
r, issuddenly compressed to V,/2 and then slowly expanded
to Fj again. Findthe final temperature andpressure.

Ans. [2->- ' P, and2v- ' T^]

3-12 Acubic metre ofdry airatNTP isallowed toexpand to
5 cubic metres (i)isothermally, (ii) adiabatically. Calculate, in
each case, thepressure, temperature and work done, (y = 1.4
and1atm= 1.013 XlO^Nm"^)
Ans. [(i) 1/5 atm or 2.03 x 10"Nm-^ 0°C and 3.6 x 10^ (ii) 1.064 x 10"

Nm-^ - 129.6°C and 120 x lO^ J]

3-13 A thermally insulated vessel containing an ideal gas
(M= 4) at a temperature t = 2TC moves with velocity
V= ICQ m s~K How much (in per cent) will thegas pressure
change on a sudden stoppage of the vessel ?

Ans. [0.54%]

3-14 Asaresult oftheisobaric heating byAT=72Konemole
ofa certain ideal gas obtains an amount ofheat Q= 1.60 kJ.
Findthework performed bythegas, the increment ofitsinternal
energy, and the value ofy=C^/C^.
Ans. [0.60 kJ, 1.00 kJ, 1.6]

3-15 What amount ofheat is to betransferred to nitrogen in
an isobaric beating process so that the gas may perform 2 J
work?

Ans. [7 J]

3-16 Five moles ofneon gas(molecular weight = 20)at2 atm
and 2TC is adiabatically compressedto one-third its initial
volume. Findthefinal pressure, thetemperature andthework
done on the gas.

Ans. [20.2 kJ]

3-17 Calculate the change intemperature when agas(y = 1.4)
is suddenly allowed toexpand to onehundredth of itsoriginal
pressure, its original temperature being 37°C.

Ans. [227 K]
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3-18 Onemoleofoxygen, initiallyat a temperature 290K is
adiabatically compressed so that its pressure increases ten
fold. Find:

(a) thegastemperature afterthe compression, and
(b) the work that has been performed on the gas

Ans. [560 K, 5602 J]

3-19 A cylinder contains 0.15kg ofhydrogen. It is closed by
a piston supporting a weightof 74 kg. What amount of heat
should be supplied to lift the weight by 0.6 m ? Assume that
the process is isobaric and that the heat capacity of the vessel
and the external pressure are negligible.

tzzzZZZZZZZZZZZL

Figure 3.95

Ans. (1523 J]

3-20 Find the ratio ofnumber ofmoles ofa monoatomic and a

diatomic gas whose mixture has a value of adiabatic exponent
Y=3/2.

Ans. [1]

3-21 10J of heat is supplied to a gas enclosed in a cylindrical
vessel in open atmosphereclosedby a smooth piston of cross
sectionalarea 4 x 10^ m^. It is observed that piston moves out
by 10cm.Find the amountbywhichthe internal energyof the
gaswill increase. Given thattheatmospheric pressure is 10^ Pa.

Ans. [6 J]

3-22 Figure-3.96showsa cycleunder whichtwomolesof an
ideal gas undergoes. Find the efficiency of the cycle.

P,/2

Figure 3.96

Ans. [25.8%]

3-23 A thermally insulated vessel contains a heat-insulating
piston which can move in the vessel without friction. Initially
the piston lies at the extreme left end and it is connected to a
spring to the right wall of the vessel through a spring whose

Thermodynamics Laws & Specific Heats of Gases _

length isequal to thelength ofthe cylinder. Therightportion
is completely evacuated anda mole ofan ideal monatomic gas
is introducedin the left portion. Find the heat capacityof this
spring controlled monatomic gassystem, neglecting theheat
capacities of the vessel, piston,and spring.

Wa
Figure 3.97

Ans. [2 R]

3-24 One cubic metre of hydrogen at ()°C and 76 cm of Hg
weighs0.0896kg. The specificheat capacitiesofhydrogenat
constantpressureandvolumeare3409and 2411 calper. kgper
kelvin, respectively. Calculate thevalue ofJ. (g= 9,81 m s"^,
density ofmercury= 13.6 x 10^ kgpercubic metre)

Ans. [4.15 J cal"'] -

3-25 Agas ofgiven mass at a pressure of 10^ Nm"^ expands
isothermallyuntil its volumeisdoubled and then adiabatically
until its volumeisagaindoubled. Find the finalpressureofthe
gas. (y= 1.4)

Ans. [1.89 X 10-* Nm-2]

3-26 Two different adiabatic

paths for the same gas
intersects two isothermals at

Tand f as shown in the P-V

as shown in figure-3.98. How
does {VJV^ compare with

. , >'a ''b •,

V, Vj V, V, V

Figure 3.98

3-27 A vertical cylinder of cross-sectional area S contains
one mole of an idealmonoatomicgas under a piston of mass M.
At a certain instant a heater which supplies
heat at the rate of^ J/s is switched on under

the piston. Determine the velocity v ofthe
piston under the condition that the
pressure remains constant and the gas
under the piston is thermally insulated.

Heater

Figure 3.99

Ans. [v =-I
5 p(iS + Mg
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3-28 A vessel containing one gram-mole of oxygen is enclosed

in a thermally insulated vessel. The vessel is than moved with

a constant speed Vq and then suddenlystopped. The process
results in a rise in the temperature ofthe gas by 1°C.Calculate

the speed Vq.

Ans. [36.0 ms~']

3-29 An ideal gas with the adiabatic exponent y undergoes a

process in which its internal energy relates to the volume as
U= aV°-, where a and a are constants. Find:

(a) the work performed by the gas and the amount of heat to
be transferred to this gas to increase its internal energy by A17;

(b) the molar heat capacity of the gas in this process.

Ans. [(a) W= AU (y - l)/a; Q = AU [1 + (y - lya];

(b) C = « /(y - 1) + R/a]

3-30 Two moles ofan ideal gas at temperature = 300 K was

cooled isochorically so that the pressure was reduced to half.
Then, in an isobaric process, the gas expanded till its
temperature got back to the initial value. Find the total amount

of heat absorbed by the gas in the process.

Ans. [2490 J]

3-31 Suppose that 5 g ofhelium gas is heated from- SCO to
I20®C. Find its change in internal energy and the work it does
ifthe heating occurs (a) at constant volume and (b) at constant

pressure. Forhelium, = 0.75cal/g•C°and = 1.25cal/g•C.

Ans. [(a) 2350 J, Zero; (b) 2350 J, 1570 J]

3-32 10 gm of oxygen at a pressure 3 x 10^ N/m^ and
temperature 10°C is heated at constant pressure and after
heating it occupiesa volume of 10 litres, (a) Find the amount of
heat received by the gas and (b) the energy ofthermal motion

of gas molecules before heating.

Ans. [(a) 7.9 x 10^ J (b) 1.8 x lo^ J]

3-33 A gas expandsadiabaticallyand its volumedoubleswhile
its absolute temperature drops 1.32 times. What number of
degrees of freedom do the gas molecules have ?

Ans. [5 degrees of freedom]

3-34 The closed cylinder shown in figure-3.100 has a freely

moving piston separating chambers 1 and 2. The chamber (1)
contains25 mg ofN2 gas and chamber (2) contains 40 mg of
helium gas. When equilibrium is established, what is the ratio

of — ? What is the ratio ofnumber ofmoles ofN, to number

of moles OfHe, given molecular weightsofN2 and He are 28
and 4 respectively ?

L\ n\
Ans. [-- 0.089]

h "2

Figure 3.100
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3-35 A thermodynamic system undergoes a change of state
during which it absorbs 100kJ ofheat and it does 50 kJ ofwork.
Then the system is brought back to its original state through a
process during which 120 kJofheat is absorbed by it. Find the
work done by the system in the second process.

Ans. [170 kJ]'

3-36 A certain volume ofa gas (diatomic) expands isothermally
at 20°C until its volume is doubled and then adiabatically until
its volume is again doubled. Find the final temperature ofthe
gas, given y = 1.4 and that there is 0.1 mole of the gas. Also
calculate the work done in the two cases, i? = 8.3 J mole"' K"'.

Ans. [-50.9''C, 1.47 X 102 J]

3-37 A cyclic process ABCD is shown in the PV diagram in
figure-3.101. Draw the VTgraph for the same process.

Isotherms

Figure 3.101

3-38 In a cyclic process initiallyagasis at 10^ Papressureand
its volumeis 2 m^ First it undergoesan isobaricexpansion to
increase its volume to 2.5 m^ The in an isochoricprocess its
pressure is doubled. Now the gas is brought back to its initial
state by changing the pressure ofgas linearly with its volume.
Find the total amount ofheat supplied to the gas in the process.

k

Ans. [- 25000 J] '

3-39 A certain volume of dry air at 20^0 is expanded to three
times ofits initial volume (i) slowly, (ii) suddenly. Calculate the

final pressure and temperature in each case. Atmospheric
pressure= 10^Nm"^,y ofair= 1.4.

Ans. [3.3 x 10'' Nm-2, - 84.2°C, 2.15 x lO* Nm'^]
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3-40 Figure-3.102 shows two containers each of volume
2 X10^ containing equal amount ofan ideal gas. The two
containers areconnected bya U-tube containing some mercury
in it asshown in figure. Initial pressure andtemperature ofthe
two containers are 75 cm ofHg and 300 K. Ifthe two containers
aresupplied 5J and 10 J heatrespectively andthemercury level
in thetwo sides oftheU-tube was same before supplying heat
tothecontainers, find the final difference in theheights ofthe
mercuryin the two sides of the U-tube. Neglectthe volumeof
the connecting tubes and the U-tube. Given that the molar

specific heat ofgas at constant volume isC^= 12.5 J/moIe-K.

Figure 3.102

Ans. [12.5 cm]

3-41 Aclosed vessel impermeable to heat contains ozone (O3)
at a temperature of /, = 527°C. After some time the ozone is
completely converted into oxygen (O^). Find the increase of
thepressure in thevessel if = 34 kcal haveto bespentto form
one g-mole ofozone from oxygen. M, = molecular weight of
ozone = 48 and = molecular weight ofoxygen = 32, C^of
oxygen = 5 cal/deg. mole.

Ans. [
Pi

P\

M,

3-4? A cyclic process 1-2-3-1 depicted on V-T diagram is
performed ona gaswith acertain amount ofanideal gas. Show
the same process on a P-F diagram and indicate the stages
when the gas received and when it rejected heat.

Figure 3.103

3-43 Figure-3.104 shows a horizontal cylindrical vessel of
length 2 / isseparated bya thinheat-insulating piston intotwo
parts each of which contains n moles of an ideal monatomic

gas at temperature T. The piston is connected to the end faces
of the vessel by undeformed springs of stiffens k. When an
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amount ofheatQis supplied slowly tothe gasin therightpart,
thepiston is displaced byx= 112. Find theamount ofheatQ'
given away at the temperature Tio a thermostat with which the
gas in left part is in thermal contact all the time.

2'

«, r.

Figure 3.104

Ans. [Q-l nRT- kfi]

3-44 Figure-3.105 shows three processes for an ideal gas. The
temperature at 'a' is 600 K, pressure 16 atm and volume 1 litre.
Thevolume at 'Zj' is4 litre. Outof thetwoprocesses ab andac,
oneisadiabatic andtheother isisothemial. Theratio ofspecific
heatsofthe gas is 1.5.Answer the following:

P {atm)

V{litre)

Figure 3.105

(i) Which oiab and ac processes is adiabatic - Why?
(ii) Compute the pressures of the gas at b and c.
(iii) Compute the temperature at b and c.
(iv) Compute the volume ate.

Ans. [(ii) P^= p^=2 atm (iii) = 300 K; = 600 K (iv) = 8 litre]

3-45 A gas has a volume 1000 cm^ at 80 cm of mercury
pressure.It is expanded adiabaticallyto 1190c.c.The pressure
falls to60cmofHg. Calculate theworkdone bythegas.

Ans. [17.53 J]

3-46 A certain mass of a gas is taken at 0°C in a cylinder
whose walls areperfect insulators. Thegas iscompressed (a)
slowly, (b) suddenly till its pressure is increased to20 times the
initial pressure (y= 1.4). Calculate thefinal temperature ineach
case.

Ans. [In each case final temperature is 389.2 °C]

3-47 In a polytropic process an ideal gas (y = 1.40) was
compressed from volume K, = 10 litres \oV^ = S litres. The
pressure increased from p, = 10^ Pa to = 5 x lo^ pa.
Determine : (a) the polytropicexponent w, (b) the molar heat
capacity of the gas for the process.

Ans. [2.32, 1.74 R]
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3-48 A diatomic ideal gas is heated at constant volume until
its pressure is tripled. It is again heated at constant pressure
until itsvolume isdoubled. Findthemolar heatcapacity for the
whole process.

31
Ans.

3-49 Onemoleof an idealgaswhoseadiabatic exponent equals
yundergoes aprocessp=pQ + oJV, whereand a arepositive
constants. Find:

(a) heat capacity of the gas as a function of its volume;
(b) the internal energy increment of the gas, the work
performedby it, and the amount ofheat transferred to the gas,
if itsvolume increased from Fj to V^.
Ans. [(a) C- Y /{y - 1)+ oW/j/; (b) At/ - F,) / (y - 1); A= (F^
- F,)+ a In (F/F,); Q = yp^{V^^ F,)/(y- 1) + a /« (F/F,)]

3-50 One mole of argon is expanded polytropically, the
polytropic constant being n = 1.50. In the process, the gas
temperature changes by Ar= - 26 K. Find:
(a) the amount of heat obtained by the gas;
(b) the work performed by the gas.

Ans. [(a) O.I 1 kJ; (b) 0.43 kJ]

3-51 A reversible heat engine carries 1 mole of an ideal
monoatomic gas around the cycle 1-2-3-1. Process 1-2 takes
placeat constantvolume, process 2-3 is adiabatic,and process
3-1 takes place at constant pressure as shown in figure-3.106.
Compute the values for the heat A^, the change in internal
energy AI7, and the work done AfV, for each of the three

processes and for the cycle as a whole.

2(600K)

1(300K) 3(455K)
.•F

Figure 3.106

Ans. IAfF=0, At/= 3735, AQ = 3735 J, Af;=- 1805 J,

AfF= 1805 J. AQ=0, At/=- 1930 J, A1F=- 1286 J,AQ = - 3216 J]

3-52 Two identical containers AandBwith frictionless pistons
contain the same ideal gas at the same temperature and the
same volume F.The mass of gas in cylinder.,4 iswj and that in
cylinderB is Wj. The gas in each cylinder is now allowed to
expand isothermally to the same final volume 2F. Find the ratio
of the two masses if the change in pressure in cylinder B is
found to be 1.5 times higher than that ofcylinder .^4.

Ans. [2/3]
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3-53 An ideal gas undergoes a thermodynamic process,
indicator diagram ofwhich is shownin figure-3.I07.Find the
work done by the gas in going from state-1 to state-4.

2F,

Ans. [3 PV]

F, 2F| 3F,

Figure 3.107

3-54 A monoatomic ideal gasoftwomoles is taken through a
cyclic process starting from A as shown in figure-3.108. The
volume ratios areF^/F^ =2and = Ifthetemperature
at state A is 27°C, find:

D

Figure 3.108

(a) The temperature of the gas at point B.
(b) Heat absorbed or released by the gas in each process.
(c) The total workdonebythegas duringthe complete cycle.

Ans. [(a) 600 K (b) 1500 R, 831.6 R, - 900 R, - 831.6 R (c) 600 R]

3-55 Suppose that 30 g of highly compressed air
(Cy= 0.177 cal/g •C°) isconfined toa cylinder bya piston.Its
volume is 2400 cm^ its pressure is 10 x 10^ Pa, and its
temperatureis35°C. The air is expandedadiabatically until its
volume is 24,000 cm^. During the process, 4100 J of workis
done by the air. What is its final temperature ?

Ans. [- 150''C]

3-56 A mole of a monatomic perfect gas is adiabatically
compressed when its temperature rises from 27"C to 127°C.

Calculate the work done.

Ans. [1246.5 J']

3-57 In a certain polytropic process the volume of argon is
increased a = 4 times and the pressure decreased p = 8 times.
Find the molar heat capacityof argon in this process, assuming
it to be a perfect gas.

Ans. [- 4.2 J K"' mole"' where n =-!2-§.]
In a
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3-58 Gaseous hydrogen contained initially under standard
conditionsin a sealedvessel ofvolume V= 5.01 was cooled by
AT= 55 K. Find how much the internal energy of the gas will
change and what amount of heat will be lost by the gas.

Ans. [0.25 kJ, 0.25 kj]

3-59 Acylinder contains3 moles ofoxygen at a temperature
of 27°C. The cylinder is provided with a frictionless piston
which maintains a constant pressure of 1 atm on the gas. The
gas is heated until its temperature rises to 127®C.
(a) Howmuch work is done by the gas in the process ?
(b) What is the change in the internal energy of the gas ?
(c) How much heat was supplied to the gas ?

Ans. [(a) 2523 J, (b) 1506 cal, (c) 2109 cal]

3-60 One mole ofan ideal monoatomic gas attemperature Tq
expands slowly according to the law P = kV, where k is a

constant. Ifthefinal temperature ofthegas isITq, find theheat
supplied to the gas.

Ans. [2^ro]

3-61 A thermally insulated container contains 4 mole of an

ideal diatomicgas at temperatureT.Find heat suppliedto this
gas, due to which 2 mole of the gas are dissociated into atoms
but temperature ofthe gas remains constant.

Ans. [/?r]

3-62 A gaseous system is taken from state-1 to state-2 from
three different paths 1, 11 and 111 as shown in figure-3.109.
Calculate the work done by the gas in the three paths 1,11 and
m.

P{kPd)

so

lo
III

10 25

Figure 3.109

Ans. [0.3 J, 0.45 0.15 J]

F(cm^)

3-63 Two moles ofan ideal monoatomic gas,initiallyat pressure
P] and volume V^, undergo an adiabatic compression until its
volume is V^. Then thegas is given heatQat constantvolume

^2-
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(a) Sketch the complete process on a PVdiagram.
(b) Find the total work done by the gas, the total change in
internal energy and the final temperature of the gas.

Ans. [-4/1 K, 3/? 3R IF2J J

3-64 A cyclicprocess 1-2-3-4-1 consisting of two isobars
2-3 and 4—1, isochor 1-2, and a certain process 3-4 represented
by a straight line on the P-V diagram involves n moles of an
ideal gas as shown in figure-3.110. The gas temperatures in
states 1, 2, and 3 are T,, Tj and respectively, and points3
and 4 lie on the same isotherm. Find the workdone bythe gas
during the cycle.

(r,) 3m

(7".)!

Figure 3.110

7; 7;Ans. [W= -nR T.) |̂ ^-h^-2j]

3-65 Forthecycleshown inthefigure-3.U 1, find the net heat
transfer if 100 g of air is contained in a piston-cylinder
arrangement. For air M= 20.

P(kPa)

T = constant

Figure 3.111

Ans. [77.1 KJ]

3-66 Onemoleofan idealgasat 290Ktemperature expandsat
constant pressure with volume ratio 2. Then the gas is cooled
to its initial temperature at constant volume. Find the increment
in internal energy ofthe gas and the work done by the gas.

Ans. [0, 2.4kJ]
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3-67 A cylinder contains an ideal gas at a pressure of two
atmospheres, the volume being 5 litres at a temperature of
250 K. The gas is heated at constant volume to a pressure of4
atmospheres and then at constant pressure to a temperature of
650 K. Calculate the total heat input during these processes.
Forthe gas = 2IJ mole~' degree"*. Thegasis thencooled at
constant volume to its original pressure and then at constant
pressureto itsoriginal volume.Find the totalheat outputduring
these processes and the total work done by the gas in the
whole cyclic process.

Ans. [Total heat input = 4701 J, Total heat output = 4397 J, Work done

= 304 J]

3-68 Two moles ofhelium is initially at 300 K temperature is
enclosed in a container of volume 20 litre. The gas is first

expandedat constantpressurewith expansionratio 2. Then it
undergoes an adiabatic change until the temperature returns to
its initial volume. Find the final volume and pressure ofthe gas
and to work done by the gas.

Ans. [44 kPa, 12.45 kJ]

3-69 A gram mole of a gas at 27°Cexpands isothermally until
its volume is doubled. Calculate the amount of work done.

(7? = 8J mol"* K"')

Ans. [1.66 X 10^ J]

3-70 The temperatureof3 kg of nitrogen is raised from 10®C to
100®C. Compute the heat added, the work done and the change
in internally energy if(a) this is done at constant volume and
(b) if the heating is at constant pressure. For nitrogen

= 1400 J kg-' K-' and = 740J kg"'K"'.

Ans. [(a) 199800 J (b) 81000 J]

3-71 A heat-conducting piston can freely move inside a closed'
thermally insulated cylinder with an ideal gas. In equilibrium
the piston divides the cylinder into two equal parts, the gas
temperature beingequalto T^. Thepiston is slowly displaced.
Find the gas temperature as a function of the ratio r\ of the
volumes of the greater and smaller sections. The adiabatic
exponent of the gas is equal to y.

Ans. ir= To [(n + 1)2/4ti](1'- 0^]

3-72 A heat conducting piston can movefi"eelyinside a closed,
thermally insulated cylinder with an ideal gas (y = 5/3). At
equilibrium, the piston divides the cylinder into two equal parts,

the gas temperature being equal to 300 K. The piston is slowly
displaced by an external agent. Find the gas temperature when
the volume of the greater section is seven times the volume of
the smaller section.

Ans. [395 K]

3-73 The atomic weight ofiodine is 127.Astandingwaveina
tube filled with iodine gas at 400 K has nodes that are 6.77 cm
apart when the fi-equency is 1000Hz. Is iodinegas monoatomic
or diatomic ?

Ans. [diatomic]

3-74 A cubical vessel of side 1 metre contains one gram
molecule ofnitrogen at pressure of2 atmospheres and 300 K. If
the molecules are assumed to move with their rms velocity find

the number of collisions per second which he molecules can
make with the wall ofvessel. Further ifthe vessel now thermally
isolated moved with a constant speed V and then suddenly
results in a rise oftemperature 2°C. Find V.

Ans. [222.5 K cals, T, = 416.5 K, = 250 K]

3-75 A gas consisting ofrigid diatomic molecules ofdegree
of freedom r = 5 was initially at standard pressure
Pq = 1.013 X10^ Pa and = 273 K. Then the gas was
compressed adiabatically q = 5 times. Find the mean kinetic
energyofa rotating molecule in the final state.

Ans. [7.2 X 10-21 J]

3-76 A cylinder containing a gas is closed bya movable piston.
The cylinder is submerged in an ice-bath as shown in
figure-3.112. The piston is quickly pushed down fi"om position
1 to position 2. The piston is held at position 2 until the gas is
again at CC and then slowly raised back to position 1.
Representthe wholeprocess onp-Kdiagram. Ifw= 100g ofice
are melted during the cycle, how much work is done on the
gas. Latentheat ofice = 80 cal/g.

/>

r££.D£.

L-r^a-- — Ice bath

Figure 3.112

Ans. [8000 cat]

3-77 A'gas is enclosed in a metallic container ofvolume Fand

its initial pressure is p. It is slowly compressed to a volume V/2
and then suddenly compressed to V/4. Find the final pressure
of the gas. If from the initial state the gas is suddenly compressed
to K/2 and then slowly compressed to F/4, what will be the final
pressure now.

Ans. [p(2)i"^'in both cases]
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3-78 A gas takespart in twoprocesses in which it is heated
from the same initial state 1to the same final temperature. The
processes are shown in the p-V diagram as shown in
figure-3.113 by the straight lines 1 -> 3 and 1^ 2,2 and 3are
being points on the same isothermal. Indicate in which the
amount ofheat supplied is greater.

' \2

Isotherm

Figure 3.113

Ans. [0,3 > ^12]

3-79 One gram mole ofoxygen at2TC and pne atmospheric
pressure isenclosed ina vessel. Assuming themolecules tobe
moving with find the number of collisions per second
which the molecules make against one square metre of the
vessel wall.

Ans. [2 X 10"m""^]

3-80 An ideal gas expands at a constant pressure of7.0 atm
from 280'mL to 630 mL. Heat then flows out ofthe gas, at
constant volume, and thepressure andtemperature areallowed
todrop until thetemperature reaches itsoriginal value. Calculate
(a) the total work done bythegas in the process, and (b) the
total heat flow into the gas.

Ans. [(a) 248 J; (b) 248 J]

3-81 Find the specific heat ofa polyatomic gas at constant
volume if the density of this gas in standard conditions is
7.95 X10^ gm/cm^. Express your result in cal/gm degree.

Ans. [0.334 caI/gm''C]

3-82 An ideal gas expands according to the lawpF"^ =constant
(a) Isit heated orcooled ?(b) What isthemolar heat capacity
in this process ?

Ans. [Cooled, C,. ~ /?]

3-83 Themolar heat capacity ofanideal gas (y = 1.40) varies

during a process according to the law C = 20.0 + .

(a) Is the process polytropic ?
(b) Findtheworkdonebyamoleofthegaswhen heatedfrom
7'i-200Ktor2-544K.

Ans. [No, 230 J]
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3-84 One cubic metre of argon at 27*^0 is adiabatically
compressedso that the final temperature is 127^0. Calculate

the newvolume of thegas (y= 5/3).

Ans. [0.65 m^]

3-85 Two moles of a certain ideal gas at a temperature
Tq = 300 Kwere cooled isochorically sothat thegas pressure
reduced w=2.0 times. Then, asa result ofthe isobaric process,
the gas expanded till its temperature got back to the initial
value. Find the total amount of heat absorbed by the gas in
this process.

Ans. [2.5 kJ]

3-86 Find the specific heat capacities and for agaseous
mixture consisting of7.0 gofnitrogen and 20gofargon. The
gases are assumed to be ideal.

Ans. [q, = 0.42 J/(g • K),C^ = 0.65 J/ (g • /Q]

3-87 A gas(y = 1.5) is enclosed in a thermally insulated
container ofvolume 4 x 10~^ m^ at 1atmospheric pressure and
at a temperature of300K. If thegasissuddenly compressed to
a volume of 10^ m^, what will be the final pressure and the
temperature of the gas. What will be your answers for final
pressure and temperature if gas is slowly compressed to the
same final volume.

Ans. [8 atm, 600 K, same answers]

3-88 The temperatureof the sun's interior is estimatedto be
about 14 X10^ K. Protons (m~ 1.67 x 10" '̂kg) compose most
ofits mass. Compute the average speed ofaproton byassuming
that theprotons act as particles in an ideal gas.

Ans. [5.89 x lo^ m/s]

3-89 A horizontal insulated cylinder is provided with
frictionless non-conducting piston. On each side of the piston
there is50litres ofair atapressure of1atmosphere and273 K.
Heat is slowlysuppliedto the air at the lefthand side,until the
piston has compressed the air on the right hand side to 2.5
atmosphere. Find:

(i) Final temperatureof air on the right hand side
(ii) Workdone on the air on the right hand side
(iii) Final temperature of air on the left /zand side
(iv) Heat added to air on the left hand side.

Ans. [(i) 354.7 K (ii) -3741.5 J (iii) 1010 K (iv) 3.749 x iC j]

3-90 What work has to bedone adiabatically to increase the
rootmean squarespeed ofa moleofa diatomic gasr| = 5 times
fromT, =300K?

Ans. [1.5 X 10 ;••]
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3-91 A rectangular narrow U-tube has equal arm lengths and

base length, each equal to I = 250 mm. The vertical arms are

filled with mercury up to HI and then one end is sealed as

shown in figure-3.11^. By heating the enclosed gas all the
mercury is expelled. Determine the work done by the gas ifthe

atmospheric pressure = 10^ Pa, the density of mercury
p = 13.6X10^ kg/m^ and cross-sectional area is5"= 1cm^.

Ans. [7.71 J]

T
112

1

Figure 3.114

3-92 One mole ofan ideal gas is contained in a vertical cylinder

under a massless piston moving without friction. The piston is

slowly raised so that the gas expands isothermally at
temperature = 300 K. Find the amount of work done

increasing the volume to r| = 2 times. The outside pressure is

atmospheric.

Ans. [764.5 J]

3-93 In an experiment with high energy beam, hydrogen ions

eachof 1.67 x 10"^^ kgstrikea stationaryandthermally insulated
targetwith a velocity of2 x lO'ms"^ at therateof10'̂ ionsper
second. If the mass of the target is 500 g and specific heat

0.09 cal g~' find the timetaken forthe temperatureof the
target to rise by 100°C, assuming the whole energy of the ions

is converted to heat and absorbed by the target.

Ans. [56.39 s]

3-94 Four moles ofa certain ideal gas at 30°C are expanded

isothermally to three times its volume and then heated at this

constant volume until the pressure is raised to its initial value.

In the whole process the heat supplied is 72 KJ. Calculate the
ratio CJC^ for the gas and state whether it is monoatomic,
diatomic or polyatomic gas.

Ans. [1.33]

3-95 One mole of a gas is put under a weightless piston ofa

vertical cylinder at temperature T. The space over the piston

opens into atmosphere. How much work should be performed

to increase isothermally the volume under the piston to twice
the volume (neglect friction ofpiston) ?

Ans. [;?r [1 - ln(2)]]
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3-96 Two moles of a certain ideal gas at 300K is cooled at
constant volume so that the pressure us reduced to half the
original value. Now the gas is heated at constant pressure so
that its temperature becomes equal to the initial temperature.
Find the total amount ofheat absorbed by the gas in the process.

Ans. [2500 J]

3-97 An ideal gas in a cylinder is slowly compressed to one-
third ofits original volutne. During this process, the temperature
ofthe gas remains constant and the work done in compression
is 75 J. (a) How much does the internal energy of the gas
change ? (b) How much heat flows into the gas ? -

Ans. [(a) Zero; (b) - 75.0 J]

3-98 A diatomic gas initially occupying a volume 3 litres at
300 K and one atmospheric pressure is adiabatically
compressed to 1/3 ofthe initial volume. It is then isobarically
expanded till its temperature becomes 300 K, and finally
isothermally expanded to restore it to the initial P - V- T
conditions. Find the work done during complete cycle of
operations.

Ans. [271.6 J]

3-99 Forair, Cy=0.177 cal/g •°C. Suppose thatair isconfined
to a cylinder by a movable piston under a constant pressure of
3.0 atm. How much heat must be added to the air if its

temperature is to be changed from 27°C to 400°C ? The mass of
air in the cylinderis 20 g, and its original volumeis 5860cm^.
Hint:Notice thatmc^ATis the internalenergy onemustaddto
the gas to change its temperature by AT.

Ans. [7730 J]

3-100 A given mass ofmonoatomic gas occupies a volume of
4 litre at 1 atmosphere pressure and 300 K. It is compressed
adiabatically to 1 litre. Find:

(i) Final pressure and temperature
(ii) Increase in the internal energy

Ans. [(i) P2 = 10.08 atm; = 756 K (ii) Aw = 912 J]

3-101 A sample ofan ideal gas is enclosed in two cylindrical
vessels ofvolume V, top of which are closed by identical light
pistons. The walls of first vessel are diathermic and always in
good thermal contact with the surrounding whereas the walls
of second vessel are adiabatic. Initially both the vessels are at
atmospheric pressure Pq and atmospheric temperature Tq. Now
in both the vessels the pistons are slowly pulled out to increase
the volume ofcontainer to 2 V. Now the pistons are clamped and
the two walls are connected by a thin tube ofnegligible volume.
Find the final values of temperature and pressure in the
containers after a long time.

Ans. [T,, -P,]
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3-102 A cyclic process ABCA shown on V~ T diagram in
figure-3.115 is performed with a constant mass m on an ideal
gas. Show the same process on ap - Fdiagram.

Figure 3.115

Thermodynamics Laws & Specific Heats of Gases I

3-103 Theaverage degrees offreedom permolecule ofa gas
are 6. The gas performs 25 J of work in a process when it is
expanded at constant pressure. Find the amount of heat
absorbed by the gas.

Ans. [100 J]

3-104 Two cylinders AandB, fitted with pistons, contain equal
amounts of an ideal diatomicgas at 300 K. The piston of^ is
free to move, while that ofB is held fixed. The same amount of

heatisgiven tothegasineach cylinder. Iftheriseintemperature
ofthegas incylinder yf is30Kthenfind therise in temperature
ofthe gas in cylinder B.

Ans. [42 K]
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FEW WORDS FOR STUDENTS

XJpto now we've discussed about the effects of heat supply on

different substances solids, liquids and gaseous systems. We've

learnt how substances respond on absorbing thermal energy and

the basic laws ofconservation ofenergy conserved with thermal

energy. '
!

? • '

Now in this chapter we'll discuss the different ways how the

transfer ofenergy takesplacesfrom onepoint (place) to another.

This section is most essentialfor complete knowledge ofthermal

physicsi In different situations the ways by which thermal energy transfer takes place depends on so

many factors including the surrounding environment. Mainly these ways are classified in three broad

categories conduction, covection and radiation. In previous chapters it is learnt that whenever heat is

supplied to a body or a system, this is accomplished by either ofthese three ways.

CHAPTER CONTENTS

4.1 Conduction ofHeat

4.2 Convection ofHeat

4.3 Radiation ofHeat

4.4 Newton's Law ofCooling

4.5 Black Body Radiation Spectrum

COVER APPLICATION

Figure-(a) Figure-(b)

Convection can only happen in fluids. This includes liquids and gases and is because the molecules have to be free to move. Heat energy can
transfer by convection when there is a significant difference in temperature between two parts of a fluid. When this temperature difference
exists, hot fluids rise and cold fluids sink, and then currents, or movements, are created in the fluid. Figure-(a) Shows a' pressure cooker inside
of which when its bottom is heated, due to convection hot water flows up and heated the vegetables even in upper part of the cooker so it
cooks uniformly. Figure-(b) shows a camp fire in which due to fire, hot air is lifted up and cold air from side is pulled and convection currents
setup in.the surrounding of fire that's why the region above fire is extremely hot compared to side region.
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Heat energy canbetransferred in three ways from oneplace to
another. Conduction, Convection and Radiation. When one
endofa metal rodis heated, theother endgetswarm. Thisisan
example ofconduction, in which thermal energy is transferred
without any net movement of the material itself. It is
accomplished due to vibration and collisions of material
particles. Conduction isa relatively slow process. Amore rapid
process of heat transfer is accomplished through the mass-
motion or flow ofsome fluid, such as air or water and is called
convection. This transfer takes place when warm air flows
through a room and when hot and cold liquids are poured
together. A more rapid transfer of thermal energy is
accomplished by radiation a process that requires neither
contactnormass flow likethe energy from sun comes tous by
radiation. We canalsofeel radiation when standing nearbya
fire, a room heater or radiators.

4.1 Conduction of Heat

If one end of a metal rod is placed in a flamewhile the other is
heldin the hand, that part of the rodoneis holding becomes
hotter and hotter, although it is not itself in direct contact with
the flame. Heat is said to reach the cooler end of the rod by
'"thermal conduction" through the material of the rod. The
molecules at the hotendofthe rod increase the energyoftheir
vibration as the temperature increases. Then, as theycollide
with their more slowlymoving neighbours on the rod toward
colder end, some of their energy is shared with these
neighbours, and they in turn pass it along those still farther
from the flame. Hence energy ofthermal motion ispassed along
from one molecule to the next, while each individual molecule
remains at its original position.

Mostof the metalsaregood conductors ofelectricity andalso
of heat. Conduction of electricity is by the free electrons in
metal lattice which are detached from their parent molecules
and are free to move in the lattice region called conduction
bandwhichis evenlyspreadedin thewholelatticeof the metal.
The freeelectrons alsoplay a part in conduction ofheat, and
the reason metals are such good heat conductors is that the
free electrons provide an effective mechanism for carrying
thermal energyfrom the hotter to the colderportionsof the
metal.

Conduction ofheatcantakeplaceina bodyonlywhen different
parts of bodyare at different temperatures, and the direction of
heatflowisalways from pointsofhigher temperature to those
at lower temperature. Figure-4.1 shows a metal barconnecting
two bodies at temperature and (Tj > T^). Thesides ofthe
rod are covered byan insulating material, so that no heat flow .
takes place to the sides (surroundings). Practically even the
best heat insulators also conduct heat to some extent. Perfect
heat insulatorisjust an idealized concept.

Heat Transfer

Insulator

Heat current

temperature T, temperature T,

Figure 4.1

In the above example of heat conduction through a bar, after
sufficientlylong time, the temperaturewithin the bar is found
to decrease uniformly with distance from the hot to the cold
face. Whenthis uniform temperature gradient is established,
at each point within the rod, the temperature remains constant
with time. This condition is called steadystate heat flow. In
next section we'll discuss steady state conduction of heat in
more details.

An objects usefulness as a thermal conductor depends in a
number ofthingsincluding itslength, thickness andthematerial
from which it is made. Initially we have discussed that when
two bodies at different temperatures are connected by a
thermallyconducting material, heat flows from high temperature
body to thatwhich is at a lower temperature. The process by
which thisthermal energy is transferred through thematerial is
called conduction of heat. Lets discuss conduction in detail
step by step.

p\ 1 n

L

temperature = 25''C

(a)

A B c
p\ ' 1 1 111

cc L

(b)

Figure 4.2

IOO°C

Consider an iron rodPQoflength Lshown infigure-4.2(a). It is
initiallyat room temperature 25°C.Tf at an instant left endPof
therod issubmerged inan icebath at 0°C andtheother endQ
is submerged in boiling water at 100°C. Just after this the
temperature of different parts of rod will start changing with
time. Thepart of rodnear to endP willhaveits temperature
falling with time and the part near to end Q will have its
temperature rising with time. This happens due to heat flow
through therod from high temperature side tolower temperature
side. Letsdiscuss is depth. Consider a part of rod near to end
Q (marked as AB(in figure-4.2b) as shown in figure-4.3. If
temperature to theright ofpointB is 90°C andthat ofsegment
ABandto the leftofAare 82°C and 76°C respectively thendue
totemperature difference some heat say Ag, flows from endC
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to end B then this heat increases the agitation of the molecules
of the material in segment BC then due to the vibration and
collision of these molecules with their adjacent atoms or
molecules, someheat sayhQ2 is transferred to segmentAB.
Someof this Ag, was absorbed bysegmentBC, that will raise
the temperature ofBC by some value, hence
thenAig,. Similarly when Ag2 heatcomes tosegmentyl5, some
of this increases the temperature of segment AB and rest is
conducted to the next segments ofthe rod and in this manner
heat is conducted to the other end of the rod for some time.

AQ3

A

76°C 82''C 9000 100°C

f'. Figure 4.3

After some time we can observe that as the temperature of
individual segments ofthe rod is increasing, the temperature
difference between adjacent segments is approaching a
constant value as in figure-4.3 the difference of temperature
betweenBCand the end ^ was 10°Cand that betweensegments
BC and AB was 8°Cand after some time as shown in figure-4.4
temperature ofthe segments CQ, BC and AB are 95° C, 90°C
and 86°Crespectivelythe temperature difference is decreasing
and hence as temperature difference decreases rate ofheat
flow becomes slower and AQ^ and AQ2 will beapproximately
same thus the amount ofheat absorbed decreases with time.

•ABC

86 90 95

Figure 4.4

,2
'lOCC

Now after a long time when temperature difference between
different equally spaced segment of rod becomes equal the
rate ofheat taken by a segment will be equal to the rate ofheat
given to the next segment and at this stage no abortion ofheat
takes place by any segment of rod and temperature of every
part of rod becomes constant. This is called steady state of
thermal conduction. In steady state throughout the medium
rate of flow ofheat becomes constant and the amount ofheat

enters from one end is equal to the amount ofheat leavingfrom
the other end. Thus we state in steady state of thermal
conduction, in the medium a constant temperature gradient is
established and temperature of every part of the medium
becomes constant as shown in figure-4.5 for the example we've
discussed.

o°c

X

m. 1lOO^C

T T-i-dT,
10»C 20<'C 80°C 90''C

Figure 4.5
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Thus in steady state if at a distance from one end ofthe rod

temperature is Tand at a distancex + dx, temperature 'isT+ dT
than the temperature gradient of the rod at a distance x is
given as

dx
= constant throughout the rod in steady state

This shows that in steadystate, in the medium the temperature
ofmedium varies linearly from one end to the other.

4.1.1 Analysis of Heat Conduction in Steady State

In steady state conduction ofheat through a medium is uniform
and very easy to understand compared to the case, before
steady state when continuous absorption ofheat takes place
by every part ofthe medium during conduction.

To,understand the thermal conduction mathematically, we
consider two bodies maintained, at different temperature T^
and T2 respectively as shownin figure-4.6. The twobodiesare
connected by the thermally conducting rod of length / and
area of cross-section A as shown. After connecting the two
bodies,it will take sometime to be in steadystate. When steady
flow ofheat from one body to another starts. This heat flow
rate dQIdt is observed as

I

Figure 4.6

(i) Directly proportional to temperature difference

...(4.1)

(ii) Directly proportional to area of cross-section, through
which heat is flowing

cc^
dt

...(4.2)

(iii) Inversely proportional to the length of the medium (rod)
through which heat is flowing

do 1^ccy ...(4.3)

From the equations-(4.1), (4.2) and (4.3), we have

' ...(4.4)
dt I •

Here k is the proportionality constant and depends on material
ofthe medium through which heat is flowing and it is termed as
thermal conductivity ofthe medium. The SI units used for heat

flow are J/sec or W. So the SI units ofk are J/s-m°C or W/m°C.

A high thermal conductivity indicates a good heat conductor
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and a low thermal conductivityindicates a goodheat insulator.
When wedesign a goodinsulator, the first requirement is to
choose a material with a small thermal conductivity so from
equation-(4.4) theheat flowissmall.In addition byminimizing
area of contact A and making the path length / as long as
possible, we can further reduce the heat flow.

4.1.2 Heat Transfer Before Steady State

In previous section we've discussed that in steady state heat
conduction through the material of a medium takes place in
such a manner that no absorption of heat takes place and
throughout the material the rate offlow ofheat remains constant
and a uniform temperature gradient exist in the medium.

As discussed earlier, before steady state the amount ofheat

transferred in the medium to further sections decreases as some

amount ofheat is absorbed by the intermediate sections of the
material, this is explained in figure-4.7. This figure shows a
sectionofmaterial through whichheat is conducted fromhigh
temperature end to low temperature end of the medium.
Consider two cross-section A and B in the medium. Let at an

instant the rate of flow of heat through the cross-section A

dQ^
IS and that through the cross-section B is . Then these

flow rates are given as

and

High

end

dt ^ dx

^=kA^dt ^ dx

e ^

dt • dt

Figure 4.7

Low

end

u ^Here —
dx

and
dx

are the temperature gradients at the location

of cross sections A and B respectively.

Here it is obvious that if the medium steady state is not

achieved--must be less thanas some amount ofheat is
dt dt

absorbed by the section AB. Thus here we can say that the
rate at which the section AB absorbs heat at this instant is

given as

dt
_ dQy dQ2

absorbed by AB dt dt

or = kA
'dT dT

dx
A

dx
B.

Heat Transfer

If the mass of section AB is m and 5 is the specific heat of the
material of sectionAB,the rate at which temperature of section

.r. . dT
AB rises-r

at
can be given as

AB

dt

dT
ms = kA

dx dx
AB

As we know that when steadystate is achieved, the temperature
gradient at all cross-section of the medium becomes equal.
Thus we can say that as the medium is approaching towards
steady state the difference in temperature gradients at cross-
section A and B decreases and hence the rate at which the

temperature ofsegment/45 is increasing also decreases and in
steady state it becomes zero. This is the reason why we say
that in steady state the temperature of all segments of the
medium becomes constant at a steady value (linearly
decreasing from one end to another) and no absorption ofheat
takes place when heat conduction takes place in steady state.

4.1.3 Thermal Resistance and Ohm's Law in Thermal

Conduction

One more parameter can be defined to indicate the

effectiveness of insulation for a material called thermal

resistanceofthe material. Fora givenmaterial, tliermal resistance
is given as

^ -1-^-
" k A

...(4.5)

Here / is the path length for heat flow and A is the area ofcross-
section of material through which heat is flowing. Students
should note that equation-(4.5) can only be used to find thermal
resistance of those materials in which cross-sectional area A

through which heat is conducted is uniform throughout the
path length.

In thermal conduction ohm's law can be .stated as "the heat

current across a given thermal resistance is directly proportional
to the thermal potential (temperature difference) difference
across it." Analytically it is given as

Here

{T,~TA =
dQ)
dt

R.

[Asin currentelectricity f'l - ^2 ^

dQ IcA

dt
(T,-TA ...(4.6)
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Equation- (4.6) is exactly same as equation-(4.5). Weuse this
analogy of current electricity in numerical calculations of
thermal conduction. We take few examples to understand this
analogy.

Illustrative Example 4.1

Consider "two rods of equal cross-sectional area A, one of
Aluminium and other of Iron joined end to end as shown in

figure-4.8. Length of the two rods and their thermal
conductivities are /p /c, and I2, respectively. If the ends of
therodsaremaintained at temperature 7, and (r, > find
the temperature of the junction in steady state.

A1 Fe

Figure 4.8

Solution

We know in steady state the rate of heat flow or the" thermal
current throughout the mediumremains constant thus we have

dQ

dt Al dt
Fe

Ifjunction temperature is assumed then we have

k,A{T,-TJ k^A{T,-T^)

U

or T.=

k\T\ ^^kiTi
U L k[i2^\

kyl2+k2lx
u u

# Illustrative Example 4.2

A bar of copper of length 75 cm and a bar of steel of length
125 cm are joined together end to end. Both are of circular
cross-section with diameter 2 cm. The free ends ofthe copper
and steel bars are maintained at 100°C and O^C respectively.
The surfaces of the bars are thermally insulated. What is the
temperature of the copper-steel junction ? What is the heat
transmitted per unit time across the junction ? Thermal
conductivityof copper9.2 x 1kcal m~'"C"

-1 o-i on-\steel is 1.1 X 10 ^ k cal m ' s ' °C

Solution

Let be the temperature of the junction of the copper and
steel bars (Figure-4.9). In the steady state, the rate of flow of
heat in the copper bar must be the same as that in the steel bar,
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i.e. (since their cross-sectional areas are equal)

1
7, = 100 "C • i r, = 0 T

Figure 4.9

dt

^d.

k.A{Tx-T^) _ KA{T,-T2)

T-T-,
or

r, -T.
...(4.7)

Substituting the given values in equation (4.7), we have

-2
9.2x10

-2
I.IxlO

or

125 _ 7;-o
75 " ioo-t;

r =93.3°C

or Thus the temperature ofthe junction is 93.3 °C. The heat

flowing through the junction per second is

dQ _k,A{Tx-T)
dt d.

...(4.8)

Given 9.2 x lO^^kcalm"' s"'°C~^,d^=15 cm-0.75 m, and
.4 = Jcr^^Tix (10-2 m)^-3.14 x IC^ m^. Also T, = 100°C and
T= 93.3®C. Using these values in (4.8) we have

dQ _ 9.2 X10~^ x3.14 X10"^ X(100 - 93.3)
dt ,

= 2.58x lO^J/s.

# Illustrative Example 4.3

\-4

0.75

A cylindrical brass boiler ofradius 15 cm and thickness 1.0 cm

is filled with water and placed on an electric heater. If the
water boils at the rate of200 gm/s, estimate the temperature of

the heater filament. Thermal conductivity of brass
= 109 J s"' m"' ®C~' and heat of vaporisation of water
= 2.256 XlO^Jg-'.

Solution

Rate of boiling of water = 200 gm/s. Since the heat of
vaporisation ofwater is 2.256 x 10^ J/gm, the amount ofheat
energyrequired to boil 200 g of water is

2.256 XlOUg-' X200^ = 4.512 x lO^J
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Sincewateris boiling at therate of200 gm/s,therate at which
heat energy is supplied by the heater to water is

ey =4.512x lO^Js"'

t d

...(4.9)

Now, Radius ofthe boiler

(;•)= 15cm = 0.15m

Base area ofthe boiler

(^) = Jt = 3.142X(0.15)2 = 0.0707

Thickness of brass

(r/)= I.Ocm= 1.0 X10^2

Thermal conductivity of brass

(A) = 109 Js"' m-i "C"'

Temperature of boiling water

(?;,) = 100 "C

IfT^is the temperature ofthe filament, the rate atwhich heat
energyis transmitted through the base is given by

...(4.10)

Substituting the values oik,A, T^andi/in (4.10) and equating
with (4.9), weget

109x0.0707(ry-100)
= 4.512x105

or

or

-2
1.0x10

y-100 =585.5

ry 685.5 °C

# Illustrative Example 4.4

Aslab ofstoneofarea3600 cm^ and thickness 10 cm isexposed
on the lower surface to steam at 100 "C. A block of ice at 0 °C
restson the uppersurface of the slab. If in one hour4.8 kg of
ice is melted, calculate the thermalconductivity ofthe stone.

Solution

Assuming thatheatloss from thesides oftheslabisnegligible,
the amount of heat flowing through the slab is : '

^ kA{T^-T^)tQ- ^ ' ...(4.11)
If mis the mass of ice andL the latentheat of fusion, then

Q=mL ...(4.12)

Heat Transfer

Equating (4.11) and (4.12), we have

U{T,-T^)t

or

mL ~
d

mLd
k =

Given w=4.8kg,

d= 10cm = 0.1 m,

3600 cm2 = 0.36 m2

r, = 100 °C, 7^2 = 0 °C and t= 1hour= (60 x 60)s.

We know that i = 80calg"' = 80,000 calkg"'

= 80,000 X4.2Jkg-'=3.36 X105 J kg"'.

Substituting these values in equation (4.13) and solving, we
get

A=1.24 Js-'m-'*'C-' or 1.24Wm-'K-'

# Illustrative Example 4.5

...(4.13)

Few rods of material X and Y are connected as shown in

figure-4.10. The cross sectional area ofall the rods are same. If

the end^ is maintained at 80°C and the end Fis maintained at

10°C. Calculate the temperatures ofjunctions Band E insteady
state. Given that thermal conductivityof material is double
that of r.

Figure 4.10

Solution

We first find the thermal resistances ofthe different rods shown

in figure-4.10 these are given as

kx A

^BCE ^
1 (71%)
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'̂ BDE A

1 L
Rr-p— •

ky A

Now in steady state the amount of heat flow fi^om end EtoF
remains constant as there is no absorption of heat. Then we
must have that the amount of heat coming at junction B is
equal to the amount ofheat having B and same statement can

be given for junction E. If temperature ofjunction B and E are
taken as Tg and Tg then wehave forjunctionB.

R AB

80-r,
or

B

<X •Ya

or 80-7-^ =

Tb-T,

R BCE '^BDE

r.-r. Tn-T,

•"Yi2A
.nL/

2̂ A

(Tb-Te^
-h

[Tb-Te^
I Jt y I 27C J

80-r,= ^(r,-r^)

Similarly forjunction E, we can write

Tb-Te ^ Te-Te

[As = 2k^

...(4.14)

or

or

or

and

^£-10

R BCE R BDE R EF

Tb-Te , Te-Te ^ 7>-10
' Ykx- '̂YiA

2{Te~Te) , A{Te-Te)

Ky-YA

= Te-\0

— (r^-r^)-r^-io

Solving equation-(4.14) and (4.15), we get

19.74 •'C

7'„ = 60.52 °C

# Illustrative Example 4.6

...(4.15)

The space between two thin concentric metallic spherical shells
ofradii a and b is filled with a thermal conducting medium of
conductivity k.The innershell ismaintained at temperature Tj
andouter ismaintained at a lower temperature 7^2- Calculate the
rate of flow ofheat in radially outward direction through the
medium.
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Solution

Figure 4.11

Figure-4.11 shows the situation. As we know according to
Ohm's Law in thermal conduction, the rate of heat flow or

thermal current is given as

YQ.
dt

T,-T2

Riu

Where R^^ is the thermal resistance of the medium through
which heat is conducted, which is given as

R =1-^
k A

Where L is the path length and A is the cross-sectional area of
the medium through which heat is conducted. But this relation
can be used to find thermal resistance only when throughout
the path length, area ofcross-section A is uniform. In this case
in radial direction area is increasing so we can not use the
above relation to find thermal resistance.

Here we consider an elemental shell ofradius x and width dx in

the medium as shown in figure-4.Il. If dR be the thermal
resistance ofthis shell then, we have

dR- —
k

dx

4nx'

Here between the two inner and outer shells, all such small dR

resistances can be considered in series combination thus the

net thermal resistance ofthe medium between inner and outer

shells is given as

dx

k Anx'

or R =
Ank

br-,

An kab

Now rate of flow of heat from inner to outer shell in radial

direction is given as

dQ _ Ti -7^2 _ 4TtJ^aZ)(7; -T2)
- dt R b-a
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# Illustrative Example 4.7

A closed cubical box made of a perfectly insulating material
has walls of thickness 8 cm and the only way for the heat to
enter or leave the box is through two solid cylindrical metal
plugs, each of cross-sectional area 12 cm^ and length 8 cm
fixed in the opposite walls ofthe box. The outer surface A of

one plug is kept at a temperature of 100°C while the outer
surfece of the other plug is maintained at a temperature of4°C.
The thermal conductivity of the material of the plug is
0.5 cal/cmsec°C. A source of energygenerating 36 cal s~' is
enclosed inside the box. Find the equilibrium temperature of
the inner surface ofthe box assuming that it is the same at all
points on the inner surface.

Solution

Metal plug

Surface/I

at lOO^C

Insulator

Energy
source 1^

.Metal plug

Surface B

at4T

Figure 4.12

At equilibrium, the total energy generated by the source per
second is equal to the heat leaving per second through the
two metal plugs (Figure-4.12). Let T°C be the equilibrium
temperature. Then heat leaving the box per second through
surface A

yfc(r-100)xl2
,-ical s'

Heat leaving the box per second through the surface B

k{T-A)^n

Hence

or

•cal s'

12k
— (T-100+ 7-4) = 36

36x8 36x8
27-104= ... . .=48 or r=76°C

Ilk 12x0.5

# Illustrative Example 4.8

Figure-4.13 shows a water tank at aconstant temperature. 7^
and a small bodyof mass w, and specificheat 5at a temperature
7,. Given that 7, < 7^. AmetalrodoflengthL, cross-sectional
area A whose thermal conductivity is K is placed between the
tank and the body to connect than. Find the temperature of

Heat Transfer

body as a function oftime. Given that the heat capacity ofrod

is negligible.

CN

Figure 4.13

Solution

As temperature of water tank is constant at 7q as it is very
large, heat is conducted through the rod to the small body. Ifat
an instant t = t, the temperature ofsmall body is 7, then the rate
of heat flow through the rod can be written as

dt

KA{T,-T)
...(4.16)

Equation-(4.16) is used for heat conduction is steady state and
here as the heat capacity of the rod through which heat is
conducted is negligible, it does not absorb any heat thus we

can assume that it is always in steady state.

If on dQ amount of heat absorption, let the temperature of
small body rises hydT, then we have

dQ = msdT

Now from equation (4.16)

ms

dT KA

dt

dT

L

KA

(To-T)

or

7o-7
dt

msL

Now integrating the aboveexpression in proper limits, we get

or

or

dl KA
dt

Tr.-T msL
r=r, /=o

-In
Tq-T

\To-T,
KA

msL

r _r
—msL

7.-7,

T=T,-{T,-T;)e
KAt

msL
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# Illustrative Example 4.9

When two bodies ofmasses w, and with specific heats s^
and ^2 at absolute temperatures 7,^ and (T^q > T^q) are
connected by a rod of length / and cross sectional area^ with

thermal conductivity A:. Find the temperature difference ofthe
bodies after time /. Neglect any heat loss due to radiation at
any surface.

Solution

Let at time t after connecting the two bodies, they are at
temperature, F,and respectively(Jj > 72). Atthistime, heat
must be flowing from w,toW2 asWj isathigher temperature if
dQ is the amount of heat flown through the rod from to
and due tothis ifc/F, isfall intemperature ofw, and dTj isrise
in temperature of then we have

Also

or

Figure 4.14

dQ= —m^s^dT^

dQ= m2S2dT2

As this heat dQ is conducted through the rod, we have

dQ kA{T^~T2)
dt I

kA
dQ= — {T-T2)dt

...(4.17)

...(4.18)

...(4.19)

As in this expression dQ is given as a function of(Fj - F2).
Thus from (4.17)and (4.18), we can get

or

dQ
1 1

+

Nowfrom(4.19)and (4.20)

= -d{T,-T2)

fc4(F,-F2)

.7

1- 1
+

mjSi ^2^2
dt = -d{T,-T2)

^(Fi-F,)

iT,-T2)

kA

I

1 1
+

Wj5j m-yS2^2

dt

...(4.20)

Integrating the expression within proper limits, we get

7(F,-F2)

Tin-T-},

\ 1
H

m,5| nus-It
2-'2

dt

In-

or

jTx-T^)

(^10 ~^2o) I

# Illustrative Example 4.10

177i

m-yS
dt

2-^2 J

misi

A cubical container of side a and wall thickness x (a: « a) is
suspendedin air and filled n molesof diatomicgas (adiabatic
exponent =y) inaroom where room temperature isT^. Ifat/ = 0
gastemperature is Fj (F, > Fq), find the gas temperature as a
function of time t. Assume the heat is conducted through all
the walls ofcontainer.

Solution

As shown in figure-4.15 ifattime t=0, gas temperature isF,
and after time t, its temperature is F, heat will be conducted
through the walls of container, the rate of heat conducted to
outside surrounding can be written as

rt moles-

Figure 4.15

dQ k{(>a^)
...(4.21)

If dQ heat is conducted outside in a time dt and due to this if

the temperature gas falls by dT,we have

dQ= -nC^dt
[Asvolume of container is constant]

or dQ = dT [as -^] ... (4.22)
y-1 y-I

From equation (4.21)and (4.22)wehave

6ka^

or

nR dT

y-1 dt

dT

T-Tc.

(F-F^

6ka (y-1)

nRx
dt

Integrating the above expression within proper limits from
beginning (t = 0)
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In
Z-Ta

or

nRx
/=0

_ 6ka^{y-\) ,
nRx

dt

6kfl-(Y-l)

nRrT=T.+ iT,-T.)e

# Illustrative Example 4.11

Alayer oficeat 0°C ofthickness a:, is floating ona pond. Ifthe
atmospheric temperature is- T°C,showthat the timetaken for
thickness ofthelayer oficetoincrease from x, toXj isgiven by

(x|-xj)
2kT

where p is the density of ice, A: its thermal conductivity and L
is the latent heat of fusion of ice.

Solution

When the temperature of the air is less than 0°C, the cold air
near the surface ofthe pond takes heat (latent) from the water
which freezes in the forms of layers. Figure-4.16. Consequently,
the thickness ofthe ice layer keeps increasing with time. Letx
be the thickness of the ice layer at a certain time. If the thickness
is increased by dx in time dt, then the amount of heat flowing
through the slab in time dt is givenby (see figure-4.16)

-r°c

-Water—

'Figure 4.16

Q=
kA[0-{-T)\dt kATdl

...(4.23)

Where A is the area of the layer of ice and - T °C is the
temperature ofthe surrounding air. Ifdm is the mass ofwater
frozen into ice, then Q = dm^ L. But dm=Apdx, where p is the
density ofice. Hence

Q = ApLdx ...(4.24)

Equating (4.23) and (4.24), we have

UTdt

Heat Transfer !

pL
- ApLdx or dt = —. xdx

X kT

Integrating, we have

^2pi f pi
— xdx ox t- —
kT I kT

0 j:,

\dt^^ \
J kT J

# Illustrative Example 4.12

•*2

2kT
(x^-xf)

Three rods of material X and three rods of material Y are

connected as shown in figure-4.17. All the rods are ofidentical

lengths and cross-sectional areas. If the end A is maintained
at 60°C and the junction E at 10®C, calculate the temperature
of junctions B, C and D. The thermal conductivity of X

.-1 c-iis 9.2 X 10 ^ kcal m

4.6 X IO~^kcalm~'s^^°C"'.

^-1

Figure 4.17

and that of Y is

Solution

Let k and k- be the thermal conductivities of X and Y
X y

respectively and let Tg, and be the temperatures of
junctionsB,CandDrespectively. Given 7^= 60°C andT^ = 10°C.

In order tosolvethis problem, wewill applythe principlethat,
in the steady state, the rate at which heat enters a junction is

equal to the rate at which heat leavesthat junction. In Figure-
4.18 the direction offlow ofheat is given by arrows.

= 60 °C k r

Tr= 10 "C

Figure 4.18
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For junction B, we have

kyAjT^-Ts) _k,A{TB-Tc) kyAjT^-Tj^)
d ~ d ^ d

or ' k^ (T, - T,) =k^ (T,- T^) + k^ (T,- T^)

k
or

Given

and

y

k^ 9.2x10'^

4.6x10"^

r^=6(rc.

= 2

Therefore, (60 -T,) =l {T,- 7,.) +{T,- T^)

or 47^-27^^-7^=60

For junction C, we have

...(4.25)

^c) ^ (^C ~^d) ^
d d d

Solving we get

- 7^+ 37^- 7^= 10 [At7^= 10°C]... (4.26)

For junction D, we have

~^Z)) ^ k^A{TQ~Ti^) _ ^y^{'d'D~'̂ E)

Putting =2 and 7^= 10®C in this equation, wehave
K

(7^-7^)+ 2 (7^-7^) = (7^-10)

7^+ 27^-47^=-10 ...(4.27)

Solving equation (4.25), (4.26) and (4.27), we get

75=30"C

and 7^= 7^= 20"C
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Practice Exercise 4.2

(1) A wall has two layers A and B each made of different

materials. Both the layers have the same thickness. Thermal

conductivity of material A is twice that ofB. Under thermal

equilibrium the temperature difference across the wall is

What will be the temperature difference across the layer yf?

[ll'-C]

(ii) A 100 W heater is placed in a cubical container of edge

length 6 x 10"^m. Thewall thickness ofthecontainer is 1mm. If
inside and outside temperature in steady state are 30°C and

25°C, find the thermal conductivity ofthe material ofthe box.

[0.926 W/mX]

(iii) One end ofmetal rod of 1 m length and cross sectional area

10 cm^ is immersed in boiling water and other end in an ice
chamber. Ifthe thermal conductivity ofthe metal is 92 cal/ms^C

and the latent heat offlision ofice is 80 cal/gm, fmd the amount

ofice which will melt in one minute.

[6-9g]

(iv) Water is filled in a closed cylindrical vessel of10 cm height

and base radius yjlO/n cm. The open ends ofthe cylinder are

closed by two metal discs made ofa material whose thickness is

10"^ m and having thermal conductivity200 W/m°C.Ifwater
temperature inside the cylinder is 50®C and surrounding

temperature is20''C, findthe time taken forthe temperature to fall

by 1°C. Given that the specific heat ofwater is 4200 J/kg °C and

heat loss from water only takes place by the discs as the walls
are made up of a thermally insulating material.

[0.035 s]

(v) A uniform steel rod of length 50 cm is insulated on its

sides. There is a layer ofwater ofthickness 0.2 mm at each end

of the rod. If the ends of the rod are exposed to ice at 0°C and

steam at 100°C, calculate the temperature gradient in the rod.

Thermal conductivities of steel and water are

0.11 cal cm~^ s"' and 1.5 x 10"^cal cm"' s"' "C"'.

[0.945®C per cm]

(vi) Two plates ofthe same area and the same thickness having
thermal conductivities k^ and kj are placed one on top of the
other. Show that the thermal conductivity of the composite

plate for conduction of heat is given by

k =
2 k, k11-2

(k,+k2)
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(vii) Figure-4.19showsa paddlewheel coupledwith an agitator
submerged in a water tank placed in an ice bath at 0°C. The
thickness ofthe tank walls is 2 mm and with thermal conductivity
0.5 W/m®C.The surface area of tank in contact with water is

0.05 m^. As the block of mass Mattached to wheel goes down
agitator rotates. It is found that in steadystate the blockgoes
do\\m with a constant speed 0.1 m/s and the temperature of
water in the tank remains constant at 1°C. Find the mass ofthe

block. Take g = 10m/s^.

Ice Bath

Figure 4.19

[12.5 kg]

(viil) Find the heat current through the frustum ofa cone shown

in figure-4.20. Temperature ofitstwoendsaremaintained at T^
andT2iT2> 7'j)respectively andthethermal conductivity ofthe
material is k.

•I

Figure 4.20

!air\r2{T2 -fi)

(Ix) Three rods of identical cross sectional area and made from
the same metal form tliesidesof an isosceles triangle/45C right
angled at B. The pointsAand B are maintained at temperatures

Tand V2 Trespectively inthesteady state. Assume heat flow
only by conduction, find the temperature ofpoint C.

Figure 4.21

3r
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(x) Two identical rods AB and CD, each of length L are
connected as shown in figure-4.22. Their cross-sectional area
is A and their thermal conductivity is k. Ends C and D are
maintained at temperatures T,, Tj and respectively.
Neglecting heat loss to the surroundings, find the temperature
at 5.

-1/2- -m-

D

Figure 4.22

7] +2T2+2T2

(h) a room is maintained at 20®C by a heater of resistance
20 ohms connectedto 200 Fmains. The temperatureis uniform
throughout the room and the heat is transmitted through glass
window of area 1 m^ and thickness 0.2 cm. Calculate the

temperature of outside. Thermal conductivity of glass is
0.2 cal/s m ®C and mechanical equivalent ofheat is 4.2 J/cal.

[15.24''C]

4.2 Convection of Heat

Convection is transfer ofheat by actual motion ofmaterial. Hot
air furnace, hot water heating system, and the flowof blood in
the body are the examples. If the material is forced to move by
a blower or pump, the process is called forced convection. If
the material flows due to difference in density, is called natural
or free convection.

Free convection in the atmosphere plays a dominant role to

determine the daily weather and convection in oceans is also
an important heat transfer mechanisms. To understand in a
better way we discuss an example, consider the U-tube shown
in figure-4.23. In this U-tube its left end A is open to atmosphere

and at the other end C a stop X is placed. Initially some water
is filled in the tube and temperature ofboth the arms are equal
thus stands equally in both arms. If right arm of U-tube is
heated, the water in this arm expends and its density will
decrease, thus a larger column of water is needed to balance
the pressure produced by the cold water in left column. When
stop valve is opened, water starts flowing from the warmer
colurhn into the colder column. This increases the pressure at
the bottom of U-tube produced by the cold column, and
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decreases the pressure at this point due to the hot column.
Hence at the bottom ofU-tube, water is forced from the cold to
the hot side. If heat is continuouslysupplied to the hot side
and removed from the cold side, the circulation continuous

indefinitely. The net result is a continuous transfer of heat
from hot to cold side ofthe column.

(a) (b)

Figure 4.23

There is no simple equation for convective heat transfer as
there is for conduction.The heat lost or gained bya surfaceat
onetemperature in contact with a fluid at anothertemperature
depends on many factors, such as the shape and orientation
of the surface, the mechanicaland thermal propertiesof fluid,
and the nature of the fluid flow, laminar or turbulent. Some
experimental observations are taken for convection of heat,
these are

(i) Theheatcurrentduetoconvection is directlyproportional
to the surfacearea of the main bodyoffluidincontactwith the
surface. This is the reason for the large surfaceareas of heat
radiators and cooling fins used in transformers and heat sinks
used in power electronic devices.

(ii) The heat current due to convection is found to be
approximately proportional to the temperature difference
betweenthe surfaceand main bodyof fluid.

t

Thus we define the heat current due to a surface in contact
with a fluid as:

dO-f=hAhT ...(4.28)
Here.,4 is the surface areain contact andATisthe temperature
difference between the surface and main body of the fluid and

is a constant called convection coefficient Values of h are

determinedexperimentally, actuallyit is foundnot to beconstant
but depend on several factors, these are :
(i) Whether the surface in contact with fluid is flat or curved.

(ii) Whether the surface is horizontal or vertical.
(iii) Whether the fluid in contact is liquidor a gas.

18,1

(iv) The density, viscosity, specific heat and thermal
conductivity ofthe fluid.
(v) Whether the speedofthefluid is smallenough to giverise
to laminar flowor large enough to causeturbulent flow.
(vi) Whether conduction or evaporation takes place during
flow.

Anotherexampleofconvection isourhuman body. Thehuman
body produces a great deal of thermal energy, of the food
energytransformedwithin the body, at best20 percent is used
todowork, soover 80percent appears asthermal energy. During
light activity, for example, if this thermal energywere not
dissipated, the body temperature-would rise about per
hour. Thus we can say that the heat generated bybodymust
be transferred to the outside surrounding. Is this heat
transferred by conduction ? The temperature of the skim at
normal room temperature is 30 to 35®C where as the interior of
body is37®C. It canbeeasilyproved thatthissmall temperatui-e
difference along with low thermal conductivity of tissue, by
conduction onlya verysmall amountofheatcan bedissipated.
Instead the heat is carried to the surface by the blood. In
addition to other important responsibilities, blood acts as a
convective fluid to transfer heat to just beneath the surface of
the skin. It is then conducted through the verysmall thickness
ofskin to the surfece. Once at the surface, the heat is transferred
to the environment byconvection, evaporationand radiation.

Figure 4.24

Another example of convection is heating water in a pot on a
gas burner. When a pot ofwater is heatedon a gasburner as
shown in figure-4.24, convection currents are set up as the
heated water at the bottom of pot rises because of its reduced
densityand is replacedbycooler water from above. In figure
convection currents are shown in arrows. This principle is
used in manyheatings}^tems, suchashotwaterradiatorsystem
inhouses. Figure-4.25 shows internal diagram ofa house having
installed such a system. Cold water is heated in furnace, its
temperature rises, it expands and start rising up to room-1 as
shown. Hot water then enters in the radiators and heat is

transferred to the surrounding air by conduction through the
walls ofradiator and cooled water returns to the furnace. Thus

the watercirculates because of convection, sometimes pumps
are used to make the circulation fast. The air in the room also

becomes uniformly heated as a result of convection. The air
heated by radiator rises and is replaced bycooled air, resulting
the convection air currents as shown in figure-4.25.
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Some type of furnaces also depend on convection. Hot air
furnaces haveopenings (called registers) near the floor often
do not have fans but depend on natural convection.

Rooin-\

Rniiiarfir

waler

Furnace

Figure 4.25
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energy more than what it absorbs from the one at lower
temperature similarly thecolder one absorbs more than what it
radiates thus thermal energy is transferred from hot body to
the coldbodybymeansof thermal radiations. If twobodiesare
at sametemperature keptclosetoeachother, theyradiateand
absorbs heat at same rate, so we say that the bodies are in
thermalequilibrium. Thusin thermalequilibrium we cannot
say that no heat flow takes place between bodies. Actually
thermal equilibrium between two bodies is a dynamic
equilibrium in which when bodies are at same temperature,
they radiate and absorb thermal energyat samerate thus no
net heat transfer takes place.

4.3.2 Kirchoff's Law

When thermal radiation falls on a material surface three things
may happen to it.
(i) Acertain amount ofheat will bereflected,
(ii^ Acertain amount ofheat willbeabsorbed,
(iii) Acertain amount ofheat willbetransmitted

Thus the total amount of incident energy is divided between
these three parameters, thereforewe can write

4.3 Radiation of Heat

Convection and conduction require the presence of matter.
Whole lifeon earthdepends on thetransferofenergy from the
sun, and this energy is transferred to the earth over empty
space. This form of energy transfer is referred as radiation.
Similarly when a fire is lit and if westand near by, feel the
warmthcalledradiantenergy. Mostof the air heatedbya fire
risesup byconvection in the surrounding of fire.

Thermal radiation are electromagnetic waves of several
wavelengths (polychromatic radiation) which carry thermal
energy. Radiation from the Sun to Earth consists of visible
lightplusmany other wavelengths that theeye isnotsensitive
to. This includes infrared {IR) radiation which is mainly
responsible for heating the earth.

4.3.1 Prevost Theory

In earlyagesitwasassumed that onlyhotbodyemitsradiation
but later a theory of heat radiation was given by Prevost that
every body which is at temperature above OK temperature
radiatethermalenergyin the formof electromagneticwavesof
several wavelengths. Simultaneously the body also absorbs
thermal radiation from its surroundings. When a body at higher
temperature is kept near one at lowertemperature, it radiates

Ej Ej^ +E^+Ej. ..^.(4.29)

For a shiny surface such assilver, E^is large andboth E^. and
E^ are small. For ablack surface such as charcoal E^^ is small,
E^ is large and Ej. is small. For atransparent medium like glass
Ej^ issmall, E^ small and Ej. large.

The energy absorbed by a body can be emitted later or
simultaneously alongwithabsorption and clearlyif a surface
can not absorb radiation strongly it will be unable to emit
strongly. KirchofFLaw statesthe samethat ''a good emitteris
also a good absorber".

When thermal radiation incident upon a bodyor emitted bya
body equally in all directions, the radiation is said to be
isotropic. Some of the radiation incident on a body may be
absorbed, reflected and transmitted. In general, the incident
radiation of all wavelengths that is absorbed depends on the
temperature and the nature of the surface of the absorbing
body. Thefraction ofthetotal incident power that is absorbed
by a bodyis called its absorptivity. It can be given as

absorptivity =
Total power absorbed by a body

Total power incident on the body

When a body is inthermal equilibrium, theprocess ofabsorption
and emission of radiant powerare equal and opposite. So the
total emissivity is equalto total absorptivity. Total emissivity
is defined as the fraction of power provided to a general body
that is emitted through a material surfece as thermal radiation,
here the "total" includesall the wavelengthsof electromagnetic
radiation from the body. Practically it is easier to measure
emissivity than absorptivity.
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The emissivity of a body depends on both the temperature
and the nature ofemitting surface. Bodies ofsame temperature
and size but different material emit different amount oftotal

thermal radiation. According to KirchofFs Law good absorbers
are good emitters. For Theoretical purpose we define an ideal
substance capable either of absorbing all the thermal radiation
falling on it or emitting all the energy provided to it in the form

ofthermal radiation. Such a substance is called Black Body.

Thus for a black body we can say that its emissivity is 1, as
well as its absorptivity. We can compare different substances
with black body and obtain the emissivity of respective
substances. For example a polished shining steel piece emits
only 9% ofthe thermal radiation as compared to a black body
of same size and shape of same temperature, hence its
emissivity is 0.09. Similarly emissivity of a rough oxidized steel
surface is 0.81 and that of ocean water is 0.96 and some

substances like lamp black, coal are there whose emissivity is
verynearly unity that is, almost an ideal emitter. The emissivity
of a general body is denoted by e andmathematically defined

as

Radient power emilled bybody at a given temperature
fi — '

Radient power emitted by a Black Body of same geometry at same temperature

Thus total thermal radiation power emitted by a General Body
is given as

^ Radiation Powei
from a

General Body
at a given temperature^

Radiation Power
from a

Black Body
at same temperature^

...(4.30)

Experimentally a very good approximation to a black body is

provided by a cavity enclosed by high temperature opaque
walls regardless ofthe composition ofthe material ofits interior
walls.

4.3.3 Stefan Boltzmann Law

On the basis ofexperiments, Stefan concluded in 1879 that the
total amount ofthermal radiation power from a body is directly
proportional to the fourth power of its absolute temperature.

The mathematical result was derived later by Boltzmann that
the total radiation power per unit surface area of a body is

given as

= cr 7^ J/s.m^ ...(4.31)

If a bodyofsurface area A is at temperature T,then total thermal
power radiated by the body is

Pn=oA Pits ...(4.32)

Later experimentally it is observed that equation-(4.32) does
not give correct results in many cases, it gives approximately
true results for substances with high emissivities and it was
accepted that equatioii-(4.32) is only valid for black bodies or

.those having emissivity very close to unity. Thus for general
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bodies equation-(4.32) can be generalized as power radiated
bya general body of surface area A, at temperature Tand with
emissivity e, can be given by equation-(4.30) as

P^=eAGpJ/s ...(4.33)

Any object not only emits energy by radiation, but it also

absorbs energy radiated by other bodies in its surrounding. If
an object of emissivity e and area A is at a temperature T, it
radiates energy at a rate a 7^. If the object is surrounded by
an environment at temperature T^. The rate at which the
surrounding in immediate contact ofthe body surface radiate

energyat a rate a A T* if it is assumed to bea blackbodyand
if absorptivityof the bodymaterial is a, the amount of energy
absorbed by the body is at a rate ao A T1 Thus the net heat
flow from the object can be given as

dQ

dt
= eA (j7^-aA a T* ...(4.34)

As good absorbers are good emitters we can approximately

use ecita thus we have

dQ
T,") ...(4.35)

When body and surrounding both are at same temperature
equation-(4.35) shows that there is no net flow of heat takes
place with.the body. When T> T, net flow of heat takes place
from body to surrounding and temperature ofbody decreases.
Similarly if7< T^, netflow ofheattakes place from surrounding
to body and temperature ofbody increases with time.

If mass ofbody is m and s is the specific heat ofthe material of
body then we have

dO dT
-r- =ms —r
dt dt

...(4.36)

Where—is rate of change of temperature of body. If-^is
dt

dT
rate of heat loss from a body than —will be the rate at which

temperature of body falls and is termed as rate of cooling.
Thus if a bodyof mass mand specific heat s at temperature T\s
placed in sitfrounding oftemperature Tthen the rateofcooling
of body can be given as

dT e An .
(7^4 _J 4)^75 ...(4.37)

dt ms

4.3.4 Solar Constant

It is defined as "solar energy receivedper unit surface area of
earth surface per unit time, when sun is overhea<f\ If radius
ofsun is and its temperature T^, the average rate atwhich it
radiates energy is given as

E = g(4tzR^)T: ...(4.38)
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This radiant power given by equation-(4.38) is isotropically
radiated by sun in all direction. Ifdis the mean distance between

earth and sun, the average energy intensity on earth surface
for normal incidence of sun rays that is solar constant can be

given as

E

4nd

or s = ...(4.39)

Now we take few examples to understand the applications of
above concepts in details.

# Illustrative Example 4.13

An electric heater ofpower 1 kW emits thermal radiations the
surface area of heating element of heater is 200 cm^. If this
heating element is treated like a black bodyfind the temperature
at its surface. Assume its temperature is very much higher then
its surroundings.

Solution

As it is given that the temperature ofsurrounding is very low
as compared to that of heating element, we can ignore the
amount ofheat absorbed bythe filament from its surroundings.
Thus the power radiated by the heating element is given as

P = (sAT^

or

or

or

1000 = 5.67 X 10-^x0.02

7"' = 8.82xio'i

r= 969.3 K.

§ Illustrative Example 4.14

A cube of mass 1 kg and volume 125 cm^ is placed in an
evacuated chamber at 27"C. Initially temperature of block is
227°C.Assume blockbehaves like a black body, find the rate of
cooling of block if specific heat of the material of block is
400J/kg-k.

Solution

In this case the rate of loss ofheat by the block is given as

= 5.67X10-8 X150 X10^ X[(500)''- (300)"]
[surfacearea ofcube is 6a^= 150cm^]

dT
If is rate ofcooling ofblock then we have

dQ dT
~-r =ms -r-
dt dt

Heat Transfer;

or

dT

dt

1

ms

1

dt

1x400

= 0.115 "C/S

# Illustrative Example 4.15

X38.556

One end ^4 of a metallic rod of length 10 cm is inserted in a
furnace whose temperature is 827°C. The curved surface ofthe
rod is insulated. The room temperature is ITC. When the steady
state is attained, the temperature ofthe other end B ofthe rod
is 702^0. Find the thermal conductivity ofthe metal. Stefan's

constant = 5.67 x 10"^ W m~^ K"^.

Solution

Since the curved surface of the rod is insulated, heat is lost

from the end B ofthe rod is by radiation. If is the absolute
temperature of end B, then the energy radiated per unit area
per time from end B is, from Stefan's law,

E, =a{T,'-T') ...(4.40)

Where T^ istheroomtemperature, c isStefan's constant. Also,
energy received at end B by conduction through the rod per
unit area unit time is

^2 =
k(T,-Ts)

...(4.41)

Where T^ = temperature of endA ofthe rod, / is the lengthof
the rod and k its thermal conductivity. In the steady state
E^ ^Ey Equating equation-(4.40) and(4.41) wehave

or

I
= a(r"-7'")

k =
{Ta-Tb)

Given a=5.67 x IQ-^ Wm'̂ K"", /= 0.1 ra, 7^=702^ =975 K,
Tq = 27°C = 300K and T^ = 827''C = 1100 K.Usingthesevalues
in equation-(4.42), we get

A: = 36.6Js-'m-'K-"

# Illustrative Example 4.16

A solid metallic sphere of diameter 20 cm and mass 10 kg is
heated to a temperature of 327°C and suspended in a box in
which a constant temperature of27®C is maintained. Find the
rate at which the temperature ofthe sphere will fall with time.
Stefan'sconstant = 5.67 x 10"^ Wm~^ K*" andspecific heat of
metal = 420 J kg-'

...(4.42)
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Solution

Therate of loss of heatbythe sphere is given by

dQ
dt

= (5A{T'̂ -T^)

WliereAisthesurface areaofthesphere = 4 ttP-, with r=10 cm
= 0.1 m, T= 327°C= 600 K and = 2TC = 300 K.

dO
Thus — =5.67 X10-8 x4;cx(0.1)2 X{(600)'»-(300)'*}

= 866 J S7'

Now dQ=msdT, where dTisthefall in temperature intime dt.

or

or

dQ dT
=/«s —

dt . dt

866 = 10x420x —
dt

dT 866

dt 4200
= 0.206''C/s

# Illustrative Example 4.17

A cylindrical rod of 50 cm length and having 1 cm^ cross
sectional area isusedas a conducting material between an ice
bath at 0®C and a vacuum chamber at 2TC as shown in

figure-4.26. The end ofrod which is inside the vacuum chamber
behaves like ablack body and isattemperature 17°C insteady
state. Find the thermalconductivity ofthe materialof rodand
rate at which ice is melting in the ice bath. Given that latent
heatof^sion oficeis3.35 x lO^J/kg.

Solution

Ice Bath

at 0°C

Figure 4.26

Vacuum chamber

at ITQ

It is given that the system is in steady state. Thismeans that
anypartofrodisnotabsorbing anyheat. Soheatabsorbed by
theendoftherodwhich is invacuum chamber byradiation is
fullyconducted to the icebath through the rod. Thuswehave

Rate of that conduction through the rod =

Rate ofheat absorption by radiation for the vacuum chamber

or
kA{T^-TA)

• L

or

or

185

A:(17°C-0''C)

0.5

=5.67 X10-8 [(300)''-(290)'']

^_ 5.67x10-^[(300/-(290)''1x0.5
17

= 1.713 W/m^C

Using this value ofkwe can find the rate ofheat obtained by
the ice bath as

dQ kA{T^-T^)
dt I

_ 1.713xlxl0~^xl7
0.5

= 5.82 X 10-3 j/s

This heat is used to melt the ice in ice bath. Ifm mass of ice is
being meltedper second, then we have

dQ

dt
= mL

or 5.82x10-3 = wx3.35x103

or m= 1.74X lO-^kg/s.

# Illustrative Example 4.18

The earth receives solar energy at the rate of2 cal cm"^ per
minute. Assuming theradiation tobeblack body incharacter,
estimate the surface temperature of the sun. Given that
(7 =5.67 X10"^ Wm~^K^andangulardiameterofthesun =32
minute ofarc.

Solution

Let surface temperature ofSun isT^ then total energyradiated
by Sun per second is given as

E = <sT'-{A%Rh

Earth

Figure 4.27

Energy received byearthper second permetersquare isgive
as

dt 4%R ' • R
...(4.43)

es

\\ is given that angular diameter ofSun as observed fi-om earth
is 32 min ofarc thus, we have

0 1 32
—^ =—=—X — = 4 655x 10-3
R.. 2 2 60



...(4.44)
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= 20 X10^x5.67 XlO-^x (400)'*

= 2.9J/s

.18& ^

and it is given that

dQ 2x4.2x10'* ,
J/s-m''

dt 60

Now from equation-(4.43) and(4.44) wehave

dTIf~^is rate ofcooling of^ then we have

dQ \ ^— =(W5)^^
dt dt

or

or

5.67 X10"^ Xr'^x [4.655 X10"^ =
2x4.2x10'

60

^4 — 2x4.2x10

60x5.67xl0"^x(4.655xl0 ^)^
r'*=1.14x 10'^

or 7;=5810.67K

# Illustrative Example 4.19

Aspherical ball ofradius 1cmcoated with a material having
emissivity 0.3 is maintained at 1000 K temperature and
suspended in a vacuum chamber whose walls aremaintained
at300Ktemperature. Findrateatwhich electrical energy isto
be supplied to the ball to keep its temperature constant.

Solution

It is given thatthetemperature ofball isconstant. Thismeans
that the rate at which it is loosing heat by radiation must be
equal totherate atwhich heat issupplied tothis ball externally
to keep its temperature constant.

The rate ofheat loss by the ball is given as

dQ

dt

-0.3 x47t(0.ai)2x 5.67 XlO-Sx [(]000)''-(300)'']

. =21.IW

Thus electrical energymustbesupplied to the ball at a rate of
21.1 W.

#Illustrative Example 4.20

There are two concentric spherical shellsA and B of surface
area 20 cm^ and 80 cm^. Surfaces ofboth the shells behave like

black bodies. It isgiven thatthethermal conductivity ofmaterial
of B is very low and that of A is very high. Initially the
temperature of/4 is400K andthat of5 is300K.Findtherateof
changeof temperature of.<4 and5. Giventhat theheatcapacities
of^ and B are 50 JfC and 80 J/^C respectively.

Solution

It isgiven that thethermalconductivity ofmaterialofAisv^y
high so we can assume that it will not absorb any heat, thus
the rate of heat loss by A is given as

. ^4

or

or

or

dj_
dt

If-

or

dT

dt

dr_
dt

1̂ ^
{ms)^ dt

1
=—x29

50

[As for shall A{ms)^ ^ 50J/s]

= 0.058 "C/s

NowforB it is given that its thermalconductivity is verypoor
so it absorbsall the heat incident on it (as behaving like a black
body). Thusrate of loss ofheat from B canbewritten as

-^ =80 XIQ-^ X5.67 X10-s X(300)'*-2.9
dt

-3.67-2.9 = 0.77 J/s

is the rate of cooling for shell B, we have

dQ dT

dT

dt

1

B

^^
(ms)s dt

xO.77
80

[As for shell B{ms)^ = 80J/^C]

= 0.00963 "C/s
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Practice Exercise 4.2

(i) A 500 W lamp loses all of its energy by emission of
radiation from the surface. If the area of the surface of the"
filament is 2.0 cm^ and its emissivity is 0.5, estimate the
temperature of its filameiit. Given that Stefan constant,
CT = 5.7 X 10"® W/m^ K'*. Neglect radiation receivedby lamp
from surrounding. j

[3060.37 K]
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(ii) A white-hot metal wire at 3000 K has a radius of0.075 cm.
Calculate the rate per unit length at which it emits radiation if
its emissivity is 0.35. Ignore the radiation it receives from the
surroundings. Take Stefan'sconstant a = 5.7 x lO'^W/m^K

[7611.12 W/m]

(iii) The temperature of the tungsten filament of a 60 W electric
bulb is 7= 2000 K. Find the surface area ofthe filament. The

emmissivityofthe surfaceise = 0.30.Neglectradiationreceived
fromsurrounding. Takea = 5.7 x 10~^ W/m^K

[2.192 >' 10^ m2]

(iv) A spherical black body with a radius of 12 cm placed in
space radiates 450 W power at 500 K. Ifthe radius were halved
and the temperature doubled, find the power radiated.

[1800 W]

(v) A block having some emissivity is maintained at 500 K
temperature in a surrounding of300 K temperature. It isobserved
that, to maintain the temperatureof the block,210W external
power is required to be supplied to it. If instead ofthis block a
black body ofsame geometry and size is used, 700 W external
power is needed for the same. Find the emissivityofthe material
ofthe block.

[0.3]

(vi) A solid sphere of copper ofradius R and a hollow sphere
of the same material of inner radius r and outer radius R are

heated to the same temperature and allowed to cool in the
same environment. Which ofthe sphere will cool faster ?
[Hollow Sphere]

(vii) The shell of a space station is a blackened sphere in which
a temperature T= 500 K is maintained due to the operation of
appliances of the station. Find the temperature of the shell if
the station is enveloped by a thin spherical black screen of
nearly the same radius as the radius ofthe shell.
[594.6 K]

(viii) A copper ball ofdiameter d was placed in an evacuated
vessel whose walls are kept at the absolute zero temperature.
The initial temperature oftheball is T^. Assuming thesurface
ofthe ball tobeabsolutely black,findhowsoonitstemperature
decreases tj times. Take specific heat of copper c, density of
copper p and emissivity e.

r, = 1

\%oT^e

4,4 Newton's Law of Cooling

When a body radiates thermal energy in an environment at
lower temperature, then equation-(4.37) can be used to find

187.:

temperature of body as a function of time by integrating the
expression

T

[ f:
J T'̂ -T'̂ J
7b' 0

In equation-(4.45) limits of integration are applied for
temperature of body at respective time instants as if at / = 0,
temperatureofbodywas and after time t = t, its temperature

drops to T.Negative sign in equation-(4.45) shows that — is

negativeand with timetemperature is falling. In equation-(4.37),
for using this equation for analytical purpose a negative sign
must also be included.

Expressionin equation-(4.45) is not easyto integrateand very
bulkyand time consuming for even problems of simpletime
calculations. The expression in equation-(4.37) can be
approximated to a simple level for bodies at temperature not
veryhigh compared to their surroundings. Equation-(4.37) can
be rewritten as

dt
ms

dT e A <3

...(4.45)

...(4.46)

Here if temperature of body is slightly higher then that of its
surrounding then we can use 7=; 7^ butnot 7- 7^ = 0, thus
equation-(4.46) becomes

dT cAg

or

or

Here^=
AeAaT;

ms

dt

dt

dT_
dt

ms
(2 73(2 71(7-7)

A e AgT:

ms

(7-7)

= -kiT-T) ...(4.47)

isa constantfor bodieswithsmall temperature

differencewith the surroundings.Equation-(4.47)can be stated
as "The rate ofcoolingfor bodies having small temperature
difference with the surrounding is directly proportional to
the temperature difference of body with its surroundings."
ThisisNewton's Lawofcooling. Fromequation-(4.47) wecan
usethis expression for further calculations of temperature as

dT

T-T,

Integrating within proper limits we have

J7-7, J
T-n 0

or In
7-7,

To-T,j
= kt

or
.-kl7=7^+(7o-7;e ...(4.48)
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The aboveexpressionin equation-(4.48)gives the temperature
ofbodyaftertime / ifat / = 0body temperature wasT^. Butthis •
expression will be valid only if is very close to the
surrounding temperature T^.

According to Newton's Law of cooling. The rate of fall of
temperatureofa bodyis directlyproportional to the temperature

4.4.1 Average Form of Newton's Law of Cooling

In previous article we've discussed that for bodies with small
temperature difference witlithe surroundingthe rate ofcooling
is directlyproportional to the temperature differenceof body
with surrounding. As temperature difference is small, average

rate ofcooling ofbody|̂ ^j can betaken approximately equal
to the instantaneous rate ofcooling . This can be written

according to Newton's Law of cooling as

dT AT

Here T is the average temperature ofbody during cooling and
is the surrounding temperature. For example ifa body is at

temperature T,at / = 0andafter time t itstemperature drops to
T2 then during cooling average temperature of body can be
taken as

r= ...(4.49)

Now according to Newton's law of cooling, average rate at
which body cools can be written as

At

r.-r.
-T. '...(4.50)

Equation-(4.50) is knownas averagefromofNewton'sLawof
cooling but is onlyapplicable when T,and areverycloseto
each other, otherwise the average temperature ofbody can not

be given by equation-(4.49). 'Many times Newton's Law of
collingis usedto comparethe rate oftwo differentsubstances.
In such casesweslightlymodifyequation-(l.50)with the heat
capacity of substance.

By Stefan's law rate ofcooling is given as

dT

dt

AeAcsT:

ms

(T-n

Here ifsubstance is changed the parameters e. A, m and s may
change so for same emissivity and surface area it can be written
as

dt ms ^

So equation-1.50 can be re written as

^2-7; [ T,+T> ^
ms

Heat Transfer

And with variation of e or /I you can modify this equation
yourself. Lets take some examples to understand the
applications ofNewton's Law ofCooling.

^Illustrative Example 4.21

The temperature of a body in a surrounding of temperature
16®Cfalls from 40°C to 36°C in 5 mins. Assume Newtons law of

cooling to be valid and find the time taken bythe bodyto reach
temperature 32°C.

Solution

If we use average form of Newton's Law of cooling, we have

Ti-T,

Initially it is given that = 40''C, Tj = 36®C, t = 5 min and
T = 16°C

Thus we have

40-36 40 + 36
-16

or
5x22

= 0.036 min-1

Now ifbody takes a time t' to come down to 32°C then again
using the same relation we have

' r2 =36°C,7'i =32°C,r=/',7;=-16''C and ^=0.036min-'

Thus we have

36-32

or

^(0.036)

4

36 + 32
-16

0.036x18
= 6.173 min

# Illustrative Example 4.22

In a container somewater is filled at temperature 50°C. It cools
to 45°C in 5 minutes and to 40°C in next 8 minutes. Ifwe assume

Newton's law of cooling to be valid in this case, find the
surrounding temperature.

Solution

Accordingto averageformofNewton's Lawofcooling,initially
we have

~ 50®C,r, =45°C,/ = 5minandletsurrounding temperature
be T^, then we have

r-, -r, ^
= k

r,+r,
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or

or

50-45\ J 50 +45 ^

1=^(47.5-7) ...(4.51)

Again when water cools, v/e have =45°C,7, =40°C,/= 8min
and same surrounding temperature T^, we have

("45-40^ f 45 +40
or

00

= k
9

or -=k{A2.5~T)

Dividing equation-(4.51) by(4.52), weget

8 47.5-7

or

or

or

5 42.5-7,

8(42.5-7^) =5(47.5-7^)

3 7^ =340-237.5

102-5
7 = = 34.17°C

# Illustrative Example 4.23

...(4.52)

189]

or
dt

-k{T-T,)

a

Where k= —, is a constant of the body. Therefore,

dT

{T-W
Integrating we have

dT

= -kdt

f dT f

(T-T^)

or /«(7-7J=-fe+c ...(4.54)

Where cis aconstant ofintegration. Given that at r=0, 7=Tq
(=400K). Using thisin equation-(4.54) wehave

In(7q— T^=-k'x Q+ c =c

Thus c=ln{T^-TJ

Using thisvalue ofc inequation-(4.54), weget

lniT~T^) =-kt+ln{T^-T^)

or In = -kt

Asolid bodyJITofthermal capacity Ciskept in anatmosphere
whose temperature is 7^ = 300 K. Attime f=0, the temperature
ofXis7p =400 K. Itcools according toNewton's law ofcooling.
At time t,the temperature is350 K. At this time (^=/j), the body
Xis connected to alarge box Yat atmospheric temperature 7^, Qiven
through a conducting rod of lengthL, cross-sectional area A
and.thermal conductivity K. The thermal capacity of 7 is so
large thatanyvariation in its temperature may beneglected.
The cross-sectional area A of the connecting rod is small
compared to thesurface areaofX Findthe temperature ofA^at
time/=3fj.

IzIa

A-^aJ

7p= 400K and7. = 300K.Therefore,

7-300

(400-300) = e-V7-300= 100 e-^'

Solution

If 7 is the temperature of body at an instant of time t, then
according to Newton's lawofcooling, the rate of lossof heat
by the body is given by

dQ

Where 7^ is the temperature of the surrounding atmosphere
and a is a constant which depends on theemissivity-and the
surface of the body. If C is the thermal capacity of body, we
have

dt ^ dt

Thus
dT

...(4.53)

or 7=100(3+e-^0 ...(4.55)

Given that at/- 7-350 K. Using this inequation-(4.55) we
have

or

But

350=100 (3+ e-^i)

e-^i = — oj. = or k=

a
k = —. Therefore,

C

a =
Cln{2)

...(4.56)

Using (4.56) in (4.53), the rate ofloss of heat due to radiation is
given by

dQ

\ dt j,

JdT^ Cln(2)
...(4.57)

When body X is connected to a box 7 through a conducting
rod, bodyXwill loseheatalso byconduction through therod.
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Therateof lossofheatbyconduction through a rodofthermal
conductivity K,areaA and lengthL is given by

\ dt

KA{T-T^)

L
...(4.58)

Thus the total rate of loss of heat by body^ at temperature T
is

dQ\ (dQ
dt ( dt

+

r V
dt

As Cis the thermal capacity ofX,hence, usingequation-(4.57)
and (4.58) we get

cfa(2)

or

1

{T-T^) C

Integrating we have

3/1

dT 1

f—J (T-(T-r.) c
350

Ch^^KA
L

'l

or |/H(r-r^)|3g(,—
c

C In (2)

t, L
X t

,3/1

or /«(7'-r^)-/«(350-r^) =-
In (2) A

r, Z,C

(2/,)

(3'.-',)

or In
T-T,

350-r^

ln{2) ^KA
/, LC

Given = 300 K. Therefore,

In

or

or

or

f r-300 "i

350-300

r-300

50 )
= e

= e

ln{2) ^KA
h

(2/,)

^ ,ln{2) KA

-2ln(2)-
2KAt

LC

r=300+50x-7e
4

(-2KAt,

LC

-IKAt^

LC
r= 300 +12.5 e

This is the temperature of body^at t - 3r,.
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# Illustrative Example 4.24

A black walled metal container of negligible heat capacity is
filled with water. The container has sides of length 10cm. It is
placed inanevacuated chamber at21°C. How long will it take
for thetemperature ofwater tochange from 30®C to 29°C.

Solution

As in this case temperature difference of water with its
surrounding is not large, wecanuseNewton'sLawofcooling.
If / isthetimetaken incoolingwater from 30°C to29®C, wehave
the average from ofNewton's lawofcooling as

AT fTs+r,
A/

Where k =
ms

4X5.67 X10"^ X6X100X1X (300)^

or

1x4200

= 8.75x10-5

30-29
or —^ = 8.75x10-5 [29.6-27]

At

A/ =
1

8.75x10"^ x2.5

= 4571.43 s

= 76.2 min

= Ihr 16.2 mm.

# Illustrative Example 4.25

A calorimeter of water equivalent 100gm cools in air in 18
minutes from 60®C to 40°C. When a block of metal of mass 60
gmisheated todO^C and placed inside the calorimeter. Assume
heat loss only by radiation and Newton's Law ofcooling tobe
valid. Find thespecific heat ofmetal ifnow the system cools
from 60°C to40°C in 20 minutes.

Solution

Fromaverage form ofNewton'sLawofcooling ifa body cools
from temperature to T, intime/, thenwehave

7-2-71 T,+T,
-r.

ms

Where msis the heat capacity of the body and k is the constant
which depends on surrounding temperature and surface of
body exposed to surrounding. Now inthis case it isgiven that
calorimeter alone takes 18 minutes to cool down from 60° to
40°C thus we have
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60-40

18

k

100

60 + 40
-T.

[As for calorimeter it isgiven that 100 x 1= 100]

20
or

or

18

11
9

= -t(50-n

100
(50-n ...(4.59)

Nowwhen metal block is placedis it, it takes20 minutes to cool
down from 60°C to 40®C, thus we have

, /

or

or

60-40

20

1 =

100 + 60x j

k

60 + 40

100 + 605

Dividingequation-(4.59)by(4.60)

20^ _ 100 +605
9

or

(50-n

100

1000 = 900 + 540 s

1005= •^^ =0.185cal/gmK.

# Illustrative Example 4.26

...(4.60)

A metal ball of 1kg mass isheated bya 20 W heater in a room
at20°C. After some timetemperature ofball becomes steady at
50''C. Findthe rate of loss ofheat bythe ball to surrounding
when its temperaturebecomes 50®C. Also find the rate at which
it looses heat to the surrounding when its temperature was
SOT.

Solution

It is given thatwhen ball isat 50®C, its temperature becomes
steady. Thismeans thatrateat which heatisbeing supplied to
theball,at thesamerate, it is loosing heat. Thuswhen ballis at
50°C, the rate of lossof heat to the surrounding byball is

dQ
—r- = Power ofHeater
dt

=20 IT

When ballwas at30°C, using Newton's Law ofcooling wecan
state that the sate of heat loss by ball is directly proportional
to its temperature difference with surrounding, thuswehave

dt

dt

= )t(30-20)

= 10k ...(4.61)

191!

Fromthestatewhenballwasat 50°C, wecanwritefromNewton's
Law ofcooling

20 = ^(50-20)

2

Thus from equation-(4.61), wecanwrite

dQ _ 2 20
^ =IOx- = —W.
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Practice Exercise 4.3

(i) The temperature of a bodyfalls from 40°C to 36°C in 5
minutes. Find thetime after which thetemperature ofthebody
willbecome 32°C. Take surrounding temperature tobe16°C.

[6.11 min]

(il) A body initially at 80"C cools to 64°C in 5 minutes and to
52®C next5 minutes. What will beitstemperature afternext5
minutes and what is the temperature ofthe surroundings ?

[16°C, 43°C]

(ill) The excess temperature of a hot body above its
surroundings is halved in i = 10 minutes. In what time will it

be ~ ofitsinitial value. Assume Newton's law ofcooling.

[33.23 min]

(iv) A body cools in a surrounding which is at a constant
temperature Tq. Its temperature Tisplotted withtime tasshown
infigure-4.28. Two tangents are drawn tothe curve atthe points
Aand B which meet the time axis at angles of02 and 0, as
shown. Assuming Newton's law of cooling to be valid show
that

tanO. T2-T^
tan0| T^-Tq

Figure 4.28



(v) Acalorimeter ofnegligible heat capacitycontains 100 gm
water at 40°C. The water cools to in 5 minutes. Ifthe water

isnow replaced bya liquid ofsame volume as thatofwater at
same initial temperature, it cools to35°C in 2 minutes. Given
specific heats of water and that liquid are 4200 J/kg°C and
2100J/kg°C respectively. Findthe density ofthe liquid.

[800 kg/m^]

4.5 Black Body Radiation Spectrum

Generally gaseous state spectrum of a substance is discrete
lines, it is calledline spectrum.In gasesatomsare so far apart
that interaction between them are negligible and each atom
behavesas an isolatedsystem.Hotmatter in condensedstate
in form of solid or liquid always emits radiation with a
continuous distribution of wavelengths rather than few
particular wavelengths like a line spectrum. We have discussed
that a black body is one which absorb all the wavelengths of
electromagnetic radiation incident upon it. This is also the
best possible emitter of electromagnetic radiation at any
wavelength. Thecontinuous spectrum radiation that it emitsis
called blackbody radiation spectrum.

Stefan-Boltzmann's Law states that the radiation energy emitted

per unit surface area or average thermal power radiated per
unit area of a black body is given as

^ = CTr'W/m2

The above formula givesthe total amount of energyradiated
by the body in the form of electromagnetic radiation but it
does not tell any thing about the wavelengths of emitted
radiations. As we've discussed earlier that.thermal radiation is

a polychromatic radiation where total intensity of emitted
radiation is distributed among a wide range of wavelengths.
Here also this total energy <5 T ^ W/m^ is not uniformly
distributed over all the wavelengths. Its distribution can be
measured and described by the intensity per wavelength
interval denoted by£^, called spectral emittance. Here is
defined as E^^dk is the intensity ofradiation emitted in the
wavelength range from Xto X. + dk. Thus the total intensity
which is given byStefan-Boltzmann 's Law can bewritten as

CC

E=̂ E^dk =Gt
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black body increases thewavelength atwhich spectral emittance
ismaximum decreases andexperimental datashows thatk^ is
inversely proportional to the absolute temperature of body
given as

X. a —
m 'p

or K-j

or kT^b ...(4.62)

Theabove equation-(4.62) is called Wein ^Displacement Law
and here the proportionality constant b is called Wein's
constant whose numerical value is

b = 2.89xlO-3in-K

Ifa variation graph isplatted forspectral emittanceE^withk, it
is shown in figure-4.29. Experiments show that each graph
plattedat a temperature hasa peakvalueofspectral emittance
at a wavelength k^ at which these intensity per wavelength
interval is maximum. It is also observed that as temperature of

Figure 4.29

Thus as the temperature rises, the peak of becomes higher
and shifts to shorter wavelengths. Abodythat glowsyellowis
hotter and brighter than one that glows red. Yellow light has
shorter wavelengths then red light. Experiments also show
that the shape of the distribution function is saihe for all the
temperature, wecanmakea curveforonetemperature fit any
other temperature by onlychanging the scale on graph.

Several experiments were done by different scientists to
develop someempirical expression for calculation ofEy^. The.
first best appropriate was found.by Rayleigh. This result was

2nckT

k''
...(4.63)
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This formula given in equation-(4.63) was found valid only at
high wavelengths but it is not valid for small wavelengths.

'Figure-4.29 shows that at low wavelengths curves fall toward
zero but this expression is inversely proportional to rises to
infinite intensity at lower wavelengths approaching zero.

One more result can be obtained from expression in
equation-(4.63). We've read that at maximum value of Ey^,
wavelength is thus

2nckT

From Wein's Displacement Law, we have

X.^ = Wr=,thus

2jrc^

or

E-. (meed - •

EAmax) aT^ ...(4.64)

Equation-(4.61) states that the maximum spectral emittance from
a black body at a given temperature is directly proportional to
fifth power of absolute temperature of the body. This is called
'Wein sfifth power LaW\ This was initially observed by Wein
experimentallywhich is obtained by a partial correct Raylength
relation. Later it was mathematicallyproven by Plank's Radiation

theory.

4.5.1 Flank's Radiation Theory as a ProofofWein's Law and

Stefan Boltzmann's Law

In early years of twentieth century plank derived some
mathematical expressions for his experiments on radiation and

derived a formula for intensity distribution called Plank's
Radiation Law. The final result is

dk

2nhc'

-I)

Where h is plank's constant, c is speed oflight, is Boltzmann's
constant, Tis the absolute temperature and Xis the wavelength.

This relation also agree wellwith the experimental Wein's curves
shown in figure-4.29.

The Plank's Radiation Law also verifies Wein's displacement
law and Stefan-Boltazmann's Law as consequences.

Proof ofWein's Displacement Law

From equation-(4.65) differentiating the expression and
equating it to zero we can find the value ofX^ at which Ey^ is
maximum as

dEy^
= 0

W/m^ ...(4.65)
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Solving the above equation we get the value of as

~ 4.965 kT -..(4.66)
X r=2.89xia-3

m

Which agrees with the Wein's displacement law.

ProofofWein's Fifth Power Law

Plank's Radiation Law gives themaximum value o^Ey^ as

r { 27i/)c^

b
FromWein's displacement lawwehaveX^^ = —,thus

2TihcV
E,(>nax)=

or Ey^{max)aT^

Proofof Stefan-Boltzmann's Law

Stefan-Boltzraann's Law gives the total amount of energy
radiated by a black body at a given temperature which can be
obtained by finding the area under the Wein's curve distributed
from wavelength zero to infinity. This can be given as

CO ®

£•-j* Ey^dX=j
0 0

On solving the above jntegral we get

E = - Tf
\5c^h^

This agrees with Stefan-Boltzmann Law and also verifies the
numerical value of

2-Khc'

-I)
dX

27^
\5c^h^

CT = = 5.67xlO-«w/mV

Similarity with Rayleigh Expression

We've already discussed that Rayleig's expression only agrees
with the experimental curves at high wavelength. From Plank's

Radiation law ifwe simplify the expression for high values ofA,

we get

Forx« 1 we can usee*— 1+x. Thus here for high values ofX,

he
we have 1 H ^ which result

XkT

27ickT
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Which is Rayleigh Expression. Thus at high values of
wavelengths both Plank's formula and Rayleigh expression
approach to same value.

4.5.2 Practical Applications of Kirchoff's Law

For deserts it is commonly heard that days are hot and nights

are cold. This can be simply explained as sand is rough and
can be approximatedas a black body, so it is a good absorber
and hence in deserts in day time sand absorbs radiation from
sun and so day will be very hot. Now in accordance with
KirchofF's Law, good absorber is a good emitter, so at night

when send emits radiation, will be cold.

Another good example of kirchoff's law in practice can be seen
when a metal ball with some black spots on its surfece is heated

to a high temperatureand is taken in dark. In darksurroundings,
the blackspotsshine brilliantlyand the shining surfaces of the
ball becomes dark. Wecan simply explain this as during heating

black spots absorb radiation and so emit in dark surrounding
while the shining parts reflects radiations and absorbs
negligible radiation during heating and so does not emit
radiation and becomes dull in dark surroundings.

In spectrum analysis kirchoff's law is useful in so many
applications. When absorption spectrum of sodium vapours
is formed, two dark lines are seen in yellow region in transmitted

light due to absorption of these two wavelengths by Sodium
vapours. When emission spectrum of sodium vapours is
obtained the above two bright lines are observed as these

vapoursemit those radiations which are absorbed initially. This
is in accordance with Kirchoffs Law i.e., a good emitter is a
good absorber. When spectrum of sun is formed, Dark
Fraumhofer lines are found which can be explained on the

basis ofKirchofTs Law. When white light is emitted from the

central part of the sun (photosphere) passes through its
atmosphere (chromosphere). Radiations of those wavelengths
will be absorbed by the gases present there which they usually

emit, as good emitter is a good absorber, which results dark

lines in the spectrum ofsun.

Another common example which can be realized in common
practice is heating of a coloured glass. At normal temperature
a piece of red glass appears red because from all the light
falling it reflects red and absorbs other colours, when this
glass is heated, it absorbs several wavelengths except red and
when it is heated to a very high temperature and taken in dark

it emits wavelengths which it was absorbing during heating
thus at very high temperature red glass emits radiation other
then red so it glows with colour complementary to red such as
green or blue. Similarly when a blue glass is heated, it absorbs

Heal Transfer!

all radiation wavelengths other than blue and when at very
high temperature it is taken in dark it emits all wavelengths
other than blue thus it glows with a colour complementary to
blue such as red or yellowish.

§ Illustrative Example 4.27

A black bodyat 1500K emits maximum energy of wavelength
20000 A. Ifsunemits maximum energyofwavelength 5500 A,
what would be the temperature ofsun.

Solution

According to Wein's displacement law, we have

X T= constant

or

Thus

or

X T,=x t;mj 1 W2 2

20000 X 10"'° X 1500

= 5500 X 10-10 xT

200
r,=—X1500

= 5454.54 K

# Illustrative Example 4.28

Ifthe filament ofa 100 W bulb has an area 0.25 cm^ and behaves

as a perfect black body. Find the wavelength corresponding to
•the maximum in its energy distribution. Given that Stefan's

constant is a = 5.67 x 10'^ J/m^sKA 6 = 2.89 x 10"^mk.

Solution

In the bulb filament given, the energy radiated per sec per

of its surface area is given as

P 100 . .
£•= —= =4x lO^J/sm^

A 0.25x10 ^

If ris the temperature ofthe filament then according to stefen's
law, we have

E = ^T^

or 4x 10^ = 5.67 X 10-8;cT''

4x10^
or

or

pA —-

5.67x10"°

T=[7.055 x]0i3]i/i

=2898.14K

= 7.055x 10'^



iHeat Transfer

If the filament radiates the maximum energy at a wavelength
from Wein's displacement law, wehave

XT=b

or

-32.89x10

2898.14
•= 9971.9A

# Illustrative Example 4.29

Abody emits maximum energyat4253 Aandthesame body at
some other temperature emits maximum energyat 2342 A. Find
the ratio of the maximum energy radiated by the body in a short
wavelength range.

Solution

If E^ and are the maximum energy radiated bythebody in
short wavelength interval at temperature Fj and then
according to Wein's fifth power law, wehave

El
E,

\5

\T2J

According to Wein's displacement law, we have

or

X T,=X 71m\ I /7?2 • ^

T, "mx

...(4.67)

...(4.68)

Here X and X^^ are the wavelength at temperatures and Fj
at which the energy radiated in a small internal ofwavelength
is maximum.

Now from equation-(4.67) and (4,68), we have

or
El
El

W2

yXmx

234x10

4253x10

-10

-10 = 0.0506
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(i) The maximum in the energy distribution spectrum of the

sun is at wavelength 4753 A and its temperature is 6050 K.
What will be the temperature of the star whose energy

distribution shows a maximum at wavelength 9506A.

[3025 K]

(ii) The power radiated by a black body is P, and it radiates
maximum energy around the wavelength X. Ifthe temperature of
the black body is now changed so that it radiates maximum
energy around a wavelength 3X74. By what factor the power
radiated by it will increase.

[256/81]

(iii) A furnace is at a temperature of2000 K. At what wavelength
does it emit most intensively ?

[14450 A]

(iv) A black body is at a temperature of2880 K. The energy of
radiation emitted bythis objectwith wavelength between4990 A
and 5000A is£, and that between 9990A and 10000 A is E^.
Findthe ratiooiE^ andE^

[4.67] .

(v) The radiant emittance of a black body'isR= 250 kW/m^.
At what wavelength will the emmisivity of this black body be

maximum? (6= 2.9 x 10"^ m.Kand a = 5.67 x 10"^ Wm^^K"^)

[19944.7 A]
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Discussion Question
Q4-1 Explain whythe surfaceof a lake freezesfirst.

Q4-2 Is temperature a conserved quantity in transfer ofheat
between two bodies at different temperatures.

Q4-3 When two identical object on touching feels hot and
cold respectively, can we comment on the heat capacities ofthe
objects.

Q4-4 A vessel is used to boil water. To boil water faster the

thermal conductivityand specific heat ofthe material ofvessel
should be high or low.

Q4-5 Why is a clear night colder than a cloudy one ? •

Q4-6 White clothing is more comfortable in summer but
colourful clothing in winter. Explain.

Q4-7 Why a thermos flask has its interior surface mirror like
polished.

Q4-8 Ifwe put our hands above a fire or at the side ofthe fire
to get warmth in a winter night. It feels hotter above a fire than
by its side. Explain.

Q4-9 Thebody ofa refrigerator ispainted white, butthepipes
and metal grid at its back are painted black. Why ?

Q4-10 Whyare calorimeter madeofmetal, whynotofglass?

Q4-11 It is observed that if two blankets of same thickness x

are used together,will keepmore warm as compared to a single
blanket ofthickness 2x. Why ?

Q4-12 A solid sphere of a material of radius R and a hollow
sphere ofthe same material ofinner radius r and outer radius R
are heated to the same temperature and allowed to cool in the
same surrounding. Which of them will have higher rate of
cooling. Explain.

Q4-13 What is "Green House Effecfl

Q4-14 A sphere, a cube and a circular disc, made of same
material and of same mass are heated to same temperature and
placed in same surrounding. Which one will have fastest rate of
cooling and which one will have slowest ?

Q4-15 A blackplatinum wire, when heated, first appears dull
red, then yellow, then blue and finally white. Explain.

Q4-16 Why it is advantageous to paint the outer walls and

roofofa house white in hot weather ?

Q4-17 "Good thermal conductors are also good electrical
conductors." Explain this statement.

Q4-18 Why do some materials, such as glass and metals,
usually fell cold and other materials, such as cloth, usually feel
warm?

Q4-19 In air-conditionedcompartmentsof a train windowsare
madeup of two panes ofglass separated by an air space. Why ?

Q4'20 Explainwhy it isadvisableto addwaterto an overheated
automobile engineonlyslowlyand onlywith theenginerunning.

Q4-21 A piece of wood lying in the sun absorbs more heat
than a piece of shiny metal. Even after that the wood feels less

hot than the metal when we touch it. Why ?

Q4-22 A person pours a cup of hot cofee, intending to drink it
five minutes later. To keep it as hot as possible, should he put
cream in it now or wait until just before he drinks it ?

Q4-23 Aluminium foil used for food cooking and storage
sometimes has one shiny surface and one dull surface. When

food is wrapped for baking, should the shiny side be in or out ?

Q4-24 Whymusta room airconditioner beplaced in awindow ?
Why can't it just be set on the floor and plugged in ?

Q4-25 When you step out of a shower bath, you feel cold,
bust as soon as you are dry, you feel warmer, even though the
room temperature remains same. Explain.

Q4-26 Ice is slippery to walk on and is especiallyslippery if
you wear ice skates. Why ?

/
y

Q4-27 Even when a lake freezes in winters, how do the animals

survive deep inside the lake.
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ConceptualMCQs Single Option Correct
4-1 A bottleofwater at 0°C is openedon the surfaceofmoon.
Which of the following correctly expresses the behaviour of
water in it ?

(A) It will freeze

(B) Itwill decompose 1^0/^2^^*^ ^2
(C) It will boil
(D) None of the above

4-2 Theradiation power from a source at temperature rand2m
away is 2W/m^. Ifthe temperature ofthe source increases by
100% the radiation power at a distance 4m from the source will
increase by:
(A) 100% (B) 200%
(C) 600% (D) None of the above

4-3 Which one of the following statements is not true about
thermal radiations ?.
(A) All bodies emitthermalradiationsat all temperature
(B) Thermal radiations are electromagnetic waves
(Q Thermal radiations are not reflected from a mirror
(D) Thermal radiations travel in free space with a velocityof

3x 10^ms"'

4-4 AmetallicsphereofdiameterZ) hasa cavity ofdiameter
at its centre. If the sphereis heated, the diameter of the cavity
will:

(A) Decrease

(B) Increase

(Q Remain unchanged
(D) Decrease \fd< D12and increase \id> DH

4-5 Thewavelength oftheradiation emitted bya bodydepends
upon:

(A) The nature of its surface

(B) The area of its surface

(Q The temperature ofits surface
(P) All the above factors

4-6 The amount of energy radiatedby a bodyper unit time
depends upon :
(A) The nature of its surface

(B) The area ofits surface

(C) The temperature ofits surface
(D) All the above factors

4-7 The top of a lake gets frozen at a place where the
surroundingairisatatemperatureof-20''C.Then : '
(A) The temperature of the layer of water in contact with the

lower surface ofthe ice block will be at 0°C and that at the

bottom ofthe lake will be 4°C

(B) The temperature of water below the lower surface of ice
will be 4°Cright up to the bottom of the lake

(Q The temperature ofthe water below the lower surface ofice
will be OT right up to the bottom ofthe lake

(D) Thetemperature ofthelayer ofwater immediately incontact
with the lower surface ofice will be-20°C and that ofwater

at the bottom will be O^C

4-8 A solidsphereand a hollow sphereof the samematerial
and sizeareheatedto the sametemperature and allowed to cool
in the samesurroundings. If thetemperature difference between
the surroundingsand each sphere is T, then :
(A) The hollow sphere will cool at a faster rate for all values

off

(B) The solid sphere will cool at a faster rate forall values of T
(Q Both spheres will cool at the same rate for all values ofT
(D) Bothspheres willcoolat the samerateonlyforsmallvalues

ofr

4-9 Ice starts forming on the surface of lake and takes 8 hours
to form a layer of 1 cm thick. How much time will it take to
increase the thickness of layer to 2 cm ?
(A) 8 hours (B) Less than 8 hours
(C) Between 8 to 16hours P) More than 16hours

4-10 Why metals are good conductors of heat ?
(A) Their surfaces are good reflectors of heat
(B) Their atoms move very violently
(Q They contain large number of free electrons
P) Because ofsome reason other than those mentioned above

4-11 Why the walls and roof of the green house are made of
glass ?
(A) The glass absorbsmostof the radiations comingfrom the

sun

P) Theglasstransmitsthe radiations comingfromthesun but
not those given out by the bodies inside

(C) The glass equally transmits the radiations from the sun as
well as those from inside

P) For some reason other than those mentioned above

4-12 A drop ofwateris sprinkled on a redhot ironplate.The
drop forms a smallspherebut does not vaporise immediately.
This happens because :

(A) Red hot iron is a poor conductor of heat
P) A layerofwatervapourbetween the drop and plateprevents

conduction of heat

(Q Boiling point ofwater is raised
P) Ofsome other reason
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4-13 Two ends of a conducting rod of varying cross-section
are maintained at 200®C and CC respectively. There are two
sections marked in the rod AB and CD of same thickness. In

steady state :

o°c

lOCC

Figure 4.30

(A) Temperature difference across AB and CD are equal
(B) Temperature difference across AB is greater than that of

across CD

(C) Temperature difference across ^5 is less than that ofacross
CD

(D) Temperature difference maybe equal or different depending
on the thermal conductivity ofthe rod

4-14 Temperature of a body 0 is slightly more than the
temperature ofthesurrounding 0g. Itsrateofcooling (R)versus
temperature of body (0) is plotted, its shape would be :

(A)

(Q (D)

4-15 One end of a conducting rod is maintained at temperature
50°C and at the other end ice is melting at 0®C. The rate of
melting of ice s doubled if:
(A) The temperature is made200°C and the area ofcross-section

of the rod is doubled

p) The temperature is made 100°C and length of the rod is
made of four times

(C) Area ofcross section ofrod is halved and length is doubled
P) The temperature is made 100°C and area ofcross-section

of rod and length both are doubled

Heat Transfer

4-16 The diagram below shows rods of the same size of two
different materials P and 2placed end to end in thermal contact
and heavily lagged at their sides. The outer ends ofP and Q are
kept at 0®C and 100°C,respectively.The thermal conductivity
ofP is four times that ofQ. What is the steady-state temperature
ofthe interface?

/////////////////////////tT.—lagging

(A) 20^

(Q 25T:

0°C Q

777777777777777777777777777.

Figure 4.31

(B) 75*€

P) 80°C

lOCC

4-17 The lengths of the two rods made up of the same metal
and having the same area of cross-section are 0.6 m and 0.8 m
respectively. The temperatures ofthe ends offirst rod are 90°C
and 60°C and that for the ends ofthe other rod are 150'C and

110°C. For which rod, the rate ofconduction will be greater ?

(A) First (B) Second
(Q Same for both P) None of these

4-18 Whytwothin blankets put together are warmer than one
blanket of double the thickness ?

(A) Conductivity depends upon thickness
P) Two blankets enclose a layer ofair between them
(Q One blanket closes the pores in the other

P) Because ofsome reason other than those mentioned above

4-19 is the wavelength ofthe radiations corresponding to
maximum intensity of a very very hot body at temperature T.
Which of the following correctly represents the relations
between and T:

(A) X^^ decreases with increase in T
(B) X increases with increase in T
^ ' m

(Q X^ is independent of T •
P) None of the above

4-20 In designing a method for measuring the thermal
conductivity of polystyrene, care must be taken to choose a
specimen ofappropriate dimensions as well as to decide whether

or not the specimen requires lagging. Which ofthe following
would be the correct choice ?

Cross-sectional

area ofSpecimen

(A) SmaU

P) Small

(C) Large

P) Large

Thickness

ofSpecimen

Thin

Thick

Thin

Thick

Lagging

Required

No

Yes

No

Yes
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4-21 The graph shows how temperature varies with distance
along a well-insulated metal rod which is conducting thermal

energy at a steadyrate. The slope of this graph is the temperature

gradient. There is an analogy between electrical conduction
and thermal energy conduction. If an equivalent electrical-graph
were to be drawn, which electrical quantity,when plotted against
distance along the rod, would have the slope shown. ?

distance along rod

Figure 4.32

Electrical quantity

(A) Charge
Potential

(C) Potential difference
(P) Current

Slope
Current

Potential gradient
Resistance

Current gradient

4-22 A composite rod of uniform cross-section has copper
and aluminium sections of the same length in good thermal
contact. Tlie ends oftherod, which is well-lagged, are maintained

at lOO^C and at 0°Cas shown in the diagram (Figure-4.33). The
thermal conductivityof copper is twice that of aluminium.

lOO-C

. Gopper Aluminium

L

/////////////AV////////////}

o°c

Figure 4.33

Which one ofthe following graphs represents the variation of
temperature Twith distancex along the rod in the steadystate ?

(B)

199;

(Q

IL X 0 L 2L X

4-23 PQ is a fully-lagged metal bar, containing a sectionATof
a material of lower thermal conductivity. The thermal
conductivities of the two materials are independent of
temperature. Ends P and Q are maintained at different
temperature.

•////////////////////////////////////////Z

lagging

Figure 4.34

In the steadystate, the temperature difference acrosswould
be independent of:
(A) The temperature difference between P and Q
(B) The metal ofwhich the bar is made

(C) The thickness of the section XY
P) The distance ofthe section XYfrom the end P

4-24 Two adiabatic vessels, each containing the same mass m

ofwater but at different temperatures, are connected bya rod of
length L, cross-sectionA, and thermal conductivityK. the ends
ofthe rod are inserted into the vessels, while the rest ofthe rod

is insulated so that .there is negligible loss of heat into the
atmosphere. The specificheat capacity of water iss, while that
of the rod is negligible. The temperature difference between the
two vessels reduces to Meofits original value after a time, Ar.
The thermal conductivity {K) ofthe rod may be expressed by:

(A)

(Q

msL

Al^t

msL

leAAt

(B)

P)

emsL

AAt

msL

2AM
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NumericalMCQsSingle Options Correct
4-1 Twospheresofradii/?j and are made ofthe same material
and are at the same temperature. The ratio of their thermal
capacities is:

(A)/2,
2/d 2(Q R.'-IR

(B)

P) ^,/^2

4-2 Twodifferentmetal rods of equal lengthsand equalareas
of cross-section have their ends kept at the same temperature
0, and 02. if and are their thermal conductivities, p, and P2
their densities and 5, and $2 their specific heats, then the rate of
flow ofheat in the two rods will be the same if:

(A) T^ =
Pi^i

P2-^2
P) T^ =

Pl-^2

P25,

P)

4-3 Aslabofstone ofarea0.34 mandthickness 10 cmisexposed
on the lower face to steam at lOO^C. Ablock ofice at OT rests on

the upper face ofthe slab. In one hour, 3.6 kg of ice is melted.
Assume that the heat loss from the sides is negligible. The
latent heat offiision ofice is3.4 x 10'̂ J kg~*. What isthe thermal
conductivity of the stonein units ofJs"' m~* ®C"' ?
(A) 0.1 ' (B) 0.15
(C) 02 (D) 0.25

4-4 Thetopofa lakeis frozen as theatmospheric temperature
is - 10®C. The temperature at the bottom of the lake is most
likely to be;
(A) 4°C (B) CPC
(C) -4°C p) -10°C -

4-5 The tungsten filament of an electric lamp has a surface
afea^ and a powerrating/'. Iftheemissivityof the filament ise
and a isStefan's constant, the steadytemperatureofthe filament
will be:

(A) T= •T
Aea ) Aeo

1/2

[•£)
1/4

4-6 What are the dimensions ofStefan's constant ?

(A)

(Q MLr^K'-4

P) ML-^T-^K"^
•3 vr-4p) ML^T-'K

4-7 Two uniform brass rods A and B of lengths / and 11and
radii 1r and r respectively are heated to the same temperature.
The ratio ofthe increase in the length ofA to that of5 is :
(A) 1:1 p) 1; 2
(Q 1:4 P) 2:1

4-8 A slab consists of two parallel layers of two different
materials of same thickness having thermal conductivities
and ^2. Theequivalent conductivity of the combination is :

(A) Aj + A2

(C)
Ihkl'^2

(^1+^2)

P)

P)

A^i +^2
2

(^1+^2)
Ik^kj

4-9 The amount of heat conducted out per second through a
window, when inside temperature is 10®C and outside
temperature is -1 O^C, is 1000 J. Same heat will be conducted in
through the window, when outside temperature is - 23°C and
inside temperature is:

(A) 23'C P) 230K
(C) 270k: (D) 296K

4-10 A composite slab consists oftwo slabsand 5 ofdifferent

materials but of the same thickness placed one on top of the
other. The thermal conductivities ofA and B are k^ and A2
respectively. A steady temperature difference of 12°C is

maintained across the composite slab. If k^ = A2/2, the
temperature difference across slab A will be:

(A) 4^^

(Q 12'C

H HI HH—— //2 H

A A,

H I H

Figure 4.35

P) 8x:

P) 16^

4-11 Two rods of equal length and diameter but of thermal
conductivities 2 and 3 unitesrespectively arejoined in parallel.
The thermal conductivityofthe combination is:

(A) 1 P) 1.5
(Q 2.5 (P) 5

4-12 If the coefficient of conductivity of aluminium is
0.5cal cm"' s"' °C"', then in ordertoconduct10cals"' cm"^ in
the steady state, the temperature gradient in aluminium must
be:

(A) 5''C/cm P) ICtVcm
(Q ICrC/cm (p) 10.5°acm

4-13 Wien's constant is 2892 X10"^SI unit and the value ofX.
m

forMoon is 14.46micron.The surfecetemperatureof Moonis :
(A) lOOK P) 300K

(Q 400 K p) 200 K
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4-14 The coefficients of thermal conductivity of copper,
mercury and glass are respectively. and such that
K^> K^> K^. Ifthe same quantity ofheat is to flow per second
per unit area of each and corresponding temperature gradients
are X^, and X^, then:
(A)
(Q X<X^<X^

(B)

(D)

4-15 Two cylindrical rods of lengths /, and /j, radii r^ and
have thermal conductivities and respectively. The ends of
the rods are maintained at the same temperature difference. If
/] = 2/2 and Tj = r2/2, therates ofheat flow in them will bethe
same ifk^lk^ is:
(A) 1 (B) 2
(C) 4 (D) 8

4-16 The amount ofthermal radiations emitted from one square
centimetre area of a black body in one second when at a
temperature of 1000K is:
(A) 5.67J (B) 56.7J
(Q 567J (D) 5670J

4-17 If the temperature of a black body increases from TC to
287®C, then the rate of energy radiation increases by:

,«(f)•
(Q 4

(B) 16

(D) 2

4-18 A bodycoolsfrom60°C to 50°Cin 10minutes. If the room
temperature is 25°Cand assumingnewton's law of coolingto
hold good, the temperature of the bodyat the end of next 10
minutes will be:

(A) 38.5°C ' (B) 4QK:
(C) 42.85'€ (P) 45*€

4-19 Giventhatp joule ofheat is incidenton a bodyand outof
it q joule is reflected and transmitted by it. The absorption
co-efficient of the body is :

(A) plq (B) qlp
(Q {q-pyp P) {p-qyp

4-20 A black body radiates 3 joule per square centimeter per
second when its temperature is 127''C.How much heat will be
radiated per square centimetreper secondwhen its temperature
is527°C?

(A) 6J (B) 12J
(Q 24J P) 48J

4-21 The rate ofloss ofheat by radiation from a body at 400°C
is R. The radiation from it when the temperature rises to 800°C ?
(A) 2R • p) 4^
(C) 16R P) None of the above

201

4-22 Tworods of the same length and material transfer a given
amount ofheat in 12 seconds when they are joined end to end.
But when they are joined lengthwise, they will transfer the same
amount ofheat, in the same conduction, in :

(A) 24 s (B) 10 s
(Q 15 s (D) 48 s

4-23 Abodycools from 50.0°C to49.9''C in 5s.Howlongwillit
take to cool from 40.0®C to 39.9°C ?Assume the temperature of
the surroundings to be 30.0°C and Newton's law ofcooling to
be valid:

(A) 2.5 s (B) 10 s
(C) 20 s p) 5 s

4-24 Radiation from a black body at the thermodynamic
temperature Fj is measured by a small detector at distance
fromit. Whenthe temperatureis increasedto and the distance
tod2, thepower received by the detector isunchanged. What
is the ratio d^ld^ ?

(A) F, (B)

(Q
F.

P)

4-25 Two bars of equal length and the same cross-sectional
area butofdifferent thermal conductivities, k^ and k^, arejoined
end to end as shown in figure-4.36. One end of the composite
barismaintained attemperature F^ whereas the opposite end is
held at T. •

-^1 i|
H / 4— / H

Figure 4.36

If there are no heat losses from the sides of the bars, the

temperature Tj ofthe junction is given by:

(A)^^

(Q
A, +k2 +^c)

k. 2

P) k^ -1-^2

w rri:

4-26 A compositeslab consistsoftwo parts ofequal thickness.
The thermal conductivityofone is twice that ofthe other. What
will be the ratio oftemperature difference across the two layers
in the state ofequilibrium ?

(A) 1 P) 2 .
(C) 3 P) 4



202

4-27 The room temperature is 20''C. Water in a container cools
from 55®C to 45°C in 8 minutes. How much time will it take in

cooling from 45''C to ?

(A) 4 minutes (B) 12minutes
(C) 16minutes (D) 24 minutes

4-28 When the temperature difference between inside and
outside of a room is 20°C, the rate of heat flow through a window
is273 Js~'. Ifthe temperature difference becomes 20K, the rate
offlow of heat through the same window will be:
(A) 253 Js"'
(B) 273Js"'
(Q 293Js"'
(D) Given by one of the above mentioned values

4-29 A wall has two layers A and B, each made of different

materials. Both layers are ofsame thickness. But, the thermal
conductivity of material A is twice that of B. If, in the steady
state, the temperature difference across the wall is 24®C, then
the temperature difference across the layer B is :
(A) 8r (B) 12X:

(C) 16^ (D) 20'€

4-30 Youare given two spheres of same material and radii 10
cm and 20 cm. They are heated to the same temperature. They
are placed in the same environment. The ratio of their rates of

cooling will be:
(A) 1:2 (B) 2:1
(Q 1:4 P) 4:1

4-31 An object is cooled from 75°C to 65®C in 2 minutes in a
room at 30°C. The time taken to cool the same object from 55®C
to 45®C in the same room is:

(A) 5 minutes (B) 3 minutes
(C) 4 minutes P) 2 minutes

4-32 The temperature of a room heated by a heater is 20''C
when outside temperature is - 20°C and it is ICC when the
outsidetemperature is-40®C. The temperature ofthe heater is:
(A) sere p) lOOG

(Q Aorc p) 6cn:

4-33 The thermal conductivity oftwo materials are in the ratio
1 : 2. What will be the ratio of thermal resistances of rods of

these materials having length in the ratio 1 :2 and area ofcross-
section in the ratio 1:2:

(A) 2:1 P) 1:4
(C) 1:8 P) 1:16

4-34 Tworods madeofsame materialhaving samelengthand
diameter are joined in series. The thermal power dissipated
through then is 2W. Ifthey are joined in parallel, the thermal
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power dissipated under the same conditions on the two ends of
the rods, will be:

(A) 16 W (B) SW r

(Q 4 JV (P) 2 W

4-35 The maximum radiations from two bodies correspond to
560 nm and 420 nm respectively. The ratio oftheir temperature
is:

(A) 4:3 P) 3:4
(C) 2:1 P) 3 :2

4-36 A ball is coated with lamp black. Its temperature is 327''C
and is placed in the atmosphere at 27°C. Let the rate ofcooling
be R. Ifthe temperature of the ball be 62TC, what will be its rate
of cooling ?
(A) 2R P) 4R

(Q SR (D) y/i

4-37 Two metallic rods are connected in series. Both are of

same material ofsame length and same area ofcross-section. If

the conductivity of each rod be k, then what will be the
conductivity ofthe combination ?

(A) 4 ^ P) 2

(C) k P) kl2

4-38 A compound slab is made oftwo parallel plates of copper

and brass of the same thickness and having thermal

conductivities in the ratio 4:1. The free fece ofcopper is at 0®C.

The temperature ofthe interfaceis 20®C. What is the temperature
of the free face of brass ?

(A) OC P) 20°C

(C) 40^ P) lOffC

4-39 Consider the two insulating sheets with thermal

resistances/?, and/?2 asshown in figure-4.37. Thetemperature
0 is:

(A)

(Q

0102^1-^2
(0] +02)(/?i +

(0, +02)/?i/?2

Rx+Rl

^2)

R-,

Heat

Figure 4.37

P)

(D)

0l/?l +02/?2
Ry + /?2

0j/?2+ 02-^1
Ry + /?2
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4-40 Two cylindrical rodsofthesamematerial havethesame
temperature difference between theirends. Theratiooftherates
offlow ofheat throughthem is 1: 8.The radii of the rodsare in
the ratio I : 2. What is the ratio oftheir lengths ?

(A) 2:1 (B) 4:1
CQ 1:8 P) 1:32

4-41 An object isattemperature of400°C. Atwhat approximate
temperature would it radiate energy twice as first ? The
temperature ofsurroundings may beassumed tobenegligible:
(A) 20(fC (B) 200K
(C) 80(fC P) 800 K

4-42 A wall is made of two equally thick layersA and B of
different materials. The thermal conductivity ofA is twice that
of5. In the steady state, the temperature difference across the
wallis36°C. Thetemperature difference across thelayers will
be:

(A) 6^ P) 12'C
(Q 18'€ P) 24*C

4-43 The ratio ofthe coefficient ofthermal conductivity oftwo
different materials is 5 :3. Ifthe thermal resistance of the rods of

the same thickness ofthese materials is same, then the ratio of
the lengths of these rods is :

(A) (B)

(D)(C)

4-47 Theemissivity andsurface areaoftungsten filament of
an electric bulb are 0.35 and 0.25 x 10"^ metre^ respectively. The
operatingtemperatureoffilamentis3000K.Ifa =5.67 x 10
watt melre"^ K"^, then power ofbulb isapproximately:

143 watt

1050watt

(A) (B) f

(C) J P)

4-44 Acylindrical rodwith one endinasteam chamber andthe
otherend in iceresultsin meltingofO.l g of iceper second. If
the rod is replaced by another rod with half the length and
double the radius ofthe first and ifthe thermal conductivity of
material ofthe second rod is 0.25 times that offirst, the rate at

which ice melts ings'̂ will be:
(A) 0.1 P) 0.2
(C) 1.6 P) 3^

4-45 There is ice formation on a tank of water of thickness

10 cm.HowmuchtimeitwilltaketohavealayerofO.l cmbelow
it ?The outertemperatureis- 5®C, the thermal conductivity of
iceis 0.005 calcm"' °Cr' andlatentheatoficeis80cal/gand the
density ofice is0.91 gcm"^:
(A) 46.39 minute p) 47.63 minute
(Q 48.78 minute P) 49.31 minute

4-46 The rectangular surface of area 8 cm x 4 cm of a black
bodyat temperature 127°C emits energy^persecond. Iflength
and breadth are reduced to half of the initial value and the
temperature is raised to 327°C, the rateofemission ofenergy
becomes :

(A) 40 watt

(C) 3000 watt
P)
P)

4-48 Ice starts forming in a lakewithwater at 0°C when the
atmospherictemperatureis-10°C. Iftimetaken for 1cm ofice
to be formed is7 hour, the time taken forthe thicknessofice to
changefrom 1cmto2 cmis :
(A) 3.5hour p) 7 hour
(Q Hhour P) 21 hour

4-49 Which ofthe following cylindrical rodsofthe same metal
has the highest rate of flow of heat ? The rods have equal
difference of temperaturebetween their ends :
(A) /=2m,r-lcm p)/-4m,r-2cm
(C) /-2m,r=2cm p) /=2m,r=4cm

4-50 In Q.No.4-49, the lowest rateof flow ofheat is for:
(A) /=2m,/-= 1cm p)/-4m,r=2cm
(Q /=2m,r-2cm P) /-2m,r=4cm

4-51 Three rods made of the same material and having the
samecross-section havebeen joinedas shown inthefigure-4.38.
Eachrodis ofthe samelength. The leftandright endsarekept
at 0®C and90''C respectively. Thetemperature ofthejunction of
the three rods will be:

90''C

(A) 45T:
(Q 3(fC

0°C

Figure 4.38

p) 6crc
p) 20°C

90°C

4-52 The intensity of radiation emitted by the Sun has its
maximumvalueat a wavelength of 510nm andthat emittedby
theNorth Star has the maximum value at 350 nm. Ifthese Stars
behave like black bodies, then the ratio of the surface
temperatures ofthe SunandtheNorthStar is :
(A) 1.46 - P) 0.69
(Q 1.21 P) 0.83
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4-53 Two different metal rods of the same length havetheir
ends kept atthe same temperature 0, and with ©2 >0,.Ifj
and ^2are their cross-sectional areas and A, and their thermal
conductivities, the rate of flow ofheat in the two rods will be
the same it:

(A) -7^ = (B) -7^ = 1^

^,0,

A2 k2^2(Q -r =
1 _

^,0,

4-54 Theheatis flowing through two cylindrical rodsofsame
material. The diameters ofthe rods are in the ratio 1:2 and their

lengths areintheratio2:1. Ifthetemperature difference between
their ends isthesame, theratio ofrates offlow ofheat through
them will be:

(A) 1:1 (B) 2:l'
(Q 1:4 (D) 1:8

4-55 The temperature gradient inarod of0.5 mlength is80°C/m.
If the temperature of hotter end of the rod is 30°C, then the
temperature ofthe cooler end is :
(A) 40'€ • (B) -lO^C
(Q \(fc (D) ox:

4-56 A body at 300°C radiates 10J cm~^ s~'. If Sun radiates
10^ Jcm~^ s"', then its temperature is:
(A) 3000°C

(Q 300xI0'»®C
(B) 5457X:

(P) 573(fC

4-57 Two solid spheres ofradii 7?, and /?2 are made ofsame
materialand havesimilar surfece. The spheresareraised to the
same temperature and then allowed to cool under identical

conditions. Assuming spheres tobeperfect conductors ofheat,
their initial ratio ofrates of loss ofheat is:

(A)

R.
P)

4-58 Q.No 4-57, theratio oftheir initial rates ofcooling is:

^<1
(A) TT

rI

4-59 Two identical vessels arefilled with equal amounts ofice.
The vessels are made fi-om different materials. Ifthe ice melts in
thetwo vessels intimes and ^2 respectively, then their thermal
conductivities are in the ratio:

(A)

(Q c: t;

(B) 7^

P)
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4-60 Two identical rods of a metal are welded as shown in

figure-4.39(a). 20 calofheat flows throughthemin4 minute. If
the rods are weldedas shown in figure-4.39(b), then the same
amount ofheat will flow in:

(A) 1 minute

(Q 4 minute

(a)

100°C

Figure 4.39

P) 2 minute
P) 16 minute

(b)

4-61 A small hole is made in a hollow enclosure whose walls
are maintained ata temperature of1000 K. The amount ofenergy
being emittedper squaremetre per secondis :
CA)567J (B)5670J
(C)56700 J . P) 567000 J

4-62 The ends ofthe two rods of different materials with their
lengths, diameters ofcross-section and thermal conductivities
all in the ratio 1 : 2 are maintained at the same temperature
difference. The rate offlow ofheat in the shorter rod is 1cals"'.
What istherateof flow ofheatin thelarger rod:
(A) 1cal s"' p) 4cal s~'

Seals"* PI 16cals-'(C)

4-63 The ratio ofenergy ofradiation emitted by ablack body
at27*'Cand927°Cis:

(A) 1:4 P) 1:16
(Q 1:64 p) 1:256

4-64 Two rods of same length and material transfer a given
amount ofheat in 12second,whenthey arejoined as shownin
figure-4.40(i). But when they are joined as shown in figure-
4.40(ii), then they will transfer same heat in same conditions in :

(A) 24 s

(Q 15 s

a

/

(i)

E

(ii)

Figure 4.40

P) 13 s

P) 48 s

D
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4-65 The energy emitted per secondby a blackbodyat 27°Cis
10J. Ifthe temperature ofthe black body is increased to 327®C,
the energy emitted per second will be:
(A) 20 J (B) 40 J
(Q 80J (D) 160J

4-66 The dimensional formula ofthermal resistance is:

(A) [M"' L"^ T^ K] (B) [M K"' ]
(C) [ML^T^K] (D) [ML^T^K-^]

4-67 Two vessels ofdifferent materials are similar in size in

everyrespect. Thesamequantityoficefilled in themgetsmelted
in 20 minute and 30 minute. The ratio of their thermal

conductivities will be:

(A) 1.5 (B) 1

2

3
(C) P) 4

4-68 The temperature of a body is increased by 50%. The
amount ofradiation emitted by it would be nearly:
(A) 50% (B) 225%
(Q 250% (D) 400%

4-69 A cylinder of radius R made of material of thermal
conductivity^, is surrounded by a cylindrical shell of inner
radius R and outer radius 3/? made of a material of thermal

conductivity K2. The two ends of the combined system are
maintained at two different temperatures. What is the effective
thermal conductivity ofthe system ?

K^+SK.
(A) ^,+^2 P) Q

(Q P)

4-70 The temperature ofa bodyis increasedft-om 2TC to 127''C.
The radiation emitted by it increases by a factor of:

(Q

P) y

P) i

4-71 Ametal ball ofsurfacearea 200 cm^ and temperature 527®C
is surrounded by a vessel a 27°C. Ifthe emissivity of the metal
is 0.4, then the rate of loss of heat fi-om the ball is nearly
(a =5.67 X10"^ J/mAs-K^) :
(A) 108joule (B) 168joule
(Q 186joule (D) 192joule

4-72 A spherical black bodywith a radius of 12 cm radiates
450 W power at 500 K. If the radius were halved and the
temperaturedoubled, the power radiated in watt wouldbe :

(A) 225
(Q 900

(B) 450

(D) 1800
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4-73 Wires A and B have identical lengths and have circular
cross-sections. The radius of A is twice the radius of B i.e.

R^ = 2R^. For agiven temperature difference between the two
ends, both wires conduct heat at the same rate. The relation
between the thermal conductivities is given by:
(A) K^ =4K^ (B) K^ = 2K^
(Q (P) K^ =KJ4

4-74 The ratio ofthermal conductivities oftwo rods ofdifferent

material is 5 :4. The two rods ofsame area ofcross-section and

same thermal resistance will have the lengths in the ratio:
(A)4:5 (B)9:l
(C)l:9 (D)5:4

4-75 Theheightofa waterfall is 84m.Assuming that theentire
kinetic energy of falling water is converted into heat, the rise in
temperature ofthe water will be:(g= 10 ms~^, J=4.2 joule/cal)
(A) 0.2%: (B) I.96ffC
(C) 0.96°C p) 0.0196°C

4-76 In a steady state of thermal conduction, temperatureof
the ends A and 5 of a 20 cm long rod are 100®C and 0°C
respectively. What will be the temperatureof the rod at a point
at a distance of6 cm fi^om the end A ofthe rod ?

(A) -30"C (B) l(fC
(C) 5°C p) None of these

4-77 A black metal foil is warmed by radiation from a small
sphereat temperature Tand at a distance It is found that the
power received bythefoil is '/*'. Ifbotli thetemperature andthe
distance are doubled, the power received by the foil will be :
(A) 16P (B) 4P
(C) 2P P) P

4-78 A heat flux of4000 J is to be passed through a copper
rod oflength 10 cm and area ofcross-section 100 cm^. The
thermal conductivity of copper is 400 W/m®C. The two ends of
this rod mustbekeptat a temperature difference of;
(A) I'C P) 10^
(Q lOffC p) looox:

4-79 The temperature ofa liquid dropsfrom 365 K to 361 Kin
2 minute. The time during which temperature ofthe liquid drops
fi'om344 K to 342 K is (Temperature ofroom is 293 K):
(A) 84 s P) 72 s
(Q 66s p) 60s

4-80 Consider two hot bodies 5, and B2 which have
temperature 100°C and80°Crespectivelyat t=0. The temperature
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ofthe surroundings is 40°C. The ratio ofthe respective rates of
cooling R^ andi?2 of thesetwo bodies at / = 0 willbe:
(A) R^:R^= 3-.2
(Q R^:R^ =2:3

(B) R^:R^=5:4
(P) R^:R^ =4:5

4-81 The temperature of a perfectblack body is 727°C and its
areaisO.l m^. IfStefan's constant is5.67 x 10"^ watt/m^-s-K^
then heat radiated by it in 1 minute is:
(A) SlOOcal (B) SlOOOcal
(C) SlOcal (D) Slcal

4-82 The temperature of a pieceof metal is raised from 27°Cto
5L2®C. The rate at which the metal radiates energy increases
nearly;

(A) 2 times (B) 4 times
{Q 4.46 times P) 1.36times

4-83 Thedimensions ofthecoefficient ofthermal conductivity
are:

(A) ML"' K-' (B)

(P) MLT-^K"'(Q ML-'r'K"'

4-84 Six identical conducting rods are joined as shown in
figure-4.41. Points ^4 andDare maintained attemperatures 200°C
and 20°Crespectively. The temperature ofJunctionB will be:

200''C

(A) \2(fC

(Q 140°C

Figure 4.41

(B) 100°C

P) S(fC

4-85 Two rods A and B of different materials are welded

together as shown in figure-4.42. If their thermal conductivities
are and^2» thethermalconductivityofthe composite rodwill
be:

A

B S2

N d H

(A) 2{k^+k^)

(Q (^,+^2)

Figure 4.42

iB)-(k^+k^)

P) j(k,+k^)
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4-86 A parallel-sided slab is made oftwo different materials.
The upper half of the slab is made of material X, of thermal
conductivity X; the lower halfis made ofmaterial Y, ofthermal

conductivity 2X. In the steady state, the left hand face of the
composite slab is at a higher, uniform temperature than the
right-hand fece,and the flowof heat through the slab is parallel
to its shortest sides. What fraction ofthe total heat flowthrough
the slab passes through material X2

(A) { (B)

(Q y (D)

4-87 Metal rodsXand Tofidentical cross-sectional area, have
lengths 60 cm and 30 cm respectively. They are made ofmetals
ofthermal conductivities ^^and Xy. They are well-lagged and
joined end-to-end as shown in the figure-4.43. One end ofXis
maintained at 100®C and the opposite end of Tis maintained at
0"C. When steady conditions have been .reached, the

temperature ofthe junction is found to be 25''C.

60 cm 30 cm

/////////////////////////////////////z

lOCC A' 5i 25"C Y ^2 |0°C

Figure 4.43

What is the value of

(A)y (B)

(0 i p) f

4-88 When the centre ofearth is at a distance of 1.5 X 10"m

from the centre of sun, the intensity of solar radiation reaching
at the earth's surfaceis 1.26kW/m^. There is a sphericalcloud
of cosmicdust, containing iron particles. The melting point for
iron particles in the cloud is 2000 K. Find the distance of iron
particles from the centre ofsun at which the iron particle starts
melting. (Assumesun and cloud as a black body, a = 5.8 x 10"^
W/m^K"):
(A) 2.81 XlO^m p) 2.81 x lO^Om
(C) 2.81xio^m p) 1.40xIO"Om

Paragraphfor Question No. 89

Read the passage carefully and answer the followingquestions.

Imagine a system, that can keep the room temperature within a
narrow range between 20°C to 25°C. the system includes a heat
engine operating with variable power P = 3KT, where A" is a
constant coefficient, depending upon the thermal insulation of
the room, the area of the walls and the thickness ofthe walls.
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T is temperature of the room in degree, when the room
temperature drops lower than 20''C, theengine turns on,when
the temperature increase over 25°C, theengineturnsoff, room
looses energy at a ate ofKiT-Tq) is the outdoor temperature.
The heat capacity of the room is C.

(6^ „ c
Given (T^=10'C, In 2 =0.4, in y J=0.18, =750 57-unit)

4-89 Suppose at / = 0, the engine turns off, after how much
time interval, again, the enginewill turn on:
(A) 10minute (B) 5minute
(Q 1.125 minute (D) 2.25 minute

4-90 Two balls ofsame material and finish have their diameters

in the ratio 2:1. Both are heated to the same temperature and
allowed to cool by radiation. Rate of cooling of big ball as
compared tosmaller onewillbein theratio:
(A) 1:1 (B) 1:2
(Q 2:1 (D) 4:1

4-91 Three bars each ofarea of cross section A and length L

are connected in series as shown in the figure. Thermal
conductivities of their materials are K, IK and \.5K. If the
temperatures offree endoffirst andthelastbarare200®C and
18°C. Thevalue of 0j and 02 are(in steady state):
(A) 120'C,80°C (B) 116'C,80°C
(Q \\e°C,WC (D) 120°C,74''C
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4J/s and flows out towards C at 8J/s. Choose the correct

relation(s):

(A) T,<T,
(Q

B

A 0 C

D

Figure 4.44

(B) T,<T^
P) Ts=T^

4-93 In a room wheretemperature is SCC, a bodycoolsfrom
6rc to 59''C in 4 minutes. The time taken by the body to cool
from 5 rc to 49''C will be:

(A) 4 minute (B) 6minute
(Q 5minute (D) 8minute

4-94 Two identical conducting rods AB and CDareconnected
toa circular conducting ring at twodiametricallyopposite points
B and C.The radius of the ring isequalto the lengthofrodsAB
and CD.The area of cross-section, and thermal conductivityof
the rod and ring are equal. PointsA and D are maintained at
temperatures of 100°C and0°C. Temperature ofpoint Cwill be:

lOCC

4-92 Four identical rods which have thermally insulated lateral
surfaces arejoined atpoint O.Points yl, B,CandDareconnected
to furnaces maintained at constant temperatures. If the heat ^2^
flows into the junction Ofrom^ attherateof2J/sandfrom5at 230^

Figure 4.45

(B) yi°c

(D) 45^
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Advance MCQs with One orMore Options Correct
4-1 An insulated container is filled with iceat O^C, andanother
container is filled with water that is continuously boiling at
100°C. In series of experiments, the container connected by
various,thickmetalrodsthat pass through the wallsofcontainer
as shown in the figure-4.46.

Insulators

Water

lOCC

/
Ice

O'C
Metal rod

Figure 4.46

In the experiment-I; A copper rod is used and all ice melts is
20 minutes.

In the experiment-II: A steel rod of identical dimensions is

used and all ice melts in 80 minutes.

In the experiment-ni: Both the rods are used in series and all
icemelts in /,q minutes.
In the experiment-IV: Both rods are used in parallelall ice
melts in minutes.

(A) Thevalue of/,q is 100 minutes
(B) Thevalue of/jQ is50minutes
(Q The value of is 16 minutes

(p) The value of is 8 minutes

4-2 Two spheresAandBhave same radius but the heat capacity
ofA is greaterthan that of5. The surfaces ofbotharepainted
black.Theyare heated to the same temperatureand allowedto
cool. Then:

(A) A cools faster than B
(B) Both A and B cool at the same rate

(Q At any temperature the ratio of their rates of cooling is a
constant

p) B cools faster than A

4-3 Thetwo ends ofa uniform rodof thermal conductivity k
are maintained at different but constant temperatures. The

temperature gradientat any point on the rod is (equal to

thedifference intemperature perunitlength). Theheatflow per
unit time per unit cross-section ofthe rod is / then which ofthe

following statements is/are correct:

(A) ~ is the same for all points on the rod

(B) /will decrease aswemove from higher to lower temperature

(Q /cci- ^
P) All the above options are incorrect

4-4 A planet having surface temperature T K has a solar
constant S. An angle 0 is subtendedby the sun at the planet:
(A)5'ocr= P)5ocr''
(Q 5-0000 P)5oc02

4-5 Two ends ofarea^ ofauniform rod ofthermal conductivity
karemaintained at different butconstant temperatures. Atany

dTpoint on the rod, the temperature gradient is . If /be the

thermal current in the rod, then:

(A) IccA (B) /cc —

(Q /oc^° P)
1

dl

4-6 Two bodies.^ and 5 have thermal emissivities of0.01 and
0.81, respectively. The outer surface areas oftwo bodies are the
same.The twobodies emittotal radiantpowerat the samerate.
Thewavelength corresponding tomaximum spherical spectral
radiance intheradiation from B is shifted from thewavelength
corresponding to the maximum spectral radiance from A by
1.00pm. If the temperatureof^ is 5802 K, then :
(A) The temperature offi is 1934 K
P) Xf^-1.5 pra
(Q The temperature ofB is 11604 K
p) Thetemperatureof5is2901 K

4-7 Curved surface of a uniform rod is isolated from

surrounding. Endsof the rod are maintainedat temperatures
and (7, > for a long time. At an instant, temperature 7j
startstodecrease ataconstant andslow rate. Ifthermal capacity
ofmaterial oftherodisconsidered, then which ofthefollowing
statements is/are correct ?

(A) Atan instant,rateofheat flow nearthehotterend is equal
to that near the other end

p) Rate of heat flow through the rod starts to decrease near
the hotter end and remains constant near the other end

(Q Rate ofheat flow is maximum at mid section ofthe rod
P) None of these

4-8 A thin spherical shelland a thincylindrical shell(closed at
both ends) have same volume. Both the shells are filled with
water at the same temperature and are exposed to tfie same
atmosphere. Initialtemperature ofwater isslightly greater than
that of surrounding. Then at initial moment:
(A) Rate ofheat radiation from two shells will be same

P) Rate offall oftemperature in both the shells will be same
(Q Rateofheat radiationandrate offallof temperature, both,

in cylindricalshell are lessthan those in sphericalshell
p) None ofthese 1
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4-9 The gross radiation emitted by aperfectly black body is :
(A) Dependenton its temperature
(B) Dependent on the area of its surface
(Q Dependent on thetemperature of thesurroundings
p) Independent ofthetemperature ofthesurroundings

4-10 The rates offall temperature oftwo identical solid spheres
ofdifferent materials areequal atacertain temperature if:
(A) Theirspecific heat capacities are equal
(B) Their heatcapacitiesareequal
(Q Their specific heat capacities are proportional to their

densities

P) Theirspecific heat capacities are inversely proportional to
their densities

4-11 A hollow sphere and a hollow cube, both made of the
samemetal, havesamesurface area and negligible thickness.
Thearefilled with warm water ofsame temperature andplaced
in an enclosure of constant temperature, a fewdegrees below
that ofwater. Then in the beginning the rate of:
(A) Energylost bythe sphereis less than that by the cube
P) Energylostby the sphereis more than that bythe cube
(Q Energy lost by the two are equal
p) Fall of temperature forsphere is lessthan that for the cube

4-12 Theplots of intensityvswavelength fortwoblack bodies
at temperature T, and such that = 27", respectively areas
shown. Let theenergyradiatedper second bybody I and body
2 bfe £'] and respectively. Pickupthe correct statement(s).

Tn = 27",

Figure 4.47

(A) E^=\eE^
P) £, maybe equal to 16 times of£'2
(C) The area under curve 1 and area under curve 2 will be same
p) Area under curve 2 is larger than area under curve 1

4-13 Ametal cylinder ofmass 0.5 kgisheated electricallybya
12 W heater inaroom at 15°C. The cylindertemperaturerises
uniformlyto 25°C in5 minandfinallybecomes constant at45°C.
Assumingthat the rate ofheat lossisproportional to theexcess
temperature over the surroundings :
(A) The rate of lossof heat of the cylinder to surrounding at

20°C is2W

p) The rate of loss of heat of the cylinder to surrounding at
45°Cisl2W

(Q The rate of loss of heatof the cylinder to surrounding at
20°C is 5 W

P) The rate of loss of heat of the cylinder to surrounding at
45°Cis30W
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4-14 A particleof mass 1 kg slides in a horizontal circleof
radius 20 m with a constant speed of 1m/s. Theonlyforces in
thevertical direction acting ontheparticle areitsweight and
thenormalreaction, hbwever no information is available about
theforces inthehorizontal plane. Over aperiod oftime whole
energydissipateddue to workdone by friction is conducted to
ground and simultaneously radiated to surround. If the
coefficient offriction is pi = 0.5. Then (Take^=10 m/s^):
(A) Themagnitudeoffrictional force acting ontheblockmust

be5N.

P) Thefrictiona! force must beintangential direction.
(C) The frictional force must be towards the centre.

P) Nocomment can bemade about thedirection ormagnitude
of friction based on the given data.

4-15 In accordance with Kirchhoffslaw (Assume transmissivity
a, —> 0 for all the cases):
(A) Bad absorber is bad emitter

P) Bad absorber is good reflector
(C) Bad reflector is good emitter
P) Bad emitter is good absorber

4-16 Ahollow andasolid sphere ofsame material andidentical
outer surface under identical condition are heated to the same

temperatureat the sametime (bothhave samee, a):
(A) In the beginning bothwillemitequal amount ofradiation

per unit time

P) In thebeginning bothwillabsorb equalamountofradiation
per unit time

(C) Both spheres will have same rate of fall of temperature
{dTldt)

P) Both spheres will have equal temperatures at anymoment

4-17 A heated body emits radiation which has maximum
intensity at frequency v^. If the temperature of the body is
doubled :

(A) The maximum intensity radiation will beat frequency 2Vj^
P) Themaximum intensity radiation will beat frequency
(Q Thetotal emitted energywill increase bya factor 16
p) Thetotalemitted energywill increase bya factor 2

4-18 Two spherical black bodies AandB,having radii and
= 2r^ emit radiation with peak intensities atwavelength 400nm

and 800 nm respectively. If their temperature are and
respectively in Kelvin scale, their emissive powers are and
Eg then :

(A) ^=2 P) f^=4

(D) IT =4



;2io

4-19 Which ofthe following statements are true?
(A) Hole in the wall ofa cavity radiator behaves like a black

body

(B) Hole inthewall ofacavity radiator does not act like ablack
body

(Q When a body iskept inasurrounding oflow temperature it
does not absorbany energy from the surroundings

P) When a body iskept insurrounding oflow temperature it
simultaneously radiates heat to the surroundings and
absorbs heat from the surroundings.

4-20 A 100 cm long cylindrical flask with inner and outer
diameters2 cm and 4 cm respectively is completelyfilledwith
ice as shown in the figure-4.48. The constant temperature
outsidethe flask is 40'̂ C. (Thermal conductivityof the flask is
0.693 W/m"C, ^ 80 cal/gm).

ice

ri

1^
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Figure 4.48

(A) Rateofheat flow from outside to the flask is SOti J/s

71

(B) The rate at which ice melts is

(Q The rate at which icemelts is lOOnKg/s
p) Rateofheatflow from outside toflaskis40;:J/s



Heat Transfer
211

UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO &IPhO
For detailadpreparation ofINPhO andlPhO students can refer advance study material on ww.physicsgalaxy.com

4-1 Acompound rod, 2 mlong, isconstructed ofa solidsteel
core, 1cm in diameter, surrounded by a copper casing whose
outside diameter is 2 cm. The outer surface of the rod is
thermally insulated. One end ismaintained at 100®C, the other
atO°C.

(a) Find the heat current in the rod.

(b) What fraction is carried by each material ? Thermal
conductivityofsteel - 12 cal m"' K"' s*' and that ofcopper
= 92 cal m"' K"' s~'

Ans. [(a) 1.13 cal S-' (b) 96%]

4-2 Ahollow glass sphere whose thickness is2mmandexternal
radius is 10 cm is filled with ice and is placed in abath containing
boiling water at 1OCC. Calculate therateatwhich theicemelts.
Thermal conductivity of glass = 1.1 J s"' m"' and L of
ice= 336 x lO^Jkg-'.

Ans. [0.02 kg s"']

*

4-3 Asteel boiler whose thickness is 3cm is placed on aplate
ofarea 1m^. The temperature ofthe plate isSOCC and thatof
the boiling water in the boiler is 1OO^C. Howmuch waterwill
evaporate perminute? (Conductivityofsteel = 63.0J s"' m"' K"'
and sp. latent heat ofvaporisation ofwater =2251.2 x 10^ Jkg-'.)

Ans. [11.2 kg] •

4-4 A certain double pilane window consists of two glass
sheets each 80 cm x 80 cm x 0.30 cm, separated by 0.3 cm
stagnant airspace between them (see figure-4.49). The indoor
surface temperature is 20''C, while the outdoor surface
temperature is O^C. Find:

4-5 Water is being boiled in a flat bottom kettle placed on a
stove. Theareaofthe bottom is300cm^ andthickness is2 mm.
If the amount of steam produced is 1 g/min, calculate the
difference oftemperature between theinner and outer surfaces
ofthe bottom. The thermal conductivity of thematerial of
kettle k=0.5 cal/s cm °C and latent heat ofsteam L=540 cal/g.
Ans. [C.G^'C]

4-6 Aspherical ball ofsurface area 2x]Q-^m^ is suspended in
a room at temperature330 K. If the temperatureofthe ball is
200°C, find thenet rateof loss ofheat from theball if it behaves
likea blackbody.

Ans. [4.6W]

4-7 Some water isplaced ina container made ofa material of
poorthermalconductivity. Temperature ofwater in it is 520K.
The total wall area ofthe container is 8000 cm^. The surrounding
temperature is 300 K. Find the rate at which heat current will
flow fromatmosphere towater.

Ans. [440 W]

4-8 Heat is conducted through a slab composed ofparallel
layers oftwodifferent materials ofconductivities 134.4 SIunits
and 58.8 SI units and of thicknesses 3.6 cm and 4.2 cm,
respectively. The temperature of the outer faces of the
compound slab are 96''C and S^C. Find (i)thetemperature of
the interface, (ii) temperature gradient in each section ofthe
slab.

Ans. [(i) 12'C, (ii) 666.per melre, (iii) I523.8°C per metre]

4-9 Two bodies each ofmass /«, having specific heats s, are
connected by ametal rod ofnegligible heat capacityoflength /,
area ofcross section Aand thermal conductivity k. Initially
both bodies are atdifferent temperatures, find the time taken for
thetemperature difference between the two bodies to become
halfofthe. initial value.

inside B B
B H
,0.3 ,• 0.3 , 0.3

Figure 4.49

outside

. r Ims In (2) ,
Ans. [ ^1

2kA ^

(i) the temperature ofthe surface ofthe sheets in contact. 4-10 A/=2mlongwireofresistance./? =4ohmsanddiameter

0.64 mm is coatedwith plastic ofthickness.At/= 0.06 mm.
When a current of / = 5 A flows through the wire, find the
temperature difference across the plastic insulation in
steady state. Thermal conductivity of plastic is
/: = 0.16 X10"^cal/scm®C.

with the stagnant air

(ii) the power transmitted from the inside to the outside.

,-l OQ-\Given that K . = 2.0 x cal s"' cm"
^^,y =2.0x IO~^cal s"'cm"'°C~'

Ans. [18.4°C, 1.67°C. 71.3 cal s"']
Ans. [2.05°C]
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4-11 One end of a steel rod of length 1 m and area of cross
section4 x 10"^m^isputinboilingwaterandtheotherendis
kept in an ice bath at 0°C. If thermal conductivity ofsteel is
46 W/m°C, find the amount of ice melting per second if heat
flow only by conduction. Given that the latent heat offusion of
iceis 3.36XlO^J/kg.

Ans. [5.5 X lO'̂ gm/s]

4-12 Figure-4.50 shows athermal network oftwo metal rods of
same cross section area. If the heat current from the endsA and
Bis 130 W, find theheatcurrent through thecurved metal rod.

70 cm

100°C

/IH—20 cm 60 cm t^20 cm-H5

Figure 4.50

Ans. [60 W]
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4-17 A vertical brick duct (tube) is filled with cast iron. The
lowerend oftheduct is maintainedat a temperature7, greater
than the melting point of castiron and the upper end at a
temperature less than thetemperature ofthe melting point
ofcastiron. It isgiven that the conductivity ofliquid castiron
isequal to ktimes the conductivityofsolid cast iron. Determine
the fraction ofthe duct filled with molten metal.

h ^ k(Jx-T„)Ans. [ ^ k{T^-T„)HTn,-T2)

4-18 The gas between two long coaxial cylindrical surfaces is
filled with a homogeneous isotropic substance. The radii of
the surfaces are r, = 5.00 cm and rj = 7.00 cm. Inthe steady
state the temperatures of the inner and outer surfaces are
r, =290 Kand =320 Krespectively. Find the temperature of
a coaxial surface ofradius r.

Ans. [r= 147 + 89 In r]

4-19 The tungsten filament of an electric lamp has a
length /= 0.25 mand diameter ci= 0.04 mm. Thepower rating is
P = 100 W. Assuming the radiation from the filament to be
ri= 80% ofthatofablack body radiator atthesame temperature,
estimate the temperature of the filament. Stefan constant
-5.7 XlO-^W/m^K''.

Ans. [2044 K.] '

4-20 There are two concentric metallic shells of negligible
thickness ofradii 5 cm and 20 cm. The region between the two
shells is filled with a medium of thermal conductivity k. The
temperature ofinner and outer sphere ismaintained at5°C and
10°C respectively. Iftheheat current flowing from inner toouter
sphereis 100 W, findthe valueofk. '

Ans. [3W/ni°C]

4-21 Two bodiesand S have emissivities of0.01 and 0.81
respectively. The outer surface areas ofthe two bodies are the
same. The two bodies radiate energy at the same rate. The
wavelength X, corresponding to the maximum spectral radiant
power in the radiation from B, isshifted from the wavelength
corresponding to the maximum spectral radiant power in the
radiation from by10^m. Ifthetemperature of.^ is5802 K,find
the temperature ofbody5 and the wavelength oftheradiation
emittedfrombodyP corresponding to maximumspectralradiant
power.

Ans. [1934 K, 1.5 x 10"^ m]

4-22 Athinrectangular brass sheet ofsides 15.0 cmand12.0 cm
is heated in a furnace to 600''C. How much electric power is
neededto maintain the sheetat this temperature. Emissivityof
brass surface at this temperature is 0.25 and Stefan constant =
5.67 X lO-^Wm-^K-^.

Ans. [296 W]

4-13 Theheat generated byradioactivity within the earthis
conducted outwardthrough the oceans. Assumingthe average
temperature gradient within thesolid earth beneath theocean
to be 0.07 °C-' and the average thermal conductivity
0.2 cal m"' s"' "C"', determine the rate of heat transfer per
square metre. Radius ofthe earth =6400 km.- further, determine
the quantity of heat transferred through thV,earth's surface
each day.

Ans. [14 X 10"' cal, 6.2 x lo" cal] -

4-14 Two rods whose lengths are and and heat
conductivity coefficients x, and are placed end to end. Find
the heat conductivity coefficient of a uniform rod of length
/| + whose conductivity is the same as that ofthe system of
these two rods. The lateral surfaces ofthe rods are assumed to
be thermally insulated.

Ans. [at = (/, +

4-15 Asolid copper sphere (density =8900 kg m'̂ and specific
heat C = 390 J kg-' ''C"') of radius r = 10cm is at an initial
temperature 200K. It is then suspended inside a chamber
whose walls are at almost OK. Calculate the time required for
the temperature of the sphere to drop to Tj= 100 K.
ct=5.67 X lO-^Wm-^K-^.

Ans. [165 h 19 min.]

4-16 Acalorimeter ofmass 100g contains 100 cm^ ofwater at
70''C. It cools down to SO^C in 12 minutes. When the same
volume of glycerine is used in the samecalorimeter, it takes
8 minutes to cool down through the same temperature range.
Find the specific heat of glycerine of specific heat of the
calorimeter is 0.1 calg-' "C"' andspecific gravityofglycerine
-1.27.

Ans. [0.498 cal g"' X"']
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4-23 Abodywhich hasasurface area5.0cm^ anda temperature
727®C radiates 300 J of energy each minute. What is its

emissivity?Stefanconstant = 5.67 x lO'̂ W/m^K'*.

Ans. [0.18]

4-24 Over what distance must there be heat flow by
conduction from the blood capillaries beneath the skin to the

surface ifthe temperature difference is 0.50°C ? Assume 200 W

must be transferred through the whole body's surface area of

1.5 m^: Given that thermal conductivity of blood cells is
0.2W/mK.

Ans. [0.75 mm]

4-25 A room is maintained at 20°C by a heater ofresistance

20 n connected to 200 volt mains. The temperature is uniform

throughout the room and the heat is transmitted through a

glasswindowofarea 1 m^ and thickness0.2 cm. Calculatethe
temperature outside. Thermal conductivity of glass is

0.2 cal m"' s~' and the mechanical equivalent of heat is
4.2JcaH.

Ans. [15.24°C]

4-26 Assume that a planet radiates heat at a rate proportional

to the fourth power of its surface temperature T and that the

temperature of the planet is such that this loss is exactly
compensated by the heat gained from the sun. Show that other

things remaining the same, a planet's surface temperature will

vary inversely as the square root of its distance from the sun.

4-27 The atmospheric temperature above a lake is below 0°C

and constant. It is found that a 2 cm layer of ice is formed in

four days. In how many days will the thickness increase to

3 cm?

Ans. [Thickness increases from 2 cm to 3 cm in 5 days]

4-28 A hollow cube of metal has sides measuring 0.8 cm

(internal) and thickness 0.5 cm. It is filled with ice at 0°C and

immersed in boiling water at 100°C. How many kg of ice will

melt in oneminute? Thermalconductivity ofmetal= 252J m"'
g-i oQ-i latent heat capacityof ice= 336 x 10^ J kg~k

Ans. [34.56 kg]

4-29 The walls ofa closed cubical box ofedge 50 cm are made

ofa material ofthickness 1mm and thermal conductivity4 x i
cal s"' cm"* "C"'. The interior ofthe box is maintained 100°C

above the outside temperature by a heater placed inside the

box and connected across 400 V DC. Calculate the resistance

ofthe heater.

Ans. [6.35 H]
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4-30 A 300 Wlamp losesall its energybyemissionofradiation
from the surface ofits filament. Ifthe area ofsurface offilament is

2.4cm^ andisofemissivity0.4, estimate itstemperature.
Given that a = 1.36 x IQ-'^ cai s"' K"^. J = 4.2 J cal"*.

Neglect the absorption from the surroundings.

Ans. [2447°C]

4-31 A blackened solid copper sphere of radius 2 cm is placed
in an evacuated enclosure whose walls are kept at 100°C. At
what rate must energy be supplied to the sphere to keep its
temperature constant at 127°C ? Stefan constant

= 5.67x IQ-sjm-^K-^.

Ans. [1.78 J s"']

4-32 Two identical solid bodies one ofaluminium and other of

copper are heated to the same temperature and are put in same
surrounding. Ifthe emissivity ofthe aluminium body is 4 times
that ofcopper body, find the ratio ofthe thermal power radiated
bythe two bodies. Ifspecific heat ofaluminum is 900/kg''C and
that ofcopper is 390 J/kg°C and density ofcopper is 3.4 times
that of aluminum, find the ratio of rate of cooling of the two
spheres.

Ans. [4:1, 5.9:1]

4-33 A solid copper sphere (density p and specific heat c) of
radius r at an initial temperature 200 K is suspended inside a
chamber whose walls are at almost OK. Calculate the time

required for the temperature of the sphere to drop to 100 K.

Ans.
7pre
"72^

10-^ s]

4-34 The thermal powered density u is generated uniformly
inside a uniform sphere ofradius R and thermal conductivity
Find the temperature distribution in the sphere when the steady-
statetemperature at the surface is 7"^.

.......

4-35 A rod oflength / with thermally insulated lateral surface
and cross-sectional area A, consists of material whose heat

conductivity coefficient varies with temperature as /: = aJT,
where a is a constant. The ends of the rod are kept at
temperatures Tj and 7'2(7'2> 7,).Findthefunction r(x), where
Xis the distance from the end whose temperature is Tand the
heat flow density.

Ans. [rw - q - (a/0 /" (T/r,)]

4-36 A hot water radiator at 310 K temperature radiates thermal
radiationlikea blackbody. Its total surfacearea is 1.6m^. Find
the th ermal power radiated by it.

Ans. [885 W]
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4-37 A flat bottomed metal tank of water is dragged along a
horizontal floor at the rateof 20 ms"'.The tank isofmass 20kg
and contains 1000 kg of water and all the heat produced in the

dragging is conducted to the water through the bottom plate
of the tank. If the bottom plate has an effective area of

conduction 1 m^ and a thickness 5 cm and the temperature of
the water in the tank remains constant at SO^C, calculate the

temperature of the bottom surface of the tank, given the

coefficient of friction between the tank and the floor is 0.343

and K for the material ofthe tank is 25 cal m~'s"' K"'.

Ans. I82.84°C]

4-38 Two solid spheres, one of aluminium and the other of
copper, of twice the radius are heated to the same temperature
and are allowed to cool under the identical conditions. Given

thatspecific heatofaluminium is900J/kg Kand that ofcopper
is390J/kgK. Specific gravityofaluminiumand copperare 2.7
and 8.9 respectively.

(i) initial rates offall oftemperature, and

(ii) the initial rates of loss ofheat

Ans. [2.856; 0.25]

4-39 Estimate the rate that heat can be conducted from the

interior of the body to the surface. Assume that the thickness

of tissue is 4.0 cm, that the skin is at 34°C and the interior at

37®C, and that the surface area is 1.5m^. Comparethis to the
measured value of about 225 W that must be dissipated by a
person working lightly. This clearly shows the necessity of
conveclive cooling by the blood. Given that the thermal

conductivity ofthe blood cells is 0.2 W/mK

Ans. [22.5 W, 1/10]

4-40 Thetemperatureofthefilament of100-watt lampis4000°C
in the steadystate and the radius of the glass bulb is 4 cm and
the thicknessof the wall is0.4 mm.Assuming that there is no
convection, calculate the thermal conductivity of glass. The

temperature ofthe outside air is 2TC.

Ans. [5 X 10"^ J s"' m"' K"']

4-41 A thin pipe having outside diameter of 3 cm is to be

coveredwith two layers of insulation each having thickness of
2.5 cm. The thermal conductivity ofone material is five times

that of the other. Assuming that the inner and outer surface

temperaturesof the composite wall are fixed, findthepercentage
reduction in heat transferwhenthebetterinsulatingmaterial is
next to the thin pipe than when it is outside.

Ans. [36.6%]
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4-42 A spherical metal ball of radius 1 cm is suspended in a
room at 300 K temperature. Inside the sphere there is a battery
operated heater which maintains the temperature ofthe ball at
1000 K. Find the power ofthe heater if emissivity ofthe metal
ball is 0.3.

Ans. [22 W]

4-43 A block of copper of radius r = 5.0 cm is coated black on
its outer surface. How much time is required for block to cool
down from 1000 Kto300K ?Density ofcopper, p=9000 kg/m^
and its specific heat, c = 4 kJ/kg. K.

Ans. [1.27 X 105 s]

4-44 One end of a rod of length 20 cm is maintained at 800 K.
The temperature of the other end of the rod is 750 K in steady
state and this end is blackened to radiate thermal radiations like

a black body. If temperature of the surrounding is 300 K, find
the thermal conductivity of the rod. Assume no energy loss
takes place through the lateral surface of the rod during
conduction through its length.

Ans. [74 W/m^C]

4-45 In a pitcher 10kgwater iscontained.Totalsurlace area of
pitcher walls is 2 x 10"^ m^and its wall thickness is 10"^ m. If
surrounding temperature is 42°C,find the temperature ofwater
in thepitcherwhenit attainsa steadyvalue. Giventhat in steady
state 0.1 gm water gets evaporated per second from the outer

surface of pitcher through its porous walls. The thermal
conductivity of the walls ofpitcher is 0.8 W/m°C and latent heat
ofvaporization ofwateris2.27 x 10^ J/kg.

Ans. [28''C]

4-46 A uniform copper rod 50 cm long is insulated on the
sides, and has its ends exposedto ice and steam, respectively.
Ifthere is a layer ofwater 1 mm thick at each end, calculate the

temperature gradient in the bar. The thermal conductivity of
copper is 436 Wm"' K~' and that ofwater is 0.436 W m~' K"'.

Ans. [40°C m"']

4-47 Find the temperature distribution in a substanceplaced
between two parallel plates kept at temperatures 7, and T^. The
plate separation is equal to /, the heat conductivity coefficient
of the substance k •xyjf'.

Ans. [7"= r, {1 + (x/l) [(T2/Tj)^^ - 1]}^'\ where JT is the distance from
the plate maintained at the temperature T,]

4-48 Four spheres A, B, C and D of different metals but of
same radius are kept at same temperature. The ratio of their
densities and specific heats are 2:3 :5 :1 and 3:6:2:4. Which
sphere will show the fastest rate of cooling.

Ans. [5]
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4-49 Aclosed cubical box made ofperfectly insulating material
haswalls ofthickness 8 cmandthe onlywayfor heat toenter
orleave thebox isthrough two solid, cylindrical, metallic plugs,
each ofcross-sectional area 12 cm^ and length 8cminopposite
walls ofthebox. Theouter surface ofoneplugiskept at 100®C
while the outersurfaceof the other plug is maintained at 4''C.
The thermal conductivityof the plug is 50 cal s"' m~' K"'. A
source of energy generating 36 cal s"' is enclosed inside the
box. Find the equilibrium temperature ofthe inner surface of
the box, assuming that it is the same at all points on the inner
surface.

Ans. [76®C]

4-50 Thesolar energy received bytheEarth persquare metre
per minute is 8.315 x IC^Jm"^min"'. Ifthe radius of the Sun is
7.5 X 10^ km and the distance of the Earth from the Sun is
1.5 X10^ km,calculate thesurface temperature ofSun. Assume
the Sun as a perfect black body.
Given thatStefen constanta = 5.7 x 10-®Wm"^K"^.

Ans. [5584 K]

4-51 Two solid spheres are heated to the same temperature
and allowed to cool under identical conditions. Compare: (i)
initial rates of fall oftemperature, and (ii) initial rates of lossof
heat. Assume that all the surfaces have the same emissivity
and ratios of their radii, specific heats and densities are
respectively 1 : a, 1 : p, 1: y.

Ans. [aPy : 1; 1 : a^]

4-52 A metal block witha heater in it is placed in a room at
temperature 293 K. When the heater is switched on it is observed

that the temperature of the block rises at the rate of 2°C/s and

when its temperature rises to 30®C, it is switched off. Just after

when heater is switched off, it is observed that the block cools
at 0.2°C/s. IfNewton's law of cooling is assumed to be valid,
find thepower oftheheater. Alsofind thethermal power radiated
by the block when it was at 30°C and at 25®C. Given that the
heat capacityofthe block is 80 J/°C.

Ans. [160 W, 16 W, 8 W]

4-53 In a cylindricalmetallic vesselsomewater is taken and is
put on a burner. The bottom surface area of the vessel is

2.5 X10"^m^ and thickness 10~^m. The thermal conductivity of
the metal ofvessel is50 W/m®C. Whenwaterboils,it is observed
that 100 gm water is vaporized per minute. Calculate the
temperature ofthe bottom surface ofthe vessel. Given that the

latentheat ofvaporizationofwater is 2.26 x lO^J/kg.

Ans. [130X]

4-54 A body receives heat continuously from an electrical
heater of power 10 W. The temperature of the bodybecomes
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constant at 50°C when the surrounding temperature is 20°C.
After the heater is switched off, body cools from 35.1®C to
34.9°Cin 1minute. Find theheatcapacity ofbody.

Ans. [1500 J/"C]

4-55 In winters ice forms on the surface of a lake. Due to
abnormal expansion ofwater the temperature ofthewater at the
bottom ofthe lake remains constant at4®C and we assume that

theamount ofheatrequired tomaintain thistemperamre ofthe
bottom layer of water may come from the bed ofthe lake. If
surrounding temperature is - 1OT, Prove that ice formed from
the surface ofthe lake attains a maximum thickness. Find the

maximum depth from surface upto which ice is formed ifthe
depth oflake is I m.Given thatthermalconductivityoficeisO.5
W/ufC.

Ans. [0.9 m]

4-56 Twospheres of the same material have radii 1m and 4 m
and temperatures 4000 K and 2000 K respectively: Will the
energyradiated by per second by the first sphere be greater
than that by the second ?

Ans. [Equal]

4-57 The temperature of the tungsten filament of a 40 watt
lamp is 1655®C. The effective surface area of the filament is

0.85 cm^. Assuming thattheenergy radiated from thefilament
is60% ofthatofa black bodyradiator atthesame temperature,
find the value of Stefan's constant.

Ans. [5.67 x IQ-S Wm'^ K"**]

4-58 Acubicaltankofwaterofvolume 1m^ iskept ataconstant
temperature of65°C by 1 KW heater. At time t = 0, the heater is
switched off. Find the time taken by the tank to cool down to
50"C, given the temperature of the room is steady at 15®C.
Density of water = 10^ kg m"^ and specific heat of water
= 1.0 calg"'*'C~'. (Do not assume average temperature during
cooling). Take 1KW= 240 cal s"'. '

Ans. [20.64 hr]

4-59 Find thetemperature distribution in thespace between
twocoaxial cylinders of radii /?, and filled witha uniform
heatconducting substance if the temperatures of thecylinders
are constant andare equal to T^ and respectively.

Ans. [7"= r, +
72-71

' ' ln{R2lRx) " U

4-60 A cube a ~ 3.0cmoneachsideradiates energy at therate
ofP = 20 J/s when its temperature is 727°C and surrounding
temperature 27°C. Determine its emissivity.

Ans. [0.066]
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4-61 Solve the foregoing problem for the case of two
concentric spheres ofradii/?j ^2-

Ans. \T = T.+
-Ti

MR^-MRj I '

4-62 A long tungsten heater wire is rated at3 kWm"* and is
5.0 X m in diameter. It is embedded along the axis of a
ceramiccylinder of diameter0.12 m. When operating at the
rated power, thewire isat ISOO^C; theoutside ofthecylinder is
at 20®C. Find the thermal conductivityof the ceramic.

Ans. [1.77 J S-' tn-' K-']

4-63 A constant electric current flows along a uniform wire
with cross-sectional radius R and heat conductivity
coefficient k. A unit volume of the wire generates a thermal

power CO. Find the temperature distribution across the wire
provided the steady-state temperature at the wire surface is
equal to T^.

Ans. [r= Tq + {R} - t^) o)/4i]

4-64 An iron boiler with walls 1.25 cm thick contains water at

atmospheric pressure. The heated surface is 2.5 m^ in area
and the temperature of the underside is 120®C. Thermal

Heat Transfer^'

conductivity of iron is20cals"' m'̂ K"' and the latent heat of
evaporation ofwater536 x IQ^ cal kg"^ Find themass ofwater
evaporated per hour.

Ans. ^[537.3 kg per hour]
1

4-65 A thin wireof length / = 50 cm and area ofcross-section
5=3 XlO^m^ is heated to 727®C. How much electric power P

is needed to maintain the wire at this temperature ? Assume
that eramissivityof the wire's surfaceis e = 0.25.

Ans.l[4.2 watts]

4-66 In the figure-4.51 shown here, 5 is a source of heat
supplying energy at a constant rate 75 J s~' and 5'is a sink
maintained at 10°C. The two conductors joining S to 5'are
eacll 20 cm long, 1 cm^ in cross-section and of thermal
conductivity 385 W m"' K~'s"'. Calculatethe temperature of
the point S.

Ans. [400''C]

' •y

1 2

ms
/

Figure 4.51



Oscillations andSimple Harmonic Motion

FEW WORDS FOR STUDENTS

As motion is concerned we've studied translational and rotational

motion and we've applied them in different sections ofPhysics. There is
one more important kind ofmotion, we introduce now and in further
sections of this book we use it. This is oscillatory motion or vibrations.
In such a motion it repeats itselfand is also termed as periodic motion.
The simplest type of oscillatory motion is Simple Harmonic Motion
abbreviated as SHM on which we'llfocus now in this chapter.

5

To describe SHM we'll use the basic laws ofmechanics you've already covered. Furtheryou'll see that
the analysis ofSHM is very useful in understanding the concepts oflight and electronics.

CHAPTER CONTENTS

5.1 Periodic Motion and Oscillations

5.2 Simple Harmonic Motion

5.3 Superpositions ofSimple Harmonic Motions

5.4 Analysis ofAngular SHM

5.5 How to Find Time Period ofSHM

5.6 Different TypesofPendulums

COVER APPLICATION

Figure-(a)

5.7 Phase Analysis ofa Particle in SHM

5.8 Energy ofa Particle in SHM

5.9 Energy Method to Find Frequency ofSHM

5.10 Taylor's Method to Find Angular Frequency ofa
Particle in SHM

5.11 Equation ofSHM withShifting ofOrigin

5.12 SHMofFree Bodies in Absence ofExternal Forces

Figure-(b)

Foucault's pendulum is an easy experiment which demonstrates the Earth's rotation. The concept that the Earth revolves was nothing new
or radical; the pendulum's accomplishment was to provide a proof that did not require minute observations of the stars of other objects far
away from Earth. Foucault's pendulum is a highly localized, easily prepared experiment whose result is clear, powerful, and accessible even
to the non-scientist. Figure-(a) shows a Foucault's pendulum of which the plane of oscillations rotates with Earth's rotation with respect to
a point relative the Earth and Figure-(b) shows the trajectory of pendulum bob on a flat surface above which it oscillates.
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What is periodic motion, we all know the motion ofa body or a
particle which is repeated after a given period, is called periodic
motion. The motion of a particle in a circle, all types of
vibrations and any motion in which a particle repeatedly

retraces its path of motion.

If ris the period ofmotion after which it repeats itselfthen the
frequency v of the periodic motion is the number of cycles
performed in one second and it is given as

I
V- j.

Units of Vare j""' or persecond. Aspecial name isgiven to the
unit of frequency, hertz (Hz) after the discovererof radio waves.

1Hz = I cycle per second

5,1 Periodic Motion and Oscillations

An oscillation is a special type of periodic motion in which a
particle moves to and fro about a fixed point called mean
position ofparticle. Oscillations are commonlyseen in general
life in our surrounding. As discussed, in all type of oscillations,
there is always a mean position about which particle can
oscillate. This is the position where particle is in equilibrium
that is net forces on particle at this position is zero. Ifparticle is
displaced from mean position and due to this displacement
some forces appear on it which act on particle in a direction
directed toward its equilibrium position, these forces are called
restoring forces as these forces tend particle to move towards

its equilibrium position. Due to restoring forces, particle starts
moving toward mean position and when it reaches mean
position, it gains some KE due to work done by restoring
forces and it will overshoot from this point with some velocity
in other direction, again restoring forces appear on particle
toward mean position and now particle is retarded and will
stopafter travelling somedistance and will return toward mean
position and starts accelerating & in such a way motion is
continuedwhich we call oscillation.The maximum displacement
ofparticlefrom mean positionwhere it willcome torest or from
where it was started with zero initial speed is called asAmplitude
ofoscillations, some different types ofoscillations are shown
in figure-5.1.

'////////////.

Simple Pendulum

(Oscillation of bob)

Skipping

(Oscillation of girl)

Figure 5.1

Spring-Block System
(Oscillation of block)

Oscillations and Simple Harmonic Motlonj

5.1.1 Types of Oscillations

There are several different types of oscillations depending on
the nature of restoring forces used in oscillat?ions but
oscillations are classified in three major categories

(a) Free oscillations

(b) Damped oscillations and

(c) Forced oscillations

Free oscillations are those in which once oscillation of a particle

starts, it continues indefinitely till some extemal damping force

appears in opposition to the restoring forces on it. Damped
oscillations are those in which when a particle starts its

oscillatory motion, due to friction or some other naturally acting

opposing forces, the oscillation amplitude of particle start
decreasing with time, this is called damping. Forced oscillations

are those in which damping is not allowed by applying an

external time varying force on particle which compensates the

effect ofthe damping force acting on it, thus it is similar to free

oscillations but naturally the oscillations are damped and by

applying an extemal forcethese are made like freeoscillations.

5.2 Simple Harmonic Motion

In this section we discuss a special type of oscillation called
simple harmonic motion, abbreviated as SHM. A general
oscillation can be regarded as SHM if it satisfies these basic

conditions stated as

(i) The oscillation amplitude of particle must be very small

compared to its surrounding dimensions (dimensions ofbodies

with which it can interact.)

(ii) During oscillation the acceleration ofparticle toward mean

position due to net restoring forces must be directly

proportional to its displacement from mean position.

5.2.1 Representation ofSHIVI

We have discussed that an oscillation can be regarded as SHM

if it satisfies the basic requirements to be SHM. Every SHM

can be best represented as a projection ofa particle in circular

motion on its diameter. In fact the motion of projection of a

uniform circular motion on its diameter satisfies both the

conditions required to be SHM.



'Pscil!ations and Simple Harmonic Motion

B
Y

q
\ \

\/=0
r 1 PAx

D
Y'

n
Y

/ rX'cf Vx
\ ^ /=0//J '

D
Y'

(a) (b)

Figure 5.2

Let us analyze it from the figure-5.2 shown. A particle P is
executing a uniform circular motion on the circle with a uniform
angular velocityco as shown. The particle is shown at its initial
position at ? = 0. It starts in anticlockwise direction with

uniform angular velocity co. If we follow the motion of the
projection ofparticle onitsvertical diameter in figure-6.2 then
wecan see, alongwith P, itsprojection F startsfrom midpoint
(centre ofcircle) inupward direction andtherespective position
of F for position ofP at point 1 and 2 are 1' and 2' as shown in
figure. WhenP reaches the topmost position, P' willalsobeat
this point and when P starts tracing the second quadrant of
circle, P' starts coming down towards point O. Thus we can
see,as pointP tracesits circularpathABCD, its projection on
diameter YT follows oscillatory motion alongOBODO... and
so on. This oscillatory motion ofF can be taken as SHMas it
follows the conditions to be a SHM. We'll prove it in next
section.

Here motion ofparticle is ina straight linewith amplitude equal
to the radius ofcircle.

B

Y

y

\X'cj \ \ X
A / =

D

r

Figure 5.3

Asshownin figure-5.3, the displacement ofF frompoint Oas
a function oftime can be given as

;' = i?sincor

As F is going up, its velocity can be given as

Its acceleration is

ay
v = —= i?a) cos CO/

dt

dv „ 1 .
a = —- = - Rar sin co/

dt

...(5.1)

...(5.2)
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Fromequation (5.1), wehave

£2 =- co^ ...(5.3)

Here co is a constant thus the acceleration of F is directly
proportional tothedisplacement from itsmean position Oand
negative sign in equation-(5.3) shows that direction of
acceleration isopposite to y that is towards mean position O.
Hence the motion of projection F can be regarded as SHM.

5.2.2 Equation of SHM

Equation ofan oscillation isthe mathematical expression giving
thedisplacement ofoscillating particle from itsmean position
as a function oftime.

If a particle is executing SHM with amplitude A, it can be
regarded as the projection of a circular motion of radius A as
shown in figure-5.4 ifcircular motion ofpointP isat aconstant
angularvelocity co then this is termed asangular frequency of
the point F which is in SHM.

Y

B

X^ P'
X w/

X'C yyo/ |/> A'
1 p Ja /=

D

Y'

Figure 5.4

LetUS consider at /=0, P wasatpoint^4 andstartsinanticlockwise
direction asshown infigure-5.4. Nowin time /,pointP traversed-
byan angle co/ (asshown) andF reaches toa displacement^
as shown, can be given as

;'=^sinco/ ...(5.4)

Thisequation-(5.4) in this case is calledas equationofSHMof
point F which is in SHM. Here co/ which is the angular
displacement of pointP (in circular motion) is called phase
angle ofpoint F in SHM.

5.2.3 General Equation ofSHM

In previous article we've discussed the SHM ofpoint F which
was at its mean position at / = 0. But it is not necessary that
particle starts its SHMfrom its mean position. It can start from
anypointon its path, thus equation-(5.4) can not be accepted
as a general equation ofSHM, this being the equation ofthose
all SHMswhere particle starts (at / = 0) their SHMfrom their
mean position.
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Nowconsider figure-5.5 where a particleP' starts itsSHM with
apointhaving initial phase angle a anticlockwise onthecircle
ofpointP ofwhich it is theprojection. Letat / = 0,pointP was
at an angulardisplacement a from its reference point(pointyf).
Thus the point from whichF will start its SHM is shown in
figure-5.5. At thisposition (projection ofP at r= 0 on YY) a is
called as initial phase of point P' in SHM, as a is theinitial
angular displacement ofparticlePwhich is in circular motion.
Nowafter time/, theangulardisplacement ofPis (a + co/) which
is calledthe instantaneousphase ofpointF at time t = t and at
this instant the displacementofpointF frommeanpositionis

y=A sin ((a/+ a)

Y

B l=-t

XT

/ 1
p- •• \p

A" C i 1 X
jA

D

y

...(5.5)

Figure 5.5

Thisequation-(5.5) is called asgeneral equation ofSHM ofa
particle which startsitsSHM with initial phase a. Here initial
phaseof SHM implies it is the initialangulardisplacement of
theparticle which isin circular motion ofwhich theprojection
is executing SHM.

Asequation-(5.4) gives theequation ofSHM ofthoseparticles
which starts their SHMfrom mean position. Similarly we can
define an equation ofSHM of those particleswhichstart their
SHM from their extreme position by substituting a = it/2 in
equation-(5.5). As if aparticlestartsfrom itsextreme position,
we can take its initial phase idl thus its equationof SHMfrom
equation-(5.5) can be given as

y = A cos CO/ ...(5.6)

In all type oQ>roblems in which a body or a particle execute
SHM,weassumethat this is the projectionof an anotherparticle
who is in circular motion and its projection is executing SHM
(that bodyor particle which is in SHM). Further we will take
several examples to analyse this concept.

5.2.4 Velocityand Acceleration of a Particle in SHM

Equation-(5.5) givesthe general expressionfor displacement
from mean positionof a particle executingSHMas a function
of time. Thus velocityof this particle as a function of time can
be given as

Oscillations and Simple Harmonic Motion

dy
V= — =^co cos (co/ + a)

Toconvert it in displacementfunction,we can write

v=A<ii -yjl-s'm^ {(sit +a)

...(5.7)

=AcoJl-Ar [As = yf sin co/]

...(5.8)

Equation-(5.8) gives the velocity of a particle in SHM with
amplitude A, and angular frequency co as a function of its
displacement from mean position. Fromequation-(5.8) wecan
statethat in SHM, particle'svelocity is maximumwheny=0 i.e.
at its mean position and is given as

at T=0,v„,^ = y4co

At extreme positions of particle wheny-±A, its velocity is
zero where it returns towards its mean position. From
equations-(5.5) and(5.8) wecanplotthegraphs ofdisplacement
and velocityas a function of time as shownin figure-5.6.

y

A sin a

V = Ad) cos CO/

= yl sin (co/+ a)

(a)

V = sm w/

(c)

Figure 5.6
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Similarly acceleration ofparticle in SHM can be given as

or

dV y
a =—r =-A<sr sin (co^+ a)

dt

£7=-coV

...(5.9)

[As ^ sin (cor + a)] ... (5.10)

From equatian-(5.10) we can see that at mean position (y = 0)
when velocity ofparticle is maximum, its acceleration is zero
and at extremities where y = ± A, acceleration of particle is
maximum and its magnitude is given as

[Towards mean position]

It also shows that as particle moves away from mean position,

its acceleration continuously increases till it reaches its extreme
position (at amplitude) when its velocity becomes zero and it
returns.

Equation-(5.10) can be rewritten in differential from as

d'y
dt'

+ coV=0 ...(5.11)

This equation-(5.11) is called ^'BasicDifferentialEquation" of
motion ofa particlein SHM. Every expression ofdisplacement
y as a function oftime which satisfies this equation can also be
regarded as an equation ofSHM.

a Illustrative Example 5.1

Prove thaty = Ae" '̂ is an equation of SHM.

Solution

According to given equation in problem, differentiating with
respect to time we get,

dy
=iA(oe"^'

dt

Differentiating again with respect to time, we get

d'y
dr

Thus we have 0
di

=- (s?Ae" '̂ = - ary [As y = Ad'̂ ']

This is the basic differential equation ofSHM hence>'=.4e'®'is
an equation ofSHM.

# Illustrative Example 5.2

Find the amplitude and initial phase ofa particle in SHM, whose
motion equation is given as

^ sin CO/ + 5 cos co/

Solution

Here in the given equation we can write

.^ = i? cos ({)

and 5 = i?sin({)

Thus the given equation transforms to

sin (co/ + <}))
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...(5.12)

...(5.13)

...(5.14)

Equation-(5.14) is a general equation ofSHM and herei?js the

amplitude of given SHM and (j) is the initial phase of the
oscillating particle at r = 0.

Here R is given by squaring and adding equation-(5.12) &
(5.13)

r=4a'^b'

Initial phase (j) can be given by dividing-(5.13) & (5.12) as

, B
tan o = —

A

<[>=tan '
B_

vX
NOTE: Equations;v =^e'̂ "" '̂''̂ and>'=y4 sinco/ +5cos co/, we
can also represent the general equation of SHM.

# Illustrative Example 5.3

A body of mass I kg is executing simple harmonic motion
which is given byj? = 6.0 cos (ICQ t + 47i) cm. What is the (i)

amplitude ofdisplacement, (ii) Angular frequency, (iii) initial
phase, (iv) velocity, (v) acceleration, (vi) maximum kinetic

energy ?

Solution

The given equation of SHM is

jl'= 6.0cos(100^ + 7c/4) cm.

Comparing it with the standard equation of SHM, y = A sin
(co/ + ({)), we have

(i) Amplitude .4 = 6.0 cm.

(ii) Angular frequency co = 100 s"

(iii) Initial phase (})=71/4

(iv) Velocityv= -y') =l00-^(36-y') cm/s
(v) Acceleration =—(o'y=- (100)^^ =-10'^y

(vi) Kinetic energy=̂ mv' = mco^ {A' ~y')

-I
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Thekineticenergyofa particlein SHM is maximum, when" it
passes its mean position i.e. aty = 0

2„2
= T = - mA^(£i

=_X Ix I0'̂ x(0.06r

= 18J

# Illustrative Example 5.4

A particle ofmass 0.8kg isexecuting simpleharmonic motion
with an amplitude of 1.0 metre and periodic time 11/7 sec.
Calculate thevelocity andthekinetic energy oftheparticle at
themomentwhenit displacement is0.6 metre.'.

Solution

We know that, ata displacement^ from mean position particle's
velocity is given as

or

2x3.14 I —
=711777 V[(I-0)'"(0.6)']

= 3.2 m/s

Kinetic energyat this displacement is given by

=2x0.8x(3.27

=4.1 J

# Illustrative Example 5.5

Aperson normally weighing 60kgstands ona platform which
oscillates upanddown harmonically ata frequency 2.0s"' and
an amplitude 5.0 cm. If a machineon the platform gives the
person's weight against time, deduce the maximum and

minimum reading itwill show, take^= 10 m/s^.

Solution

As shown in figure-5.7, platform is executing SHIVI with
amplitude and angular frequencygiven as

^ = 5.0cm

and

+A-r

-A±

Oscillations and Simple Harmonic Motion

CO = 271/7 =4;crad/s [As /7 = 2s~'j

Figure 5.7

weighing
machine mg +'n/a

Figure 5.8

Here weighing machine will show weight more then that of
man when it is below its equilibrium position when the
accelerationof platform is in upward direction. In this situation
the freebody diagram ofmanrelativetoplatform isshown in
rigure-5.8. Here ma is the pseudo force on man in dowward
direction relative to platform (or weighing machine). As
weighing machine will read the normal reaction on it thus for

equilibrium of man relativetoplatform, wehave

or

N=mg + ma

N=mg+m(o:>^y) [As ifll=(i)V]

Wherey isthedisplacement ofplatform from itsmean position.
We wish tofind themaximum weight shown bytheweighing
machine,which ispossible when platformisat its lowest extreme
position as shown in figure-5.8, thus maximum reading of
weighing machine will be

N=mg +m(o^A

=60X10+60x(47c)^x0.a5

= 600 + 480

= I080N=108kgwt

Similarly the machine will show minimum reading when it isat
itsupper extreme position when pseudo force on manwillbein
upwarddirection, thusminimum readingofweighing machine
will be

N= nig - mt^A

= 600 - 480 = 120N = 12 kg wt
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Practice Exercise 5.1
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(vii) Figure-5.11 shows theacceleration-displacement graph of
a particlein SHM. Find the timeperiodof its SHM.

(i) The maximum velocity of a body undergoing simple
harmonicmotionis0.04 m s^' and its acceleration at 0.02m from
the mean position is0.06 ms~^. Find its amplitude and period of
vibration.

[2.31 X 10-2 2.625 s]

(ii) A man of mass 60 kg standing on a platform executing
SHMinvertical direction.The displacement from the meanof
platformvariesas [6.28 s]

Figure 5.11

v = 0.5 sin (2nft)

•JT (m)

Find the minimum value off, for which the man will feel
weightless ness at thehighest point. Take ^=10 m/s^.
[0.712 Hz]

(iii) A point moves along thea: axis accordingto the law;c= a
sin^(co/-ju/4). Find:

(a) theamplitude andperiodofoscillations; drawtheplotx (/);

(b) the velocityprojection as a function of the coordinates;
draw the plot (x).

[(a) The amplitude is equal to all, and the period is r= n/co,

.V

Figure 5.9

2k CO/

(b) = 4co^jc (a - x), see Figure 5.10 0

(iv) (a) When a particle is executing SHM., what is the ratio of
mean velocityduring motion from one end of the path to the
other and the maximum velocity ? (b) What is the ratio the
averageacceleration during motion fromone extremityto the
centre to the maximum acceleration ?

Ka)|;(b)f]

(v) A particleexecutes SHMin a straight line.The maximum
speed of the particleduring its motion is v^. Findthe average
speed of the particle during its SHM.

[^1

5.5 Superpositions ofSimple Harmonic Motions

When a particle oscillates under the influence oftwo or more

SHMs, its motion equation is not the simpleoneas discussed
earlier for a common SHM equation. Theequation ofmotion of
aparticle onwhich twoormore than two SHMs are imposed, is
given by the principal of superposition which is stated as

"'When a particle oscillates under the influenceoftwoor more
SHMsthen the resultant displacementoftheparticle isgiven
by the vectorsum of the individual displacements produced
bythe independent SHMs, which are beingsuperposedon the
particle."

If^y,, -T/v^re thedisplacements oftheparticle when it
is oscillating only under the N independent SHMs, then on
superposing all these SHMs on same particle, its resultant
displacement is given as

yR=y\ +T2+ ...(5.15)

These superposing SHMs may be of same or different
frequencies. We will discuss this in detail.

5.3.1 Superposition ofSame Frequency SHMs

Firstwediscuss superposition oftwoSHMs, then wegeneralize
the obtained result for more number of SHMs. Let two SHM

equations be with amplitude and A2 differing inphase by(j)
are producing independent displacements at a particle when
acting independently, y, andy2, whicfr^re given as

yj =A^ sin cot

j'2 = A2 sin (cot + (}))

...(5.16)

(vi) Equation ofa particlein SHM is given as j'2^ ^2 •*"'t') ...(5.17)

2: =4sinCO/+ 3 sin (co/ + 63°) When both ofthese SHMs aresuperposed ontheparticle, the
Here^: is in centimeters and / isin seconds. Find the amplitude resultant displacement ofthe particle is given by principal of
ofoscillation ofthe particle. superposition as
[6.277 cm] T/f=3'i+T2
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or =^ jsincof +A2 sin(00/ + (j))

or = /4, sinco/ +Ajsin cor cos ^ + A2 cos cor sin (j)

or ={A^+A2 cos (J)) sincor + (A2 sin (|)) cos cor

Here substitdting

...(5.18)

and = ^ sin 0 ...(5.19)

Nowwe get sin (cor + 0) ...(5.20)

We can see that equation-(5.20) is also an equation of SHM
withamplitude Randinitial phase0.Here Rand0 canbeobtained
from equations-(5.18) and (5.19) as

or

and

.4J+ ^2 (j) = 7? cos0

R=-^(^j +A2 cos (j))^ +{A2 sin (j))"

—+ A2 + 2,A^A2 cos(|)

A2 sin ^
tan 0 =

...(5.21)

Oscillations and Simple Harmonic Motion

= /4 sin 0),/ + .^sincOjt

= 2^ sin
COi +CO2

tcos
CO, -CO2

In the resultant displacement function, here we can see that
there are two sinusoidal functions of time with different

arguments which onsplitting gives theoriginal SHM equations,
superposition of which results this equation. Thus if
displacement equation of a particleconsists of two or more
sinusoidal functions, the same number ofindependent SHMs
are superposed for producing such equation. To understand
this, look at the following equation

y =25sin{At) cos^ (5/) ...(5.25)

This equation-(5.25) gives the displacement of an oscillating
particleand wehavetofind the numbers of independent SHMs
and their frequencies, superposition of which give rise to this
displacement. Foritwecansplitthegiven equation in themanner
explained below.

. . fl +cos(IOO
y = 25 sin4/

or

A^ + A2 cos ^

A2 sin 41
0 = tan

-1

Ay + A2 cos4

25 25
...(5.22) or y = —sin4r+—sin(40cos(100

25 25
or y-~:r sin 4/+— [sin (140-sin (6/)]

25 25 25
or y = —sin(40+~sin(140-—sin(60

Z • z z

25 25 ' 25
or si" (^0 + " sin (140+— sin (6t- ;c)... (5.26)

z z z

Thus we can say that when two SHMs of same frequency are
superposed on a particle then also it executes SHM whose
amplitude and initial phase are given by equation-(5.21) and
(5.22) respectively.

Byobserving equation-(5.21) wecansaythat thisresultissimilar
to that used for resultant of two vectors of magnitudes and

A2 and having an angle ^ between them. Similarly we can
generalize this result for finding the amplitude of SHM of a
particle which oscillates under the influence of more than two
SHMs of same frequency.

5.3.2 Superposition ofDifferent Frequency SHMs

If two SHMs of different frequencies are superposed on a

particle which produces displacements and yj
independently, wherey, andy2 aregivenas

y^^A sin coj/

y2= /4 sin

...(5.23)

...(5.24)

Here we ignore the initial phase difference in the two SHMs as
due to different frequencies, the phase difference between the
two SHMs continuously change with time. Now according
to principal of superposition, the resultant displacement of
particle is given as

yR^yx'^y^

From equation-(5.26) it is clear that equation-(5.25) is the
resultant of superposition of three independent SHMs, given
as

25
yi=YSin(40

25
y2 =Y sm (140

25
y3=—sin(6/-7i)

We can also observe in equation-(5.25) that there are three
sinusoidal functions in equation-(5.25) so we can directly state
that this equation is the superposition of three SHMs ofdifferent
frequencies.

5.4 Analysis ofAngular SHM
\

We have discussed the case of SHM of a simple pendulum

when its bob oscillates with angular frequency m .
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Again consider the same case shown in figure-5.12. Ifthebob Thus restoring torque on body is given as
ofa simple pendulum is thrown from its bottom most position - /0 7^0
at velocity Vq. Ifamplitudeof itsoscillation iSi4, wehave ^ ...(5.33)

v„=A(o =A^j

[As at mean position velocity of particle is v = y^oo]

or A= Vq.I-

•////////////.

••• t = T/4

t

t = 0

Figure 5.12

When ball is at its extreme position, ifits angular displacement
is 0Q, this can be regarded as the angular amplitude of
oscillations.As the displacement ofbob from its mean position
is given as

x=/4sin(©/ + a) ...(5.27)
[General equation ofSHM]

If 0'and 0Q are angulardisplacement andangularamplitude of
bob, we have

• 0=7 and 00=7

Thus general equation ofSHM ofbob in angular from can be
given by substituting values ofx andy4 in equation-(5.27) as

0 = sin (©/ + a) ...(5.28)

Using above equation we can find the angular velocity of the
body which is in angular SHM as

. dQ
= 0QCOCOs(0/+a) ...(5.29)

or

dt

0=co^Bq -0' ...(5.30)

d^
NOTE : Here we represent by 0 not g3 as the notation 0 is

already being used for angular frequency of body in SHM.

Similarly angular acceleration ofbody is given as

dt'
= - 0Q0 sin (©t+ a)

0 =-a?i

...(5.31)

...(5.32)

Thus we can state in angular SHM, angular acceleration of
body and the restoring torque on body is directly proportional
to the angular displacement of body from its mean position
and directed toward mean position. Similarly basic differential
equation for angular SHM can be written as

d^Q

dt'
+ ©20=0

5.5 How to Find Time Period ofSHM

...(5.34)

We've discussed that SHM is a special type of oscillation in
which the restoring forceon the oscillating particle is directly
proportional to its displacement from mean position and can
be given as

- ma =—mci^y ...(5.35)

Where 0 is the angular frequencyofthe particle in SHM.When
a physical situation is given in which a particle can execute
SHM, these are the steps to find the time period of particle in
its SHM.

5.5.1 Steps to Find Angular Frequency or Time Period of
SHM

StepI:When particle is in its equilibrium position, balance all
forces acting on it and locate the equilibrium position
mathematically. For rotational equilibrium balance all torques
acting on body.

StepHrFrom the equilibrium position, displace the particle
slightly by a displacement x and find the expression of net
restoring force on it. For angular motion displace the body by
a small angle 0 and find expression of net restoring torque on
it.

Step HI: Try to express the net restoring forceacting on particle

as a proportional function of its displacement from mean
position. The final expression should be obtained in the.form.

FR = -ky

For angular SHM it will be

Here we put -ve sign as direction of is opposite to the
displacement;' or is opposite to 0. If£? be the acceleration of
particle at this displacement, we have

( k
a= —

m
y ...(5.36)
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Comparing this equation-(5.36) with the basic differential
equation ofSHM we get

0)2 =
m

or 0) =

Similarlyforangular SHM, angular acceleration of particle is
given as

P=-y

Comparing with
P=-(o2'

we get

As (0 is the angular frequencyof the particle in SHM,its time
period of oscillation can be given as

...(5.37)r=
CO

Using the above steps we can find the oscillation period of
particle in SHMin different physicalsituations.

To understand the concept in detail we first explain some
different types ofpendulums then we take some examples to
discuss in details.
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5.6 Different Types of Pendulums

There are four different types ofpendulums are used in general
practice. These are:

(1) Simple Pendulum

(2) Spring Block Pendulum

(3) Physical Pendulum or Compound Pendulum

(4) Torisional Pendulum

5.6.1 Simple Pendulum

This is the most fundamental oscillatory system as shown in
figure-5.13(a) a bob of mass m is hanging from a string of

Oscillations and Simple Harmonic Motion ^

length I.At this positionas bobis in equilibriumso tension in
string will be equal to weight of the bob, thus

////////////

(a)

T=mg

'////////////,

mg sin0

Figure 5.13

mg COS0

If bob is slightly displacedfrom its equilibrium position and
released as shown in figure-5.13(b) by a small angular
displacement 0.Asstillitis inequilibrium along radial direction,
at this position, tension in string is

T=mg cosB

Thusduetomgsin0,bobwillaccelerate towards theequilibrium
position thuswecan saythat in this casemgsin 0 isbehaving
as restoring force and for motion ofbob, so we have

Fj^=-mgsm 0
[- ve sign for restoring nature]

or Ff^ =-mgQ [As for small 0,sin0 = 0]

If bobis displaced bya distance x from mean position,wehave

/

Now if acceleration of bob toward mean position is a, we have

Fn =ma =-mgj

or a = - ...(5.38)

Comparing this equation with differential equation of SHM,
we get

...(5.39)

Thus time period of oscillation of a simple pendulum is

271 IT
...(5.40)
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5.6.2 Spring Block Pendulum

Thisis anotherverysimpleandfundamental oscillating system.
Figure-5.14 shows a spring block system in equilibrium. At
equilibrium dueto the weightofblockspring is stretchedfrom
its natural length say by a distance h, such that

mg= kh ...(5.41)

•///////////,

hj-
M

Figure 5.14

Nowfrom thisequilibrium position, block is slightly displaced
down, say by a distance x and released, then due to spring
force it will havea tendency to come back to its equilibrium
position andduetothis stable equilibrium position it willstart
oscillating.

When block is stretched down from itsequilibrium position by
a distance jr, the restoring force on block can be written as

F^= - [k(x+ h) - mg\

1
upward force downward force

(towards meanposition) (awayfrommeanposition)

or pR^-kx
[As from equation-(5.41) wg = kh\

If acceleration of block towardmean positionis a, we have

- . ...(5.42)a = -\ — IX
m

Comparing this equation-(5.42) with standard differential
equation ofSHM, we get
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5.6.3 Compound Pendulum

This is madewhenever a rigid bodyis hanging freelyfroma
horizontallypivoted axis, as shown in figure-5.15. Abodyof
mass m is pivotedat point Othrough a horizontal axisAA'.The
body ishanging freely under gravity andinequilibrium position
itscentre ofmass Cisverticallybelow thesuspension pointO,
at a distance / from O.

Figure 5.15

Ifthebody isslightly tilted from itsequilibrium position byan
angle 0, mg will exert a restoring torque on it in opposite
direction to restore the equilibrium position. Thus restoring
torqueon bodyin dotted position after tilting is

X;j = -wg. f sin 0
[- ve sign for restoring nature]

= -wg/0 [Forsmall0, sin0»8]

Ifits angular acceleration is a, we have

/a = -wg/0

[Here/is the momentum of inertia ofbodyaboutaxisAA']

wg/or a=--^0 ...(5.44)
Comparing equation-(5.44) with standarddifferential equation
of angular SHM we get

d = - COS0

(0 =
mgl

G}- ... (5.43) Thus itstime period ofoscillation is

Thus time period ofoscillation is

2% k
T=—=2nJ—

CO V w

If shows thatwhen a mass hanging from free endofa spring
oscillatesit executesSHMwith angular frequency .

27C
T= 271,,

CO Mmgl
...(5.45)

5.6.4 Torisional Pendulum

In a Torisional Pendulum an object is suspended from a wire
withrigiditycoefficient C. Ifsuch a wire istwistedbyanangle 0,
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due to its elasticity it exerts a restoring torque x = C0 on the
twisted object attached to it.

A general torisionalpendulumis shownin figure-5.16.Herea
disc D ofradius R and mass A/is attached to a stiffwire whose

other end is suspended from ceiling as shown.

Fromtheequilibrium position ofthis disc if it is twistedbyan
angle 0 as shown, the wire applies a restoring torque on it,
which is given as

= - C0 [-ve sign, for restoring nature]

M

<
Figure 5.16

Ifduringrestoringmotionthe angular acceleration ofdisc is a,
we can write x = /a where / is the moment of inertia of disc

about its central axis, thus we have

or

/a = -C0

a = -—1 ...(5.46)

Equation-(5.46) resembles withthebasicdifferential equation
ofSHM in angularform thuswecanstatethe angularfrequency
of this SHM is

co= ...(5.47)

Thus the period of SHMis

2k I

In the above cases of some pendulums we've discussed, how
to find the angular frequency and time period of a body in
SHM. Now we take some similar examples ofphysical situations

in which an object is in SHM.

5.6.5 Equivalent Length of a Simple Pendulum

We know that the time period of oscillations of a simple
pendulum is given by

~g ...(5.48)
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Similarly we've also discussed that the time period of a
compound pendulum is given as

2;r.
I

Mgl, ...(5.49)

Where I is the moment ofinertia ofthe rigid body about the axis
of rotation and is the distance of centre of gravity of body
from the suspension point (Axisof rotation). If we considera
simplependulum of length whichhas a bobofsamemassM
as that of rigid bodyof compound pendulumand has the time
period sameas thatofthe compound pendulum thenthislength
of simple pendulum is called"Equivalent lengthofsimple
pendulumfor thegiven compoundpendulum".

Forthe timeperiodsof the twopendulumsto beequal,wehave

I

v^g/.
...(5.50)

If k be the radius of gyration of the rigid bodyabout an axis
passing through its centre ofmassthen the moment of inertia
ofthe rigid bodyabout point of suspension is given as

l^MJ^ + Ml? ...(5.51)

Now from equation-(5.50), we have

Mk^+Mll

mglc

or ...(5.52)

Equation-(5.52) gives theequivalent length ofsimple pendulum
for the given compound pendulum. One important point to be
noted here isifin equation-(5.52) we replace by l^U^, we get

h ^ k'li.'eq

or ...(5.53)

Which is sameas that of equation-(5.52). Thus wecan saythat
ifthe samerigidbody, whichis suspended from a point,situated
at a distance f from centre of gravityof body, we suspend it
from a point at a distance 1^1f from centre ofgravity ofthe
body and oscillate like a compound pendulum, its equivalent
lengthof simplependulumremainssame or the time periodof
oscillationofbody remains same. Consider figure-5.17, arigid
bodyis suspended at a point Othrough a horizontal axisAA'.

Here C is the centre of gravity of the body. If it oscillates then
the time period of small oscillations can be given as

T=2k ...(5.54)
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As discussed in last section we can say that if the same body is
suspended either from any point on circular arcs PQ or RS (as
shown in figure-5.17(b)) ofradius with centre at C (circle Mj)
or any point on the circle of radius with centre at C (circle
M2), the timeperiodofsmall oscillationsofthe bodywillremain
same.

kX

(a) (b)

Figure 5.17

Here we can develop one property of the body when it is used
as a compound pendulum. This is, when a straight line is drawn
passing through the centre of gravity of body as in figure-
5.17(b) a line 55' is drawn. There exist four points on this line
(as here points 1,2,3 and 4) about which if body is suspended,
the time period of small oscillation ofbodyremains same. This
we can also prove graphically as if we plot the time period of
oscillation, the curve looks like as shown in figure-5.18

As shown in figure-5.18, if the body is suspended from C, from
equation-(5.54), wecan seethat if/c= 0, timeperiodbecomes oo,
and dX l^= k i.e. if the body is suspended from a point at a ,
distance equal to radius of gyration of body from C, the time
period of oscillation is minimum and at all other suspension
points the time period is higher and ifwe draw a horizontal line
in graph at time period which ismore than minimum period, it
cuts the graph at four points as shown, which verifies the
statement we've discussed earlier.

Figure 5.18
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From equation-(5.54) we can also find the value of at which
dT

this time period has aminimum value by equating -^= 0, as

or L= ±k

Which also verifies the experimental result obtained by graph

shown in figure-5.18.

# Illustrative Example 5.6 ^ •

Find the period of small oscillations in a horizontal plane

performed by a ball of mass m = 40 g fixed at the middle ofa

horizontally stretched string/= 1.0 m in length. The tension of

the string is assumed to be constant and equal to r= ION.

Solution

(a)

(b)

Figure 5.19

The situation is shown in figure-5.19. The ball is in equilibrium

at point <9 as shown in figure-5.19(a). Now it is displaced from

0 by a distances in horizontal plane to a position Pas shown

in figure-5.19(b). The components oftensions on ball toward

O are T sin 0 and T sinG, hence the restoring force on ball

toward mean position is

or

5)j= -27'sin
[-ve sign for restoring tendency]

2Tx

a:"' -I-'

As X is very small compared to /, we can neglect its square

compared to 'X , thus
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Ifa is the acceleration ofball toward mean position, we have

' 4T
a = -

ml

Here acceleration is directly proportional to x thus motion of
ball is simple harmonic with angular frequency co, given as

(0 =

47

ml

Thus time period of its SHM be given as

271 \ml 10.04x1
7= — =2kJ— =3.14 J =0.2s

© V 47 V 10

# Illustrative Example 5.7

A simple pendulum consists of a small sphere of mass m
suspended by a thread oflength I. The sphere carries a positive
charge q. The pendulum is placed in a uniform electric field of
strength E directed vertically upwards. With what period will

the pendulum oscillate, if the electrostatic force acting on the
sphere is less than the gravitational force ? (Assume that the

oscillations are small).

Solution

V/////A

m, q

(a)

V////////

qE sin 9

mg sin0

(b)

Figure 5.20

Figure-5.20(a) showsthe simple pendulum with bob ofmass m
and charge q with electric fieldE in the region directed vertically
upward.

When bob is in equilibrium, the tension in the string is

T=mg-qE ...(5.55)

If we displace this bob by a distance x from its mean position
as shown in figure-5.20(b), the restoring force on it can now be
written as

Ejf=— (mgsin Q—qE sin 0)

[If 0 is the angular displacement shown in figure]

or

or
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= ~ [mg~ qE] 0 [For small 0, sin 0 ~ 0]

Fji-{mg-qE) — [As e=y]

If a is the acceleration of bob in the situation shown in

figure5.20(b), we have

S

a = —

qE

m

I
...(5.56)

Comparing equation-(5.56) with differential equation ofSHM

we get, the angular frequency of the SHM of this pendulum

bob as

qE

© =
m

Thus oscillation period is

T= — =2iz, „
/

...(5.57)

g
m

The result in equation-(5.57) can also be directly obtained as

we know the time period of a simple pendulum is given as

7~ 271 and in a region where an electric field E exist in

upward direction, the effective value of acceleration due to

gravity for a positively charge particle with a charge q can be

used as

qE

m

Thus the time period ofabove pendulum can be directly written

as

7=27c =2k
g

If in this problem electric field E is reversed i-e. in downward

direction then net effective force on bob in downward direction

is increased and effective gravity can be written as

Se//=g+
qE

m

Thus in this case, the time period ofa pendulum becomes

7=271
g +'%
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# Illustrative Example 5.8 # Illustrative Example 5.9
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Calculate the period of small oscillations ofa floating box as A mass Mattached to a spring oscillates with a period of2 s. If
shownin figure-5.21 whichwasslightlypusheddownin vertical the mass is increased by 2 kg, the period increases by one
direction. The mass of box is m, area of its base is A and the second. Find the initial mass M
density of liquid is p. The resistance of the liquid is assumed

to be negligible. Solution

Figure 5.21

Solution

We know that for a spring block system

Here k = spring constant.

In first case,

In second case, 3 = 271

M

M
2=271,11-^

M+2

...(5.60)

...(5.61)
Initially when box is floating in liquid, ifits h depth is submerged

in liquid then buoyancy force on it is

Fr, = weight ofliquid displaced Squaring ofequation-(5.60) and (5.61) and then dividing (5.61)
by(5.60), we have

9 M + 2 2

4 ~ M ~ M

...(5.58) Solving we get M=1.6kg.

= Ahpg

As the box is in equilibrium, we have

Ahpg = mg

Now ifbox is further pushed down by a distances, net restoring
force on it in upward (toward mean position) direction is

F^ ='[A{h+x)pg-mg]

^-Axpg [As mg = Ahpg]

Figure 5.22

Ifa is the acceleration ofbox in upward direction we have

a = -
m

...(5.59)

Equation-(5.59) shows that the box executes SHM with angular
frequency co given as

co =
^9g

Thus time period ofits oscillation can be given as

_ 271 .
T= =271^,

CO V ^9g

m

# Illustrative Example 5.10

Two masses and are suspended together by a massless
spring ofspring constant ^ as shown in figure-5.23. When the

masses are in equilibrium, w, is removed withoutdisturbing
the system. Find the angular frequency and amplitude of
oscillation.

Solution

^ '//////y

B±

(a)

^ •///////

B--

C
y

D±.

(b)

Figure 5.23

Let AB be the natural length / of the spring as shown in
figure-5.23(a). When a mass Wj is suspended, the spring is
stretched to Ci.e., BC=x. Now on further loadingby a mass
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let the spring is stretched to a point D i.e., CD=y, then we have

kx = m^g ...(5.62)

ky = m^g ...(5.63)

When mass w, is removed, thespringblock system ofmass Wj
starts oscillating about the point C. It's motion is simple
harmonic motion. The mass is executing simple harmonic
motion with the angular frequency given as

03 =

Thus its time period is

W-,

r=27cji-p

Amplitude ofoscillation is given as

A^CD=y =

# Illustrative Example 5.11

Findthe frequency ofsmalloscillations ofa thin uniformvertical
rod of mass mand length / hinged at the point O (figure-5.24).
The combined stiffiiess ofeach ofthe spring is equal to k. The
mass ofthe spring is negligible.

Solution

//////////z
O

Figure 5.24

Figure-5.25 shows the equilibrium position of rod. If rod is
displaced by a small angle 0 as shown in figure-5.25, both the
springs are deformed by a distance a:= /0. One is stretched and
other is compressed so that both will exert a torque on rod in
same direction as restoring torque. Thus net restoring torque
on rod is written as

=- [2kx X/+mg x: ^ sin 0]
[- ve sign for restoring nature]

x^=-[2kx^l + mg^ i/^Q]

[As for small 0, sin 0 = 0]

^^=-{2kl^+mgl/^)Q [x = lQ]
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y/////////z

of

(.k, + L)x

Figure 5.25

Ifrod has an angular acceleration a, we have, restoring torque

f mr^
i:d = a

Where is the moment ofinertia ofrod about an axis passing

through one of its end as in this case. Thus we have

mk

or

a--

2kl^ +
mgl

a = -

mk

(\2kl-\-2mg
a = ~ -

y 2ml
...(5.64)

Comparing equation-(5.64)with the basicdifferentialequation
of SHM, we get

03 =

\2kl + 2>mg

2ml

Thus the oscillation frequency of rod for its small oscillations
can be given as

03 _ 1 |l2^/+3mg
2ji 2;i V 2ml

a Illustrative Example 5.12

A verticalJAtube oTuniform cross-secti<m contains water upto

a heighfof30 cm.Showthat if the wateron onesideis depressed
--and then released, its motion up and dovra the two sides of the
tube is simple harmonic. Calculate its period.

Solution

Figure-5.26 shows a IZ-tube ofuniform cross-sectional area^.
Let the liquid be depressed through the distance y in a limb,
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the difference of levelsbetween twolimbswill be2y as shown
in figure-2.26.

Figure 5.26

The liquid now oscillates about the initial positions.

Excesspressure on whole liquid= (excess height of the liquid
column) (density) (g)

= 2yx\>^g [As density of water = I]

Restoring Force on the liquid= Pressure x area of crosssection

= 2ygA

Due to this force the liquid accelerates and ifits acceleration is
a, we have

ma = - 2ygA

(2 X30 XA)a^~2ygAor

or
g

Henceacceleration is directly proportional to displacement, so
themotion issimple harmonic motion. Thusthetimeperiod T
is given by

2n (30,

= 1.098 s

30

980
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Practice Exercise 5.2

(i) A vertical springblocksystem executes SHMata fi'equency
of 10 osc/s. At the upper extreme position of the block the
spring isunstretched. Findthemaximumspeedof theparticle.
Takeg'= lOm/s^.

[2^^ni/s]

(11) In the figure-5.27, the spring has a force
constant 5000 N m"'. The pulley is light and
smooth. The springand thestring are light.The
suspendedblockA is of mass 1kg. If the blockis
slightly displaced vertically down from its
equilibrium position andreleased, findtheperiod
ofits vertical oscillations.

[0.1776 s]

•/////////

777777?.

Figure 5.27

(ill) The bob of a simplependulum is displaced by an small
angle 0q fi-om thevertical andreleased. Ifduring itsoscillation it
isgiven thatthemaximum tension in thestringis twotimes the
minimum tension, find thevalue of0q.

[cos-' l^-J]

(Iv) Determine the periodofsmalllongitudinal oscillations ofa
body with mass m in the system shown in figure-5.28. The
stiffness values ofthe springs are and k^. The fi-iction and
the masses of the springs are negligible.

[2k

I
Figure 5.28

k.

m

(v) Find the period ofsmall vertical oscillations ofa
body with mass m in the system illustrated in
figure-5.29. The stiffiiess values ofthe springs are /t,
and k^, their massesare negligible.

\k.

[2;t
m{k] +^2)

k.k. Figure 5.29

(vi) AT-barofuniformcross section and massMis supported
ina vertical planebya hingeOanda springofforce constant k
at A. Develop a formula for the period for small amplitude
rotationaloscillations in theplane of the figure-5.30.

[3jr
T

Figure 5.30

T
a

1
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(vii) Acylinder ofmass M, radius r andheight h is suspended
by a spring where the upper end which is fixed is partily
submerged inwater. Inequilibrium thecylinder sinks tohalfits
height. Atacertain moment the cylinder was submerged to2/3
of theheight and then withno initialvelocity startedto move
vertically. If the stiffiiess constant is and densityofwaterp,
find the period.

[7"= 271
M

A+ nr pg

(viii)A point mass m is suspended at the end of a massless
wire oflength / andcross-section /4. If Fis theYoung's modulus
ofelasticity for thewire, obtain thefi-equency ofoscillation for
thesimple harmonic motion along thevertical line.

(Ix) An ideal gas whose adiabatic exponents is y, is enclosed
ina vertical cylindrical container andsupports a fi-eely moving
piston of mass M. The piston and the cylinder have equal
cross-sectional area Atmospheric pressure is and when
thepiston is in equilibrium, thevolume ofthegasis V^. The
piston isnow displaced slightly from the equilibrium position.
Assuming that the system is completely isolated from its
surrounding, show thatthepiston executes simple harmonic
motionand find the frequencyof oscillation.

y{p^^MglA)A'
MVq

(x) Alight wooden rod fixed at oneend iskepthorizontal. A
loadofw= 0.4kgtiedto thefree endoftherodcauses thatend
to be depressed by8 = 2.8 cm. If this load is set into up and
downvibrationwill it oscillate? Find its frequency ofoscillation.
Takeg= lOm/s^. .

[3 Hz]

(xi) Determine the period of oscillations of mercury of mass
mpoured intoa benttube(Figure-5.31) whose rightarmforms
an angle 0 with the vertical. The cross-sectional area of the
tube is S. The viscosity of mercury is to be neglected.

Figure 5.31

[T= 2n / 5pg (1+ cos0) ]

Oscillations and Simple Harmonic .Motion :

5.7 Phase Analysis of a Particle in SHM

We've already discussed about phase angle of a particle in
SHM.It is actually the angular displacement of that particle
who is in circular motion and whose projection is in SHM. At a
general time t, the instantaneous phaseof a particle in SHM
can be written as (cot + a) if a is its initial phase (already
discussed).

5.7.1 Phase Difference in Two SHM

Case I:When two SHMs are of same angular frequency

Figure-5.32 shows two particles P' and Q' in SHM with same
angular frequency co. P and Qarethe corresponding particles
in circular motion for SHM ofP' and Q'.

LetP andQboth starts their circular.motion atthesame time at
t = 0 then at the same instant F and Q' starts their SHM in
upward direction as shown. Asfrequency of both are equal,
both will reach their extreme position (topmost point) at the
same time and will again reach their mean position
simultaneouslyat time f Time period ofSHM = ]
and move in'downward direction together or we can state that
the oscillations of F and Q' are exactly parallel and at every
instant the phase of both F and Q' are equal, thus phase
difference in these two SHMs is zero. These SHMs are called

same phase SHMs.

/v /'/
|̂v=0 ;

//rof. poinl

NO)/

•A"
A 0

.•'ref. point

Figure 5.32

Now consider figure-5.32, wherewe assume if F starts its
SHM at r=0 butQ willstartat time In thisduration from
Oto I=tpF will move ahead inphase byco/j radians while Q'
was at rest. Now Q'starts at time /, andmove with same angular
frequency (a. It can never catch P' as both are oscillating at
sameangularfrequency. ThushereQ'willalways lag in phase
by cot, then F orwe say P' is leading inphase bycot, then Q'
and as co of both are constant their phase difference will also
remains constantso keep it in mind that in twoSHMsof same
angularfrequency, if theyhavesome phasedifference, it always
remains constant.
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P"

' \p, : Q' '••Q
^ = 0 • jt^t

Figure 5.33

Now we consider a special case when time lag between the
starting of two SHMs is% i.e. halfof oscillation period.
Consider figure-5.34, here if we assume, particle F starts at
t = 0 and at t =% when F completes its halfoscillation.
Here we can see that the phase difference in the two SHM is tc
by which Q' is lagging. Here when Q starts its oscillation in
upward directionF moves in downward direction. Asangular
velocity of P and Q are same, both complete their quarter
revolution in same time. Thus when F reaches its bottom

extremeposition, Q' will reach its upperextremepositionand
thenafterQ startsmoving downward, F startsmoving upward
andboth ofthesewillreach theirmean position simultaneously
but in opposite directions, F has completed its one oscillation
where as Q' is at halfof its oscillation due to a phase lag of tt.

t^m

p'

p: ••

•. / = 0

:P

/ Q' \q ^
t- m

Figure 5.34

Thus if we observe both oscillations simultaneously we can
see that oscillations of the twoparticlesP' and Q' are exactly
antiparallel i.e. when P' goes up, Q' comes down and at all
instants of time their displacements from mean position are
equal but in opposite direction if there amplitudes are equal.
Such SHMsare called opposite phase SHMs.

Case 11:When two SHMs are of different angular frequency

We've discussed that when two SHMs are of same angular
frequency, their phase differencedoes not change with time.
Consider two particles in SHMas shown in figure-5.35. Their
corresponding particles for circular motion are A and B
respectively as shown. Ifboth A' and B' starts their SHM from
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mean position at/= 0with angular frequencies coj and CO2, then
we say at / = 0 their phase difference is zero but after time ?,
their respective phase are co, t and CO21. Thusafter timet, the
phase difference in the two SHMs is

(j)=(C0j-C02)/ ...(5.65)

Thus equation-(5.65)showsthat if angular frequencies of the
two SHMs are different their phase difference continuously
changes with time.

.

/

/ = 1

/\V'

1

/ \\
A<^\' \a

J/ =0

/

\^2
\\
\/ = /

I
/yiij/ \b ,

jf=Q

Figure 5.35

5.7.2 Same Phase and Opposite Phase SHMs

Same Phase SHMs

As discussed above twoparticles execute SHM in sucha way
that their oscillations are exactlyparallel to each other or their
phase differenceduring oscillation is zero, they are said to be
in same phase we've seen that this happens when both SHMs
are started at same time with same angular frequency. This can
happen also when the time lag between starting of the two
SHM is Toranintegral multiple oftimeperiod ofSHM. Because
ifone starts at i = 0 and other starts at / = T,in this duration first
particlewill complete its firstoscillation and isgoingto start its
second oscillations and the second particle will start in
synchronization with the first. Hence the two oscillation will
still beparallel or in same phase.Therephasedifference in the
two SHMs will be In. Not only this even if the time lag in
startingof thetwoSHMs is2T,3T...nTorthe phasedifference
in the twoSHMs is4n, (in,Stt ... 2n7u, then also these SHMscan
be treated in same phase.

Thus phase difference in two SHMs of same phase is

^=2n,4n,6n 2n7C _...(5.66)

Opposite Phase SHMs

As discussed in previous article, two SHMs are said to be.in
opposite phase when their oscillations are antiparallel this
happens when two SHMs of same angular frequency start
with a time lag of% and phase difference among thetwo SHMs
is 71. By analyzing the situation it can also be stated that the
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samething also happens when the time lag in starting of the
twoSHMsis (2n + l)% orthe phase difference
between the two is Stt, 5?: (2« + l)7t.

Thus phasedifference in two SHMs of opposite phase is

(|)=7i,37c,57r ,{2w+1)71 ...(5.67)

To understand the concept of phase and phase difference in
SHM, we take few examples.

#Illustrative Example 5.13

Two particles execute SHM with same amplitude^ andsame
angular frequency co on same straight line with same mean
position. Given thatduring oscillation they cross each other in
opposite direction when ata distance A/2 from mean position.
Find phase differencein the two SHMs.

Solution

Figure-5.36 shows that two respective particles F and Q in
SHM along with their corresponding particles in circular
motion. LetF moves in upward direction when crossing Q'
at Ail as shown in figure-5.36(a), at this instantphaseofP' is

...(5.68)|), = sm
v2.

(a)

Figure 5.36

0'

^2 j

(b)

Similarly asshown in figure-5.36(b) wecan takeparticleQ' is
moving indownward direction (opposite F) ziAil, thisimplies
its circularmotionparticleis in secondquadrantthus itsphase
angle is

-1(j)2 = 7r-sin
1 1 7t 57C

...(5.69)

As both are oscillating at same angular frequency their phase
diff. remains constant which can begiven fromequation-(5.68)
and (5.69), as

5jc jt 2;c

'H=fe-4>,= Y-I =T
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#Illustrative Example 5.14

A particle executes SHM with amplitude A and angular
frequency co. Atan instant when particle is at a distance AI5
from mean position and moving away from it. Findthe time
after which it will come back to this position again and also
find the time afterwhich it willpass through meanposition.

Solution

Figure-5.37 shows thecircular motion representation for the
particle P' given inproblem. The initial situation ofparticle is
shown in figure. AsP moves, its projection F will go up and
then comeback to its initial position when P reaches to the
corresponding position in second quadrant as shown. In this
process P traversed an angular displacement 0 with angular
velocityco, thus time taken in the process is

1 __ 2cos-'()^)
'=» =«Pcos-'(X)] =

CO

Ia/5

Figure 5.37

Nowwhen P reaches point C,P' will reach its meanposition.
Thustimetaken byP from itsinitialposition to pointCis

(7c-a) 7C-sin'\)^)
t =

CO CO

ThesametimeP' willtake from A/5 position to mean position
through its extremeposition.

# Illustrative Example 5.15

Two particles executing SHM with same angular frequency
andamplitudes Aand2A onsame straight linewithsame mean
position cross each other in opposite direction at a distance
A/2 from meanposition. Find thephase difference in the two
SHMs.

Solution

Figure-5.38 shows thetwo corresponding particles ofcircular
motionfor the twomentionedparticles in SHM. LetparticleP
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is going up and particle Q is going down. From the figure
shown, the respective phase differences ofparticles F and Q'
are

Figure 5.38

{|), = sin [Phase angle of/"]

and ~ 6^ = 7:-sin [Phase angle ofQ']

Thus phase difference in the two SHMs is

n=7r-sin '| — . 1

-sin —

# Illustrative Example 5.16

A particle starts its SHM from mean position at 0. Ifits time

period is Tand amplitude .<4. Find the distance travelled bythe

particle in the time from / = 0 to r= .

Solution

Weknowin one complete oscillationi.e. in periodT,aparticle
covers a distance 4A and in first one quarter of its period it

goes from its mean position to its extreme position as its starts

from mean position thus the distance travelled bythe particle
in time is 5.^.

# Illustrative Example 5.17

Figure-5.39 showstwo identical simple pendulums of length /.
One is tilled at an angle a and imparted an initialvelocity v,
toward mean position and at the same time other one isprojected

awayfrom meanposition at a velocity Vj at an initial angular
displacement p. Find the phase difference in oscillations of

these two pendulums.

Solution

/a

/

Figure 5.39

A
/
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It is given that first pendulum bob is given a velocity v, at a
displacement la from mean position, using the formula for
velocity we can find the amplitude of its oscillations as

Vx =Gi^Al-{laf

[Ifyf, is the amplitudeof SHMofthis bob.]

As for simple pendulum co=we have

...(5.70)

Similarly if A-^ is the amplitude of SHMof secondpendulum
bob we have

'̂2=® A'-CP)'

or ...(5.71)

Now we represent the two SHMs by circular motion

representation as shown in figure-5.40.

In firstpendulum at r= 0 the bob is thrown froma displacement
la from meanposition witha velocity v, toward mean position.
As it is moving toward mean position, in figure-5.40(a), we
consider the corresponding circular motionparticle A^ of the
bob A is second quadrant, as the reference direction of (o, we

consider anticlockwise. As shown in figure initial phase ofbob

A is given as

'la^
-I(j), = 7C- sin ...(5.72)
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B

/ /P ^ •• .

®//\ 7 •A

\
(O/

/=o
A

^ a

4-, ;•

ISHM

(a)

Figure 5.40

II SHM

(b)

Similarlyforsecond pendulum bobB, itscorresponding circular
motion particle at / = 0 is considered as shownin figure-5.40
(b) its initial base is given as

(f), = sin '
h J

As both the pendulumsare identical, their angular frequency
for SHMmustbesame, so their phasedifferencewillnot change
with time, hence their phase difference can be given as

UIllustrative Example 5.18

-IIA(t> =(|>2-'t>i =sin ^ -1
+ sin

la
-%

'\J

In previous question if second pendulum bob is thrown at
velocity at an angle P from mean positionbut on other side
of mean position. Find the phase difference in the two SHMs
now as shown in figure-5.41.

Solution

•////////////

i

/

•////////////.

Figure 5.41

In this case still amplitudes of the two SHMs will remain same
and are given byequation-(5.70) & (5.71) but when we represent
the two SHMs on their corresponding circular motions, the
position of the particle in circular motion in second pendulum
is now different as shown in figure-5.42.

ISHM

(a)

Figure 5.42

II SHM

(b)

As shown in figure-5.42 (a) & (b) the initial phases ofthe two
pendulum bobs are

(j), =7:-sin"'

()^ = 71 + sin"
V^2 y

As CO for both SHM are same, their phase difference remains
constant so it is given as

A(|i =(j)2 - (t>i =sin '

# Illustrative Example 5.19

/P

^2)

+ sin
la

A spring block pendulum is shown in figure-5.43. The system
is hanging in equilibrium. A bullet of mass w/2 moving at a
speed u hits the block from downward direction and gets
embedded in it. Find the amplitude ofoscillation of the block
now. Also find the time taken by the block to reach its upper
extreme position after hit by bullet.

•////////z

Solution

Natural

length
spring ^ I

h

Figure 5.43

If block is in equilibrium then spring must be at some stretch if
it is h, we have

mg=kh.

If a bullet of mass mil gets embedded in the block, due to this
inelastic impact its new mass becomes and now the new
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mean position of the blockwill be say at a dept. /?, from old
mean position then, we must have

3
~mg = k{h^h^)

1m

Figure 5.44

g = Kh + h,)

mg

2k
[As mg ~ kh]

Just after impact due to inelastic collision if the velocity of

block becomes v, we have according to momentum conservation

or

m _1m
_ „

u

v =

Now the block executes SHM and at r = 0 block is at a distance

^ its mean position and having avelocity %. If
amplitude ofoscillation is A, we have

or

= (ojA-
mg

Ik

Ik

1m
A'-

wg Y
2k)

I ^[As for this spring block system co = ,1 ;—
V(3^/2)

A = ...(5.74)

Now time taken by particle to reach the topmost point can be
obtained by circular motion representation as shown in

figure-5.45. This figure shows the position ofblockPand its

ccrrespondingcircular motionparticle Fqat the / = 0. BlockP
will reach its upper extreme position when particle/'q will traverse
the angle 0 and reach the topmost point. As Fq moves at
constant angular velocity co, it will take a time given as

' D/ r

• ''i ^ ,

Figure 5.45

CO 2k
COS

-1

1m12

Illustrative Example 5.20

mg

2kA
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Figure-5.46(a) shows a spring block system, hanging in
equilibrium. The block ofsystem is pulled down by a distance
Xand imparted a velocity v in downward direction as shown in
figure-5.46(b). Find the time it will take to reach its mean
position. Also find the maximum distance to which it will
move before returning back towards mean position.

equilibrium
position

Solution

•////////z •////////,

m

(a)

Figure 5.46

As shown in figure-5.46(b), when the block is pulled down by
a distancex and thrown downward, it will start executing SHM.
It will go flirther to a distance(amplitude) from mean position
before returning back which can be found by using the velocity
ofblock Vat a displacement x from its mean position as

V=(s)ylA^-X^

or
.2-

[As for spring block s>^tem co =

or A =
mv

• + x



i240

Now time ofmotion ofbob can be obtained by circular motion
representation of the respective SHM. Corresponding circular
motion representation for this SHMis shown in figure-5.47 at
/ = 0. At / = 0, block P is at a distance;c from its mean position
in downward direction and it is moving downward so we
consider its corresponding circular motion particle in III
quadrant as shown in reference angular velocitywe consider
anticlockwise. Now block P will reach its mean position when
particle Pq reaches position/I bytraversing anangle 0. Shown
in figure-5.47.Thus it will take a time given as

0 7t-sin~'(jc//4)
CO

or

B

Ci •A

\ J '
P

V---.
h

Figure 5.47

m

71-Sin

mv
• + x

The maximum distance to which block will move from its initial

position is /4 - a: as it gas upto its lower extreme at a distance
equal to its amplitude^ from to mean position.

# Illustrative Example 5.21

Figure-5.48 shows a block of mass m resting on a smooth
horizontal ground attached to one end of a spring of force
constant k in natural length. If another block ofsame mass and
moving with a velocity u toward right is placed on the block
which stick to it due to friction. Find the time it will take to

reachitsextremeposition. Alsofindthe amplitudeofoscillations
ofthe combined mass 2 m.

Î
777777777777777777777777777^77777:^7777777777/

smooth

JXL

Figure 5.48
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Solution

When second mass sticks to the lower mass, due to such an

inelastic collision, the velocity of combined block is reduced
byhalfthat is^ toconserve momentum. Now atmean position
the velocity ofblock can be written as

or

or

u

-r = A (a
2

[IfA is the amplitude ofoscillation]

u

1=^
k

2m

[As here for combined block new angular frequency of

SHM is (0=7^]
u 2m

k
= u

As oscillation starts from mean position, in reaching its extreme
position, particle has to cover a phase of 7c/2 radians, thus time
taken by particle to reach its extreme position is

tzI2
t = -

CD

# Illustrative Example 5.-22

k

2m

In previousexample ifblockis pulledtowardright bya distance
Xq and released, when the blockpasses through a point at a
displacement Xq/2 from meanposition, anotherblockofsame
mass is gently placed on it which sticks to it due to friction.
Find the new amplitude ofoscillation and find the time now it
will take in reaching its mean positionand extreme positionon
left side.

Solution /

Whenblock wasreleased atx^from mean position, thiswillbe
the amplitudeofoscillation and when it is passing through the

position of half amplitude , its velocity can be given as

v = co

or v =

When another block of same mass is added to it, due to

momentum conservation its velocity becomes half and co of
oscillation will, also change from to *Again using
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the formula for velocity ofSHM atadistance Xq/2 from mean Similarly time taken byPto reach the left end extreme position
position, we get -

or

or

A
4

V'-J-O A--

k

2m

^2

[Ify4'is the new amplitude of oscillation]

..n 3 2 -^0 5 2
^ =-4+ —= -^0° 4 8

JL
2V2

To find time of, motion in SHM we use circular motion

representation of the respective SHM. Thefigure-5.49 shows
the corresponding circular motion. Ifat /= 0, the second mass
is added to the oscillating block, it was at a position xJ2 from
mean position and moving towards it, and after adding the
mass the new amplitude of oscillation changes to A' and co

changes from to • Figure-5.49 shows the

corresponding position ofparticle in circular motion at t = 0 in
II quadrant. When this particle will reach the position C
after traversing the angle 0, particle"-^ in SHM will reach its
mean position and similarly when will reach position D, P
will reach the extreme position on other side. Thus the time
taken by Pto reach mean position from a position from
mean position is given as

or

B

p

/ / v'

c;
-r„/2

\a

D

Figure 5.49

-1 ^0
Sin

CO'

-1
sin

k

2m

2A'

2m

2m
-I

sm

IS

^2 =
jt/2+e

CO'

2m

~Y
•X . _1
—+ sin

2

# Illustrative Example 5.23

Figure-5.50 shows a blockP of mass m resting on a smooth
horizontal surface, attached to a spring of force constant k
which is rigidlyfixed onthewallon leftside,shown in figure-
5.34.At a distance / to the right ofblockthere is a rigidwall. If
block is pushed.toward lift so that spring is compressed bya
distance % and released, itwill start its oscillations. Ifcollision
ofblockwith thewall is considered tobeperfectlyelastic. Find
the time period ofoscillations ofthe.block.

k p

^mmwwMy m

Figure 5.50

Solution

As shown in figure-5.50, as the block is released from rest at a
distance5//3 from its meanposition,this willbe the amplitude
of oscillation. But on other side of mean position block can
moveonlyupto a distance I from mean position and then it will
return from this point with equal velocitydue to elastic collision.
Considerfigure-5.51. Ifno rightwallis presentduringoscillation,
blockP will executing complete SHM on right side of mean
position also up to its amplitude 5//3. Thus we can observethe
blockPat a point Xat a distance / from mean position (where
in our case wall is present), if block passes this position at
speed V(which is the speed with which block hits the wall in
our case),afterreaching its extremeposition Y, it will return and
during return path it will cross the positionX with the same
speed V(as displacement from mean position is same).

•X

-mmwmm-

5117, 5//3

Figure 5.51

Thus we can state that in our case ofgiven problem, block P is
executing SHM but it skips a part XYX on right half of its
motion due to electric collision'ofthe block with the wall. IfP^
is the time period of this oscillation we look at figure-5.52,
which shows the corresponding circular motion representation.
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Here during oscillation ofpoint P, particle covers its circular
motion along ECDAF, and from Fit instantlyjumps to E (due
to elastic collision of P with wall at X) and again carry out
ECDAF and so on, thus we can find the time of this total
motion as

/ =
7C+20 7i +2sin \y^)

CO

Figure 5.52

...(5.75)

We can also find the time period ofthis motion by subtracting
the time ofFYE from the total time period as

271-2 cos"'(3^)
/ =

CO

=j^[2n-2cos-'(K)] ,...(5.76)
These equation-(5.56) & (5.57) will result same numerical value.

# Illustrative Example 5.24

Figure-5.53 showsa spring blocksystemhanging in equilibrium.
Ifa velocity Vq is imparted totheblockin downward direction.
Find the amplitude of SHM of the block and the time after
which it will reach a point at halfofthe amplitude ofblock.

•////////y

Natural length

Mean position

Figure 5.53

Solution

Initially in equilibrium ifblock is at a depth h below the natural

- Oscillations and Simple Harmonic Motion j

length of spring then we have

mg~ kh

If at mean position blockis imparted a velocityVq, this would
be the maximum velocity ofblock during its oscillation. Ifits
amplitude of oscillation is A, then it is given as

or

VQ^Adi

A = — =Vo
CO

[Where CO = J— ]

Now to fmd the time taken by blockto reach its halfof amplitude
point we consider the corresponding circular motion of the
SHM as shown in figure-5.54.

B

w

1, \co

c: a/2 . 1XQ • A

\
P

b

Figure 5.54

HereblockP will reachtohalfofits amplitude whenparticleFq
will reach point E shown in figure-5.54 at an angular
displacement 0 from mean position relative to point A, thus
time taken by it is

' 0

-1
sin VA)

# Illustrative Example 5.25

Figure-5.55 shows a block F ofmass A/resting on a horizontal
smooth floor at a distance I from a rigid wall. Block is pushed

toward right byadistance 3^ and released, when block passes
from its mean position anotherblock of massw, is placed onit
whichsticksto it due to friction. Find the valueof Wj so that
the combined block just collides with the left wall.

p

Figure 5.55

Solution

When block F is released from rest from a distance toward

right from mean position, this will be the amplitude of oscillation,
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SO velocity of block when passing from its mean position is
given as

3/ k
v = A ©=•— -i —

2 \ m
[As co = , — ]

Ifmass m^ 'is added to itand just after ifvelocity ofcombined
blockbecomes Vj, from momentum conservation wehave

mv = (w+ w,)vj

m

or V, =•
(w + Wj)

A.
2\m

If this is the velocity of combined block at mean position, it
must be given as

V] =AcOj [Now C0j =
Y OT + OT,

]

Where Ajand coj are thenewamplitude andangularfrequency
ofSHM of the block. It is giveii that combined blockjust reaches

-thejeft wall thus the hew amplitude ofoscillation must be / so
we have

m

or

or

(m+ mi) 2 \ m '

2-^m +w,

9m = 4m + 4m,

= 1

m + m

or m, = -m

Practice Exercise 5.3

(i) A particle performing SHM is found at its equilibrium at

/ = 1 second and it is found to have a speed of 0.25 m s"' at
t = 2 seconds. Ifthe period ofoscillation is 6 seconds, calculate,

(a) amplitude ofoscillation and initial phase

(b) velocity ofparticle at 6 seconds.

[(a) ^-25 m/s]

(ii) Two light springs of force constant and and a block
ofmass m are in one line AB on a smooth horizontal table such

that one end ofeach spring is fixed on rigid supports and the
other end is free as shown in the figure-5.56. The distance

between the~free ends of the springs is d. If the block moves
along AB with a velocity v in between springs, calculate the
period ofoscillation ofthe block.

[Jt
m I m

ki k2

k.

2
/////////////////////'//////////
AC D B

Figure 5.56

+ —1
V
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(iii) Find the phase differencebetweentwo particles executing
simple harmonic motion with the same frequency if they are
found in the states shown in the figure-5.57 at four different
points oftime.

T 1 IT

2 '>

(a) (b) •

£ T
n I 2 5

(c) (d)

Figure 5.57

[(a) ji; (b) ^ ;(c) ^; (d) ^1

(iv) A ball is suspended by a thread of length / at the point O
on the wall, forming a small angle a with the vertical as shown

in figure-5.58. Then the thread with the ball was deviatedthrough
a small angle p (P > a) and set free. Assuming the collision of
the ball against the wall to be perfectlyelastic, find the oscillation
period ofsuch a pendulum.

Figure 5.58

[T=2y[I/^[nn. + sin-' (o/p)]]
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(v) A heavy particle is attached to one end ofan elastic string,
the other end ofwhich is fixed. The modulus ofelasticity ofthe

"string is such that in equilibrium string length is double its
natural length. The string is drawn verticallydowntill it is four
times its natural length and then let go. Show that the particle

will return to this point in where / is the

natural length ofthe string.

Two particles are in SHM with the same amplitude and
frequency along the same line and about the same point. If the

maximum separation between them is-JT times their amplitude,
what is the phase difference between them?

[271/3]

(vii) A block of mass w = 1 kg is attached to a free end of a
spring whose other end is fixed with a wall performing simple

harmonic motion as shown in figure-5.59. The position ofthe

block from Ois given as;A: =2+(1 /•y/2) sin 2rwherexin meter
and t is in second. A shell ofsame mass is released from smooth

the circular path at a height /i = 80 cm. The shell collide
elastically with the block performing SHM and finally reaches
upto height 5 cm along circular path. Neglecting friction, find
where the collision take place.

wall
/̂y

-wmr- n h - O.Sm

Figure 5.59

[At = j: = 1.5m or 2.5 m]

(viii) In a SHMthe distancesof a particle from the middle point
of its path at three consecutive seconds are observed to be x, y

and z. Show that the period ofoscillation is 2n

-if x + z

2y

(ix) A particle moves with simple harmonic motion in a straight
line.-IrLthe first second after starting from rest, it travels a distance
AT,, and in the next second it travels a distance Xj in the same
direction. Find the amplitude ofthe motion.

2x

3x,
1

(x) A particle moves in simple harmonic motion. If the velocities
at distances of4 cm and 5 cm from the equilibrium position are
13 cm per second and 5 cm per second respectively, find the
period and amplitude.

[1.6s, 5.02 cm]
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(xi) At the moment/=0 a particlestartsmovingalongthex axis
so that its velocity projection varies as = 35 cos izt cm/s,
where t is expressed in seconds. Find the distance that this
particle covers during t = 2.80 s after the start.

[60.29 cm]

5.8 Energy of a Particle in SHM

When a particle is in SHM,we knowat its extremeposition,KE
of particle is zero and at mean position, particle's speed is
maximum i.e., \XsK.E. is maximum. Weknow at mean position
particle is in stable equilibrium where potential energy of
particle is minimum about which particle oscillates. During
oscillation the total energy ofa particle remains constant.

Figure-5.60 shows the graph which represents the variation of
potential energy relative to the position ofa particle in a force
field. At position Xq potential energy ofparticle isminimum and
in the neighbourhood ofx^ its potentialenergy is more, thus
force on particle isalways toward meanposition x = Xg and is
given by

F =
dU ?

I

dx
...(5.77)

Figure-5.60 shows that atx=Xo, is zero thus no force acts

onparticleandatx> Xq from graph, is+ vethusF is-ve
accordingto equation-(5.77) and forceon particle is towardXg

and at points x < Xg, is - ve and thus from equation-

(5.77) F is + ve or towards Xg thus in sucha potentialfield, a
particle can oscillate aboutx = Xg. The region of curveshown
in figure is called potential well, in which ifa particle is trapped,
it can oscillate about the point of lowest potential energy i.e.
the point ofstable equilibrium.

Ifparticle oscillates aboutx = XQ with amplitude^, its kinetic
energyis maximum at Xg andas it moves awayfrom Xg, itsPE
increases and kinetic energy decreases at extreme position the
potential energy of particle becomes t/g (as shown in graph)
and obviously kinetic energy zero. Thus ifat mean position its
kinetic energy is Kq we have

u

{AU=K,)

Xn Xr^+A

Figure 5.60
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Total energy ofSHM of particle is

Which is also the maximum potential energy ofparticle when it
is at its extreme position.

If particle is executing SHM with amplitude A and angular
frequency co, its velocity at mean position is given as

^n,ax=^^

Thus KE (maximum) ofparticle at mean position is

U 9 max 9 ...(5.78)

If at mean position potential energy of particle is zero then

equation-(5.78) represents the total energy of oscillations
otherwise total energy ofoscillation can be given as

J_
2~ • I • •••(5-79)

mm / 9

When particle is in SHM its displacement from mean position
can be given as

x=yisin(co/ + a)

At a displacement x from mean position velocity is given as

-x^

Thus kinetic energy ofparticle during SHM at a displacement
Xfrom mean position is given as

...(5.80)

Now using equation-(5.79), the potential energy of particle at a
displacements from mean position is given as

U^ = Ej-K^ [As total energy of particle
is constant]

...(5.81)

Ifpotential energy ofparticle at mean position is taken as zero
(t/„,-^=0).The value ofC/^is

U_= —wcoV
2

...(5.82)

/
From equation-(5.80) and (5.82) we can write the kinetic and

potential energy ofa particle in SHM as function oftime as

C/, =^m(£?A^ sin^ (co/+a)
[Asx=.,4 sin (cor + a)]

and AT, =-j cos^ (co/ +a)
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Thus at any instant total energy during oscillations is

Ej.= K^+U, =—m(i?A^

As we've discussedjtheaboveresult is valid ifat mean position
potential energy is zero = 0).

5.8.1 Energy ofOscillation in Angular SHM

When a body is in angular SHM its angular displacement is
written as

0 = 0Q sin (co/ + a)

There 0q is the angular amplitude and a is the initial phase of
particle in SHM.

Similar to previous article here we can directly state that the
total energy of oscillations can be given as

E^= ^/coX^ ...(5.83)

In equation-(5.83) instead ofmass, we use moment ofinertia of

body and instead ofamplitude angular amplitude is used. Ifat
mean position some potential energy exist then total

energy ofbody in angular SHM is given as

Similarly kinetic and potential energies of the body at an
angular displacement 0 can be given as

2
2

1
and

70)2 (00-0')

Uf,= -/co^0^
® 2

...(5.85)

...(5.86)

Similar topreviousarticle,equation-(5.85) and (5.86)arevalid if
at mean position = 0.

5.9 Energy Method to Find Frequency of SHM

In previous articles we've read how to find angular frequency
ofa particle in SHM under some external forces. We first find
the equilibrium position ofparticle then we displace it slightly
from its equilibrium position and find the forceacting on particle
toward its equilibrium position i.e. the restoring force and we
try to express this restoring force as a proportional function of
displacement and then we compare the acceleration ofparticle
during oscillation with the standard differential equation of

SHM.

The above method is appropriate but using energy of
oscillations also we can find the angular frequency ofSHM of
a particle. Some time this method is more useful in solving
problem. To explain this method we take few example.



# Illustrative Example 5.26
/

Find angular frequency of a spring block pendulum using
energy of oscillations.

Solution

Fjgure-5.61 shows a spring block system in equilibrium which
is at a depth h,below the natural length of spring hence we
have

mg= kh

•/////////

equilibrium position

Figure 5.61

Now ifthe block is displaced down by a distance A below the
equilibrium position and released. It starts its oscillation witli
amplitude A about the mean position. Now during oscillation,
we consider the block at position Pat a general displacement;c
from its mean position when it is moving at a speed vas shown
in figure-5.62.

//////Mz

Natural length-

equilibrium position ^
I

T

Figure 5.62

Ifwe write the total energy of the oscillating system shown in

figure-5.62 at this instant. This is given as

1,1 ,
Py-= —mt/ + —A(jc+/i) -mgx

[Here gravitation work we've considered relative to mean
position]

Here we know during oscillation the kinetic and potential energy
changes into each other and the total energy of oscillation

Oscillations and Simple Harmonic Motion

remains constant with time, thus we have

or

dEj
= 0

dt)
1 dx

2(x+/i) — = 0

//dx , ,
Here we can write 'v-^ — and a= , thus

dt ^ dt

or

or

mva + k(x-\-h)v- mgy = 0

ma + kx + kh- mg = 0

k -
aH x=0

m

[As from condition of equilibrium mg = kh]

Comparing this with standard differential equation of SHM,
we have

co =

Aboveexample explains the wayhow energy ofoscillation can
be used to determine the angular frequency ofSHM. These are

the steps to be followed for this :

Step I :Find equilibriumpositionofparticle bymaking net force
on it equal to zero.

StepII :From equilibrium position displace the particle by a

distanceA(amplitudeof oscillation)and releaseand let it starts
oscillation with amplitude^.

Stepin:Consider the particle during oscillations at an

intermediateposition when its displacement from mean position

isXand write the total energyEj of oscillating system at this
instant.

Step IV : Now differentiate this energy of oscillations with
respect to time and equate it to zero as this energy does not
vary with time.

In step IV when we differentiate this energy expression, we
finally get the basic differential equation of SHM as we've

seen in example 5.26. In general problems ofSHM, if the physical

situation involves the concept of mechanical forces, it is easier

sometimes to deal the problem using energy expression other

wise the conventional method of restoring forces are used.

Now we take few more examples using the concept ofenergy.
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# Illustrative Example 5.27

dt
1=0

247

Figure-5.63 shows a pulley block s>^temin equilibrium. Ifthe
block is displaced down slightly from its equilibrium position

and released. Find the time period ofoscillation ofthe system, or wva+-j va +k{x-\- h)v-mgv =0
Assume there is sufficient friction present between pulley and
string so that string will not slip over pulley surface.

or a +

,-.dx
l{x + h) —

dt

I

Solution

•///////////,

y/TTTTTTTTZ'

Figure 5.63

Ifm is in equilibrium, tension in string must be mgand spring is
stretched by h so that mg = kh. If we displace the block
downward by a distance A and released, it starts executing
SHM with amplitude.4. During its oscillation we consider the
block at a displacement x below the equilibrium position, ifit is
moving at a speed v at this position, the pulley will be rotating
at an angular speed o given as

V

co= —

r

•///////////,

-77777777777)

Figure 5.64

;c=0 ...(5.87)

[As mg = kg]

Comparing above equation with standard differential equation
of SHM we get

(£>=

V. ' / r* y

Thus time period ofoscillation is

271 '" +X2
T= — = ^

Q) V ^

# Illustrative Example 5.28

Figure-5.65shows a pulley block system in which a block.4 is
hanging on one side ofpulley and on other side a small bead B
ofmass m is welded on pulley. The moment ofinertia ofpulley

is /and the system is in equilibrium when bead is at an angle a
from the vertical. If the system is slightly disturbed from its
equilibrium position, find the time period ofits oscillations.

Figure 5.65

Solution

In equilibrium the net torque on pulley must be zero, thus we

Thus at this position the total energyof oscillating system is have
MgR = mgR sin a

[IfmassofblockyI is assumed to be A/]

Differentiating with respect to time, we get
or M=wsina ...(5.88)

Ej=—mv^ +~I(i?+ —Idx +hf-m^

~dt
1 dv

=—m\ 2v— I+—/| -T
1 / 1 2v^

- dt)

1
Now ifblock is displaced down by distance A and released, it
starts oscillating with amplitude A. Now consider the block at
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a distance x below the equilibrium position when it is going
down at speed v. Figure-5.66 shows the corresponding situation
at this instant and the total energy of oscillating systeifTcan. be
written as

1,1,1
£"_= — Mv + — ftnr + — I
^2 2 2

- Mgx + mgR

[cosa - cos (0 + a)]

Oscillations and Simple Harmonic Motion

# Illustrative Example 5.29

A particle of mass m is located in a unidimensional potential
field where the potential energy ofthe particle depends on the

coordinates as f7(s) = t/g(1 - cosCx); and Cafe constants.
Find the period ofsmall oscillations that the particle performs
about the equilibrium position.

Solution•////////////•//

Given that U{x) = U^{l
/1 \ iir

We know that F=ma=-
dU{x)

/?[cos(,0+ a)-cosa]

Figure 5.66

Differentiating the above equation w.r. to time, we get

dE-r

-Mg

1
j =-M\2v—
dt 2 [ dt

dv 1
+ —m

dt

1 /
H— ,

2

dx\
• /n-sin(0 + a) —

dt
= 0

2v—
dt

or Mva+ mva-\—^ va- + wg/? sin (0 + a)
R i'-

M + m +

R^ J

M + m+ I a + mg cos a. — = 0or

or

a ~ Mg - mg [0 cos a + sin a] = 0

[As M^ m sin a and 8 = — 1
• R

mg cos a
a = —

R{M +m^y^,) .X ...(5.89)

Comparing equation-(5.89) with basic differential equation of
SHM, we get the angular ffequency"ofSHM~oFsystem as

CO =

mg cos a

/?(A/ +m+ 1/2)
/ K

Thus its time period ofoscillations is given as

271 \KM^m +yS)
T= =27rJ

CO y mgcosa

or a = —
m

dx

dU{x)

dx
= — [- Cf,Csin Cx]

m m

[For small x, we can take sin Cx a Cx]

Here acceleration is directly proportional to the negative of
displacement. So, the motion is SHM and its time period Fis
given by

27C27t
= 271

m

UoC

# Illustrative Example 5.30

The pulley shown in figure-5.67 has a moment ofinertia/about
its axis and mass m. Find the time period ofvertical oscillation
ofits centre ofmass. The spring has spring constant A: and the
string does not slip over the pulley.

Solution

////////////////y

M

o Rli

Figure 5.67

Figure-5.67 shows the system in equilibrium. As it is in
equilibrium, if mass ofpulley is mand tension in string is F,we
have

T= he.
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Thus 2kxQ =mg

•/////////////////

(5.90) Thus its time period ofSHM is given as

Figure 5.^8

Now if the pulley is slightly displaced from its equilibrium
position andreleased, tostartsoscillating aboutthe equilibrium
position 0. During its oscillations we consider the pulley at a
depth jrbelow the equilibrium position O as shown in figure-
5.68. Due to a further pull by a distance x, total extension in the
spring becomes 2 (x + Xq). If at this instant it is going down
with the velocity v and relating at angular speed co which is

given as))^, it is given thatstring does not slop over pulley
surface. At this position we write the total energy of this
oscillating system as

i'r=Y +Y^[2 +2x)]2 - Mgx

differentiating with respect to time, we get

dEj • 1 ^ dv\ 1 ( Iv dv\ 1

dx dx
[2(xo +2x)^2—]-Mg—= 0

dt dt

Iv
or Mvah—a+2k(xQ+ 2x)v- Mgv= 0

R

Iv
or MaH—Ya-^2kxQ + Akx~Mg = 0 -[As Mg= 2kx^

R

or i A/ + \,a + 4kx = 0

CO

M+ '/
R'

Ak

# Illustrative Example 5.31

A solid uniform cylinderof massMperforms small oscillations
in horizontal plane if slightly displaced from its mean position
shown in figure-5.69. Ifitis given that initially springs are in
natural lengths and cylinder does not slip on ground during
oscillations due to friction betweenground and cylinder.Force
constant of each spring is k.

Figure 5.69

Solution

In the situationgiven in problem, the cylinder is in its equilibrium
position when springs are unstrained. When it slightly rolled
and released. It starts executing SHM and due to friction, the
cylinder is in pure rolling motion. Now during oscillations we
consider the cylinder when it is at a distancex from the mean
position and moving with a speed v as shown in figure-5.70.
As cylinder is in pure rolling, its angular speed of rotation can
be given as

co =
R

6~o"o~o~o"oia

Figure 5.70

Ak As centre ofcylinder is at a distancex from the initial position,
...(5.91) springs which are connect at a point on its rim must be

compressed and stretched by a distance 2x. Thus at this
.. -..uu • j-£c- X- 1 r- intermediate position total energy of the oscillating systemComparing equation-(5.91) with basic differential equation of . ^ ^

SHM, we can say that angular frequency ofSHM ofpulley is ^given as

or a = -

Ak
(£> =

M+ '/

I - 1

^2 2

' \ ^ 1
—MR^W+ —k(2xf^2
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Differentiating with respect to time, we get

dEr 1

dt 2

+—[—MR-
2 12

2v-^
dt

R-
2v—

dt

or Mva H— Mva + 8fccv = 0
2

16 k
OT a — -—r- X

3 M

(2. '̂
dt

+ 4k = 0

...(5.92)

Comparing equation-(5.92) with basic differential equation of
SHM, we get, the angular frequency ofSHM as

co =

\ek

IM

Thus time period ofthese oscillation is

2:r 3M
r= — =271^777-

co V 16^

IBM

T

# Illustrative Example 5.32

A uniform rod of mass m and length L performs small
oscillations about a horizontal axis passing through its upper
end. Find the mean kinetic energy of the rod during its
oscillation period ifat f = 0 it is deflected from vertical by an
angle 9qand impartedan angular velocitycOq.

I

Solution

Here the rod oscillates like a physical pendulum whose angular
frequency can be directly given as

Where

Thus

co =

Mgl

r ^ A 1 ^j- /=—
3 2

co = .
MgiYi)
Ml}j3 V21

Itisgiven^that atf=0,rod isatan angular displacement 0q and
has angular speed cOg. If angular amplitude of rod is p then we
have

Thus
2L©,

V 3g
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Weknow the average kinetic energy ofa body in angular SHM
over its oscillation period is given by

or

or

1 .2o2<k> = —M^
' 4

2 ^
ML

IL

§ Illustrative Example 5,33

3g

2L0il
+ 1

Figure-5.71 shows a torisional pendulum consists ofa uniform
disc D ofmass Mand radius 72 attached to a this rod oftorisional

constant C. Find the amplitude and the energy ofsmall torsional
oscillations ofthe disc, ifinitially the disc was imparted angular

speed ©Q.

•/////////.

Figure 5.71

Solution

Weknow for a torisional pendulum angular frequency ofsmall
oscillations is given as

co =

Where 7=—M?2 , thus
2

co =

2C

MR}

As it is given that from mean position the disc is imparted an
angular speed ©q, if the angular amplitude of oscillations of
disc is p, we have

©o = p©

or = P
2C

MR}
Thus angular amplitude is given as
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For angular SHM the total oscillation energy is given as

Et.=

Thus here oscillation energy of the disc is given as

m.=o]

251_ 1

(v) Find the time period ofoscillations ofthe system shown in
the figure-5.72. The bar is rigid and light. Initially in equilibrium
bar is horizontal.

1

2
—MR^
2

2C

MR-

MR-

2C

A i*' B

-UJO i •—a—•H h
-1

or
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Topic - SimpleHarmonic Motion
Module Number- 10, 11, 20 & 26 to 31

Practice Exercise 5.4

(i) In an SHM, at the initial moment oftime, the particle's
displacement is 4.3 cm and its velocity is - 3.2 m s"^ The
particle's mass is4 kg and its total energy79.5J. Writedownthe
equation of the SHM and find the distance travelled by the
particle in 0.4 s from the start.

[x= 0.05 sin (126.33 r+2.1); 1.6 m]

(ii) A uniform rod of mass m and length I performs small
oscillations about the horizontal axis passing through its upper
end. Find the mean kinetic energy ofthe rod averaged over one
oscillation period if at the initial moment it was deflectedfrom
the vertical by an angle 0q and then imparted an angular

velocity 0^.

\_{KE)

(ili) A point particle of mass 0.1 kg is executing SHM of
amplitude of 0.1 m. Whentheparticlepassesthroughthe mean
position, its kinetic energyis8x10"^ J. Obtain the equation of
motionof this particle if this initial phaseofoscillationis 45°.

\x = 0.1 sin (4 t + t:/4) m]

(iv) Equal charges+e are fixedat the fourcomers ofa squareof
sidea -Jl . Afifth charge +e,whose mass is m,isplaced at the
centre of the square and is free to move. Show that it is in
equilibrium at this point that the equilibrium is stable for all
small displacementsin the plane of the charges.Find the period
ofsmall oscillations along the diagonals of square.

{T^2%
iTiz^ma

Figure 5.72

[2Tr.
k\hr2

^1+^2 -

(vO Find the time period of small oscillations of the spring
loaded pendulum. The equilibrium position is vertical as shown.
The mass ofthe rod is negligible and treat mass as a particle.

^//////////////////////.

[r= 2%,
mr

mgl + 2Kb'

K K

a-
Figure 5.73

(vii) A massless rod rigidly fixedat O.Astring carrying a mass
m at one end is attached to point A on the rod so that OA = a. At
another point B{OB = b) ofthe rod, a horizontal spring offeree
constant k is attached as shown in figure-5.74. Find the period
ofsmall vertical oscillations ofmass tn around its equilibrium
position. Considerrod in vertical position in equilibriuminitially.

2na

"0

0

Figure 5.74

(viii) A particle of mass m is oscillating in SHM along X-axis
about its mean position O with angular frequency co and
amplitude A. At the instant when the particle is passing the

position X=yj3 {A/2) and going away from O, an impulsive
blowis given to it in the directionofmotion. The impulseofthis
blow is ofmagnitude7= wcQ^. Calculate the new amplitude of
vibration in terms of.^.

[A •= -JSA]
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5.10 Taylor's Method to Find Angular Frequency of Solution
a Particle in SHM

For expression ofa givenmathematicalfunction >'=/(x) Taylor's
theorem is defined as

...(5.93)

y

+0

r

0>S-9
X ^

r

+0

X

/(.r)=/(0) + x/'(0)+—r(0) + ..

Ifx is taken as the displacement of a particle from its mean
position and the restoring force on particle depends on this x
by the function =/(x) then it can be given as

Restoring force on particle at a distancex from mean position
is

F„ =/W =/(0)+*/(0) +1^/" (0) + (5.94)
Here/(O)= 0 as atx = 0 or meanpositionrestoringforce is zero
and for small displacements ofparticle higher powers ofx can
neglected so restoring force can be given as

[-ve sign shown the restoring nature]

Acceleration ofparticle during oscillation is

(n^)F.

m
...(5.95)

Comparing this equation with general differential equation of
SHM, we get

co =
/'(O)

m
...(5.96)

27C / m
Hence time period ofthis SHM is T=—= 2Tt i TTTTT

CO V/ (0)

a Illustrative Example 5.34

Two point charges with charge + Q are fixed at pts (0, r) and
(0, - r) on -y axis of a coordinate systemas shown in figure-
5.75. Another small particle of mass m and charge-^ is placed
at origin of system,where it stays in equilibrium. Ifthis mass/w
is slightly displaced along + x direction by a small distance x
and released, show that it executes SHM and find its time
period ofoscillations.

+ 0

+ Q

, Figure 5.75

Figure 5.76

Ifwe calculate the net force on particle after its displacement
as shown in figure-5.76. The force due to each + Q charge on
- q is given by coulumb's law as

^ (r^+x^)
Thus net restoring force on it is

kqQ

Fj^--2F cos 0 = -
IkqQx

(r^+x^y^

[as cos 0 =

Asherex « a, we canneglectx^, thus

R 3 ^
r

Ifa is the acceleration ofparticle, we haye

2kqQ
a-

mr'

i

...(5.97)

r'+x'

...(5.98)

Comparing this equation with basic differential equation of
SHM we get angular frequency ofSHM ofparticle as

(0 =

2kqQ

mr'

Thus its time period is given as

CO i IkqQ
Alternative method by Taylor's theorem:

As we've get the restoring force on particle as

2kqQx
Fr = - (a^+x^)^

...(5.99)

We can directly write the angular frequency ofSHM as

...(5.100)0) =
/'(O)

m

Where /'(0) =
dx

x = 0
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. or = 2kqQ
{r^+x^f

or = IkqQ
IkqQ

Thus from equation-(5.100)

©=

2.kqQ

mr'

Which is same as that ofequation-(5.99)

a Illustrative Example 5.35

x = Q

Solve example(5.29) using Taylor's Method

Solution

In question it is given that potential energy ofthe oscillating
particle is given as

17=t/o[l-cos (Cx)]

Thus force on particle can be given as

dU
F=

co =

Where /'(0) =

dx

F= f/pCsin (Cx)

This force is given as a function ofdisplacement of particlex
from its mean position, thus angular frequency ofits SHM can

be directly given as

/'(O)
m

= CnC^
dF

dx .t = 0

Thus from equation-(5.101)

co=

CqC'

m

# Illustrative Example 5.36

...(5.101)

cos(C x)j
l.r=(

In a given force field, the potential energy ofa particle is given
as a function ofitsx-coordinates as

u
x= X

where a and b are positive constants. Find the period ofsmall
oscillations ofthe particle about its equilibrium position in the
field.

Solution

As potential energy of particle is given as

U

The force on particle can be given as

dU
F=

dx

'^p q

x' x^

253

The equilibrium position of particle can be.given for 7^=0, as

or

2p q ^
+ _2_ =0

3 2
a: X

2p

Thus atjr position particle is in equilibrium. If we find
restoring force onparticle ifit is displaced slightly by a distance
z along + a:direction then it is given as

2p
Fr —

[- ve sign for restoring nature]
For small z we have

Fr=-
2p

e%y
1+

r
or Fr =-

4p^ 2p J 4p'

Fr = - 2p p 4p'

\ ^ /

Ifa is the acceleration ofparticle, we have

_4

a =—

{^mp J

-2

1-^

...(5.102)

Comparing equation-(5.102) with basic differential equation of
SHM, we gettheangul^ar frequency of itsoscillations as

CO-

2-yj2mp '̂

This time period ofits oscillations is

,^2^^ (2^j2my^
T= =271 -

CO

...(5.103)
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Alternative method by Taylor *s theorem:

As we've got the restoring force on particle is given as

^« = -
q

v2X X J

Solution

Ifinitial length ofspring is / and after charging it becomes 21,
from coulumb's low we have for equilibrium ofball-2 as

.2

-=kl

[- ve sign for restoring nature]

Then the angular frequency ofSHM ofparticle is given as

Q) =

[Because now mean position ofparticle is atx =
Ip

Here /'
( dPR

I 1 > dx

6/7

6/7 2^

•2^4 ^4Zq q

8/7^ 4/7^ 8/7'

Thus angular frequency is given as

03 =

/•('%)
TM 8/M/7-

...(5.104)

Which is same as that ofequation-(5.103)

UIllustrative Example 5.37

Figure-5.77 shows two identical balls of mass m and charge
+ q. Connected by an ideal spring ofconstantBall-1 is fixed
on a smooth surface as shown in figure. When balls are
uncharged, the spring was in its natural length and as both the
balls are charged, the spring length gets doubled in equilibrium
position ofthe balls. Find the time period ofsmall oscillations '
ofthe ball-2 about the new equilibrium position after charging
the two balls.

Bal -1 Ball-2

Figure 5.77

or

kg'

(2iy

k =
41-

...(5.105)

Now if ball is slightly displaced away from ball-1, formats
equilibrium positionsuch that the separation betweentwo balls
becomes x, then we have restoring force on ball-2 as

_2

P'r = kix-D-
kq'

[As spring is stretched byjr= I]... (5.106)

Equation-(5.106) gives the restoring force as a function of
distance x, here we can directly find the angular frequency of
SHM ofbaIl-2 using Taylor's Theorem as

Here

co =

/'(2/)

m

[Because equilibrium position ofball-2 is 2iix= 2I\

dPR

x^2l

/'(2/) =
dx

A: +
2kq'

x=2l

2kq^
=k+-\~ =2k

8/^
[As k = K

41-

Thus angular frequency ofSHM ofbalI-2 can be given as

co=

Thus the time period ofSHM ofbalI-2 is

271
...(5.107)

NOTE : This problem can also be solved by the conventional
method of restoring force. We leave this as an exercise for

students to get equation-(5.107) by the conventional method.

5.11 Equation ofSHM With Shifting of Origin

In previous articles we've discussed that a general equation of
SHM ofparticle is given as

>>=>4 sin (co/ + a) ...(5.108)
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Here mean position of particle is at;'=0 and it oscillatesbetween
points;'=±^. In all cases, it is not necessary that mean position
of particle is at origin (y^O). If in some case mean position of
particleis 3Xy=y^and it executes SHM with amplitude^ then
the extreme position oftheparticlein SHM arey^ + Aandy^-
A. In such a case the SHM equation can be given as

y +y4sin (co/+a) ...(5.109)

The differential equation for SHM can be written by
differentiating equation-(5.109) b.vice as

or

or

or

£y
dt^

=-y4co^sin (©?+ a)

d y j j-^+co^y=coV„

dt^
+ (iiy=C ...(5.110)

Where C = is a numerical constant, where mean position

of particle can be given as

= C/ap- ...(5.111)

In some cases ofSHM, while solving using energy expression
some time equation-(5.110) appears where instead of zero a
constant appears on right side ofequalit>',which implies that
mean position ofoscillation isnotaty = Obut aty= C/aP. Now
we take few examples to understand the concept in a batter
way.

# Illustrative Example 5.38

Figure-5.78 shows block of mass m resting m a smooth
horizontal plane attached with a spring ofnatural length I and
force constant A:. If at / = 0 an external force F is applied on the
block toward right, it starts executing oscillations. Analyse the
motion ofthe block and write the equation ofSHM ofblock by
taking origin O at the left wall where spring is connected.

V7777777777777777777777?77777^,

O
I-

Figure 5.78

Solution

As F force is applied on block, its starts accelerating toward
right and its acceleration during motion is given as

255

F-h:
a =

m

[Ifx is the displacement ofblock from its initial position]

After some displacement atx= ^, the block isinequilibrium
but gained some velocity so it will move further but now A:x >

F and it retards and say at x = /, it stops thus from work-energy

theorem, we have

Fl-
2

or / =
2F

So itisclear that after equilibrium (x = %) position it travels a
further distance ^ which can beregarded asthe amplitude of
the SHM ofblock and we can say that at ^= 0 block was started

from its left extreme position i.e. at a distance ^ left ofthe
equilibrium position. About the equilibrium position the SHM

equation ofblock can be written as

F^

k
cos (at

[As at / = 0, particle starls from its left extreme position

thus its initial phase isa= 3^]

Iforigin is taken at the point 0 then equation ofSHM i.e. the

displacement ofblock as time fiinction about this origin can be

written as

y^yQ-ycos®/

Here^Q is the distance co-ordinate of mean position of block
from origin which is given by

Thus equation ofSHM for origin O is

F
y = /+—(1 -cos CO/)

K

Here it is important to note that angular frequency ofSHM co is

still ; There is no effect on the angular frequency due to

the presence ofexternal for F, because it is constant.

Always remember that on applying a constant external force

on an oscillating system, there is no change in its oscillation

frequency. The external force can only change the equilibrium
position of oscillations.
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# Illustrative Example 5.39

Figure-5.79 shows, two balls having charges connected by
a spring of force constant k first ball is fixed in the ceiling and
second is hanging vertically in equilibrium. Taking origin at
ceiling write the equation of SHM for the motion of hanging
ball if at r= 0 is givena velocity Vq in downward directionfrom
equilibriumposition.Given that in equilibriumball with charge

^2 is at a depth>>0 below theceiling.

Solution

yo

(iy 92'

Figure 5.79

y////r^////

equilibrium
position

Figure 5.80

Here during^oscillations of second ball, we consider it at an
intermediate position at a depths: belowthe equilibrium position
and moving downward at speed v, then the total energy ofthis
oscillating system can be written as

2 2 (yo+x)

[If / is the natural length ofspring]
\

Differentiating with respect to the, we get

dE.T 1
— -~ZU1

dt 2-
2v—

dt

. dx^
^(x+yo-i)^

or mva+k(x+yQ-f)v-

(^0+^) dt dt

v-mgv=Q

or ma +k(x+yQ-l)-
(To+^)'

-mg=0 ...(5.112)

Oscillations and Simple Harmonic Motiw j

We know at equilibrium position we have

kiyQ-l) = mg+ 2
To

In equation-{5.112) for small x, we have

To;
ma +fcc + kiy^- /)- I1--

To

From equation-(5.114) and (5.115)

,na +kx^^^!^x=<d
To

or a = -
k ^Ikq^q^
m myl

...(5.113)

-mg=(i ...(5.114)

Thus angular frequency of oscillations ofsecond ball is given
as

k . 2kq^q2
(0= J—+

m WTo

Ifamplitude ofSHM isy4 then we have at mean position velocity
of second ball is Vq, thus

Vn= A(£iOTA=— =CO Ik ^2kq^q2
m WTo

As ball starts its SHM at ?=0 from its mean position, its equation
can be given as

y=yQ+A sin cor

5.12 SHM of Free Bodies in Absence of External

Forces

We know for oscillations of a body restoring force must be
there due to which the body oscillates about its mean position.
In some special cases, it is possible that a system oscillates
due to only internal forces and internal forces of system provide
the required centripetal force for oscillations. We take an
Illustrative example to explain such situation.

# Illustrative Example 5.40

Figure-5.81 shows twomassesWj and^2 connected bya spring
of force constant k and the system is placed on a smooth
horizontal surface. If the block are compressed slightly and
released. Find the time period ofsuch oscillations.

7V?7777z77777777777777777/77777y77,

Figure 5.81
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Solution

'"i —»
• c ,

^777777777777777777777777^7777^.

I

Figure 5.82

As during oscillations of the two blocks, there is no external
force present, thus we can state that the centre of mass of the
two block system remain at restduring oscillations. Infigure-
5.82 if C is the centre ofmass ofthe blocks and / is the natural

length of the system, then we can say that in this situation
point Cwill remain atrest and with respect to this point w, and
W2 will oscillate independently. We canalsosplitthe spring in
two parts of lengths /j and whichare given by

/ =
m^l W]/

and h =W1+W2 w,+W2

Now if these two springsare assumed to be fixed at point C
separately, the case still remains same as in absence ofexternal

forces centre of mass of system C remains at rest as shown in
figure-5.83. The respective force constants can begiven as

, kl k{m^ + ^2) .
^1 ~ ~

and

m-

, kl k{m^ +'^2)
2 ~ ~7~

h rri^

C

wttttttttttttttttttttttttttttTt/,

Figure 5.83

Now the angular frequencyand time period of oscillations can
be directly given from that of a spring blocksystemwith one
end ofthe spring fixed as

Here for mass w,, we have

For /«2' we have

co =
^2

^2

(;«, +
...(5.115)

(W] -\-m2)k

i
...(5.116)

Botharesamethusboththe blocks oscillates withsameangular
frequency given byequation-(5.115) or(5.116). Thustimeperiod
of oscillations of the system is given as

27C
T= =2jc

CO

\'"1

(W] + m2)k
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or ...(5.117)

In equation-(5.117) p = is called reduced mass of the

system. Reduced mass can also be regarded as mass of one
body relative to the second body (assumed to be fixed) in
absence of external forces.

a Illustrative Example 5.41

Figure-5.84 shows a cart ofmass Mow which another mass m is
placed and attached to a pole on cart by a spring of force
constant k. Ifthe friction between m and surface ofcart as well

as between cartand floor isneglected find the timeperiod of
smalloscillation of cart-blocksystem.

M

^/////////////////y///y////////////////////y

Figure 5.84

Solution

As in problem it isgiven that there is no friction present any
where, this implies toexternal forces areacting onthis system.
Ifweassume cart is fixed atitsposition, we can consider only
the block (with reduced mass p) is oscillating on its surface,
thus time period ofoscillatings of blockcan begiven as

r=2ji,/j where p =
mM

m + M

Nowwetake somemoremiscellaneous exampletounderstand
basic Simple Harmonic Motion in detail.

# Illustrative Example 5.42

A uniform rod AB of mass m is suspended by two identical
strings of length / as shoum in figure-5.85. Ifthis rod is turned
by a small angle in horizontal plane about. The vertical axis
passing through its centre C. In this process the strings are
deviated by a small angle 0q from vertical. Then the rod is
released tostartperforming angular oscillations. Find the period
of oscillations and the rod's oscillation energy.

•/////////////////////////////////.

Figure 5.85
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Solution

'/////////////////////////////////.

Figure 5.86

Figure-86 shows the situation when the rod is in twisted
situation ifrod is at an angular displacement 0, let string are at
deviation (j), if length of rid is/, wehave from figure-5.86

L

As the rod vertical is in equilibrium thus we have

...(5.118)

ITcos ^ = mg [If T is the tension in strings]

Forsmall (|), we have

1
T=—mg

From figure-5.86, we can see that Tsin (j) on both the ends of
rod produces a restoring torque on it which is given as

T^ =-2rsin(t)x Y

[- ve sign for restoring nature]

or Xj^^-—mgL^ [Asfor small (j), sin

Now from equation-(5.118)

1

21

Ifa be the angular acceleration ofrod during oscillations, we

have

or

or

ML' MgL' ^
• a = - —-—0

12 4/

[As about central axis, for rod,/= ]
ML'

a = -
(^S ...(5.119)

Oscillations and Simple Harmonic Motion _

Comparing equation-(5.119) withbasicdifferential equation of
SHM, we get the angular frequency ofoscillations as

co = ...-(5.120)

Thus time period of its oscillations can be given as

27t I i

If isgiven in the questionthat initially strings are deflected by
anangle 0q. Ifp istheangular amplitude ofoscillations ofrod
then from equation-(5.119) we have

or

21

P— 00

Now we know that the total energy of oscillation of rod can be
given as

2

or

ml} ^ he
2

12
\ " > UN

=-MgBl

# Illustrative Example 5.43

Suppose a tunnel is dug through the earth from one side to the
other side along a diameter. Show that the motion of a particle
dropped into the tunnel is simple harmonic motion. Find the
time period. Neglect all the frictional forces and assume that
the earth has a uniform density.

G^6.67X10""Nm^kg~^;densityofearth =5.51 x 10^kgm7^

Solution

Figure 5.87
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Figure-5.87 shows the particle P of mass m, dropped in the (iii) The cord is light and inextensiblein the spring-masspulley
turned along diameter ofearth at a distancex fromthe centreof system as in figure-5.90. Find the frequency of vibration if the

mass m is displaced slightly and released. Assume that cord

does not slip over pulley.

earth.

We know intensity gravitational field inside the earth is given
as

GM.

R
•X ...(5.122)

Thus restoring force on particle P towards earth centre can be
written as

GMjn

R:
...(5.123)

[- ve sign for restoring nature]

In equation-(5.123), restoringforceonparticle is always towards
centre ofearth and it is directly proportional tox, thus it shows
that motion ofparticle is simple harmonic and during motion if
its acceleration is a, we have

GM.
a= —

R:

Practice Exercise 5.5

(i) Find the angular frequency of
SHM of block of mass m for small

oscillation of light rod5£). Consider
rod is vertical and springs relaxed
in initial state.

[(B =
k,k-,c

mik^c^+k.ib +cf}

m

7777777?.

777777.

Figure 5.88

(ii) A particleof massmissuspended at the lowerendofa thin
rod of negligible mass. The upper end ofthe rod is freeto rotate
in the plane of the page about a horizontal axis through the
point O.The spring isundeformed whenthe rodis vertical as in
figure-5.89. Show that the motion of the particle is SHM if
displaced from mean position and hence find the period of
oscillation.

[1%
mil

mgL+kl

y///^

k

i

O'"

Figure 5.89

V////////A

777/

Figure 5.90

[co =
4m +

3M

(iv)Auniform semicircular cylinder of radius R and weight Wis

displaced through a small angle 9 from itsequilibriumposition
as shown in the figure-5.91. Find the periodof small oscillations
if it rolls without slipping when displaced slightly from its
equilibrium position.

7777777777777777777.

Figure 5.91

(v) In the figure-5.92shown, the springs are unstretched.The
left spring iscompressed by2/4 and then released with mass m
which is always attached to it. Find the time to touch right

spring. Find maximum compression in right spring and
equilibrium position of mass m.

r 35 l~
^3V2k '

spring)

2k

[mmb-7
•7///////////////7//77///777/777/77/^.7

Figure 5.92

7?. ^ ; Equilibrium position is at compression ofright
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(vi) A point oscillates along the x-axis according to the law
x-acos (cor - 7c/4). Draw the approximate plots

(a) of displacement x, velocityprojection and acceleration
projection as functions of time t;

(b) velocity projection and acceleration projection as
function ofthe coordinate x.

[(a) See Figure 5.93 O

(b) (yjaa) + {x/a) = 1 and vv^ = - eo^jc.]

(vii) A smooth horizontal disc rotates about the vertical axis O

(Figure-5.94) witha constant angularvelocityco. Athin uniform
rod AB oflength Iperforms small oscillations about the vertical
axis A fitted to the disc at a distance a from the axis ofthe disc.

Find the angular frequency of these oscillations.

Oscillations and Simple Harmonic Motion

Figure 5.94
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Discussion Question
Q5-1 Abody ofmass Afis executing SHM on arough horizontal
plane having friction coefficient n.Plot the variation graph of
the restoring force acting onthe body as a function oftime.

Q5-2 If a body is in SHM of amplitude A and angular
frequency CO in a horizontal straight line. If the frequency of
SHM isto be changed to5co, and for this we make amplitude of
SHM A/ yfs , with supplying any extra energy to it. Will this
method work for therequired change inangular frequency.

Q5-3 We know during oscillation, aparticle comes torest at its
extreme positions. Can we state that the resultant force on the
particle becomes zero at thispoint ?

Q5-4 Ifa body in accelerated frame ofreference experiences a
force which is proportional to the displacement of the body
from a fixed point and acting towards this point. Will the body
executes SHM in this frame.

Q5-5 "In angular SHM, the angular momentum ofoscillating
bodyalways remains constant". Isthis statement true. Explain.

Q5-6 Justify the statement, "In SHM, the graph plotted
between thespeed ofparticle vAth displacement isaparabola".

Q5-7 A pendulum bob thrown from its bottom point in
horizontal direction with a velocity sufficient to complete its
vertical circle. Does its shadow formed bythe sun on ground
executes SHM. If bobperforms vertical circular motion with a
uniform speed the will this shadow executes SHM.

Q5-8 A spherical shell filled with water is suspended from a
string to forma simplependulum. What will be the effecton the
time period of this pendulum if the water in the shell freezes.
Will itmake a difference ifthe size ofthe shell ischanged.

Q5-9 In previous question ifat the bottom ofshella smallhole
ismade through which water startleaking during itsoscillation.
Find theeffect ontime period ofoscillation during thetimethe
shell will becomeempty.

Q5-10 Justify thestatement, "Two particle in SHM with same
mean position same angular frequency but different amplitude,
when in samephase crosses their mean position at the same
time in same direction".

05-11 "When two particles executes SHM with different
angular frequencies, they will be in same phase periodically,
with a constant time period". Explain.

05-12 A simple pendulum is attached to the ceiling of an
elevator, at / = 0, the bob is in its equilibrium position and

thrownhorizontally. At thesameinstantthe elevator is released
to fall freely. Discuss about the motion followed by the bob
now.

05-13 When the time period ofasimple pendulum ismeasured
by a stop watch, it is advisable to measure the time between
consecutive passage through the mean position in the same
direction instead of measuring the time between consecutive
passage through an extreme position. Why ?

05-14 In SHM ofa particle can total energy ofa particle be
negative.

05-15 When apendulum clock is giving right time atequator.
Find whether the itwill show correct time, itwill lose or gain
timewhen it is situatedat poles.

05-16 What time apendulum clock will gain orlose when it is
in anelevator and the cable supporting elevator is broken.

05-17 When the mean position of a particle in SHM with
amplitude A, angular frequency co, ismoving along+x direction
with a velocity Vq. What would be the equation of SHM of
particle with respect to origin. It isgiven thatat / = 0, particle
was started fromorigin.

05-18 Two clocks, one based on aspring mass pendulum and
other basedon a simplependulum are taken to moon. Which
clock will be slower there.

05-19 Aparticle is executing SHM with its displacementgiven
as>'=sin^ cot. What will be its amplitude and angular frequency
ofoscillations.

Q5-20 Try to collect at least 10 approximate SHM examples
from yourgeneral lifesurroundings.

05-21 When the simple pendulum in SHM isdamped due to
air friction, its amplitude decreases with time which we call
damping. Does time period of oscillationalso decreases with
time.

05-22 When a"crazy bair is released from rest ataheight 5m
above a hard floor. Can the repeated bounces of the ball be
regarded as SHM.

05-23 At what points during the oscillations of a simple
pendulum,the tensionin its string ismaximumor minimum ?

05-24 When pendulum clocks aremade, thelengths used for
thependulums are approximately either Imor 0.25m. Whatis
the advantageof doing this ?
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ConceptualMCQsSingle Option Correct
5-1 Two particlesundergoSHMalong parallel lines with the
sametimeperiod(T)andequalamplitudes. Ata particularinstant,
one particle is at its extreme positionwhile the other is at its
meanposition. Theymovein thesamedirection. Theywillcross
each other after a further time:

(A) T/8
(Q T/6

B' O'

Figure 5.95

(B)3T/8
(D)4T/3

5-2 A particle of mass 10gm moves in a field where potential
energy per unit mass is given by expression
t/ = 8 X \0^ erg/gm. If the total energy of the particle is
8x10^ erg then the relationbetween x and time t is:
(A) x= ]0sin(400/+(t))cm (B) x = sin(400r+it')m
(C) 10sin(40r+(|))cm P) x^lOOsin(4/+(t))m

= constant]

5-3 The equation of motion of a particle of mass \g is

-jY + ~0where xis displacement (in m) from mean
position. The frequencyof oscillation is (in Hz):

(A) { (B) 2

(C) 5>/l0 P) Sn/iO

5-4 An accurate pendulum clock is mounted on the ground
floorofa highbuilding.Howmuchtimewill it loseor gain in one
day if it is transferred to top storey of a building which is
h = 200 m higher than the ground floor. Radius of earth is
6.4 X 10^ m:

(A) It will lose 6.2 s (B) It will lose 2.7 s
(Q It\vill gain 5.2 s • P) It will gain 1.6s

5-5 A child swinging on a swing in sitting position, stands up,

then the time period ofthe swing will:
(A) increase

(B) decrease

(C) remain same
p) increase if the child is long and decrease if the child is

short

5-6 Displacement-time graph of a particleexecutingSHMis as
shown below:

Figure 5.96

Thecorresponding force-time graphof theparticlecan be

5-7 For a particle undergoing SHM, the velocity is plotted
against displacement. The curve will be:
(A) A straight line p) A parabola
(C) Acircle p) An ellipse

5-8 A bodyexecutessimple harmonic motion. The potential
energy(PE), the kineticenergy(KE) and totalenergy(TE)are
measuredas function of displacementx. Which ofthe following
statements is true ?

(A) KE ismaximum whenx=0
P) TEiszerowhenx = 0
(Q KEismaximumwhenXismaximum
P) PE is maximum whenx=0

5-9 A simple pendulum offrequencyn is taken up to a certain
height above the ground and then dropped along with its
support so that it falls freely undergravity. The frequency of
oscillations ofthe falling pendulum will:

(A) Remains equal ton p) Becomegreater than n
(C) Become less than w P) Become zero

5-10 The function sin^(a)r) represents :
(A) a periodic, but not simple harmonic, motion with a period

2n/(ii

P) a periodic, but not simple harmonic, motion with a period
ji/co

(Q a simple harmonic motion with a period In/a
p) a simple harmonic motion with a period Tt/co
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5-18 The total energyofa particle,executingsimple harmonic
motion is:

(A) oc;c (B) ocx^
(C) independent ofA" (D) ocx'''̂

5-19 The bob ofa simple pendulum is a spherical hollow ball
filled with water. A plugged hole near the bottom of the
oscillating bob gets suddenly unplugged. During observation,
till water is coming out, the time period ofoscillation would:
(A) first increase and then decrease to the original value
(B) first decrease and then increase to the original value
(Q remain unchanged
(D) increase towards a saturation value

5-20 A pendulum consists of a ball suspendedby a silk thread
of length /. The mass of ball is m and it has a negative charge
(- 0. The radius of ball can be neglected.The time period of a
small oscillation of ball is Tq. Now a positive pointcharge is
keptat three different positions in three differentarrangements
as shown in thefigure-5.100. The time-period ofsmall oscillation
ofpendulum corresponding to figure-I, figure-II and figure-Ill
hasvalues T^, and respectively {AB = /):

^////////^

Ai-O
\ ~

ei+y

Figure-I

y////////y

Ai-Q

Figure-ll

Figure 5.100

Choose the correct statement

(A) T^<T,-T^<T^ (B)
(C) T^<T^ = T,<T, P) T, <T^=T,<T^

-•40
3 ^

Figure-Ill

5-21 Identifythe correct statement:
(A) The fractional change in the time period of a pendulum on

changing the temperature is independent of length of
pendulum.

P) As the length of the simple pendulum is increased, the
maximum velocity of its bob during the oscillation will
also increase.

(Q The greater the mass of pendulum bob the greater is the
, time period ofoscillation.

P) When the acceleration of the lift in which spring is
oscillating is increased, the time period of oscillation also

increases.

5-22 Aparticle at theendofa springexecutes simpleharmonic
motion with a period while the corresponding period for
another spring is /j- If the period of oscillation with the two
springs in series is T, then :
(A)r=/,+/2 p)
(C) r' = r' + /,-i

= t}+ t.
-2 ,-2P) r'=^t;' + t

Oscillations and Simple Harmonic Motion

5-23 A simple pendulum consisting ofa mass Afattached to a
string of length L is released from rest at an angle a. A pin is
located at a distance / below the pivot point. When the
pendulum swings down, the string hits the pin as shown in
the figure-5.101.The maximum angle 0 which string makeswith
the vertical after hitting the pin is:

V////////////.

OK

1

(A) cos '

(C) cos"'

Lcosa + /

L + /

Lcosa-l

L-l

y/////////////.

Figure 5.101

(B) cos'

P) cos'

Lcosa + l

L-l

Lcosa-/

L + l

5-24 One end of a spring of force constant k is fixed to a
vertical wall and the other to a body of mass m resting on a
smooth horizontal surface. There is another wall at a distance

from the body. The spring is then compressed by 2xq and
released. The time taken to strike the wall is :

JT Im

2jt (m
tVi

(B)Jf

5-25 A particle moves withsimpleharmonicmotion in astraight
line. In first after starting from rest it travels a distances, and
in next x 5 it travels 2a, in same direction, then :
(A) amplitude ofmotion is 3(2
P) time period ofoscillations is 8t
(Q amplitude ofmotion is4(7
P) time period ofoscillations is 6t

5-26 In a simple harmonic oscillator, at the mean position :
(A) kineticenergyisminimum, potentialenergyismaximum
p) both kinetic and potential energies are maximum
(C) kinetic energy is maximum, potential energy is minimum
P) both kinetic and potential energies are minimum

5-27 Ifa spring of stiffiiess is cut into two parts 'A'and 'B'
of length ratio /^ : /g = 2 : 3, then the stiffness of spring 'A' is
given by:

3k

P) ^
5k

(A)-

2k

(Q y P) k



'Oscillations and Simple Harmonic Motion

NumericalMCQsSingle Options Correct

265

5-1 A particle is in a linear SHM. Ifthe acceleration and the
corresponding velocity ofthis particle are 'a' and 'v', then the
graph relating to these values is :

c/2

(B)

(D)

5-2 A particle performs SHM with a time period T and
amplitude a. The magnitudeofaveragevelocity of theparticle

over the time interval during which it travels a distance from

the extreme position is: i

(A) ~

3a
(Q Y

la
(B) Y

(D) 27^

5-3 Two particlesP and Qdescribe SHMofsameamplitude a,
same frequency/along the same straight line. The maximum

distance between the two particles xsa-Jl.The phase difference
between the particle is :

(A) zero

(Q I

(B)f

(D) f

5-4 A particleperformsSHMofamplitude^ along a straight
Y

line.When it is at a distance—^ frommeanposition, itskinetic

energy gets increased by an amount due to an

impulsive force. Then its new amplitude becomes :

.A. I-
(Q -JlA

(B)

(P) Sa

5-5 A particle of mass 10gm is placedin a potential fieldgiven
by V=(50x^ +100) J/kg.Thefrequency ofoscillation incycle/sec
is:

10 5
(A) — (B)

71 7t

100 50
(Q

71
(P)

7C

5-6 A street car moves rectilinearly from station A (here car
stops) to the next station B (here also car stops) with an
acceleration varyingaccording to the lawf= a - bx, where a
and b are positive constants and x is the distance from station
A. The distance between the two stations & the maximum

velocity are:

b a/A\ ^(A) X- —; V =
^ ^ b ' 4b

ra

(B) X= — ; V = ~
2a' b

2a 4a

5-7 AOB isa swing suspended from vertical poles^^4'and BB'
asshown. If ropes <9 '̂and Oi? oflength /j and/2 respectively
are massless, and are perpendicularto eachother with a point
mass mhangingfrom O,the timeperiod ofthe swing forsmall
oscillationsperpendicularto the plane ofpaper is:

(A) 271,
hh

r^/

(Q 271,

Figure 5.102

(B) 271,

(P) 271,

hhs

JiL
x-g

5-8 One end of a spring is tied to a wall and the other end
moves at a speed v. If the mass of the spring is m then the
kinetic energy ofthe spring is:

(A)

(C) 7
6

(B) —

P) T mv^

5-9 Four typesof oscillatorysystems;a simple pendulum; a
physical pendulum; a torsional pendulum and a spring-mass
system, each ofsame time period are taken to the Moon. Iftime

periods are measured on the moon, which system or systems
will have it unchanged ?
(A) only spring-mass system
(B) spring-mass system and torsional pendulum
(C) spring-mass system and physical pendulum
P) None of these
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5-10 The coefficient offriction between block of mass m and

2w is ^ = 2 tan0. There is no frictionbetweenblockofmass 2m
and inclinedplane.The maximumamplitudeoftwoblocksystem
for which there is no relative motion between both the blocks.

(A) g sine J—

(Q
3wg^sin0

77777777777777777777^,

Figure 5.103

mg sin 0(B) ^

(D) None of these

5-11 A metre stick swinging in vertical plane about an fixed
horizontal axis passing through its one end undergoes small
oscillation of frequencyj^. If the bottom half of the stickwere
cut off, then its new frequency of small oscillation would
become:

(A)/o

(Q 2/o

Figure 5.104

(B) ^/2/o
(D) 2V2/0

5-12 Find the natural frequency of oscillation of the system
as shown in figure-5.105. Pullej^aremassless andfrictionless.
Spring and string are also massless.

•////////////.
I '

7tc
(A) 3-, -

I Ik
2k \ m

(B) -J-

2 jJc

1 2k
Figure 5.105

Oscillations and Simple Harmonic Motion 1

the projection ofP onx-axis.For the time intervalin which0
7t

changes from 0 to —, choose the correct statement,

Figure 5.106

(A) The acceleration of Mis alwaysdirected towardsright
(B) Mexecutes SHM
(C) M moves with constant speed
(D) Mmoves with constant acceleration

5-14 Which of the following is correct about a SHM, along a
straight line?
(A) Ratio of acceleration to velocity is constant.
(B) Ratio of acceleration to potential energy is constant.
(Q Ratio of acceleration to displacement from the mean

position is constant.
(D) Ratio ofacceleration to kinetic energy is constant.

5-15 A body performs SHM along the straight line segment
ABCDE with C as the mid point of segment AE {A and E are the
extreme position for the SHM). Its kinetic energies at B and D
are each one fourth ofits maximum value. If length ofsegment
AE is 2R, then the distance between B and D is:

ABCDE

Figure 5.107

R

(B)(A)

(P) ^R

5-16 The velocity v of a particle of mass m moving along a

(Q |̂3R

d^v
straight line changes with time W as

positive constant. Which of the following statements is correct:
(A) The particle does not perform SHM

= -Kv where is a

(B) Theparticle performs SHM with time period 27c J—
V K

•Ik
e An A A cx .1 • X- L.t J ^ jr. (Q The particle performs SHM with frequency ——5-13 Arodoflength/is m motion such that itsendsyf and5 ^ r- r- 27i

are moving along x-axis and ^-axis respectively. It is given

dQ
that — = 2 rad/s alwa>^. P is a fixed point on the rod. Let Mbe

271
(D) The particle performs SHM with time period —

K
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5-17 A horizontal spring-blocksystemof mass 2kg executes
SHM. When the block is passing through its equilibrium
position, an object of mass Ikg is put on it and the two move
together. The new amplitude ofvibration is (A being its initial
amplitude);

(A) (B)

(C) -JlA P)

5-18 A uniform square plate ofside 'a' is hinged at one of its
corners. It is suspended such that it can rotate about horizontal
axis. Find out its time period of small oscillation about its
equilibrium position :

(A) 71,
242a

(Q 27t, If CD) 27c,
\242a

3g

5-19 A constant force produces maximum velocity Von the
block connected to the spring of force constant k as shown in
the figure-5.108. When the force constant of spring becomes
Ak, the maximum velocity ofthe block is (block is at rest when
spring is relaxed):

1

(A) V/4

(C) V/2

"/TTTTTTTTTTTTTTTTTTTTTTTT/}

Figure 5.108

(B) 2V

(P) V

5-20 A horizontal rod of mass m and length L is pivoted
smoothly at one end. The rod's other end is supported by a
spring of force constant k as shown in figure-5.109. The rod is

rotated (in vertical plane) by a small angle 0 from its horizontal
equilibrium position and released. The angular frequency of

the subsequent simple harmonic motion is:

i
Figure S.109

\ m 2L

267

5-21 The oscillationsrepresentedby curve 1in the graph are
expressed by equation x = A sinco t. The equation for the
oscillations represented by curve 2 is expressed as :

-lA

Figure 5.110

(A) x: = 2^sin(co/'-7c/2)

(C) x" = - 2A sin(co/ - 7c/2)
(B) x=2A^m{(S)t+ T[12)

(D) x = /i sin(co?-7r/2)

5-22 A particle is moving on jc-axis has potential energy
U=2 - 20x + 5 J along x-axis. The particle is released at
X = - 3. The maximum value of'x' will be:

[xis in meters and Uis in joule]

(A) 5m (B) 3m

(C) 7m (D) 8m

5-23 The potential energy of a particle executing" SHM
changes from maximum to minimum in 5s. Then the time of
SHM is:

(A) 5 s (B) 10 s

(C) "l5s (D) 20s

5-24 A 4kg particle is moving along thex-axis under the action

' _2 "

of the force F = -
16

xN. Att = 2 sec, the particle passes

through theorigin and at r= 10 sec itsspeed is 4>/2 m/s. The
amplitude ofthe motion is :

(A) ra

4

(Q -m

16
(B) —m

16n/2
(D) m

5-25 Two SHMs>'j = a sin©rScyj = bsin(ot aresuperimposed
ona particle. Thedisplacement^, &y2arealongthedirections
whichmakeangle37°witheach other: ^
(A) The particle will perform SHM
(B) The particle will not perform SHM
(Q The particle will perform periodic motion but not SHM
(D) The motion will not be oscillatory
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5-26 Graph shows the x(0 curves for three experiments
involvinga particular spring-blocksystemoscillating in SHM.
The kinetic energy of the system is maximum at r = 4 s. for the
experiment:

(A) 1

(Q 3

Figure 5.111

(B) 2

P) Same in all

I (In sec)

5-27 A particle is subjected to two simple harmonic motions
along X and y directions according to, x = 3 sin 100 nt;
y = 4sin 100 )t/:
(A) Motion ofparticlewillbeonellipse traversing it inclockwise

direction

(B) Motion of particle will be on a straight line with slope 4/3
(Q Motion will be a simple harmonic motion alongx-axis with

amplitude 5
(D) Phase difference between two motions is n/2

5-28 Asmallballissuspendedbyathreadoflength/= Imat
the point O on the wall, forming a small angle a = 2® with the
vertical (as shown in figure-5.112). Then the thread with ball
wasdeviated through a smallanglep = 4° andsetfree. Assuming
the collision ofthe ball against the wall to be perfectly elastic,
find the oscillation period of such a pendulum. (Take

g-'=7c2):

(A)

(B)

(Q

3

4

3

2 sec

sec

sec

(D) None of these
Figure 5.112

5-29 A simple pendulum 50cm long is suspended from the roof
ofa cart accelerating in the horizontal direction with constant

acceleration -Js g m/s^. The period ofsmall oscillations ofthe
pendulum about its equilibrium position is (g = 71^ m/s^):

L = 50cm

• J (•
ZV77^777777777Z^77777/

Figure 5.113

a =/3gm/s-

Oscillations and Simple Harmonic Motion

(A) 1.0 sec

(Q 1.53 sec
(B) V2 sec
(D) 1.68 sec

5-30 The amplitude of a particle due to superposition of
following SHMs. Along thesame line isXj =2 sin50 /;^2= 10
sin (50 ji:i'+37*')X3 =-4sin S^nt\X^ = - 12cos50

(A) 4V2 (B) 4

(Q 6^2 (D) None of these

5-31 Two light strings, each of length /, are fixed at points A
and 5 on a fixed horizontal rod xy. A small bob is tied by both
stringsand in equilibrium, the stringsare makingangle45° with
the rod. If the bob is slightly displaced normal to the plane of
the strings and released then period of the resulting small
oscillation will be:

Figure 5.114

(B) 271

(P) 2n

5-32 In the figure shown, the time period and the amplitude
respectively when m is released from rest when the spring is
relaxed is: (the inclined plane is smooth):

(A) 27t
ffi wgsinO

(Q

Figure 5.115

(B) 271
ms'mQ 2wgsin0

k k

(D) None of these

5-33 The acceleration of a certain simple harmonic oscillator
is given by a = - (35.28 m/s^) cos 4.2/. The amplitude of the
simple harmonic motion is:
(A) 2.0m (B) 8.4m
(Q 16.8m (D) 17.64m
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5-34 Figure shows thekinetic energyiCofa simple pendulum
versus its angle 0 from the vertical. The pendulum bob has
mass 0.2kg. The length ofthependulum isequal to(g= 10 m/s^)

15

10^
/

5
\

/ \
-100 0 100

Figure 5.116

(B) 1.8m

(D) 1.2m

Q(m rad)

(A) 2.0m

(Q 1.5m

Comprehensionfor Q. No. 35 to 38

The acceleration of a particle moving along ^r-axis is
£7=-100x+ 50. It is released fromx=2. Here 'o' and 'x' are in SJ

units. Answer the following question about the motion ofthis
particle:

5-35 The motion ofparticle will be:
(A) Periodic, oscillatory but not SHM
(B) Periodic but not oscillatory

(Q Oscillatory but not periodic

(D) Simpleharmonic

5-36 The speedof the particle at origin will be:

(A) 10>/2m/s (B) 1.5m/s
{Q lOm/s (D) None of these

5-37 The minimum time taken by particle to go fromx = 2 to
x = 0.5 is:

(A)

7Z

n

(B) -s

TT

(D) -s

5-38 The maximumspeedoftheparticlewill be:
(A) lOm/s (B) 20m/s
(C) 15m/s (D) Infinity

Comprehensionfor Q. No. 39 to 40

A particle is moving along the x-axis under the influence ofa
forcegiven byF=- 5x+ 15.At time t = 0, the particle is located
at X= 6 and is having zero velocity. It takes 0.5 seconds to
reach the origin for the first time. Answer the following
questions for the motion of this particle.

5-39 The equation ofmotion ofthe particle can berepresented
by:

(A) x = 3 + 3cos7it (B) x = 3cos7t?
(Q X= 3+ 3sin7tr p) x = 3 +3 cos (2n t)

5-40 The mass ofthe particle is:

(A) 371? (B)
57r^

4

Comprehensionfor Q. No. 41 to 43

Alarge tankof cross-section area Acontains liquid ofdensity
p. A cylinder of density p/4 and length /, and cross- section
area a {a« A)is kept in equilibriumbyapplyingan external
vertically downward force as shown. The cylinder is just
submerged in liquid. At / = 0 the external force is removed
instantaneously. Assume that water level in the tank remains
constant.

: p/4

Figure 5.117

5-41 Theacceleration ofcylinderimmediatelyaftertheexternal
force is removed is:

(A) g (B) 2g
(Q 3g p) Zero

5-42 The speed ofthecylinder when it reaches itsequlibrium
position is :

(A)

(C)

(B)

(D) 1^1

5-43 After its release at ^= 0, the time taken bycylinder to
reach its equilibrium position for the first time is :

P)

P)
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5-44 Twoparticles P and Q describesimple harmonic motions
of same period, same amplitude along the same line about the
same equilibrium position O. When P and Q are on opposite
sides of O at the same distance from O they have the same

speedof 1.2m/sin the same direction,when their displacements
are same they have the same speed of 1.6 m/s in opposite
directions. The maximum velocity in m/s ofeither particle is:
(A) 3 (B) 2.5

(C) 2.4 P) 2

5-45 The equation of motion of a particle of mass Ig is

dh
-jY + wherex is displacement (in m) from mean position.
The frequency of oscillation is (in Hz):

(A)^
(C) sVio

(B) 2

P) sVio

5-46 A particle executes SHM of amplitude A and time period
T. The distance travelled by the particle in the duration its

K StTphase changes from ^ "

(A)
1

P)

P)

5-47 An object moves vertically with simple harmonic motion
just behind a wall. From the other side ofthe wall the object is
visible in each cycle for 2.0s and hidden behind the wall for
6.0s The maximum height reached by the object relative to the
top ofthe wall is 0.3m. The amplitude of the motion is :
(A) 0.5m P) 0.6m

(C) I.Om p) 1.2m

5-48 A spring of spring constant K is cut into wequal parts,
out of which r parts are placed in parallel & connected with
mass Mas shown in figure. The time period ofoscillatory motion
of mass Mis:

•///////////////////////////.

r parts

Figure 5.118

(A) T=2k P) 7=271

(Q T=2k P) 7=27:

Oscillations and Simple Harmonic Motion

5-49 In the figure all springs are identical having spring
constant k and mass m each. The block also has mass m. The

frequency of oscillation ofthe block is :

2k V m

////////////////////y

m

y/777777777777777777?

Figure 5.119

1 3/t

271 V2m

Q 2k,— P) None of these

5-50 A block of mass 'm' is suspended from a spring

and executes vertical SHM of time period T as shown in
figure-5.120. The amplitude of the SHM is A and spring is
never in compressed state during the oscillation. The
magnitudeof minimum forceexertedbyspring on the block is :

471^
(A) mg-Y^mA

(Q mg-^mA

Figure 5.120

47c'
P)

P)

5-51 The spring block system as shown in figure

is in equilibrium. The string connecting blocks A
and B is cut. The mass ofall the three blocks is m

and spring constant of both the spring is k. The
amplitude ofresulting oscillation ofblock.^ is:

(A)
mg

P)
2mg

(Q
3mg

P)
Amg

y////////y

A m

B m

Figure 5.121
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5-52 Thedisplacement;;(in cm)producedbya simpleharmonic
wave is given by:

10
sin 20007C/- —

17
. The time period and maximum

velocity of the particles in the medium will respectively be :
(A) IQ-^s, 330ms-' (B) 10-^s,20ms-'
(Q 10-^s, 200ms-' (D) 10"^ 2000ms-'

5-53 In a horizontal spring-mass system, mass m is released
after being displaced towards right by some distance at / = 0
on a Irictionless surface. The phase angle of the motion in
radian when it is first time passing through the equilibrium
position is equal to :

(A) 71/2
(C) 371^

i k ! ^
yTTTTTTTTTTTTTTTTTTTPTTTTTTTZ^.

Figure 5.122

(B) 7t

P) 0

/ = 0

5-54 A system is shown in thefigure-5.123. The time period
for small oscillations ofthe two blocks will be.

k 2k
m iOOfiOOd—^-fiOOOlOd— in

Figure 5.123

(B 27tJ—

C 27rJ— P) 2k, —

Comprehensionfor Q. No. 55 to 57

Two identical blocks P and Q have mass m each. They are
attached to two identical springs (ofspring constant k) initially
unstretched. Both the blocks are initially in contact as shown.

Now the left spring (attached with block P) is compressed by

— and the right spring (attached with block 0 is compressed

by A. Both the blocks are then released simultaneously.

A/l-*—

—6mm— Q

^777777777777777777777777777777777777777^,
Smooth horizontal floor

Figure 5.124

5-55 The speed of block Pjust before P and Q are about to
collide for the first time.

271,

(D) None of these

5-56 The speed of block 0 just before P and Q are about to
collide for the first time.

(A) j-|
\ m 2

(C) (D) None of these

5-57 After what time when they were released fi^om rest, shall
the blocks collide for the first time.

I f
(D) None of these

Comprehensionfor Q. No. 58 to 59

A block weighing 10 N is attached to the lower end ofa vertical
spring {k = 200 N/m), the other end ofwhich is attached to a
ceiling. The block oscillates vertically and has a kinetic energy
of 2.0 J as it passes through the point at which the spring is
unstretched. Answer the following questions for the motion of
this block.

5-58 Maximum kinetic energy of the block as it oscillates is
(g- ^ 10m/s^):
(A) 2.0 J (B) 2.25 J

(C) 2.5 J (D) 2.64 J

5-59 The amplitude ofthe oscillation ofblock is :

(A) 10V2cm (B) 5-s/2cm
(Q 15cm • p) 20 cm

5-60 Four massless springs whose force constants are 2k, 2k,
k and 2k respectively are attached to a mass M kept on a
frictionless plane (as shownin figure). Ifthe massAfisdisplaced
in the horizontal direction, then the fi-equency ofthe system.

2k\4M

2k\7M

k i
2k 2k

M

2k

V7777777777^7777MV7777777Z/,
Figure '5.125

P) —^T7
2k\M

2k \M
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Comprehensionfor Q. No. 61 to 63

A small block of mass m is fixed at upper end of a massless

Amg
vertical spring of spring constant —— and natural length

Lj

'10£'. The lower end ofspringisfreeand is at a height Z, from
fixed horizontal floor as shown. The spring is initially
unstressed and the spring-block system is released from rest
in the shown position.

777777777777/
Horizontal floor

Figure 5.126

5-61 At the instant speedofblockis maximum, themagnitude
of force exerted by spring on the block is :

(A)f
(C) Zero

(B) mg

(D) None of these

5-62 Astheblock is coming down, themaximum speed attained
by the block is :

(A)

(Q 2^

(B)

P)

5-63 Till the block reaches its lowest position for the first
time, thetimeduration forwhich thespringremains compressed
is:

Oscillations and Simple Harmonic Motion

V///////////

Figure 5.127

(A) Xjc2-2Mc + M) = 0
(Q x = Hll

(B) + +

(D) 'kx^ + 2Mx-Mh = i}

5-65 A block of mass 'w' is attached to a spring in natural
length of spring constant 'k. The other end A ofthe spring is
moved with a constant velocity v away from the block. Find the
maximum extension in the spring.

(Q ^ """•

VTTTT/TTTTTTTTTTTTTTTTZ

Figure 5.128

(B)

(D)2
mv

5-66 A straight rod of negligible mass is mounted on a
frictionless pivot and masses 2.5 kg and 1 kg are suspended at
distances 40 cm and 100cm respectivelyfromthe pivotas shown.
The rod is held at an angle 0 with the horizontal and released.

2.5 kg

'V777777777777Z^PW'P777777777777777Z

5-64 The bobofa simplependulum, which is in the shape ofa
hollow cylinder ofmass M, radius rand length h is suspended (A)
bya long string (the mass ofthe base and lid of the cylinder are
negligible). The cylinder isfilled with a liquid ofdensity pupto P)
a height ofx. Then thevalue ofx for which the time period of (Q
thependulum is maximum, is givenby which of the following
equations: (X = Tir^p) P)

Figure 5.129

The rod executesperiodicmotionabout horizontalposition
after the release

The rod remains stationary after the release
The rod comes to rest in vertical position with 2.5 kg mass
at the lowest point
The rod executes periodic motion about vertical position
after the release
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5-67 Aparticle ofmass w=2 kg executes SHM in jty-plane
between points Aand Bunder action offeree F =FJ +Fyj.
Minimum timetakenbyparticle tomovefrom ^ to5 is 1sec.At
r- 0 theparticleis at^ = 2 andy = 2. Then as function oftime
ris;
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7-69 In this case one end ofa long iron chain oflinear mass
density Xis fixed to asphere ofmass mand specific gravity 1/3
while the other end isfree. The sphere along with the chain is
immersed in a deep lake. If specific gravity of iron is 7 the
sphere is slightly displaced vertically from its equilibrium
position, thetimeperiod oftheresulting SHM is :

• •

0 ,
L • h

-y

/Ai2,2)

B (-2, -2)

(A) -4;^ sin 71/
(Q 4;:^cos 71/

Figure 5.130

(B) -471^cos 7C/
p) None of these

5-68 Asystem oftwo identical rods (L-shaped) ofmass mand
length Iare resting ona peg P asshown inthefigure-5.131. If
thesystem isdisplaced initsplane bya small angle 0,find the
period ofoscillations:

(A) 27c 4^1

Q 27rJ—

Figure 5.131

(B) 271
2V2/
3g

P) 371, —

(A)

(C)

471

T

271

T

46ff7

35X

mg

Figure 5.132

27C

(B)

P)
47t

T

35w

mg

5-70 Aparticleundergoes SHM with atime period of2seconds.
In how much time will it travel from its mean position to a
displacement equal tohalfofits amplitude:
(A) 1/2sec p) 1/3 sec
(C) 1/4sec p) 1/6sec
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AdvanceMCQswith Oneor More OptionsCorrect
5-1 Two blocks of masses 3 kg and 6 kg rest on a horizontal
smooth surface. The 3 kg block is attached to a spring with a
forceconstant A:= 900 Nm""' which is compressed2 m from the
equilibrium position asshown infigure-5.133. The 6kgmass is
atrestat1mfrom mean position. 3kgmass strikes the6 kgmass
and the two stick together :

/
/

3kg
<—2m-^ 6kg

/

position

Figure 5.133

(A) Velocity of the combined masses immediately after the
collision is 10 ms"'

(B) Velocity of the combined masses immediately after the
collision is 5 ms"'

(C) Amplitude of the resulting oscillation is 72m
(P) Amplitude ofthe resulting oscillation is 75/2 m.

5-2 The figure-5.134 shows a graph between velocity and
displacement (from mean position) of a particle performing
SHM:

i-tin cm/s)

10

(in cm)

P) When the displacement is5cm from Oits K.E. is0.75 times
its maximum K,E.

(Q Its total energy ofSHM atany point is equal toits maximum
K.E ifat meanpositionpotentialenergyiszero

P) Itsspeed ishalfthemaximum speed when its displacement
ishalfthe maximum displacement.

5-5 A linearharmonicoscillatorofforce constant2 x 10^ N/m
and amplitude 0.01 mhasatotal mechanical energy of160 J. Its:
(A) Maximum potential energy is 1GO J
P) Maximum kinetic energyis 100J
(Q Maximum potential energy is 160 J
p) Minimum potential energy iszero

5-6 Aspring ofspring constant Kisfixed to the ceiling ofa lift.
The other end of the spring is attached to a block of mass m.
Themass is inequilibrium. Now theliftaccelerates downwards
with an acceleration 2g:

(A) Theblock will not perform SHM and it will stick to the
ceiling.

P) TheblockwillperformSHM.withtimeperiod27c7^^ •
(Q Theamplitude of the block will be 2 mg/K if it perform

SHM.

P) Themin. potential energy ofthespring during themotion
ofthe block will be 0.

5-7 The potential energy U of a particle is given by
U=20 + (.X -4)^ J.Total mechanical energy ofthe particle is36J.
Select the correct alternative(s):

(A) Theparticleoscillates about pointx = 4m
P) The amplitudeofthe particleis 4 m
(Q Thekinetic energy oftheparticle atx= 2m is 12 J
p) The motion of the particle is periodic but not simple

harmonic.

5-8 A block is placed on a horizontal plank. The plank is
performing SHM along avertical line with amplitude of40cm.
Theblock just loses contact with theplankwhen the plankis
momentarily at rest. Then :
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(A) The period of its oscillations is ~ sec

p) The block weighs on the plank double its weight, when
the plank is at one of the positions of momentary rest

(Q The block weighs 1.5 times its weight onthe plank, halfway
down from the mean position

p) The block weighs is true weight on the plank, when
velocityof the plank is maximum

Figure 5.134

(A) Thetimeperiodoftheparticleis 1.57s
(B) The maximum acceleration will be40cm/s^
(Q The velocityofparticle is 27^ cm/s when itis at adistance

1cm from themean position.
P) None of these

5-3 Aparticle moves inxyplane according tothelawA:=cr sin (at
and>' = a (1 - cos to/) where a andto areconstants. Theparticle
traces: .

(A) A parabola
(B) A straight line equallyinclinedtox and/axes
(Q A circle
P) A distance proportional to time

5-4 Theamplitude ofaparticle executing SHM about Ois10cm.
Then:

(A) When theK.E. is0.64of itsmaximum K.E. itsdisplacement
is 6 cm from O.



[Osdilations and Simple Harmonic Molion

5-9 Speed vofa particle moving along astraight line, when it is
at a distance a: from a fixed point on the line is given by

108-9x^(allquantities, inS.I. unit). Then;
(A) Themotion isuniformly accelerated along thestraight line
(B) The magnitude ofthe acceleration at a distance 3 cm from

the fixedpoint is 0.27 m/s^
(Q Themotion issimple harmonic about thegiven fixed point
(D) Themaximum displacement from thefixed point is4 cm.

5-10' The system shown in the figure-5.135 can move on a
smooth surface. The spring is initiallycompressed by6 cmand
then released:

3kg
k=SOO N/m

—\wwwvwvv— 6kg

////////////////////////////.

Figure 5.135

7C(A) Theparticlesperform SHM with time period Yq sec.
(B) The blockofmass 3 kg performSHMwith amplitude4 cm.
(Q The block of mass 6 kg will have maximum momentum

2.40kgm/s

P) Theirtimeperiodswillbeintheratioof I: V2

5-11 Two blocks .4(5kg) and 5(2 kg) attachedto the ends ofa
spring constant 1120 N/ra are placed on a smooth horizontal
plane with the spring undeformed.Simultaneouslyvelocitiesof
3 m/s and 10m/s along the line ofthe spring in the same direction

are imparted to A and B then:
\

3m/s_
Om/s

A 5kg 2kg B

Figure 5.136

(A) When the extension of the spring is maximum the velocities

of.4 and B are zero.

(B) The maximum extensionofthe spring is 25 cm.
(C) The first maximum compression occurs 3jr/56seconds after,

start.

(D) Maximum extension and maximum compression occur
alternately.

5-12 A simple pendulum of length 1 m with a bob of mass w
swings with anangular amplitude 10°. Then :(g= 10m/s^=i^)
(A) Time period ofpendulum is 2 s

(B) Tension in the string is greater than mg cos 5® at angular
displacements®

(Q Rateofchangeofspeedat angulardisplacement 5°isgsin 5®
P) Tension in the string is mg cos 5°at angular displacement

5®
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5-13 Aconstant forceis applied ona spring block system as
shown in figure-5.137. The massof the block is mand spring
constant isk.Theblock isplaced over a smooth surface. Initially
the springwasunstretched. Choose the correct alternative(s):

F

. ; y
v///////////////////////////.

Figure 5.137

(A) The block will execute SHM

(B) Amplitudeofoscillation is —
Ik

m
(C) Time period ofoscillation is 2:1

(D) The maximum speed of block is IFx-kP"
m

5-14 Velocity-time graphofa particle executing SHM isshown
in figure-5.138. Select thecorrect alternative(s):

Figure 5.138

(A) At position 1 displacement of particle may bepositive or
negative

P) At position2 displacement of particle is negative- i
(C) At position3 acceleration of particle is positive
P) At position 4 acceleration ofparticle is zero

5-15 Acceleration-time graph of a particleexecutingSHMis
as shownin figure-5.139. Selectthe correctaltemative(s)

Figure 5.139

(A) Displacement ofparticle at 1 from mean position isnegative
P) Velocity ofparticle at 2 is positive
(C) Potentialenergyofparticleat3 ismaximiiii.i"
P) Speed ofparticle at 4 is decreasing
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5-16 Density ofa liquid varies with depth as p = ah. Asmall
ballofdensity is released from the free surface ofthe liquid.
Then:

Po
(A) The ballwillexecute SHMof amplitude —

Osciiiations and Simple Harmonic Motion]

5-20 Aparticle isexecuting SHM between points and
asshown infigure-I. Thevelocity V{t) oftheparticle ispartially
graphed and shown in figure-II. Two points A and B
corresponding totime r,and time respectivelyare marked on
the V{t) curve:

the free surface

2P(
(C) theballwill sinktoa maximum depth of —

p) All of the above

5-17 A block of mass m is attached to a massless spring of
force constantk,the otherend ofwhichis fixedfromthe wallof
a truck as shown in frgure-5.140. The block is placed over a
smoothsurfaceand initiallythe spring is unstretched. Suddenly
the truck starts moving towards right with a constant
acceleration a^. Asseen from thetruck :

Po c_
T— from
2a

0
•+x

Figure-I

——

7^77."tttttttttttttttttttzTtttt?.

Figure 5.140

(A) The particlewill executeSHM

(B) The timeperiodofoscillations will be

moQ
(Q Theamplitude ofoscillationswillbe

P) The energy ofoscillations will be ®

5-18 IfX, Vand a denotethe displacement, the velocityand the
acceleration ofa particle executing simple harmonic motion of
time period T, then, which of the following does not change
with time?

(A) aT+2Kv

(C) +

(B) ^
^ ^ V

P) —
^ X

5-19 Two masses mj and Wj (wj> /Wj) suspended by two
springs vertically and are in equilibrium, extensions in the
springs were same. Both themasses aredisplaced inthevertical
directionbysamedistanceand released. In subsequent motion
r,, are their time periods and are the energies of
oscillations respectively then :
(A) T,= T^',E^<E P) T^>T^;E, >E^
(Q T^<T^;E,>E^ P) T^ = T^;E^>E^

Figure-II

Figure 5.141 •

(A) At time it is going towards
P) At time/pits speed is decreasing
(C) At time ^2. its position lies inbetween -X^and 0
p) Thephase difference A/between points A andB must be

expressedas 90° < A/'<180°

5-21 Twoblocks/4(5kg) and 5(2kg) attachedto the ends of a
spring constant 1120 N/mare placed on a smooth horizontal
plane with thespring imdeformed. Simultaneously velocities of
3m/sand 10m/salongthelineofthespringin thesamedirection
are imparted to.^ and B then:

3 m/s
lOm/s

A:-1120 N/m

A
5kg —ffuwftra— 2kg

B

Figure 5.142

(A) When theextension ofthespring ismaximum thevelocities
of.4 and 5 are zero.

P) Themaximumextension of thespringis 25cm.
(Q Thefirst maximum compression occurs 37t/56 seconds after

start.

P) Maximum extension and maximum compression occur
alternately.

5-22 The speed v of a particle moving along a straight line,
when it is at a distance (x) from a fixed point on the line, is
given by = 144 - 9x^:
(A) Displacementof the particle < distance movedby it
P) Themagnitude ofacceleration at a distance 3 cmfrom the

fixed pointis 27m/s^
(Q The motionis simpleharmonicwith T= 2:1/3 units
P) Themaximum displacement from thefixed pointis4 units
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5-23 A spring ofspring constant K is fixed to the ceiling ofa
lift. The other end ofthe spring is attached to a block ofmass m.
The mass is in equilibrium. Now the lift accelerates downwards
with an acceleration 2g;

(A) The block will not perform SHM and it will stick to the
ceiling.

The block will perform SHM with time period K .

(C) The amplitude ofthe blockwill be2mg/K ifit perform SHM.
P) The minimum potential energy of the spring during the

motion ofthe block will be 0.

5-24 A simple pendulum is kept suspended vertically in a
stationary bus. The bus starts moving with an acceleration a
towards left. As observed inside the bus: (Neglect fi^ictional
forces on pendulum and assume size of the ball to be very
small.):

k^)—
77^7777777777777777/77777.

Figure 5.143

(A) Time period of oscillation of the pendulum will be

271
/

for any value of a

(B) Time period of oscillation of the pendulum will be

onlywhena<<g27C
/

(Q Angular amplitude ofoscillation willbetan '

value of a

P) Angular amplitude of oscillation will be tan"'

whenfl<<g

/ \

a

S)
for any

/ ^

a

g
only

5-25 Theposition ofa particle w.r. to origin varies according
to the relation;c = 3 sin100/+ 8cos^ 50/.Wliichof thefollowing
is/are correct about this motion :

(A) The motion ofthe particle is not SHM
P) The amplitude ofthe SHM ofthe particle is 5 units

(C) The amplitude ofthe resultant SHM isy/lS units
p) The maximum displacementof the particle from the origin

is 9 units
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5-26 A 20gm particle is subjected to two simple harmonic

motions

7t

X] = 2sin 10/, ^2 = 4 sin(10/+ —). wherexj &X2 arein metre &

/is in sec.

(A) Thedisplacementoftheparticleat/=Owillbe 2>/3m.
P) Maximumspeedoftheparticlewillbe 20%/? m/s.
(Q Magnitude ofmaximum acceleration ofthe particle will be

200 Vv m/s\
P) Energy of the resultant motion will be 28J.

5-27 A particle is executing SHM with amplitude A. At

~A
displacement x = , force acting on the particle is F, potential

energy ofthe particle is U, velocity ofparticle is v and kinetic

energy is Ka. Assuming potential energy to be zero at mean

Aposition. At displacement ^^ y •

(A) Force acting on the particle will be 2F

P) Potential energy ofparticle will be 4U

(Q Velocity ofparticle will be J— v

p) Kinetic energy ofparticle will be 0.8 K

5-28 A horizontal spring-mass system of mass M executes

oscillatory motion of amplitude and time period Tq. When
the mass Mis passing through its equilibrium position another

mass m is placed on it such that both move together. Ifa and T

be the new amplitude and time period respectively then :

(Q T=

, M
(A) o = A go

M +m

M

M + m

P)
M + m

M

P) T=
M + m.

M

5-29 The potential energy ofa particle of mass 2kg, moving

alongthe .r-axis is given by U{x) = 16{x^ - 2x)J,wherex is in
metres. Itsspeedatx= Im is2ms"':
(A) The notion of the particle is uniformly accelerated
P) The motion ofthe particle is oscillatory from x = 0.5m to

x = 1.5m

(Q The motion ofthe particle is simple harmonic

p) The period ofoscillation ofthe particle is 7c/2s
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5-30 Acylindrical block ofdensityd stays fully immersed ina
beakerfilledwith twoimmiscibleliquidsof differentdensities

and d^ The block is in equilibrium with halfofitin liquid 1
andtheother halfinliquid 2 asshown inthefigure-5.144. Ifthe
block is given a displacement downwards andreleased, then
neglecting ffictional loses: .

S

Figure 5.144

(A) It executes simpleharmonicmotion
(B) Itsmotion isperiodic butnotsimple harmonic
(Q The frequency ofoscillation isindependent ofthesize of

the cylinder
(p) The displacement ofthecentre ofthecylinder issymmetric

about its equilibrium position

1.

Oscillations and Simple

/ .
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UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO &. IPhO
Fordetailedpreparation oflNPhO andIPhO students can refer advance studymaterial on >v\v>v.physicsgaIaxy.com

5-1 A particle is executing SHM under the influence of a
restoring force i^=- lOxNt. Find the amplitude ofoscillation if
its speed at mean position is 6m/s.

Ans. [0.6 m]

5-2 A particle executes SHM and its acceleration as a function
ofdisplacement from its mean position is given as

o = - CO (x - 2)
Find the time period ofoscillation ofthe particle.

. r 2jt .
Ans. [-:=]

vco

5-3 A particle starts its SHM from its equilibrium position at
/ = 0. The time period ofits oscillation is T. Find the ratio ofits
kinetic and potential energy at time / == Tl\2.

Ans. [3:1]

5-4 A ball of mass 2kg is hanging from a spring, oscillates with
a time period 2n seconds. If ball is removed when it is in
equilibrium position, find the contraction in spring length.

Ans. [10 m]

5-5 A particle of mass m moves on a straight line under an
attraction ma^ x towards a point O on the linewhere x is the
distance from O. Show that, ifx = aandx = wwhere / = 0, then

u
at time t,x = a cos co / H sin cof.

CO

5-6 A particle of mass m executes SHM accordi-.g to the

d^x
equation

df
+ Ax = 0. Find its time period.

, r 2jI ,

5-7 A point performs harmonic oscillations along a straight
line with a period 0.60 s and an amplitude 10.0 cm. Find the
mean velocityof the point averaged over the time interval during
which it travels a distance al2, starting from :
(a) the extreme position;
(b) the equilibrium position.

Ans. [(a), 0.50 m/s; (b) 1.0 m/s]

5-8 Two pendulums of time periods 3 s and 7 s respectively
start oscillating simultaneously from two opposite extreme
positions. Find the time after which they will be in phase.

Ans. [21/8 s]

5-9 A particle performs harmonic motion along thex-axis. The
oscillation frequency is co = 4 rad/s. At a certain instant the

particle has a ccwrdinatex' = 25 cm and its velocityv' = 100cm/s.
Find the coordinate x and the velocityv ofthe particle at /=2.4 s
after that moment. '

Ans. [-29 cm, - 81 cm/s]

5-10 A force/ = - 10x + 2 acts on a particle of mass 0.1 kg,
where 'A:' is in m and Fin newton. If it is released from rest at

X= - 2 m, find:

(a) amplitude (b) time period (c) equation of motion.

Ans. [(a) ^ m, (b) sec., (c) =0.2 - Co/ ]

5-11 A seconds pendulumy4(time period 2 second) and another

simple pendulum B of slightly less length than A are made to
oscillate at / = 0 in same phase. If they are again in the same
phase first time, after 18 seconds, then the time period ofB is

Ans. [1.8 s]

5-12 A bodyis executingSHMunder the actionof forcewhose
maximum magnitude is 50 N. Find the magnitude of forceacting
on the particle at the time when its energy is halfkinetic and half
potential.

Ans. [25 42 N]

5-13 A particleisexecutingSHMona straight line.Aand B are
two points at which its velocity is zero. It passes through a
certain point P {AP < PB) at successive intervals of0.5 and

1.5 sec with a speed of3 m/s. Determine the maximum speed
and also the ratio APIPB.

Ans. [f^„„= 342mis, 'AP/BP= 42- 1/72+ I]

5-14 Aplatform is executingsimpleharmonicmotionin avertical
direction with an amplitude 5 cm and a frequency IO/tc vibration
per second. A block is placed on the platform at the lowest

point ofits path.
(a) At what point will the block leave the platform.
(b) How far will the block rise above the highest-point reached

by the platform.

Ans. ((a) 2.5. cm, (b) 1.25 cm]

5-15 A particle moves with simple harmonic motion in a straight
line. When the distances of the particle from the equilibrium
positionarex, andxj, the corresponding velocities are w, and
Uy Find the period ofthe motion.

y2_v2^
Ans. [It:

'2J
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5-16 A thin rod of length L and having small area of cross-
section A is pivoted at its lowest point P inside a stationary
homogeneous and non-viscous liquid as shown in figure-5.145.
The rod is free to rotate in a vertical plane about a horizontal
axispassing through P. Thedensity i/, ofthematerial oftherod
is smaller than the density ofthe liquid. The rod is displace
by small angle 0 from its equilibrium position and then released.
Show that the motion ofthe rod is simple harmonic and determine
its angular frequency in terms ofthe given parameters..

Figure 5.145

Ans. [co = ,|—
d^-d,

d,L

5-17 Twosprings each ofunstretched length 0.2 m but having
different force constant and ATj are attached to opposite
ends of a block of mass w on a level frictionless surface as

shown in figure-5.146. The outer ends ofthe springs are now
attached to twopinsf, andPj, 10cmfrom theoriginal positions
oftheends ofsprings, letAT, = 1N/m, K2 =3 N/m w= 0.1 kg.

(0

(ii)

1O.lm
0.2m 0.2m

rmm
o.lm

v/y///////////////////////)/////'//'//'//'//////////
Figure 5.146

Find the stretch ofeach spring when the block is in its new
equilibrium position after the springs have been attached
to the pins.
Find the period ofthe vibrations ofthe block ifit is slightly
displaced from its new equilibrium position and released.
(7C^=10)

Ans. [(i) 0.15m, 0.05m, (ii) 'I sec.]

5-18 A body-of mass m = 0.5 kg is suspended from a rubber
cord of co-efficient of elasticity (force constant) k= \0 N/m.
Find the maximum distance through which the body can be
pulled down for its oscillation to remain simple harmonic. What
is the energy of oscillation in this case ?

Ans. [0.098 m, 0.24 J]

5-19 A point describes simple harmonic motion in a line 4 cm
long. The velocity ofthe point while passing through the centre
ofthe line is 12 cm per second. Find the period.

Ans. [1.047 s]

Oscillations and Simple Harmonjc MotionJ

5-20 Abar ofmass m= y kg lying on ahorizontal plane with
a friction coefficient = 0.10 is attached to the wall by means of
non-deformed spring as shown in figure-5.147. The stifftiess of
thespring is^= 2.45 Ncm~', its mass isnegligible. Thebar is
displaced byXg=3.0cm,andthen released. Find: (a) theperiod
ofoscillation ofthe barj (b) the total number ofoscillations that
the bar performs until it stops completely.

^-eooooooo 06— m

Figure 5.147

Ans. [2n
kXn

2^mg

5-21 A spring, of natural length /g, is stretched on a smooth
table between two fixed points at a distance t\ Iq apart and a
particle of mass m is attached to the middle ofthe spring. The

particle is then displaced towards one ofthe fixed points through

adistance not exceeding y (t] - 1) /q liberated. Show
that it will perform oscillations which is independent ofr| and of
the distance through which it is displaced.

Ans. [•

i.J
Figure 5.148

5-22 If the mass of a spring, m, is not negligible but small
compared to the mass M suspended from it, show that the

period ofoscillations is given by 7"=2ji , where k

is the force constant of the spring.

5-23 A point executes SHM about a fixed point O. Its distance
from 0 at a certain time is 1 cm and 1 second later its distance

from 0 is 5 cm. After yet another second its distance is again
5 cm. Find the time taken for a complete oscillation.

2n ,

'3/5

5-24 A particle performs harmonic oscillations along the x axis
about the equilibrium position x = 0. The oscillation frequency
is CO = 4.00 s"'. Ata certain moment oftimetheparticle hasa
coordinateXq = 25.0cmand itsvelocityis equalto =100 cm/s.
Find the coordinate x and the velocity ofthe particle t = 2.40 s
after that moment.

Ans. [- 29cm, = - 8lcm/s, where a = '

a = tan-'(- v /coj^o)]
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5-25 At a giveninstant,thedisplacement ofa particlefromthe
equilibrium position O is ;cand it is moving away from O with
speed V. Show that it next teaches O after a time

t= |̂ 7t-2tan~'—j where co is the angular frequency of
oscillation.

5-26 Two physical pendulums performs small oscillations
about thesame horizontal axiswith frequencies co, and(O2. Their
momentsof inertia relativeto the givenaxis are equalto /, and
I2respectively. In a state of stableequilibrium the pendulums
were fastened rigidly together. What will be the frequency of
small oscillations ofthe compound pendulum ?

Ans. [co —̂(/jco^ *^^2)

5-27 Find the period of small oscillations of a mathematical

pendulum oflength / if its point of suspension O moves relative

to the Earth's surface in an arbitrary direction with a constant

acceleration w(as shown in figure-5.149). Find the time
period ofits small oscillations.

777777777777777777>

Figure 5.149

/
Ans. [2jt

- 2givcos p
]

5-28 A particle ofmass m is executing oscillations in straight
line about its mean position with amplitude The potential
energy oftheparticle isgiven asU=- ayd, where a isapositive
constant and x is the displacement ofthe particle form its mean
position. Find the displacement of the particle from its mean

position where its potential energy is one third of its kinetic
energy.

Ans. [^]
72

5-29 A pendulum clock which shows right time is placed on
the ground floor ofa high building. How much time will it lose

or gain in one day ifit is transferred to top floor ofthe building
at a height of200 m from the ground floor. Given that radius of

earth is 6400 km.

Ans. [2.7 s per ciay will be lost]
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5-30 A box slides down on a smooth inclined plane of
inclination 0 with the horizontal. From the ceiling of the box a
simple pendulum oflength / is hanging. During its motion ifthe
pendulum bob is slightlydisplaced from its mean position, fmd
the time period ofits oscillations.

5-31 A particle performingSHMwith amplitude.4, undergoes
displacement AH in one second. If at f = 0 the particle was
located at mean position. Find the time period of SHM,

Ans. [12 s]

5-32 A particle executes SHM along a straight line with mean
position at == 0, with a period 20 s and amplitude 5 cm. Find the
shortest time taken by the particle to go from x = 4 cm to
x=-'i cm.

Ans. [S s]

5-33 Determine the expression for the natural frequency of
small oscillations of the L-shaped weighted rod as shown in
figure-5.150 about O. The stiffiiess of the spring is & its
length is adjusted so that the rod is in equilibrium in the
horizontal position shown. Neglect the mass ofthe spring &
rod compared with m.

Ans. [/ =
2nl

V7777777777P777?77777777777P^.
Figure 5.150

5-34 Thefigure-5.151 shows the displacement-time graph of
a particle executing SHM. Ifthe time period of oscillation is 2 s,
find the equation ofmotion of its SHM

10
(mm)

5

0

Ans. [at =» lOsin (nl + 7t/6)]

Ks)

Figure 5.151
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5-35 Two elastic stringsobeying hooks laweachofunstretched
length /, each hasoneendattached toaparticle ofmass m lying
on smooth horizontal floor. The other ends of the string are

attached atpoints^ &Bwhich areat adistance 3/ apart. Each
would be doubled in length by a tension 2 mg. The particle is
held at rest dXA and then released. Show that after released that

particle first reaches B at time

n-H . , fT
1-sm-L —

3 V7

5-36 A uniform rod AB ofmass m and length 4/ is fi-ee to rotate
in a vertical plane about a smooth horizontal axis through a
point P, distant x from the centre of the rod of the rod and
performs small oscillations about its equilibrium position find
period of oscillation andalsofindthe value ofx forwhich time
period isminimum.

Ans. [27t 4r+3x'

2gx

2l_

5-37 Find the natural fi-equency of oscillation
ofthe system as shown in figure-5.152. Pulleys
are massless and fi^ictionless. Spring and string
are also massless.

Ans. [/= l/U'JiJm ]

•/////////,

Figure 5.152

5-38 Aparticle executing SHM inastraightline.During motion
while moving fi"om oneextreme position it isat distancesx,, Xj
and X3 from thecentre at theend ofthree successive seconds.
Find the time period of its oscillations.

271
Ans. ['

5-39 The displacement of a particle from its meanpositionin
an oscillation under the influence of« independent SHMs, which
are superposed on this particle, is given as

Find n.

Ans. 13]

^ =4 cos^ {tfl)sin(10000

5-40 A body performs SHM along the straight line ABCDE
with Cas the mid point of^AE. Its kineticenergies at5 and Dare
each one fourth of its maximum value. If AE = 2A, find the

distance between B and D.

Ans. [ -JiA ]

Oscillations and Simple Harmonic Motion 1

5-41 A body ^ of massm is connected to a light spring of
spring constant k. At the right ofthere is a second light
spring 52 ofspring constant 5kand having amassless vertical
pan iP) attached to its free end as shown in the figure-5.153.
Distancebetween the pan and the blockwhenboth the springs
are in the relaxedpositionis I. BodyA is moved by3/ distance
to left from the configuration of static equilibrium and then
released. What is the periodofoscillation ofthe body? What is
the maximum forceexperienced bythe body/f ?

>-/-

5k

mmsmh
s.

Figure 5.153

Ans. [tt + 2sin"' (1/3)] + (mf6ky^ [7r-2sin"' (1/7)]; = 7k!]

5-42 In the arrangement as shown in figure-5.154, pulleys are
small and springs are ideal. K^,K^, and are force constants
ofthe springs. Calculate period ofsmallvertical oscillations of
block ofmass m.

Ans. =

'////////////////////

77777777777777777}

Figure 5.154

1

5-43 A particle executesSHMwith time period 2s. Find the
time it will take to move from mean position to a position at a
distanceequalto half ofamplitudefrom its meanposition.

Ans. [ -7 s]
6

5^ Two particle executes SHMin a straight line with same
mean position,same amplitudeyf and same periodofoscillation
T.At time / = 0, one particleis at its extremepositionon oneside
of mean position and other is at a distance ^/2 from its mean
position on the other side of the mean position. Find the time
after which they cross each other.

Ans. [ -g- ]
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5-45 A small bead ofmass m is in equilibrium at the position
shown in figure-5.155, on a smooth vertical ring ofradius r. The
ring revolves at some constant angular velocity about vertical
diameter. Find:

(i)

(ii)

Figure 5.155

Angular velocity ofthe ring.

If mis displacedslightly from its equilibrium position,prove
that it will execute SHM on the ring. Find its time period.

Ans. [(i)
rcos 0

(ii) 2n
rcosS

gsin^G

5-46 For a particle in SHM, What is the shape ofthe graph of
velocity-displacement curve.

Ans. [ellipse]

5-47 Find the ratio ofthe time periods of a simple pendulum of
length L and a physical pendulum consisting ofa thin uniform
rod ofsame length pivoted at one of its ends.

Ans. [ d- ]

5-48 Figure-5.156 shows a simple pendulum oflength / whose
bob is slightly displaced from vertical. A nail P is pivoted in the
wall at a depth 3//4 below the suspension point ofthe string. If
the bob is released, find the time after which bob will come to its

initial position again for the first time.

Figure 5.156

Ans. [^J— ]

5-49 A constant force applied to a block attached with an
unstretched spring, produces a maximum velocity v. When the
force constant ofthe spring is made four times the initial, now
find the maximum velocity produced by the same force applied
to it in unstretched position.

Ans. [v/2] ^
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5-50 Two particles are in SHM in a straight line. Amplitude of
particles is^ and time period is Tandboth are oscillating about
the same mean position. At / = 0, one particle is at its extreme
position and other is at a distance ^/2 from mean position on
other side of it. Find the time after which they cross each other.

Ans. [r/6]

5-51 A small block ofmass mis kept on a bigger block ofmass
Mattached to one end ofa vertical spring offorce constant/c as
shown in figure-5.157. Ifthis system is slightly displaced from
its mean position, it starts executing SHM. Find the normal
force on the smaller block when the two blocks are at a distance

X above their equilibrium position. Also find the maximum
possible amplitude ofthe two blocks so that they may oscillate
without separation.

Ans. [ mg-
mkx

M + m

WZ/////

Figure 5.157

(A/+m)g ^

5-52 A small sleeve of mass w = 0. kg can move along the
diameter of a horizontal disc, sliding without friction along a

guide rod as shown in figure-5.158. The sleeveis tied to the end
ofthe rod with the aid ofa massless spring whose force constant

is A- = 10 Nm"'. Find the angular frequency co of the small
amplitude oscillations ofthe sleeve, when the disc rotates about
its axis at the angular speed co equal to: (i) 6 rad/s, (ii) 11rad/s.

Figure 5.158

Ans. [8 rad/s]

5-53 A particle ofmass m is a straight line with simple harmonic
motion ofamplitude a and frequency co. At a distances from the
centre ofmotion the particle receives a blow ofimpulse / in the
direction ofmotion. Find the new amplitude.

Ans. [.if—^+ + 1



5^54 Find the time dependence ofangular displacement ofan
ideal simple pendulum, 80 cm in length, ifat the initial moment,

the pendulum was:
(1) displacedfrom its equilibriumposition through in angle 3°

and set free from rest.

(ii) in the equilibrium position, where the bob was imparted a
horizontal velocity 0.22 ms"'

(iii) deviated through 3® displacement and the bob was imparted
a velocity of 0.22 m s""' directed towards the equilibrium
position.

Ans, [(i) 0 = 3° cos (3.5 /); 00 6 = 4.5° sin (3.5 0:

(iii) 9 = 5.4° cos (3.5 I + 1)]

5-55 Iffor a particle executing SHM there is a sudden increase
of1% in the restoring forcejust as the particle is passing through
the equilibriurh position, what percentage increase will be given
to (a) maximum velocity (b) amplitude (c) period ?

Ans. [(a) Zero, (b) - ^%, (c) - ^%]

5'56 An ideal gas is enclosed in a horizontal cylindrical
container with a freely moving piston of mass M. The piston
and the cylinder have equal cross-sectional area, A.
Atmospheric pressure is Pq and when the piston is in
equilibrium, the volume of the gas is Vq. The piston is now
displaced slightly from its equilibrium position. Assuming that
the system is completely isolated from its surroundings, show
that the piston executes simple harmonic motion and find the
frequency ofoscillation.

1 YPo^Ans. r •— ]
2r. V MVt

5-57 A block ofmass Mexecutes SHM with amplitude a and
time period T. When it passes through the mean position, a
lump of puttyofmass m is dropped on it. Find the new amplitude
and time period.

Ans,
M

M + m

M + m

M
• Tj

5-58 A pendulum clock is mounted in an elevator car which
starts going up with a constant acceleration w, with iv<g. At a
height h the acceleration of the car reverses, its magnitude
remaining constant. How soon after the start ofthe motion will
the clock show the right time again ?

Ans. [/ = ./
/l +r)

i-Ji^ where n = w/g]

5-59 A point participates simultaneously in two harmonic
oscillations of the samedirection '.x^ = a cos(atandxj = a cos
2 CO/. Find the maximum velocity ofthe point.

Ans. [v„„ = 2.73 aa]

Oscillations and Simple Harmonic Motion

5-60 A physical pendulum is positioned so that its centre of
gravity is above the suspension point. From that position the
pendulum started moving towards the stable equilibrium and
passedit with an angular velocityco. Neglectingthe frictionfind
the period ofsmall oscillations ofthe pendulum.

Ans. [r = 4n/ci)]

5-61 Inthefigure-5.159shown,initially
the blocks are held at a height such that
spring is in relaxed position. The blocky4

is released. Find:

(a) the amplitude and maximum velocity
ofA during oscillations
(b) the frequency of the oscillation
system.

Ans. [(a) a =
2m g = ; (b) (0 V^5m ]

2R

Figure 5.159

5-62 A body of mass 1 kg is suspended from a weightless
spring having spring constant of 600 N/m. Another body of
mass 0.5 kg moving vertically upwards with a velocity of 3 m/s
hits the suspended body and gets itself embedded in it. Find
the frequency ofoscillations and the amplitude ofthe system.

Ans. [/"= 3.18 Hz, a = 5 cm]

5-63 Adiatomic molecule has atoms ofmasses andm^. The
potential energyofthe molecule for the interatomic separation
r is given by U{r) =A+B{r - r^, where is the equilibrium
separation, and A and B are positive constants. The atoms are
compressed towards each other from their equilibrium positions
and released. What is the vibrational frequency of the molecule ?

Ans. [
2B(m^+/W2)

5-64 On a particle four SHMs are superimposed whose
independent equations are given as

x^ = Ssin (at
A:2 = 6sin ((at+vJ2)
^3 = 4 sin ((at + ti)
^4= 2 sin (cD/+3rt/2)

Find the resulting SHM amplitude ofthe particle and its phase
difference with the first SHM given above.

Ans. [472 . "I ]

5-65 A simple pendulum oscillates with time period 2 s. When
this pendulum is submerged in a nonviscous liquid of density
p/2 where p is the density ofthe pendulum bob. Now find the
time period ofthe pendulum.

Ans. [ 2^2 s]
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5-66 An objectofmass 0.2 kg executesSHMalong x-axis ofa
coordinate system with origin at mean position, with angular
frequency50 rad/s.At a positionx=4 cm fromorigin, the object
has kinetic energy 0.5 J and potential energy 0.4 J. Find the
amplitude of oscillation ofobject if at mean position potential
energy ofthe object is zero.

Ans. [6 cm]

5-67 A second's pendulum is suspended in a car that is
travelling with a constant speed of 10 m/s around a circle of
radius 10 m. Ifthe pendulum undergoes small oscillations about
its equilibrium position, fiiid its period of oscillation.

Ans. [ ]

5-68 The time taken by a particle performing SHM to pass
from point A to B where its velocities are same is 2 s. After
another 2 s it returns to B. Find the time period ofoscillations.

Ans. [8 s]

5-69 A mass at the end ofa spring executes harmonic motion
aboutan equilibrium positionwith an amplitude/i. Its speedas
it passesthrough the equilibriumpositionis v. If extended2A
and released, find the speed of the mass passing through the
equilibrium.

Ans. [2 v]

5-70 A block of mass 0.9 kg attached to a spring of force
constant K is compressed by V2 cm and the block is at a
distance I/V2 cm from thewall asshown infigure-5.160. When
the block is released, it makes elastic collision with the wall and
its period of motion is 0.2 s. Find the value ofK.

K

Figure 5.160

Ans. [100 N/m]

5-71 Two blocks ofmasses Wj and W2 areplaced ona smooth-
horizontal surface as shown infigure-5.161. Block ofmassw, is
connected to one end of a light spring whose other end is
attached to the vertical wall as shown. Now and both a

brought in contactand pushedtoward left so that the spring is
compressed bya distance d. When the blocksare released,
will start executing SHM, find the amplitude ofthis SHM.

i

Ans. [ d

.^\\\\\\\\\\\\\\\\\\^^^
Figure 5.161

^1

OT] + ff72
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5-72 Aspring block system oscillates with time period T. Ifthe
spring is slightly cut so that its length is decreasedby 1%.Find
the time period ofthe oscillations ofthe block now.

Ads. [0.995T]

5-73 24 A particle is executing SHM with amplitude A. At
displacement A!A from the mean position, its kinetic energy is
K. Find the kinetic energy ofthe particle at a position when it is
at a displacement/4/2 from mean position.

Ans. [0.8K]

5-74 A particle of mass m is in a region of potential field
U(x) = 175 + 50x^. Findthe frequency oftheoscillation ofthe
particle.

Ans. [
10

•fm

5-75 The displacement of a particle varies according to the
relation

x = 3 sin lOOr+8 cos^50 rcm

Find the amplitude ofthe oscillationofthe particle and maximum

displacement of the particle from origin.

Ans. [5 cm, 9 cm]

5-76 A small mass executes linear SHM aboutOwith amplitude

A and time period T.Find its displacement from O at time TIZ
after passing through O.

Ans. [A/^ ]

5-77 In the arrangement shown in figure-S.162, the spring of
force constant 600 N/m is in the unstretched position. The
coefficient of friction between the two blocks is 0.4 and that

between the lower block & ground surface is zero. Ifboth the

blocks are displaced slightly and released, the system executes

SHM.

(a) Find time period oftheir oscillation if they do not slip w.r.t.
each other.

(b) What is tlie maximum amplitude ofthe oscillation for which

sliding between them does not occur.

600N/m

"fiOOOOOOOOOOOOOd—12K.g|
4Kg

Figure 5.162

Ans. [(a) n/5, (b) 2 cm]
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5-78 A block ofmass M= 1 kg resting on a smooth horizontal
surface, is connected to a horizontal light spring of spring
constant K=6 N/m whose other end is fixed to a vertical wall.

Another block ofmass w = 0.5 kg is mounted on the block M. If

the coefficient offriction between the two blocks is |i = 0.4, find
themaximum kinetic energy that the system can have for simple
harmonic oscillations under the action ofthe spring.

Ans. [3 J]

5-79 A spring of force constant k is cut into two parts whose
lengthsare in the ratio 1 :2. The twoparts are nowconnectedin
parallel and a block of mass m is suspended at the end of the
combined spring. Find the period of oscillation performed by
the block.

Ans. [T=2T:^(,2ml9k) ]

5-80 A particle of mass m moves on a horizontal smooth line
AB oflength a such that when particle is at any general point P
on the line two forces act on it. A force {mgia) {AP) towards A
and another force (2 mgIa) {BP) towards B. Show that particle
performsSHMon the linewhen leftfromrest from mid-pointof
line AB. Find its time period and amplitude. Find the minimum
distance of the particle from B during the motion. If the force
acting towards A stops acting when the particle is nearest to B
then find the velocity with which it crosses point B.

Ans. [T - ln^alZg , A= a/6, alb, \/6.,j2ag ]

5-81 A particle is oscillating in a straight line about a centreof
force O, towards which when at a distance a: the force ismn^x
where m is the mass, n a constant. The amplitude is a = 15 cm.
When atadistance a4^ 12 from Othe particle receives ablow
in the direction ofmotion which generates extra velocity If
the velocityis awayfromO, findthe new amplitude.What is the
answer if the velocity ofblock was towards origin.

Ans. {15 ]

5-82 A lift operator hung an exact pendulum clock on the lift
wall in a lift in a building to know the end ofthe working day.
The lift moves with an upward & downward accelerations during
the same time (according to a stationary clock), the magnitudes
ofthe acceleration remainingunchanged. Will the operator work
for more or less than required time.

Ans. [more]

5-83 A block ofmass 1 kg hangs without vibrating at the end
ofa spring with a force constant I N/cm attached to the ceiling
ofan elevator. The elevator is rising with an upward acceleration
ofglA. The acceleration ofthe elevator suddenly ceases. What
is the amplitude ofthe resulting oscillations.

Ans. [2.5 cm]

Oscillations and Simple Harmonic Motion

5-84 A pendulum is suspended in a lift and its period of
oscillation when the lift is stationary is
(i) What will the period Tof oscillationof pendulum be if the

lift begins to accelerate downwards with an acceleration
equal to 3g'/4 ?

(ii) What must be the acceleration ofthe lift for the period of
oscillation of the pendulumto be T^2 ?

, (ii) 3gt]Ans. [(i) T = 2T^= 2n I

g/4

5-85 Two blocks A (2 kg) and B (3 kg) rest up on a smooth
horizontal surfaceare connected bya spring ofstiffriess 120N/m.
Initially the spring is undeformed. A is imparted a velocity of
2 m/s along the line of the spring away from B. Find the
displacement of^ t seconds later.

3kg 2kg

B ^ I ^2m/s

Figure 5.163

Ans. [0.8/ + 0.12 sin 10/]

5-86 A rod of mass Af, length I is hanged at its centre by a
string as shown in figure-5.164. Torsional coefficient ofthe
string is k. Twomasses of mass mstrike elasticallywith the rod
perpendicularly at its ends with velocity v at time t = 0.
Determine the expression for angular displacementof the rod
as the function oftime from the initial position.

-////////Z

.A
/•

•/-

Figure 5.164

Ans. [
24/nv // - \

5-87 Supposethe mass m is attached to a long uniform spring
oflength Land observed tooscillate ata frequency_/^. Now the
spring is cut into two pieces of lengths xL and (1 -x)L. Mass
mis divided intotwo pieces inthis same ratio with m^=xm and

(1 -j:) m. The larger mass is attached to the shorter spring
and the smaller mass to the larger spring. Show that the
frequency of oscillation for each ofthe two spring is.

/o
/=

yjx{^-x)

5-88 •A point particle of mass 0.1 kg SHM ofamplitude 0.1 m.
When the particle passes through the mean position, its kinetic
energy is8 x 10~^ J.Obtain theequation motion ofthisparticle
ifthe initial phase ofoscillation is 45°.

Ans. [y (/) = 0.1 sin (4/ )1
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5-89 Consider a fixed ring shaped uniform body ofdensity p
and radius R. A particle at the centre ofring is displaced along
the axis by a small distance, show that the particle will execute
SHM under gravitation at force of ring & find its time period

neglecting other forces.

Ans. [
2nR^

Gp ]

5-90 The acceleration versus time graph ofa particle executing
SHM is shown in figure-5.165. Plot the displacement versus
time graph.

-10

Figure 5.165

Ans. [

-10/n-

5-91 A square plate of mass m is held by eight springs, each of
constant k in vertical plane. Knowing that each spring can act
in either tension or compression, determine the frequency of
the resulting vibration (a) if the plate is given a small vertical
displacement and released; (b) ifthe plate is rotated through a
small angle about G and released.

h-/-H

Figure 5.166

A r/- 1 4^ r 1 ^2/c ,

Plate

Fixed

frame

5-92 Twoparticles perform SHM with the same amplitude and
same frequency about the same mean position and along the
same line. If the maximum distance between them during the
motion is J (A is the amplitude of either) then find phase
difference between their SHMs.

Ans. [<j> = n/3, 571/3]
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5-93 Find the resultant amplitude due to superposition of
these two SHMs

10sin(co?+ 30'')

.r. = -10 cos (cor - 60°)

Ans. [0]

5-94 A spring of force constant 10 N/m is laying along the
x-axis on a horizontal frictionless table. One ofits ends is fixed.

A piece of mass 0.1 kg is attached to the other end. Another
piece of mass 0.1 kg is nowsent with a velocity of1 m/sec along
thex-axis towards the mass. After head-on collision it returns

back with velocity 0.6 m/sec. Calculate the maximum
displacement of the attached piece and the amplitude of SHM
set in.

Ans. [.V = 0.1, a = 0.08 ml
^ max ' ••

5-95 Figure shows a solid uniform cylinder os radius R and
mass M, which is free to rotate about a fixed horizontal axis O
and passes through centre of the cylinder as shown in
figure-5.167. One end of an ideal spring of force constant Ai is
fixed and the other end is hinged to the cylinder at^. Distance

OAis equal to R/2. An inextensible thread is wrapped round the
cylinder and passes over a smooth, small pulley. A block of
equal mass Mand having cross sectional area A is suspended
from free end of the thread. The block is partially immersed in a
non-viscous liquid of density p.
If in equilibrium, spring is horizontal and line OA is vertical,
calculate frequency of small oscillations of the system.

Figure 5.167

-•[/Hi

5-96 A point moves in the plane xy according to the law j: = a
sin (Sit,y = b cos cor, where a, b, and co are positive constants.
Find:

(a) the trajectory equation y (x) ofthe point and the direction
ofits motion along this trajectory;

(b) the acceleration w of the point as a function of its radius
vector r relative to the origin of coordinates.

Ans. [(a) x^la^ + }^lb^ = 1, clockwise; (b) vv = - coV.]
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5-97 AB and CDare two ideal springs havingforce constant
ATj andir2respectively. Lower endsofthesesprings areattached
to the groundsothat the springsremainsvertical.Alight rodof
length 3a is attached with upper ends B and C of springs as
shown in figure-5.168. Aparticle ofmass mis fixedwith the rod
at a distancea from end b and in equilibrium,the rod ishorizontal.
Calculateperiod of small verticaloscillationsof the system. If
rodhas massequal toparticlethen whatwillbethe timeperiod
ofsmall oscillation.

2a

"TTTTTTTTTTTTTTTTTZVP.
A D

Figure 5.168

. /2ff lm(Jc,+4k2) .
Ans. t,|—

5-98 Findtheangularfrequencyofmotionofblockwasshown
in figure-5.169, forsmallmotionofrod/45. Springconstantare

and Atj Neglect friction forces and also neglectthe mass of
rod AB.

Ans. [o =

•l-jbWOOWOfl'd-

B

\\\\\\\^

Figure 5.169

m[k^c +k2(b+c)'\

5-99 Two particles describes SHM of the same period and
sameamplitudealongthe samelineaboutthesameequilibrium
position O. At a moment when they same displacements their
velocities are 1.6m/s in opposite directions. At another moment
when their displacements are equal in magnitude but on either
side of O their velocities are 1.2 m/s in the same direction. Find

the maximum speed of the particles and the phase difference
between them.

Ans. [(a) 1.6 m/s; (b) 2 tan"' (4/3 )j

Oscillations and Simple Harmonic Motion

5-100 A spring mass system is
hanging from the ceiling ofan elevator
in equilibrium as shown in figure-5.170.
The elevator suddenly starts
accelerating upwards with acceleration
a find

(a) the frequency

(b) the amplitude ofthe resulting SHM

Ans. [(a) ; (b) A = ma/k]

Figure 5.170

5-101 A physical pendulum performs small oscillations
about the horizontal axis with frequency co, = 15.0 s"'.
When a small bodyof mass m= 50 gm is fixed to the pendulum
at a distance/=20 cm below the axis, the oscillation frequency
becomes equal to co^ = 10.0 s"'. Find the moment ofinertia ofthe
pendulum relative to the oscillation axis.

Ans. [0.8 gm • m^]

5-102 A uniform rodisplaced ontwospinningwheels asshown
in figure-5.171. The axes of the wheels are separated by a
distance / = 20 cm, the coefficient of friction between the rod
and the wheels is /:=0.18. Demonstrate that in this case the rod

performs harmonic oscillations. Find the period of these
oscillations.

Figure 5.171

Ans. [1.5 s]

5-103 Apipe intheform ofa halfringofradius r isplaced on
a horizontal surface as shown in figure-5.172. If is rotated
through,a smallangle,and thenreleased. Assuming that it.rolls
without sliding determine the period of oscillations.

'ZVT/^W/TPTTTTTTTTTTT?.

Figure 5.172

'(n-2)r
Ans. [2nyl ]

5-104 Thebalance wheel ofa watch vibrates with anangular
amplitude tz radians and aperiod of0.5 s.Find (a) the maximum
angularspeed ofthe wheel, (b) the angularspe^ of the wheel

when its displacement is y radians and (c) the angular

acceleration ofthe wheel when its displacement is y radians.
Ans. [39.5 rad/s, 34.2 rad/s, 124 rad/s^]
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5-105 Whenthe displacement isone-halfthe amplitude, what
fraction of the total energy is kinetic and what fraction is

potential ?At what displacement is the energy halfkinetic and
halfpotential ?

5-106 A block ofmass w,= 1kg isattached toa springofferee
constant k = lA N/cm at one end and to a string tensioned by

mass ^2 ~ 5 kg at the other as shown in figure-5.173. Deduce
the frequency of oscillations of the system. If W2 is initially
supported in hand and then suddenly released, find :

1 0

Figure 5.173

(i) the instantaneous tension just after is released,

(ii) themaximum displacement ofwj,
(iiQ the maximum and minimum tension in the string during

oscillations.

Ans. [v =
K 10 imig „ 55g

Hz,2n ^ mj +m2 Jt . =

5-107 A rubber cord offorce constant lOON/m and/= 1 m

is attached to a particle ofmass w = 1kg at one end and fixed to
a verticalwallat the other. The bodyis displaced byA:o=25 cm
so as to stretch the cord and then released. Calculate the time

the particle takes to reach the wall.

Ans. [0.56 s]

5-108 A solid hemisphere of radius 7? is placed on a horizontal

surface and is set into small oscillations in a vertical plane

through a diameter. If no slipping occurs, find the period of

these oscillations.

,'267?
Ans. [r=2i:J— ]

5-109 A thin fixed ring of radius 1 m has a positive charge
1 X10"^ coulomb uniformlydistributed over it. A particle of
mass 0.9g andhavinga negative charge of I x 10"^ coulomb is
placed on the axis at a distance of 1 cm from the centre ofthe
ring. Show that the motion ofthe negatively charged particle is
approximately simple harmonic. Calculate the time period of

oscillations.

Ans. [0.628 s]
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5-110 Asmallbodyofmass m,= 1kganda body5 ofmass
Wj = 4 kg are interconnected by a spring as shown in the
figure-5.174. The body ^ performs free vertical harmonic
oscillations with amplitude ^ = 2 cm and angular frequency
CO = 25 rad/s. Assumingmass ofthe spring to benegligible,find
the maximum and minimum values ofthe normal reaction on the

surface.

B
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Figure 5.174

Ans. [N= ntjg + (g ± (S?A) = 61.5 N (max), 16.9 N (min.)]

5-111 A small block of mass m is placed at the bottom of a
smooth hemispherical cup of mass Mand radius R as shown in
figure-5.175. If it is displaced a little and released, show that the
motion ofboth m and M\s simple harmonic. Find the period of
oscillations. Consider the caseM» m.

Figure 5.175

Ans. [2n J— ]

5-112 A particle moves according to the equation/+ 4x = 0,
where Xis its instantaneous displacement and/its instantaneous
acceleration. The maximum value ofx is 20 x 10"^ m. How much
time will the particle take to move fromx = 0.02 m tox = 0.08 m ?

Ans. [0.157 s]

5-113 Determine the period of small oscillations of a
mathematical pendulum, that is a ball suspended by a thread
/ = 3.0 times less then that of the ball. The resistance of the

liquid is to be neglected.

Ans. [I.l s]

5-114 A hoop of mass m and radius r rests at the bottom ofa

fixed hollow cylinder of radius R. Ifit is displaced a little and
released, show that the centre of the hoop oscillates
harmonically. Find the period of oscillation. Assume that the
hoop rolls without slipping.

Ans. [2ji
2R (R-r)
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5-115 Find the time dependence of the angle ofdeviation ofa
mathematical pendulum 80 cm in length if at the initial moment
the pendulum:
(a) was deviated through the angle 3.0° and then set free

without push;

(b) was in the equilibrium position and its lower end was
imparted the horizontal velocity 0.22 m/s;

(c) was deviated through the angle 3.0° and its lower end was
imparted the velocity 0.22 m/s directed toward the
equilibrium position.

Ans. [(a) 3.0° cos 3.5/; (b) 4.5° sin 3.5/; (c) 5.4" cos (3.5/ + 10)]

5-116 In the arrangement show in figure-5.176 the sleeve Mof
mass 0.20 kg is fixed between two identical springs whose
combined stifihess is equal to 20 N/m.'The sleeve can slide
without friction over a horizontal bar AB. The arrangement

rotates with a constant angular velocity4.4 rad/s about a vertical
axis passing through the middle of the bar. Find the period of
small oscillations ofthe sleeve. At what values of0 will there be

no oscillations of the sleeve ?

M B

Figure 5.176

Ans. [0.7s, 10 rad/s.]

5-117 A block of mass m is tied to onecnd ofa string which

passes over a smooth fixed pulley and under a light smooth
movablepulley5 as shownin figure-5.177. The other end ofthe
string is attached to the lowerend of a spring of spring constant
k^. Find the period of small oscillations of mass m about
its equilibrium position.

/////////////////z

Figure 5.177

+4^2)
Ans. [r = 2n^| ]

Oscillations and Simple Harmonic Motion

5-118 In the arrangement shown in figure-5.178, both the
springsare in their natural lengths. The coefficient offriction
between andw, is p.There isnofriction between Wj andthe
ground surface. If the blocks are displaced slightly, they
togetherperform simpleharmonicmotion. Obtain-

(a)
(b)

(c)

K.

"h —OTTO

-OTTO—

V77777?77777^7777777^77777777777:^/
Figure 5.178

Frequency of such oscillations.
The condition ifthe direction ofits displacement from mean
position.
If the condition obtained in (b) is met, what can be the
maximum amplitude of their oscillations ?

ki + k-, k\
; (b) — > —

"'2 kj ' m, ^2 - '"2 ^1

5-119 In the arrangement shown in figure-5.179, AB is a
uniform rod of length 90 cm and mass 2 kg. The rod is free to
rotate about a horizontal axis passing through end A.A thread
passes over a light, smooth and small pulley. One end of the
thread is attached with end B of the rod and the other end

carries a block ofmass 1 kg. To keep the system in equilibrium
one end of an ideal spring of force constant K = 7500 N/m is
attached with mid point of the rod and the other end is fixed
such tiiat in equilibrium, the spring is vertical and the rod is
horizontal. If in equilibrium, part ofthe thread between end 5
and pulley is vertical, calculate frequencyof smalloscillations
of the system.

Ans. [
2ti

Hz]

K\

\\\<W

Figure 5.179

♦ * *
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FEW WORDS FOR STUDENTS

In mechanical oscillations we have studied the detailed

analysisofmotion ofoscillatingparticles. In this chapter
we use our knowledge of oscillatory motion to explain
the behaviour ofmechanical waves. A mechanical yvave
is propagation of energy through a medium due to
oscillating medium particles. The basicprinciples ofwave
motion are essentialfor fundamental understanding the
behaviour ofmatter at atomic and subatomic level.
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Figure-(a) Figure-(b)
Figure-(a) shows a Rubens' tube or flame tube experiment which is an apparatus for demonstrating acoustic standing waves in a tube'. It
graphically shows the relationship between sound waves and pressure. Above figure shows a tube in which propane gas is passed through a
Bunsen burner and inside the tube due to variation of pressure by formation of standing waves the flame length changes with distance. At
the position of constructive interference, antinodes are formed and at the points of destructive interference nodes are formed. In above
figure it is very important to understand which points are node and which are antinodes in respect of flame length. Figure-(b) shows Melde's
experiment setup demonstrating stationary wave in a stretched string.
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6.1.1 DifferentTypes of Mechanical Waves
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In simple words a wave is the transfer of energy. We also
experience theenergy transferred bywaves inmany situations.
We feel how much force an ocean wave can exert, our skin is

warmed bythe lightwaves from the sun,wehearsoundwaves
andmanymoreexamples are there in our surroundings. Most
of the information that we receive comes to us by waves. In

thischapter we'll discuss indetailhowenergy (orinformation)
is transmitted by a wave.

Ina wave energy andmomentum istransmitted byoscillations.
A wave can be classified in two broad categories. Mechanical
Waves and Non Mechanical or Electromagnetic waves. In
mechanical waves, energyis transferred due to oscillationsof
medium particles and innonmechanical waves energy transfer
takes place by-the oscillations of electricand magnetic field
vectors. Inthischapter we'llmainly discuss allabout mechanical
waves whichrequiresa physical medium for itspropagation.

6.1 Properties of a Mechanical Wave

A wave has three basic properties which decide the
characteristic behaviour of wave and these are

(i) Amplitudeof wave (ii) Frequency of wave

(iii) Velocity of wave

(i) Amplitude: It isthemaximum displacement ofoscillating
medium particle from their mean position. It depends on the
source of oscillation or the wave generator. It may vary with
the distance of medium particle from the oscillating source.

(ii) Frequency ; It is the numberof oscillations madebythe
medium particles per unit time. It alsodepends on the source
of oscillations. Once a wave is produced by a source it is
carried bythe medium, no matterswhat the medium maybe,
the frequency of oscillation remains samewherever the wave
will go.

Whenever a wave is produce by a source, it propagates in a
mediumand during propagationswhen it encountersanother
medium in its path then at boundaryof the medium a part of
wave is reflected into the same medium and a part is transmitted
to the other medium. It is obvious that as the reflected and
transmitted waves are produced bythe initial propagating wave,
the frequency of both of thesewaves must be sameas that of
the oscillatingsourceofihitial wave.

(ill) Velocity of wave : It is the speed with which energy
transfers through a medium and it depends mainly on the
physical properties ofthemedium. When a wave is transmitted
through a medium, its frequency and amplitude depends on
the source ofoscillation which produces the wave but its speed
is decided by the medium which carries energy.

We've discussed that mechanical waves carry energy through
a physical medium by oscillations of the medium particles.
Depending on the way how these medium particle oscillates
and the nature of oscillations, there are several types of
mechanicalwaves. Mainlymechanicalwavesare classifiedin
two broad categories:

(i) Transverse waves, (ii) Longitudinal waves.

(i) Transverse Wave: During such type ofwave propagation,
medium particles oscillate inaplane normal tothedirection of
propagation of the wave energyas shown in figure-6.1.

Direction of energy propagation

direction ofoscillation ofmedium
particles is normal to energypropagation

Figure 6.1

(ii) Longitudinal Waves : During such type of wave
propagation, medium particles oscillate along thedirection of
propagation ofthewave energy as shown in figure-6.2.

Direction of energy propagation

directionofoscillation ofmedium
particles is along the energypropagation

Figure 6.2

Themostsimpletypeofa wave issimple harmonic wave which
exist in both longitudinal and transverse from. It is the one in
whichthemediumparticleoscillates simpleharmonically. Now
we'll discussaboutsimple harmonicwaves in detail.

6.2 Equation of a Simple Harmonic Wave

We've discussedthat in a simple harmonic wave,all medium
particles execute SHM along orperpendicular tothedirection
of propagation of wave depending on whether wave is
longitudinal or transverse. In the chapterof simpleharmonic
motion we've discussed that the equation of SHM of a particle
gives itsdisplacement from mean position as a function oftime
and can be written in general as

y=Asin (tof+ cj)) .(6.1)

Here A is the amplitude of oscillations of the particle with
angularfrequency co and (j) gives thephaseangle ofparticle(on
circular projection)at time / = 0 when particle starts its SHM
with respect to its reference position.
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In a simpleharmonicwave, allmedium particles executes SHM
and transfers energy from one particle to another and due to
this the wavepropagates. Equationofa simpleharmonicwave
is a mathematical expression similar to equation-(6.1) which
gives the displacement of all the medium particles from their
mean position as a function of time. Consider the situation
shown in figure-6.3. A transverse wave is travelling on a
stretched string along + ^-direction.

T>«>0-
o

-A-\-

+ A--

+ A. •

k:

o

-A' -

Velocity of medium particle > •

Figure 6.3

-*X
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The oscillating source of the wave is at origin O, it starts its
oscillations with amplitude A and angular frequency co at / = 0
and the oscillations produced by the source is carried in + X
direction by the medium with the wave speed v, as shown. If
weconsider a medium particle^ at a distances fromthe origin,
will start its oscillations at time t = xh when wave will first

reach this point and its oscillations are started from the mean

position with amplitudeAand same angular frequencyco. Here
we can observe that iforigin starts oscillations at r = 0 from its

mean position, its SHM equation can be given as

y=/I sin cor ...(6.2)

Medium particle at pointalso starts its SHM from its mean
position but not at r= 0. It will start at time r=j:/v wherex is the
distance, wave covers from origin to points. In this duration
the source ofwave or the medium particle at origin will move
ahead in phase by an angle ([), which is given as

)=cor = to —
V

iTzn

nk

2k

= kx ...(6.3)

2k
Here k is called angular wave number of the wave. In

equation-(6.3) cj) is the phase difference between point A and
origin or this is the phase angle by which SHM of point A
lagging with respect to SHM of particle at origin. Thus SHM
equation ofmedium particle at point ^4 can be written as

or

>'=i4sin (cor-ij))

y = sin (co/ - kx) ...(6.4)

The expression in equation-(6.4) gives the displacement^ of a
medium particle from its mean position as a function of time,
which is situated at a distances from the source ofoscillations

of the wave. This equation-(6.4) is termed as the general
equation of a simple harmonic wave propagating in positive
X direction.

Equation-(6.4) can be written in different ways as

y = sin (co/ - fcr) ... (6.4a)

y = .^4 sin CO [As ^ ] •••(6.4b)

y=Asm^(vt-x) [As ~ =...(6.4c)

y sin2'n: [As ^ ] ...(6.4d)
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Above expressions in equations-(6.4a) to (6.4d) represent
different forms of equations of a plane propagating wave in

positive direction ofA-axis. Students are advised to remember
all these forms of wave equation'in their mind fornumerical

applications.

6.2.1 Velocity and Acceleration of a Medium Particle in Wave

Propagation '

When a plane progressive wave propagates along positive

x-axis with its source located at ;c = 0 andstarted at / = 0, the

equation ofmotion ofa particle at position .xis given as

^ sin (co/- kx) ...(6.5)

Equation-(6.5) is also termed as waveequation for the respective
wave. Here the velocity of medium particle at position x is
given as

_ _v^= =^cocos {(syt-kx) ...(6.6)

=A(}) |̂A^~y^ ...(6.7)

Equation-(6.7) already we've covered in SHM. Here we can
also see that during wave propagation the maximum speed of
medium particles is given as

When they cross their mean position, i.e. aty = 0.

Further from equation-(6.5), if we differentiate it w.r. to
displacement ofwavex then we get the slope of displacement

curve of wave as

dx
- - AK cos {(at- kx)

From equation-(6.6) and (6.8) we have

dy _ k dy
dx CO dt

...(6.8)

—[As wave velocity v= y]

or = —VX (slope) ...(6.9)

Thus in a propagating wave the speed ofmedium particle at a
given position and at a given instant is the negative of the
product of wave velocity and the slope ofdisplacement curve
of wave at that point and at that instant.

Similarlyacceleration ofa medium particle is given as

Y =-/ico^ sin (co/-fcc)
dt

...(6.10)

Waves

Now differentiating equation-(6.8) w.r. tox again, we get

q2
—5" =-Ak^'s\r\ {(at-kx)
dx^ •

From equation-(6.10) and (6.11) we get

ar^
CO

dx^

dt^
= v2

dx^

...(6.11)

...(6.12)

There
dx^

is the measure of curvature of the displacement

curve, thus we can write that

Acceleration ofa medium particle = x the curvature of the
displacement curve

Here equation-(6.12) is termed as differential form ofequation

ofa propagating wave.

6.2.2 Phase Difference and Path Difference of Medium

Particles in Simple Harmonic Wave

We've discussed that when a wave propagates, only energy is
transferred through the medium particles and these particles
execute SHM at their position. From figure-6.3 it is also clear

that as wave propagates, every medium particle follows the
phase of its previous particle or in other words the
instantaneous phase of a medium particle is same which was
that of its previous particle just a moment before. Thus we can
say that during wave propagation, phase also travels, that's
why some times wave velocity is also termed as phase velocity.

Figure 6.4

Here we can also mansion that as phase travels at some speed
as that of wave, we can find the phase difference between

SPfMs ofany two medium particles if their path difference is
known. Consider figure-6.4 It shows a part ofa stretched string
carrying a transverse wave travelling at a speed v toward right.
Consider two medium particles A and 5 at a path difference A
apart. Here we can say that if at an instant A has some

instantaneous phase, then the same phase B will be having

after a time t = A/v as wave has to travel a distance A from A to

B. In this duration A will move forward in phase by an angle
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CO A/v, which isnow thephase lead ofAwith respect to5. Thus
phase difference between two oscillating medium particles
having a path difference A is given as

, CO . 2tc . , .
(b= — A = ^ A= ^A
^ V A,

...(6.13)

Thus the relation in phase difference between the two points
in a propagating wave is related to their path difference is
given as

2.TZPhase difference ~ ^ ^P^lh difference ... (6.14)

The above relation is extremely useful in solving problems of
wave motion as well as in problems concerned with principle
of superposition, we'll discuss in next section.

6.3 Sound Waves

Sound is type of longitudinal wave. In general majority of
longitudinal waves are termed as sound waves. Sound is

produced by a vibrating source, like when a gong of a bell is
struck with a hammer, sound is produced. The vibrations
produced by gong are propagated through air. Through air
these vibrations reach to the ear and ear drum is set into

vibrations and these vibrations are communicated to human

brain. By touching the gong of bell by hand, we can feel the

vibrations.

Prongs oftuning fork when hit on a rubber pad vibrates and it
is used as the most common source of sound in laboratory
experiments. Similarly vibrating string, air column, and any
vibrating body produces sound.

to vacuum

pump

Figure 6.5

As being a mechanical wave sound requires material medium
for its propagation. To understand this we discuss a simple
experiment shown in figure-6.5. We take ajar and fix an electric
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bell in it.Thejar is closedbyan air lightcorkand a smallopening
at the bottom ofjar is connected to a vacuum pump. WIten we
close the switch S, the circuit is completed the bell rings and the
sound is heard. Now the air in jar is removed gradually by the
vacuum pump. We can listen tiiat sound becomes fainter slowly.
When pressure in jar becomes very low, almost no sound is
heard, even the bell is vibrating at same pace. Hence we can say
withoutmaterial medium soundpropagation is not possible.At
normal atmospheric pressure and temperature it is observed
hat sound travels at speed 332 m/s.

Illustrative Example 6.1

A harmonic oscillation is represented by

0.34 cos (3000/+ 0.74)

where y and t are in mm and second respectively. Deduce (i)
amplitude, (ii) frequency and angular frequency, (iii) time period
and (iv) initial phase.

Solution

Weknow that a simple harmonic oscillation can be represented
by

y = cos (co / + (|))

Where is amplitude co is angular frequency and (f) is the initial
phase. Comparing this equation with given equation, we have

(i) amplitude ^ = 0.34mm

(ii) angular frequency co = 3000 Hz

Since

And thus we get

(iii) We know that

(iv) Initial phase ([)=0.74 radian

CO = 2 7t« where n isthe' frequency

n =
CO ^ 3000 ^ 1500

2 7t 2 71 K

T=- = =

^ n 1500 1500
n

Hz

sec

^Illustrative Example 6.2

An observer standing at sea coast observes 54 waves reaching
the coast per minute. If the wavelength of the waves is 10 m,
find the velocity. Wliat type of waves did he observe ?

Solution

As 54 waves reach the shore per minute,

54
/= 60
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And as wavelength ofwaves is 10 m

v=fX^ X10 = 9m/s

The waves on the surface of water are combined transverse

and longitudinal called ^ripples''. In case of surface waves the

particles of the medium move in elliptical paths in a vertical
plane so that the vibrations are simultaneously back and forth
and up and down.

Illustrative Example 6.3

A progressive wave of frequency 500 Hz is travelling with a
velocity of 360 m/s. How far apart are two points 60° out of

phase ?

Solution

We know that for a wave v =fX,

So
, " 360

Now as in a wave path difference is related to phase difference
by the relation,

phase difference

M=^ (path difference Ax)
K

Here, phase difference

Ail) = 60°= (Jc/l 80) X60 - (jl/3)rad

So path difference

^ /*i.x 0.72 K „

a Illustrative Example 6.4

A person, standing between two parallel hills, fires a gun. He

hears the first echo after 1.5 s and the second after 2.5 s. If the

speed ofsound is 332 m/s. Calculate the distance between the
hills. When will he hear the third echo ?

Solution

Let the person P be at a distancex from hill and;' from as

shown in figure-6.6. The time interval between the original sound

and echoesfrom/f, and //j respectively

2x , 2>'
/, = — and /,= —
1 V 2 V

Waves
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Figure 6.6

So the distance between the hills,

x+y=j[t, +l2\-^ [1.5+2.5] =664m
Now as I echo will be from after time while II echo from

after time III echowill beproduceddue to reflectionof sound
of I echo from or ofII echo from thus we have

= +/'2^ 1.5+ 2.5=4s

Thus we can state that III echo will be produced after 4s and in
it sound from both I and II echoes will reach simultaneously.

# Illustrative Example 6.5

An aeroplane is going towards east at a speed of 510 km/h at a
height of2000 m. At a certain instant, the sound of the plane
heard by a ground observer appears to becoming from a point
vertically above him. Where is the plane at this instant ? Speed
ofsound in air = 340 m/s.

Solution

The situation is shown in figure-6.7. The sound reaching the
ground observerP, was emitted by the plane when it was at the
point Q vertically abovehis head. The time taken by the sound
to reach the observer is

t =
2000 100

340 17

Q

V7777777777777777777777777777777777777777777,

Figure 6.7

The distance moved by the plane during this period is

or d —vt

510x5 100

18 17

= 833.33 m
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Thus, the plane will be 833.33 m ahead of the observer on its
line of motion when he hears the sound coming vertically to
him.

# Illustrative Example 6.6

A light pointer fixed to one prong of a tuning fork touches a
vertical plate. The fork is set vibrating and the plate is allowed
to fall freely. Eight complete oscillations are countedwhen the
plate falls through 10cm. What is the frequency of the fork ?

Solution

During the time the plate falls through 10 cm from rest, the
tuning fork makes 8 vibrations.

From speed equation we get

h=-kst^

0.1 = y x9.8 X or f= y s

1In ys the fork makes 8vibrations. Therefore in Is, the number
ofvibrations fork makes is

rt-8x7 = 56

Thus frequency of fork is

« =56Hz

#Illustrative Example 6.7

(a) An ultrasonic transducer used in sonar produces a
frequency of 40 kHz. If the velocity of the sound wave in
seawater is 5050 ft/s, what is the wavelength ? (b) The transducer
is made to emit a short burst of sound and is then turned off.

The receiver is turned on. The pulse is reflected from a lurking
submarine and received 5.0 s after it was first emitted. How far

away is the submarine ?

Solution

(a)

or

or

(b)

or

or

v = «X

505a-40000X

X=0.126ft

v= —

= 12600 ft
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§ Illustrative Example 6.8

When a train of plane wave traverses a medium, individual
particle execute periodic motion given bythe equation

y-4sin +

where the lengths are expressed in cm and time in second.
Calculate the amplitude, wavelength, (i) the phase difference
for two positions of the same particle which are occupied at
time intervals 0.4 second apart and (ii) the phase difference at
any given instant oftwo particles 12 cm apart.

Solution

The equation of a wave motion is given by

2j
X

2k
y = Asin (vt + x)

Here _y =4sin y

This equation can be written as

_y =4sin yy (16/+x)

Comparing equation-(6.16) with equation-(6.15), we get
amplitude A = Acm; wavelength X= 32 cm; wave velocity
V= 16 cm/s.

Here frequency is given as

V 16 1 ^ c,

(i) Phaseofa particleat instant r, is given by

The phase at instant is given by

The phase difference is given as

= 7i(f^-/2) =7c(0.4) [As A]

= 180 x 0.4 = 72" [7irad=180"]

(ii) Phase different at an instant between two particles with
path difference A is

, 2k
(t)=^xA

...(6.15)

...(6.16)

2jc , .
" 32

_ 37r
4

[As A= 12 cm]
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Illustrative Example 6.9

A rod runs midway between two parallel rows of buildings. A
motorist moving with a speedof 36 kilometersper hour sounds
the horn. He hears the echo one second after he has sounded

the horn. Find the distance between the two rows of buildings.
When will he hear the echo, a second time ? Velocityof sound
in air is330m/s.

Solution

The situation is shown in figure-6.8.

T
5 m

i

ny

Figure 6.8

Given the velocity ofmotorist = 36 km/hour = 10 m/s.

So he travels a distance of 10 m in one second. He will hear the

firstechoafter the soundhad travelled330 m through the least
path i.e., reflected at point B.

From figure-6.8, we have

AB=^I{AF^+BF^)

And AB + BC = 2

But we also have AB + BC= 330 m

Thus 2^(5^+ =330m

Solving we get x = 164.9m

Sothedistance between the tworowsofbuilding^=2 x=329.8 m.
He will hear the second echo at E after the sound had travelled

a further "distance of330 m, reflecting from the other row i.e.,
2 seconds after the horn is sounded.

UIllustrative Example 6.10

An engine approaches a hill with a constant speed. When it is
at a distance of0.9 km it blows a whistle, whose echo is heard
by the driver after 5 s. Ifthe speedof sound in air is 330 m/s,
calculate the speed of the engine.

Solution

The situation is shown in figure-6.9.

•900m-

Waves
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Figure 6.9

If the speed of the engine is v, the distance travelled by the
engine in 5 s. will be 5 v.And hence, the distance travelled by
soundin reaching the hill and comingbackto the movingdriver
is given as

5 = 900 + (900-5v) = (1800-5v)

Thus time interval between the original sound and its echo is

5
( =

^soiind

1800-5V

. 330
5 =

On solving we get v = 30 m/s

# Illustrative Example 6.11

Given the equation for a wave in a strirlg

;' = 0.03 sin (3x-2f)

where and x are in metres and t is in seconds, answer the

following:

(a) At f = 0, what is the displacement at 0,0.1 m.

(b) At X= 0.1 m, what is the displacementat ?= 0 and t = 0.2 s.

(c) What is the equation for the velocity of oscillation of the
particles of the string ? What is the maximum velocityof
oscillation ?

(d) What is the velocity ofpropagation of the wave ?

Solution

Given that 7 = 0.03 sin{3x-~2t)

(a) At / = 0,7 = 0.03 sin3x

When j: = 0,7= 0.03 sin 0 = 0

When
' 1 sn

x = 0.1,7=0.03 sin(0.3x —)
7t
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or

(b) At

When

When

^ = 0.03 sin1

= 0.03x0.2954

= 0.00886m=8.86x lO-^m

X= 0.1 m,_i' = 0.03 sin (0.3 - 2 /)

?=0,;;=0.03 sin (0.3)

= 8.86 X 10-3m

/ = 0.2,;i;= 0.03 sin (0.3-0.4)

= -0.03 sin 0.1

=-0.03 sin (IS/tc)

=-0.03x0.0999

=-2.997 X10-3m

(c) Velocity ofparticle

_

dt

= -2 X0.03 cos (3x-2/)

= -0.06 cos (3x-2 0

This is maximum when cos (3 x - 2 /) = 1

ormaximumvelocity=0.06m/s= 6 x 10"^ m/s

(d) Weknow that the equation of a progressive wave is given

by

I ^ ^y = (3 sin2 Til Y
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Practice Exercise 6.1

(i) The displacement of a wave is represented by

y = 0.25x 10-3 sin(500 r-0.25x)

wherey, t andx are in cm, secand metrerespectively. Deduce
(a) amplitude (b) time period (c) angular frequency (d)
wavelength (e) amplitudesof particle velocityand (f)particle
acceleration.

[(a) 0,25 X 10"^ cm (b) s (c) 500 rad/s ,

(d) Sn cm (e) 0.125 cm/s (f) 6.25 cm/s^l

(ii) From a cloudat an angleof 30°to thehorizontal wehear the
thunder clap 8 s after seeing the lighting flash. What is the
height of the cloudabovethe ground if the velocityof soundin
air is330m/s?

[1.320 km]

(ill) Awaveisexpressedbytheequationy = 0.5 sin7i(0.01x-30,
wherey andx are in mand t ins. Find the speedofpropagation.

[300 m/s]

(iv) A wave propagateson a string in the positivex-direction
at a velocity v. The shape of the string at / = is given by
g (x, /q) = A sin (x/a). Write the wave equation for a general
time t.

[f{x, t) = A sin
-v-v(/-?o)

(v) A man seeinga lightningstarts countingseconds, until he
hears thunder. He then claims to have found an approximate
but simple rule that if the count of second is divided by an
integer, the result directly gives, in km, the distance of the
lightning sotirce. Whatis the integer ? (Velocityofsound inair
= 330 m/s)

Comparing thegiven equation, with this equation, we have |- 3 ^

or

Now

A. and ^ 2

2 7C 1
X=-r- and 2Kf} = 2 or n= —

3 • 71

v=„),= lx^=0.667m/s
7t 3
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(vi) A manstandsbefore a largewallat a distance of50.0m and
claps hishands atregular intervals. Initially, theinterval is large.
Hegradually reduces the interval and fixes it at a valuewhen
the echoofa clap merges withthenext clap. Ifhehasto clap 10
timesduringevery 3 seconds, findthevelocity of sound in air.

[333 m/s]

(vii) A simple harmonic wave has the equation y = 0.30 sin
(314 / - 1.57x) where t, x and a are in seconds, metres, and
centimeters respectively. Find the frequency and wavelength
of this wave. Another wave has the equation y' = 0.10 sin
(314 / - 1.57 X+ 1.57). Deduce phase difference and ratio of
intensities ofthe two wave.

[90^ 9/1]
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(viii)A plane elasticwave>' =^ cos (ait-kx) propagatesin a
medium K. Find the equation ofthis wave in a reference frame
K' moving in the positive direction ofx-axis with a constant
velocity Vrelative to the medium K.Wave speed in medium K
is V.

[A cos CO 1-—U-fcc'

(ix) The equation of a travelling sound wave is y = 6.0 sin
(600 1.8x)where>'is measured in 10~^ m, / in second andxin
metre, (a) Find the ratio of the displacement amplitude ofthe
particles to the wavelength ofthe wave, (b) Find the ratio of the
velocityamplitude of the particles to the wave speed.

[(a) 1.71 X 10-5, (b) 1.1 X 10-1]

(x) The equation of a travelling plane sound wave has the
form y = 50 cos (1800 t - 5.3 x), where y is expressed in
micrometers, t in seconds, andx in meters. Find:

(a) the ratio of the displacement amplitude, with which the
particlesof mediumoscillate,to the wavelength;

(b) thevelocityoscillation amplitude ofparticlesofthemedium
and its ratio to the wave propagation velocity;

(c) the ratio of oscillationamplitudeof relative deformationof
themedium to thevelocityoscillation amplitude ofparticles
ofthe medium.

[(a) 4.22 X 10-5, (b) 0.09 m/s, 2.65 x IQ-', (c) 2.94 x 10" m]

(xi) A man standing in front ofa mountain at a certain distance
beats a drum atregular intervals. Thedrumming rateisgradually
increased and he finds that the echo is not heard distinctly
when the rate becomes40 per minute. He then moves nearer to
the mountain by90 metres and finds that theechois againnot
heardwhenthedrumming ratebecomes 60perminute. Calculate
(1) the distancebetween the mountainand the initialposition

ofthe man,

(2) the velocity of sound.

[270 m and-360 m/s]

(xii)A soundwaveoffrequency 100Hzis travellingin air.The
speedofsoundin air is 350m/s. (a) Byhowmuchis the phase
changed at a given point in 2.5 ms ? (b) What is the phase
difference at a given instant between two points separated bya
distanceof 10.0cmalong the direction ofpropagation?

[(a) jt/2, (b) 271/35]

6,4 Velocity of a Wave

We havediscussed that wavevelocity is the velocity ofenergy
propagation in the direction ofwave motion. Wave velocity of
a wave is also termed as its phase velocity as the phase of

Waves

medium particles also travels along propagation direction with
the wave with this speed. In different type ofwaves its velocity
dependson medium propertiesin differentmanner, wewillnow
discuss in detail.

6.4.1WaveSpeed ofTransverse Waveson a Stretched String

When on a stretched string shown in figure-6.10, a transverse
jerk is given, a pulse is created as shown in figure-6.10(b) and
(c) which travels toward right with a wave speed v as shown.
Westart our analysis by looking at the pulse carefullyas shown
in enlarged view of figure-6.10(d).For convenience of our
analysiswe chose a referenceframe in which the pulse remains
stationary or we assume that our frame is moving along with
the pulse at speed v.

/

(a)

(b)

T cosQ T cosQ

T sinQ \ ITs/m0

Figure 6.10

Now consider a small element of length dl on this pulse as
shown. This element is forming an arc, say of radius R with
centre at C and subtending an angle 20 at C. We can see that
two tensions T are acting on the edges otdl along tangential
directions as shown. The horizontal components of these
tensions cancels each other, but the vertical components add
to form a radial restoring force in downwarddirection, which is
given as

= 2T sin 0
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-270

= T^
^ R

[As sin 0 = 0] Ashere0, andGj areverysmall, wecanuse
dl[As 20=y] ...(6.17)

If ]x be the mass per unit length of the string, the mass of this
element is given as

dm = \idl ...(6.18)

In our reference frame ifwe look at this element, it appears to be
moving toward left with speed v then we can say that the
acceleration ofthis element in our reference frame is

Now from equation-(6.17), (6.18) and (6.19) we have

„ dmv^
PR= —

or
dl _ ([idiy

^ R R

By
sin 0j - tan 0, =

[Slopeof displacementcurveat point 1]

dy
sin 02 = tan 65=

[Slope ofdisplacement curve at point 2]

From equation-(6.21) we have

Heref^
dx dx

F„=+r "5y
dx j dx

2.

...(6.22)

is the change in slopesof displacementcurve

for a differential change in a: by cfc betweenpoints 1 and 2. Thus
we can write

dx dx
tl.
dx^

dx ...(6.23)

or v = (6.20) '̂ hus from equation-(6.22) and (6.23)

Thus the speed of a transverse wave along a stretched string
depends only on the tension and the linear mass density ofthe
string and not on the wave characteristics.

Sometimes when wave amplitude becomes too large, the wave
velocity depends on the amplitude also. This discussion in
detail is beyond the scope ofthis book so students are advised,
not to use this fact while studying waves on a stretched string.

The above expression of velocity of transverse wave on a
stretched string given in equation-(6.20) can also be deduced
from Newton's. Second Law as discussed in next section.

6.4.2Wave Speed on a Stretched String from Newton's Second
law

Newton's secondlaw predictsthat wa '̂es can occurin a medium
due to a linear elastic restoring force. Consider an element of

length dx of string in which a wave is propagating in positive
x-direction in the figure-6.11 shown.

Figure 6.11

As tension in the string can be considered uniform, the restoring
force on this element dx toward its mean position for its
oscillation is given as

Fi^=Tsin 0j - 7sin 02 ...(6.21)

Ifthe element ofstring has mass dm, we have

dm = ^dx

...(6.24)

...(6.25)

Where )i is die mass per unit length ofstring. Now fromNewtcai's
Second Law for this element, we can write

IT w ^ yr r,= dm —^
dt^

From equation-(6.24), (6.25) and (6.26) we have

^ j- dx =+(u. dx") -

or

d^v

la d'y
2

dx' T dp

~ . d^y
T-^dx^+iiidx)

dr

.. a2

...(6.26)

...(6.27)

Equation-(6.27) is the waveequation,wehave alreadydiscussed
in previous sections of the chapter. Comparing it with
equation-(6.12), we get the wave velocityas

v =

6.4.3 Velocity ofSound/Longitudinal Waves in Solids

Consider a section/15 ofmedium as shown in figure-6.12(a) of
cross-sectional area S. Let A and B be two cross section as

shown. Let in this medium sound propagation is from left to
right. If wave source is at origin O and when it oscillates, the
oscillations at that point propagate along the rod.
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velocity ofsound

dx + dy-*\

(b)

Figure 6.12

Here we say an elastic wave has propagated along the rod with
a velocity determined by the physical properties ofthe medium.
Due to oscillations say a force F is developed at every point of
medium which produces a stress in rod and is the cause of
strain or propagation ofdisturbance along the rod. This stress

at any cross-sectional area can be given as

F
Stress ...(6.28)

Ifwe consider the section AB ofmedium at a general instant of

time t. The end ^4 is at a distance x from O and 5 is at a distance

x + dxfromO.Letin iimtdt dueto oscillations, medium particles
at A are displaced along the length of medium hyy and those at
B hyy + dy. The resulting positions of section are A' and B'
shown in figure-6.12(b). Here we can saythat the section ^45is
deformed (elongated) by a length dy.Thus strain produced in it
is

Strain in section AB

'=4 ...(6.29)

IfYoung's modulus ofthe materialofmediumis Y, wehave
Young's Modulus

Stress _ ^
Strain E

From equation-(6.28) and (6.29), we have Y-
FIS

dy/dx

F^YS
d̂x

or = ...(6.30)

If net force acting of section AB is dF then it is given as

dF=dma ...(6.31)

Where dm is the mass of section AB and a be its acceleration,
which can be given as for a medium ofdensity p.

d\y
dm = pSdx and a - —

dr

From equation-(6.31), we have

dF = {pSdx)
ly_
d?
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or
dF „ d^y
dx

...(6.32)

From equation-(6.30) on differentiating w.r. tox, we can write

dF
= YS

dx ' dx"

From equation-(6.32) and (6.33) we get

d^y (Y')d'̂ y

d'y

dx" \?Jdx"

Equation-(6.34)is the differentform ofvi^ve equation,comparing
it with equation-(6.12) we get the wave velocity in the medium

can be given as

V =

...(6.33)

...(6.34)

...(6.35)

6.4.4 Wave Velocity ofLongitudinal Waves in Fluid/Gas

Similar to the case of a solid in fluid, instead ofYoung's Modulus
we use Bulk modulus of the medium hence the velocity of
longitudinal waves in a fluid mediumis given as

v= 1 —
VP

Where B is the Bulk modulus ofmedium.

For a gaseous medium bulk modulus is defined as

dP

or

B =
{-dVJV)

dP
B=-V

dV

...(6.36)

...(6.37)

6.4.5 Newton's Formula for Velocity ofSound in Gases

Newton assumed that during sound propagation temperature
of medium remains same hence he stated that propagation of
sound in a gaseous medium is an isothermal phenomenon, thus
Boyal's law can be applied in the process. So for a section of
medium we use

PV= constant

Differentiating we get

PdV+VdP = 0

or -V—=p
dV ^
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or bulkmodulusof mediumcan begivenas

B=P (Pressure of medium)

Newton found that during isothermal propagation of sound in
a gaseous medium, bulk modulus of medium is equal to the
pressure of the medium, hence sound velocity in a gaseous
medium can be given as

V =

From gas law we have

L
P

RT

M

From (6.38) & (6.39) we have

v =

...(6.38)

...(6.39)

...(6.40)

From the expression in equation-(6.38) if we find the sound
velocity in air at normal temperature and atmospheric pressure
we have

Normal atmospheric pressure is

P-1.01 X iQSpa

Density ofair at NTP is

P = 1.293 kg/m^

Nowfi^om equation-(6.38)

\P

v =
1.01x10-

1.293

= 279.48 m/s

But the experimental value of velocity of sound determined
fi:om various experiments gives the velocity of sound at NTP,

332 m/s. Therefore there is a difference ofabout 52 m/s between

the theoretical and experimental values. This large different can

not be attributed to the experimental errors.Newton wasunable
toexplain error in his formula. This correction was explainedby
a French Scientist Laplace.

6.4.6 Laplace Correction

Laplace explained that when sound waves propagate in a

gaseous medium. There is condensation and rarefactions in the

particles of medium. Where there is condensation, particles

come near to each other and are heated up, where there is

rarefaction, medium expends and there is fall oftemperature.

Therefore, the temperature of medium at every point does not
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remain constant so the process of sound propagation is not
isothermal. The total quantity of heat of the system as a whole
remains constant. Medium does not gain or loose any heat to
the surrounding. Thus in a gaseousmedium soundpropagation

is an adiabatic process. For adiabatic process the relation in
pressure and volume of a section of medium can be given as

PF'^= constant

C.
Here p = 7^, ratio ofspecific heats ofthe medium.

•

Differentiating equation-(6.41) we get,

dPvy + Yi^-^dyp=-o

or

or
1/ dP

Bulk modulus ofmedium

B = yP

...(6.41)

...(6.42)

Thus Laplace found that during adiabatic propagation ofsound,

the Bulk modulus of gaseous mediums is equal to the product

of ratio of specific heats and the pressure of medium. Thus

velocity of sound propagation can be given as

v = ...(6.43)

From gas law ...(6.44)

From equation-(6.43) ifwe find sound velocity in air at NTP, we

have

Normalatmospheric pressureP= 1.01 x IQ^Pa ;

Densityofair atNTPP = 1.293 kg/m^

C
Ratio ofspecific heats ofair v - 7;— = 1.42

Using equation-(6.43), we get

v-.\^

1.42x1.01x10^
V 1.293

= 333.04 m/s

This value is in agreement with experimental value.
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6.4.7 Effect of Temperature on Velocity of Sound

From equation-(6.43) we have velocity ofsound propagation in
a gaseous medium as

•

For a given gaseous medium y, R and A/remains constant, thus
velocity of sound is directly proportional to square root of
absolute temperature ofthe medium. Thus

vcc ...(6.45)

If at two different temperatures T^ and T^, sound velocities in
medium areVj and thenfrom equation-(6.45), wehave

6.4,8 Effect of Pressure on Velocity of Sound

We know form gas law

RT

M

...(6.46)

Iftemperature of a medium remains constant then on changing
pressure, density of medium proportionally changes so that

p
the ratio — remains constant.

P

Hence ifin a medium,

Then,

Thus velocity of sound.

T- constant

~ = constant

= constant

Therefore,the velocityofsound in air or in a gas in independent
of change in pressure.

6.4.9Effect ofHumidity onVelocity ofSound

The density of water vapour at NTP Is 0.8 kg/m^ whereas the
density ofdryairatNTPis 1.293 kg/m^. Therefore water vapour
has a density less than the density ofdry air. As atmospheric
pressure remains approximately same, the velocity ofsound is
more in moist air then the velocity ofsound in dry air

V • > V ,moist air dry air

6.4.10 Effect ofWind on Velocity of Sound

...(6.47)

If wind is blowing in the direction of propagation of sound, it
will increase the velocity of sound. On the other hand ifwave
propagation is opposite to the direction ofpropagation ofwind.

Waves

wave velocity is decreased. If wind blows at speed then
sound velocity in the medium can be given as

V = v,+ v,„ ...(6.48)

Where is the velocity ofsound in still air.

6.4.11 Velocity of Longitudinal Waves in a Slinky Spring

Suppose a periodic disturbance is produced along a stretched
shinky spring as shown in figure-6.13(a) and (b). The resulting
wave consists in a series of compressions and expansions that
propagate along the spring. In such a case the velocity ofthese
longitudinal wave along the length of spring is given as

v = ...(6.49)

Figure-3.16 shows how by helding a spring when hand oscilates
forwardand backwarddue to inertiaof springwavepropagation
take place.

(a)

(b)

Figure 6.13
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Here k is the force constant of the spring.

L is the length of the unstratched spring.

and p is the linear density oftheunstratched spring.

6.4.12Velocity ofTorsional Waves in a Rod

If a rod is damped at one end and other end is periodically
twisted inangularoscillations, torsional waves are produced in
the rod as shown in figure-6.14.

Clamp

Figure 6.14

The velocityof torsional wavesare given as

v = ...(6.50)

Where G is the shear modulus ofthe material ofrod. Detailed

analysis of this section is beyond the scope of this book, so
students should keep the expression in equation-(6.50) as it is
in their mind.

6.4.13 Surface Waves in a Liquid

Waves onthe surface ofa liquidare themostfamiliar kindsof
waves, theyare the waves weobserve in the ocean and lakes,
or simply when we drop a stone into a pond. Compared to
previous cases here analytical aspect ismore complex and will
be omitted here. We will consider here only a descriptive
discussion.

The undisturbedsurfaceof a liquid is plane and horizontal.A
disturbance on the surface produces a displacement of all
molecules directly underneath the surface as a result of
intermolecular forces as shown in figure-6.15. The particles
moveshorizontally as well as vertically and the resulting motion
oftheparticles iselliptical orapproximatelycircular asshown in
figure. Theamplitude ofhorizontal andvertical displacements
ofa volumeelementofa fluidvaries, in general,with depth.The
moleculesat the bottomdonot suffer any vertical displacement
dueto the pressure of weightof liquidbody.

Disturbed

liquid surface
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Undisturbed
liquid surface

Figure 6.15

At the surface of liquid other forces are playing the role in
oscillations. One force is the surface tension ofthe liquid which
gives anupward ordownward force onan.element ofthesurfece
similarto the caseofa string.Anotherforce is theweightof the
liquidabove the undisturbed level of the liquids surface. The
waves produced on the surface of liquid propagates with a
velocity v given as • . •

Where

jgX , 27tg
^ "V 2jc pjt •

g acceleration due to gravity

CT -> surface tension ofthe liquid

p densityof the liquid

wavelength ofwave.

...(6.51)

Here we can see that the velocity of propagation of surface
wave depends on the wavelength .X of the waves. Students
should note thatthisexpression inequation-(6.51) isvalid only
when the depth ofliquid islarge compared tothewavelength X.

If in a casewavelength Xis largeenough sothe second term in
the expression of equation-(6.51) can.be neglected then we
have

v=M
• V271

...(6.52)

The waves in this case are called gravity waves. In this
approximation we can see in equation-(6.52), velocity of
propagation isindependent fi-om thenature ofliquid, since no
factor relatedto the liquidappears in expression of equation-
(6.52). Herewe can saythe longerthe wavelength is, faster is
the wave propagation. Such types of waves are produced by
strongwindsovera liquidsurface, generally in oceans.

When the wavelengthXis very small so that the first term in
equation-(6.51) canbeneglected, thewave velocity ofsurface
waves can be given as ' , .

v =
2^
pjt

...(6.53)
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These wavesare called ripples or capillary waves. These are
the waves observed when a very gentle wind blows, over the
surface of water or when a container is subject to vibrations of
high frequency. In this case we can see from equation-(6.53),
the longer the wavelengthslowerthe wave propagation.

Now we take some examples on wave velocity in different
mediums.

§ Illustrative Example 6.12

Calculate the increase in velocity of sound for 1®C rise of
temperature, if the velocityofsoundat 0"Cis332 m/s.

Solution

"4
48

Vl9.2xl0~^

= 50 m/s

UIllustrative Example 6.14

Waves

At what temperature will the speed of sound in air becomes
double ofits value at CC ?

Solution

or

= V,

(TA l(237 +t] We know that

UJ 273 )
Here

273J or

^ 1-v2x273 J 0 or

2Vn

T,

II]
273J

T

273

7=4x273=1092K
So, ^0 546

Thus increase in velocity per "C is

VqxI
546

332

546

^Illustrative Example 6.13

= 0.61 m/s

A 4.0 kg block is suspended from the ceiling of an elevator
through astring having a linear mass densityof19.2 x 10~^ kg/m.
Find the speed(with respectto the string) with which a wave
pulse can proceedon the string if the elevatoraccelerateup at
therate of2.0m/s^.Takeg'= lOm/s^.

Solution

As elevatoraccelerates up at 2 m/s^, tension in the string is

T=m{g + a)

=4(10 + 2) = 48N

Linear mass density ofstring is

p = 19.2x10-3kg/m

Speed of transverse waves on string is

or

r=1092-273 = 819'C

# Illustrative Example 6.15

The planet Jupiter has an atmosphere mainly of methane at a
temperature- 130°C. Calculate the velocityof sound on this
planet assumingyfor the mixturetobe 1.3(Gas constant/?= 8.3
joules/mol®C).

Solution

We know that v =

_ \(yRT
M

According to the given problem,

and

Hence

y= 1.30,/?= 8.3 X103j/kgmolK,

r=-130''C=-130 + 273= 143K

M= Molecular weightofmethane(CH^)

=12+4 = 16

1.3x8.3x10^x143
16

= 311 m/s
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Illustrative Example 6.16

How long will it take sound waves to travel the distance /

between thepointsA and£ if theair temperature between them
varies linearly from T, to ?The velocity ofsound propagation
inairisequal tov=a Vt ,where a isaconstant.

Solution

Forlinearvariation oftemperature, wecanwritetemperature at
a distance x from point A is

Thus velocity ofsound at this point is given as

v = a. T, +
T^-T,

or

or a
dx

= c/t

Integrating the above expression within proper limits, we get

dx
or

i

!••fM X 0

21 n-z
a(T2-T,)

or

or

Alternative solution:

Given that

or velocity at point ^4 is

Velocityat point B is

The average velocity

or

Distance between A and 5 = /

Thus time from>4 to 5 is ,
distance

= t

0

/ =
21

21

a[V^+Vri]

[V^-Vr,

v= a^/T

V, =aV^
V2 =a-s/^

^ 2

I
t = velocity [a{^+^)/2]

21 -
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a Illustrative Example 6.17

The speed of a transverse wave, going on a wire having a
length 50 cm and mass 5.0 kg, is 80 m/s. The area of cross-
section ofthewireis 1.0mm^ anditsYoung's modulus is 16 x
10*' N/m^. Find the extension ofthe wire over itsnatural length.

Solution

The linear mass density is

The wave speed is

Thus, the tension is

^-3

'=(1.0x10-2)x6400 =64N

The Young's modulus is given by

T/A

MIL

The extension is, therefore,

TL
M =

AY!

64x0.50

1.0xl0~®xl6xl0"

a Illustrative Example 6.18

= 0.02 mm

A

B

C

D

connected by a wire CD and the system is
suspended from the ceiling by another wire AB
(figure-6.16). The linear mass density of the wire
AB is 10 g/m and that of CD is 8 g/m. Find the
speed ofa transverse wave pulse produced in AB
and in CD.

Figure 6.16

Solution

Tension in string.45 is

r^=6.4^=64N

Thus speed of transverse waves in stidng AB is

64Ia^
\^AB

-3
10x10

= V6400 = 80 m/s

Tension in strong CD is

r=3.2^=32N
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Thus speed of transverse waves in string CD is

'CD

\^DC

= 63.24 m/s

32

8x10
= V4000

# Illustrative Example 6.19

A heavy but uniform rope of length L is suspended from a
ceiling, (a) Write the velocityof a transversewave travelling on
the string as a function ofthe distance from the lowerend. (b) If
the rope is given a sudden sideways jerk at the bottom, how
long will it take for the pulse to reach the ceiling ? (c) A particle
is dropped from the ceiling at the instant the bottom end is
given the jerk. Where will the particle meet the pulse ?

Solution

Let m be the mass of the hanging rope, then

its linear mass density will be

M

Lp = -r ...(6.54)

(a) At a distance x above the lower end if
we consider a cross section A then tension at

point A will be due to the weight ofthe lower
part and it is given as

Tension at ^ is. T=^xg

^//////////////

Figure 6.17

...(6.55)

Now velocity of transverse waves at point A is given as

v = ...(6.56)

(b) If a jerk is given at the lower end ofrope, it propagation in
upward direction and its velocity at a distance x from lower end
is given byequation-(6.56). Wecan find the time taken by pulse
ofjerk to reach the top by integration expression in equation-
(6.56) as

dx I—
dt ~

or

Integrating this expression in proper limits we get

or

or

0 0

[2^l =4gt

t= 2 -
Ms

(c) When a particle is dropped from the top it falls by a distance

{L - x) in time t. When it will meet the pulse and ifpulse has

Waves j

travelled a distance x. Thus time taken by pulse to travel a
distance X from bottom is

In this time the distance fallen by particle in its free fall motion
is

1

or

or

or

i-x= 2'

L-x = 2x

_ L
^ 3

(L-x)=jgt'

2J^

Thus particle and the pulse meet at a distance -j from the
bottom.
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Practice Exercise 6.2

(i) A steelwire of length 64 cm weighs 5 g. If it is stretchedby
a force of 8 N, what would be the speed of a transverse wave

passing on it?

[32 m/s]

(ii) A travelling wave is produced on a long horizontal string

by vibrating an end up and down sinusoidally.The amplitude
of vibration is 1.0 cm and the displacementbecomes zero 200
times per second. The linear mass densityof the string isO. 10
kg/m and itkeptundera tension of90N. (a)Findthe speed and
the wavelength ofthe wave, (b) assume that the wave moves in
the positivex-direction and atr=0, theendx= 0 is at its positive
extreme position. Write the wave equation, (c) Find the velocity
and acceleration of the particle at x= 50 cm at time 10 ms.

[(a) 30 m/s, 30 cm (b) y = (1.0 cm) cos 2n 100/-^

(c) - 5.45 m/s, 2.0 km/s]

(ill) Two wires of different densities but same area of cross
section are soldered together at one end and are stretched to a
tension T. The velocity of a transverse wave in one wire is
double ofthat in the second wire. Find the ratio ofthe density
ofthe first wire to that ofthe second wire.

[0.25]
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(iv) A particle on a stretched string supporting a travelling
wave, takes5.0mstomove from itsmeanposition to theextreme
position. Thedistance between twoconsecutive particles, which
are at their mean positions;is 2.0 cm. Findthe frequency, the
wavelength and the wave speed.

[50 Hz, 4.0 cm, 2.0 m/s]

(v) The speed of sound as measured by a student in the
laboratoryonawinter dayis340m/swhen theroom temperature
is ITC. What speed will be measure'd by another student
repeating theexperiment ona daywhentheroom temperature
is32°C?

[348.68 m/s]

(vO A string of length40 cm and weighing 10g is attached to a
springat oneendand to a fixed wall at theotherend.Thespring
has a spring constant of 160N/m and is stretched by 1.0 cm. If
a wave pulse is producedon the string near the wall, how much
time will it take to reach the spring?

[0.05 s]

(vii)Find the change in thevolumeofl.O litre kerosene when it
is subjected to an extra pressure of 2.0 x 10^ N/m^ from the
following data. Densityof kerosene= 800 kg/m^ and speedof
sound in kerosene = 1330 m/s.

[0.141 cm^]

(viii) The constant y for oxygenas well as for hydrogen is 1.40.
If the speed of sound in oxygen is 470 m/s, what will be the
speed in hydrogen at the same temperature and pressure?

[1880 m/s]

(k) a tuning fork of frequency 440 Hz is attached to a long
string oflinear mass density 0.01 kg/m kept under a tension of
49 N. The forkproducestransversewavesofamplitude0.50 mm
on the string, (a) Find the wave speed and the wavelength of
the waves, (b) Find the maximum speed and acceleration of a
particleofthe string, (c)Atwhat averagerate is the tuning fork
transmitting energy to the string?

[(a) 70 m/s, 15.9 cm, (b) 1.38! m/s, 3.872 km/s, (c) 0.667 W]

(x) Velocity ofsound in a tube containing air at 27°C and at a
pressure of 76 cm of Hg is 300 m/s. What will its velocity be
when the pressure is increased to 100 cm of Hg and the
temperature is keptconstant ?

[Same 300 m/s]

(ix) A blastgives a soundofintensity0.80W/m^andfrequency
1kHz. If thedensityofair is 1.3kg/m^ andspeedofsoundin air
is 330 m/s find the amplitude ofthe sound wave.

[9.656 X 10-^ m]
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6,5 Principle ofSuperposition

Thisprinciple defines thedisplacement ofa medium particle
which is oscillating under the influence of two or more then
two waves. The priiiciple of superposition is stated as :

"When two or more waves superpose on a medium particle
than the resultant displacement of that medium particle is
given by the vector sum of the individual displacements
produced by the component waves at that medium particle
independently."

Let y^, , are the displacements produced by N
independentwaves at a mediumparticle in absenceof others
then the displacement ofthat medium, when all the waves are
superposed at that point, is given as

+ + •••(6.57)

If all the waves are producing oscillations at that point are
collinear then the displacementof the mediumparticle where
superposition is taking place can be simply given by the
algebraic sum ofthe individual displacements. Thus we have

...(6.58)

The aboveequation is valid only if all individualdisplacements

y,,>'2 are along samestraight line. In this bookmainly
we'll deal withthe problems ofsuperposition of this type.

Asimple example ofsuperposition canbeunderstood byfigure-
6.18.Suppose twowavepulses are travellingsimultaneously in
opposite directions as shown. When they overlap each other
the displacementofparticle on string is the algebraicstun ofthe
two displacements as the displacements of the two pulses are
insamedirection. Figure-6.18(b) alsoshowsthe similarsituation
when the wave pulses are in opposite sides.

y\ *y2 •

(a)



31,0

/ \y2 \
yi-yy-

Figure 6.18

6.5.1 Application ofPrinciple of Superposition ofWaves

There are several different phenomenon which takes place
during superposition of two or more waves depending on the
wave characteristics which are being superposed. We'll discuss
some standard phenomenons, and these are :

(1) Interference ofWave

(2) Stationary Waves

(3) Beats

(4) Lissajou's Figures (Not discussed here in detail.)

Lets discuss these in detail.

f

6.6 Interference of Waves

Suppose two sinusoidal waves of same wavelength and
amplitude travel in same direction along the same straight line
(maybe on a stretched string) then superpositionprinciple can
be used to define the resultant displacement of every medium
particle. The resultant wave in the medium depends on the
extent to which the waves are in phase with respect to each

other, that is, how much one waveform is shifted fi-om the other

waveform. If the two waves are exactly in same phase, that is
the shape of one wave exactly fits on to the other wave then
they combine to double the displacement of every medium
particle as shown in figure-6.19(a). This phenomenon we call as
constructive interference. Ifthe superposing waves are exactly

out ofphase or in opposite phase then they combine to cancel
all the displacements at every medium particle and medium
remains in the from ofa straight line as shown in figure-6.19(b).

Wave I

Wave II

Resultant

Wave

'yyavesjj

(b)

Figure 6.19

This phenomenon we call destructive interference. Thus we
can state that when two waves meet, they interfere
constructively if they meet in same phase and destructively if
they meet in opposite phase. In either case the wave patterns
do not shift relative to each other as they propagates. Such
superposing waves which have same form and wavelength and
have a fixed phase relation to each other, are called coherent
waves. Sources ofcoherent waves are called coherent sources.

Two independent sources can never be coherent in nature due
to practical limitations ofmanufacturing process. Generally all
coherent sources are made either by spliting ofthe waveforms
of a single source or the different sources are fed by a single
main energy source.



In simple words interference is the phenomenon of
superposition of two coherent waves travelling in same
direction.

We've discussed that the resultant displacement of a medium
particle when two coherent waves interfere at that point, as
sum or difference of the individual displacements by the two
wavesif theyare in samephase(phasedifference = 0, In,...) or
oppositephase (phasedifference = 7t, 3n,...) respectively. But
the twowavescan also meet at a medium particle with phase
difference other then 0 or 2k, say ifphase difference (j) is such
that 0 < (j) < 2;:, then how is the displacement of the point of
superposition given ? Now we discuss the intCTference ofwaves
in details analytically.

6.6.1 Analytical Treatment ofInterference of Waves

Now we discuss mathematically, how the displacement of the
point of superposition varies with time. Let displacement ofa
medium particle due to a propagating wave be

y, =/4, sin(cot) ...(6.59)

At the same medium particle if another wave of same angular
frequency co and different amplitude A2 arrives with a phase
shift (j) then the displacement ofthe medium particle from mean
position due to this second wave can be given as

>*2 = ^2^'^ (cof-(|)) ...(6.60)

Now the resultant displacement ofthis medium particle can be
given by the principle of superposition. If the displacements
produced bytwowaves at that point areyj andyj alongsame
line ofmotion then the net displacement of this medium particle
is given as

= .^Jsin CO?+^4^ sin ((at - «j))

= i4, sin G)t + A2 sin cot cos^-A2 coscot sin ij)

Rearranging the terms ofsin cot and cos cot separately as

y = (A^+A2 cos (j)) sincot - (A2 sin(j)) cos cot

Now substituting

R cos 0 = .^, +.^2'̂ os({) ...(6.61)

and R sin 0 =.^2 'I' ' •••(6.62)

We get y= R cos 0 sin (ot —R sin 6 cos cot

or y = i?sin(cot-0) ...(6.63)

Equation-(6.63) is an equation ofSHM, thus we can state that
after superposition of the two waves, this medium particle
executes SHM with amplitude R and initial phase lag 0 with
respect to the SHM produced at the point by the first wave.

• ^

HereRand0canbegiven equation-(6.61) and(6.62). Squaring
and adding the two equations, we get

R=-}1(Ai +A2 cos (())^ +{A2 sin ^)^

R= ^Ai+A2+2AiA2Cos^ ...(6.64)
Dividingequation-(6.62) and (6.61)gives

or

tan0 =
.^2sin(t)

A^ + A2 cos (j)

0 = tan '
.<42 sin ([)

Ai + A2Cos^^

Equation-(6.64)and (6.65) are the resultssimilar to thoseobtained
byparallelogram rule ofvector addition. If^j and^2aretwo
vectors and <J) is the angle between their directions then the
resultant vector ofthe two is given by equation-(6.63) and the
direction of resultant with the first vector is given by equation-
(6.64). Thus we can conclude that when two or more waves of
same frequency which differ in phase, superpose on a medium
particle then die resulting motion of that medium particle is also
SHM with same frequency. Its amplitude can be given bytreating
the individualamplitudesasvectorswith their phase differences
as the angles between them and finding the resultant ofthese
vectors.

6.6.2 Interference of two CoherentWaves of Same Amplitude

We've discussed in previous article that when two coherent

waves ofdifferent amplitudesAjand^2 ^phase difference
(|) superpose on a medium particle, the resulting amplitude of
that medium particle is given as

R= yjAi +Aj+ 2AiA2 cos (j)

...(6.65)

If the twowaves are ofequalamplitude .<4 j = .<42 = .<4, theni? is
given as

' R= |̂̂ A^+2A^cos^

= yj2A (1 + cos^)

= 2.4 cos^2 ...(6.66)

Here we can see that the resultants amplitude R ofthe medium
particle after superposition, depends on the amplitudes of
component waves and on the phase difference (j) between the
two component waves. Thus if the phase difference between
the two waves changes at the point of superposition, the

resulting amplitude ofthat medium particle also changes. From
equation-(6.64). We can see that the amplitude at the point of
interfCTence is maximum when

cos 6=+1

or when 4i=2Mt [Nei] ...(6.67)
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Then the maximum value ofi? is given as

R

If/4j=A2=Athen

=-yjA^ +Al +lAa
R =A, +A^

max 1 2

Rmax=^

•l-^2

...(6.68)

Thus when the phase difference between two superposition
waves is an integral multiple of 2;r i.e. when the two waves
superpose ona medium particlein samephasethentheresultant
amplitude of that medium particle will be maximum given by
equation-(6.68) and this situation is called constructive
interference ofwaves at the medium particle.

Similarlyfromequation-(6.64)we can seethat the amplitude at
the point ofsuperposition is minimum when

COS(j)=-l

or when ^=(2^+1);: [A''g/] ...(6.69)

Then the minimum amplitude is given as

• R„,„=-jA^ +Al-2A^A^

Wavesi

condition of path difference between waves at the point of
interference for destructive interference is

•(2W+l)7t=(2Af+l)^
27t 2

Thusif at a pointpath difference between interfering waves is
odd multiple of half wavelength then the waves superpose at
the point in opposite phase and destructive interference take
place.

6.7 Intensity of Wave

When a wave travels through a medium, energy is transferred
from one part of medium to another part. The wave intensity is
defined as the average amount ofenergy flow in the medium
per unit time and per unit of its cross-sectional area. Thus
intensity is measured in units ofwatt/m^. Intensity of a wave
can also be given as average power per unit cross-sectional
area. Let us find mathematically the average power and intensity
of a wave.

+A

Aj A2
h

...(6.70) -A

IfAj=A2-Athen

Thus when the phase difference between two superposing
waves is an odd multiple of jci.e., when the two wavessuperpose
on a medium particle in opposite phase, then the resultant
amplitudeofthat mediumparticlewill beminimum and is given
by equation-(6.70) and this situation is called destructive
interference ofthe waves at the medium particle.

6.6.3 Condition on path difference at the point ofinterference

As we've already studied that two waves interfering at a point
having their path difference Aand phase difference^ are related

as

2jr
.])= Y'A

For the case ofconstructive interference, waves must interfere

in same phase forwhich ([)=2Nn soforconstructiveinterference
the condition ofpath difference between waves at the point of

interference is

A =
271

2Nn=Nk

Thus ifat a point path difference between interfering waves is
an integral multiple of wavelength then waves superpose in
same phase and constructive interference take place.

Similarly for the case of destructive interference, waves must
interfere in opposite phase for which (j) = {2N + 1) 7t so the

Figure 6.20

Consider a wave propagating along positive x-direction having
angular frequency co and amplitude A moving at speed v. We
know wave speed is defined as the distance traveled by energy
in one second. In one second wave imparts oscillation energy
to all the medium particles in a length v meters. If p be the
density of medium and S be the area of cross section through
which energy flows, then the total oscillation energy of all the

Indium particles, oscillating with amplitude A and angular
frequency co is given as

E=^ mG?-A^

= (pS'v) g?-A^ [As m= pS'v]

P = E = 2k^n^A^ pvS ...(6.71)

Equation-(6.71) gives the oscillation energy ofall the medium

particles in a length v meter, which is the energy crossing a
given cross section per unit time hence it can be regarded as
the average power of wave. Now we can simply calculate the
intensity of wave as

7 = = 27t^n^A^pv ...(6.72)

Ifa wave is propagating in a medium then in the above equation
the parameters frequency n, density p and velocity v remains
constant and we can state that the intensity ofa wave is directly
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proportional to the square of amplitude of the wave is

/oc^2

or • I=kA'^ ...(6.73)

Here^ isa constantwhosevaluecanbeobtained fromequation-
(6.72)as

k = 2n^n^pv ...(6.74)
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6.7.1 Wave Intensity in Interference

We've discussed that when two coherent waves superpose
each other on a medium particle interference takes place. The
resultant amplitude at the point ofinterference depends on the
phase difference of the two waves at the point of interference.
If the amplitudes of two interfering waves areAj andA2 than
theresulting amplitudes oftwo interfering waves are^j andifj
then the resulting amplitude 7? at the point of interference
depends on their phase difference (|) as

if =...(6.75)

If I^be the intensity at the point of interference then it canbe
given as

or

or

or

or

I.ccR'

I, = kR^

Ij^ = k{A^+A2+2A^A2 cos {|))

= kAf + kA^ + IkA ^^2 cos (|)

/^ = /, + ij + 2 12 cos(() ... (6.76)

Here I^-kAf and ij = kA^ are theintensities offirst and second
wave respectively. The expression in equation-(6.76) gives the
resultant intensity at the .point of interference due to
superposition of two coherent waves having independent
intensities ij and /j respectively. Equation-(6.76) shows that
the resultant intensity at the point of interference depends on
the individual intensities /j, I2 and the,phase difference (j)
between the two waves at that point. If the waves are ofequal
intensities /j = ij = Iqthen after interference the intensity at the
point of interference is given by equation-(6.76) as

4 = ^ + -^o + 2/oCostt)

or 4 =

or 4 =4/oCos^f ...(6.77)

We know when two coherent waves interfere constructiyely,
phase difference between the two is zero or multiple of27C. Thus
from equation-(6.77) cos <j) = + 1and maximum intensity at the
point of constructive interference can be given as

...(6.78)

...(6.79)

For wavesof equal intensities if /j = = Iqthen wehave

...(6.80)

Similarly for destructive interference as the phase difference
between waves should be an odd multiple ofn, we have

cos (j)=-l

Thus from equation-(6.76), the maximum intensity at the point
of destructive interference can be given as

Forwaves ofequal intensities of7,-I2- -fo? then wehave

7 . =0 ...(6.83)
mm ^ '

From equation-(6.78)and (6.81)we can seethat in constructive
interference the resultant intensity is more than the sum of
individual intensities ofthe compcmentwaves and in destructive
interference the resultant intensity is less than the sum of
individual intensities ofthe component waves.

6.7.2Power ofa Wave and WaveEnergyDensity of a li-ansverse
Wave

As a transverse wave move along a string, it carries energy in
the direction ofwave travel. Consider an element of string of
width dx as shown in figure-6.21, it oscillates in a direction
perpendicular to wave propagation. During oscillation this
element has both kinetic and potential energies. Kinetic energy
due to its motion and potential energy due to the amount it is
stretched. Its kinetic energy is given as

dk=\iMdx) ...(6.84)

Figure 6.21



Here ixisthelineardensityofstring and ^ is the instantaneous
velocityof the element. Thereforethe kinetic energyper unit
length of string can be given as

adK \Jdy
dx 2^[dt ...(6.85)

When the element goes from its mean position to a heighty, its
length changes to dl, which is given as

dl^^dx^ +dy^ ...(6.86)
In stretching the element from dxto dly work done by the tension
T of the siring will be stored in the form ofpotential energy in it,
which is given as

dU= T{dl~dx)

dU= Tdxor

CM-

CM-

or

dU= Tdx

[Usingbinomialapproximation]

,.,(6.87)

Thus potential energy per unit length can be given as

f •Hil
Total energy of string carrying a wave per unit length is called
its energy density and is given as

dx^ dx

...(6.89)

If we consider a wave propagating in positive x direction, its
displacement equation can be given as

y = i4 sin (cof-fcc)

From equation-(6.90) we get

dy
= Ad) cos (cor- kx)

And
dy

=-Ak cos (cor - fcc)

...(6.90)

...(6.91)

...(6.92)

From eciuation-(6.89), (6.91) and (6.92) we have

£ = ^U^oo^ cos^ (cor - fa:) + TA^^cos^ (oir ~ fa)... (6.93)

We have wave velocity

or

And we also have v= -
k̂

or

_ pco
T= ...(6.94)

FrcMn equation-(6.93) and (6.94) we have

E = fiA^dP' cos^ (cor - fa)

'"w^esri

...(6.95)

Equation-(6.95) gives the total energy of string in a wave is
propagating. The wavetravels a distance vmeter in one second
thus power of a wave on string can be given as

P=Ev

= |l4^co^v cos^ (®r - fa) ...(6.96)

For a string if p be the density and S be its cross sectional area,
then we have

ii = Sp

Thus power ofa wave can be given from equation-(6.96)

P = ATt^rPA^pvS cos^ (ror - fa) ... (6.97)

Equation-(6.97) gives the instantaneous power transmitted by
a wave during its propagation. Here average power transmitted
can be obtained by substituting average value oftime function
cos^ (cor-fa) which is 1/2. Thusaverage power transmittedby
a wave can be given as

P^,= ATprPA^pvs[^ •
or P^^ = 2T^rPA^pvS ...(6.98)

Equation-(6.98) is same as that of equation-(6.71) which we
have already derived in section-^5C.

6.7.3 Quink*s T\ibe

This is an apparatus used to demonstrate the phenomenon of
interference and also used to measure velocity ofsound in air.

This is made up oftwo U-tubeSy4 and5 as shown in figure-6.22.
Here the tube B can slide in and out from the tube A. There are

two openings P and Q in the tubev4. At openingP, a tuning fork
or a sound source of known frequency is placed and at the

other opening a detector is placed to detect the resultant sound
of interference occurred due to superposition of two sound
waves coming from the tubes A and B.

\\\llily

Sound source

Detector

Figure 6.22

Initially tube B is adjusted so that detector detects a maximum.
At this instant if length of paths covered by the two waves
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from P to Q from the side ofA and side of B are /j and
respectively tlien for constructive interference we must have

=Nk ...(6.99)

Ifnow tube B is further pulled out by a distance x so that next

maximum isobtainedand the l^gth ofpath from theside of5 is
/j then we have

315

Where / is the distance between opening and piston shown in
figure-6.23.

In the experiment first the piston is adjusted so that a maximum
sound is detected at opening. This implies that the path
differencebetweenthe twowavesmust be an integral, multiple
ofwavelength X.

/^= /2 + 2x ...(6.100) Thuswehave, A= 2l=NX ...(6.105)

Where x is he displacement of the tube. For next constructive
interference of sound at point Q, we have

r^~l^ = (N+l)X ...(6.101)

From equation-(6.99), (6.100) and (6.101), we get

l'^-I^ = 2xQ=X

or ^=2 ...(6.102)

Thus by experiment we get the wavelength ofsound as for two
successive points of constructive interference, the path
difference must be X. As the tube B is pulled out by x, this
introduces a path difference 2x in the path of sound wave
throughtubeB. If the frequency ofthe source is known, n^, the
velocity ofsound in the air filled in tube can be gives as

...(6.103)

6.7.4 Secbeck's Tbbe

This is also an apparatus used to demonstrate phenomenon of
interference and it can also be used to find velocity ofsound in
air. This is a hollow tube with a freely moving piston as shown
in figure-6.23.

A W'

Figure 6.23

There is an opening in the tube which can be used as a point
where sound can be deteqted directly by human ear or a detector
as shown in figure. When a source ofsound oscillates near the
mouth ofthe tube (tuning fork as shown). At the opening two

sotmd waves will interfere. One direct from the source and

second, which is reflected from the pistrai. Here we can see that
the path difference between direct wave and reflected wave at
opening can be given as

A = 2/ ...(6.104)

Now the piston is slowly moved out so that the intensity of
sound detected changed and again becomes maximum after

some time. At this instant say if the distance of piston from
opening becomes then we can say for next successive

constructive interference the path difference ofthe two waves
is

A' = 2/' = (A'+ \)X

Here ifdisplacement ofpiston is x, we have

x = r~l

Fromequation-(6.105) &(6.106)

^=2

or X=2x

...(6.106)

...(6.10^-

If the sourcefrequency is known, «q, thenvelocity ofsoundin
air can be written as

v=«(A

= 2xn^

# Illustrative Example 6.20

...(6.108)

In a large room a person receives direct sound waves from a
source 120 m away from him. He also receives waves from the
same source which reach him, being reflected from the 25 m

high ceiling at a point halfway between them. For which
wavelength will these two sound waves interfere constructively?

Solution

Source Detector

Figure 6.24

As shown in figure-:6.24 for reflection from the ceiling

Path SCP = 5C + CP = 2SC

{A.sZi = Z.r,SC=CP\
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or Path SCP = 2V60^ +25^ =130 m

So path diiference between interfering waves along paths SCP,

and SPi

Ar=130-120=10m

Now for constructive interference at P,

Ax = nX, i.e. 10=«^

or X= — with «=1,2,3...
n ' '

i.e., X= 10m, 5m, (10/3) m and so on

a Illustrative Example 6.21

Figure-6.25 shows a tube structure in which a sound signal is
sent from one end and is received at the other end. The

semicircular part has a radius of 20.0 cm. The frequency ofthe
sound source can be varied electronically between 1000 and

4000 Hz. Find the frequencies at which maxima of intensityare
detected. The speed ofsound in air = 340 m/s.

Figure 6.25

Solution

The sound wave reaches detector bytwo paths simultaneously
bystraight as well as semicircular track. 1he wave through the
straight part travels a distance /j = 2 x 20 cm and the wave
through thecurved parttravels a distance 12 = n (20 cm)= 62.8
cm before they meet again and travel to the receiver. The path

difference between the two waves received is, therefore,

A/ = ~ ~ 62.8 cm - 40 cm

-22.8cm = 0.228m

The wavelength ofeither wave is -^ = .For constructive
ioterference, A/ = NX,where N is an integer.

or,

or,

0.228

( 340 ^

= A^(l490)Hz.

Thus, the frequencies within the specified range which cause
maxima ofintensityare 1490 Hz and 2980 Hz.

Waves i

Illustrative Example 6,22

Two sources iS, andS'̂ , separated by2.0m,vibrate according to
equation = 0.03 sin7rfand>'2 = 0.02sin ju/where
are in M.K.S. units. They send out waves of velocity 1.5 m/s.
Calculate the amplitude ofthe resultant motion of the particle
co-linear with and^2 and located at a point(a)to therightof
S2 (b)to the left of^2 and(c) in the middle of5, and82-

Solution

The situation is shown in figure-6.26.

H—1 m——1 m—H

Q S2
H 2 m H

Figure 6.26

The oscillations and^j have amplitudes = 0.03 m and
A2 = 0.02 mrespectively.

The frequency ofboth sources is « - ^ 0.5 Hz

Nowwavelength ofeachwaveX= ~ ~3.0m

(a) The path difference for all pointsPj ^he right of52 is

A= (5, P2 - S2 P2) ^ ^2 =2 m

2 Tl
Phase difference ^ x Path difference

=^x2.0=^
The resultant amplitude for this point is given by

R= -yjAl -i-Aj +2Ai A2 cos (j)

=V(0.03)^ +(0.02)^ +2X0.03 x0.02 xcos (47i/3)

Solving we get

J?=0.0265 m

(b) Thepath difference for allpoints P, to theleftofSj

A= (S2P-S, P) = Sj 82^2.0 m

Hence the resultantamplitude for all points to the left of5j is
also 0.0265 m

(c) ForapointQ,midway between 5, and82, thepathdifference
iszero i.e., (J) = 0. Henceconstructiveinterference takesplace at
Q, thus amplitude at this point is maximum and given as

R—-yjAf +A2 +2A1A2
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-Aj+A^

= 0.03+0.02

=0.05 m

# Illustrative Example 6.23

Two point sources of sound are placed at a distance d and a
detector moves on a straight line parallel to the line joining the
sources as shown in figure-6.27 at a distance D away from
sources. Initially Detector is situated on the line so that it is

equidistant from both the sources. Find the displacement of
detector when it detects maximum sound and also find its

displacement when it detects minimum sound.

D

(D»rf)

Figure 6.27

Solution

The situation is shown in figure-6.28.

Detector

Figure 6.28

Let us consider the situation when detector move by a distance
Xas shown. Let at this position the path difference between the
waves from 5, and to detectorbe A then we have

[WhereSyQ is perpendicularon line Sjy\

Here if 0 is small angle as D » d, we have

S2Q = sin 0 —(70

D

Thus at the position ofdetector, path deference is

A=-^ ...(6.109)
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The expression for path difference in equation-(6.109) is an
important formula for such problems. Students are advised to
keep this formula in mind for future use.

When detector was at point O, path difference was zero and it
detects a maxima, now ifdetector detects maximum then its

path difference at a distance x from O can be given as

A = nX

or

or

dx .-^ =nX

nXD

d
X =

Similarly ifdetector detects minima then the path difference
between two waves at detector can be given as

A=(2»-l)|

or

or
(2n-l)XD

2d

# Illustrative Example 6.24

Two small loudspeakers A,B{\m apart) are connected to the
same oscillator so that both emit coherant sound waves of

frequency 1700Hz in phase. Asensitive detector,moving parallel
to the line ABalong LQ, 2.4 m away,detectsa maximum wave at
P on the perpendicular bisector MP oiAB and another maximum

wave when it first reaches a point Q directly opposite to B as
shown in figure-6.29. Calculate the speed ofthe sound waves
in air.

<I

1.0 m M

Jl •2.4 m Q

Figure 6.29

Solution

AQ-BQ= X for constructive interference o.fwaves at Q

or Vl.00^ + 2.40^ -2A^ =X or X.=0.2m

Thus we get

or

v = nX

V = 1700 X 0.2 = 340 m/s
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# Illustrative Example 6.25

A source emitting sound offrequency 180 Hz is placed in front
ofa wall at distance of2 m from it. A detector is also placed in
front ofthe wall at the same distance from it. Find the minimum

distance between the source and the detector for which the

detector detects a maximum ofsound. Speed ofsound in air =

360 m/s.

Solution

The situation is shown in figure-6.30.

Figure 6.30

Suppose the detector is placed at a distance ofj: meter from the
source. The direct wave received from the source travels a

distance x meter. The wave reaching the detector after reflection

from the wall has travelled adistance of2[-^{2)^ +x^/4] meter.
Thus the path difference between the two waves at detector is

A= 2J(2)^+.4--x! ...(6.110)

Constructive interference will take place when A= X, 2X,... Thus
the minimum distances for which a maximum occurs at detector,

the path difference will be

Thus, the detector should be placed at a distance of 3 m from
the source to detect a maximum sound

# Illustrative Example 6.26

Threeplanesources ofsound offrequency Wj = 400Hz,401 Hz
and rtj =402 Hz ofequal amplitude a each, are sounded together.
A detector receives waves from all the three sources

simultaneously. It can detect signals of amplitude >A. Calculate
(a) period ofone complete cycle of intensity received by the
detector and

(b) time for which the detector remains idle in each cycle of
intensity.

Solution

(a) We know thaty = sin co f ^ sin (2 7C w/)

The displacements of the medium particles caused by these
waves are given as

and

_y]=^sin (800 Ttr)

y2~A sin(802nf)

y^=A sin(8047^0

...(6.112)

...(6.113)

...(6.114)

The resultant displacement ofmedium particle at time t is given
by

y=y\ +T2+T3

= A [sin (800 %t)+ sin (802 tc/) + sin (804 tc7)]

= A [{sin (800 71: /) + sin (804 jcr)}+ sin (802 n r)]

= [1 + cos 2 71 f] sin 802 k t

The resultant is also a plane wave. Let its amplitude be R. Then,
y = i? sin CO/

A=X ...(6.111) Here R = A{\ +C0S2 7C/) ...(6.115)

The wavelength is

From equation-(6.110) and (6.111), we have

, V 360 .

or,

or,

or,

A= -;c = 2

4+4-=1 + 4- +x
4 4

x=3m

Equation-(6.115) showsthat theresultantamplitude(or resultant
intensity, /ocR^) varieswithtime.

The resultant amplitude is maximum, when

2::/= 0,271,471,

or / =0,1,2,3,

Heiice period ofone complete cycle ofintensity is one second.

(b) Given that signal is detected when A>a

Thus cos 2 TT / > 0

Thus cos 271 / should lie either in first quadrant or in fourth
quadrant i.e., between either 0 to 7c/2 or 37i/2 and 2 71.
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So, during first cycle of intensity, the signal is detected when

0<r< and <r< 1

This shows that detector remains ideal from

1 3t=-^s to t =-^s

Therefore, in each cycleof intensity,the detector remains ideal

r 3 1 2for 4 "4 = 4 =0-5s

# Illustrative Example 6.27

Twocoherent narrow slits emitting of wavelength Xin the same
phase are placed parallel to each other at a small separation of
2X.the sound is detected by moving a detector on the screen S
at a distance D (» X)from the slit as shown in figure-6.31.
Find the distance x such that the intensity at P is equal to the
intensity at 0.

D-

Figure 6.31

Solution

"T
X

a

When detector is at O, we can see that the path difference in the
two waves reaching 0\sd=2X thus at O detector receives a
maximum sound. When it reachesP and again there isa maximum

sound detected at P the path difference between two waves
must be A= A.. Thus from figure-6.32 the path difference at P can
be given as

A= 5iP-S2/'-

= cos 0

= 2X cos 0

S, a = 2X s

Figure 6.32

And we have at point P, path difference A = X,Thus

A = 2Xcos0 = X

or, cos B= y

or,

Thus the value ofx can be written as

x=Z)tan0=£)tan f-jJ =^/3D

,319^

# Illustrative Example 6.28

Figure-6.33 shows two coherent sources S^ andS2 which emit
sound ofwavelength X in phase. The separation between the
sources is 3A,. A circular wire oflarge radius is placed in such a
waythat lies in its plane and the middle point of is at
the centre of the wire. Find the angular positions 0 on the wire
for which constructive interference takes place.

Figure 6.33

Solution

Figure 6.34

From previous question, we can say that for a point P on the
circleshownin figure-6.34. The path difference in the twowaves
at Pis

A= 5iP-52P = t/cos0

= 3A.C0S 0

We know for constructive interference at P. The path difference

must be an integral multiple ofwavelength X. Thus for a maxima
at P, we have

3A. cos 0 = 0; 3A, cos 0 = 2,; 32.cos 0 = 22,; 32. cos 0 = 32.

TC I 2or, 0= y or 0=cos"' j or 0=cos"' y or 0=0
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TherearefourpointS/4,5, CandZ)oncircleat which 0 = Oor —

and there are two points in each quadrant at 0=cos"' j and
2

0= cos"' y at which constructive interference takes place.
Thus there are total twelve points on circle at which maxima
occurs.
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Practice Exercise 6.3

(i) A source emitting sound offrequency 180 Hz is placed in

front of an obstacle at a distance of 2 m from it. A detector is

also placed at the position of source, (a) find the minimum

distance between by which source and the detector are

separated normal to the line passing through obstacle for which

the detector detects a maximum ofsound, (b) How much farther

to the right must the obstacle be moved if the two waves are to

be out ofphase by 180°. (Speed ofsound in air = 360 m/s).

[(a) 3 m; (b) 0.598 m]

(ii) Two audio speakers are kept some distance apart and are

driven by the same amplifier system. A person is sitting at a

place6.0 m fromoneofthe speakersand 6.4 m fromthe other.If
the sound signal is continuously varied from 500 Hz to 5000 Hz,

what are the frequenciesfor which there is a destructive

interference at the place ofthe listener? Speed of sound in air

= 320 m/s.

[1200 Hz, 2000 Hz, 2800 Hz, 3600 Hz and 4400 Hz]

(iii) Two points sources of sound are kept at a separation of
10 cm. They vibrate in phase to produce waves ofwavelength

5.0 cm. What would be the phase difference between the two

waves arriving a point 20 cm from one source
(a) on the line joining the source

(b) on the perpendicular bisector ofthe line joining the sources ?

[(a) zero,(b) zero]

(iv) Twosourcesof sound and Sj vibrateat samefrequency
and are in phase (figure-6.35). The intensity ofsound detected

at a point P as shown in the figure-6.35 is 1q. If 0 equals 45°,
what will be the intensity ofsound detected at this point ifone

of the sources is switched off ?

Waves

Figure 6.35

[C/4]

(v) Sound waves from a tuning fork A reach a point P by two
separatepathsABPand .4CP.WhenylCP is greater than ABP
by 11.5cm, there is silenceatP. Whenthe difference is increased
to 23 cm the sound becomes loudest at P and again when it
increases to 34.5 cm there is silence again and so on. Calculate
the minimum frequency of the fork if the velocity of sound if
taken to be 331.2 m/s.

[1440 Hz]

(>i) Three sources ofsound S^, S2 and ofequal intensity are
placed ina straight line with 5,52 ^ *^2^3 (figtire-6.36). Atapoint
P, far awayfrom the sources, the wave coming from S2 is 120°
aheadin phaseof that from 5,. Also, thewavecoming from
is 120° ahead of that from S2. what would be the resultant
intensity of sound at P ?

Figure 6.36

[zero]

(vii)Sounds from twoidentical sources 5, and52 reacha point
P. When the sounds reach directly, and in the same phase, the
intensity atP isIq. Thepowerof5, isnowreduced by64%, and
thephasedifference between 5, and S2 is variedcontinuously.
The maximum and minimum intensities recorded at P are now

I and/ . .Find/
max mm ma

ILJU = 16]

A

(viii)At twopoints5, and 52 on a liquidsurface twocoherent
wave sources are set in motion at / = 0 with the same phase. The

speed of the waves in the liquid v = 0.5 m/s, the frequency of
vibration q = 5 Hz and the amplitude.^ = 0.04 m.
AtapointPoftheliquidsurface which isatadistancex, = 0.30m
from 5, andXj = 0.34m from S2 apieceofcorkfloats:
(a) Find the displacement ofthe cork at r = 3 s.
(b) Find the time that elapse from the moment the wave
sources were set in motion until the moment that the cork passes
through the equilibrium position for the first time.

[(a) y = - 0.02344 m (b) = 0.74 s]
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(ix) Two pointsound sources AandB eachofpower 25;cW and
frequency 850Hz are1mapart, (a)determine thephase difference
between the waves emittingfrom Aand Breceived bydetector
D as in figure-6.37 (b) also determine the intensity of the
resultant sound wave as recorded by detector D. Velocity of
sound = 340m/s.

A 2.Am
\-l —-r»D

90°

Im

Figure 6.37

[(a) II, (b) 0.0064 W/m^]

(x) Two sources of sound of the same frequency produce
sound intensities / and 4/at a point P when used individually. If
they are used together such that the sounds from them reach a
point P with a phase difference of 27c/3, find the intensity at
point P.

[3/]

(xi) A source of sound 5" and a detector D are placed at some
distance from one another. A big cardboard is placed near the
detector and perpendicular to the line SD as shown in figure-
6.38. It is graduallymovedawayand it is foundthat the intensity
changes from a maximum to a minimum as the board is moved
through a distance of20 cm. Find the frequencyofthe sound
emitted. Velocity ofsound in air is 336 m/s.

1
D

Figure 6.38

[420 Hz]

6.8 Compression Waves

When a longitudinal wave propagates in a gaseous medium, it
produces compression and rarefaction in the medium
periodically. The region where compression occurs, the pressure
is more than the normal pressure ofthe medium and the region
where rarefaction occurs, the pressure is lesser then the normal
pressure ofthe medium. Thus we can also describe longitudinal
waves in a gaseous medium as pressure waves and these are
also termed as compression waves in which the pressure at
different points of medium also varies periodically with their
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displacements. Let us discuss the propagation of excess
pressurein a mediumin longitudinal waveanalytically.

y+dy

.v = jr x = x+ dx

Figure 6.39

Consider a longitudinal wave propagating in positive
x-directionas shown in figure-6.39. Figure showsa segment
AB ofthe medium ofwidthdx.In thismedium leta longitudinal
wave is propagating whose equation is given as

y = As\x\ (coZ-fcr) ...(6.116)

Wherey is the displacement ofa mediumparticle situatedat a
distancex from theorigin,alongthedirection ofpropagation of
wave. In figure-6.39 is the medium segment whosea medium

particleis at position x = x and 5 is atx=x + £iratan instant. If
after some time ( medium particle at A reaches to a point
which isdisplaced byy and the medium particle at5 reachesto
point 5'which is at a displacement^ +from B. Heredy is
given by equation-(6.116) as

dy = -Ak cos (cor -kx)dx

Heredueto displacement of section AB to/f'5'the changein
volume of it's section is given as

dV= —Sdy [S —> Area ofcross-section]

- SAkcos (co/ -kx)dx

The volume of section AB is

V=Sdx

Thus volume strain in section AB is

dV -SAk c,os.{(iit - kx)dx
V ~ Sdx

or
dV , / , ^— =->Ixcos(cor-fcc)

MBis the bulkmodulusofthe medium, then the excesspressure
in the section AB can be given as

or

= ...(6.117)

AP = BAk cos (cor - kx)

AP= APq cos (cor - Ax) ...(6.118)

Here AP^ is the pressure amplitude at a medium particle at
position Xfrom origin and AP is the excess pressure at that
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point. Equation-(6.118) shows that excess pressure varies
periodically at every point of the medium with pressure

amplitude APq, which is given as

APq = BAk

•T" ...(6.119)

Equation-(6.118) is also termed as the equation ofpressure wave

in a gaseous medium. We can also see that the pressure wave

differs in phase by ^ from the displacement wave and
displacement maxima occur where the displacement is zero and

displacement maxima occur where the pressure is at its normal

level. Remember that pressure maxima implies that the pressure

at a point is pressure amplitude times more or less then the

normal pressure level ofthe medium.

Wave intensity for longitudinal waves at a point can also be

expressed in terms ofits pressure amplitude as from equation-

(6.118)

l=lTp}pA^pV

or

OT

or

1 471
1= 2

1 1^0 I ,
^ 2

AP^ B
2^ [As v=^-] ...(6.120)1 =

Expression in equation-(6.120) relates the wave intensity at a

point and the pressure amplitude of the wave at that point for
longitudinal waves.

6.9 Spherical and Cylindrical Waves

Till now we've discussed the longitudinal and transverse waves
travelling in one direction only. Consider a source of sound

which emits sound waves in' all directions as shown in figure-

6.40(a). When source vibrates, it emits oscillations in air in its

surrounding space. It emits waves in the three dimensional

spherical region in its surrounding and the oscillations

produced by source in spherical region propagate radially with

speed ofsound in the medium (air). These waves which travel
in three dimensional space in spherical form are called spherical
waves. All the particles in the surrounding ofthe source where

it produce oscillations on a spherical surface, we call spherical
wave front. Once a wavefront is created, it expands with speed
of sound and all wavefronts are in the form of concentric

spherical shells.

W aves

/ \
(a) Waves emitted by a point source

(b) Waves emitted by a line source

Figure 6.40

Similarly we can define cylindrical waves as shown in figure-
6.40(b). As spherical waves are produced by a point source,
cylindricalwaves are producedbya line source. The best example
to understand a cylindrical wave is a tube light, which is a
source ofcylindrical lightwaves. The wavefront produced bya
line source is cylindrical and here also the radius ofwavefront

increases with speed of waves.

6.9.1 Intensity of Spherical and Cylindrical Waves

If a point source of power P watt produces a spherical wave
then the power emitted by the source in its wavefronts is
continuously spreaded in all directions. If we find the wave
intensity at points at a distances from the sources', as shown

in figure-6.41 then it can be directly given as

1, = —S- W/m2 ...(6.121)

/ '\
Figure 6.41
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Asat point.4 thetotalareaofwavefront inwhich thepowerPis
distributed is Atcx^ thus the intensity can be given by the
expressionin equation-(6.121).

Similar to this iscase ofa linesource ofpower P andlength /,
the intensity at a distances from the source canbe given as

^ ...(6.122)/=
ItucI

6.9.2 Equation ofSpherical and Cylindrical Waves

In general a wave equation is given as

y = A sin {(ot-kx)

Where^ is the amplitude ofoscillationsofmediumparticles.In
caseof a spherical waveweknowthe intensityofwavedepends
on the distance from the source. We've read that if P is the

power of the source the intensity at a distances: can be given as

...(6.123)

Wealso know that the wave intensity is directlyproportional to
the square of amplitude of oscillationsof medium particles thus
in case spherical waves, we can say that the wave amplitude is
inversely proportional to the distance from the source, as

or

or

Acc JT

, 1
Acc —

X

A=
X̂

...(6.124)

...(6.125)

Here A^ is aproportionality constant. Thusthewave equation
ofa spherical wave can be given as

An
>>= — sin (cot-kx)

X
...(6.126)

Similarly in case of cylindrical wave the intensity is inversely
proportional to the distance from the source so we can say that
here the wave amplitude is inverselyproportional to the square
root of the distance from the source these the amplitude of a
cylindrical wave can be given as

A =
A)
rx

...(6.127)

Thus the equation ofa cylindrical wave can be given as

A
sin {(Sit-kx) ...(6.128)

6.10 Measurements of Sound Levels

The human ear is an extremely sensitive detector, capable of
hearing sounds over an extremely large range of intensities.
For example the sound produced bya thunder storm is 10^ to
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10^ times greater then the sound intensity due to a buzzing
mosquito, yet we can hear both sounds clearly. Our ears are
sensitive to this enormous range of sound intensities. During
observation people perceive a sound to be about twice as loud
asa reference sound when its intensity is tentimes as large as
the reference sound. A sound perceived to be four times as
loud as a reference requires an increase in sound intensity by
a factor of 100. Thisrelationship is approximately logarithmic,
or we can state that loudness is proportional to the logarithm
of the sound intensity.

The loudnessof a sound is measured in units of decibel, dB.
The decibel unit is onetenth ofthe size of the bel(a unit named
in honor of Alexander Graham Bell). The intensity level in
decibel is definedto be ten times the logarithm of the ratio of
two intensities. If two sound intensities /, and I2 arein W/m^
then loudness level ofIj with respect to can be given as

L{mdB)=\0\og^QY ...(6.129)

Here we say second sound is L dB louder then first sound. If
we fix a standard reference level then we can measure the

loudness level of any sound with respect to the reference
intensity as

L (in dB) = 10 log
10 /n

...(6.130)

For exampleifa sound intensityexceedsthe reference intensity
Iqby a factor of 4, then wehave

Z=I01og4 = I0(0.6) = 6dB

Thus here we can say that intensity level ofthe sound is 6 dB
above the reference sound level. We can see that the measure-

of sound intensity level in decibel is actually a comparison of
loudness of two different sound levels. So a given sound level
cannot be expressed in units of decibels unless the reference
level is fixed. The standard reference level is taken

1q = 1W/m^ which isthesound intensity thatcan just be
heardbya personwithgood hearing.This intensity10~'̂ W/m^
is called the threshold of hearing. Figure-6.42 shows the
comparison ofdifferent loudness levels of different commonly
heard sounds in day to day life.
Throshold Very Library Average Normal
ofhearing quite silence Home environment Conservaiion Loud

01 ! 1 ! \ 1 1 1 h

Sound level in dB

Figure 6.42

IndiL'ilrial or

thunder sound (peinfid)
H 1 • IOO<fF +

6.10.1 Comparison of Loudness Levels

Loudness of two sound waves are compared by their loudness
levelsas sound intensity is not a directmeasureforperception
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of loudness ofsound wave so comparison oftwo sound waves
is doneby measuring the difference in loudness levels of the
two sounds.

If there are two waves having intensities /j and Ij, their
loudness levels are given as

I =10 log 7^dB
^0

and I, = 101og-rdB

Difference in loudness level (in dB) is given as

h hAZ,(in dB)= L^-L, = 10 log-p -10 log 7-
• ' ^0 -'0

= 101ogf-

Here we say sound of wave-2 is AL dB louder then sound of
wave-1.

# Illustrative Example 6.29

(a) The power of sound from the speaker of a radio is 20 mW.
By turning the knob of volume control the power of sound is
increased to 400 mW. What is the power increase in dB as'
compared tooriginal power?
(b) How much more intense is an 80 dB sound than a 20 dB
whisper?

Solution

(a) As intensityis powerper unit area, fora givensourceP cc
I, ifl, and are the ininitial and final loudness levels then we
have

The increase in loudness level is

or

or

AL= lOlog^ =lOlog-^
A7=10[log20] ^ 13 dB

(b) Increase in loudness level of sound is

L^~L, = \Q\ogiI^/l,)

So, 80-20= 10log(72/7j)

or 6 = log(72/7j)

or (7/7;) =10^

Waves

# Illustrative Example 6.30

A dog while barking delivers about 1 mW of power. If this
power isuniformly distributed over a hemispherical area, what
is the sound level at a distance of5 m? What would the sound

level be if insteadof 1dog.5 dogstart barkingat the same time
delivering 1 mW of power?

Solution

Aspower is distributed uniformly ina hemisphere, intensity at
a distance of5 m from the source will be

7=4=
-3

10

5 (l/2)47cr^ 2x71x5^

Thus loudness level is

7 mi ^ mi 6.37x10"^L= lOlog-p = lOlog
•0 (10"")

= 6.37 pW/m2

or ' Z, = 10 [log 6.37 + 6 log 10]= 10[0.80 + 6]

or Z, = 68 dB

If there are 5 dogs barking at the same time and same level,
73 = 5/,. So

Lj-Z,! =lOlog-^ =lOlog-^
or Z,2 = Z,[ + lOlogS

^Illustrative Example 6.31

The sound level at a point is increasedby 30 dB. Bywhat factor
is the pressure amplitude increased ?

Solution

The sound level in dB is

i=101og,„[^]
If Z,] and Z.2 are the sound levels and 7, and are the
corresponding intensities in the two cases.

or,

or.

L2-Z,,= 10 iog.„g)-iog,(i

^2̂- = 103
^1

30=101og,ol-/
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As the intensity is proportional to the square of the pressure
amplitude, thus we have

Illustrative Example 6.32

What is the maximum possible sound level in dB of sound
waves in air?Given thatdensity ofair = 1.3 kg/m^, v= 332m/s
andatmospheric pressure/*=1.01 x lO^N/m^.

Solution

For maximum possible sound intensity, maximum pressure
amplitudeofwavecan beat mostequalto atmosphericpressure,
so we have

Apo-P=1.01xl05N/m2

So 2pv 2x1.3x332

Thus loudness level is

L= lOlog— « lOlog-^ =
^0 10

# Illustrative Example 6.33

190 dB

A window whose area is2 m^ openson streetwhere the street
noise result in an intensity level at the window of60 dB. How
much 'acoustic power' enters the window via sound waves.
Now ifan acoustic absorber is fitted at the window, how much

energy from street will it collect in five hours?

Solution

Loudness level is given as

L= lOlog

Thus
I

lOlog^ =60

or 7

or 1= (10-'2 Xio6)= 10-^W/m2= 1pW/m^

And we have power ofsound is

P = 1S

= 1XI0-^x2 =2pW

Thus energy is given as

E = Pxt

= 2x 10-®x5x60x60 = 36'x lO-^J

= 106
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(i) Ifthe intensity ofsound is doubled, by how many decibels
does the sound level increase?

[3.01 dB]

(ii) A certain sound level is increased by an additional 30 dB;

Find the factor by which (a) its intensity increasesand (b) its
pressure amplitude increases.

[(a) I0^ (b) 3 1.62]

(lit) If the sound level in a room is increased from 50 dB to
60 dB, by what factor is the pressure amplitude increased?

[VlO

(iv) Atypical loudsoundwavewith a frequencyof1kHz has a
pressure amplitude ofabout 10"^ atm. (a)At?= 0, thepressure
ismaximum at somepoint;Cj. Whatis the displacement at that
pointat f=0? (b)What is themaximumvalueofthedisplacement
at any time and place? Consider air as diatomic ideal gas.

[(a) 0, (b) 3.753 x lO"® m]

(v) A sourceofsoundoperatesat 2.0 kHz,20 W emittingsound
uniformly in all directions.The speedof sound in air is 340 m/s
andthe density ofair is 1.2kg/m^, (a)Whatis the intensity at a
distance of6.0 ni from the source ? (b) What will be the pressure

amplitude at this point ? (c) What will be the displacement
amplitude at this point?

[(a) 44.2 mW/m^ (b) 6.0 Pa, (c) 1.16 x IQ-^ m]

(vi) The intensity of sound from a point source is
1.0 X10"^W/m^ at a distance of5.0 m from the source. What will

be the intensity at a distance of25 m from the source?

[4,0 X lO-'O W/m^]

(vii) The noise level in a class-room in absence ofthe teacher is
50 dB when 50 students are present. Assuming that on the
average each student outputs same sound energy per second,
what will be the noise level ifthe number ofstudents is increased

to 100?

[53.01 dB]
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(viii) At a distance = 20.0 m from a point isotropic source of
sound the loudness level = 30.0 dB. Neglecting.the damping
ofthe sound wave, find :

(a) the loudness level at a distance r= 10.0 m from the source;

(b) the distance front the source at which the sound is not
heard.

[(a) 36.02 dB; (b) 632.45 m]

(ix) In a good FAf radio receiver, the radio signal detected may
be as much as 65 dB greater than the noise signal. What is the

ratio of signal intensity to noise intensity ?

[3.16 X IQft]

(x) Two sound waves move in the same direction in a medium.

If the average powers transmitted across a cross section by
them are equal while their wavelength are in the ratio 1:2. Find
the ratio oftheir pressure amplitudes.

[1]

6.11 Stationary Waves

In previous sections we've discussed that when two coherent
waves superpose on a medium particle, phenomenon of
interference takes place. Similarly when two coherent waves
travelling in opposite direction superpose then simultaneous
interference at all the medium particles takes place. These waves
interfere to produce a pattern on all the medium particles what
we call, a stationary waves. If the two interfering waves which
travel in opposite direction carry equal energies then no net
flowof energytakesplace in the region of superposition. Within
this region redistribution ofenergy takes place between medium
particles. There are some medium particles where constructive
interference takes place and hence energy increases and on the
other hand there are some medium particles where destructive
interference takes place and energy decreases. Now we'll discuss
the stationary waves in analytically.

Lettwowaves ofequalamplitude travelling inopposite direction
along A:-axis. The wave equation ofthe two waves can be given
as

=yl sin (co^-fo:)

[Wave travelling in +.v direction]'... (6.131)

and y2=Asm{(at + kx)

[Wavetravelling in -x direction]... (6.132)

When the two waves superpose on medium particles, the
resultant displacement of the medium particles can be given as

3'=3'i+>'2

or sin (co/ - Ax) + sin (co/ + Ax)

V/aves !

or y=A

[sin (0/cos kx —cos co/ sin kx + sin co? cos kx + cos (at sin kx\

or ^ = 2^ cos foe sin cor ...(6.133)

Equation-(6.I33) can be rewritten as

y = R sin (at ...(6.134)

Where /? = 2v4cosfor ...(6.135)

Here equation-(6.I34) is an equation of SHM. It implies that
after superposition of the two waves the medium particles
executes SHM with same frequency co and amplitude R which is
given by equation-(6.135). Here we can see that the oscillation
amplitude of medium particles depends onx i.e. the position of
medium particles. Thus on superposition oftwo coherent waves
travelling in opposite direction the resulting interferencepattern,
wecall stationary waves, the oscillationamplitude ofthe medium
particle at different positions is different.

At somepoints in medium theresultant amplitude is maximum
which are given as

R is maximum when

cos Ax=± 1

or

or

or

271
X=N7C

NX
x =

=n 2 ^X U, ^ , A, ^

and the maximum value ofR is given as

[Nel]

...(6.136)

Thus in themedium at positions x = 0, )^,X, the
wavesinterfere constructivelyand the amplitude ofoscillations
becomes2A. Similarlyat somepoints of the medium, the waves
interfere destructively, the oscillation arnplitude becomes
minimum i.e. zero in this case. These are the points where R is
minimum, when

cos Ax=0

or

or

or

x=(2N+\)^
X ^ ^
4' 4 ' 4 ••

and the minimum value of R is given as

x =

[.Vel]

...(6.137)
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Thus in the medium at positions x = %, ^^4, the
waves interfere destructively and the amplitude of oscillation
becomeszero. These points alwaysremains at rest. Figure-6.43
showsthe oscillationamplitudeofdifferentmedium particlesin
a stationary wave.

Anlinodes

+2A

}J4 . )J4

Nodes

Figure 6.43

In figure we can see that the medium particles at which
constructive interference takes place are called antinodes of
stationary wave and the points of destructive interference are
called nodes of stationary wave which always remain at rest.

Figure-6.44 explains the movement of medium particles with

time in the region where stationary waves are formed. Let us
assume that at an instant r = 0 all the medium particles are at

their extreme positions as shown in figure-6.44(a). Here points
ABCD are the nodes ofstationary waves where medium particles
remains at rest. All other particles starts moving toward their

mean positions and at / = ^ all particles cross their mean
position as shown in figure-6.44{c), you can see in the figure
that the particles at nodes are not moving. Now the medium
crosses their mean position and starts moving on other side of

mean position toward the other extreme position.At time / = ,

all the particles reach their other extreme position a shown in

figure-6.44(e)andattime/= again all these particles cross

their mean p'osition-is opposite direction as shown in
figure-6.44(g).Finallyat t=T, after completing oscillation all the
medium particles are in their initial position as shown in figure-

6.44(i).

b\^^c d\^
1 = 0

(a)

r/4>r>0

(b)

tt, ,tftf tf

t^T/4

(c)

T4<t<0 T/4

t=T/2

TI2<t>TI4

I +V S +I i + C D +I
/=37y4

(g)

T<t<3TI4

Figure 6.44
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Based on the above analysis of one complete oscillations of
the medium particles, we can make some inferences for a
stationary wave. These are :

(i) In oscillations ofa stationary wave in a region, some points
are always at rest (nodes) and some oscillates with maximum
amplitudes (antinodes).All other medium particles oscillatewith
amplitudes less then those ofantinodes.

(ii) All medium particles between two successive nodes
oscillate in same phase and all medium particles on one side of
a node oscillate in opposite phase with those on the other side
of the same node.

(iii) In the region of a stationary wave during one complete
oscillation all the medium particles come in the form ofa straight
line twice.

(iv) If the component wave amplitudes are equal, then in the
region where stationary wave is formed, no net flow of energy
takes place, only redistribution of energy takes place in the
medium.
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When amplitudes of the two component waves are equal then
the resultant amplitude at node is zero and these particles
always remain at rest, which does not allow energy to propagate
in anydirection. Butwhenthe component waveshaveunequal
amplitude say^i, and/42 thenthe medium particles situated at
nodes also oscillate with amplitude \A^-A2\ andinthiscase the
amplitude ofoscillations ofmedium particles at antinodes will
be 1/4, + A^l Such an interference pattern is called partial
stationary wave. Because in this case as the two component
waves have unequal, amplitudes, their powers will also be
differentin opposite directions. Dueto this aftersuperposition
theremust besomeflowofenergyin thedirection ofpropagation
of wave having higher amplitude. The oscillation amplitude
pattern ofdifferent medium particles in a pure stationary wave
and a particlestationarywaveis shownin figure-6.45

> /

Pure stationary wave

(a)

2A

±

Partial stationary wave

(b)

Figure 6.45

A partial stationary wave can also be regarded as a
superposition of a pure stationary wave with a propagating
wave. Analytically we can discuss this. Let the two different

amplitude coherent waves travelling in opposite direction be

y, =/4, sin (cor-fct) ...(6.138)

[Travelling in +a: direction]

and

^ Waves I

3'2 =^2...(6.139)

[Travelling in x-direction]

The region in which these waves will superpose the resultant

displacement ofmedium particles can be given as

y=yy +J2

= /4 j sin {cot - kx) + A2 sin (cot + kx)

First term of the above equation can be split as

y =A2 sin(cor -kx) + {A^ -A2) sin(co/ -kx) + A2 sin{cot + kx)

y = 2A2 coskxsin cor + (/4, - A2) sin (cor - Ax) ... (6.140)

The first term in the expression in equation-(6.140) is the
equation of a pure stationary wave with antinode amplitude
2A2 and node amplitude zero and second term in equation-
(6.140) is a propagating waves travelling in +x direction with
amplitudeA, Herewe canstatethat net energyflowtakes
placesin the mediumdueto the propagatingwavein +x direction
as/4, >A2-

6.11.1 Different Equations for a Stationary Wave

Consider two equal amplitude waves travelling in opposite
direction as

y, =/4 sin (cor-Ax) ...(6.141)

and y2^^sin(cor + Ax) ...(6.142)

The result of superposition of these two waves is

y = 2Acoskx sin cor ...(6.143)

Which is the equation of stationary wave where 2A cos Ax
representsthe amplitude ofmeditimparticle situated at position
Xand sin cor is the timesinusoidalfactor. This equation-(6.143)
can be written in several ways depending on initial phase
differences in the componentwavesgiven byequation-(6.141)
and (6.142). Iftlie superposing waves are having an initial phase
difference 7t, then the component waves can be expressed as

sin (cor-Ax) ...(6.144)

y2= ~A sin (cor-Ax) .,.(6.145)

Superposition of the above two waves will result

y = 2A sinAxcoscor ...(6.146)

Equation-(6.146) is also an equation of stationary wave but
here amplitudes of different medium particles in the region of
interference is given by

R = 2As'mkx ...(6.147)
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Similarly the possible equations of a stationary wave can be §Illustrative Example 6.34
written as

^'^/ipSin kxcos(cor + ())) ...(6.148) The following equation represents standing wave set up in a

y-AQ coskxsin (rot + ^) ... (6.149)

y=̂ oSinAxsin(rot+(l>) ...(6.150) y=4cos ^ sm407it,
y=AQ cos kx cos (rot + <j)) ... (6.151) where and>' are in cm and t in sec. Find out the amplitude and

the velocity of the two component waves and calculate the
Here^oistheamplitudeofantinodes.Inapurestationarywave distance between adjacent nodes. What is the velocity of a
ItIS given as medium particle at:c =3cm attime 1/8 s?

A,-2A
Solution

Where A is the amplitude ofcomponent waves. Ifwe care fully

lookatequation-(6.148)to(6.151),wecanseethat in equation- given equation ofstationary wave is
(6.148) and (6.150), the particle amplitude is given by . tzx

/? = /4f,sin kx ...(6.152)

Here at x=0, there is a node as /?= 0 and in equation-(6.149) and

(6.151) the particle amplitude is given as Weknow that

R = A^^coskx ...(6.153) . 27tx . 27:v/
" y = 2yicos^r—sin—^— ...(6.159)

Here at x = 0, there is an antinode as /? = Ar,. Thus we can state
^ j. , u • • • Comparingtheequations-(6.158)and(6.159),weget

that in a given system of co-ordinates when origin of system IS r oi \ / \ /»=>

at a nodeweuseeitherequation-(6.148) or (6.150) foranalytical A= 2 cm,A. = 6cm and v= 120cm/s
representation ofa stationary wave and we use equation-(6.149)

or(6.151) for the same when an antinode is located at the origin component waves are
of system. ^ . 2 71 ,

=.4 sin — (v/-x)

6.11.2 Velocity and Acceleration of Medium Partical in
2 71StetionaryWave and , ^2"^ ^in — (v/ +x)

In a stationary wave we have discussed that the displacement
ofamedium particle from its mean position is given by either of = A =.^ =3
equation (6.148) to(6.151) we take anyone ofthese torepresent 2 2
a stationarywavein a mediumas Particlevelocity

y=A^smkxcos<ot ..,(6.154) -^ =4cos-y cos(407tt) x40 jt
Here velocity ofa medium particle at a position x can be given

= 1607CCOS COS4071/

dy
Vp= scQ^pSin Ax cos ©/ ...(6.155) Atx=3,/= 1/8, the particle velocity isgiven by

Differentiating again equation-(6.155) onlyw.r.to time gives the T^a 1^
, . ^ = 1607tcos7ccos 4071X- =i607ccm/s

acceleration ofthe medium particle at a position Xas , \ •

q2
<3.=sinAx sin <0/ ...(6.156) ^Illustrative Example 6.35

P dt'

Similarly we can find the slope ofdisplacement curve ofa ^ wave is given by the equation
stationary wave at a particular instant oftime fi"om equation-
(6.154) as 10sin27i(100/-0.02x)+ lOsin 271 (100/-0.02 x)

~ ~kA cos Ax s'n rot r615T) J'ii^^thdccp'cngthjfrequencyvelocityandmaximumamplitudedx 0 " ofthe stationary wave produced.

= 4 cos sin 40 7:/

„ ... 2%x . 2 71 (120)/
or = 2 X2 cos . sin 7 ... (6.158)
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Solution

We know the equation ofa stationary wave is given by

=̂ sin j^-^(vf-x) 4-^ sin j^-^(v/+x)
^ ^ 2tix . 2%vt

= 2 ^ cos —— Sin —::
I A K

0-271
= Rs\n vt

2% X
Here /? = 2 ^ cos is the amplitude of medium particle

situated at a distance x.

The given equation can be expressed as

y = 10sin 4^(5000?-;c) + 10 sin

= 2 X 10 cos I sin 50001

271:

50
(5000/ + ;c)

Comparing it with standard equation ofstationary wave, we get

wavelength

Wave velocity

Thus amplitude

^=50 units

v^SOOO units

R = 2x lOcos
27CX

50

and Maximum amplitude

^ 2 X 10 = 20 units
IHdX

As wave velocity is

V= 5000 units,

V 5000
Frequency

and loop length is

= 100 units

I 50 .."2 = =25 units.

# Illustrative Example 6.36

A progressive and a stationary simple harmonic wave each has
the same frequency of250 Hz, and the same velocity of30 m/s.

Calculate

(0 the phase difference between two vibrating points on the
progressive wave which are 100 cm apart,

(ii) the equation of motion of the progressive wave if its

amplitude is 0.03 m,

(iii) the distance between nodes in the stationary wave,

(iv) the equation ofmotion, the stationarywave if its amplitude
is 0.01 m.

Solution

Given,

or

71 =250 Hz, v=30m/s

« V 3
A,= — = -rr m= 12cm.

n 25

Waves'

(i) Phase difference between two points at a distance X. = 2 tc
2 K

Phase difference between two points, unit distance apart = —

Thus phase difference for a distance of 10 cm

271 271 5

(ii) Now

and

The general equation ofa plane progressive wave is given by

;'=^sin27t

Here >> = 0.03 sm2 7i;(250/-25x/3)

(iii) The distance between nodes in stationary wave

X 12 ^= 2=-j-=6cm

(iv) Equation of stationary wave is given by

271.X'. 2 nvt
= 2 cos — sm —r—

^= 0.03, X=(3/25) m

Y =«=250Hz

- , 2'kx . 271/
= 2 cos —T— sm —;5T~

K I

Here 24=0.01, and y=250H2

or j = 0.01 cos sin 500 7tt
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6.12 Standing Waves on Clamped String

In previous sections we've discussed about the reflection of a

wave pulse on a string when it arrives at a boundary point
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which may be a fixed or a free end. Now we'll discuss what
happens when a propagating simple harmonic wave is reflected
by a fixed end of a string. Consider the situation shown in
figure-6.46.

Figure 6.46

A stretched string is clamped at a point on a rigid vertical wall.

The other end of string is given oscillations manually which
creates a continuous propagating wave toward the wall from

which it is reflected with a phase difference of7t radians which

start propagating in direction opposite to incident wave. Ifwe

assume ideal reflection from the wall then the reflected wave

will also have the same amplitude as that ofthe incident wave.

As here two coherent waves (as during reflection frequency
does not change) travelling in opposite direction superpose
each other, stationary waves are formed on the string. As we

can see in figure-6.46. At points P, Q, R nodes are formed and

between every two adjacent node an antinode is there. But this

is not so simple that you move one end of a clamped string up
and down and you'll see nodes and antinodes. This will happen

only at some particular oscillation frequencies which depend
on several factors like length ofstring, tension in string, linear

mass density of string etc. Thus ifa clamped string is oscillated

like the way as shown in figure-6.46 stationary waves will be

formed or not it depends on the frequency of source of

oscillations (in our case it is hand) but theoretically when
incident and reflected waves superpose, stationary waves must

be formed then why does the practical situation differ. This

we'll discuss now in detail.

First we discuss one more example of oscillations of a string
clamped at both the ends as shown in figure-6.47. Ifwe pluck
the string at its mid point and release it will start oscillating as

shown in figure-6.47(b). Actually when we pluck the string at

its mid point and release, two transverse waves are generated

and start moving toward the clamps Cj and from middle
portion of string. These are reflected from the clamps and

superpose on the length of the string and stationary wave is

formed between Cj and C^. As beingrigid clamps the string
particlesare not allowedto oscillateat thesepoints.Hereat C,
and Cj, nodesmust be formed and there is one antinodeat the
mid point ofthe string. Similarly ifat the mid point ofthe string
we put a support and we pluck the left portion of the string a

loop is formed and the wave ofsame frequency transmits to the
right portion and another loop is formed there as shown in

figure-6.47(c). Now ifthe support at the mid point is removed

then also string oscillations remains same, it continues to
oscillates in twoloops as alreadytherewasa nodeat thepoint
of support so it does not make any difference whether there is
any support present or not. The support was required only to

initiatethe oscillations. In thesamefashion wecan makestring
to oscillatein three, four or more loopsbyplacing a supportat

X X length from one clamp toinitiate theoscillations in
the beginning.

(a)

(b)

"-I (c) ^2

Figure 6.47

Here we can see that when there is no support, the string
oscillates full length as one loop. In this case the separation

between twonodes isthestring length I i.e. X • second case

wehave = )4 ^o on. This implies that as number of
loops in the string increases the wavelength decreases and
hence frequency of oscillations increases.

Thus in a clamped string oscillations, stationary waves are
formedonlywhen the string length is equallydividedinto loops
otherwise there will not be a node at one of the clamps. So for
the formation of stationary wave in a clamped string the string

length must beanintegral multiple of X»where Xisthewave
length ofthe wave on string.

6.12.1 Normal Modes ofOscillationsof a Clamped String

We've discussed that stationary waves can be established in a

clampedstringand it can oscillate at differentfrequencies. These
frequencies at which a stable stationary wave can be produced
in a clamped string are called different modes of oscillations.

Now we discuss these modes in detail.

Wlien a string clamped at both the ends oscillates. The minimum

frequency at which it can oscillate is called its fundamental

frequency or the fundamental mode of its oscillations. This
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case is shown in figure-6.48 when only one antinode is formed
between two nodes (clamps). In this case the wavelength is at

its maximum possible value.

' !=y2 ^

Figure 6.48

In this case oscillation frequency of string can be given as

V V

X~ 21

21

[As here y - /]

...(6.160)

Here T is the tension at which string is stretched and p is the
linear mass density ofthe string. The next higher frequency at

which string oscillates with stationary waves is the one when

two loops are formed as shown in figure-6.49

V V

"2" X " /

-X-

X = l

Figure 6.49

In this case oscillation frequency ofstring can be given as

[As here X= /]

.,.(6.161)

Thisfrequency «2 isthenexthigher frequency after fiindamental
frequency at which stable stationarywaves are formed in the
string. This mode of oscillations is called first overtone. As this
frequency is double that offundamental frequency this is termed

as second harmonic frequency of string oscillations. All the
frequencies which are integral multiples of fundamental
frequency are called harmonic frequencies.

Ifwe come to the next mode ofoscillations ofthis string it is the

case when it vibrates in three loops as shown in figure-6.50.

Here

or

3X

' 2

X=
21

Waves

Figure 6.50

In this case the oscillation frequency of the string is given as

X 21

=|J^=3«, .,.(6.162)
This mode ofoscillation is called second overtone ofthe string

oscillationsand as the frequencyis three times the fundamental
frequency, it isalso termedas third harmonic. Similarlyifa string
oscillates in P loops, its frequency can be written as

Where

£1
21

P_
21

=pn.

p = l,2,3,... ...(6.163)

The above frequencies at which stationary waves can be
formed are the harmonic frequencies and this series of these
frequencies is called harmonic series.

6.13 Wave Resonance

When a pendulum or a block at the end ofa spring is set into
motion by a periodic force, the system moves with largest

amplitude or with maximum energy when the frequency of force
equals the frequency of natural vibrations of the free system.
We can take a simple example to explain resonance. Ifwe push
a child on a swing periodically then the oscillations of swing
become stronger if the pushing frequency is equal to the
frequency ofnatural oscillations ofthe swing. Thus the concept

of resonance is that the oscillations of a free system are most
strong when the frequency of driving force is equal to the

frequency of the system's free vibrations.

6.13.1 Resonance in Clamped String Oscillations

Resonance can also be observed in case of a clamped string
oscillations consider a string of length / clamped between the
two clamps C, and C^. The length and tension in the string
adjusted so that here we have the fundamental frequency of
this string is 10 Hz, thus we have

21
= 10Hz ...(6.164)

This implies that this string can sustain stationary waves at all
frequencies which are multiple of10 Hz (Harmonic frequencies).
At frequencies other then 10 Hz the oscillation energy ofstring

will be damped asits length will not be integral multiple of^.
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< 10 Hz

«y=lOHz

«^ =20Hz

h^ = 30Hz I'

source ofoscillations

- I -

(a)

(b)

(c)

(d)

Figure 6.51

Let us use a tuning fork of frequency 10 Hz to establish
oscillations in the string as shown in figure-6.51(a). As at
frequencies less then 10 Hz, stationary waves can not be
established in the string thus the energy supplied by the tuning

fork will damp and string will oscillate very little or it appears
motion less. But if the frequency of the tuning fork (driving

agent) matches with any of the harmonic frequencies of the
string, it starts oscillating widely and the amplitude of its
oscillations is also so significant that it can be seen as shown in
figure-6.5l(b), (c) and (d). This is a common method of
establishing stationarywaves in a clamped string. Thus a string

resonates whenever the external oscillating source frequency

matches with any of the harmonic frequency of the string.Tn
previous example ifa tuning fork offrequency 43.2 Hz is used to

setuposcillationsin thestring itwill oscillateat 43.2 Hz but will
appear almost straight as shown in figure-6.51 (a) as the whole
of supplied energy will clamp.

6.13.2 Sonometer

It is a device used to measure velocity oftransverse mechanical

wave in a stretched metal wire. The principle of sonometer is

based on resonance of string vibrations. Working oscillations

333;

are induced in a clamped string by an external source like a

tuning fork or an oscillator and the corresponding oscillations

in string will become stronger when resonance takes place i.e.

the frequency ofoscillation of source matches with any ofthe
harmonic ofthe string vibration.

Figure-6.52 shows basic structure and of a sonometer setup

arrangement. It consists ofa wooden box M on which a wire^5

is stretched, by a hanging weight as shown in figure-6.52. On

sonometer box thereare two clamps Cj and placed which
can slide under the wire to change the length of wire between

.the clamps.

When on oscillating turning fork is placed in contact with the
sonometer wire as shown in figure-6i52. Some oscillations are

transferred to the wire. If tension in wire is T and n^^ be the
frequency oftuning fork, the wavelength of wave in wire is

%= — = — •
«o % V'0

• rider

M

(a)

C,
• M

C2 C3

(b)

Figure 6.52

When the length between clamps is an integral multiple ofX/2
then stationary waves are established in the portion of wire
between C, and To adjust this,clamp Cj is fixed and is
displaced so that a small rider (a piece of paper) on wire start
jumping violentlyon wireand falls indicatingthat the oscillation
amplitude of wire is increasing and stationary waves are

established. Let in this situation the length between clamps is

/p'Now again Cj is displaced away from C^ so that again
resonance is obtained. This will happen again when the clamp

reaches the position C3 andwhen nextnode ofstationarywaves
ispresentas shown in figure-6.52(b). Letthis lengthis /j.

...(6.165)
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Sowecansaythat if /, and are the twosuccessive resonance
lengths then we have

1 -I = —2 M 2

or wavelength of wave is

As frequency ofoscillating source is known, we can find the
velocity ofwave in wire as

Waves

6.13.4 Melde's Experiment

ITiis is an experiment for demonstration oftransverse stationary

wave in a stretched string.

In Melde's experiment, one end ofthe string is connected to the
prong ofan electrically oscillated tuning fork. The other end of

the string is connected to the scale pan. The string passes over
a smooth friction less pulley.The distance betweentuning fork
and pulley can be adjusted. There are two different ways in
which oscillations can be established in the string

... (6.166) Case-I: TransverseMode ofvibration

Equation-(6.166) gives the practically measured value of
velocity of transverse waves in stretched wire. This can be

compared with the theoreticalvalue of v givenby .

6.13.3 Vibrations of Composite Strings

Wehavediscussed thevibration ofa clampedstring in previous
section, now we discuss the stationary waves in a string
composedoftwo differentstrings as shown in figure-6.53.Here
two strings and$2 ofdifferent material andlengths arejoined
end to end and tied between two clamps as shown. Now when
weinduceoscillations in this composite string, stationarywaves
are established only at those frequencies which matches with
any one harmonic ofboth the independent string 5", and iSj.

s, P loops q loops S,

/, ^

Figure 6.53

Let at a frequencystationarywavesare establishedin this string
sothatstring oscillates inp loops and strings S2 oscillates in
q loops as frequency of both the string is equal, we have

or "ex - 21

or

= "5

L.
Ml 2L

...(6.167)

[As T= same in both the string]

...(6.168)

In equation-(6.168) p and q must beintegers, thusthe minimum
values ofp and q which satisfies equation-(6.168) will decide
fundamental frequency or the leastfrequency at which stationary
waves can exist in this composite string and the oscillation
frequency can beobtainedfiom equation-(6.167).

As shown in figure-6.54, tuning fork vibrates right angle to the
lengthofthe string.In this casefrequency ofvibration ofstring,
is equal to the frequency of the tuning fork. Firstwe adjust the
length of string so that stationary wavesare formedin string. In
this case the vibrations of string are strong enough so that the
loopscan be seen in the string. If string vibrates inp loopsas
shown in figure, the frequency of string oscillations can be
given as

I2iip

Electromagnel

...(6.169)

^^^

Figure 6.54

If «.be the frequency ofoscillation oftuningfork thenwehave

P T
/ 2l\)x ...(6.170)

(2) Longitudmal Mode of vibrations

In this case the vibrations oftuning forkare along the length of
the string. The orientation of tuning fork is shown in figure-
6.55. In this case for one completevibrationsofthe tuning fork,
the string completesonlyhalf of its vibration so the frequency
of vibration ofstring is halfofthat of the oscillation frequency
oftuning fork. If string vibrates in p loops then we have.

2 ^ 2/in ...(6.171)
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Electromagnet

Figure 6.55

We can see if the frequency of tuning fork remains constant
from equation-(6.170) and (6.171) we can write

p-Jr = constant [As jr = constant] ...(6.172)

Ifthe tension in the string is changed then number of loops in
the stationary wave formed varies according to equation-(6.172).

This is called as Melde's law.

Thus if in Melde's experiment stationary waves are formed at
two different values of tension T, and at which and
loops are formed in the string then we can write as

...(6.173)

6.13.5 Energy Associated with the Medium Particles in a
Stationary Wave on a String

Consider a stationary wave on a stretched string oflength / as
shown in figure-6.56. The maximum amplitude of medium

particles in this stationary waveat antinodes is Aq, Then the
amplitude ofmedium particles at a distancex from one end can
be given as

i?= ^Qsinfcr

Now consider an element oflength at a distancex from one
end as shown. Iffrequency of oscillation ofstring in ©then the
total energy contained in this element of length dx can be given

as

dE= y

dE= ^(ptic) sin^ kxor ...(6.174)

H k-c&

•X

Figure 6.56
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Now total energy contained in the string can be string can be
obtained by integrating the expression in equation-(6.174) for
whole length of string as

L

E= ^dE =jyli©^^^sin^Axa^

1 - cos 2Ax
dx

X —
sin 2kx

2k

...(6.175)

6.14 Vibrations of Clamped Rod

We have discussed the resonant vibrations ofa string clamped

at two ends. Now we discuss the oscillations ofa rod clamped
at a point on its length as shown in figure-6.57. Figure shows a

rod AB clamped at its middle point. Ifwe gently hit the rod at its

one end, it begin to oscillate and in the natural oscillations the

rod vibrates at its lowest frequency and maximum wavelength,

which we call fundamental mode ofoscillations. With maximum

wavelength when transverse stationary waves setup in the rod,

the free ends vibrates as antinodes and the clamped end as a

node as shown in figure. Here if "k be the wavelength of the

wave, we have

or

'4
X=2l ...(6.176)

Figure 6.57

Thus the frequency offundamental oscillations ofa rod damped

at mid point can be given as

"ox 2/Vp ...(6.177)

Where Yis the Young's modulus ofthe material ofrod and p is
the density ofthe material ofrod.

Next higher frequency at which rod vibrates will be then one

when wave length is decreased to a value so that one node is
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inserted between mid point and an end of rod as shown, in Illustrative Example 6.37
figiire-6.58.

C

I X Tt X 1
✓ V

k 1

Figure 6.58

In this case if^ be the wavelength ofthe waves in rod, we have

' 2

or X=y ...(6.178)

Thus in this case the oscillation-frequencyof rod can be given
as

-Z-i- I
X 2/-VP ...(6.179)

This is called first overtone frequency of the damped rod or

third harmonic frequency. Similarly, the next higher frequency
of oscillation i.e. second overtone of the oscillating rod can be
shown in figure-6.59. Here ifX, be the wavelength ofthe wave
then it can be given as

or X=^^ 5 ...(6.180)

1 - • X 1

\

!

/

/

\

\

\

1

—I—

Figure 6.59

Thus the frequency of oscillation of rod can be given as

...(6.181)= z = A I^2 X 2/Vp

Thus the second overtone frequency is the fifth harmonic of
the fundamental oscillation frequency ofrod. We can also see

from the above analysis that the resonant frequencies at which

stationary waves are setup in a damped rod are only odd
harmonics offundamental frequency.

Thus when an external source of frequency matching with any
ofthe harmonic of the damped rod then stationary waves are
setup in the rod.

A wireofdensity9 x 10^ kg/m^ is stretched between twoclamps
1mapartandissubjected toanextension of4.9 x 10"^ m.What
will be the lowest frequency oftransverse vibration in the wire ?

(Young's modulus ofmateriaI = 9 x IQ^^N/m^).

Solution

Let A be the area of cross-section of wire and T be the tension

applied.

The lowest frequency of transverse vibration is given by

"=1715
Where m = mass per unit length ofwire

= Volume ofunit length x density

= /lx 1 xp

or

We know that

Young's modulus

or

T
n -

1

21

Y=
Stress _ TIA
Strain A///

M'
T=YA\ —

From equations-(6.183) and (6.184)

I If YAM
" 21 yt/^p

Substituting the given values

...(6.183)

...(6.184)

21

YAl

« -
1 (9xl0'®)x(4.9xl0-'^)

2x1

= 35 Hz

# Illustrative Example 6.38

lx(9xlOO

The fundamental frequency ofa 1.5 m long, stretched steel wire

is 175 Hz. The density of steel is 7.8 x 10^ kg/m^. (i) Find the
speed of transverse waves in the wire, (ii) Calculate the

longitudinal stress ofthe wire, (iii) Ifthe tension in the wire is

increased by 3%, calculate the percentage change in the
frequency ofthe wire.
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Solution

(i) We know that the fundamental frequency ofthe wire is
given by

337

# Illustrative Example 6.39

A wire having a linear density of 0.05 gm/cm^ is stretched
between two rigid supports with atension of4.5 x ID''dynes. It
is observed that the wire resonates ata frequency of420 Hz.
Thenext highest frequencyat which thesame wire resonates is
490Hz. Findthelength ofthewire.

Solution

Let the frequency 420 Hz corresponds to j3th harmonic. The
formula for pthharmonic isgiven by

or

Now

or

1 \(T
n ~

21

The speed of the transversewave in the wire is

...(6.185)

yrj ...(6.186)
Substitutingthe given values,we have

v= 175 X(2 X1.5)= 525m/s

(ii) Suppose the weight suspended from the wire be Mg. Then

T= Mg and p = 7cr^p

...(6.187)

525 =
Mg

[As v= 525m/s]

Mg
= (525)2 Xp= (525)2 X(7_5 ^ | q^)

= 2.15xl09N/m2

(iii) When the tension ofthe wire isincreased by 3%, then the
new tension becomes

F'=r+T^ 7-= 1.03 r
Now the new frequency

= n
1 \(T'

21 VIM ...(6.188)

Dividing equation-(6.188) by equation-(6.185), we get

— =1.015
n

i.03r^
T j

or n'= 1.015x«=/7 + 0.015«

= n + (3rt/200)

Thuspercentage changein frequency

n -n \ 7X100= I" =1.5

Hence,

For thenext higher frequency/> is (p+ 1), hence

= £±i (L
21 VVR,

From equations-(6.189) and(6.190), wehave

490

420

p + I

Solvingwe get, p=6

Substituting the valuep inequation-(6.189), we get

' • ^7^'/2
4.5x10'

0.05

7=214.3 cm

# Illustrative Example 6.40

...(6.189)

...(6.190)

In Melde's experiment itwas found that the string vibrates in 3
loops when 8gmwere placed inthepan. What mass should be
placed in the pan to make the string vibrate in 5loops ?(Neglect
the mass of string).

Solution

A.ccording to Melde's Law

P'/t ^ constaht

P,^=P2^2
3V8=5Vr

or

or T=
9x8

25

=2.88 gm
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§ Illustrative Example 6.41

Findtheratioofthe fundamental tonefrequencies oftwoidentical
strings after one ofthem was stretched by q, = 2.0% and the
other byTi2= 4.0%. The tension is assumed to be proportional
to the elongation.

Solution

In case ofa stretched string

Where p is the mass per unit length.

If Mbe the total mass ofthe wire, then

1 T

f- 2L]n

So if length of given wire is kept constant

(f/y) = (777)1/2

andashere/' -/+6 and7"'=7+ 0.44 T= 1.44 7

or

(/ + 6) 1.447

/ V 7 .

/=30Hz

Now if keeping the original tension (7), the length wire is
changed, we have

/" / 1

Waves,

/ /" 1.20

30

[As/" = / + 0.20/=1.20/]

_L
2/

77

11
...(6.191) or /"=Yy=25Hz

Hence /"-/ = 25 - 30 =- 5 Hz

Thus, fundamental frequencywill decreaseby 5 Hz.

a Illustrative Example 6.43 •

It should be remembered that when the wire is stretched, the
total mass ofwire Mremains constant.

Iforiginal lengthwas /, thenafterelongation

/, = 1.02/ and /2=1.04/

Given that tension ccelongation

Hence
Tl2

The new frequencies are

n, =

and

'• 1

2(1.02 /)

1

2(1.04/)

...(6.192)

7;(1.02/)
M

...(6.193)

'7^2 (1-04/)
M

...(6.194)

Dividing equation-(6.194) byequation-(6.193), weget

"2

= 1.4

1.02

1.04

a Illustrative Example 6.42

fT.

1.04 0.5

The fundamental frequency of a sonometerwire increases by6
Hz ifits tension is increased by44% keeping the length constant.
Find the change in the fundamental frequencyofthe sonometer
wire, the length of the wire is increased by 20% keeping the
original tension in the wire.

Solution

In caseofvibrationofa string, fundamental frequency is given
by

A sonometer wire fixed at one end has a solid mass A/hanging
from its other end to produce tension in it. It is found that a
70 cm length of the wire produces a certain fundamental
frequency when plucked. When the same mass Mishanging in
water, completely submerged in it, is found that the length of
the wirehas tobe changedby5 cm in orderthat it willproduce
the same fundamental frequency. Calculate the density ofthe
material ofthe mass Mhanging from the wire.

Solution

Thefundamental frequency «j is given by

I 7

7 21 VI

Here/ = 70 cm, 7= Mg and p, massper unit length

1
n, =

1 2x70

Mg

F
...(6.195)

When the mass Mis submerged in water, the frequency remains
the same for a length of65 cm.

Hence we have w, =2^65 J ...(6.196)
Where M'g is the effectiveweight of mass in water.

From equation-(6.195) and (6.196)

11

2x70

\M'g^
2x65 m p j
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or =11
M'] 13 ...(6.197)

or

or

or

and

«/ = constant

/, - «2 ^2 ~ ^^3 ^3

n-,

'. = 3r'2=2'.
Now using the Archimedes principle, weshall calculate the
value ofAfin terms ofM. Let pbe the density ofthe material of
the mass M.

Volume ofmass= (Mp) cm^

Volume ofwater displaced =(Mp) cm^

or Upthrust= (Mp)^

WeightofmassMinwaterg '

I = I = ~ I'3 riy '2 3 '2 ...(6.201)

Substituting these values in equation-(6.199), we have

or /2=27.27 cm

Fromequation-(6.201),

or

Solution

M-Ml l--^

M 14

...(6.198)

Substituting the value ofM inequation-(6.197), we get

M(l-I/p)j - 13

Solving we get, p - 7.26 gm/cm^ =7.26 x ]0^ kg/m^

Illustrative Example 6.44

The length of the sonometer wire between two fixed ends is
100 cm. Where should thetwo bridges beplaced soastodivide
thewire into three segments whose fundamental frequencies
are in the ratio of 1 :2 ; 3 ?

I* /.

Af'
<<—

^2 •K--73--.H

Figure 6.60

Figure-6.60 shows a sonometer wire^5 between twofixed ends.
Let the two bridgesbe placed at C and D such that the wire is
divided into three segments {AC, CD and DB) oflengths I2
and /j respectively whosefrequencies are in the ratioof 1:2:3

For the length of string,wehave

^C+CD + D5 = 100cm ...(6.199)

Let ^2 and be the fundamental frequencies of these
segments respectively, then

fL - 1

fl cc j

fJ? 2
and ~ = -.2 ''3 3 - (6-200)

We know thatfrequency isinverselyproportional tothelength
of the segment because when tension remains constant

/, =2x27.27 = 54.54 cm

and = x27.27 = 18.18cm

# Illustrative Example 6.45

Auniform rope oflength 12 mand mass 6kg hangs vertically
from a rigid support. Ablock ofmass 2kg isattached tothefree
end of the rope. Atransverse pulse ofwavelength 0.06 m is
produced atthe lower end ofthe rope. What isthe wavelength
ofthe pulse when it reaches thetop ofthe rope?

Solution

///////////z

6 kg

Figure 6.61

As the rope is heavy, its tension will be different at different
points. The tension at thefree end will be 2 g and thatat the
upper end itwillbeSg.

We have, v = «X

or

or ...(6202)

The frequency ofthewave pulse will be thesame everywhere
on the rope as it depends onlyonthe frequency of thesource.
The mass perunitlength isalso thesame throughout therope
as it is uniform. Thus, we have
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As is constant, we have
V A»

0.06m X,]

Solving weget X, =0.12 m

Where Xj isthe wavelength atthe top "ofthe rope.

#Illustrative Example 6.46

A metallic rod of length Im is rigidly clamped at its mid-point.
Longitudinal stationarywaves are set up in the rod in such a
way that there are two nodes on either side of the mid-point.
Theamplitude ofanantinode is2 x 10"^ m.Write theequation
of motion at a point 2 cm from the mid-point and those of the
constituent waves in the rod. (Young's modulus = 2 x 10" N/
m^, density= 800 kg/m^).

Solution

The situation is shown in figure-6.62.

A

/=Im

Figure 6.62

From figure, we can calculate the wavelength as

X=0.4m-40 cm

Velocityof longitudinal waves in the rod can be given as

2x10'
8000

Now

S)
1 1f1x10^ "l

-•J 4 i
/ V

V 5000

X 0.4

10^
= 5000 m/s

= 12500 Hz

Assuming left end ofthe rod as origin, the equation ofstationary
waves is given by

- . 271X . .^ =2^ cos ^ sm (2 71M 0

or y=2A cos si" (2 ti x 125001) ... (6.203)

Where amplitude at any instant t is given by

f 2tix
R = 2 A cos ^0.4

Waves i

At • x = 0, R= 2A=2x\(y^m

Thus, equation-(6.203) can bewritten as

_V - 2 X10"^ cos (5Tlx) sin(25000 Kt) ... (6.204)

Ata point2 cmfrom mid-point to theright

X = 50+2 = 52 cm = 0.52 m

y = 2 X10^ cos(5 71X 0.52) sin(25000 jit)

or y =2x 10"^cos(2.6Tc)sin(250007cO ...(6.205)

This is the required equation of stationarywaves in the rod.

Now we can write the equations of constituents waves in the
rod as

= \ X10-^sin(250007i/-57cx)

and ^2^ i ^ iO^sin (2500071/+571X)

a Illustrative Example 6.47

A string 120 cm in length sustains a standing wave,with the
points of the string at which the displacement amplitude is
equal to3.5mmbeing separated by15.0 cm.Findthemaximum
displacement amplitude. Towhichovertone dotheseoscillations
correspond ?

Solution

Wecan seefromfigure-6.63, in a stationarywavetwosuccessive
of equal amplitude, if separated by equal distances then this

X
distance must be . Thus we have

X4 =15 cm
or X=60cm

/ p.Srnm I / T3.5mm \ / /
•. 1 i—H 1 a —
!\ !

! X

X

Figure 6.63

Thus there are four loops in 120 cm length of string. This
corresponds to 3^ overtone oscillations. As shown in figure if
we consider origin O is at a node then the amplitude ofa general
medium particle, at a distance x from O can be given as

R= Aq sin kx
t

WhereA,, is the maximumdisplacement amplitude. Firstpoint



from the origin where amplitude is 3.5 ram is at distance As r, =lOOgm, weget
X, =7.5 cm. Thus we have =400 gm

35= 43sin|̂ —x7 sj This additional weight required is 300 gm.
^ # Illustrative Example 6.50

or A„= sin^) =3.5r/2 mm
Thevibrations of a string of length600 cm fixed at bothends

#Illustrative Example 6.48 represented by the equation

Aguitar string is 90 cm long and has afundamental frequency ^ ^ 15^
of124 Hz. Where should it be pressed to produce afundamental ^^erexandy are in cm and /in seconds.

equencyof 186Hz? What is the maximum displacement ofapointx =5cm?
^. (if) Where are the nodes located along the string ?

" (iii) What is the velocityofthe particle atx= 7.5 cm at/=0.25 s.
^ (iv) Write down the equations of the component waves whoseThe fundamental frequency of astring fixed at both ends is superposition gives the above wdve

given by

j ^ Solution

As Fand p are fixed,
TtX

The given equation is

y =4sin I cos(967r?)

A This can be written as

^2=^i, =lix90=60cm y=2x2sin(^)eos2iE(^ ...(6.208)
Thus, the string should be pressed at60 cm from an end. Comparing equation-(6.208) with standard equation of

stationary wave, we get
illustrative Example 6.49

This shows that ^=2cm A.=30cm and v= 1440cm/s

In a Melde's experiment when the tension is 100 gm and the
tuning fork vibrates at right angles to the direction ofthe string, ® displacement is given by
the later is thrown into four segments. Ifnow the tuning fork is _^ 27ex
settovibrate alongthestring, findwhatadditional weight which 30
willmakethestringvibrate in onesegment. (ii) Forapointatx = 5 cm,

y„.„=4sin^ =̂ 273cm
In first case the string vibrates in four loops and if „„ be the (jj) As 1=30 cm, hence the nodes are located along the string
oscillation frequency oftuning fork we have places

•/!" •'•(^-206) 0,15 cm, 30 cm, 45 cm, 60 cm
In second case ifstring vibrate in one segment, we have velocity ofthe particle is given by

Y= ...(6.207) ^ (ff] sin (96 re t) 96 a:
From (6.206) and (6.207), we get =7.5 cm and 0.25 sec, we have

V^=2V^ --4sin sin(96%X0.25)9671

72=47, =0
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(iv) The equations of component waves are

h
X 30

y^=A sin (x-v0 =2sin (x-1440?)

or >.,=2sin2^[i-48/) ...(6.209)

and >'2 = -4 sin (x+v?) = 2sin —• (x+ 1440?)

or J2^2sin2ji ^-^+48?^ ...(6.210)

Equations-(6.209) and (6.210) represent the equations of
component waves superposition of which results the given
stationary wave.
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Practice Exercise 6.5

(!) A steel wire of length 1 m and density 8000 kg/m^ is
stretched tightly between two rigid supports. When vibrating

in its fundamental mode, its frequency is 200 Hz.
(a) What is the velocity oftransverse waves along this wire ?

(b) What is the longitudinal stress in the wire ?
(c) Ifthe maximumacceleration ofthe wire is 800 m/s^, what is

the amplitude ofvibration at the mid-point ?

[(a) 400 m/s, (b) 1.28 x lO^N/m^, (c) 5 x IQ-i m]

(li) A sonometer wire having a length of 1.50 m between the

bridges vibrates in its second harmonic in resonance with a
tuning fork of frequency 256 Hz. What is the speed of the
transverse wave on the wire ?

[384 m/s]

(iii) The length of the wire shown in figure-6.64 between the

pulleys is 1.5 m and its mass is 12.0 g. Find the frequency of
vibration with which the wire vibrates in two loops leaving the
middle point of the wire between the pulleys at rest. Take
g= lOm/s^.

r

///////////////////////////////.

9 kg 9 kg

Figure 6.64

[70.71 Hz]
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(iv) A Steel wirefixed atbothendshas a fundamental frequency
of 200 Hz. A person can hear sound of maximum frequency
14 kHz.What is the highest harmonic that can be playedon this
string which is audible to the person?

[70]

(v) Figure-6.65 shows a string stretched by a blockgoing over
a pulley. The string vibratesin its tenth harmonic in unison with
a particular tuning fork. When a beaker containing water is
brought under the blockso that the blockis completelydipped
into the beaker, the string vibrates in its eleventh harmonic.
Find the density ofthe material ofthe block.

////////////////////////////A

Figure 6.65

[5.76 X 10^ kg/m^]

(vi) A wire of diameter 0.04 cm and made of steel of density

8000kg/m^ is undera tension of79N.Afixed length of50cmis
set into transverse vibrations. How would you cause vibrations

of frequency 840 Hz to predominate in intensity ? Locate the
support and plucking points on wire for this.

[ point is to be plucked]

(vii) The displacement ofthe medium in sound wave is given

by the ^nation

= A cos {ax + bt)

where A, a and b are positive constants. The wave is reflected

by an obstacle situated at x = 0. The intensity ofthe reflected

wave is 0.64 times that ofthe incident wave.

(a) What is the wavelength and frequency of the incident
wave?

(b) Write the equation for the reflected wave.
(c) In the resultant wave formed after reflection, find the

maximum and minimum values ofthe particle speed in the

medium.

(d) Express the resultant waves as a superposition ofa standing

wave and a travelling wave. What are the positions ofthe
antinodes of the standing wave? What is the direction of

propagation ofthe travelling wave?

[(a) —. (b) - 0.8 .4 cos {bi - ax), (c) 1.8 Ah, 0.2 Ab,
a a

(d) 2A sin 6 J sin <7 x + 0.2 A cos (bl —ax)]
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(viii)Auniform horizontalrod oflength40 cmand mass 1.2kg is
supported bytwo identical wires as shown in figure-6.66. Where
should a mass of 4.8 kg be placed in the rod so that the
same tuning fork may excite the wire on left into its
fundamental vibrations and that on right into its first overtone?

Takeg= lOm/s^.

V////////////////////////////////////

40 cm

Figure 6.66

[5 cm from the left end]

(ix) A 2 m long string fixed at both ends is set into vibrations in
its first overtone. The wave speed on the string is 200 m/s and
the amplitude is 0.5 cm. (a) Find the wavelength and the
frequency, (b) Write the equation giving the displacement of
different points as a function of time. Choose the X-axis along
the string with the origin at one end and / = 0 at the instant
whenthe point.x=50 cmhasreacheditsmaximumdisplacement.

[(a) 2 m, 100 Hz, (b) (0.5 cm) sin (jt x) cos (200 n /)]

(x) Three resonant frequencies of a string are 90, 150 and
210 Hz. (a) Find the highest possible fundamental frequency of
vibration of this string, (b) Which harmonics of the fundamental
are the given frequencies ? (c) Which overtones are these
frequencies, (d) If the length of the string is 80 cm, what would
be the speed of a transverse wave on this string ?

[(a) 30 Hz (b) 3rd, 5th and 7th (c) 2nd, 4th and 6lh (d) 48 m/s]

6A5 Waves in a Vibrating air Column

Hollow pipeshave long beenusedfor making musicalsounds.
A hollow pipe we call organ pipe. To understand how these
worlc, first we examine the behaviourof air in a hollowpipe that
is open at both ends. If we blow air across one end, the
disturbance due to the moving air at that end propagates along
the pipe to the far end. When it reaches far end, a part of the
wave is reflected, similar in the case when a wave is reflected
along a string whose end point is free to move. Since the air
particles are free to move at the open end, the end point is an
antinode. Ifone end of the pipe is closed off, the air is not free

to move any further in that direction and closed end becomesa
node. Now the resonant behaviour of pipe is completely
changed. Similar in the caseof string, here also all harmonic
frequencies are possible and resonance may take place if the
frequency of external source matches with any of the one
harmonic frequency ofpipe. Let us discuss in detail.

343

6.15.1Vibration ofAir in a Closed Organ Pipe

When a tuning fork is placed near the open end of a pipe. The
air in the pipe oscillates with the same frequency as that of
tuning fork. Here the open end should be an antinode and
closed end should be a node for perfect reflection of waves
fromeither end or for formation of stationary waves.Since one
end is a node and other is an antinode, the lowest frequency
(largest wavelength) vibration has no other nodes or antinodes
betweenends as shown in fiugre-6.67(a).This is the fundamental
(minimum) frequency at which stationarywaves can be formed
in a closed organ pipe. Thus ifthe wavelength is Xthen we can

see from figure-6.67(a), which shows the displacement wave of
longitudinal waves in the closed organ pipe.

or

\Alllly

(a)

X=4/

\\\ili h

A/

(b)

Figure 6.67

...(6.211)

Thus fundamental frequency ofoscillations of a closed organ
pipe of length / be given as

V V ...(6.212)

Similarly first overtone ofclosed pipe vibrations is shown in
figure-6.67(b)here wavelength X'and pipe length / are related
as

or

4

^ 3

...(6.213)

Thus frequency of first overtone oscillations ofa closed organ
pipe of length / can be given as

= 3n

3v

41
...(6.214)

...(6.215)

This is three times the fundamental frequency thus after
fundamental only third harmonic frequency exist for a closed
organ pipe at which resonance can take place or stationary
waves can be formed in it.
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Similarly next overtone, second overtone is shown in figure-

6.67(c) Here the wavelength X"and pipe length / are related as

or

1=^
' 4 ...(6.216)

Thus the frequency of second overtone oscillation ofa closed

organ pipe of length I can be given as

y 5v ^
"3~ ~ 4/ ...(6.217)

This is fifth harmonic frequency of fiandamental oscillations.
From above analysis it is clear that the resonant frequencies of
the closed organ pipe are only odd harmonics ofthe fundamental
frequency. Thus when a timing fork is used to oscillate a closed

organ pipe, the air in pipe oscillates with the some frequency as
that oftuning fork but in pipe stationary waves are formed or

resonance take place only when the frequency of fork matches
with any of the odd harmonic ofits fundamental frequency.

6.15.2 Vibration ofAir in Open Organ Pipe

Figure-6.68 shows the resonant oscillations ofan open organ
pipe.The leastfrequencyat which an openorgan pipe resonates
is the onewith longestwavelength when at both the openends
ofpipe antinodes are formed and there is one node is between

as shown in figure-6.68(a). In this situation the wavelengthsof
sound in air Xis related to length of organ pipe as

Waves:

resonate is shown in figure-6.68(b) which we call first overtone.

Here the wavelength A,' is related to the length ofpipe as

l = X' ...(6.220)

Thus here resonant frequency for first overtone is given as

...(6.221)
V

X'

= 2«. ...(6.222)

Which is secondharmonic of fundamental frequency. Similarly

as shown in figure-6.68(c), in second overtone oscillations, the

wavelength X"ofsound is related to the length ofpipe as

3r
/ = ...(6.223)

or X- 3 ...(6.224)

Thus the frequency of second overtone oscillations of an open
organ pipe can be given as

3 X"

= 3n

3v

21
...(6.225)

...(6.226)

Which is third harmonic offundamental frequency. The above

anal)^is shows that resonant frequencies for formation of

stationarywaves includesall the possibleharmonic frequencies

for an open organ pipe.

^ 2
X=2l

... (6.218) 6.15.3Natural Oscillations of Organ Pipes

or

Thus the fiindamental frequency of organ pipe can be given as

...(6.219)
V V

"i" X " 2/

\\\lllh

(a) (b)

Figure 6.68

\A.lih

N

(c)

Similarlynext higher frequency at which the open organ pipe

When we initiate some oscillations in an organ pipe, which

harmonics are excited in the pipe depends on how initial

disturbanceis produced in it. For example, if yougently blow
across the top of an organ pipe it resonates softly at its

fundamental frequency. But if youblowmuch harder youhear
the higher pitch of an overtone because the faster airstream

creates higher frequencies in the exciting disturbances. This
sound effect can also be achieved by increasing the air pressui-e

to an organ pipe.

6.15.4 Kundt's Tube

This is an apparatususedto findvelocityof soundin a gaseous
medium or in different materials. It consists of a glass tube as
shown in figure-6.69 one end ofwhich a piston^ is fitted which

is attached to a wooden handle H and can be moved inside and

outside the tubeand fixed, the rod Mofthe required material is
fixed at clampC in which thevelocityofsoundisrequired, at on
end ofrod a disc A is fixed as shown.
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M

A/.,

Figure 6.69

wr

H

a thin layer of
lycopodium powder

In thetube air is filled at room temperature anda thin layer of
lycopodium powder is put along the length of the tube. It is a
veryfinepowder particles ofwhichcanbedisplaced bythe air
particles also.

When rodMis gently rubbed with a resin cloth orhitgently, it
starts oscillating in fundamental modeas shown in figure-6.70,
frequency of which can be given as

X 21
...(6.227)

Figure 6.70

In fundamental mode, the free ends of the rod behaves as

antinodes and the clamped point C acts as a node,we have also
discussed earlier. These vibrations as transferred to the air

column in the lube through the discy4 and the air column starts
oscillatingat the samefrequency. Nowthe pistonB isadjusted
so that the air column resonates with the vibrations of rod. In

resonance condition the lycopodium powder sets itself in the
form of heaps at the position of nodes as at antinodes the air

particles vibrates with maximum amplitude and displaces the
powder to the adjacent nodes. We can measure the length
between successive heaps of powder, scale S attached with the
tube, let it be then we can write

K
^h~~2 [^^7 ^ wavelength ofsound in air]

and we know that frequency of sound in air and rod is equal,
thus

or

or

rod = n.

"rod

rod

"rod

2k
2L T ...(6.228)

345

Ifthe Young's modulus anddensity ofmaterialofrod isknown
then using equation-(6.227) and(6.228) wecan find velocityof
sound in air or in a gas which is filled in the tube, as

'^rod="'gas

or V . -
gas

6.15.5 Resonance Ttibe

gas

2L

...(6.229)

This an apparatus used to determine velocity of sound in air
experimentally and alsoto compare frequencies oftwotuning
forks.

Figure-6.71 shows the setup of a resonance tube experiment.
Thereis a longtubeTin which initiallywateris filled uptothe
top and the eater level can be change by moving a reservoir R
up and down.

Figure 6.71

A tuning fork of known frequency is struck gently on a
rubber pad and brought near the open end of tube T du^ to
which oscillations are transferred to the air coloumn in the thbe

abovewater level. Nowwegradually decreasethe water levelin
the tube. This air column behaves like a closed organ pipe and
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the water level as closed end of pipe. As soon as water level
reaches a position where there is a node of corresponding
stationary wave, in air column, resonance takes place and
maximum soundintensityis detected. Let at this positionlength
ofair column be /j. If water level is further decreased, again
maximum sound intensity is observed when water level is at
another node i.e. at a length as shown in figure. Here if we
findtwosuccessive resonance lengths/, and wecanget the
wavelength of the wave as

/ -I =—2 M 2

or ^1=2 (/,-/,)

Thus sound velocity in air can be given as

v=.noX-2«(j(/j-Zj)

6.15.6 End Correction in Organ Pipes

We have discussed, that in an organ pipe the incident and
reflected waves superpose and give rise to establishment of
stationarywaves at harmonic frequencies. First we discuss how

a wave is reflected from the open end of an organ pipe.

•«^\ \ t / y
\XJM

\

Figure 6.72

Consider an organ pipe shown in figure-6.72. Herewe consider
a wave is propagating towards its open end. As due to
longitudinal wave medium (air) particles oscillatesalong the
length ofpipe as shown in figure-6.72. But the oscillations are
along the length ofthe pipe within the boundaries ofthe pipe.
When wave reaches the open end, due to collisions the medium
particles outside the pipe scatters in the direction away from
pipe and due to this medium (air) density reduces outside the
pipeand fromthe regionofthis rarer mediumthe waveis reflected.

Here we can see that when a wave reaches the open end of a
pipe it penetrates atmosphere upto to a small depth where the
density is decreased and then it is reflected back into the pipe.
Thus the wave is not exactly reflected from the open end ofthe
pipe. Hence in the formation of stationary waves in organ pipe
we say always there is an antinode at the open end ofthe pipe
but in fact antinode is formed a little above the open end as

Waves

shown infigure-6.73. Thedistance above theopen end antinode
formed is called end correction and is represented bye.

\ /
\ /

X
/ N

/ \

i \

\ /
\ /

\ /
A

/ \

/ S
t N

AN

N /
\ /

\ /

AN

1

Figure 6.73

It is observed that end correction depends on the radius of
organpipe and isexperimentallydeterminedand expressed as

e = 0.6r ...(6.230)

Thus for a broad pipe end correction is more than a narrow
pipe. When we find the different harmonic frequencies of
oscillations of air column in organ pipe, we must account end
corrections. Now taking into account end correction the
fundamental frequency of a closedpipe of length / is taken as

as

4(/ + e)

and fundamental frequency ofan open pipe oflength / is taken

[One end open] ...(6.231)

0 2(/ + 2e) [Both ends open] ... (6.232)

UIllustrative Example 6.51

A tube ofcertain diameter and of length 48 cm is open at both
ends. Its fundamental frequency of resonance is found to be
320 Hz. The velocity of sound in air is 320 m/s. Estimate the
diameter of the tube. One end of the tube is now closed.

Calculate the lowest frequency of resonance for the tube.

Solution

The displacement curves of longitudinal waves in a tube open
at both ends is shown in figure-6.74(a) and (b).

h 48 cm H

(a)

(b)

Figure 6.74

N
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Let r be the radius of the tube. We know that antinodes occur

slightly outside the tube at a distance 0.6 r from the tube end.

The distance between two antinodes is given by

j =48 +2x0.6/-

We have

or

or

or

Now

- V 32000 ...
A= — = = 100 cm

n 320

50 = 48+1.2/-

2
r =

1.2

= 1.67 cm

Thus diameter ofthe tube is

D = 2r=333 cm

When one end is closed, then

^ =48 +0.6/-
4

=48 + 0.6x1.67

=49

X=4x49

= 196 cm

V 32000

UIllustrative Example 6.52

An open organ pipe filled with air has a fimdamental frequency

of500 Hz, The first harmonic of another organ pipe closed at

oneendand filled withCOj has the samefrequency as that of
the first harmonic ofthe open organ pipe. Calculate the length

of each organ pipe. The velocity of soimd in air and COj are
300 m/s and 264 m/s, respectively.

Solution

Tosolve this problem, we have to remember that the fundamental
mode is itselfthe first harmonic.

or

or.

/; = •:^ for an open pipe
21

300

21
500 = /=30cm

/j = -^ for aclosed pipe

500 =
264

4/
/= 13.2 cm
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UIllustrative Example 6.53

A tuning fork having a frequency of 340 Hz is vibrated just
above a cylindrical tube. The height of the tube is 120 cm.
Water is slowly poured in it. What is the minimum height of
water required for resonance ? Velocityofsound in air=340 m/s.

Solution

In a closedtube, the first resonancetakesplace, when the length
ofair column = Xy4

The wavelength of sound in air

, _ V _ 340

n 340

= lm [As v = 340 m/s and // = 340]

Here length offirst resonance can be given as

= 0.25 m

=25 cm

The length of second resonance

3>. 3
~r =Tni

4 4

= 75 cm

The length ofthird resonance

SX

4

= 125 cm

. = -rm
4 4

As the length ofthe tube is only 120 cm, hence third resonance

is not possible.

Therefore, the minimum height ofwater required for resonance
= 120-75 = 45 cm

a Illustrative Example 6.54

The fundamental frequency ofa closed organ pipe is equal to
the first overtone frequency ofan open organ pipe. Ifthe length

of the open pipe is 60 cm, what is the length ofthe closedpipe?

Solution

We know the fundamental frequency ofa closed organ pipe is

V V

and first overtone frequency ofopen pipe is y •Thus we

have

— = JL
4/, 60

/i —T ^ 60 cm = 15 cm
1 4
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# Illustrative Example 6.55

A pipe oflength 1.5 m closed at one end is filled with a gas and

it resonates in its ftindamental with a tuning fork. Another pipe

ofthe same length but open at both ends iffilled with air and its
resonates in its fundamental with the same tuning fork. Calculate

the velocity of sound at 0°C in the gas, given that the velocity
of sound in air is 360 m/s at 30"C, where the experiment is

performed.

Solution

The fi-equency of the fundamental note emitted by an open
pipe is given by

_ V _ 360
" 21 2x1.5

[As v = 360m/s and /=1.5ra]

= 120 Hz

Let the velocity of sound in the gas at 30°C = v'.

Frequencyofthe fundamental note emitted by closed pipe filled
with the gas is given by

1 41 4x1.5

But «1 = n,

or 120 = v76 or v'=720ra/s

If the velocity of sound in the gas at 0®C = v^, then

Here,

and

± - W
T

0^0 = 273%

r=30°C = 30 + 273 = 303%

v' = 720m/s

^0 _

720

273

300

a Illustrative Example 6.56

or Vq =683.4 m/s

A certain organ pipe resonates in its fundamental mode at a

frequency of 500 Hz in air. What will be the fundamental
frequency if the air is replaced, by hydrogen at the same
temperature? The density of air is 1.20 kg/m^ and that of
hydrogen is 0.089kg/m^.

Solution

Suppose the speed ofsound in hydrogen is and that in air is
v^. The ftindamental frequency ofanorganpipe isproportional

Waves '

to the speed of sound in the gas contained in it. If the
fundamental frequency with hydrogen in the tube is v, we have

or

v

500
Li
v„

# Illustrative Example 6.57

1.2

0.089

v = 3.67x500Hz»1840Hz.

= 3.67

Clampedat the middle,a metalrod of length I metre and density
7.5 gm/cm^ gives dust heaps at intervals of 8 cm. Calculate
Young's modulus ofthe material of the rod. Velocityofsound in
the gas used is 400 m/s.

Solution

The situation is shown in figure-6.75.

/= Im cmH

Figure 6.75

f\ \ .
i

Let and be the wavelength in the rod and gas column
respectively. Since the rod is clamped in the middle, it vibrates
with a node in the middle and antinodes at the ends. Therefore

and
X.

= I m= 100 cm,

= 5cm

[As X.^=200cm]

[As X.=16cm]

If and be the sound velocities in the rod and in the gas
respectivelyand n be the frequencyof vibration, then frequency
ofoscillations is given as

or

or

or

^rod

rod

^rod
'̂ gas

200

'^gas

XV
gas

16

= 5000 m/s

x400

Now velocityof longitudinal waves in a metal rod is given by

' rod

or
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or r= (500,0)2 X7.5X10^

= 1.875 xlO'iN/m2

Illustrative Example 6.58

To determine the sound propagation velocity in air by acoustic
resonance technique one can use a pipe with a piston and a
sonic membrane closing one of its ends. Find the velocity of

sound if the distance between the adjacent positions of the
piston at which resonance is observed at a frequency n = 2000

Hz is equal to /=8.5 cm.

Solution

When the two positions of the resonance are obtained at
distances /, andI2 respectively, then the velocity v ofsound is
given by

v= 2n{l2-l,)

Where «is the frequency at resonance.

Here n = 2000 Hz,

-/j) =8.5 cm =8.5x10-2 m

v = 2x2000x8.5 X10-2

= 340m/s

a Illustrative Example 6.59

AB is a cylinder of length 1.0 m filled with a thin flexible
diaphragm C (Figure-6.76) at the middle and two other thin
flexible diaphragms A and B at the ends. The portions AC and
BC contain hydrogen and oxygen gases respectively. The
diaphragms A and B are set into vibrations ofsame frequency.
What is the minimum frequency ofthese vibrations for which
the diaphragm C is a node ? Under the conditions of the
experiment, the velocityof sound in hydrogen is 1100 m/s and
in oxygen is 300 m/s.

Figure 6.76

Solution

A and B are set in oscillation, hence antinodes are situated at

these points. The portions of the cylinders i.e., AC and CB
behaves as a close cylinder at the end C. Thus there is immediate
node at C.
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The fundamental frequency of each pipe corresponds to just
one node and one anti-node. Let and be the fundamental

frequencies of gases in ^ C and BC respectively, then

or

_ n 1100

"1 4/ 4x0.5

^C=/=0.5

_ '^2 _
"2 41

300

4x0.5

550 Hz

150 Hz

Here v, and Vj are the velocities of sound in hydrogen and
oxygen respectively.

As the two frequencies are different and hence the two gas
columns are not vibrating in the fundamental mode. In case ofa
closed pipe only odd harmonics with frequencies 3,5,7,9,..
etc. times the fundamental frequency are observed. Now the
problem is to find out that which harmonics ofand have

the same frequency. We notice that

or

!h_ _ 500

"2 150

3 n, = 11 ^2

n

3

This shows that third harmonic of and eleventh harmonic of

«2 have equal frequencies. Similarly, 6thharmonic of and
22th harmonic of ^2 haveequalfrequencies and soon.

Thus common minimum frequency is

= 3 = 3x500= 1650 Hz

= I1«2=11>< 150=1650Hz.

# Illustrative Example 6.60

In Kundt's tube experiment the following observations were
made : Length of the brass rod is 100 cm; average length ofa
loop in air is 10.3 cm and in carbon-di-oxide=8.0 cm. Calculate
thevelocityofsound in brass andin CO2. Whatis thefrequency
of the note ?

(Given the velocity of sound in air at the temperature of the
experiment to 350 m/s)

Solution

Let X^ and X^ be the wavelengths in cm in the rod, in air and
in gas respectively. Then

^=100 or X^=200cm, ,

-^=10.3 or X.^=20.6cm,
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and -;p =8.0 or X=\6cm,
2 ^

Let v^, and be the sound velocities in rod, air and gas
respectively. Then

or

Similarly we have

'a '"o

200

20.6

= 3.4xlOWs

v^ =350x ^=271.8m/s

x350

If n be frequency of the note, then we have

V =nX
a a

350
or n = X^ 0.206

= 1699.02 Hz

# Illustrative Example 6.61

The air column in a pipe closed at one end is made to vibrate in
its second overtone by a tuning fork of frequency440 Hz. The
speed of sound in air is 330 m/s. End corrections may be
neglected. Let denotethe mean pressure at anypoint in the
pipe, andAPq tlie maximum amplitude ofpressure variation.
(a) Find the length L ofthe air column.
(b) What is the amplitude of pressure variation at the middle

ofthe column?

(c) Whatarethemaximum andminimum pressure at theopen-
end ofthe pipe?

(d) Whatarethemaximum andminimum pressure attheclosed-
end of the pipe?

Solution

(a) In caseof closed organ pipe as fundamental frequency is
(v/4L) and only odd harmonics are present, second overtone
will mean fifth harmonic and so

/=If =440 Hz
AL

5x330 _ 21
^ 4x440 ^16"^and hence

(b) In terms of pressure as at the position of displacement
antinode there is pressure node and vice-versa, the variation of
pressureamplitude of standingpressurewaves alongthe length
ofthe column with at = 0 at its open end will be

p=A/Jq sin kx = sinfJ [As k=

Waves

Now as for second overtone L = (5/4)X,, so at the middle.

2~ 2,^
Jand hence

p=Ap(,sin ~ xj =AppSin

or

(c) For free end as .r= 0, p = 0, i.e., the amplitude of pressure
wave is zero (as it is a node), so

/'n.ax=^min=/'0^0=P0

(d) For closed end x + (5/4)X, so the amplitude of pressure
wave

\P\ = Aposin^( |̂-X
Thus maximum and minimum pressures are given as

P^=Po-^^Pn and P^;„=Pq-Ap^

# Illustrative Example 6.62

A pop-gun consistsofa cylindricalbarrel 3 cm^ in cross-section
closed at one end bya cork and having a well fitting piston at
the other. If the piston is pushed slowlyin, the cork is finally
ejected, giving a pop, the frequency of which is found to be
512 Hz. Assuming that the initial distance between the cork and

the pistonwas25 cm and that there isno leakageofair, calculate
the force required to eject the cork. Atmospheric
pressure= 1kgwt/cml v= 340 m/s.

Solution

Figure 6.77

When the cork is ejected, the situation is shown in figure-6.77.
Let the position ofthe piston fromendy4 belcm. So, this forms
a closedpipeof length1. Itproducesa noteoffrequency512 Hz.
Now

or

V 340

"=41 512=^

L =
340

512x4
=0.166m= I6.6cm
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Before the piston is moved, P= 1kgwt/cm^ and K=25 ^ 3 cm^
When the cork is ejected, let pressure be P'.

The volume ofair inside

P=]6.6x3cm3

From Boyle's law,

PV=P'V'

(1)(25 X3)-P'x (16.6x3)

^ kgwt/cm^

-1.5 kgwt/cm^

Thus pressureinside the barrel= 1.5kg wt/cm^

Pressure difference = Pressure inside - Pressure outside

= (1;5~ I)kgwt/cm^

[AsOutside pressure = 1kg wt/cm^]

- 0.5 kgwt/cm^

Force on piston = Pressure x area

-0.5x3

= 1.5kgwt
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Practice Exercise 6.6

(i) Find the fundamental frequency and the first four overtones
ofa 15 cm pipe:
(a) if the pipe is closed at one end, and
(b) if the pipe is open at both ends.
(c) How many overtones may be heard by a person ofnormal

hearing in each of the above cases? Velocity of sound in
air-330m/s.

[(a) 550, 1650, 2750, 3850, 4950 Hz (b) 1100, 2200, 3300, 4400,

5500 Hz (c) 17, 17]

(11) The separation between a node and the next antinode in a
vibrating air column is 25 cm. If the speed of sound in air is
340 m/s, find the fi-equency ofvibration ofthe air column.

[340 Hz]

351 j

(ill) For a certain organ pipe, three successive resonance
frequencies are observed at 425 Hz, 595 Hz and 765 Hz

respectively. Taking the speed ofsound in air to be 340 m/s.

(a) Explain whether the pipe is closedat one end or open at
both ends

(b) Determine the fundamental fi-equency and length of the
pipe.

[(a) closed-end, (b) 85 Hz, 1 m]

(iv) A pipe is closed at one end by a membrane which may be
considered a seat of displacement node and provided with a

piston at the other end. The membrane is set to sonic oscillations
of fi-equency 2000 Hz. Find the velocityof sound if on moving
the piston, resonance occurs at the interval of8.5 cm.

(340 m/s]

(v) A 'pop' gun consists of a tube 25 cm long closed at one

end by a cork and at the other end by a tightly fitted piston. The
piston is pushed slowly in. When the pressure rises to one and

halftimes the atmospheric pressure, the cork is violentlyblown

out. Calculate the frequency ofthe 'pop' caused by its ejection.
Speed ofsound in air is 340 m/s.

(510 Hz]

(vO A cylindrical metal tube has a length of50 cm and is open
at both ends, find the frequencies between 1000 Hz and 2000

Hz at which the air column in the tube can resonate. Speed of
sound in air is 340 m/s.

[1020 Hz, 1360 Hz and 1700 Hz]

,(vii) A uniform tube of length 60 cm stands vertically with its

lower end dipping into water. When the length above water
successively taken at 14.8 cm and 48.0 cm, the tube responds to
a vibrating tuning fork of frequency 512 Hz. Find the lowest
fi-equency to which the tube will respond when it is open at
both ends.

[283.30 Hz]

(viii) A tuning fork having fi-equency of340 Hz isvibratedjust
above a cylindrical tube. The height of the tube is 120 cm.
Water is slowly poured in. What is the minimum height ofwater

required for resonance? (velocityofsound in air is v = 340 m/s).

[45 cm]

(ix) A tube closed at one end has a vibrating diaphragm at the
other end, which maybe assumed to be a displacement node. It

is found that when the frequency ofthe diaphragm is 2000 Hz,
a stationary wave pattern is set up in which the distance between
adjacent nodes is 8 cm. When the frequency is gradually
reduced, the stationary wave pattern disappears but another
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Stationarywave pattern reappears at a frequency of 1600 Hz
Calculate:

(a) The speed ofsound in air,
(b) The distance between adjacent nodes at a frequency of

1600 Hz,

(c) The distance between the diaphragm and the closed end,
(d) The next lower frequencies at which stationary wave

patterns will be obtained.

[(a) 320 m/s (b) 10 cm (c) 40 cm (d) 1200 Hz, 800 Hz and 400 Hz]

6.16 Beats

When two sources of sound that have almost the same

frequency are sounded together, an interesting phenomenon
occurs. A sound with a frequency average ofthe two is heard
and the loudness of sound repeatedly grows and then decays,
rather than being constant. Such a repeated variation in
amplitude ofsound are called "'beats".

Ifthe frequency of one of the wavesource is changed,there is
a corresponding changein therateat which theamplitude varies.
This rate is called beat frequency. As the frequencies come
close together, the beat frequencybecomesslower.Amusician
can tune a guitar to another source by listening for the beats
while increasing or decreasing the tension in each string,
eventually the beat frequency becomes very low so that
effectively no beats are heard, and the t^'o sources are then in
tune. _

Wecan alsoexplainthephenomenonofbeatsmathematically.
Let us consider the two superposingwaves have frequencies

and «2then their respectiveequations of oscillation are

and

y^=A sin27i77j/

y2=Asm 2Kn^

...(6.233)

...(6.234)

On superposition at a point, the displacement of the medium
particle is given as

+>'2

^ sin27177,7 + Asin2717727

y=2Azos2k j 7sin27cj t... (6.235)

j=i?sin27C 2"^ ...(6.236)

Thereequation-(6.236) gives thedisplacement ofmedium particle
where superposition takes place, it shows that the particle

executes SHM with frequency , average of the two

Waves.

superposing frequencies and with amplitude R which varies
with time, given as

R = 2A cos 271

Here R becomes maximum when

n,
t ...(6.237)

cos 27C

or

or

or at time

cos 2k
77, -77-,

or 2k
77, - 77i

or

t=±l

N

«i

1

[N^J]

...(6.238)

t = 0.
«1 - 772 ' "l~"2 '

At all the above time instants the sound ofmaximum loudness

is heard, similarly we can find the time instants when the

loudness ofsound is minimum, it occurs when

t = 0

t = i2N+ \)~

2N + 1

2(771 -772)

1

/ =

[N^I\

...(6.239)

or at time instants
2(77,-772)' 2(77,-772)

Herewecan seethat thesetime instantsare exactlylying in the
middle of the instants when loudest sound is heard. Thus on

superposition ofthe above twofrequencies at a mediumparticle,
the soundwill be increasing,decreasing, again increasingand
decreasing and so on. This effect is called beats. Here the time
between two successive maximum or minimum sounds is called

beat period, which is given as

Beat Period =time between two successive maxima = time

between two successive maxima

1

77, -77-,
...(6.240)

Thus beat frequencyor number of beatsheard per secondcan
be given as

T,
= 77,- 77., ...(6.241)

Thesuperposition oftwo waves ofslightly different frequencies
isgraphically shown in figure-6.78. The resulting envelope of
the wave formed after superposition is also shown in figure-
6.78(b). Sucha wavewhenpropagates, produces "beat" effect
at the medium particles.
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Period

Figure 6.78

6.16.1 Echo

The repetition ofsound produced due to reflection by a distant

extended surface like a different, hill, well, building etc. is called

an echo. The effect of sound on human ear remains for

approximately one tenth of a second. If the sound is reflected

back in a time less then 1/10 of a second, no echo is heard.

Hence human ears are not able to distinguish a beat frequency

of10 Hz or more then 10 Hz.

# Illustrative Example 6.63

Two identical sonometer wires have a fundamental frequency

of500 Hz when kept under the same tension. What fractional

increase in the tension ofone wire would cause an occurrence

of 5 beats per second, when both wires vibrate together?

Solution

The fundamental frequency ofwire is given as

J_ fL
"o=2L]jp

On increasing tension by AT the new frequency will be

1 \T + ^T
nk =

0 IL

h, Ar

J2or 2T

Now the fractional change in frequencywill be

or

«o-«o
n,'0

T ^ 500

=0.02

lAI
2 T

# Illustrative Example 6.64
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Two wires are fixed on a sonometer wire. Their tensions are in

theratioS : 1,the lengths intheratio36 :35, the diameters in the
ratio 4:1 and the densities in the ratio 1:2. Find the frequency
of the beats produced if the note of the higher pitch has
frequency of360 Hz.

Solution

For the two wires, we have

and

or

. TtrjPa;

£l(Z1| P2
^21 ^1 J Pi

According to the given problem

U 8

35 ' 1 '

- — and Pl
P2

Substituting these values in equation-(6.242)

or
35

36
„ M f-I 16 U

=11 ..,(6.243)

...(6.242)

It is clear from equation-(6.243) thathas higher pitch so

Now

or

«2=360

'I, ^ 35
360 36

«j=350Hz

Thus beat frequency is given as

A« = 360-350

= 10Hz
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# Illustrative Example 6.65

A tuning forkoffrequency 300Hzresonates withan aircolumn
closed at one end at 2TC. How many beats will be heard in the
vibrations ofthe fork and the air column at 0°C ? End correction

is negligible.

Solution

As the air column at 27°C resonates with a tuning fork of

frequency 300hertz andhenceat 27°C itsownfrequency isalso
300 Hz. Let Ibe the length of air column and be the speed of
sound at 2TC, then frequency ofair column at 2TC is

V

Finally,

1 029.6
«-10= 2/

n =
21

V

p-

"Waves 1

...(6.246)

...(6.247)

Dividingequation-(6.246)by equation-(6.247),weget

w-10

n

129.6

160

Solving we get w= 100Hz

n -
41

= 300 Hz (6.244) ^ Illustrative Example 6.67

Suppose the speed of sound at 0°C be v^. We know that the
speed is directly proportional to the square root ofthe absolute
temperature, thus we have

or

r^7L_)
v, "^27+273^

Vq = 0.954 xvj

Thus frequency ofair column at 0°C,

, Vfl 0.954 XV2
" " ^ ~ 41

273

300
= 0.954

...(6.245)

Substituting the value of (V2/4 f) from equation-(6.244) in
equation-(6.245), we get

«'=0.954x 300=286 Hz

As the frequency oftuning fork is 300 Hz, the beat frequency is
given as

Af7 = 300-286

= 14 Hz.

a Illustrative Example 6.66

A string under a tension of129.6 N produces 10 beats per second

when it is vibrated along with a tuning fork. When the tension

in the string is increased to 160 N, it sounds in unison with the
same tuning fork. Calculate the fundamental frequency oftuning
fork. .

Solution

Let n be the frequency oftuning fork. The frequency of string
will be either {n + 10) or {n - 10). As the tension in the string

increases, its frequency increases (« cc Vt) and becomes n.
This shows that the initial frequency (at T= 129.6 N) ofstring
will be («—10). Hence

Two forks A and B when sounded together produce 4 beats per

second. The fork/4 is in unison with 30 cm length ofa sonometer

wire, and B is in unison with 25 cm length of the same wire at the

same tension. Calculate the frequency of the forks.

Solution

As in case of vibrations of string under specific tension, we

know that frequency« oc (1/Z,) or « = {KJL). As forks^4 and B are

in unison {equalfrequencies) with 30 cm and 25 cm length ofa
given sonometer wire respectively. If and be the
frequencies ofthe two tuning forks, we have,

K
«^ = -^ and "5 ^ ^

or
25

30
...(6.248)

Further as the forks A and B produce 4 beats when sounded

together,

n^-n^-4

Butfrom equation-(6.248) it isclear that n^<

Thus we have ...(6.249)

Solvingequation-(6.248) and (6.249)for and «g,weget

= 20 Hz and = 24 Hz

# Illustrative Example 6.68

A column ofair at 5 TC and a tuning fork produce 4 beats per

second when sounded together. As the temperature of air

column is decreased, the number ofbeats per second tends to

decrease and when the temperature is 16°C the two produce

one beat per second. Find the frequency of tuning fork.
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Solution

The frequency of air column is given by

V

Neglecting end correction, we have

r.

7273 +51^
U73 +I6J

= 1.059

324

289

This shows that n^<

As the number ofbeats with is less than the number ofbeats

withw,, hence the frequency ofair column mustbegreater than
the frequency ofthe tuning fork. If n bethe frequency oftuning
fork, then

or

This gives

M, = rt+ 4 and n2 = n+\

^7+ 4

« + l
= 1.059

« =49.8 Hz

# Illustrative Example 6.69

The first overtone of an open organ pipe beats with the first
overtone ofa closed organ pipe with a beat frequency of 2.2 Hz.
The fundamental frequencyofthe closed organ pipe is 110Hz.
Find the lengths ofthe pipes.

Solution

Let the lengths of open and closed pipes be /, and
respectively. We know that

first overtone ofopen organ pipe, n,= ^
M

first overtone of closed organ pipe, =
Jv
4/.

fundamental frequency ofclosed organ pipe n = -77-
^'2

According to the given question, as« = 110 Hz, we have

or

'2

330

^2" 4x110 = 0.75 m

Further, it is given that beat frequency is 2.2 Hz, we have

V 3v

/b =2-2=--4^

or

or

or

22 =
2x330 3x330

21 4x0.75

330
2.2=-^-330

330
332.2 =

=^ =0-993 m
Again, Beat frequencycan also be given as

f =22= - —•'B 4/2 /i

3x330 2x330
or 2.2 =

4x0.75 2/,

3_30
I

22 = 330-

Solving weget /, = 1.006 m

# Illustrative Example 6.70
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The vibration portionofawirewhichis stretchedwith a weight
of6.48kg weighs 0.5 gm. When sounding in fiindamental note,
it is found togive20 beats in5 seconds, witha vibrating tuning
fork of frequency 256. If the length of the wire is slightly
decreased, the note emitted by it is observed to be in unison
with that of the fork. Calculatethe originallengthof the wire.

Solution

When the lengthof the wire is/metre, thenumber ofbeatsper
second = 20/5 =4.

If the length isdecreased, the frequencyincreaseand the beats

disappear. The original frequency of the wire is less than 256
by 4.

So the frequency ofthe wire of length / is

«= 256-4 = 252 Hz

Tension in wire is

r= 6.48 X 9.8 N

Linear mass density ofwire is

0.5x10"^
I

kg/m
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We know natural frequency ofoscillations ofthewire isgiven
as

1 It

or

or

'o 2/"^^

_J_ r 6.48x9.8x1
21 VI 0.5x10"^

1 6.48x9.8x1
(252)^=-2 X ...,,.-3

4r 0.5x10

On solving we get

/ = 0.5 m = 50 cm

# Illustrative Example 6.71

When0.98m longmetallicwireis stressed, anextension of0.02
misproduced. An organ pipe 0.5 mlong andopen atboth ends,
when soundedwith this stressedmetallic wire, produces8 beats
in its fundamental mode. By decreasing the stress in the wire,
the number of beats are found to decrease. Find the young's

modulus ofwire. Thedensityofmetallic wire is lO'̂ kg/m^ and
sound velocity in air is 292 m/s.

Solution

We loiow the fundamental frequency of open pipe is given as

V 292
"i 21 2x(0.5)

Let L' be the stressed length ofthe wire. Then

L'=L + AL, whereL = initial length

= 0.98 + 0.02= l.Om

The fundamental frequency of stressed wire is

n =

I

2L' vTtr^p,

= 292 Hz ...(6.250)

...(6.251)

Where r = radius ofthe wire and p = density ofwire

Given that the wire produces 8 beats with pipe. Thus we have

« = «,±8 = 292±8

=300 or 284

As the number of beats decreases by decreasing the stress and

hence

n =300

Fromequation-(6.251), wehave

T

Now

2=4«2p(Z,')^
%r

Y=
{Tlnr^)
{MIL) " {Mil)

4x(300)^xl0'̂ x(1.0)^
(0.02/0.98)

= 17.64 X I0'®N/m2

# Illustrative Example 6.72

Waves

A string 25 cm long and having a mass of 2.5 gm is under
tension. A pipe closed at one end is 40 cm long. When the
string issetvibrating initsfirst overtone andtheair inthepipe
in its fundamental frequency, 8 beatsper secondare heard. It is
observed that decreasing the tension in the string decreases

the beatfrequency. If the speed of sound in air is 320 m/sfind
the tension in the string.

Solution

Linear mass density ofstring is

-3
m 2.5x10

^ L 0.25

For first overtone(i.e., secondharmonic) the frequency ofthe
string is

= 0.01 kg/m

Fundamental frequency of closed organ pipe is given as

V 320

4x0.4
= 200 Hz

Now as the two produces 8 beats per second, we have

200- 40Vr=8 [case-I]

40V?-200 =8 [case-II]or

Now as decreasing the tension decreases the beat frequency,

case-I is not permissible. Thus we have

40V7" =208,

or T=
208

40

=27.04 N
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# Illustrative Example 6.73

A metal wire of diameter 1 mm is held on two knife edges

separated by a distance of 50 cm. The tension in the wire is
100 N. The wire, vibrating with its fundamental frequencyand a
vibrating tuning fork together produces 5 beats per second.
The tension in the wire is then reduced to 81 N. When the two

are excited, beats are heard at the same rate. Calculate
(i) the frequency ofthe fork and
(ii) the density of the material ofwire

Solution

Let the frequency oftuning fork be n, then in the first case the

fundamental frequencyofthe wirewill be(« + 5), which is given

as

Here 7= 100 N, /=50 cm = 0.5 m, on'substituting values, we get

In the second case, 81N. In this case the frequency ofwire

will be (m - 5). Thus we have

Subtractingequation-(6.253)from equation-(6.252), we get

10 9 1

or

or

10 =
Vp" Vm" Vii'

1/i=T^=0.01kg/m

But we know that linear mass density'ofa wire ofcross sectional

radius r and density p is given as

p

P =
m 0.01

,-4n2Ttr^ 3.14(5x10"^)

= 12732.5 kg/m^

From equation-(6.252), we have

10
M+ 5 =

« = 100-5

= 95 Hz

= 100 Hz
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(i) A closedpipe and an open pipe sounding together produce
5 beats per second. If the length of the open pipe is 30 cm, find
by how much the length ofthe closed pipe should be changed
to bring the two pipes in unison. Take speed of sound in air is
330 m/s.

[0.1376 cm]

(II) A tuning fork produces 4 beats per second with another
tuning fork of frequency256 Hz. The first one is now loaded
with a little wax and the beat frequency is found to increase to

6 per second. What was the original frequency of the tuning
fork?

[252 Hz]

(III) Iftwosound waves,= 0.3sin5967c[/-x/330] and^j
sin 604 7c[t - x/330] are superimposed, what will be the (a)
frequencyof resultant wave (b) frequencyat which beats are
produced.|(c) Tlie ratio ofmaximum and minimum intensities of
beats. •

[(a) 300 Hz, '(b) 4 Hz, (c) 16]

(Iv) As set of 25 tuning forks is arranged in a series of
decreasing frequencies. Each fork gives 3 beats with the
succeeding one.The firstforkis theoctave ofthe last.Calculate
the frequency of the first and the 16th tuning fork.

[144 Hz and 99 Hz]

(v) A pianowireAvibrates ata fundamental frequency of600
Hz.A secondidenticalwireB produces 6 beatsper secondwith
it when the tension in A is slightly increased. Find the ratio of

the tension in A to the tension in B.

[1.02]

(vl) You are given four tuning forks; the lowest frequency of
the fork is 300 Hz. By striking two tuning forks at a time, 1,2,3,
5,7 and 8 Hz beat frequencies are heard. What are the possible

frequencies of the other three forks ?

[301, 303 and 308 Hz]
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(vii)There are three sources of sound of equal intensities with
frequency 400, 401 and 402 Hz. What is the beat frequency
heard ifall are sounded simultaneously ?

[1 Hz]

(viil) A tuning fork of frequency 256 Hz produces 4 beats per

secondwith a wire of length 25 cm vibrating in its fundamental

mode. The beat frequency decreases when the length is slightly

shortened. What could be the minimum length by which the

wire be shortened so that it produces no beats with the tuning

fork?

[0.39 cm]

6.17 Doppler's Effect

When a car at rest on a road sounds its high frequency horn

and you are also standing on the road near by, youTl hear the

sound of same frequency it is sounding but when the car

approaches you with its horn sounding, the pitch (frequency)

ofits sound seams to drop as the car passes; This phenomenon

was first described by an Austrian Scientist Christien Doppler,

is called the Doppler effect. He explained that when a source of

sound and a listener are in motion relative to each other, the

frequency ofthe sound heard by the listener is not the same as

the source frequency. Lets discuss the Doppler effect in detail

for different cases.

6.17.1 Stationary Source and Stationary Observer

Figure-6.79 shows a stationary sources of frequency which

produces sound waves in air ofwavelength given as

[v = speed ofsound in air]

Source Ohseivei

Figure 6.79

Although sound waves are longitudinal, here we represent

sound weaves by the transverse displacement curve as shown

in figure-6.79 to understand the concept in a better way. As

source produces waves, these waves travel towards, stationary

observer O in themedium(air)with speedvandwavelength Xq.
As observer is at rest here it will observe the same wavelength

Waves •

Xq isapproaching itwith speed vso itwill listen the frequency
n given as

rt ^ ^ =Hn •••(6.254)
A-o

[Same as that of source]

This is why when a stationary observer listens the sound from
a stationary source of sound, it detects the same frequency
sound which the source is producing. Thus no Doppler effect
takes place if there is no relative motion between source and
observer.

6.17.2 Stationary Source and Moving Observer

Figure-6.80 shows the case when a stationary sources of
frequency produces sound waves which have wavelength
in air given as

S

Source

(«0
Figure 6.80

O

Ohseiver

These waves travel toward moving observer with velocity
towards, the source. When sound waves approach observer, it
will receive thewaves ofwavelength Xq with speed v+Vq (relative
speed). Thus the frequency ofsound heard by observer can be
given as

Apparent frequency

v + v.

V+ Vo

"0

V+ Vq
...(6.255)

Similarly we can say that if the observer is receding away from
the source the apparent frequency heard by the observer will
be given as

V-Vf
...(6.256)

6.17J Moving Source and Stationary Observer

Figure-6.81 shows the situation when a moving source S of
frequency produces sound waves in medium (air) and the
waves travel toward observer with velocity v.
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5 V, S'
Source

("O ^2)

Figure 6.81

0
Observer

Here if we carefully look at the initial situation when source

starts moving with velocity v as well as it starts producing

waves. The period of one oscillation is Jsec and in this
duration source emits one wavelength Xq in the direction of
propagation of waves with speed v, but in this duration the

source will also move forward by a distance •Thus the

effective wavelength of emitted sound in air is slightly

compressed by this distance as shown in figure-6.81. This we

term as apparent wavelength of sound in medium (air) by the

moving source. This is given as

Apparent wavelength

0 I «o ...(6.257)

v-v„

"0 «o

Now this wavelength will approach observer with speed v (as O

is at rest). Thus the frequency ofsound heard by observer can

be given as

Apparent frequency

fi = T
X

op

(v-vJ/«o

0 I V-V.
...(6.258)

Similarlyif source isrecedingawayfrom observer, the apparent
wavelength emitted by source in air toward observer will be
slightly expanded and the apparent frequency heard by the

stationary observer can be given as

0 V-v-v.
...(6.259)
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6.17.4 Moving Source and Moving Observer

Let us consider the situation when both source and observer

are moving in same direction as shown in figure-6.82 at speeds

and Vq respectively.

Figure 6.82

In this case the apparent wavelength emitted by the source

behind it is given as

v + v.,

Now this wavelength will approach the observer at relative

speed V+ v^, thus the apparent frequency of soundheard by
the observer is given as

V + Vc

"op=
"ap

= nr

V+ Vo

v + v.
...(6.260)

By looking at the expression of apparent frequency given by

equation-(6.260), we can easily develop a general relation for

finding the apparent frequency heard by a moving observer

due to a moving source as

n ~ n.ap C

V±Vn

V±V..
...(6.261)

Here + and - signs are chosen according to the direction of

motion ofsource and observer. The sign convention related to

the motion direction can be stated as :

(i) For both source and observer and are taken in

equation-(6.261)with - vesign ifthey are moving in the direction

of 'v i.e. the direction ofpropagation of sound from source to

observer.

(ii) For both source and observer Vq and are taken in
equation-(6.261)with + vesign iftheyare moving in the direction

opposite to V i.e. opposite to the direction of propagation of
sound from source to observer.

6.17.5 Doppler Effect in Reflected Sound

When a car is moving toward a stationary wall as shown in
figure-6.83. If the car sounds a horn, wave travels toward the
wall and is reflected from the wall. When the reflected wave is
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heard by the driver, it appears to be of relatively high pitch. If
we wish to measure the frequency of reflected sound then the

problem must be handled in two steps.

reflected sound

ZY777777777777777777777777777777777P777Z

Figure 6.83

First we treat the stationary wall as a stationary observer and
car as a moving source of sound of frequency In this case
the frequency received by the wall is given as

n, = nr
0 V-V —V.

...(6.262)

Now wall reflects this frequency and behaves like a stationary
source of sound of frequency Wj and car (driver) behave likea
moving observer withvelocity v^. Here the apparent frequency
heard by the car driver can be given as

or

n=n,
ap I

V + V.

v + v^

v-v.

v+v..

V —V.

Same problem can also be solved in a different manner by using

method of sound images. In this procedure we assume the image
ofthe sound source behind the reflector. In previous example
we can explain this by situation shown in figure-6.84

V////////7///////////////////////////////////////////.
Car Image

Figure 6.84

Here we assume that the sound which is reflected by the
stationary wall is coming from the image of car which is at the
back of it and coming toward it with velocity v^. Now the
frequency ofsound heard by car driver can directly be given as

n = fir
ap t

V+V^

v-v.
...(6.264)

This method ofimages for solving problems of Doppler effect

Waves

is very convenient but is used only for velocities of source and
observer which are very small compared to the speed of sound
and it should not be used frequently when the reflector ofsound
is moving.

6.17.6 Doppler's Effect for Accelerated Motion

For the case of a moving source and a moving observer, we
know the apparent frequency observer can be given as

"ap="c
V±Vn

V±Vc
...(6.265)

Here vis thevelocity ofsound andVq and arethevelocity of
observer and source respectivelj'.

When a source or observer has accelerated or retarded motion

then in equation-(6.265) we use that value of at which observer
receives the sound and for source, we use that value of at

which it has emitted the wave.

The alternative method ofsolving this case is by the traditional

method ofcompressing or expending wavelength of sound by
motion of source and using relative velocity of sound with
respect to observer

6.17.7 Doppler's Effect when Source and Observer are not in
Same Line ofMotion

Consider the situation shown in figure-6.85. Two cars 1 and 2

aremoving along perpendicular roads at speeds Vj andVj. When
...(6.263) car-1 sound a horn of frequency Mq, it emits sound in all

directions and say car-2 is at the position, shown in figure-6.85

when it receives the sound. In such cases we use velocity
components of the cars along the line joining the source and
observer thus the apparent frequency of sound heard by car-2
can be given as

ap L

V+ V2COS02
V- Vj cos0j

Figure' 6.85

...(6.266)
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6.17.8 Doppler's Effect in Light

We've discussed the Doppler effect in sound. In case of light,
the frequency of light radiation changes due to relative motion
between light source and observer. According to the theory of
electromagnetic waves, material medium is not necessary for
the propagation of light, whereas for sound waves, material
medium is necessary. In sound waves Doppler's effect is not
symmetric i.e. the apparent frequencies are different when the
source is moving toward a stationary observer and when the

observer is moving toward a stationary source.

But the case is not same in light waves. In light, the Doppler
effect is symmetric. The apparent frequency is same when either
the source is moving or observer is moving. Let us consider an

example, this will explain the concept in detail.

Consider a source of lightwithfrequency Vq is moving toward
a stationary observer at speed then the frequency observed
can be written as

c - v„

or

I-

= v^ 1-^
-1

-v., 1+-^ ...(6.267)

[As-^«1]

Similarly ifweconsider an observer is moving at speed toward
a stationary light source of frequency Vq then the apparent
frequency observed by the observer can be given as

c + v,
= v^ I+-^| ...(6.268)

If = Vq equation-(6.267) and(6.268) gives same results. This
happensbecausethe velocityof light is verylarge comparedto
that of source and observer.

Similarly in case of light when source and observer both are
moving we can consider any one at rest and consider relative
velocity of one with respect to other for finding the apparent
frequency observed.

In general cases we take observer at rest and consider source
moving relative to observerbecauserelative velocityof light in
any physical condition can not exceed c. If Xq and X^^ be the
actual and apparent wavelength of light then for a stationary
observer and a moving source, we have
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c - v..

or

"ap

C

C-V.

or v-v.=v

or V =
Xr

v_ = ...(6.269)

Here AX is the wavelength shift due to motion of source and
this equation-(6.269) gives the relative velocity ofsource toward
observer. Whenever we observe wavelength shift, if received

wavelength (X^^) is less then actual wavelength (Xq) or AX is
positive we say source is approaching the observer and when
received wavelength (X^^) ismore then the actual wavelength
(Xq) or AX is negative we say source is moving away from
observer. In the field of astronomy, Doppler effect is found to

be very useful.

6.17.9 Applications of Doppler Effect in Light

(i) Doppler's Shift

When radiation coming from distant galaxies and nebulae are
analyzed by radio telescopes and compared with their natural
radiation wavelength focussed on mean wavelength on a visible
spectrum, it is observed that the coming radiation has a shift
toward redendofvisible spectrum approximately by200 A i.e.
Thewave length ofcoming radiation is200Amore then their
actual wavelength. This gives the idea that universe is
expanding. The shifting of analyzed wavelength toward red
end of spectrum is called red shift and when some comet or a
heavenly body is coming toward earth, the wavelength of the
analyzed light decreases and on spectrum it shift toward violet
end and is called violet shift or blue shift.

(II) Velocity and Rotation of Sun

When light coming from eastern and western edges ofsun are

observed and analyzed, Doppler's shift shows that the shift is
duetoavelocity ofabout 2x10^ m/s. Butwhen lightfrom north
and south edges is observed, no such shift is observed. This
shows that the sun rotates about the north south axis.

(III) Discovery ofDouble Stars

By the constant observation of the sky, it has been found that
some of the stars that appear to be single are actually double
stars and are known as spectroscopic binaries. These stars
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revolve about each other. When one is approaching the earth,
and the other is going away from the earth, there is a shift in
their spectral lines and a single spectral line is split up into two
lineswhoseseparationdependsupontime and the timeperiod
is equal to the time-period of revolution of the starts. By this
method a number of double-star systems have been found.

(w) Saturn's Rings

The planet Saturn has been found to be surrounded by
concentric rings. With the help of Doppler effect it has been
found that these rings are not solids but consist ofa number of
'satellites' moving around the Saturn in these orbits.If the rings
were solids, the outer edge of'the ring should have greater
velocitythan the inner edge. But, according to the principle of
a satellite.

mv

R

GMm

or
2 GM

Thus, the velocity ofthe satellite in the inner orbit is more than
that in the outer orbit. This fact has been established by the
Doppler shift; Thus, the rings of the Saturn are not solids but
there are a large number of satellites moving in these orbits
called the rings ofSaturn.

# Illustrative Example 6,74

A locomotive whistle 256 Hz is moying towards a stationary
observerwith a velocity 1/20^*' that uf sound. What will be the
frequencies of the notes heard by observer beforeand after the
engine passes it ?

Solution

We know that
(v-Vq)
(v-vj

n =n

(i) When locomotive is approaching the stationary observer

«^256, ^ and Vq =0

or "• =256^;^^ =256 xf
= 269.5 Hz

(ii) When locomotive passes the stationary observers

V =-v/20

or "'=256 ^4^ =256 xf
=243.8 Hz
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# Illustrative Example 6.75

Twotuning forkswith natural frequenciesof340 Hz each move
relative to a stationary observer. One forkmovesaway from the
observer, while the other moves,towards him at the same speed.
The observer hears beats of frequency3 Hz. Find the speed of
this tuning fork.

Solution

Let the velocity ofeach tuning fork with respect to stationary
observer bev^. Apparent frequency of thetuning fork coming
towards the stationary observer is given by

", =^ ...(6.270)
Apparent frequency of the tuning fork moving away from the
stationary observer is given by

nv

—2 V+ V,

From equations-(6.270) and (6.272)

1 1
n, - n~. = nv

V - V„ V + v..

or

or

or

or

n, ~ n-, = nv
1 "2

Substituting the given values, we have

3=340x340

3[(340)2-v2]=2x(340)2v^

3x(340)2-3v2-2x(340)2v^

3 + 2 X(340)2 - 3 X(340)2 = q

- 2X(340)^ ±V4x (340)^+4x3x3(340)^

2v,

(340)2-v^

or
2x3

Solving we get v^= 1.5 m/s

# Illustrative Example 6.76

...(6.271)

...(6.272)

A vibrating tuning fork tied to the end ofa string 1.988 metre
long is whirled roimd a circle. If it makes two revolutions in a
second, calculate the ratio ofthe frequencies ofthe highest and
the lowest notes heard by an observer situated in the plane of
the tuning fork. Velocity ofsound is 350 m/s.

Solution

Number ofrevolutions per second = 2

Radius ofthe circle = 1.988 m
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As Linear velocityof the tuning fork is

v=2x27tr=4x ^ X1.988 =25m/s

(i) Apparent frequency when the tuning fork is approaching
the listener

n, =
vfi 350« 14 ,

° 350-25 ° T3 "

(ii) Apparent frequency when the tuning fork is moving away
from the listener

vn 50 «

v+v, (350 + 25) 15

The ratio of highest note to the lowest note is given by

«i 14n 15 15 ,
— = Ti" ^ T2~ = TT = 1-154rij 13 \An 13

# Illustrative Example 6.77

A sources ofsonic oscillations with frequency « = 1700 Hz and
a receiver are located on the same normal to a wall. Both the

source and receiver are stationary, and the wall recedes from
the source with velocity u = 6.0 cm/s. Find the beat frequency
registered by the receiver. The velocity of sound is equal to
v=340 m/s.

Solution

n„=1700 Hz

Figure 6.86

14
= T7 n [Lowest note]

As both source and receiver are at rest the frequency of sound

waveswhich directlyreach to receiver,will be 1700 Hz and the
frequency ofsound whichwall will receive asa movingobserver
IS

V

n, = nr v + u-

The wall now behaves as a moving source of frequency n^
which when received by receiver, the frequency observed is

n^ = n,
v-u

v-u

0 V v + u

363

[340-0.06-1700 [340+0.06,

= noo X
339.94

340.06

= 1699.4 Hz

Thus beat frequency received by detector is

A« = 1700-1699.4 = 0.6Hz

# Illustrative Example 6.78

If the earth is moving towards a stationary star at a speed of

30 kilometres per second, find the apparent wavelength oflight
emitted from thestar. Therealwavelength hasthevalue 5875 A.

Solution

Here earth (observer) is approaching the star and hence, the
mutual distance is decreasing. So, the observer will notice an
increase in frequency or decrease in wavelength. If v be the
relative velocity ofthe source and c, the velocity oflight, then
the change in wavelength is given by

A?.= - x;^.
c

Substituting the given values, we have

AA.=
30x10^

3x10^
X5875 A

Altered wavelength

or

= 5875 X 10-^ A.

X.'= X-AA.

= 5875A-(5875x lO^A)

V = 0.9999x5875A

= 5874.4125 A

# Illustrative Example 6.79

Asourceofsoundoffrequency 256 Hz ismovingrapidlytowards
a wall with a velocity of5 m/s. How many beats per second will

be heard ifsound travels at a speed of330 m/s ?

Solution

Case-I: When observer is between wall and the source

In this case, the observer is stationary and the source in motion
towards observer. The apparent frequency for stationary
observer is given by
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Here

and

or

n =n
_v-v,

w=256Hz, v = 330m/s

V

V = 5 m/s

n' = 256
330

330-5

256x330

325
= 259.93 Hz

In this case, the apparent frequency received by the observer
from source is 259.93. The observer also receives the sound

reflected from the wall. As reflection does not cause any change

in frequency and hence the frequency of reflected sound is
also 259.93 Hz.

Thus beats frequency is

Aw =259.93-259.93 = 0

Case-n: When the sources is between wall and observer

For direct sound, source is moving away from the observer.

V 1 330
Hence n' -n

n -n
v-v.

X 256 = 252.2 Hzy+vj 330+5

For reflected sound, source is moving towards wall. Hence

V
= 259.9

Thus beat frequency is

A« = «'-n"=259.9-252.2

= 7.7»8Hz

a Illustrative Example 6.80

A radar wave has a frequency of 7.8 x 10^ s~'. The reflected
wave from an aeroplane shows a frequency difference of
2.7 X 10^ s~' on the higher side. Deduce the velocity of the
aeroplane in the line of sight.

Solution

Suppose the aeroplane is approaching the observer with
velocity v^, then the velocity of image of source which is
producingreflectedwavewill be = 2 v^, (As in case ofplane
mirror, when the mirror moves with a velocity v, then the image
moves with a velocity 2 v).

In this case, n = n
c-v. .['•T

or n'=n + n —

Here «'-« = 2.7x lO^s-S

or

or

or

Now
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« = 7.8xl0^s~' and c = 3xl0^m/s

2.7 X103= 7.8x 10^
3x10^

78 k

V= ^ x2.7xl03m/s
s /6

3x2.7x10-'
« 2 2x78

60x60

1000

or =1.87x lO^km/lir.

#Illustrative Example 6.81

Two distant sources situated together emit sound each of
frequency 300cycles persecond. Ifoneofthemweretoapproach
and the other to recede from a stationary observer each with a
velocity of 1/100^the velocity of sound, calculate the number
of beats per second heard by the observer.

Solution

The situation is shown in figure-6.87.

I Source Va=0 II Source

Observer

Sound Sound

Figure 6.87

The first source is approaching the stationary observer. The
frequencyof the source as heard by observer is given by

n, = n
v~v.

Where « is the actual frequency of source

^ 300x100
99

= 303.03 Hz

The second source is receding from the observer in the direction
opposite to the sound. Hence the apparent frequency«2

^ ' X300
'2 I v + O.Olv

= 300x100
101

= 297.03 Hz
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Hence beat frequency detected by observer is

Ah-303.03-297.03 = 6Hz

Illustrative Example 6.82

A sources ofsonic oscillations with frequency « = 1700 Hz and
a receiver are located at the same point. At the moment /=0, the
source starts receding from the receiver with constant
acceleration a= 10.0m/s^. Assuming the velocityof sound to
be equal to v = 340 m/s, fmd the oscillation frequency registered
by the stationary receiver r = 10.0 s after the start ofmotion.

Solution

In 10 second source will travel a distance

Sq=.~ a(10)2=^ xl0x(l0)2=500m
At this instant observer will receive that sound which source

had emittedat time t = r,. At time /j sourcewas at a distanceS
from the source.

5= Y

t=!,

observer
/ = 10.y

Figure 6.88

Now in a time (10 -sound travels a distance S from source to
observer. Thus, we have

5r2=340(10-i;)

or

or

5/f + 340 rj-3400 =0

- 340 ±V(340)^ +4(5) (3400)

n = Jlr

2x5

= 8.85 s [Ignoring negative root]

Thus velocityof source at instant /j is

v = a/j = 10X8.85 =88.5 m/s

Thus frequency observed by observer at 10 sec is given as

340

340 + 88.5

340
= 1700x

428.5

= 1350 Hz
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§ Illustrative Example 6.83

A source of sound with natural frequency « = 1.8 kHz moves

uniformly along a straight line separated from a stationary
observer by a distance / = 250 m. The velocity ofthe source is

equal to r| = 0.80 fraction ofthe velocity of sound. Find :

(a) the frequency of sound received by the observer at the

moment when the source gets closest to him;

(b) the distance between the source and the observer at the

moment when the observer receives a frequency = n.

Solution

The situation is shown in figure-6.89.

A v = 0.8C

/ = 250m

observer

Figure 6.89

(a) Figure-6.89 shows the corresponding situation. Source gets

closest to observer when it is at position B but at this instant

observer receives those sound waves which source had emitted

from an earlier position A shown in figure-6.89, so that when

source reaches A to B, in the same time sound reaches A to O.

Thus the apparent frequency heard by observer is

Here, we have

"ap = «0 V - v.. cos I

cos 0 =
AB

AO

If sound takes /, time from A to O, we have

AB= = 0.8 /,

and AO = vt,

...(6.273)

...(6.274)
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Now from equation-(6.274)

cos 0 =0.8

Now from equation-(6.273)

V r 1 ]
v-(0.8)^v .0.36.

1.8x10^

0.36
= 5 kHz

(b) Observer receives a frequency equal to original frequency

of source corresponding to the waves emitted by source from

position B, as in this case velocity component of source is
there in the direction ofobserver.

In this case the time taken by sound to reach observer from B is

.'o4
In this direction distance travelled by source is

6'= v^/ = 0.8v/= 0.8/

At the instant when observer receives this sound the separation

between source and observer can be given as

= VU6 X250

=320m

# Illustrative Example 6.84

A locomotive approaching a crossing at a speed of80 miles/hr,

sounds a whistle of frequency 400 Hz when 1 mile from the

crossing. There is no wind, and the speed of sound in air is

0.200 mile/s. What frequency is heard by an observer 0.60 miles

from the crossing on the straight road which crosses the railroad

at right angles?

Solution

The situation is shown in figure-6.90.

1 mile

Figure 6.90

Here is SD= ^-^2 ^2 =1.166miles

Thus speed of source along the line of sight

80
X 0.857Vc.= V cos b =

60x60

= 0.019 mile/s

Thus the apparent frequency observed is

^soimd

Waves

Vso.nd-\S
= 400

0.2

0.2-0.019
= 442 Hz

6.18 Shock Waves

The general equation, we've developed for finding the apparent

frequency by Doppler's effect, is given as

0 I v±v.
...(6.275)

Ifa source is moving toward an observer at a speed equal to the
speed of sound. That is = v then from equation-(6.275) the
detected frequency will be infinitely high. This means that

the source is moving so fast that the effective wavelength of
produced sound in air is compressed to almost zero. This we

can understand step by step as shown by figure-6.92.

Figure-6.91 (a) shows the sound waves produced by a stationary

source in three dimensional, space. The spherical region

surrounding the source in which it creates oscillations in phase

is called spherical wavefront produced by the source. These
wavefronts propagate in radially outward direction with speed

of sound as shown. All the spherical wavelengths with

increasing size are concentric spherical shells with centre at

source.If we look at figure-6.9I (b)when source is moving toward

right at speed (v^ < v), here we can say that if initially a
wavefront was emitted by source when it was at position 5,,
then this wavefront will expend (sound propagates)

continuously with centre located at point but source is now

movedto another position •s-i and so on. In this case we can
see that once ifa wavefront is created (sound is produced), it is
carried by the medium only and this propagation does not

depend on source thus the wavefront will expand (sound
travels) with its centre located at the same position from where
it was created. Thus here it is clear that in front of source the

separation between successive wavefronts is decreased (X is

compressed) and in the region behind the source the separation
between successive wavefronts is increased (X. is expended).
This is the same phenomenon of Doppler effect. Which we've

described earlier in spherical waves.
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surface ofmachcone

v.^>v

{shock waves)

(d)

Figure 6.91

As the speed ofsource approaches the speed ofsound v, as
shown in figure-6.91(c), then it keeps pace with its own spherical
wavefronts, the wavelength approaches zero and the waves
produced by the source from its different locations move
together and pile up on each other. In such a case source must

exert large force on medium particles to produce compressions
and rarefaction in front of it. According to Newton's third Law,

the medium exerts equally large force back on the source or we
can say that when source speed approaches speed of sound
then in the medium (air), there is a large increase in air resistance
(aerodynamic drag) to its motion. This is called as "sound
barrier." This is the reason when a supersonic plane crosses
its speed = v or sound barrier, it experiences a very high
aerodynamic drag. When source speed is greater in magnitude

then Vthe source ofsound is called supersonic. For supersonic

sotirces the Doppler effect is no longer valid.

When sources speed is greater then speed of sound v, the
situation is shown in figure-6.91(d). The source comes out of

each spherical wavefront it produces as wavefronts expands at
speed of sound v. We can see with time that a series of
wavefronts are created by source during its motion and each
spreads out in a sphere created at the position of source when
it emitted the wavefront. After a time t, the wavefront emitted

from a position s^,has spreadtoa sphereofradiusvtas shown
in figure-6.91 (c), and the source has moved a greater distance
vJ, here we can see that all the spreading wavefronts created
from local intermediate position of the source bunch along a
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conical envelope as shown by dotted line in figure. At the
surface of this cone we can say that ail the wavefonts are
oscillating in same phase, thus at the medium particles due to
constructive interference the amplitude ofoscillations will be
very large. This very high energy wave with the new conical
wavefi-ont (effectively) is called shock wave, the angle 0 made
by the shock wave cone (called mach cone) with the line of
motion of source can be given as

sm b =
vt

vj
...(6.276)

In this relation of equation-(6.276) the ratio — is called Mach

number. It is greater than 1for all supersonic speeds. Here sin 0
is reciprocal ofMach number.-
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Practice Exercise 6.8

(i) A policeman on duty detects a drop of 10% in the pitch of
the horn ofmotion car as it crosses him. Ifthe velocity ofsound

is 330 metres per second, calculate the speed ofthe car.

[17.37 m/s]

(il) A car travelling at 10 m/s sounds its horn which has a

frequency of 500 Hz and this is heard in another car which is
travellingbehind the firstcar in the same direction,with a velocity
of 20 m/s. The sound can also be heard in the second car by
reflection from a bridge head. What frequency will the driver of

the second car hear ? (v = 340 m/s)

[545.45 Hz]

(iii) The wavelength of light coming from a distant galaxy is

found to be 0.5% more than that coming from a source on earth.
Calculate the velocity ofthe galaxy.

[1.5 X 10*^ m/s]

(iv) A band playing music at a frequency is moving towards

a wall at a speed v^. A motorist is following the band with a
speed V . Ifv is the speed ofsound obtain an expression for the
beat frequency heard by the motorist.

I"(
(v + v„)(2va)
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(v) An astronaut is approaching the moon. He sends out a
radio signal of frequency 5 x 10^ Hz and finds out that the
frequency shift in echo received is 10^ Hz. Find his speed of
approach.

[30 m/s]

(vi) If a vibrating fork is rapidly movedtowards a wall, beats
maybeheardbetween thedirect andreflected sounds. Calculate
beatfrequency if thefrequency offorkis512Hzand approaches
the wall with a velocityof 300 cm/s. The velocityof sound is
330 m/s. Consider observer is behind the fork.

[9.3 Hz]

(vii) A train A crosses a station with a speed of 40 m/s and
whistles a short pulse of natural frequency 596 Hz. Another
train'B is approaching towards the same station with the same
speedalonga parallel track. Two tracks are 99 m apart. When
train A whistles train B is 152 m away from the station as
shown in figure-6.92. If velocity of sound in air is 330 m/s,
calculate the frequency of the pulse heard by driver of train B.

40 m/s

Train A

99 m --Ration

152 m
Train B

Figure 6.92

[724 Hz]

(viii) How fast would you have to go through a red light to have
it appear green if the wavelengths of red and green light are
respectively620 nm and 540 nm ? Is it possible to achieve this
speed on earth ?

[3.87 x iC km/s, No]

6.19 Reflection and Refraction of Waves

Whenever a wave incident on the boundary of two different
media, it splits in three parts (i) A part ofincident wave bounces
back into the same medium called reflected wave, (ii) A part of
incident wave is transmitted into the other medium, called

refracted wave (ill) A part of incident wave is absorbed by
medium particles ofboth the medium at the boundary ofmedia,
called absorbed wave energy. Ifthe incident wave amplitude is

W aves

A\ then the amplitudesof reflected, transmitted and absorbed
waves can be given as

A~a^,

and A^ = aJ.,

Where a^, and are called reflection coefficient,
transmission coefficient and absorption coefficient for the
respective wave amplitudes and for the three wehave

a + a. + a=l ...(6.277)

One more thing students should note that we have already
discussed that whenever a wave is emitted from a source its

frequency remains constantduring propagation,no matters in
which medium wave is propagating. Similarlyhere also we can
state that the frequencies of reflected and transmitted waves
must be same as that of incident wave.

Now we find corresponding reflection and transmission
coefficients for the reflected and transmitted wave amplitudes.

Letusconsider a wave propagating inmedium-I (velocity=v,)
incident on a medium boundary as shown in figure-6.93(a). If
displacement amplitude of incident wave iSi4; its equation can
be written as

03

_l'.-Xsin(oV-A:jX) [Where ...(6.278)

Medium-I

Incident wave

•Vi

(a)

Medium-II

Medium-I

^1

Hri'r Medium-Il •

.^2

reflected wave transmitted wave -

(b)

Figure 6.93
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If and be the amplitudes of respective reflected and
transmittedwavesas shownin figure-6.93(b), thecorresponding
equations are

For reflected wave

y^=^^sin {(nt + k^x)

and for transmitted wave

...(6.279)

CO
y, = /4,sin (cor-^2^) [Where kj=—] ...(6.280)

As wave is continuous at the boundary i.e. at x = 0 the
displacement ofmedium particles in the two mediums must be

equal, thus we have

A. + A=A. ...(6.281)

At the boundary, the slope ofdisplacement curve must also be

continuous thus at x = 0, we also have

dy-. I dy, _ dy,
dx dx dx

Nowfi-om equation-(6.278), (6.279) and (6.280), we have

- A. cos CO/ + A^ cosco/ = - Atj cos co/

A,-A=A,\'̂ ^or

Adding equation-(6.281) and (6.282) we get

2k,
A,

...(6.282)

...(6.283)

If be the transmission coefficient for the boundary ofthe two

media we have

A=a,A.

comparing equation-(6.283) and (6.284) we get

Transmission coefficient,

2/c, 2vo

' k,+k2 Vj + V2

Now dividing equation-(6.282) and (6.281) we get

A; -A, ko

or

or

A, + A.

Aj k, + ^2
A,. k\ k-,

A =
k\-k2
k +k-,

...(6.284)

...(6.285)

...(6.286)

369

If be the reflection coefficient for the boundary of the two
medium we have

Comparingequation-(6.286) and (6.287)weget

Reflection coefficient.

a_ =
^1+^2

_ ^2V,-V,

V1+V2

...(6.287)

...(6.288)

From equation-(6.285) and (6.287) we can see that transmission
coefficient is always positive but reflection coefficient can be

negative when V2 < v, or when a wave propagating in a rarer
medium is reflected from the boundary of a denser medium.

The negative sign with reflection coefficient shows that

whenever a wave is reflected from the boundary of a denser

medium, there is always a phase addition ofir radian takes place
in reflected wave, due to this the wave is inverted on reflection

ifit is a transverse wave.

6.19.1 Reflection of a Wave Pulse in a Stretched String

Let us consider a case of reflection ofa transverse wave pulse

in a stretched string from a wall as shown. Here we can consider

thatthewave velocity in second medium (wall), Vj =0aswall is
rigid then we have from equation-(6.285) and (6.286)

a^=-l andaj.= 0

This means that incident wave is completely reflected with a

phase charge ofk. As shown in figure-6.94.

Incident wave pulse

I
I

Reflected wave pulse

Figure 6.94

Now consider the case shown in figure-6.95. Two different

strings are joined end to end stretched by a tension T. String 1
is lighter then string 2 so the wave speed in string 1 is more than

that in string 2. When a wave pulse traveling from string 1
toward junction incident on the junction a part of energy is

reflected and a part is transmitted to the other string. We can
see as shown in figure-6.95(a) that when wave pulse travelling
on lighter string (rarer medium) is reflected from heavier string



(denser medium) the reflected pulsesuffers a phasechangeof
71 radiansandinverted. Butif a wavepulsetravellingfromheavier
string incident on the junction, during reflection no phase
change occurs as we can see from figure-6.95(b)

(a)

(b)

Figure 6.95
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Discussion Question
Q6-1 Will itbe possible to monitor the temperature ofawire by
measuring itsvibrational frequency? Explain.

Q6-2 Awave propagates down a long rope which hangs freely
from asupport. Asitpropagates, what happens tothespeed of
the wave?

Q6-3 Show that theparticle speed can never beequal to the
wave speed in a sine wave if the amplitude is less than
wavelength divided by 27t.

Q6-4 Ifthefrequency ofa harmonic wave ona rope isdoubled
and other factors are held fixed, how does the power of the
wave change?

Q6-5 Two wave pulses identical in shape but inverted with
respect to each other are producedat the two endsofa stretched
string. At an instant when the pulses reach the middle, the
string becomes completely straight. What happens totheenergy
of the two pulses?

Q6-6 the voice of a person, who has inhaled helium, has a
remarkably high pitch. Explain on the basis ofresonant vibration
ofvocal cord filled with air and with helium.

Q6-7 Which type of oscillations are produced when (a) an
electric field vibrates in a lightwavepropagating inglass(b)a
metallic striposcillates in a magnetic field (c)the pendulum in a
clock oscillates (d)thediaphragm ofa microphone orloudspeaker
vibrates (e) you tune your TV set to catch a desired station?

Q6-8 Distinguish between sound and radio waves ofthe same
frequency (say 15 kHz).

Q6-9 Where will a person hear maximum sound at
(displacement) node or antinode?

Q6-10 Ifyou arewalking onthe moon, canyou hearthesound
of stones cracking behind you? Can you hear the sound of
your own footsteps?

Q6-11 If oil ofdensity higher than water isused in a resonance
tube, how will the frequency change?

Q6-12 Two organ pipes of same length open at both ends
producesoundofdifferentpitch if their radii are different. Why?

Q6-13 .Does the change in frequency due to Doppler effect
depend (a) on distance between source and observer (b) on the
fact that source is moving towards the listener or listener is
moving towards the source?

Q6-14 Give anevidence insupport ofthe fact that (a)sound is
a wave (b) sound is a mechanical wave (c) sound waves are
longitudinal.

Q6-15 The source of energy of sun is fusion of hydrogen
which provides energy in the form of heat, light and sound.
Explain why sound from sound from sun does not reach earth
while heat and light do.

Q6-16 Explain clearlywhy the ifsound from an open
pipe is different than from a closed pipeofsamefundamental
frequency. • •

Q6-17 Agraph ofpartofawave pulse onastring ataparticular
instant is shownin figure-6.96, Whichare the pointsmarked
with letters is instantaneously at rest? What are the directions
of velocities of the points marked in figure. Do any of your
answers dependon the direction of propagation ?

Figure 6.96

Q6-18 When two wave pulses traveling in opposite directions
encounter each other, do they bounce offone another like billiard
balls in head-on collision, ordoes each pulse pass through the
other likea ghost in a cartoon? Which figure in this chapter
best supports your answer?

Q6-19 The speed ofsound waves inairdepends on temperature
but that of light does not. Why?

Q6-20 Two loudspeakers are arranged facing-each other at
some distance. Will a person standing behind the loudspeakers
clearly hear the sound of the other loudspeaker or the clarity
will be seriously damaged because ofthe 'collision' ofthe two
sounds in between?

Q6-21 Two tuningforks vibrate withthesameamplitude but
the frequency ofthe firstis double thefrequency of thesecond.
Which fork produces more intense sound in air?

Q8-22 Two harmonic waves are on different ropes and each
rope has the same density and tension. The waves have the
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same frequency, but wave 1has twice the amplitude of wave 2.
Which wave has the larger speed? Which wave causes the
larger maximum speed for the elements ofthe rope on which it
travels?

Q6-23 Explain why (a) transverse mechanical waves cannot
be propagated in liquids and gases while (b) waves on strings
are always transverse.

Q6-24 Can we ever construct an organ pipe whose frequency

does not change with temperature? If no why? If yes, under
what condition?

Q6-25 What type ofmechanical waves do you expect to exist
in (a) vacuum (b) air (c) inside water (d) rock (e) on the surface

ofa liquid.

Q6-26 Why do the strings on a guitar have different diameters?
Which strings produce the lower notes?

Q6-27 Can a great singer cause a glass object to shatter byhis
singing? Explain with reason.

Q6-28 Sometimes when an airplane flies near a house, the
television signal received at the house fades periodically. Why?

Waves

Q6-29 State whether the following statement is true or false,
givingreasonin brief: "A planewaveofsoundtravellingin air
is incident upon a plane water surface. The angle of incidence
is 60°. Assuming Snell's law to be valid for sound waves, it
follows that the sound wave will be refracted into water away
from the normal."

Q6-30 What factors determine the pitch oftuning fork?

Q6-31 The distance from the sun to Mars is about 3/2'that

from the sun to the earth. Compare the intensity ofsunlight at
Mars with the intensity of sunlight at the earth.

Q6-32 Ifyou twirl one end ofa horizontally stretched rope in a
circle in a plane perpendicular to the rope, a wave will propagate
along the rope. Is this wave transverse, longitudinal, some
combination of the two, or none of these?

Q6-33 Explainwhy(a) velocityofsoundis generallygreater in
solids than in gases, (b) the velocity of sound in oxygen is
lesser than in hydrogen.

Q6-34 The radio and TV programs, telecast at the studio, reach
our antenna by wave motion. Is it a mechanical wave or
nonmechanical ?
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ConceptualMCQsSingle Option Correct
6-1 Two stars P and Q have slightly different surface
temperatures T^and respectively, with Tp> Tq. Both stars
are receding from the earth with speeds Vp and relative tothe
earth. Thewavelength ofli^t atwhich theyradiate themaximum
energy is found to be the same for both :

(A) Vp>VQ
(B) vp<vg
(C) Vp =Vq, and the size ofg > the size ofP
p) Nothing can be said regarding Vp and Vq from the giv^n

data

6-2 In thewatera ofa lakea blastoccurs. Thewaves produced
in water will be;

(A) Transverse
(B) Longitudinal
(Q Stationary

p) Both transverse and longitudinal

6-3 Two sounding bodies are producing progressive wave
given by^j = 4sin (400 Tzt) and^j = 3 sin(404 nt\ where t isin
secondwhich superposenear the ears of a person. The person
will heat:

4(A) 2beats per second with intensity ratio y between maxima
and minima

P) 2 beatsper secondwith intensity ratio 49 betweenmaxima
and minima

(Q 4 beats per second with intensity ratio 7 between maxima
and minima

4P) 4beats per second with intensity ratio-j between maxima
and minima

6-4 Two harmonic waves travelling in the same medium have
frequency in the ratio 1:2 and intensity in the ratio 1:36.Their
amplitude ratio is:
(A) 1:6 P) 1:8
(Q 1:72 P) 1:3

6-5 A pipeoflength20 cm isclosedat oneend.Whichharmonic
mode ofthe pipe is resonantly excited by a 425 Hz source ? The

speed ofsound = 340 ms"':
(A) First harmonic p) Second harmonic
(Q Third harmonic P) Fourth harmonic

6-6 The frequency of a wave is reduced to one quarter and its
amplitude is made twice. The intensity ofthe wave:
(A) Increases by a factor of 2
P) Decreases by a factor of 4
(C) Decreasesbyafectorof2
P) Remain^ unchanged

6-7 Radiowaves of frequency 600 MHz are sent by a radar
towards an enemy aircraft. The frequency of the radiowaves
reflected from the aircraft as measured at the radar station is

found to increase by 6 kHz. It follows that the aircraft is :
(A) Approaching theradar stationwitha speed 1.5kms~'
p) Goingawayfromthe radar stationwith a speed 1.5kms~'
(Q Approaching the radar station witha speed3 kms"'
P) Goingawayfromthe radar station witha speed3 kms"'

6-8 The velocityofsoundin dryair is and in moistair it is
V^. Thevelocities are measured under the sameconditions of
temperature and pressure. Which of the following statement is
fully correct ?

(A) becausedry air has lowerdensitythan moistair
P) Vj< because moistair has lower density than dryair
(Q Vj> because thebulkmodulus ofdryair isgreater than

that ofmoist air

P) because the bulk modulus of moist air is greater
than that ofdry air

6-9 A machinegun is mountedon a tank movingat a speedof
20 ms"' towards a targetwiththe gunpointing in thedirection
ofmotionof the tank. Themuzzlespeedofthe bulletequalsthe
speed ofsound = 340ms"'.If,at thetime offiring, thetarget is
500 m away from the tank, then :
(A) The sound arrives at the target later than the bullet
P) The sound arrives at the target earlier than the bullet
(Q Both sound and bullet arrive at the target at the same time
p) The bullet will never arrive at the target

6-10 Out of the fourchoicesgiven in Q. No. 6-9 above, choose
the correct choice, if the gun points in a direction oppositeto
the direction ofmotion ofthe tank.

(A) The sound arrives at the target later than the bullet
P) The sound arrives at the target earlier than the bullet
(Q Both sound and bullet arrive at the target at the same time
p) The bullet will never arrive at the target

6-11 When wehear a sound,we can identifyits sourcefrom :
(A) The frequency of the sound
P) The amplitude ofthe sound
(C) The wavelength of the sound
p) The overtones present in the sound

6-12 The wavelength of light of a particular wavelength
received from a galaxy is measured on earth and is found to be
5% more that its wavelength. It follows that the galaxy is:
(A) Approaching the earth with a speed 3x10' ms"'
P) Going away from the earth with a speed 1.5 x l Q'ms~'
(C) Approaching the earth with a speed 1.5 x ms"'
p) Going away from the earth with a speed 1.5x10'' ms"'
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6-13 Consider a wave represented by y = a cos^ (cor - kx)
where symbols have their usual meanings. This wave has :
(A) An amplitude a, frequency co and wavelength X
(B) An amplitude a, frequency 2coand wavelength 2X

(C) An amplitude —a, frequency 2co and wavelength y X

(D) An amplitude y a, frequency 2(o and wavelength X

6-14 A pipe of length 20 cm is open at both ends. Which
harmonic mode ofthe pipe is resonantly excited by a 1700 Hz
source? The speed of sound= 340 ms~^:
(A) First harmonic (B) Second harmonic

(C) Third harmonic (D) Fourth harmonic

6-15 A sine wave has an amplitudeand a wavelength X. Let
Vhe the wave velocity,and v be maximum velocityofparticle in
the medium:

(A) Fcannot be equal to V (B) V=v,ifA = X/2n
(C) V=v,ifA=2'nX P) F=v,if^=^/7t

6-16 At / = 0, a transverse wavepulse in a wire is describedby

6
the function3^ =

x^-3
wherex and;^ are in metre. The function

y (x, t) that describes the wave equation ifit is travelling in the
positionXdirectionwith a speedof4.5 ms~' is :

(A);^ =

(Q 3^ =

(x+4.5r)^ -3

6

(x+4.50^+3

(B) =

(P)y=

(x-4.50 +3

6

(x-4.50^-3

6-17 A motion is described by>' = 3e* . where x are in
metre and t is in second :

(A) This represents equation of progressive wavepropagating
along- Xdirection with3 ms~'

p) This represents equation of progressive wavepropagating
along + Xdirection with 3 ms"'

(Q This does not represent a progressive wave equation
P) Data is insufficient to arrive at any conclusion ofthis short

6-18 Twowaves ofsame frequency, constant phase difference
but different amplitude superpose at a point:
(A) The resultant intensity varies periodically as a function of

time

P) There will be no interference
(C) There will be interference in which the minimum intensity

will not be zero

p) There will be interference in which the minimum intensity
is zero

6-19 A wave equation is represented as

r = sin

-

a cos
2 J

V

cor-a;

Waves

x + y

wherex and^ are in metre and r is in second. Then,
(A) The wave is a stationary wave
(B) The waveis a progressivewavepropagating along + x axis
(Q The wave is a progressive wave propagating at right angle

to the+ x axis

471
p) All points lying on line y = x+ — are always at rest

6-20 A wave source of frequency v and an observer are located
a fixed distance apart. Both the source and observer are
stationary. However, the propagation medium (through which
the waves travel at speed v) is moving at a uniform velocity
in an arbitrary direction. If v' is the frequency received by the
observer then :

(A) vVv
p) v' = V as the transit time from source to observer is the

same for all wave fronts

(C) v' < V as the transit time from source to observer is the

same for all wave fronts

p) Data Insufficient

6-21 Two wave functions in a medium along x-direction are
given by.

>^1
1

2 + (2x-30" ' 2 + (2x + 3i-6y

where x is in metres and t is in seconds :

(A) There is no position at which resultant displacement will
be zero at all times

P) There is no time at which resultant displacement will be
zero everywhere

(Q Both waves travel along the same direction

P) Both waves travel in opposite directions

6-22 Mark correct statement(s):
(A) Maximum pressure variation takes place at nodes
p) In case ofstationary wave, relative deformation at a point

u

is given by AF* = —, where u is particle's velocity at that

point.

(Q When a stationary wave is established maximum intensity
is obtained at antinodes

p) None of these

6-23 A sine wave ofwavelength Xis travelling in a medium.
The minimum distance between the two particles, alwa>«having
same speed, is:
(A) V4 P) A/3 •
(Q A/2 P) A

1
•m
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6-24 The figureshowsfourprogressivewavesA,B,C8l D. It
can be concluded fi^om the figure that with respectto wave^:

03t=itJ2 (nfx co/ = 3jt/2

Figure 6.97

(A) The wave C is ahead by a phase angle of idl & the waveB
lags behind by a phase angle nil

(B) The wave C lags behind by a phase angle of nil & the
wave B is ahead by a phase angle ofidl

(Q The wave C is ahead by a phase angle of :r & the wave B
lags behind by the phase angle of tt

(D) The wave C lags behind by a phase angle oftc& the wave
B is ahead by a phase angle oftz

375
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NumericalMCQs Single Options Correct

6-1 A man sets his watch by the sound ofa siren placed at a
distance Ikmaway. Ifthe velocity of sound is 330 m/s:
(A) His watch is set 3s faster His watch is set 3s slower
(C) His watch is set correctly (D) None of the above

6-2 The frequency of a tunning fork is 384 per second and
velocity of sound in air is 352 m/s. How far the sound has
traversed while fork completes 36 vibration :
(A) 3m (B) 13m

(Q 23m P) 33m

6-3 The equation of displacement of two waves are given as

yj = 10 sin 37t/ +—;>>2 =5(sin Int +-Jz cos 371?). Then what is
V 3 y

the ratio of their amplitudes:
(A) 1:2 (B) 2:1

(C) 1:1 P) None of these

6-4 Consider ten identical sources of sound all giving the same
frequency but having phase angles which are random. If the
average intensity of eachsourceis /q, the average of resultant
intensity I due to all these ten sources will be :
(A) /=100/(, P) /=10/o

(C)/=/„ p)/=Vioi„

6-5 The displacement-time graphs for two sound waves A and
5 are shown in thefigure-6.98, then the ratio oftheir intensiti^

/ /g is equalto:

(A) 1:4

(Q 1:2

la-

Figure 6.98

P) 1:16
P) 1:1

6-6 A tuning fork of frequency 340Hz is vibrated just above
the tube of 120 cm height. Water is poured slowly in the tube.

What is the minimum height of water necessary for the
resonance (speed ofsound in the air = 340 m/sec):
(A) 15cm P) 25 cm
(Q 30 cm p) 45 cm

6-7 Two monoatomic ideal gases 1 and 2 ofmolecular masses
w, and respectively are enclosed in separate containers
kept at the same temperature. The ratio ofthe speed ofsound in
gas 1 to that in gas 2 is given by:

(A) P)

(Q -T P) "T

6-8 An organ pipe is closed at one end has fundamental
frequency of 1500 Hz. The maximum number of overtones
generated by this pipe which a normal person can hear is :
(A) 14 P) 13
(Q 6 P) 9

6-9 The speed ofa wave in a medium is 760 m/s. If3600 waves
are passing through a point, in the medium in 2 minutes, then its
wavelength is:
(A) 13.8m P) 25.3m
(Q 41.5m P) 57.2m

6-10 A tuning fork sounded together with a tuning fork of
frequency 256 emits two beats. On loading the tuning fork of
frequency256, the number ofbeats heard are 1per second. The
frequency oftuning fork is :
(A) 257 P) 258 ^
(Q 256 P) 254

6-11 The powerofa sound from the speaker ofa radio is 20mW.
By turning the knob of the volume control, the power of the
sound-is-increased to 400mW. The power increase in decibels
as compared to the original power is:
(A) 13 dB p) lOdB
(Q 20 dB P) 800 dB

6-12 In the experiment for the determination of the speed of
sound in air using the resonance column method, the length of
the air column that resonates in the fundamental mode, with a

tuning fork is 0.1 m. when this length is changed to 0.35 m, the
same tuning fork resonates with the first overtone. Calculate
the end correction:

(A) 0.012m p) 0.025m

(Q 0.05m P) 0.024m

6-13 An observer moves towards a stationary source ofsound,
with a velocity one-fifth of the velocity of sound. What is the

percentage increase in the apparent frequency:
(A) 5% P) 20%
(Q Zero P) 0.5%

6-14 The intensity of sound from a radio at a distance of
2 metres from its speaker is 1 x 10~^ pW/m^. The intensity at a
distance of 10 meters would be:

(A) 0.2 X10-2 (B) 1X10-2
(Q 4 X10^ pW/m2 P) 5 X10-2
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6-15 A closed organ pipe of length L and an open organ pipe
contain gases of densities p, and P2 respectively. The
compressibility ofgases are equal in both the pipes. Both the
pipes are vibrating in their first overtone with same frequency.
The length ofthe open organ pipe is:

(A) (B)
4Z,

6-16 In Melde's experiment, the string vibrates in 4 loopswhen
a 50 gramweightisplacedin the pan ofweight15gram.Tomake
the string to vibrates in 6 loops the weight that has to be removed
from the pan is:
(A) 0.0007kg wt (B) 0.0021kg wt
(Q 0.036kgwt (D) 0.0029kgwt

6-17 The displacement due to a wave moving in the positive

x-direction is given by y = ^ at time t = 0 and by
® (1 +x^)

1

[l+(x-l)2]
The velocity of the wave in m/s is :
(A) 0.5 (B) 1
(Q 2 (D) 4

6-18 The equation of a progressive wave is given by
y = a sin (628 / - 31.4 x). If the distances are expressed in cms
and time in seconds, then the wave velocity will be:
(A) 314 cm/sec (B) 628cm/sec
(C) 20 cm/sec P) 400 cm/sec

6-19 Twowaves are approaching each other with a velocityof
20 m/s and frequencyn. The distance betweentwo consecutive
nodes is :

20 10
(A) — P) —

(Q

at t = 2 seconds, where x andy are in metres.

P)

n

n

10

6-20 Consider the three waveszpZjandzjasZj =/4 sin(Ax-co/),
= A sin (Ax + co/) and z^ = A sin (Ay - mt). Which of the

following represents a standing wave:
(A)z,+Z2 (B) Z2 + Z3
(Q Z3 + Z1 P) Zj+Z2 +Z3

6-21 Equation of a progressive wave is given by

t X
y=asm 71

2 4
, where t is in seconds andx is in meters. The

distance through which the wave moves in 8 sec is (in meter):
(A) 8 (B) 16
(Q 2 P) 4

"3771

6-22 The phase difference between two waves represented by
yj = 10"^ sin [100 t + (x/50) + 0.5]m and y^ = 10"^ cos
[1001 + (x/50)]w wherex is expressed in metres and t is expressed
in seconds, is approximately:

(A) 1.5rad (B) 1.07rad

(C) 2.07 rad (D) 0.5 rad

6-23 Two waves aregiven byyj a sin (co/-Ax) andy2 = t7Cos
(co? ~ Ax) The phase difference between the two waves is:

(B) TT

(Q
7. P) f

6-24 Two similar sonometer wires given fundamental
frequencies of 500Hz. These have same tensions. By what
amount the tension be increased in one wire so that the two

wires produce 5 beats/sec :

(A) 1% P) 2%
(c) 3% (P) 4%

6-25 A source of sound is travelling towards a stationary
observer. The frequency of sound heard by the observer is of
three times the original frequency. The velocity of sound is
Vm/s. The speed ofsource will be:

(A)
2
— V

3

3
(Q -V

P) V

P) 3v

6-26 A tuning fork offrequency 480 Hz produces 10 beats per

secondwhen sounded with a vibrating sonometer string. What
must have been the frequency of the string ifa slight increase
in tension produces lesser beats per second than before :
(A) 460Hz P) 470Hz
(C) 480 Hz p) 490 Hz

6-27 A string is producingtransversevibrationwhoseequation
isy = 0.021 sin (x + 30/), Wherex andy are in meters and / is in
seconds. If the linear densityof the string is 1.3 x lO^kg/m,
then the tension in the string in 7/will be:
(A) 10 p) 0.5
(C) 1 P) 0.117

6-28 In a large room, a person receives direct sound waves
from a source 120 m away from him. He also receives waves

from the same source which reach him, being reflected from the
25 metre high ceiling at a point halfway between them. The two
waves interfere constructively for wavelength of:

(A) 20,20/3,20/5 etc

(C) 10,20,30 etc

P) 10,5, y,2.5etc
P) 15,25,35 etc



!378

6-29 A sound source is moving towards a stationary observer
with 1/10 ofthe speed of sound. The ratio of apparent to real

frequency is:
(A) 10/9 (B) 11/10

(C) (11/10)2 pj (9/10)2

6-30 Astring oflength 0.4m andmass 10"^ kgis tightly clamped
at its ends. The tension in the string is 1.6 N. Identical wave
pulses are produced at one end at equal intervals of time At.
The minimum value of t which allows constructive interference

between successive pulses is :
(A) 0.05 s (B) 0.10 s
(C) 0.20 s P) 0.40 s

6-31 An earthquake generates both transverse (5) and
longitudinal (P) soundwaves in the earth. The speedof5 waves
is about 4.5 km/s and that of P waves is about 8.0 km/s. A

seismograph records P and S waves from an earthquake. The
first P wave arrives 4.0 min beforethe first 5"wave.The epicenter
ofthe earthquake is located at a distance about:

(A) 25km p) 250km
(Q 2500km .p) 5000km

6-32 Twowavesare propagating to the pointP along a straight
line produced by two sources A and B ofsimple harmonic and
ofequal frequency. The amplitude ofevery wave at P is 'a' and

71
the phase ofA is ahead by — than that ofB and the distance

AP is greater than BP by50 cm. Then the resultant amplitude at
the point P will be, ifthe wavelength is 1 meter;

(A) 2a P) a^/3

(Q aV2' P) a

6-33 The superposing wavesare representedbythe following
equations

3^1 = 5sin27C (10/ - 0.Ix),̂ '2 ~ ^ sin2k(20/- 0.2x)

Ratio ofintensities

(A) 1

(Q 4

will be:

(B) 9
•p) 16

6-34 The correct graph between the frequency « and square
root of density (p) of a wire, keeping its length, radius and
tension constant, is

(A) (B)

Tp
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(Q P)

rp Tp

6-35 Two identical stringed instruments have frequency
100 Hz. If tension in one ofthem is increased by 4% and they
are sounded together then the number of beats in one second
is:

(A) 1 (B) 8 ••
(Q 4 p) 2

6-36 Which ofthe following function correctly represent the
travelling wave equation for finite values ofx and t:
(A) y = x^-t^
(B) y = cos sin /
(Q 3'= Iog(x2-/2)-iog(x-/)
P) y = e'^ sin t

6-37 A violin string oscillating in its fundamental mode,
generates a sound wave with wavelength X. Togenerate a sound
wave with wavelength X/2 by the string, still oscillating in its
fundamental mode, tension must be changed by the multiple:
(A) 2 P) 1/2
(C) 4 P) 1/4

6-38 Sinusoidal waves 5.00cm inamplitude are tobetransmitted
along a string having a linear mass density equal to
4.00 X10~2kg/m. Ifthesource can deliver amaximum power of
90 Wand the string is under a tension of 100 N, then the highest
frequency at which the source can operate is (take = 1o):
(A) 45.3Hz P) 50Hz
(Q 30 Hz P) 62.3 Hz

6-39 Wavepulse on a string shown in figure-6.99 is moving to
the right without changing shape. Consider two particles at
positionsXj = 1.5 mandx2=2.5 m. Their transverse velocities at
the mcmient shown in figure are along directions:

'x{m)

Figure 6.99

(A) positive3'-axis and positive>'-axis respectively
P) negativey-axis and positive_y-axis respectively
(Q positive3'-axis and negative_y-axis respectively
p) negative >'-axis and negative^'-axis respectively
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6-40 Wliat is the percentage change in the tension necessary
in a sonometer of fixed length to produce a note one octave
lower (halfoforiginal frequency) than before:
(A) 25% (B) 50%
(Q 67% (D) 75%

6-41 A wirehavinga linear mass density 5.0 x 10 ^kg/m is
stretched between two rigid supports with a tension of450 N.
The wire resonates at a frequency of420 Hz. The next higher
frequency at which the same wire resonates is 480 Hz. The
length ofthe wire is:
(A) 2.0m (B) 2.1m
(Q 2.5m P) 3m

6-42 A 20 cm long rubber string obeys Hook's law. Initially
when it is stretched to make its total length of24 cm, the lowest
frequency ofresonance is Wq. It is further stretched to make its
total length of 26 cm. The lowest frequency of resonance will
now be:

(A) The same as (B) Greaterthan Wq
(Q Lower than P) None of these

6-43 The equation ofa waveis given by(all quantityexpressed
in S.I. units) y = 5 sinlOn (/ - 0.01 x) along the x-axis. The
magnitude of phase difference between the points separated
by a distance of 10m along x-axis is:
(A) •n/Z P) Ti: ,
(Q 2jt P) 7c/4

6-44 Which of the following travelling wave will produce
standing wave, with node at x = 0, when superimposed on
y~A sin (cof-^x):
(A) ^ sin (0)/ +Ax) P) .4sin(o)r+Ax + 7c)
(Q A cos ((0/ + Ax) p) A cos (ro/ + Ax + k)

6-45 Equation of a standing wave is generally expressed as
y = 2Asm(£)t cos Ax. In the equation, quantity co/A represents :
(A) The transverse speed of the particles of the string
P) The speed ofeither of the component waves
(Q The speed of the standing wave
P) A quantity that is independent of the properties of the

string

6-46 The figure shows at time t = 0 second, a rectangular and
triangular pulse on a uniform wire are approaching each other.
The pulse speed is 0.5 cm/s. The resultant pulse at / = 2 second
is:

A

m cm

Figure 6.100

(A)

(B)

(Q

(D)

in cm

2 cm

L

l\
1 \
1 \
1 \
1 \
1 N
1
1

— 1
\ in cm

-1

4 cm'-
in cm

in cm

2cni

2 cm

mcmA

4 cm y

2 cm

-1 2 incm
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Comprehensionfor Q. No. 47 & 48

Difference in frequencies between 3^ overtone ofclosed pipe
and 5*^ harmonic ofthesame pipe is400 Hz. Further, 3"^ harmonic
of this closed pipe is equal to 6"^ harmonic of another organ
pipe.

6-47 Fundamental frequencies of closed pipe and open pipe
are:

(A) 200Hz,400Hz P) Hz,75Hz
(C) 200Hz,100Hz P) 400Hz,300Hz

6-48 Ifspeed of sound is 330 m/s. The lengths of closed pipe
and open pipe are :
(A) 0.4125 m, 1.65 m p) 3.3m, 1.65 m
(C) 0.825m, 0.825m P) 1.65m, 0.825m

Comprehensionfor Q. No. 49 to 51

A stretched string has linear density, p = 525 g/m and is under
tension, 7'=45N.

A sinusoidal wave with frequency,/= 120 Hz and amplitude 8.5
mm is sent along the string from one end.
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6-49 The angular frequency is:

(A) 120rad/s (B) 754rad/s
(Q 386rad/s (D) 820rad/s

6-50 The wave speed is :
(A) 62.9 m/s

(Q 7.28 m/s
(B) 96.8 m/s

P) 9.25 m/s

6-51 The rate at which the wave transports energy is :
(A) SOW (B)180W

(C)IOOW (D)25W

Comprehensionfor Q, No. 52 & 53

Let one wave travelling along a stretched string be given by

t)=y^ sin{kx-(iit)
and another, shifted from the first, by

y^ix, 0=:v„sm (toc-o>/ + (l))
Both these waves travel in the positive direction of the x-axis,
with the same speed.

6-52 The equation of resultant wave due to the two waves is
y{x,t) =

(A) 2jw(sin^)[sin(fo:-co/'+^)]

(B) V {sin(i)) sin

(C) 2v cos —

2

, ^
kx-(£>t-\- —

2

sinf fcr-co/+—I
. V 2j_

p) 2^^^(cos(j))[sin(Ax-co/+ (}))]

6-53 Out ofthethree wave equationsy, (x, /),y2(x, /)andthe
resultant y' (x, /), which wave would you actually see on the
string?

(A)y'(x,/) p)yj(x,/)
(Q y2 (x, /) P) All of these

6-54 A wave pulseisgenerated in a stringthat liesalongx-axis.
Atthe pointsAand B,asshown infigure-6.101, if7?^ and are
ratio ofthe particle speed to wave speed respectively then :

Figure 6.101

(A) R^>R^
P) Rg'^R^
(Q R^=R,
P) information is not sufficient to decide.
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6-55 When a wave pulse travelling in a string is reflected from

a rigid wall to which string is tied as shown in figure-6.102. For
this situation two statements are given below :

I
Figure 6.102

(1) The reflected pulse will be in same orientation ofincident
pulse due to a phase change of n radians

(2) During reflection the wall exert a force on string in upward
direction

For the above given two statements choose the correct option
given below.

(A) Only (I) is true p) Only (2) is true
(C) Both are true p) Both are wrong

6-56 A transverse wave described by equation y = 0.02
sin (x + 30 /) (wherex and / are in metres and sec.respectively)
is travelling along a wire of area of cross-section Imm^ and
density 8000 kg/m^. What is thetension in thestring ?
(A) 20N P) 7.2N

(Q 30N P) 14.4N

6-57 Two vibrating strings of same material stretched under
same tension and vibrating with same frequency in the same
overtone have radii 2r and r. Then the ratio oftheir lengths is:
(A) 1:2 P) 1:4
(Q 1:3 P) 2:3

6-58 A wavemovingwith constantspeedon a uniformstring
passes the point x = 0 with amplitude angular frequency
and average rate of energy transfer P^. As the wave travels
down the string it gradually loses energy and at the point x = I,

p
the average rate of energy transfer becomes . At the point

X= /, angular frequencyand amplitude are respectively:

(A) coQand^o/V2 P) (Oo^V2 and^^Q
(Q Less than cOq and/IQ P) (Hq! yjl ond AJ

6-59 A standingwave pattern isformed ona string.One ofthe
waves is given byequation y^~a cos (co/ - Ax + 7t/3) thenthe
equation ofthe other wave such that atx = 0 anode is formed :

(A) y2= o sin (co/ + Ax + —)

P) yj = cos (©/ -H Ax +Y)

(Q yj-ccos(co/-I-Ax +̂ )
471

P) y2= <? cos (cot -1- Ax + —)
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6-60 The(x.y)coordinates ofthe corners ofasquareplateare
(0,0) (L,0) {L, L) and{0, L).The edgesoftheplateareclamped
& transverse standing waves are set up in it. If u(x,y) denotes
the displacement of the plate at the point {x,y) at some instant
oftime, the possible expression for'u' is: [a = positive constant]

(A) a cos
•JVC

U
cos

Tzy

2L
(B) asin[^] sin

/ \

Tlx

p) a cos
'27IX^

a sin sin sin
^ J I LJ

TCF

6-61 The particle displacement (in cm) in a stationary wave is
given byy(x, t) = 2 sin (0.1to:)cos (100 nt). The distance between
a node and the next antinode is :

(A) 2.5cm (B) 7.5cm
(Q 5 cm (D) 10cm

6-62 A wire of length 7' having tension Tand radius V vibrates
with fundamental frequencyAnother wire ofthe same metal

with length 21having tension 2Tand radius 2r will vibrate with
fundamental frequency:

(A)/ (B) 2/

/
(Q 2n/2

(D) 1^2

6-63 A transverse wave is propagating along +x direction. At

t = 2 sec, the particle at x = 4 m is at^' = 2 mm. With the passage

oftime itsy coordinate increases and reaches to a maximum of
4 mm. The wave equation is (using co and k with their usual
meanings):

(A) y = 4sin [a)(/'+2) + A:(x~2)+ —]

^) y = 4sin[o)(/ + 2) + ^:(x)+—]

Stt
(C) y = 4sin [(o(t-2)-k(x-4) + —]

6

p) y = 4sin[co(r-2)-A:(x-4)+ —]

6-64 In the figure shown strings AB and BC have masses m and
2m respectively. Both are ofsame length /. Mass ofeach string
is uniformly distributed on its length. The string is suspended

wave pulse is given at the end 'C. It goes up to

9610
upper end 'A' in time 7'. Ifm —2kg, 1= ':^o\ nt,

16ol

g- lOm/s^, V2 = 1.4, >/3 =1.7 then 7'is equal
to:

620 434

(Q 2s

205 ^
(D) None of these

A

m, I

B

2m, 1

C

Figure 6.103
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6-65 A 75 cm string fixed at both ends produces resonant
frequencies 384 Hz and 288 Hz without there being any other
resonant frequency between these two. Wave speed for the
string is:

(A) 144m/s (B) 216m/s

(C) 108m/s (D) 72m/s

6-66 A string of length 7' is fixedat both ends.It is vibrating
in its3"^ overtone with maximum amplitude 'a'. Theamplitude

at a distance - from one end is :

(A) a

(Q
•JZa

(B) 0

a

(D) -

6-67 A 40 cm longwire havinga mass 3.2 gra and area ofcross
section Imm^is stretchedbetween the support40.05 cmapart.
In its fundamental mode, itvibrates with a frequency 1000/64Hz.
Findthe young'smodulusofthe wire in the form 10^ N-m^
and fill value ofX:

(A) 1 (B) 2
(Q 3 P) 4

6-68 A string of length 1.5 m with its two ends clamped is
vibrating in fundamental mode. Amplitude at the centre ofthe

string is 4 mm. Minimum distance between the t^\^o points
having amplitude 2 mm is:
(A) Im P) 75cm

(Q 60 cm P) 50 cm

6-69 A string is fixed at both ends. The tension in the string
and density ofthe string are accurately known but the length

and the radius of cross section ofthe string are known with
some error. Ifmaximum errors made in the measurement oflength

and radius are 1% and 0.5% respectively then what is the
maximum possible percentage error in the calculation of

fundamental frequency ofthat string:

(A) 0.5% P) 1.0%

(Q 1.5% P) 2.0%

6-70 A string of length 7' fixed at both ends vibrates in

resonance with a tuning fork offrequency'/' at two successive
valuesof tension and 7'2inthe string. Findthe specificmass
(mass per unit length) ofthe string:

(A)

(A)
TiT2

(A)
27;r2

P) None of these
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Comprehensionfor Q. No. 71 to 73

A block ofmass 2m is hanging at the lower end

of a rope of mass m and length the /, the other
end being fixed to the ceiling. A pulse of
wavelength Xq is produced at the lower end of
the rope.

-/////////.

•m,.

2m

Figure 6.104

6-71 The wavelength of the pulse when it reaches the other
end ofthe rope is :

(A)

(C)

(B)

P) Y

6-72 The speed of the pulseat the mid point of rope is:

(A) \

6-73 The time taken by the pulse to reach the other end ofthe
rope is:

(A) 2 -(^3-1)
I o

(C) 2,

(B)

P) 2 -(^-V2)

Comprehensionfor Q. No. 74 to 76

A standing wave exists in a string of length 150cm fixed at both

ends. The displacement amplitude of a point at a distance of
10 cmfrom oneofthe ends if 5^3 mm. Thedistance between
two nearest points, within the same loop having the same

displacement amplitude of5^3 islOnm.

6-74 The maximumdisplacement amplitude of theparticlein
the string is,:

(A) lOmm (B) (20/73 )mm
(Q IO^^mm (D) 20mm

6-75 The mode of vibration of the string, i.e. the overtone
produced is:

(A) 2 (B) 3
(Q 4 (D) 6

6-76 At whatmaximumdistance fromoneend, is thepotential
energy ofthe string zero :

(A) 10 73 an (B) 15 cm
(Q 20 cm (D) 30cm

'Waves

Comprehensionfor Q. No. 77 to 79

A transverse sinusoidal wave is generated at one end ofa long
horizontalstring bya bar that moveswithan amplitudeof 1.12 cm.
The motion ofthe bar is continuous and is repeated regularly

120 times per second. The string has linear density of 117 g/m.
The other end ofthe string is attached to a mass 4.68 kg. The
string passes over a smooth pulley and the mass attached to

the other end ofthe string hangs freely under gravity.

6-77 The maximum magnitude ofthe transverse speed is :
(A) 10.884m/s (B) 8.44m/s
(C) 844m/s (D) None of these

6-78 The maximum magnitudeofthe transversecomponentof
tension in the string is :
(A) Zero (B) 3.77N

(Q 37.7N (P) 377N

6-79 The maximumpower transferredalongthe string is:
(A) 3.845kW (B) 34.85kW
(Q 348.5 kW/d (D) None of these

6-80 The wave-function fora certain standing waveon a string
fixed at both ends isy(x, /) = 0.5 sin (0.0257cx) cos 500/wherea:
and y are in centimeters and t is in seconds. The shortest
possible length ofthe string is :
(A) I26an (B) I60cm

(C) 40 cm (D) 80cm

6-81 A loopofa string ofmass per unit length p and radiusR
is rotated about an axis passing through centre perpendicular
to the plane with an angular velocityco. Asmall disturbance is
created in the loop having the same sense of rotation. The
linear speed of the disturbance for a stationary observer is :
(A) GiR (B) IdiR
(Q 3cQff p) Zero

6-82 Graph showsthree wavesthat are separatelysent along
a string that is stretched under a certain tension along x-axis. If

aij,C02 and CO3 are their angular frequencies respectivelythen;

(A) cOj = CO3 > CO2
(Q > CO, = CO3

Figure 6.105

(B) CO, >C02>C03
P) CO, = CO2 = CO3
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6-83 The sameprogressive wave isrepresented bytwo graphs
I and II.GraphI shows howthe displacement y varieswith the
distance jT-along the wave at a given time. Graph n showshow
y varies with time t at a given point on the wave. The ratio of
measurements AB to CD, marked on the curves, represents :

(A) Wave number k

(Q Frequency v

(I)

(H)

Figure 6.106

(B) Wave speed V

(D) Angular frequency cl)

6-84 A transverse periodic wave on a string with a linear mass
density of 0.200 kg/m is described by the following'equation
y = 0.05 sin(420 /- 21.0 x) wherex andy are in metres and t is in
seconds. The tension in the string is equal to ;
(A) 32 N (B) 42N
(Q 66N (D) SON

6-85 A certain transverse sinusoidal wave of wavelength
20 cm is moving in the positive x-direction. The transverse
velocity ofthe particle atA: = 0 as a function oftime is shown.
The amplitude ofthe motion is :

Figure 6.107

(A) —cm
71

10
(Q —cm

(B) ^cm

(D) 2%cm

383

6-86 Two particles of medium disturbed by the wave
propagation are at Xj = 0 and Xj = 1cm. The respective
displacements (in cm) of the particles can be given by the
equations :

yj = 2sin37tt
y2= 2sin (37i^-7r/8)

The wave velocity is :
(A) 16 cm/sec (B) 24 cm/sec
(C) 12 cm/sec (D) 8 cm/sec

6-87 A travelling wavey = A sin (fcc - co? + 0) passes from a
heavier string to a lighter string. The reflected wave has
amplitude 0.5.4. The junction of the strings is at x = 0. The
equation of the reflected wave is:
(A) y' = 0.5 A sin (Ax + coC + 0)

(B) y' = -O.5.4sin(Ax + co/ + 0)
(C) y' = -0.5.4 sin((ar-Ax-0)
P) y'-O.5.4sin(Ax+cor-0)

6-88 In the above question, the displacement of particle at
/ = 1 sec and x = 4 cm is:

(A) 4cm P) 2cm
(Q 1cm , (P) 2ero

6-89 Spacing between two successive nodes in a standing
wave on a string isx. Iffrequency of the standing wave is kept
unchanged but tension in the string is doubled, then new
spacing between successive nodes will become :

(A) X/V2 ' P) V2x
(C) x/2 p) 2x

6-90 Two small boats are 10mapart on a lake. Each pops up
and down with a period of4.0 seconds due to wave motion on
the surface ofwater. When one boat is at its highest point, the
other boat is at its lowest point. Both boats are always within
a single cycle of the waves. The speed of the waves is :
(A) 2.5 m/s p) 5.0 m/s
(Q 14m/s P) 40 m/s
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Advance MCQs with One orMore Options Correct

6-1 A sound wave propagates in a medium ofBulk's modulus
B by means ofcompressions and rarefactions. If and are

the pressures at compression and rarefaction respectively,abe
the wave amplitude and k be the angular wave number then,
(A) P^ ismaximum and P^ isminimum
(B) P^isminimumandf^ismaximum
(Q The pressure amplitude is Bak

(P) Ifthe displacement wave isy = a sin ((ot-kx), the pressure
wave at any instant is represented as P = P, cos ((ot- kx)

%which leads displacement wave by aphase angle ofy

6-2 A driver in a stationary car blows a horn which produces
monochromatic sound waves of frequency 1000 Hz normally
towards a reflecting wall. The wall approaches the car with a
speedof 3.3 ms^*:
(A) The frequency of sound reflected from wall and heard by

the driver is 1020 Hz

(B) The frequency of sound reflected from wall and heard by

the driver is 980 Hz

(Q The percentage increase in frequency of sound after
reflected from wall is 2%

(D) The percentage decrease in frequency of sound after

reflected from wall is 2%

6-3 The equation ofa wave isy = 4 sin

and X are in cm and t is in second;

(A) The amplitude, wavelength, velocityand frequency ofwave
are4 cm, 16cm,32cms"* and 1Hzrespectively withwave
propagating along + x direction

(B) The amplitude, wavelength, velocityand frequency ofwave
are4 cm,32 cm, 16cms~* and 0.5Hzrespectivelywithwave
propagating along -x direction

(C) Two positions occupied by the particle at time interval of
0.4 s have a phase difference of0.4 n: radian

(D) Two positions occupied by the particle at separation of
12 cmhaveaphasedifferenceofl35®

6-4 A sinusoidal wave y. = a sin (co/- Ax) is reflected from a

rigid support and the reflected wave superposes with the
incident wave, y.. Assume the rigid support to be at x = 0,

(A) Stationary wave are obtained with antinode at the rigid
support

(B) Stationarywave are obtained with node at the rigid support
(Q Stationary waves are obtained with intensity varying

periodically with distance
OD) Stationary wave are obtained with intensity varying

periodically with time

where y

6-5 Assume that the sun rotates about an axis through its
centre and perpendicular to the plane of rotation of the earth
about the sun. The appearance of the sun, from any one point
on the earth; is shown. Light belonging to a particular spectral
line, as received from the points A, B, C and D on the edge of
the sun, are analyzed :

Figure 6.108

(A) Light from all four points have the same wavelength
(B) Light from C has greater wavelength than the light from D

(Q Light from D has greater wavelength than the light from C
(D) Light from A has the same wavelength as the light from B

6-6 When an open organ pipe resonates in its fundamental
mode then at the centre ofthe pipe:
(A) The gas molecules undergo vibrations of maximum

amplitude
(B) The gas molecules are at rest
(Q The pressure of the gas is constant
(P) The pressure ofthe gas undergoes maximum variation

0.8
6-7y(x,0 =

(4x+5/)^ +5
represents a moving pulse^where

Xandy are in metre and t is in second, then :
(A) Pulse is moving in+ x direction

(B) In2sitwilltraveladistanceof2.5m
(Q Its maximum displacement is 0.16m
(D) It is a symmetric pulse

6-8 In a wave motion y^
(A) Electric field
(Q Displacement

a sin (Ax - (at),y can represent:
(B) Magnetic field
p) Pressure

6-9 A wave travelling in a stretched string is described by the
equationy=y4 sin (cof-Ax). The maximum particle velocity is:

(A) A(a

(Q
dca

dk

(B) f

(D) f
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6-10 In Q.No. 6-9,

CO
(A) Wave velocity is —

K

(Q Wavevelocityis/4co (D) Groupvelocityis^to

6-11 As a wave propagates :
(A) The wave intensityremains constant for a plane wave

The wave intensity decreasesas the inverse ofthe distance
from the source for a spherical wave

(Q Thewave intensity decreases as the inverse square of the
distance from the source for a spherical wave

p) Total power ofthespherical wave over thespherical surlace
centred at the source remains constant at all times

6-12 Anyprogressive waveequationin differentialform is :

(Ai =
«>^ dt^ k' Sx'

(B) Group velocity is ~
ak

m)
^ ^ (0 di k dx

1 d'̂ y 1 d^y \ dy _ \ dy
co^ k' dx' (i) dt k dx

6-13 Two wave of nearly same amplitude, same frequency
travelling with same velocity are superimposing to give
phenomenon of interference. If aj and be their respective
amplitudes, (o be thefrequency for both, v bethevelocity for
both and A(j) is the phase difference between the two waves
then,

(A) The resultant intensity varies periodically with timeand
distance

I •
P) The resultant intensity with =

max V I 2

obtained forcoherentwavestravellingin the samedirection.
(C) Both the waves must have constant phase difference at

any point all the time.

P) /^ = 7, + /2 + 2 cos (Atj)), where constructive
interference is obtained for path differences that are odd

multiple of A, anddestructive interference isobtained for

path differences that are even multiple ofy A,

6-14 Two sinewaves ofslightlydifferent frequencies/, andj^
(/i >f^) with zero phase difference, same amplitude, travelling in
the same direction superimpose:
(A) Phenomenon of beats is always observed by human ear
P) Intensity of resultant wave is a constant
(Q Intensity of resultant wavevariesperiodically with time

withmaximumintensity4</and minimum intensity zero

P) Amaxima appears at atime ^ ^^ later (or earlier)
than a minima appears

IS

2(/,-/2)
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6-15 The displacementofa particle in a medium due to a wave
travelling in the A:-direction through the medium is given by
y = sin (at - Px), where t = time, and a and P are constants:
(A) The frequency of the wave is a
(B) The frequency ofthe wave is a/(27c)
(Q The wavelength is (27t)/p
P) The velocityofthe wave is a/p

6-16 A wave is represented by the equation

y=asin |̂ 107cc+15jt/'+Y
where x is in metre and / is in second. The expression
represents;

(A) Awave travelling inthepositiveA:-direction witha velocity
of1.5 ms"'

P) Awave travelling inthenegativex-direction with a velocity
of1.5 ms"'

(Q A wave travelling in the negative x-direction with a
wavelength of0.2 m

p) A wave travelling in the positive x-direction with a
wavelength of0.2 m

6-17 Consider a harmonic wave travelling on a string ofmass
perunit length p.Thewave has a velocity v,amplitude Aand
frequency/Thepower transmitted byaharmonic wave onthe
string is proportional to (take constant of proportionality as
271?):
(A) p P) V
(Q P) f

6-18 Standing wave can be produced:
(A) In a string clampedat both the ends
P) In a string clamped at oneendandfree at theother
(Q When incident wave gets reflected from the wall

superimpose
P) When two identical waves with aphase difference ofn are

movingin the samedirectionsuperimpose

6-19 For a sine wave passing through a medium, lety be the
displacement of a particle, v be its velocity and a be its
acceleration:

(A) y, Vand a are always in the samephase
P) y and a are always in opposite phase
(C) Phasedifference betweeny and v is 7r/2
P) Phasedifference between vanda is n/2

6-20 P, Q andRare three particlesofa mediumwhichlie onthe
x-axis. A sine wave of wavelength A, is travelling through the
mediumin thex-direction.P and Q alwayshavethe samespeed,
while P and R alwayshave the same velocity. The minimum
distance between :

(A) PandeisA/2 , (B) PandQhX
(C) Pandi?isA/2 P) PandRisX
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6-21 . transverse simple harmonic wave is travelling on a
string. The equation ofthe wave:
(A) Is the general equation for displacement ofa particle ofthe

string at any instant t

(B) Is the equation of the shape of the string at any instant t

(Q Must have sinusoidal form
(P) Is an equation ofdisplacement for the particle at any one

end at a particular time t

6-22 A sound wave passes from a medium A to a medium B.
The velocity of sound in B is greater than in A. Assume that
there is no absorption or reflection at the boundary. As the
wave moves across the boundary :
(A) The frequency of sound will not change
(B) The wavelength will increase
(Q The wavelength will decrease
(D) The intensity of sound will not change

6-23 In a stationary wave system, all the particles of the
medium:

(A) Have zero displacement simultaneously at some instant

(B) Have maximum displacement simultaneously at some

instant

(C) Areat rest simultaneously at some instant
P) Reach maximum velocity simultaneouslyat some instant

6-24 In the previousQ.No. 6-23, all the particles:
(A) Of the medium vibrate in the same phase
(B) In the region between two antinodes vibrate in the same

phase

(C) In the region betweentwonodes vibrate in the same phase
p) On either side ofa node vibrate in opposite phase

6-25 Two simple harmonic waves are represented by the
equations given as

y^ = 0.3sin(314/- 1.57x)
y2= 0.1sm(314/-1.57.x+1.57)

where andy2areinmetre and/is insecond, then wehave:
(A) V, = V2 = 50H2
p) >,| = = 4 m
(C) Ratio of intensity is 9

71 ^P) >>2 I^^ds y, by aphase angle ofy

Waves 1

6-26 Two waves y^ = a sin (co/ - kx) and^2~ ^ cos (od/ - kx)
superimpose at a point;

(A) The resultant amplitude is yfla
P) If/ is the intensity ofeach source then = 21

71(C) The resultantwave leads y^ bya phaseangleof

P) Data insufficient to arrive at options (B) and (C)

6-27 Plane harmonic wave of frequency 500 Hz are produced
in air withdisplacementamplitudeof 10micron.Giventhat density
of air is 1.29kgm~^ and speedof soundin air is340 ms"':
(A) Thepressureamplitudeis 13.76Nm"^
p) Theenergy densityis 6.45 x 10"^Jm""^
(C) The energyflux is0.22Jm'^s"'
P) Only (A) and (C) are correct

(

6-28 Two waves travelling in opposite directions produce a
standing wave. The individual wave functions are given by
yj =4 sin(3;c-2/)cm andyj^^ sin(3x+ 2/)cm, wherexandy
are in cm:

(A) The maximum displacement ofthe motion atx = 2.3 cm is
4.63 cm '

P) The maximum displacement of the motion at x = 2.3 cm is

5.32 cm

TC 47^(Q NodesareformedatxvaluesgivenbyO, y, ,...
7C 71 57r

P) Antinodes are formed at x values given by , •:r, ,
6 2 6

Ik

6 '•••

6-29 Two waves travelling in a medium in thex-direction are
represented byy, =Asin{at- px)andy2=^ cos(Px+ at -7t/4),
where y, andy2 are the displacement of the particles of the
medium, / is time, a and p are constant. The two waves have
different:

(A) Speeds ' P) Directions ofpropagation
(Q Wavelengths p) Frequencies

6-30 Velocity of sound in air is :
(A) Faster in dry air than in moist air

P) Directly proportional to pressure
(Q Directlyproportional to temperature
p) Independent of pressure of air
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UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO & IPhO
FordetailedpreparationofINPhOand IPhO studentscan rifer advancestudymaterial on www.physicsgalaxy.cora

6-1 Write down the equation of a wave travelling in the

negative direction along x-axis with an amplitude 0.01 m,*a
frequency550 Hzand a speed 330 m/s.

Ans' [v ~ 0.01 sin (1100 nl + 10 Jur/3)]

6-2 Calculate the velocityofsound in a gas in which two w^ves
oflength 50 cm and 50.4 cm produce 6 beats per second..

Ans. [378 m/s]

6-3 Speed of sound in hydrogen is 1270 m/s. Calculate the
speedof soundin the mixtureofoxygen and hydrogen inwhich
tlieyaremixedin 1:4ratio.

Ans. [635 m/s] • ...

6-4 When a train is approaching the observer, the frequency
of the whistle is 100 Hz when it has passed the observer, it is

50Hz. Calculate thefrequency when the observer moves with
the train.

Ans. [66.6 Hz] -

6-5 The speedof longitudinalwaveis 100rimes,then the speed
oftransverse wave in a brass wire. What is the stress in wire ?

TheYoung's modulus ofbrass is 1.0 1.0" N/m^.

Ans. [I.O X io'N/m2]

6-6 A copperwire is held at the two ends byrigid supports. At
SO^C the wireisjust taut,withnegligible tension. Findthespeed
of transverse waves in this wireat 10°G (a = 1.7 x 10~^®C~',

1.3 X10" N/m^, 9 X103 kg/m^).

Ans. [70 m/s]

6-7 A train approaching a hill at a speedof 40 km/hr sounds a
whistleoffrequency 580Hzwhen it isat a distanceof 1km from
a hill. Awindwith a speedof40 km/hr isblowingin the direction
of motion of the train. Find (i) the frequency of the whistle as
heardbyan observer onthehill, (ii) thedistance from thehill at
which the echo from the hill is heard by the driver and its

frequency(Velocityofsoundinair l,200km/hr)

Ans: [(i) 599.3 Hz, (ii) (29/30) km, 618.66 Hz]

6f8 A waveoffrequency 500Hzhasa phasevelocity.of350 m/s.
(a) How far apart.are two points 60°out of phase ? (b) What is
the phase difference between two displacements at a certain
point at time 1O^^s apart 7 . ,

Ans. [(a) 0.116 m, (b) re] • _ • •

6-9 The velocityof sound in air at 14°Cis 340 m/s. What will it
be when the pressure ofthe gas is doubled and its temperature

is raised to 157.5°C?

Ans. [416.41 m/s]

6-10 A Steel wire of length 1 metre,mass0.l kg and uniform
cross sectional area 10^m^ isrigidly fixed atboth ends. The
temperature ofthe wire is lowered by 20°C. Iftransverse wave
are set up by plucking the string in the middle, calculate the
frequency ofthe fundamental mode of vibration.
Young's modulus ofsteel = 2 x 10" N/m^, coefficient oflinear
expansion ofsteel = 1.21 x I0"3''C"'.

Ans. [11 Hz]

6-11 The equationy=^ sin 2 ti (5001-x/X) represents a wave.
Speed ofwave is 360 m/s. Calculate
(a) wavelength of wave

(b) distance between two points which are 7c/3 out ofphase.

Ans. [0.72 m] - •

6-12 Which ofthe following represents (a) a progressive wave
and (b) a stationary wave ?
(a) y = 2 cos 5x sin 9/, (b) •

(b) y =2^!x-.vt,
(c) y = sin (5x-0.50 + 4cos(5x-0.5/)

(d) y = cos Xsin / + cos 2x • sin 2/. If progressive, and its
velocity-',

Ans. [(a) stationary, (b) not a wave, (c) progressive, v = 0.1 m/s,

(d) stationary]

6-13 Thevelocityofsoimdin hydrogenis 1270 m/sat0°C and •
the frequencyofa fork is 335 Hz. Find the distance travelledby
sound in hydrogenat 0°Cand 30°Cin the time in which the fork
completes 7.1 vibrations.

Ans. [254 m, 267.6 m]

6-14 At what temperature is the velocityof sound innitrogen
equal to its velocity in oxygenat 20°C?-Theatomic weights of
oxygen and nitrogen are in the ratio 16:14.

Alls. [635 m/s]
' . *

6-15 Calculate the velocity ofsound in a mixture oftwo gases
obtained bymixing Vj and volumes ofthem ifthevelocityof
sound in them bec, and c^. Theatomicity of the gases is the
same.

Ans. [c^., = c,C2 V|+^'2 - n
2 2 J -

V,C, +V2C2
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6-16 Calculate the velocity ofsound in a mixture oftwo gases,

obtained bymixing m, and ofthem ifthevelocityofsound in
the two gases be Cj and respectively The atomicity of the
two gases is the same.

Ans. [
m^C\ +m2c\

+m2

6-17 Calculate the frequencyofa note emittedby a wire 20 cm
in length when stretched by a weight 8 kg, if2 m ofthe wire is

found to weight 4 g. Also calculate the velocity of transverse

wave along the string.

Ans. [495, 198 m/s]

6-18 In a spectrum of light a luminous heavenly body, the
wavelength ofa particular-line is measured tobe3737 A, while
actual wavelength of the line is 3700 A. What is the relative
velocity of the heavenly body with respect to earth ?

Ans. [3 X 10® m/s]

6-19 A wire 50 cm long vibrates 100times per second. Ifthe
length is shortened to 30 cm and the stretching force is
quadrupled, what will be the frequency ?

Ans. [333.33 Hz]

6-20 A sensitivemicrophone with its receiving surface turned
towards a long vertical wall is placed at a distance of2 m from

the wall. A strong source of sound of500 Hz is placed between
the wall and microphone on the line perpendicular to the wall
and passing through the position of microphone. Find the
position of the source where no sound will be heard in the

microphone, (velocity of sound in air = 350 m/s).

Ans. [at distances 0.175 m, 0.525 m, 0.875 m, 1.225 m, 1.575 m and

1.925 m from the wall.]

6-21 A tuning forkwith a frequency at 340 Hz is vibratedjust
abovea cylindricaltube 1.20m long. Water is slowlypoured in
the tube. At what lengths ofthe air column will resonance take

place ? (Velocityofsound in air at room temperature = 340 m/s.

Ans. [0.25 m and 0.75 m]

6-22 A man sets his watch by the noon-whistle of a factory at
a distance of 1.5 kilometres. By how many seconds is his watch

slower than the clock ofthe factory ? (Velocityof sound in air is

332 m/s)

Ans. [4.52 s]

6-23 Whentwotuning forksare soundedtogether, 4 beatsper
second, are heard. One ofthe forks is in unison with 0.96 metre

Waves'

length of sonometer wire and the other is in unison with

0.97 metre length ofthe same wire. Calculate the frequency of

each fork.

Ans. [384 Hz, 388 Hz]

6-24 A bridge is placed under the string ofa monochord at a
point near the middle and it is found that the two parts produce
3 beats per second when the stretching force is 8 kg. Ifthe load

be then increased to 12 kg, determine the rate ofbeating ofthe
two parts ofthe string.

Ans. [3.67]

6-25 A whistle emitting a sound offrequency 440 Hz is tied to
a string of 1.5 m length and rotated with an angular velocityof
20 rad/s in the horizontal plane. Calculate the range of
frequencies heard by an observer stationed at a large distance
from the whistle.

Ans. [403 Hz to 484 Hz]

6-26 An under-water swimmer sends a sound signal to the
surface. If it produces 5 beats per second when compared with
the fundamental tone of a pipe of 20 cm length closed at one
end, what is the wavelength ofsound in water ? (v - = 360 m/s

1500 m/s)

Ans. [329 cm or 337 cm]

6-27 One end ofa string of length 120 cm is tied to a peg and
the other end is attached to a weightless ring that can slide
along a frictionless vertical rod fixe at a distance slightly greater
than 120cm. Find the three longest possible wavelengths.

Ans. [480 cm, 160 cm, 96 cm]

6-28 The minimum intensity of audibility of a source is
10~'̂ W/m^. If the frequency ofthe note is 1000 Hz,calculate
the amplitude of vibrations of air particles. Density of air
= 1.293 kg/m^ andvelocity ofsound = 340m/s.

Ans. [1.07 X 10-" m]

6-29 A plane wave y = A cos (co/ - kx) propagates in the
reference framed. Find the equation ofthis wave in a reference

frame .S'moving in the -i- ve direction ofx-axis with a constant
velocity Vrelative to S.

Ans. ly = A COS 1-— \t-kx'

6-30 The intensity ofa sound wave 20 m away from the sound
source is 3 x 10"^ W/m^. Find the intensity of the wave32 m
away from the source, if the half-thickness for sound of this

frequency is 120 m.

Ans. [2.8 nW/m^]
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6-31 A load of 20 kg is suspended by a steel wire as shown in
figure-6.109. Velocity ofwave whenrubbed with a resined cloth
alongthe lengthis 20timesthe velocity ofthewavein the same
string when it is plucked. Find the area of cross-section of the
wireif yfor steel is 19.6 x 10'®N/m^andg'=9.8m/s^.

ID
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U

Figure 6.109

Ans. [0.004 cm^]

6-32 A policemen blows a whistle offrequency 330 Hzas a car
speeds andpassed himwith avelocity 18 kmperhour. Find the
change in frequency asheard bythedriver ofthecarjustashe
passes thepoliceman. (Velocity ofsound = 320m/s).

Ans. [9.2 Hz]

6-33 A wire ofuniform cross-section is suspended vertically
froma fixedpoint;with a loadattachedat the lower end.Show
that the changein frequency relatedtothe altered frequency of
the wire due torise in temperature is« -ja where a is the
linearcoefficient ofexpansion ofthewireand fQ. is smallrisein
temperature.

6-34 Standing waves are produced by superposition of two
waves

y^ =0.05sin(37r/-2j:),

and >>2 =0.05sin(37t/+2x),
wherexandy aremeasured in metre andt in second. Findthe
amplitude ofthe particle atx = 0.5 m.

Ans. [0.054 m]

6-35 A ship steams towards a hill in the sea and sounds its
siren and the echo is heard after 6 s. The siren is sounded again
3 minutes later after the first sounding and the echo is heard
after4 s. If the velocityof the ship is 6.87 km/hr, calculatethe
velocity of sound in air.

Ans. [341.6 m/s]

6-36 A source of sonic oscillations with frequency and a
receiver are located on the same normal to the wall. Both the

source and the receiver are stationary and the wall recedes from
source with velocity u. Find the beat frequency registered by
the receiver. The velocity ofsound is equal to v.

. 2k«q ,
Ans. [ ]

•• u + v
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6-37 An organ pipe 17 cm long open at oneend radiatesa tone
of frequency 1.5 kHz at temperature 16°C. What harmonic is
this ? What is the fundamental frequency ofthese oscillations
velocity ofsound at NTP is v = 330 m/s.

Ans. [Third harmonic, 489.3 Hz]

6-38 A string 25 cm long and having a mass of 2.5 g is under
tension. A pipe closed at one end is 40 cm long. When the
string is set Nibrating in its first overtoneand the air in the pipe
in its fundamental frequency, 8 beats per secondare heard. It is
observed that decreasing the tension in the string decreases
the beat frequency. If the speed ofsound in air is 320 m/s, find
the tension in the string.

Ans. [27.04 N]

6-39 One end of each of two identical springs, each of force
constant0.5 N/m, are attachedon the positivesides ofa wooden
block of mass 0.01 kg. The other ends of the springs are
connected to separate rigid supports such that the springs are
unstretched and are collinear in a horizontal plane. To the
wooden pieces is fixed a pointer which touches a vertically
moving plane paper. The wooden piece, kept on a smooth
horizontal table is now displaced by 0.02 m along the line of
springand released. If the speed of the paper is 0.1 m/s. Find
the equation of thepath traced bythe pointeronthepaperand
distance between two consecutive maxima of this path.

M

Figure 6.110

Ans. \y = 0.02 sin (10 / - 100 x)]

6-40 Anoteoffrequency300Hzhasan intensityofl microwatt
per square metre. What is the amplitude of the air vibrations
causedbythis sound ?(Densityofair= 1.293 kg/m^ and velocity
ofsound in air = 332 m/s)

Ans. [3.62 x lO"® m]

6-41 A source of sound with natural frequency Vq moves
uniformly along a straight line separated from a stationary
observer by a distance /. The velocity of the source is equal to
Tj fraction of velocityof sound. Find the frequency of sound
received by the observer at the moment when the source gets
closest to him and also find the distance between the source

and the observer at the moment, when the observer receives a

frequency v = Vq.

Ans. [v
1-n'

•]



6-42 A wire when stretched by the weight of a solid,' gives a
fiindamenta) frequaicy v; when the solid is immersed in water it
gives a frequency v, and when immersed in liquid it gives a
frequency ofVj. Calculate the specific gravityof the solidand
that ofthe liquid.

Ans. [d. - H= ^^"^2 1

6-43 Two wires ofdifferent mass densities aresoldered together
end toendand are then stretched undera tension /"(the tension
is samein boththewires). The wayespeedin the secondwire is
three times that in the first wire. When a harmonic wave is

travelling in the first wire, it is reflected at the junction of the
\vires; thereflected wave has halftheamplitude of theincident
wave, (a) If the amplitude of incident wave is A, what are the
amplitudes of the reflected and transmitted waves ? (b)
Assuming no loss inwire, whatfiaction oftheincident power is
reflected at thejunction andwhat fraction is transmitted ? (c)
Showthat thedisplacementjust to theleftofthejunction equals
that just to the right ofthe junction.

6-44 Calculate the velocity ofsound in a mixture ofoxygen,
nitrogen and argon at 0°C when their masses are in the ratio
2:7: 1. The molecular weights of gases are 32, 2S and 40
respectively.

Ans. [328.7 m/s] •

6-45 A nonuni form wireoflengthL and massA/hasa variable
linear densitygivenby p = Ax wherex is thedistancefromone
endof thewireand/:is a constant. Findthe timerequired for a
pulse generated at one end ofthe wire to travel to the other end

when tension in the wire is 7".

2 \2MLAns. [ j

6-46 Microwaves which travel with the speed of light are
reflected from a distantaeroplaneapproaching thewayesource
radar. It isfound thatwhen thereflected waves are beat against•
t̂hewaves radiated from thesource, thebeatfrequency is990 Hz.
If the microwaves are 0.1 m in wavelength, what is the
approaching speed ofthe aeroplane.

Ads. [49.5 m/s] • . .

6-47 Amantvalks towards a cliffwhile beating adrum at the
rate of 5 beats per second till the echo of beating disappears
completely. He walksatthe rate of^kilometres per hour. Calculate
the distance of the man from the cliff in the beginning if he
walked for 5 minute's. (Velocityofsound inair= 350m/s)

Ans. [702 m]

; yv.avQSI

6-48 A tunnel leading straightthrough a hillgreatlyamplifies
tones at 135 and 138 Hz. Find the shortest length ofthe tunnel

ifvelocity ofsound in air is 330 m/s.

Ans. [55 m]

6-49 A smoked plate falls vertically under gravity. Atuning
fork traces wave on it. It is found that-the lengths of two
consecutive groups of 10 waves are 5.143 and 6.64 cm

respectively. What is the frequency of the fork ?

Ans. [256 Hz]

6-50 Asonometer wire under tension of64newton vibrating
in its fundamental mode is in resonance witha vibrating tuning
fork. Thevibrating portion of the sonometer wirehasa length
of 10cmanda mt^s ofonegm.The vibrating tuningforkisnow
moved a wayfromthevibratingwirewitha constantspeedand
an observer standingnearsonometerhearsone beatper second.
Calculate the speed with which the tuning fork is moved, if
velocity ofsound in air is 300 m/s.

Ans. [6.752 m/s]

6-51 Sources ^paratedby20mvibrate according toequations
y[ ^ 0.06 sinitt metre andy^ ~ 0.02 sinn t metre. Theysend out
waves along a rod at speed 3 m/s. What is the equation of
motion ofa particle 12 m from the first source and 8 metre from
the second ? ''

Ans. [0.05 sin itl t- 0.0173 cos w] . . •

6-52 Awire ofdensity9g/cm^ isstretched between two clamps
100cm apart. Whilesubjectedto an extensionof 0.05 cm, what
is the lowest frequency of trarisverse vibrations in the wife,
assuming Young's "modulus of the rnatefial to' be
9x 10" dyne/cm^. • •

Ans. f25V2 = 35.35 Hz]

6-53 Ordinary cotton thread, 200cmofwhich weighs 1g, is
used inMelde's experiment. It isattached atoneendto, ayiWator
of frequency 100 Hz and at the other-to a pan.weighihg 6 g.
What length of the stringWill vibrate in 4 loopsjn the
longitudinalarrangement if 10g weightis put on thepan ?

Ans. [0.708 m]

6-M A heavy ball is suspendedfrom the ceiling ofa motor car
through a light string. A transversepulse travelsat a speedof
60 cm/s on the string when the car is at rest and 62 cm/s when
the car acceleration on a horizontal road. Find the acceleration

ofthe car. Takeg = 10m/s^.

Ans. [3.7 m/sq
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6-55 The differencebetween the apparent frequencyofa source
of sound as perceived by an observer during its approach and
recession is 2% ofthe natural frequencyof the source. Find the
velocityof the source. Takethe velocityof sound as 350 m/s.

Ans. [3.5 m/s]

6-56 Two wires are kept tight between the same pair of
supports. Thetension in thewires areintheratio2; 1,theradii
are in the ratio 3 :1 and the densities are in the ratio 1:2. Find

the ratio of their fundamental frequencies.

Ans. [2 : 3]

6-57 Three metal rods are located relative to each other as

shown infigure-6.101, where Lj+1,2 =2.3. Values ofdensityand
Young's modulus ofthe three materials are:

Pj =2.7x lO^kg/m^,

p2= 11.3 XIQ^kg/m^,
P3 =8.8xl03kg/m^

y,=7x lO '̂̂ Pa,
y2 = 1.6x lO'̂ 'Pa,
73=11 XlO'OPa,

Ifl3= 1.5 m, what must the ratio L^tL^ho. ifa sound wave isto
travel the lengthofrods 1and2 in the sametimeas required to
travel the length ofrod 3 ?

•Lj—^

1 2

3

H _L, 4

Figure 6.111

Ans. [-7^ = 6.258]

6-58 Three secondwaves of frequencies320,344 and 280 are
produced simultaneously. Find thenumber ofbeats persecond,
assuming the humanear's resolution as 10beatspersecond.

Ads. [ 8 ]

6-59 Statewhetherthe following statementistrueor falsegiving
reason in brief: "A source of sound with frequency 256 Hz is
moving with a velocity v towards a wall and an observer is
stationarybetween the sourceand thewall. When theobserver
is bet\veen the source and the wall he will hear beats."

Ads. [False]

6-60 A siren emitting a sound of 1 kHz moves away from a
stationaryobservertowardsa cliffat a speedof 10m/s.Calculate
the frequency of the sound echoed offthecliff(speed ofsound
= 330 m/s). Will there be any beat frequency? Will there be any
beats heard by a man ?

Ans. [A = 1031.0 Hz; A/= 60.4 Hz,No]
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6-61 and^2 aretwo loudspeakers with thesame frequency
of 165 Hzandacoustic output 1.2 x IQ-^ and 1.8x IQ-^ watts
respectively. They vibrate in the same phase. P is a point at a
distance 4 mfrom 5", and3m from S'j.
(a) Howare the phase ofthe two wavesarriving at P related ?

(b) Whatis the intensity of/' if S", is turnedoff on) ?
(c) What is theintensity ofsound at P ifS2 is turned off?
(d) Whatis the intensity at P with S", and S2 on ?

Ans. [(a) n, (b) 0.2 ^ 10"^ W, (c) 0.075 x W, (d) 0.03 x IQ-^ W]

6-62 A stretched sonometer wire gives 2 beats per second
witha tuning forkwhen its length is 14.3 cmand alsowhenits
length is 14.5cm. What is the frequency of the tuning fork?

Ans. [288 Hz]

6-63 The sounding rod of a dust lubeapparatus is made of
brassand is 160cm long.The distancebetween adjacentnodes
in the wave tube was 11.35 cm. Calculate the Young's modulus
of the rod assuming that velocity of sound in air at room
temperature is350 m/s and densityofbrass 9000 kg/m^. '
Ans. [2.2 X 10" N/m-]

6-64 If at / = 0 a travelling wave pulseon a string isdescribed
by the function :

6
y= [x^+3]

whatwillbetheamplitude andwave function representing the
pulse at time/, ifthe pulse ispropagating along positivex-axis
with speed 4 m/s ?

Ans. [Amplitude = 2 m; y = 6/[(jr - 4/)- + 3]]

6-65 A receiver and a source ofsonic oscillation offrequency
n = 2000 Hz are located on the .r-axis. The source swings
harmonically alongthat axiswitha circularfrequency (o andan
amplitude <2=50 cm.Atwhatvalue ofco willthefrequency band
width registered by the stationary receiver be equal to
An= 200 Hz ? The velocityof sound is equal to v = 340 m/s.

Ans. [34 rad/s]

6-66 Calculate the velocity- of sound in air saturated with
moistureat 25®C and 745 mm pressure.The saturation pressure
at 25''C is 23.76 mm ofmercury and the velocityofsound at 0°C
in dry air is 332 m/s.

Ans. [349 m/s]

6-67 TwolongstringsAand B, eachha\4ng Iinearmassdensity
1.2 XIO"^ kg/m, are stretched bydifferenttensions4.8 N and
7.5 N respectively andarekept parallel toeachotherwiththeir
left ends at x = 0. Wavespulses are produced on the strings at
the left ends at / = 0 on string A and at / = 20 ms on string B.
When and where will the pulse on B overtake that on ^4 ?

Ans. [at r = 100 ms at x = 2.0 m]
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6-68 A source ofsound is moving along circular orbit ofradius
3 meters with an angular velocity of 10 rad/s. A sound detector
located far away from the source is executing linear simple
harmonic motion along the line5D (see figure-6.112) with an

amplitude BC = CD = 6 meters. The frequency of oscillation of
the detector is 51k per second. The source is at the points when

the detector is at the point B. If the source emits a continuous

sound wave of frequency 340 Hz, find the maximum and the
minimum frequenciesrecorded by the detector.

1* 6m 6m H

D

Figure 6.112

Ans. [(i) 442 Hz, (ii) 255 Hz]

6-69 A vibrator makes 150 cm ofa string vibrate in 6 loops in
the longitudinal arrangement when it is stretched by 15g. The
entire length of the string is then weighed and is found to
weigh 500 mg. What is the frequency ofthe vibrator ? What is

the distance between two nodes ?

Ans. [84 Hz. 25 x lO'^ m]

6-70 Find the radius vector defining the position of a point
source of spherical waves ifthat source is known to be located
on the straight line between the points with radius vector Fj and
^ atwhich theoscillation amplitudes ofparticles ofthemedium
are equal to and The damping ofwave is negligible, the
medium is homogeneous.

ai+«2

6-71 A long string of length 1.5mis made of steel. The tension
in it produces an elastic strain of 1%. Calculate its fundamental

frequency if density and elasticity of material of the wire are
7.7 XlO^kg/m^ and2.2 x 10" N/m^ respectively.

Ans. [178.174 Hz]

6-72 Fifly-sixtuning forksare arranged in order ofincreasing
frequencies so that each fork gives 4 beats per second with the

next one. The last fork gives the octave of the first. Find the
frequency ofthe first.

Ans. [220 Hz]

6-73 Twoplane sonic waves of same frequencyare travelling
in a homogeneous medium. Loudness recorded by moving
detector in the medium varies from = 30 dB to = 43.974 dB.

Calculate intensity of the two waves

Ans. [9 X 10-9 4 ^ 10"'W/m^]

Waves i

6-74 A column of air and a tuning fork produce 4 beats per sec
when sounded together. The tuning fork gives the lower note.

The temperature ofair is 15°C. When the temperature falls to
10°Cthe two produce 3 beats per sec. Find the frequency ofthe
fork.

Ans. [II0.6 Hz]

6-75 A sourceofsonic oscillationswith frequency« = 1000Hz
moves at right angles to the wall with a velocity m= 0.17 m/s.
Two stationary receivers 7?, and 7?2 located on a straight
line, coinciding with the trajectory of the source,- in the following
succession : 7?|-source-i?2-wall. Which receiver registers the
beating and what is the beat frequency? The velocity ofsound
is equal to v = 340 m/s.

Ans. [1.0 Hz]

6-76 A 200 Hz wave with amplitude 1 mm travels on a long
string of linear mass density 6 g/m kept under a tension of60 N.
(a) Find the average power transmitted across a given point on
the string, (b) Find the total energy associated with the wave in
a 2.0 m long portion of the string.

Ans. [(a) 0.47 W, (b) 9.4 mJ]

6-77 The temperature ofairvaries with height linearly from Fj
at the earth's surface to at a height h. Calculate the time t
needed for a sound wave produced at a heights to reach the
earth's surface. The velocity of sound near the earth's surface

is C.

6-78 The displacement of a wave disturbance propagating in
the A'-direction is given by

1
y-

and y

V(i75)
1

4{2-2x+x^)

at/ = 0

at / = 1 s

where x andy are in metre. The shape ofthe wave disturbance

does not change during propagation. Find the velocity ofwave
propagation.

Ans. [ I m/s]

6-79 A wire of density 9 gm/cm^ is stretched between two
clamps 100 cm apart. While subjected to an extension of0.05 cm,
what is the lowest frequency of transverse vibrations in the
wire, assuming Young's modulus of the material to be
9 XIQiidyne/cm^.

Ans. [25>/2 = 35.35 Hz]
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6-80 The following equations represent transverse waves

z^ =Acos (kx-cat)

z^-A cos(^x + co/)

Z3 = /i COSCA-J-CO/)

Identifythe combination (5) of the wavewhichwill produce(i)
standingwave(s),(ii)a wavetravellingin the direction making
anangleof45 degrees withthepositives: andpositive^ axis. In
each case, find the positionsat which the resultant intensityis
always zero.

n 371 5j: (2n + l)7rAns.[0)z, andzj,,= ^ •

, (2n + l)jt ,
(11) z, and Z3, X= (j:- y) = ——,]

6-81 A wire of length I is keptjust taut horizontallybetween
twowalls. Amass mhanging from its raid-point depressesit by
5.Calculate thetimein which a pulsesetup at oneendwillreach
the other end. The mass of the wire per unit length of it is p.

Ans. [
4^/S

mg

6-82 Wavelength oftwonotes inairare80/195 mand80/193 m.
Eachnoteproduces five beatspersecond witha thirdnoteofa
fixed frequency. Calculate thevelocityofsoundin air.

Ans. [400 m/s]

6-83 A fork and a raonochord string 100 cm long give 4 beats
persecond. The string is made shorter without any change of
tension until it is in unison with the fork. If its length is now

99 cm, what is the frequency of the fork?

Ans. [400 Hz]

6-84 A 40 cm wire having a mass of 3.2 g is stretched between
twofixed supports 40.05 cmapart. In itsfundamental mode, the
wire vibrates at 220 Hz. Ifthe area ofcross-section ofthe wire is

1.0 mm^, find itsYoung's modulus.

Ans. [1.98 X 10" N/m2]

6-85 A stationary observer receives sonic oscillations from
two tuning forks one of which approaches, and the other
recedeswith the samevelocity. As this takesplace, the observer
hears the beatingwith frequency 2.0 Hz. Find the velocityof
eachtuningfork iftheiroscillation frequency is«= 680Hzand
the velocity v ofsound in air is 340 m/s.

Ans. [0.5 m/s]

6-86 Asonometer wire under tension of64 Wvibrating in its
fundamental mode is in resonance with a vibrating tuning fork.
The vibrating portion of the sonometer wire has a length of
10 cm and mass 1gm. The vibrating tuning fork is now moved

393

awayfromthe vibratingwireat a constantspeedand an observer
standing near the sonometer hears one beat per sec. Calculate
the speed with which the tuning fork is moved, if the speed of
sound in air is 300 m/s.

Ans. [0.75 m/s]

6-87 The lineardensityofa wireunder tensionTvarieslinearly
from pj to Pj. Calculate the time that apulse would need to pass
from one end to the other. The length ofthe wire is I.

Ans. [ 2/(ltr-Pp)
3(p2-p,)Vr

6-88 In a sonometer wire, the tension is maintained by
suspending a 50.7 kg and from the free end of the wire. The
suspended mass hasa volume of0.0075 m^. Thefundamental
frequency ofvibration of the wireis 260Hz.Whatwillbe the
fundamental frequency if themass is completely submerged in
water ?

Ans. [240 Hz]

6-89 Calculate the velocity of sound in air on a day when
temperature is 30^0, pressure 0.74 m ofmercury andrelative
humidity 60%. Velocity ofsoundat NTP= 330m/s.Saturated
vapourpressureat 30°C = 0.032m ofmercury.

Ans. [349.4 m/s]

6-90 If a loopof chain is spunat high speed, it will roll like a
hoop without collapsing. Consider achain oflinear mass density
p that is rollingwithoutslipping at a high speed v^. (a) Show
that the tension inthe chain isF= pv^. (b) Ifthe chain rolls over
a small hump, a transverse wave pulsewillbegenerated in the
chain.At whatspeedwill it travel alongthe chain ? (c)Howfar
aroundthe loop (in degrees) will a transversepulsetravelin the
time the hoop rolls through onecompleterevolution ?

Ans. [(a) F= (b) v^, =^FTp ; (c) with respect to a fixed point on
chain, the pulse travels through 360°.]

6-91 In a pipeclosed atbothendsthe maximum amplitude of
vibration is 5 mm and the amplitudeofvibrationat a distance
5 cm fi'om oneend is4.33 mm. The length ofthe pipe is 120cm.
To what mode of vibration does it correspond ? What is the
frequency of thenoteemitted bythe pipe?Velocity ofsound in
the gas enclosed in the pipe 336 m/s.

Ans. [8th harmonic, 140 Hz]

6-92 A 2.00m longrope,havinga massof80g, is fixed at one
end and is tied to a light string at the otherend. The tension in
thestringis256N.(a)Findthefrequencies ofthe fundamental
and the first two overtones, (b) Find the wavelength in the
fundamental and the first two overtones.

Ans. [(a) 10 Hz, 30 Hz, 50 Hz, (b) 8.00 m, 2.67 m, 1.60 m]
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6-93 Calculatethevelocityofsoimdinamediumwherechange 6-99 Show that if «,, M3, /.4, ... are the fundamental
frequencies of the segments into which a string is divided by
placing a number ofbridgesbelowit, the frequencyof the string
is given by

in pressure and volume takes place according to the lawP~'v^
where a is a constant. Treat the medium as in ideal gas and
assume p as its normal density.

\2p
Aas. r J— ]

6-94 A 2 m string is fixed at one end and is vibrating in its third

harmonic with amplitude3 cm and frequency 100Hz. (a) Write
an expression for the kinetic energy of a segment of the string
oflength^i&at a pointx at sometimet.At whattimeis itskinetic
energy maximum ? What is the shape of the string at this time ?
(b) Find the maximum kinetic energy ofthe string by integrating
your expression for part (a) over the total length ofthe string.

Ans. [(a) i/A!' = Y n

line; (b) 89 mJ]

6jtsin| •^jj:sin200jt? dx-, / = 2.5 X 10"^ s, straight

6-95 Show that ifthe rate of change oftemperature with height
dTIdh called lapse rate is a constant, a sound wave travelling
horizontally is refracted along an arc of radius of curvature
^_ryfpdT

6-96 A transverse wave ofamplitude 0.50 mm and frequency

100 Hz is produced on a wire stretched to a tension of 100 N. If
the wave speed is 100 m/s, what average power is the source
transmitting to the wire ?

Ans. [49 mW]

6-97 An aluminium wire oflength 0.6 m and cross-sectional

area 10"^ ra^ is connected to a steel wire of the same cross-

sectional area and length 0.866 m. The compound wire is loaded

with 10 kg. Find the lowest frequency ofexcitation for which
the joint in the wire is a node. Also find the number ofnodes,

excluding the two at the ends of the wire. The density of
aluminium is2600kg/m^ andthatofsteel is 7800 kg/m^.

Ans. [323 Hz, 6]

6-98 Weak back-ground noise from a classroom set up the
fundamental stationary wave in a card-board tube of length
80cmwithtwoopen end. What frequency doyou he^ from the
tube (a) Ifyou jam your ear against one end ? (b) Ifyour move

your ear away enough so that the tube has two open ends.
Take v = 320 m/s.

Ans. [(a) 100 Hz, (b) 200 Hz]

6-100 A heavy string is tied at one end to a movable support
andtoa lightthread^at theother endasshown infigure-6.113.
The thread goes over a fixed pulley and supports a weight to
produce a tension. The lowestfrequencywith which the heavy
string resonates is 120 Hz. If the movable support is pushed to
the right by 10 cm so that the joint is placed on the pulley, what
will be the minimum frequency at which the heavy string can
resonate ?

h—100 cm—H

V////////////////////////////

Figure 6.113

Ans. [240 Hz]

6-101 A uniform circular hoop of string is rotating clockwise
in the absence of gravity. The tangential speed is Vg.,If a
disturbance is created in the string in this state what is the
speed of disturbance along the string ?

Ans. [vj

6-102 A long horizontal pipe is fitted with a piston of mass
10 kg which is connected to another mass 10.5 kg by a string
passing over a frictionless pulley. A source of sound of
frequency 512 Hz is placed in front of the piston. Initially the

piston is almost in touch with the source and it moves away
from the source when the hanging mass is released. Find the
time/s when maximum sound is heard. Assume the string
horizontal between pulley and piston. There is no friction.
Velocity ofsound = 340 m/s. . "

Ans. [0.83 s, 1.44 s, 1.85 s ...]
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ANSWER & SOLUTIONS

CONCEPTUAL MCQS Single Option-Correct

1 (C) 2 (C) 3 (C)

4 (C) 5 (C) , 6 (B)

7 (B) 8 (D) / 9 (C) -

10 (C) 11 (B) 12 (B)

13 (C) 14 (D) 15 (B)

16 (A)

NUMERICAL MCQS Single Option Correct .

1 (C) 2 (A) 3 (B)

4 (B) 5 (A) . 6 (D)

7 (C) 8 (C) 9 (C)

10 (A) 11 (B) 12 (D)

13 (8) 14 (A) 15 (B)

16 (C) .17 (D) 18 (A)

19 (A) 20 (C) 21 (D)

22 (A) 23 . (A) 24 (D)

25 (C) 26 (D) " 27 , (D)

28 (C) 29 (C) 30 (A)

31 (B) 32 (B) 33 (D)

34 (B) 35 (D) • 36 (A) .

37 (B) 38 (C) ' '• 39 (B) '
40 (B) . 41 (C) 42 (D)

43 (A) 44 (B) 45 (D)

46 (A) 47 (D) 48 (B)

49 (D) 50 (D) 51 (B)

52 (D) 53. (D) 54 (C)

55 (A) 56 (B) 57 (B)

58 (D) 59 (D) 60 (D)

61 • (D) . ^ . 62 (B) 63 (C) ,

64 (B) 65 (C) 66 (C) .
67 (A) 68 (B) 69 (A)

70 (B) 71 (B) 72 (C)

73 (B) 74 (C) 75 (C) ,

76 (C) 77 (B) 78 (B)

79 (C) 80 (B) 81 (B)

82 (A) 83..(B) 84 (A)

85 (C) 86 (A) . ' 87 (D)

88 (B) 89 .(B)
-

ADVANCE MCQs One or More Option Correct

1 (A. D) 2 (All) ' 3 (A, C)

4 (A. C) '5 • (A. B) • • • 6 (C. D)

7 (All) 8 (B, C. D) 9 (B, D)

10 (A, C, D) 11 (B, C) 12 (B, C)

13 (B, C) 14 (A, D) 15 (A, B, C)

16 (B, D) 17 (A, C) 18 (A, C, D)

19 (A, B, C) 20 (A, D) 21 (All)

22 (B, C, D) 23 ,(A, C, D) 24 (A)

25 (All) 26 (B, C)

Solutions o/PRACTICE EXERCISE 1.1

5 5
(i) (a) We use 7^= ~(7>-32) = - (68~32) =20°C

(b) We use

(ii) We use

9 9
Tf= - 7^-^32= - X1800+ 32

=3272°F

r-IOO 25-0

0-100 100-0

r-100=-25

7=75°

(iii) (a) We use

(b) We use

(iv) We use

At

7-0 15.0-12.45 2.65

100-0 21.30-12.45 8.85

2 65
7= ~—xlOO =29.94°C

8.85

7-0 22.95-12.45 10.5

100-0 21.30-12.45 8.85

10.5
—xl00=118.64®C
o.o3

7c-32 7c-0

212-32 100-0

7f= r(-=rQweuse
7'o-32 = 1.8ro

--0.87;, =32
7'o=-40°F

Solutions ofPRACTICE EXERCISE 1.2

(i) At30®Clangthofcopperrodis

=90.0306 cm

Length of 1cm ofsteel tap at
30° = l(l + 1.2x 10r5x20)

= 1.00024cm

Reading at
L

30°G =
Acm of tap

90.0306

1.00024
=90.01cm
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(ii) For the given case
Ar=30°C

Expansion of girders is
Al = ly<AT

= 12x1.1x10-^x30
=0.00396m

(iii) Thermal expansion in rod is
A/ = /xAr

due to clamps elastic strain in rod

A/
= y =-aAT

=-1.2 X 10-^x30

=-3.6x10-^

(iv) Forceby rodon wall is
F=YAxAT

= 2 X10^' X2 X10^X1.2 X10-5XgQ
=384N

(v) For Ar=40®C dimansions of glass in winters is
/ =30C1-9x10-^x40)=29.989

(0 =20(1 -9 X10"^ X40)=19.993
dimensions ofaluminimum frame at 40®C are

/, =29.989 X(1 +2.4X1 x40)
=30.018cm

0)1 =19.993(1+2.4x 10-5x40)
=20.012cm

(vi) Permissible error
=IOxiO-^m=lCr^cm

required diameter at 80®C is
rf =5.00(l + 1.2xl0-5x70)

= 5.0052 cm

(vii) Time lost by clock per second is

Af 1 1 ,
^-aAr=-x 1.85x10-^x10

/ 2 2

= 9.25 X10-5s

Total time lost in 24 hours is

= 9.25x 10-5x24x3600
= 7.992s

(viii) Time lost by clock per second is

— =-aA7'=- x7x 10-^x10
/ 2 2

= 3.5x 10-^s

time lost by clock in 30 days is
= 3.5x10^x30x86400
= 9.072 s

Heat and Thermal Expansion :

(ix) As temperature changes by AT,new length /' and moment
ofinertial /' is given as-

/'=/(]+aA7)

/'=/(l+2otA7)

Thus new time period is

T'=2n

= 2n

r=27i

change in period is

r

mgV

1/2I (l + 2aAr)

mgl (l+aAT)*^^

As oAr«1, using binomial afifoximate we get

mgl
i+-aAT

2

I

(x) Natural elongation in x and;^ rods are
4=L(l +a^7)
/yL(l+a/7)

Due topivots iffinal length isiywe use strain inxandyrods as

(strain)^ =

ly-Lf
(strain)^ = —

ly-Lf

There we can use L -1,-L as numerator is very small difference
X y

Now stress on_y is twice that ofx so we use
T^(strain)^ =2y^(strain)^

YJJ.{\ +ayAT)-Lj^ =2YJ,Lj.~L{\ +aJYI))

Y^+ayY^AT~LfYy-2YJ.f-2Y^-2Y^a^AT

Lf= L 1 +
a.J..+2aX'ly y

AT

SolutionsofPRACTICEEXERCISE1.3

(1) Volume expansion ofmercury with respect to bulb is
AF=Ko(P-3a)/

Find area ofcross section ofcapillary is
Aj-=AQ(\+2at)

height ofmercury diased in capillary

h =
AV F(|(P-3a)r

Af A^{l + 2at)
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(ii) If;c is the volume ofmercury we use
l-jc = l(l+3x9xl(r^xA7)

-x(l +1.8x10"^ AT)
=> 11^ 10-^=xx l.Sx 10-^

27 ,
x= — = 1.15 ltr= 150 cm

180

(iii) Letvolumeof silicaballs is Vq
Thusat 0°C 340 - Lq at 0°C
if Fj is thevolume ofsteel balls we use

255 =(Ko-L,)p^gatOX
^ 85 = K,p^^at0''C

p^ at 0°C
at lOOX 2502= [V,-V, (1+y,(100))]

250.2 [l+7^^(100)]=255-85y^x 100
254.7 = 255-8500

=> y =35.29 xlO-^°Cr'

75a =-^= 11.76X10"^ °Cr'
^ 3

(iv) Ifvolume expansion of a liquid is AK, we use
AK= VyAt

height raised by liquid in vessel is

AV
[A —> constant]h =

h =

A

VyAt
-h-yAt

[hj initialleved ofliquid]
=> y-¥ coefficient oflinear expansion ofliquid

(v) If vessel volume is Vand its/fraction is filled with liquid,
we use

L-/K=K(I+27xlO-^Af)
-/L(l + 18x 10-^AO

^-6

/=
27x10"

18x10
,-5

(vi) For simple pendulum r=27i

_3_
20

' AT \Al 1
=> T-cx/'" =>

Assuming clock gives correct time at temperature 0q

6 I

24x3600 2^^®°

24x3600 ~ 2^^
0o=3(rC
a=1.4x lO-^^CT'

397

(vli) For the two vessels we can equate the coefficient of
cubic&lexpansion ofliquid as

Y^=y,+3a,=y2+3a2

a
_ y, -y^ +3a,

(viii) AlltamperatureTj if ifdensityof liquidis p, and thatat
temperature T2 is p2 weuse

/l^Pl^/2^2P2

/PQ _ /2P0
l+yT] l + yTs

=> /i+7/1 ^2^/2+ 7/2^1

fz-fy
m-fiTi

(ix) Mixture forms globules when

Pliq =PH^ter^ttemperature rC
1021 998

^ l+yi(r-20)"l +Yj7'-20)
1021 + 1021 y^(T-20)=998+ 998xy^{r-20)

(998 X85 X10-^-1021 X45 X10*^)(r-20)=23
0.38885 (r-20) =23

=> r-20 = 59.15

=> r=79.15°C

Solutions ofPRACTICEEXERCISE 1.4

(i) Heat relased by water
2 =0.5 X10"^ X4200 X15 =

0.5x10^x4200x15 , , .
h = =3.15xl0^m

10x10

(ii) When first and second liquid are mixed we use
ffWj(15-10) = my2(25-15)

=> =2s'2
When second and third are mixed we use

msj(30- 25)= /ws3(40 - 30)

...(1)

^2=2^3 ...(2)

from (1) and (2) we get
^1=4^3

Thus on mixingfirstand third if equilibrium temperatureis 7,
we use

mS[{T-10) = m53(40 - 7)
47-40=40-7

57=80

7= 16°C

(iii) Heat required to heat m kg water/hr is
m X4200 X 50 = 8500 x 1000 x 4.2

m = 170kg/hr
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(iv) Heat supplied by iron = heat gained by glycarin +
aluminimum

290x470x(180-38)

- 250 X5 X(38 -10) + 100 X900 X(38 -10)

=> 19354600 - 730005"+2520000

=> 5'=2405J/kgK

(v) Heat required is

7/^1msdT
20

= JmaT^dT

20

= ma

= 4 X10" ma

(vi) Heat given by lead = Heat absorbed by (calorimeter + oil)
100 X0.0305 X(48-30)

- 4.9 X1 X(50 - 48) + 40 X (50 - 48)

=> 54.9-9.8 + 805^.;
=> 0.563 cal/g°C

Solutiotis ofPRACTICE EXERCISE 1.5

(i) Heat required by ice to raise its temperature to 100°C,

= Wj/-! + WjCjAOj = 5x80 + 5xlx 100

= 400 + 500 + 900-1800 cal

Heat given by steam when condensed

^ 536-2680 cal

As Q2>Qi

This means that whole steam is not even condensed.

Hence temperature ofmixture will remain at 100®C.

(ii) Work done by friction is

1,1 ,
w--mi+=-x50x(5)2 =625J

Ifm mass ofice will melt, we use

625

4.2
=m(80)

625

80x4.2
I.86g

(iii) Supplied heat = (22) (0.5) (8) + (22) (80)+ (22) (1) (16)

-88+1760+352=2200 cal

2200 cal
Heat capacity ofthe body = = 50 cal/°C

Water equavalent of the body

Heat capacity of the body 50 cal/^C

spcific heat capacity ofwater I cal/g°C
= 50g

and Thermal ExpanSion^

(iv) Heat supplied by steam
-4 X10"^ X2.25 X10^ + 4 X10"^ X4200 x 100
-9000+1680=10680 J

Amount of icemelted bythis Heat is

O 10680
= 0.03178 kgm= — =

L • 3.36x10^
-31.78g

Final mixture is = 70.78 g water+3.22 g ice

As whole ice is not melted, equilibrium temperature will be 0°C.

(v) Ifbullet speed is v, we use

0.75 X- mv^ -37800+25200
2

V=409.87 m/s

(vi) Heat supplied in 4 min is
0=100x4x60 = 24000 cai

^ 100 X0.215 X(7-+20)+200 x 0.5 x 20 + 200 x 80+200 x 1x

r-24000

221.5 7-2400-16000 - 2000 - 6000

=> 7=27.08 °C

(vii) Mixture = I kg ice at °C +1 kg steam at 100°C"
Heat required to milt ice

01 =1x3.36x1O^J
Heat required to raise tamperature ofwater to 100®C

02 =1x4200x 100=4.2x 10^1
Heat supplied (0, +02=7.56 x 1O^ J) by steam mass mthen

0,+02 7.56x10-
m = = 0.333 kg

m.

7, 2.27x10^
Thus final mixture is at 100°C and composition is

Mixture = 667 g steam + 1333 g water

(viii) Heat supplied by block = Heat gained by calorimeter and
liquid

Here we consider water equivalent of calorimeter as
lIOxQ.l x82 = m^,x 1 X8 + 200X5;. x8 ...(1)

Second case

110x0.1 X85.5=m^x 1 x4.5 + 400xj^x4.5 ..,(2)
weuse (2) X8-(l) X4.5

^ 110x0.1(85.5x8-82x4.5)=5;_
(400x4.5x8-200x4.5x8)

3150 " ,
= -T77 =0-481 cal/g °C-'^ 7200 ^

from equation (1) we have

902-769.6
= 16.55g

(ix) Ifafter time /, temperature ofinside water dreg'sto 15°C we
use

(10000-0.20x4200x 10-3x5 =0.2/x2.27x 10^
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Here 0.2/«10000 so we can use

^ 21x 1000=454/

t = 462 s approx

(x) After time / mass of inside water is
m= 1000-50/at temperature T^C

Then we use

(1000-50/) X1 X - 50 r//X 540

27000

50

jmoM ^
JlOOO-50/

In

in

1000

1000-50/

1000

U00-50/

30

= 10

J_
" 54

1/541000= (1000 - 50/) e
/ =20(l-e-"^'')s

Solutions ofCONCEPTUAL MCQS Single Option Correct

Sol. 1 (C) At 4^0 density ofwater is maximum so when heat is
conducted and temperature of water at different regions
becomes 4®C settles down at bottom and when temperature
further falls below4°C its density decreases and will float above
so 0°C will attain first at the region in between and at top.

Sol. 2 (C) As mass and density (metal) is same the hollow
sphere will have larger diameter hence on increasing temperature
by same value hollow sphere will expand more but fractional
increase in diameter is {Sdid) = aAT which is same for both
spheres.

399

Sol. 8 (D) In all the phenomenon as temperature increases the
rate ofvariation increases due to increases in rate ofcollisions

of molecules hence option (D) is correct.

Sol. 9 (C) During evaporation of a liquid as the external
pressure increases rate of evaporation decreases hence
statement given in option (C) is NOT correct.

Sol. 10 (C) As the volume of both are same, according the
thermal expansion concept the chang ein volume is proportional
to the total volume encolsed by the material hence it will be
same for both spheres.

Sol. 11 (B) In portion ABa solid temperature increases then in
portion BC it melts after which in portion CD liquid temperature
increases and in portion DE liquid vaporises and after point E
vapour temperature increases.

Sol. 12 (B) As is greater it will expand more and due to this
strip will bend with metal A on the convex outer side.

Sol. 13 (C) If A^ is cross sectional area of silica cylinder,
{A^ + Aj)is cross sectional areaofglass cylinder, andh is the
heiglit ofsilica cylinder, then :

hiA 1+ ^2X2^)^0 ^ KA^)yAQ

hA^

^ hAi

volume ofsilica _ (^ j
volume of mercury 2a

S0I.3 (C) Apart ofliquid will evaporate immediately sucking Sol. 14 (D) The heat capacity ofthe solid is :
latent heat from the bulk ofliquid. Hence a part ofliquid will

freeze.

Sol. 4 (C) Specificheat capacityofacoumpound ismeasured
in J/Kg-K and molar heat capcityofa compound is measured in
J/Mole-K sotheratio ofthetwo will give themolecular weight Sol. 15 (B)
of the compound

Sol. 5 (C) On heating copper will expand more than iron so
the strip will bend towards left.

Sol. 6 (B) Fractional change in density ofa material isyATand
that for radius and area are aAT and pAT which are less than
that of density.

S0I.7 (B) Theapparentweightofabodysubmertedinaliquid
isgiven as ^^app~ ^ (Pi '̂Ps)] where isthe density ofliquid
and is the density of solid body. On increasing temperature
water expands more than metal hence density ofwater decreases
more so option (B) is correct.

Sol. 16 (A)
G

5

=2oe + 4//03
c/0

a„ = a,+
- a,

AL =Ia„dxAt

L =
a] +0,2

LAT

aj +a2

F-32
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Solutions ofNUMERICAL MCQS Single Option Correct

Sol. 1 (C) Both have same increase in their volume.

Sol. 2 (A) Length of rod 1 is given by,

and length ofrod 2 is given by,

/;- l{= /, + a/iAr-
Since /^is independent oftemperature,

a^l^^T-a^l^^T=Q
tti/j = ttj/j

Sol.3 (B) Upthrust, p^g
where, = volume ofsolid at 0®C

and = density ofliquid at 0°C
As the temperature increases, increases and p^ decreases.

As

^ Kp'l

K.
fVn

Kpl

'(K+AV,)^^p,(\+y^AT)
X '

K Pl

= (1+Y^A7) (I-Y^AT)

-1

(Bybinomial approximation)
ff=lFQ(l+Y,Ar-YiA7)

= ^o[i+(Y.-yz)A7]

Sol. 4 (B) Heat lost by one liquid = Heat gained by another
liquid

ffl5,(40-32) = m52(32-20)

Thus,

Sol. 5 (A)

85j = 12^2

12

2

3

1
3

3

1

c =ms

Heat and Thermal Expansion,

'1 m^s

Vp.s
y y

\_ 3_1
~ 3 1 ~ 1

Sol. 6 (D) Given that c =0.6t^
We use dQ = mcdt

Q 15

\dQ =jl0x0.6/^i//

15

e=6 =2(15)3 = 6750 cal

Sol. 7 (C) Coefficient ofcubical expansion ofcontainer,
Y^ =3a^ =3x2xi0-6°c-'
^=6x

Coefficient ofcubical expansion ofliquid,
y, =6x 10-6°C-'

Thus, both container and liquid will expand to same extent and
level ofliquid remain unchanged.

Sol. 8 (C) Change in length ofcomposite rod

I 50cm I 50cm i

Brass

50 +A/.

Brass

Sleei

50 +A/,

Steel

40"C

240"C

= l[,cti,AT + ct^/jAr
= [50x 10-2x2x 10-5x200]

+ [50x 10-2 X1.2 X10-3x200]
-lO'tx 10-2x3.2

= 3.2xlO-3m

= 0.32 cm

Sol. 9 (C) We use sphere volume

V=~nR^
3

when temperature is increased by 100°C

V'=-%R'^
3

Vil +yAT) =̂ '̂ R'̂
4 TF[l+(8xl0-3)(100)] =y^«

4 ,

H:I.008) =

•(1)

..Q.)
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Dividing (1)by(2),weget

Now,

1 R'

1.008

7i'3 = 1.008i2^

R' = \m266R

1(0 = constant

, -MR^(o. = ~MR'^(o
5 " 5

R^(0f^ = im54R^(0
a)=0.996coQ

Sol. 10 (A) Since the measurement scale is expanded, the
measured value (MV) decreases on increasing the temperature.

A#'=/,[l-aA7]
80 =/j[1-(2.5x10-5)(40)]
80 = /jX0.999
/j =80.08cm

Sol. 11 (B) We use I'=1(1+ oAT)

101/

100
= /(l + a(100))

As we use

For area we have

0.01=a(100)

P= 2a-2x lO-^-^C"'
A'=Ai\+^AT)

^'-.4(l+(2xi(y4)(iO0))
^'-2/2(1+2x1(1-2) ^ = 2/2)
A' =2P(1.02)
A'=2.04P-

Percentage change in area
A'-A

A

2.04/^-2/^

xlOO

2/2
xlOO

=2%

Sol. 12 (D) (A) Let equilibriumtemperature be F®C
20x 1 x(7-30) = 20x 1 x(40-7)

2T=70

T=35°C

(B) 20x 1 x(r-30)=40x 1 x(35-7)
r-30-70-27

37=100

j T=333°C
(Q 20x1x(7-30)=10x 1 x(50-7)

27-60 = 50-7

37=110

7=36.67 °C

(p) 20x 1 x(7-30) = 4x 1 x(80-7)

; __ , ^ 401j

57-150 = 80-7

67=230

7=38.33°C

Thus, 4gwater at 80®C raise temperature of20gwater at30°C
the most.

Sol. 13 (B)

Reading of faulty thermomenter - LFP F -32

UFP-LFP

_ ^-32
99-5 ~ 180

90 = 7-32

7=122^F

Sol.14 (A) Giventhat 50 cmofi/^
7,oQ = 90cmof7/g

7, = 60cmofHg

P.~P(
/ = ^xl00°C

•^100

60-50
t= xlOO

90-50

1000
t =

40
=25°C

Sol. 15 (B) We use 7, = 7+273

T,= -{Tp-^2) +213

180

x=^x-^x32+213
0.44x=-14.08+273

0.44v =258.92

X =588.45

Sol. 16 (C) Let volume ofmercury in flask is Kcm^
Theexpansion ofmercury issameasvolume expansion offlask

1000 X27 X10-^A7- Fx 1.80x l(Hx A7

F=150 cm^

Sol. 17 (D) We use ^^xIOO^C
75-50

- 30
/= —xlOO°C

25

/ = 120°C

Sol.18 (A) Whena rod/wire whoseendsare rigidlyfixed such
as to prevent expansion or contraction, undergoes a change in
temperature, a compressive or tensile stress is developed in it.
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Due to this tensile stress, the wire will exert large force on the

supports '

g

M - laAT
Strain - — - —-— = oAT

Y=
Stress

strain '

Thermal stress = Yx strain

= YdAT

F=A{stress)

F = YAaAT

Sol. 19 (A) Useful power available ^60% of/"
= 0.6P

Energy consumed in T seconds,
E = 0.6PT

MsAT=0.6PT

0.6PT

' Ms

Sol. 20 (C) Let ofice melts

Heat given out by copper block when it cools down from 500°C
toO°C

= 2 X400 X(500-0)

//^ =4x lO^J
This heat is absorbed by ice at 0®C

7/g =mx3.5x 105
Heat lost by block = Heat gained by ice

4x 105 = wx3.5x 105

m=ykg

Sol. 21 (D) Heat given out when 5g steam at 100°C converts
towaterat 100°C

//,-5x540=2700cal
Heat required by 6g ice at 0°C to reach water at 100®C

//2 = (6x80) + (6x 1x 100)
= (480 + 600)cal

= 1080cal

As

The final temperature is 100°C

Sol. 22 (A) We use
|x(mx9.8x84)

42

Ar=0.098°C'

= w X 1000 X at

Heat and Thermal Expansion

Sol. 23 (A) On expansion, volume of a given mass of a
substance increases. So, density should decrease

m

y

D X —

^ V

V V

V V + AV V+ yVAT

1

Change in density, p' - p =

l + yAT

1

I+yAT '

P .

l + yAT

^-P
l + yAT

p-p-pyAT

1+yAr

-pyAT

As

1+ yAT

Initial temp =0''C

AT=T

Ap =
-PY^

(l + yT)

Sol. 24 (D) When a rod whose ends are rigidly fixed such as

to prevent expansion or contraction, undergoes a change in
temperature, a compressive or tensile stress is developed in it.
Due to this tensile stress, rod will exert large force on the walls

Rod-2

^ . A/ laAT _
Strain = — - —;— -

Stress
7=

Strain

Thermal stress = 7x strain

= 7cxAr

Force on supports, F= Stress x A

^YAoAT

Since thermal stress developed in them are equal,
Y^a,AT= 72a2Ar

Y,
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Sol. 25 (C) When temperature is increased, both glass vessel
and mercury will expand
Here, apparent coefficient ofexpansion is

ffl Y/zg Yg
y^ =(182xl0-^)-(30-10-^)

Y^= 152x10-6 ^C"'

AV= Vy^AT

= 1000X152X10-6 X(100-0)

= 15.2 cm^

Overflow volume is

Sol. 26 (D) We use p'=p(l-yA7)

998= p(l-20y)
992= p(l-40y)

Dividing (1) by (2), we get

499

496

l-20y

I-40y

499-199601'=496-9920/

10040/= 3
y=2.988xlO^®Cri

...(1)

...(2)

Sol. 27 (D) We use KE =

—mv^ =wcA0
2

= 2cA0

V= yjlcAQ

Sol. 28 (C) Heat given out when a:grams of steam at 100®C is
converted to water at 100®C

77j=54(k ...(1)
Heat gained by ice at 0°C to convert to water at 100°C

//2 = 80y+>'xlx(l00-0)
H^ = \SOy ...(2)

According to principle ofcalorimetry,
H,=H,

54Cb; = 180)/

^=3
X

Sol. 29 (C) We use for heat absorbed by ice
YY=(lx80) + (lxlxloo)

+(1 x536)

= 80+100 + 536

= 716 cal

Sol. 30 (A) Let volume of metal = V
density of metal = p

volume ofmetal inside mercury= V
density ofmercury = a
In equilibrium, Vpg= Vcg

Fraction,

New fraction on increase in temperature,

P' ^ P UY2^^
a' 1+YiAr' \ct

/' l+y2Ar \
/ ~ i+YiAr

//=(60x80)cal = 4800cal

(H .."l
P= If

V~ G

Sol. 31 (B) We use

4800
P= x4.2 = 336W

60

Sol. 32 (B) We use

For rod A,

AI = alAT

Forrod B,

0.075 = 20a^(100-0)
a^ =3.75x lO-^ '̂C"'

0.045 = 20 100-0)

ttg =2.25x10-5 o(-i

403

Let portion ofmetal ^ is / cm and that ofmetal B is (20 -I) cm

Al^ + A/g =0.06 cm

a^/(l00) +ag(20- 0 (100) =0.06

3.75 X 10"=/+4.5 X10^-2.25 x lO-^/ = 6 x ICH

1.5 xio-V= 1.5x10^

/ = 10cm

Sol. 33 (D)
0.05 ,

A/=—/ = a/(100-0)

a = 5xlO-^°C-i

Sol. 34 (B) New length of bar
/'= / +0.05% of/

= /+^/
100

2001 .

New volume,

2000

V'=(lf
V'= 1.0015/^

Original volume =V=P
Precentage increase in volume

V'~V
xlOO



i4,04

1.0015-1

1

=0.15%

xlOO

Sol. 35 (D) Let original area of square plate is^ =

I 101/
New length, /'=/ + -

100 100

NewArea,* A'= (lf= 1.0201/^
Percentage increase in area

A'-A

A

1.0201-1

xlOO

xlOO
1

=2.01%

Sol. 36 (A) Heat released by240g water at 40®C when it gets
converted to 240g water at 0®C

//=240x1x(40-0)

//=9600 cal

According to principle ofcalorimetry,
mLj.=H

mx 80 =9600

^ m= i20g^

Sol. 37 Let temperature ofmixture is r
Also, letus assume 0,, 02< 7'< Oj

Heat lost by liquids 1 and 2 = Heat gained by liquid 3
mi5,(0| - 7)+ m2S^^2 ~ ^ ^ ^a)
Wj5,0, - niyS^T + m2S-^2~
Wj5j0,+ m2S^2'"a-^a^a ~ ^a- '̂a)

T=
/«j5j0j 4- W2J2Q2 '̂ a-^a^a

+ W2i'2 +W353

Sol. 38 (C) We use

H
Power = —

t

mL,
2kW=

t

t =
1.5x2000x10^

2x10^

Sol. 39 (B) We use 7,= ~(r,-32)

7 =37ip

and
T = 9
3Tp = 5Tp~(32^5)
2Tp= m
Tp= SO°F

=1500s

Heat a_nd thermal E25)ar^ioiV

Sol. 40 (B) We have n - 3n
Temperature on ;;-scale

= 3x 15'= = 45=

Sol. 41 (C) Weuse A=A^[\^^l:sT\
p = 2a=2.2x 10-5°C-i

For cylinder to be inserted into hole. The area of hole must be
equal to area of cross-section of cylinder at T ®C (let)
When the steel plate is heated, the hole expands too

_ 7c(0.99967)^
4 • 4

[l+(2.2x 10-5) (r-30)]
1.000660327 = 1+(2.2 x 10"^) (7-30)

6.6X10^ = (2.2 X10-5) (7^.30)
30 = 7-30

=> 7=60X

Sol. 42 (D) We use
^,=^o[l+PA7|

Let diameter at 0°C is cm and at dry ice (- 60°C) is d cm

71(10.02)^ _ %dl
[l + (4xl0-5)(40-0)] ...(1)

nd _ tuIq

4 4

• [l + (4x 10-5)(-60-0)]
Dividing (1) by (2), we get

(10.02)^ 1.0016
" 0.9976

=> i/ = 9.99997 cm a 10 cm

Sol. 43 (A) We use P =

Px

pRT

M

PhxiL
P. 7.12 12

70

-^=1.12
P2

260

300

Sol. 44 (B) We use

Reading of newscale-777 _ C-0
UFP-LFP ~ 100

7-(-10) _
90-(-10) "" 100

7=30°X

...(2)
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SoL45 (D) Heatgivenoutby300^waterat25°Ctocooldown
to water atO°C

=300x1 x(25-0)-7500cal
Heat required by lOOg ice at 0®C to melt,

i/2 = 100x8a = 8000cal
As H2 > H-^ so, some of the ice will melt and temperature of
mixture will be 0°C.

Sol. 46 (A) Heat given out by lOOg water at 80°C when it
cools to 0°C

//, = 100xlx(80-0) = 8000J
Heat required by lOOg ice at 0°C to melt,

/f2= 100x80 = 8000J
As//, = so,allofthe icewillmeltand temperature ofmixture
isO°C.

Sol. 47 (D) Magnitude ofem/
= [_4_(_20)]x (100-0) X10^

=> =1.6x10-3^

^ =1.6mF

Sol. 48 (B) Given that 2.56 a

3.56f2

/2,=5.06Q

R, -Rqt= ' I xwc
-"100

5.06-2.56
=> ^^TTT—TTtxIOCPC

3.56-2.56

=> t=250°C

Sol.49 (D) 7; = -(7>-32)

=> 90=-(7>-32)

=> 7>.= 194T
Since the laulty thermometer reads 190°F, the correction to be
made is + 4°F.

Sol. 50 (D) Let reading of feulty thermometer and correct

thermometer is r®F

7-34 T-3>2

210-34 180

=> 180r-6120= 1767-5632

^ 47=488

=> 7= 122°F

Sol. 51 (B) We use /j =//I+ a,A7)

R+-
2

'r-L'
K 2y

R + -

R-L
2

= 1^(1 +a,AT)

= /oCl + o^AT)

Dividing (3) by (4), we get

Ri , /.rj,
2 _ 1+^1^7
' l + ct2A7

R+a.RAT+~+^:^^ =R+a,RAT-~ -

i?(oc2 - aj)A7=-1 -
A7/(ai +a2)

R =
2/ + tA7(ai + a2)

2(ai -a2)A7

2+ (a] +a2)A7

2(aj -a2)A7
R^t

Neglecting (a, + Oj) innumerator,

R =
, (aj-a2)A7

Sol. 52 (D) We use V = FgCl +yAT\

T= 3a=3x2x

= 6x 10-6°C-'

When cube is heated from 0"C to 200®C,

AV= V^yAT

405

...(1)

...(2)

...(3)

...(4)

ttjATf
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AK=(10 X10-5)3 X(6 X10-5) (200)

10-^x6x10-5x200

AF-1.2xlO-Scm5

Precentage change in volume

hV

V

1.2x10"

xlOO

-6
1x10

= 1.2%

•xlOO

Sol. 53 (D) Let reading ofx is r®

r-20 _ 120-30
80 ~ 120

r~20 = 60

r=80°

Sol. 54 (C) We convert all to ®C so we have
100A:=-173''C

and -]3°7^~Tc+32

=> -130F=-25°C

Thus (C) - 20°C is the highest.

Sol. 55 (A) We use

Tr -Tr = -(7> -T. )

25 = -(r,,-r,^)

Tf, =45°F

Sol. 56 (B) We use

Reading of faulty thermometer-LfP C-0

UFP~LFP ~ 100

60-(-10) 50

[/-(lO) " 100
=> t/=130°C

Sol. 57 (B) We use directly

7;= 273.16
k

Ptr

Sol. 58 (D) Weuse 7^= ~ (7>-32)

5 .T. 1607>.= - TpC g F g

K

Heat and Thermal Expansion i

Thus graph between °C and °F can be drawn as
op

B. •32

1

y-160 C

9

AC

AB
From graph we have sin 0 =

160/9

160 y

9 J
160x9

+(32)'

9x32Vi^ ylm

Sol. 59 (D) Kelvin and Reaumer scale do not agree to a common
temperature

Sol. 60 (D) We use

Reading of faulty thermometer - LFP T^-O

UFP-LFP ~ 100
Let temperature on thermometer is T°C,

T-{-2) _ 50-0
. 96-(-2) ~ 100

=> 7'=47°C

30
Sol. 61 (D) We use T, =273.16 x—.K

15

r^= 546.32 K

Sol. 62 (B) We use \ppm = 10-%i
A/ = laAT

=> 10"^= 1 X iO-5xAr

Ar=±0.1K

Sol. 63 (C) We use

50-40 r-(-30)

120-40 130-(-30)

10 7 + 30

80 " 160

1 7 + 30

8 ~ 160

7+30-20

7=-10°

Sol. 64 (B) We use 7L= -(?> - 32)L g

=> rc=|(113-32)=45°C
Thus, the correction to be applied to celcius, thermometer is
+PC.
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Sol. 65 (C) We use
il + a^)xR = Lil + ac)

\+ar

Sol. 66 (C) We use

As a is small,

R=L
I + a<

T= 2n —

Tec 41

r

T

y ={l+aA0y'2
r=7i:i+aAe)

r= T

l + Al

1/2

l+-aA0
2

-arA0
2

Fraction change in time period,

1 AQ—aA0
T 2

~ ~0l)

/ + a/A0

/

Sol. 67 (A) Weuse p,qq = Pq(1-pAT)
9.7 = 10[l-3a(100-0)]
a=l X 10^°C-'

a=o.ooorcri

Sol. 68 (B) Let initial radius of sphere is R and after raising
temperature by 100°C,its radius becomesi?'

V= —tzR?
3

4 ,
and y'=jnR'

4 ^
=> V+AF=-tiR"

F[1 +(3 X10-5) 00)] =jTzR'̂
Dividing (1) by (2), we get

1000 _

=> ii'= 1.0009991?

2 9
l'=-MR"- =1.001999 -MR'

-5

...(1)

...(2)

...(3)

...(4)

I'-l
Percentage increase in moment ofinertia,

= 0.2%

xlOO

Sol. 69 (A) We use V=V^[\ -HyAT]
=> 1016.2 = 1000[1+Y(32a-20)]
=> 1.0162= 1+300/

=> 0.0162= 300/
Y= 5.4x 10^5 o(--]

a= j =1.8x 10-5°c-i
a = 18x lO-^^C-i

Sol. 70 (B) Time lost, Ar=iarA0

10= -a(86400)(20)

a =

1

86400

1
Sol. 71 (B) We use Ar= -aTAO

I
AT= -xl.9xl0'^ x86400x25

2

Ar=20.52 s

Sol. 72 (C) We use

Sol. 73 (B)

Let

and

59-5

o
1

95-5 100

54

90 100

T

11

o
0

T,= -(T,-32)

7L=x

Tp=-x

:,= -^[-;c-32]

407

9x=-5x-160

14i=-160

x=-I1.43'=C and andll.43^F

Sol. 74 (C) Heat required to melt 1Ogice

//•=80x I0 = 800cal

Heat supplied = 0.93vv/;

0.93x3600

4.16
= 804.8 cal

The entire block just melts.
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Sol. 75 (C) A/ = /aA0

=> l.lx 10-3 = 10x0.000011[27-7]

=> 10 = 27-r

=> . r=i7°c

Sol. 76 (C) Energy stored per unit volume ofthe rod

1
= — X stress X strain

2

= -YaATxaAT
2

=^^Y[aATf

=̂ xl0"x(12xl0"^x20y
= 2880J/m3

Sol. 77 (B) Let final temperature is r°C
According to principle ofcalorimetry,

440 X1 X(92~7)=200 X1 X(7'-20)
+ 20x(T-20)

^ 440(92- 7) =22Q(r-20)
=> 184-27=7"-20

=> 37=240

=> 7=68°C

Sol. 78 (B) Upthrust = weight (just about to sink)

KP'LS =f»g-

1.527-X —x(3.5)^x
3 7

y«8.48xl0^°C-'

Sol.79 (C) Apparent in coefficient of expansionis

Y; = 0.000597
y^ =3ag =3x0.000009

= 2.7 X 10-5 °C-'

=0.00057

Sol.80 (B) Heatgivenoutwhen 10gwaterat50®Cisconverted
to water at 0°C

77i = 10xlx(50-0) = 500cal
Heat required by 1Ogice at - 20®C to reach 0®C

7/2= 10^0.5x20=100 cal
Amount ofheat remaining = 400 cal

m7y=400
=> mx80=400

m = 5g
Hence, mass of ice left = 10g-5g^

= 5g

Heat and Thermal Expansion i

Sol. 81 (B) According to principle ofcalorimetry,

Let final temperature is 7
55 X1 x(40-7) = (10x8a)+10xlx(7-0)

=> 2200-^57=800+107

=> 657=1400

=> 7=2L5X

Sol. 82 (A) Let mass ofsteam condensed is m

According to principle ofcalorimetry,

1.12 X10^ X1x(80-15)=mx540 +mx I x (100-80)

=> 72800 = 540m+20m

m= 130g = 0.130kg

Sol.83 (B) Letspecificheatofliquids.^j^andCbei'^jjgand
respectively,

According to principle ofcalorimetry,

ms'̂ (16-12) = msg(19-16)

4sa= 3s^

msJ23-\9) = msJ2S-23)

=> 4ss= 5sc

When Aand C are mixed, let final temperature is 7

From (1) and (2),

165^ = 12sg=155^

^ m5^28-7) = ms^(7-12)

=> 155^28-7) = 155^(7-12)

=> 16j^(28-7) = 155^(7-12)

16x28 + 12x15
=> 7=

16 + 15

=> 7=20.26°C=20.3°C

Sol. 84 (A) Let mass ofhail stone that falls is m%

7:.£.=m(10)(1000)=10^mJ

for mkg of iceto melt, heat required, '

7/=mx3.4x 105J

=34mx lO^J

Fraction ofice that will melt

• loV

34mxl0'' .

_J_
~ 34

Sol. 85 (C) Let reading ofcelcius scale=x®
As reading ofreaumer scale = (x - 3)°

(x-3)-0 x-0

80-0 100-0

...(1)

...(2)
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x-2>

80

=> 5x-]5=4x

=>

Sol.86 (A) Heatgivenoutwhen'5^waterat30®Ccoolsdbwn
to 5g water at 0®C

^,=5xlx30= 150cal
Heat required by 5g ice to melt to water at 0®C

^^2 = (5 >^0.5x20)+ (5x80)

= 50 + 400

=450 cal

Sincethis much heat is not available,thetemperature ofmixture
=0°C.

Sol. 87 (D) 50 cal out of 150 cal available is used to bring
temperature ofice from-20°C to 0®C

Heat available = 150 cal - 50 cal = 100 cal

This 100 cal melts m grams ofice

100 = mx80

=> m=1.25g

Sol. 88 (B) Heat given out by 5g water to cool down to 0°C

/f,=5x 1x(i0-0) = 50cal

Heat required by Ig ice to melt,

7/2 = 1 x80 = 80cal

Since only 50 cal is available, some ofice melts and temperature
ofmixture is 0°C.

Sol. 89 (B) Heat released when Ig steam at 100®C converts to
Igwater at 100°C

//, = ! x540= 540cal

Heat required by 1^ ice at 0°C to reach 1g water at 100°C

7/2 = 1 xSO+lx 1 X100=180cal

As7/2 <7/jwhole steamwillnotcondense sofinaltemperature
willbelOtrC.

Solutions ofADVANCE MCQs One or More Option Correct

Sol. 1 (A, D) Fahrenheit scale has 180 divisions between LFP
and UFP whereas in Celsius and Kelvin scale divisions are 100.

Sol. 2 .(All) Due to polymer properties rubber contracts on
heating and water has maximum density at 4®C and water expands
on fi-eezing.

Sol. 3 (A, C) Due to rise in temperature its radius increases
and which causes its moment of inertia to increase and to

conserve angular momentum its angular speed decreases as no
external torque is acting on it.

X

100

409 '

Sol. 4 (A, C) As on increasing temperature a metal scale
expands, the separation between the divisions increases so
reading will be less than true value hence option (A) is correct.
In case of pendulum clockthe length ofpendulum increases so
time period also increase sopendulum clock gets slowerhence
option (B) is womg. For a floating body the density of liquid
will decrease more than that ofsolid so it m\\ sink more hence

option (C) is correct. Weight of a body is not affected by
temperature hence option (D) is wrong.

S0I.5 (A,B) Asat4°Ctemperaturewaterdensityismaximum,
on increasing or decreasing temperature density decreases so
in both beakers the liquid level will rise.

Sol. 6 (C, D) Thermal capacity ofa body is the product of its
mass and specific heat. Specific heat of a body is a property
which depends upon the specific molecular structure ofthe the

bodymaterial hence options (C) and (D) are correct.

Sol. 7 (All) Specific heat ofa body is the measure ofheat gain
or loss by body by its unit mass when its temperature increases
byunity. In difterent materials it can take up any value depending
upon the amount ofheat required by the molcular structure of
the body. Ifbody does not absorb heat then its specific heat is
zero, if its temperature does not change its infiinite and if it
takes some heat then its finite and if it rejects heat in rise of
temperaure its negative. In case ofnegative specific heat body
uses its internal energy for rise intemperature.

S0I.8 (B,C,D) Ingeneralcaseofmixingtheonewhichisat
higher temperature will loose heat and will cool down and the

one at lower temperature will gain heat and will heat up hence
options (C) or (D) are correct. If either of the sample is at its
boiling or melting point then final tempearue may be at this
level if after mixing its in same state hence option (B) is also
correct.

Sol. 9 (B,D) For water in a test tube, it will boil onlywhen the
heat will continuously conduct into the tube and for this outer

temperaturemust be more than the boilingpoint ofwater which
cannot be possible if outside boiling water exist hence option

(A) is not correct. By increasing pressure melting point increases
hence option (C) is not correct. By basic definitions ofheat and
condensation options (B) and (D) are correct.

Sol. 10 (A, C, D) When temperature increases material as well

as all the lengths and volumes enclosed by the material also
increases due to increase in intermolecular separation of the
material.

Sol. 11 (B, C) We can see the slope of second step (liquid
heating) is less than that of first step (Solid heating) hence
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specific heat of liquid is greated than that of solid. We can
also see that the horizontal portion offirst part is smaller than
that ofsecond part which implies that solid melting is taking
less time than liquid vaporization hence (C) is also correct.

Sol. 12 (B,C) Asitisgiventhatlja,
in both the rods at same difference oftemperature will be equal
hence their difference in lengths will also remain equal.

Sol. 13 (B, C) When temperature increases of a bimetallic
strip, the one which is having more value of coefficient of
expansion will expand more so the strip will bend toward the
metal with low value of coefficient ofexpansion and it will be
ind toward high value of coefficient ofexpansion ifit is cooled.

Sol. 14 (A, D) Ifa^<a^then pipe will expand more than that
of bolt and a tensile stress will be developed in the bolt and if

> a^then bolt will expand more than that ofpipe and will
remain loose so no stress will be developed in it.

Sol; 15 (A, B, C) We know that in case of a rotating body
if no external torque is acting the angular momentum of the

body remain conserved hence Ico = constant hence (B) is
correct and for a cylinder wecanuse/= (0.5)MR^ hence (A)
is also correct. For the radius of the cylinder, on increasing
its temperature by AT we can use AR = RaAT hence (C) is
also correct.

Sol. 16 (B,D) AsexplainedinIllustrativeExample-1.5(B)and
(D) are correct.

Sol. 17 (A, C) Heat capacity of the'body is the amount of
heat required to raise the body temperature by 1°C so this is
given as mc and water equivalent of the body is the amount
of water which requires same amount of heat which the
body requires for a specific rise in temperature, given as
w = mc/s^ = mc as s^= I cal/g °C.

Sol. 18 (A, C, D) When the bottle is shaken, we do work on
the bottle and its contents which increases its internal energy

as the bottle is thermally insulated so its temperature would
rise.

Sol. 19 (A, B, C) When ice melts it absorbs heat w x 80 and

ifequilibrium temperature ofthe mixture is T the water formed
due to melting ofice will absorb heat w x 1 x (T- 0) and initial
water will release the heat wx 1 x{l00-7) thus solving the

equation of heat released = heat absorbed we get T = ]0®C.

Sol. 20 (A, D) With the definition ofthermal expansion for
length and density options (A) and (D) are correct.

Heat and Thermal Expansion

Sol. 21 (All) Depending upon the behaviour of substance
during heating or undergoing a theromodynamic process its
specific heat can be finite, infinite, zero or negative. Here
infinite signifies no change in temperature while heating and
negative signifies temperature fall while absorbing heat and
zero signifies change in temperature without supply of heat.

Sol. 22 (B, C, D) Required heat Available heat
10 g ice (0°C) 5 g steam (100°C)
4800 cal i2700cal
10 g water (CC) 5 g water (lOO^C)
i 1000 cal
10 g water (100°)

So available heat is more than required heat therefore final
temperature will be 100°C.

Mass of vapour condensed

800 + 1000 10

540 . ~ 3 ® '
Total mass of water

io 40 1
= .0.-=-=13-g

Total mass of steam

= 5 1 1
•3 ~ 3 ~ ^3

Sol. 23 (A, C, D) Length

1=Iq{\ +aAT) = l^{\ +20a)
Area

•A - (1 + pAT) - 6ll (1 + 40a)
Volume

V= V, (1 + yAT) = (1 + 3aAT) = (1 + 60a)
Density

Po Po.

l + yAT l + 60a

Sol. 24 (A) Due to internal pressure inside the presstire cooker

the boiling point of water is raised thats why more heat

supplied will be used in cooking food rather as latent heat in
vaporization of water.

Sol. 25 (All) When a body is heated all dimension of the
material as well as the enclosed lengths, areas and volumes

also increase.

Sol. 26 (B, C) At at veryTow pressure all gases behave like
ideal. They follow ideal gas law pv - nRT so option (B) and
(C) are correct.



[kinetic Theory of Gases and Gas Laws 411

ANSWER & SOLUTIONS

CONCEPTUAL MCQS Single Option Correct
m, m.
—+ —

2 4
1 (A) 2 (A) 3 (B)

4 (C) 5 (B)- 6 (D)
7 (B) 8 (C) • 9 (B)
10 (B) 11 (A) 12 (B)
13 (B) 14 (C) 15 (D) •

16 (C) 17 (A) 18 (B)
19 (C) 20 (B) 21 (C)
22 (A) 23 (A) 24 (B)
25 (A) 26 (D) 27 (D)

NUMERICAL MCQS Single Option Correct

1 (D) 2 (D) 3 (C)

4 (C) 5 (B) 6 (A)

7 (A) 8 (A) 9 (D)

10 (B) 11 (D) 12 (D)

13 (B) 14 (A) 15 (D)
16 (D) 17 (B) 18 (B)

19 (B) . 20 (B) 21 (D)
22 (D) 23 (B) 24 (B)

25 (C) 26 (D) 27 (C)

28 (C) 29 (C) 30 (A)

31 (B) 32 (A) 33 (B)

ADVANCE MCQs One or More Option Correct

1 (C, D) 2 (A") . 3 (C, D)

4 (A, C) 5 (B, D) 6 (A, D)

7 (A, C. D) 8 (B. C) 9 (All)

10 (B, C) 11 (All) 12 (A, B, C)

13 (A, C, D) 14 (B, C, D) 15 (A. D)

16 (C, D) 17 (B, D)

Solutions ofPRACTICE EXERCISE 2.1

(i) We use initial moles = final moles

T, T2

2x10^xV pxl.Q2V
=

293 313

=> p = 2.095 XlO^N/m-
>

(ii) We use initial moles = final moles

P2V

Pf
El+El

(iii) By gas law we use

PV=nRT

and

Solving we get

2x20 =

2w, +/«2"=6.66
1+W2

(0.082) (293)

.W] = 1.66g
m2=3.34g

m, 1

^2 ^

(iv) If initial pressure k temperature are P and Twe use

L - ^
T ~ T + \

=> r+i^i.oir

=> 0.01 r=i

r^iooK

(v) Ifvessel volume is Fthen partialpressures ofN^and COj
are

and

Given that

p -
^co-, ~

P -I-N, I23J

li
v44,

Pl+P2^ 10^

(8.3I4)(290)

(8.314)(290)

V

8.314/^290 290

V
10^

K= 1.205 X10-2m^

m.+m-, 18x10"^
Thus mixture densityP =

V 1.205x10"^
3

(vi) We use

= 1.494 kg/m

'o,

^30^

v2.

8.314x300

30x10"'

12.471x105 Pa

160 8.314x300

32 ^ 10x10"'
= 12.471 xl05 Pa

^ 70 8.314x300
~ 28 20x10"'
= 3.118x lO^Pa

Plefr=^^2 -12.471 x'lQSpa

Prigi„=^H,+PN, =15.589x 105 Pa



(vii) At STP we use

PRT
P =

10^ =

AP =

M

1.3x8.314x273

M

Z=> M=2.95xl(r^kg
This for given conditions

AhRT

V

0.415x105 =
Mx8.314x336

30x10"^

Ah = 0.4456 mole

w=A;ixM=13.14g

(viii) We use
0.6x8.314x300

P =
8.3x10"^

= 1.8x10-Pa

equivalent molecuar weight ofmixture is

0.1x28 + 0.2x32 + 0.35x44

0.6

=37.33

(ix) We use initial moles = final moles

76x4 Px3 Pxl
. + .

303

P =

373 303

76x4

303
x3 + l

373

\A5zmofHg

304

3.437

(x) We use pressure difference constant in upper and lower
parts as weight of piston is constant.
Initial at BOOK, and finally at temperature Tfor upper part we use

P{AV) _ PfjlVf)
300 T

3P = Pand we use

and

Using equations (1), (2) and (3) we have

4

300

/
5K=3f^

3x-x2
3

T

r=750K

...(1)

•••(2)
...(3)

Kinetic Theory of Gases and Gas Laws

Solutions ofPRACTICEEXERCISE 2.2

(i) We use

=> (76+10) X10 = 76 X/'
=> /' = 11.315cm

mass ofair is
PVM

RT
m-

1.013x10^x11.315x10"^ x]0^x29xl0-

8.314x300

13.32mg

(ii) At 60® tilt we use
(76-10)x40 = (76-5)x/j

^ /|=37.18cm
at 90® till we use

(76-10) X40 = 76 x/^
=> /2 =34.73cm

(ill) At depth 20 cm, oftube ifair length is x, we use
10^x0.5 =[10^ +(0.2+x)8x 1000 X10] XX

=> 5xl0^ = 10^x+0.2xx lO^+x^x IQ^
x^+10.2x-5=0

-10.2+Vl04.04 +20 ^
x= =0.468m

Netupward force on tube is

^up =^Buoyoncy-"'«^
= 0.468x0.5x 10-^x1000x10
-0.015x10

= 0.234-0.15

= 0.084 N '

(iv) At a heighty we consider an elemental layer ofwidth dy. If
mass in this layer is dm, we use

dm = Sdyp

kRT,
dm = Sdy

MS
dm = —— dy

RT

Total mass is m= \dm = — '̂ '̂"^dy
J RT i

p^MS

RT

g

RT

Mg
|-g-A^gv/Ar^
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(v) After tilting then tube by 60° we use
P,V,=P,V^

(76+20)x43=(76+10)x/

^ /=48cm

(vi) Centre ofgravityofgas is given by

jdmy
fdm

where dmis mass of a layerof widthdyoiz height^'
dm = Sdyp [5 is base area of vessel]

for uniform and Twe use

where Pq is density at base
00

,-MgylRTydy

h =

-MgjiIRT -KlgylRT

=

; i-MglRT) {-MglRTf

0-

-MgyIRT

-MgIRT

Mg]
RT

Mg

RT

Mg

(vii) Initially air inside barametCT
-100-74.8 = 52.2 cm

In second case air inside

= 100 - 73.6 cm = 26.4 cm

By gas law we use

(75.5-/+25.2)x25.2 = (74-/+26.4)x26.4
=> 2537.64 - 25.2/= 2650.56 - 26.4/

=> 1.2/ = 112.92

^ / = 94.1 cm

(viii) At a distance x fi'om open end we consider an elemental
layer ofwidth dx and ifpressure difference across this layer is
dp we use

pM

•=L'

dp= dx{(i?x) p={i}?x)dx

. P J0
2 ..2, p, Mayr

In— =

Pa 2RT

M(D^.

P:c= Po^
2RT

RT

(ix) (a) Foralayerofwidthc/j'ataheight^^weuse

dp = -dypg=gdy

dp -Mg I dy
i D ~ RP ll- ay

^P_ Mg

abore relation is valid if

1
h<~

a

(b) Now we use

dp = -dyg
pM

RT

r dy

Ip PPol(^ +ay)
, p -Mg
In— = —^ ln(l+ij/2)

Pa aRT^

P =
Pa

Solutions ofPRACTICE EA^RCISE 2.3

(i) We use
3RT

M

413

V. = V, Ml
T,M,

= 300X V;
27;m,

7;x(M/2)

= 600 m/s

(ii) Number ofmolecues hitting per square meter ofcontainer
wall is given as

A^c=^V™= '̂<10'''x2000
,28

and pressure is

= 3.33 X lO''® per second

P=:^P\.s

1 y-27 1r»26

= 4xl05N/m2

= j x3 X10" '̂X 10^° X(2000)'
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(iii) Iffinal pressure inside airisi^weuse
66x40 =P^x38

=> Py=69.47 cm ofHg
For equilibrium ofHg pallet we use

PyX +IpgTcr' +X= XTir^

0.6947x 13600x 10+0.05x13600x10+ 2
nr

= 0.76 X 13600 X 10

^ X=3.14 X(2 xir^)2x 0.0153x 13600x 10
=0.026 N

Alternative: This problem can be directly solved by finding the
mercury pressure balanced by fi"ictionwhich is

76-5-69.47 = I.53cmofiyg
=> X=0.0153 X13600 X10x3.14 X(2 Xl(r^)2

= 0.026 N

(h') Average translational kinetic energy ofall gases remains

3
same at same temperature and equal xo—kT.

(v) Pressure of gas is given as

fr

P= -j (translational kinetic energy per unit volume)

2 { 3>

P = nQkT

1.013x10'
nr^ =

1.38x10'^^ x273

=2.688 X10^^ m"^

average separation between molecules

1
=3.31xl0-^m

(iv) (a) We use v^= ^ ^
= 1579.3 m/s

2RT 2x8.314x300

2x10"

(b) We use V —
mp

8PP _ 8x8.314x300
VjtM ~V 3.14x2x10"'

= 1782.5 m/s

3RT 3x8.314x300

m V 2x10'

= 1934.25 m/s

2RT 2x8.314x300

m V 32x10'

= 394.83 m/s

Kinetic Theory of Gases and Gas Laws

8Pr 8x8.314x300
V mean yj yj 32x10'

=445.63 m/s

87?r 3x8.314x300

m 32x10"

=483.56 m/s

5+2+2+6+0+4+1+3+5+1+7+3
(vii)(a) v^ =

12

= 3.25 m/s

(b)

52+22+2^ + 6^ +02+42+12+32 +52 +12 ^^2 ^32

12

= 3.86 m/s

(vlii) Temperature ofnitrogen is

PV 2.1x8x10^
T=

nR 1300x0.082
= 157.6k

3Pr 3x8.314x1576

^rms ^ 28x10'

= 374.68 m/s

Solutiom ofPRACTICE EXERCISE 2.4

Sol. (!) We use

Now

K,
-nRT
2

Kr (/-3)
nRT

/-3 .2
a=3/-9 ^ /=5

/
U='^nRT

2

= -x 1 x8.3x 100 = 2075J
2

(11) Rotational kinetic energyofa diatomic molecule is

E = kT== -/co'
2

co„
2kT

2x1.38x10-^x300

V 2.1x10""
= 1.985 xlO^rad/s
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(iii) (a) Average molecular energy ofa gas is

=LkT =6kT
2

= 6x].38x10-^^x650
= 5.382

3RT 3x8.314x650
(b) We use =

M Vl.3xl0-'^x6.023xl0^
=455.03 m/s

(c) For a non linear polyatomic molecule there are 3

translational and 3 rotational degrees offreedom so vlbrational

degrees of freedom are

/v=^«/-6 = 6

(iv) For inelastic collisions oftwo atoms to excite both hydrogen
atoms we use

3
-kT =10.2=K
2

T=
10.2x1.6x10-"

. 1.5x1.38x10""

= 7.88xlO'^K

(v) We use by gas law

P.V PlV _ Px/ ^ P2f^
T, T, 7} 7}

by conservation of energy we use

=> Pif^PirPx^'Pi
from (1) and (2) we have

A +Zl Px-^Pi

for left and right part ofgas

& =4^and Pi ^ P2J_
TrT, """ T,

PV"

and Pif.

+P2)
Px+Ti^PiPx

Pl^xiPx +P2)
Px+T^ +p2^

(vQ That supplied from left part in
^Q-U-Uf

(1)

(2)

=^V P\'
Pj^iPx +P2)

iPxPl+Pl'Px)

PlPlPj-PxPlPl

. PxPi+Pi^x

415

_3pp,V{T,-T,)

Solutions ofCONCEPTUAL MCQSSingle Option Correct

Sol. 1 (A) As RMS speed is inversely proportional to the
square root ofmolecular mass ofthe gas, option (A) is correct.

Sol. 2 (A) At higher pressure boiling point ofwater increases
so more heat will be used in cooking.

Sol. 3 (B) Work done in process 1 - 3 is greater than that in
process 1- 2. While change in internal energy is same for both
processes

=> Q2^Qi-

Sol. 4 (C) In evacuted chamber water evaporates fast and for
evaporation it gains heat from the remaining water only due to

which some water will vaporize and the rest will freeze due to
loss ofheat as it is loosing heat at melting point.

Sol. 5 (B) In thermal equilibrium at a constant temperature,
according to Maxwells distribution ofspeed the averature speed
remain constant.

Sol. 6 (D) Process AB is isothermal so on V-Tcurve also it will
remain a vertical straight line. Process5C is isochoric (as it is a
straight line passing through origin) hence on V-Tcurve it will
be a horizontal straight line and process CD is again isothermal
so it will be a vertical straight line on V-Tcurve hence the curve
will look like

Vi

Sol. 7 (B) Averagekinetic energyofa molecule is 0.5fkT where
f are the degrees offreedom ofthe molecue and it is independent
of type of the gas.

Sol. 8 (C) Under isothermal compression when a gas is
compressed the separation between the gas molecules decreases
due to which mean free path decreases and hence rate of
collisions increase hence option (C) is correct.
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Sol. 9 (B) Average speed of molecule will remain same as
Vj at same temperature.

Sol. 10 (B) FromgaslawrK=«i?rtheslopeofthecurvewill
be ni?/7hence option (B) is correct.

Sol. 11 (A) Based on explanation ofprevious question option
(A) is correct.

Sol. 12 (B) Due to sudden compression gas pressure and
temperature increases and now as it is maintained at this position
due to metal cylinder heat is conducted out and its temperature

decreases and hence pressure also decreases hence option (B)
is correct.

Sol. 13 (B) As 2j = AI/+ir,
and Q^ = ^U+W^
Ratio ofspecific heats

^T

Co

M

AU AW^
AT AT

AU AW2
AT^ AT

<1 (As w.>w;)

Sol. 14 (C) Fromgaslaw/'F=/M/?7yAfoption(C)iscorrect.

Sol. 15 (D) As the air is saturated then on compression the
volume the water vapours will condense and air remain saturated
with water vapour and final pressure is maintained at same
value.

Sol. 16 (C) As the slope ofadiabatic curve is more than that
ofisothermal curve hence option (C) is correct.

Sol. 17 (A) As P^T- constant
=> P^{PV) = constant
=> constant

^ = constant => (x=l/3)

fR R
r=-—+
^ 2 1-x

After solving we get /= 3
=> So the gas is monoatomic.

Sol. 18 (B) On heating the gas, it will expand due to which the

whole system will move toward right.

Sol. 19 (C) As in the given process at constant pressure,
temperature is increasing, gas volume is also increasing due to
which gas density decreases.

Sol. 20 (B) According to gas law the volume of gas is
proportional to TIP hence it is decreased to 2/3 of the initial

value hence density will increase to 3/2 ofthe initial value.

Kinetic Theory of Gases and Gas Laws

Sol. 21 (C) According to gas law we use PK= Mrwhere iV
are the total number ofmolecules in the gas.

Sol. 22 (A) In the given expression dimensions of the term
alV^ is that of pressure hence that of term a must be same that
oiPV^henceoption (A) is correct.

Sol. 23 (A) dP = gpdy

hf dP Mg
J P J?T

H= \dy=^H =—\n^
J Ayfer P

P RT

H

0

Sol. 24 (B) We consider an element at a distance x fi^om one

end ofwidth dx where coefficient ofexpansion will be

a, -ttia=a, +^
Expansion in element is dl = adxAT

Total expansion AL =Jo.ATdx

• X

tto -aiAi, =Ar j[ai + dx

= AT
T ct, - a, [

Where we get

= AT
ai -a-

= a LAT
eq

Ctl +Ct2

Sol. 25 (A) As At/, =+ve;
and

so

thus

At/2=0
AU^=
At/, > At/2 > At/3

Sol. 26 (D) Temperature, internal energy and volume depend
upon states.

Sol. 27 (D)

P\

density
increases

density
decreases

From gas law we have P = —
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Thus at constanttemperature we have p oc P
In graph p cc P. At constant temperature thus density
increases.

In 2"'' graph at constant pressure, pcc^

In 3^graph as ~ = constant ^ Pec T

=> density remain constant.

Solutions ofNUMERICAL MCQSSingle Option Correct

Sol. 1 (D) Work donein isothermal process is givenby

2.303rt/eriog,
V.

rii.2

22.4
ir=2.303xlx8.314x273X log

1573.5 J

ir«-1570J

10

Sol. 2 (D) We have

K = — = —mmolecule 2 2

= -kT
2

3/tT'l

m

Sol. 3 (C) With theincrease inmolecular weight, therms speed
ofgas molecule decreases.

1

Vm

(^rms )//2
(^rms^02 ^

—4v

^ = 1^=4

Sol. 4 (C) Kinetic energy ofa gas molecule

= -kT
2

EazT

Moleculerofdifferent gasesat same temperaturewill havesame
translational kinetic energy.

Sol.5 (B) Forgas G, pv-nf(T

for gas ^ ^nftQ.T)
n.

Dividing (1) by (2), 1 =
In-,

-^=2

...(1)

...(2)

Sol. 6 (A) The pressure will increase

Px^Pi^P
From ideal gas equation,

pv=nRT

nRT

Volume remains same

2RT^ ^4R{2T^) 6RT
V V V

where T~ temperature ofmixture

ioro=6r

ST.
T=

417

Sol. 7 (A) Totalenergyassociated with each molecule,

E=—kT
2

Since both Gj and^2 arediatomic,
ratio ofrotational K.E. per molecule to that per N2 molecule

= 1;1

Sol. 8 (A) We use PV^-^aP = RT^b

^(RT +b)

p = {RT+ b)}^-aJ^V-^
/w = -cand« = -l

\2RT
Sol. 9 (D) We use

M=\

M=\6

v= Vw

For hydrogen,
For oxygen,

V02 =
3RT _ V

16 ~ 4

Sol.10 (B) Let finalpressureofmixtureis/7'
W| + = «

eL+eL =£21
RT RT RT

p' = 2p

Sol. li (D) From ideal gasequation
pV=nRT

As n = l

RT

P~ V
Both have same volume and temperature, thus, pressure of
oxygen = pressure of hydrogen.
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Sol. 12 (D) Atequal temperature, theaverage kinetic energies
are equal, therefore ratio is 1 :1.

Sol. 13 (B) Theaverage rotational kinetic energyofa diatomic
molecule at temperature Tis kT.

Sol. 14 (A) From ideal gas equation,
pV=nRT

nRT nRiT^^aV'̂ )

-^RTq

V'

dp

dV

V

nRT.

= 0

+ 2anRV=0

^^nRaV'^

T
^ =laV

2a

2a)V=

Sol. 15 (D) From ideal gas equation,

nRT

p=~r

p=
nR{TQ+aV'̂ )

V

nRT,

P = V
^•^anRV^

•2/3

^{2af'' +anR.^
rr (2a)

for n = \

p = RT.^'\2y'\ay'^'0

a^^^-RT.
-.2/3

•2/3

+

-.2/3P =

Sol. 16 (D) As we have

From Mayer's formula.

C =—R
V 2

c,-c^=R

2/3

Kinetic Theory of Gases and Gas Laws

a. /^R

1 mN 2
Sol. 17 (B) We use Pq =

1 mN ,.2 ,
=> p'=~— i^\ms)

=> P'-'^Pq

Sol. 18 (B) rms speed of gas molecules does not depend on
thepressure ofgas (if temperature remainconstant),
according to Boyle's law,

Fee p

Ifpressure is increased two times, density will also increase by
2 times, hence, remains constant.

Sol. 19 (B) Number ofmoles in first container,

FT]

Number ofmoles in second container.

Rn
=

If both vessels are joined
«1 + «2= «

F{2V) P^V ^P2V
RT ~ FT] RT2

P. --
T ~ 2

Sol. 20 (B) As we have

7] ~T2

3kT

m

V cc 'Jt
rms ^

Sol. 21 (D) Since the process is adiabatic (sudden) we use
TV~^ - constant

^-1 w(273 + 27)^3 =T

2/3

300

7=300x4=1200K=92TC
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Sol. 22 (D) We use

c.

H,c,, +^2^,̂2

1^1 +[^2

\iCp^ +M-2^/^

^l|C, +^2C,,

7i 72

Y.-l
R+IX2

72-1
/ _ \ / _ N

R
Ml

7i-lJ

Mi7i I M272
7i-l 72-1

1^1 .+. M2

+ M2
v72-ly

7i-l 72-1

Mi7i(72-1) + M272(7i-1)

Mi(72-1) + M2(7|-1)

3(1.4X1.66-1)+ 2(1.66X1.4-1)
3(1.66-1)+ 2(1.4-1)

2.772 + 1.328

1.98 + 0.8

4.1

2.78
= 1.475

Sol. 23 (B) Energy given to person
= 10^031

=4185803

2-8
Energythatcanbeutilized = 418580 X

£ = 117202.4 J

E = mgh
I17202.4 = 60x lOx/i

= 195.34m«196m

Sol. 24 (B) Bygasiaw pJV^=n^RT^
P/2 ="2 '̂̂ 2

«I +M2 = ^
PfV ^ PfV ^ p^(2v)

^ RT^ RilT,) RT,
Pf r.

=> Pf+—=2p^

3pf
— =2po

4/^0
Pr^

419

P/Vq ApqVq 2pqVq
Sol. 25 (C) Bygasiaw «,=

R{2T^) 3R{2To) 3RT^

Sol. 26 (D) We use v =
> ' rm c

(l)^ +(2)^+(3)^+(4)^

v__. =

1+ 4 + 9 + 16

30 _ 15
/—-Jy km/s

Sol. 27 (C) Average A'.£. = —

k X r

Sol. 28 (C) We use pl^= constant

=pV

p' = Sp

Sol. 29 (C) P = 8.31J/mole-^
S.I. unit ofi? is J mole"' AT"'

/

Sol.30 (A) (76-13) P=(76-H)-

=> //=70cm

31 (B); 32 (A); 33 (B)
Sol. 31-33 LetPjandPjb®theinitial pressure in lower chamber
of gas and upper chamber of gas.

mg

P2 =-Po+ ^ =2/>o, V2 =AX12 X10-2
A

If P2 and V2 arefinal pressure andvolume inupper chamber
V'2=A>^(2S-l)x\o-^m^

p V = P'V
^2^2 ^2 ^2

' P2 28-/
Now consider lower chamber

2mg

and

and

P = P +

-AxSx 10-2m^

P'=P'+ -p
' ^ A ®

52-1

28-/.

K;=^x(8 + /)x io-2m3
p y = P' y
^ri
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10-2=^0
'52-/ 1-2X(8 + /) X10

24 =

28-/

52-/

28-/

Solving we get /=4cm

x(8 + /)

P[=2Po =2x IQSA/m^

=>, p^=
24Po
28-/

YL- 28-/ 24

V' 8 + / ~ 12

Solutions ofADVANCE MCQs One or More Option Correct

Sol. 1 (C, D) As gas volumes are reduced to half for both A
and B containers as gases are monoatomic their pressure and
temperatureswill alsochange bysameamount but in Cas the
gas is diatomic, its changes will be different.

Sol. 2 (All) Average KE per molecule in ^ & 5

(v ).=
rms^A

. (Vrms)A

M

Mr

(^rms)s M,

No. ofmole of ^ =
M.

No. ofmole of 5 =
M«

Mr

16Mr

3RT , , 13RT
'(05 = Mr

w .4/2
= 8n.

M .4/16

4KT

Sol. 3 (C, D) According to gaHaw the given quantity is the
product of pressure andjnolar mass of gas hence options (C)
arid (D) are correct.

Sol. 4 (A, C) Total molecules in 1 mole are always constant
and equal to Avogadro number-and at a given temperature
translational kinetic energy offixmimber of molecules is always
constant for all gases.

Sol. 5 (B,D) — = constant

RT
P=p (Ideal gas equation)

E-

P

pRT

M
=PT j=constant
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.-. The graph of the above process on the P-T diagram is
hyperbola.
For the above process

p2^ ( P^^

1 •- h
p2

Pi
P p/2 -7r -(i)

2and P,r,=r%^r2 ^'PT=-f^T, => r,= V2r ...(ii)

Sol. 6 (A, The rms translational speed is only dependent
uponthe temperautre ofgas and not on gas quantityand it is
directlyproportionalto the squarerootofabsolutetemperature
of the gas. For a giventemperatureofgas its internal energyis
constant and ifP and Vof gas varies such that PV= constant

then option (D) is also correct.

Sol. 7 (A, C, D) For all gases coefFiecient of expansion is \/T
so at a given temperature it is a constant hence option (A) is
correct. In each degree of freedom always average energy is
same and is equal to O.SkT hence option (C) is correct. As
pressure of gas decreases,densityof gas also decreaseshence
the intermolecular separation increases hence option (D) is
correct.

Sol. 8 (B, C) As given in problemthe gasesare differenthence
their number of moles will also be different for same mass.

Hence in this case otpion (B) and (C) are correct.

Sol. 9 (AH) Area under the curve is equal to number of
molecules ofthe gas sample.

Hence N= aV^ = 2N

F^4jvw4|c.[^.]civ = iv.

V,
avg

v.-

00 1 ^
y2 =.1 fV^N(V)dV =^\yArn,s V ^ ATJ [Vo J

K
rms

Fn

1

•

2

Areaunderthe curvefrom0.5Vq to Vq is 3/4of totalarea.
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Sol.10 (B,C) Ifthe cylinder is in grdvity freespacethen the
insidepressure willbeequal to thatofthesurroundingpressure.
If gravit is there then in case when open end of cylinder is
facing upward, gas pressure will be more than that of
surrounding and if open end face downward then the gas
pressure will be less than that of the surrounding.

Sol.11 (All) Ata given tanperaturetheaverage kinetic energy
per molecule is given by (^''2)^7'which is same for all diatomic
gases hence option (A) is correct. RMS velocity of gas
molecules at same temperatureis inverselyproportionalto the
square root ofmolar mass ofgas hence option (B) is correct.
For a gaseous mixture the pressure exerted by a gas is
proportional tow/Mhenceoption (C)is correct. Fromgaslaw
PV= NkTvjQ can see that option (D) is also correct.

Sol. 12 (A, B, C) By definition of real gas behaviouroption
(A) and (C) are correct. As ideal gas molecules never interact
with each other it can never be liquified hence option (B) is
correct.

Sol. 13 (A,C,D) speedofa gas is directly proportional
to square root of absolute temperature of the gas hence from
gas law options (A), (C) and (D) are correct.

Sol. 14 (B, C,D) Bygas IawPF=—iJJwe can directly find
M

that option (B) is correct.Total translational kinetic energy of a
gas depends upon the temperature ofthe gas and total number
of molecules as £" = (3/2)M7'hence option (C) is correct.Total
kineticenergy ofa gasis given as£'y.=(_/72)/:7'hence option (D)
is also correct.

• ^,^lj

Sol. IS (A,D) Therateofcollisionsofthe molecules with per
square meter ofthewall is (l/6)nQV where Wq is the molecular
densityand v is RMSspeed ofmoleculesand pressureexerted
bythegas onwall is given by (l/6)nQV x 2w'v where w'is the
mass ofeach molecule.

Sol. 16 (C, D) Using the concept of elastic collision between
two particles, one light and other heavy we can conclude that
options (C) and (D) are correct.

Sol. 17 (B,D)
(0 As PV^ = Constant
=> TV= Constant

^ Ifvolumeexpands temperature decreases.
(u) As P = KV^

= constant

If volume expands, temperature increases

(i)PF^ =C {i)P =KV^

ByFLT weuse Q^AU+W

Q2>Qi as W2>W^ & AU2>AUj



422 Thermodynamics Laws & Specific Heats of Gases

ANSWER & SOLUTIONS

CONCEPTUAL MCQS Single Option Correct

1 (B) 2 (A) 3 (C)

4 (B) 5 (D) 6 (A)

7 (B) 8 (A) 9 (A)

10 (B) 11 (D) 12 (C)

13 (A) 14 (B) 15 (A)

16 (C) 17 (C) 18 (B)

19 (C) 20 (A) 21 (B)

22 (C) 23 (A) 24 (C)

25 (C) • 26 (C) 27 (D)

28 (C) 29 (A) 30 (A)

31 (A) 32 (B) 33 (C)

34 (B) 35 (C) 36 (C)

37 (C) 38 (B) 39 (C)

40 (A) 41 (C) 42 (C)

NUMERICAL MCQS Single Option Correct

1 (A) 2 (B) 3 (B)

4 (C) 5 (B) 6 (C)

7 (B) 8 (C) 9 (D)

10 (B) 11 (C) 12 (B)

13 (A) 14 (C) 15 (A)

16 (C) 17 (C) 18 (A)
19 (D) 20 (A) 21 (B)

22 (C) 23 (C) 24 (C)

25 (A) 26 (B) 27 (A)

28 (D) 29 (D) 30 (B)

31 (B) 32 (D) 33 (A)

34 (C) 35 (C) 36 (C)

37 (D) 38 (D) 39 (C)

40 (C) 41 (D) 42 (C)

43 (B) 44 (C)

ADVANCE MCQs One or More Option Correct

1 (B, C) 2 (A, B) 3 (A, B)

4 (A, D) 5 (B. C) 6 (All)
7 (C, D) 8 (B, C) 9 (All)

10 (All) 11 (A, B, C) 12 (All)

13 (All) 14 (A, B, D) 15 (A, B)

16 (A. D) 17 (C, D) 18 (A, C, D)

Solutions ofPRA CTICE EXERCISE 3.1

(i) Given that AQy = 100J

Ar|=-20J

A22=-20J

For a cyclic process we use

AQ^~AfV,^~(AQ^-AfV^)

^ 100-20 =-(-20-Ar2)

=> Ar2 =80-20 = 603

(ii) Given that
= 50JA2,

Ag
Aa

A-^B

B^C

C^D

= 0

= -70J

t/^ = 1500J
t4=f/^ + Ag^_^g= 1500 + 50= 1550J
Uc =Bb^Wb^c^ 1550 +40= 1590 J

(iii) Heat absorbed in isobaric process is

•nyR yP •

1.67

0.67
X10^ X10-^= 24.92 J

Ov) Increase in internal energy
At/=Ae-Ar

= 1 x539x4.2-l.013x lO^x 1670X 10"^

= 2263.8-169.171

= 2094.63 J

(v) By first law ofthermodynamics we have
bW=b,Q-tJJ

= 25 kcal - 8 kcal

= 17 kcal

(vi) For isobaric process
W=PNV=nRST

and AQ= nCpAT= Ar= 100J

200
W=^nRAT= — J = 28.57 J

Solutions ofPRACTICEEXERCISE 3.2

(i) Work = Total area enclosed by cyclic curve = 0
(ii) Gas pressure is given as

(P-2P,) =- ^ (V-V,)

=> P=3P^--^V

PV 3Pq
by gas law

ris maximum when —— =0
aV

^ nR nR^ nRVf,
dT
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dT 3/^0 2Pq
dV nR nRVf^

V=

3^0
T = —

max

f3K

F=0

/ o n2

nRV.

9 PqFq _ 9 /^Qro _ 9 PqKq
2 4 wT? 4 «/?

(iii) Work done on the gas is the area between semi circle which
is given as

7t(I)(l) Tt
w=

(Iv) (a) Work done are

= — Itr-atm
2 2

^ B=8X3X10^ X10-3 =2400 J

rc_,o^-2><3x lO^x io-3 =_600J

(b) Total work is
= 2400-600=1800 J

(v) PV curve ofgiven process is drawn using
AB isobaric

BC-> isochoric

CA isothermal

=> Indicator diagram is drawn as

.p

(vQ Work = area enclosed between PVcurve and K-axis

=̂ (540) (0.3)+ 340x1
= 81 + 340

=421 kJ

(vli) (a) Change in internal energy ofgas

3

2

3

= -(8x103x0.8-4x103x0.5)

= 6.6x103j

(b) Work done by gas

fV= area under PVcurve

^^=-(^b^b-^a^a)

=̂ (12x103)(0.3)
= 1.8x103j

(c) Heat supplied Q = W+ AU
= 8.4x103j

Solutions ofPRACTICE EXERCISE 3.3

(i) AtF, =Ko, P, =̂
AP

andat 1^2 = 2^0,

change in temperature ofgas is

AT=

423

P7V2
nR nR

1 ( IIW
nR 5 2 10^

[As «=1]

(ii) Work done is calculated as

W= JPdV -P(K2-K,)
y\

^a(2T,f a(r,f
=p

=3aT„'

(Hi) Given that AQ= nCy(10)=25R
work done in adiabatic process is W=-AU

=-fjCyAT
= nCy(W) = 25R

(iv) Given that At/=-100J
for adiabatic expansion we use fV=-AU= lOOJ

(v) Sudden compression implies adiabatic process so we use
T yr-f = T yr~i

300(P'|r =rJy
0.5

7-2=300(72)=424.26 K
1.5

and P2= P,
V

V,
= 272P,

in isobaric process = 300 K

T2 T3

T3] ( 300 "j
hj 2 l30072j

then in isothermalprocess V^ = Kj

V
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(2V2P,)

work done by gas in first process is

_ m -PiVi _

p,=p,

W
adiabatic

fT:

V-l

l->/2
0.5

=-82.84J

1-3X10^x10

=Pir,(l-V2)
= 1-72x10^x10-^
=-41.4J

^isobanc = P3y3^^

Vi
2V2J

= P,V

P^V,-{242P,)\^
0.5

l-Jl 2

=(2^/2/5) (^^jln(2V2)
=P,F,ln(2)'-5
= 1.5x10^x10-^x0.693
= 103.95 J

^ = IV + IV + w
total adiabatic isobaric isobaric

=-82.84-41.4+103.95 =-20.29 J

(vO If initial pressureare /',7*2 ^3 fi^^t container
P,V=P/:ZV)

in second container

P2VI-^ =Pj{2V)^-^
in third container

P,=Pf
from (1), (2) and (3) we get

P\ :7'2:7'3=2: 272:1

(vii)Weuse7',FY =P2'7
/.V

P.= P

_in5/o\1.67=> 72 = ^0(3)
Work done by gas in adiabatic process is

=10^^
1.67

P,V,-P,V, ^ 10'(6-2(3)'")^^,q-3
Y-1 0.67

=-974.07 J

(viii)At constant pressure work done is
W=nRAT=2J

and heat supplied to diatomic gas is

7 7
A0= -nRAT = -x2 =7J

2 2

...(1)

...(2)

...(3)

Thermodynamics Laws & Specific Heats of, Gases

-(1)

nR{T-Tj-)

(ix) In first container work done is
=«finn(2)

In second container work done is

^ 7-I

where 3^=71^2)^ ^[using Tj K,"'' =̂^2^2
using = W2 weget

«mn(2) = —

^ (l-2'-T) =(y-l)ln(2)

(x) (a) In right chamber we use for adiabatic process

p j/6/3 _ p t/S/3Pq^o - 32 0^/7?

32

^"1,243,
Using gas law we have for right chamber

243
"^0 9

32 " 27
= -7;

for left chamber volume is

46
F^=2F.---K.= -—K.'fL ^'0

27 27

using gas law we have'

243 ^ 46
P^—ra

32 ^ 27 ^ ^

^0^0 16

(b) Work done by gas an right chamber is

("243

...(2)

^0^0-
W=

132 27
Vr.

=-^^0^0
--1

(xi) We use T/P/-^= P^ "^
. . l-Y

^2=7,
^^2

1-1.4

=290(10)2^ =559.90K
Work done on the gas is

W ="exi

nR{T2-T^) 8.314(559.90-290)

Y-1

= 5609.87 J

0.4
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Solutions ofPRACTICE EXERCISE 3.4

(i) Given that 7=-p-

we use dV=—%-dTt2

work done by gas is

W= JPdV

AT

=-ftRj dT =-nRAT

Change in internal energy ofgas is

R ^
AU= n. y_l

AQ^AVtAW

AT

heat suppiled

1
= nRAT -1

Y-1

2-Y

Iy-1
RAT

(ii) (a) C=Cy+o.T
For a general polytropic process we use

PdV

^ ndT
PdV

ndT

RT ^
V dT

dV

= aT

=ar

_aJ

Ve ^ = constant

(b) C=Cy+^V

we use

PdV

ndT

RT dV

V dT

J 7/2 ~ 7

(As « = 1)

-1 =^lnr +C
V R

~[—+c

7^/P ^ = constant

(c) C=Cy+aP

we use

425

PdV

IdV =JandT
V=an aT+C

V~aT = constant [Taking n = 1mole]

(iii) Rate ofcollisions with vessel wall is

_1
6

N(2 = -j^oKms = constant

1 N 3RT
= constant

6 V m

V?
= constant

T=kV^

dT

dV

Molar heat capacity is

PdV

ndT

3R RT dV

2^ V ' dT
3 „ R(kV^) 1

C= -R + — =2R
2 V 2kV

(iv) Rate ofcollisions with vessel wall is

1

6 "oKms 6
f 3RT

vH U

Vr
Nr a.-— = constant

T=kV^

dT

dV

molar heat capacity is given as

RT dV

y ^7

5R RUcV^) 1
C=— + — =3i?

2 V 2kV
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(v) (a) Heatsuppliedto raise the temperatureof gas from Tq
toriTo is

•nTb

AQ=\CdT^ j ^^^^=aln(Ti)

Increase in internal energy ofgas is

RTn

Work done is given by first law ofthermodynamics

(b) We use

AW= AQ-AU=a\R{^)-

PdV

ndT

R RT dV

(Y-1)

T y-l V dT

J V ' RT^ Y-lJ TRr

a 1
In V=

1
In T+C

R T y-l

K_ a(y-i)In(rKY-')=-
RT

•+ C

jyy-^ constant

=> constant

(vi) For a polytropic process

FdV RT dV

V dT

5 RT dV

—VdT =TdV
2

^fdT ^edV

T J V

In T^ + In = constant
7'3|/2_ constant

2^3/2 constant

if Vchanges to 2 F then T becomes T given as

7'3/2 j'f3/2^2P)

T
T =

2/3
(2)

Rate ofcollision is proportional to

new rate becomes

Thermodynamics Laws & Specific Heats of Gases

,2/3

N'c= Nc

Nr
4/3

(2)

(vii)(a) P=aT'^

RT

K V ,
= ar

a

R
dy^~(\-a)T"'dT

a

we use work, done by gas

AW=\PdV

= R{\-a)AT

(b) Molar heat capacity is given as

RT dV

y

R RT
=> C= — +

R

y-l
+ P(I-a)

R

dT

(i-a)r

(viii) As in both paths AL/is same but work done ismore in path
B thus heat required in path B is more hence molar heat capacity
in path B will be more.

Solutions ofPRACTICEEXERCISE 3.5

(i) Work done = area enclosed by PVcurve ofangle

=^ x3x30=45J
2

(ii) Heat calculations in cycle are

^Qab =2(P)(500)ln(2)

AQcd =-2P(300)ln(2)

AQ^C =-2(Cj.)(200)

AQda =2(Cf^) (200) (cancals outwithAQg^

Total heat supplied to gas is

^Qjotai ^^Qab'^^Qcd
= 2P(200)ln2

= 2x8.314x200x0.693

= 2304.641
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Thus total heat rejected by gas is

- 2304.64 J

(iii) For process AB we use

PT = constant

T - k^V
k

dT =
i^lv

P-Jv = constant
=> PV '̂'̂ = constant
Thus molar specific heat ofgas is

dV

C=Cy+^—=Cy^2R
I-l

3 7
= -R + 2R = -R

2 2

(a) Work done by gas in process AB is

^PdV =f^^dV
l2R(k^)

V

To

=4RjdT =-4RTf^
27b

=-1200^

(b) Heat supplied to gas is'
AQ^s = 2CiT^-2T^) = -2CTf,

= '7RTq — 21007?

AQc^=2(R)(2T^)]n{2)

5R _Y|To =15007?

= 12007?x0.693 = 831.67?

(iv) (a) Work done = area enclosed by angle

-\xV,x2P,=P,V,

(b) Heat in path CA is

AQc^=nCjAT= (1)[^7?1
AQ^^ =nC^AT= 1^-7?J (3P,V,-P,V,)

-3Po^o
(c) AQJ^^^^ = AQ^g + AQq(^ + AQ(^^

^ ^0^0 ^3Po^o'''^2bc~2.57'qKo

= 2.5P,V,

Process equation ofBC is

2P(P-3/>o)=--^(F-F„)

2Pr

Gas temperature is

7?
T=

ris maximum when

dT

RVn

dV
= 0

SPr,(2V)+^=0

4V

5Fn
V=

7?Fb
•F^ +

2Pr. 25^
16

••V
5^

7?

5^
7?

+

25PoFo ^25^0^0
8 7? 4 7?

87?

(v) Work done=Area 021 - Area 043

1

= 2(^2-^1) (^o-^o)

-^{V,-V,){P^-P^)

=̂ (100xl0-^)(2xl05)

427

5Kn

V 4 ,

I

=10^-1

(Pi-Pq)

(Po-Pi)
(Pi-PO (^2-^0)

(lO')J
1

•xIOOxlO"^
2x10-

= 10^-2500 = 75003

(vi) For processes 12 and 34 The process equation \sP = kV
=> molar specific heat is

RPdV

Pdv+vdP

3^ ^ R{kV)dV
~2 {kV)dV ^V{kdV)

3^3?
= -7?+— =27?

2 2
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Heat supplied in prosesses of cycle are

A0,2 = 3(2R) (400) =2400^

V2 y
3 (1600)= 12000/?

A034 = 3(2/?) (-1200) =- 7200/?

A04I =3|^^(-800)=-6000/?

Total work done = Total heat supplied
=2400/?+12000/?-7200/?-6000/?

= 1200/?

= 9976.8 J

Ifwe consider number ofmoles =

(vii) Let temperature in states are

T^ = T;T^ = nT&,T^ = n^T
process equation ofBA is P - kV for which specific heat is

/?
C=Cy4--

R R
• + — =

y-1 2

Heat supplied in process BA is

Y+ 1

U-IJ
Work done by gas = area enclosed by cycle

Qba

2

rt]/?

2

«i/?r

Y+1 I R
(Y-l)J 2

[n^T~nT-nT+T\

(n-\f

Efficiency ofcycle t)
work done W

heat import

2

2 [y-\

Y-1

.Y + lJ

n-l

« + l

(viii) We consider «, moles of gas heat supplied in diflferent
processes of cycle are.

' yR"
A0«r=-«i

.Y-1
(7-2-T's)

^^{nP^V,-P^V^

Thermodynamics Laws & Specific Heats of Ga^S

yPiVi

Y-1
(n-l)

'_R_^
Y-l.

1

For adiabatic prosess we use
P,VJ = P,(nV,y

Thus cycle efficiency is given as

= 1-
Qo

= 1-
Y-l

^2^l(«-l)

Qi, (^1^1-^211)
Y-1

= 1
Y^2l1("-1)

^2^l(«'-l)

«-l
= 1-Y

n^-1

(ix) If ris the temperature of state we use

T^ = T; Tg=T^=nT; 7^=1^7

Total work donebygas in cycle for n, molesofgas

W={P^~P,)iV^-V;)

=n^Rin^7-n7-n7+7)
=n^R7(n-lf

Heat supplied to gas is

R
= n.

\Y-1

Qxunn ^Qar"^^sxtpp

Ay-1.
7(n- 1) + n, 7(fi^ —n)

n,R7 . n,R7
-{n-1 +yn^-yn)= -(«-1) (1 +y«)

y-1 y-1

Cycle efficiency is

^ =
W

0•supp

^ 1 ^
Y-1
l + y«

r}]R7(n-\y
n,/?r

Y-1

(«-l)

(«-l)(l + yn)

Solutions ofCONCEPTUAL MCQSSingle Option Correct

Sol. 1 (B) Work done by the gas is the area under the P-V
curve hence option (B) is correct.

Sol. 2 (A) All three quantities given above are dependent upon
temperature of the gas and under isothermal compression
temperature remain same hence option (A) is correct.
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Sol. 3 (C) Workdone by the gas in the given cyclicprocess
willbe the areaenclosedbythe cyclehenceoption(C) iscorrect.

Sol. 4 (B) Slope of adiabatic curve is more than that of

isothermal curve.

Sol. 5 (D) In isothermal expansion temperature ofgas remain

constant and also the internal energy remain constant so heat
wsupplied to the gas is equal to the work done by the gas.

Sol.6 (A) OnthePFdiagramwecanseethatfinalteraperature
in process 1 is more than that in process 2 and that in process 2
is more than that in process 3 and internal energy change is
directlyproportional to the change in temperature hence option
(A) is correct.

Sol. 7 (B) As atmospheric pressure is constant option (B) is
correct.

Sol. 8 (A) = constant it implies on using gas law we have

TV= constant so if we double the temperature, volume will

decrease to F72 hence option (A) is correct.

Sol. 9 (A) In Camot cycle there are two isothermal and two

adiabatic processes complete the cycle in alternative manner
and slope of isothermal curve is less than that of adiabatic
curve hence option (A) is correct.

Sol. 10 (B) From point L to Mas pressure is constant, by gas
laws we use Fis directly proportional to Tso the curve in Tand

Fwill be a straight line passing through origin which is there
onlyin option (B). ' '

Sol. 11 (D) Work is done on the gas when in the process gas

volume decreases which happens here only in processes RS

and SP.

Sol. 12 (C) Process AB must be a vertical straight line as

temperature is not changing in the process. Then Process EC is
an isobaric process so here it must be a horizontal straight line

and finally process CA is an isochoric process when volume
remain constant so on P-T curve this will be a straight line

passing through origin.

Sol. 13 (A) In the given process, as volume increases work
done will be increasing with time.

Sol. 14 (B) In the above process pressure is a constant so the
heat absorbed for a given temperature range can be given as
A0=nCjATandworkdoneisJV- nRA Tandfor a monoatomic
gas Cpis 5i2/2. :

' - ;429j

Sol.15 (A) FortheprocesSi4Cchangeinintemalenergywill
.be the difference of total heat supplied which is 800J and the
work done by the gas which can be calculated by the area
under the P- Vcurve which is 240J so it comes out to be 560J.

Sol. 16 (C) In process AB as volume is constant no work is
doneand as at constant volumepressure increasesso according
to gas law temperature also increases and heat is absorbed by
the system and its internal energy increases due to increase in
temperature.

Sol. 17 (C) A cyclic process is one in which initial and final
state are same or the gas always return to initial state after
complete cycle.

Sol. 18 (B) When a gas is heated at constant volume, all the
heat is used in raising the temperature ofthe gas whereas ifit is
heated at constant pressure, gas expands and some work is
done againes the external pressure.

Sol. 19 (C) Depending upon the thermodynamic process to
be executed on a gas, its specific heat is different so it can have
infinite number ofspecific heats.

Sol. 20 (A) For a container of finite low conductivity, heat
cannot be instantly conducted through it so for sudden
compression (In a very short time) no heat loss will be considered
and the process will be taken as almost adiabatic. If the
conductor is of very high conductivity then heat can be
conducted in the short time also then the process may be
isothermal as well if heat can be rejected by the gas to
surrounding which is equal to the work done on the gas.

Sol. 21 (B) Processes BC and AD are isochoric so at these

processes density as well as volume remain constant and for
AB and CD volume and density inversely varies hece option
(B) is correct.

Sol. 22 (C) For an adiabatic process, TV~^ = const; and
f/(ideal gas) oc T.

Sol. 23 (A) In adiabatic compression, the temperature always
increases and since PV= nRT, the quantity PValso increases.

Sol. 24 (C) As initial and final states of the gas are same,
change in internal energywillbe same but area under processa
is more so work done by the gas is more in process a than
process b so heat supplied in process which is the sum of
change in intemal energy and work will be more in process a.

Sol. 25 (C) As per definition ofadiabatic process (i) is correct
and change in intemal energy in all processes is given by (iii)
hence option, (ii) is wrong as ifwork is done on a system then
in adiabatic process it is equal to increase in intemal energy of
the system.
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Sol. 26 (C) Sole of isothermal curve is F/F and that of an

adiabatic curve isyF/F.

Sol. 27 (D) From state to 5 total change in internal energy

for all paths must be same so equating internal energy change
in paths ACB and ADB we get heat absorbed by the system in
path ADB is 60 cal.

Sol. 28 (C) Expansion ofa gas in vaccum is free expansion in
which no work is done and as container is insulated, no heat

supply will take place so no change in internal energy of gas
will occur.

Sol. 29 (A) Internal energy of gas in a state is given as
U = (l/2)/«i?rhence option (A) is correct.

Sol. 30 (A) As per given data in state B, gas is not behaving
like an ideal gas. As we know at very low pressure and very
high temperature gases behave like ideal so in the given case
option (A) is most likely to be correct.

Sol. 31 (A) For a given P-V curve work done is always the
area under the curve.

Sol. 32 (B) As volume is decreasing in process BC the work
done will be negative ofarea under the curve.

Sol. 33 (C) The bulk modulus is given as B = - dPl{dVIV)
which can be evaluated by the given process equation which
gives option (C) is correct.

Sol. 34 (B) In free expansion of a gas internal energy ofgas
remain constant hence option (B) is correct.

Sol. 35 (C) As the graph of logarithm ofP and Fisastraight
line the process must be adiabatic as the process equation will
be PV^ = constant or logCP) = - ylog (F) + AT so the negative of
slope of the curve gives the value of y = 7/5 which is for a
diatomic gas.

Sol.36 (C) = IF34 = 0, (since theprocess is isochoric)

W^, = P^{V^-V^)-nR{T,^T^), .

W,,=P,iy^-V,) = nRT(T^-T^)

W=nR[Tj + rj^T2-T^

= 3 X(2400+400 -1200- 800) + 8.314

= 20kJ

Sol. 37 (C)

and

W-P,lsV=P,V,
hU=2P,{2V,-V,) = 2P,V,

Q=W+hU=3P^V^

Thermodynamics Laws & Specific Heats of Gases

Sol. 38 (B) By gas law PV=r[RT

PM
=> = r]RT

— = constant or

P

Pa Pa

S0I.39 (C) Byfirstlawofthermodynamices
Q-fV+AU

=> Q/2=AU

nCiT,-T,)
- n~{T2-T{)

Sol. 40 (A)

As

and

C = 3R

P^F= constant

T^F"' = constant

T^=KV
r2= lyy
•'0 ^^0

By (A) and (B) we get

T, = Vsr,

Sol. 41 (C)

...(A)

...(B)

In the diagram since adiabatic process cuve for P- Vdiaram is
steeper than isothermal P-V curve. So curve 3 will denote

adiabatic process, curve 2 isothermal and curve 1 isobaric, i.e.
the minimum area enclosed with v-axis will be for adiabatic

process

Sol. 42 (C)

nyR nR
dQ = 77^ dp, dU= —r dT- dW= nR dT

y-1

dQ

y-1.

dW

y Y-1
y:y-l:l.

dU

1

Solutions ofNUMERICAL MCQSSingle Option Correct

Sol. 1 (A) For adiabatic process
= constant

^ 300F''^-'-r(2IO''*"^
=> 300-7i:2)0-^
=> r=227.3K
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P\ ( A

y

adiabatic

P3( C

V V

Sol. 2 (B) isobaric isothermal

2V

P

2V

P

2V

P

Let initial and final volumes are Fand 2 Frespectively. Final
pressure is P and initialpressures ofsamples .<4,5 andCbeP,,
Pj and P3 respectively
The process is adiabatic for A,

PV= constant
P^^3/2^P(2(/)3/2

Pi = 2V2P •••(!)
The processis isobaricforB, i.e. pressureremains same

P, =P ...(2)
The process is isothermal for C,

PV= constant

P^V=P(2V)
P^= 2P

P^:P^:Pj=2yl2:l:2

Sol. 3 (B) For adiabatic process
TVf-' = constant

1-1 . . N3-1
(27 + 273)F3 =T

.27,

Rise in temperature

300= ri -
9

r=675K=402®C

=402°C-27°C

=375°C

Sol. 4 (C) Since temperature remains unchanged.

—nA

nV

...(3)

urUf

For isochoric process, A1F=0

(As AU=0)

W= -(fiV-V)
n

= pV
n-\

= RTi\-n-^)

Sol. 5 (B) Number ofmoles ofnitrogen

14 1
n —

28 2
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ccT
rms

Thus to reduce rms speed to half, temperature has to be reduced
by 4 times

300
7,= —=75K
J 4

Ar=300-75=225K

AQ =nC^AT

=ixl/?x225
2 2 ~ —

= 562.5 cal

Sol. 6 (C) Volume ofvessel and hence the gas remains same.
Pj =72.6cmof/:^

«i=i
After 2 strokes, let pressure =

n2=0.81
72.6F=TP7 ...(1)

p^V^Q.^XRT ...(2)
Dividing (2) by (1) we get,

Pi 0.81

P2~58.8cmofF^
=3 60 cm ofHg

Sol. 7 (B) Let mass ofgas enclosed = m
Kinetic energy,

1 2
k=^—mv

2

When vesselis stoppedsuddenly, its kinetic energyis converted
into internal energy of gas molecules

imv^=AC/=^C„Ar
2 M

As C ="-v Y-1

\ 2 m R
—mv =

2 M y-l

AT=

R

AT

Mv^jy-l)
2R

Sol. 8 (C) From first law ofthermodynamics,
AQ = AU+AIV

AU=AQ-AfV

30
AU= -r

4

Let molar heat capacity of process is x
AU=nCAT
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AQ = nxAT

nC^AT= -nxAT

For a diatomic gas,

4C.

4 5J? lOi?

3 T ~ 3

Sol. 9 (D) Given that n=2

AT=m

AQ =nCpAT

AQ= 2x~Rxm

AQ = 500R

AU r 3Sol. 10 (B) Weuse — =-^ =-

Sol. 11 (Q Volume ofwater heated = 3//minute
Mass of water heated = w = 3000g/minute
Increase in temperature,

Ar=77®C-27°C=50°C

Amoimt of heat used, Q - mcAT

= 3000g/minx4.2Jg-'C-'
x50°C

= 63 X lO^Jmin"^

63x10'^
Rate ofcombustion offuel = j- = 15.75 g min"'

4x10^ ®

Sol. 12 (B) Adiabatic elasticity,

£^=yp
Isothermal elasticity, Eq~P

yp

Sol. 13 (A) Given that

Afr=20J

Ae = -40J
From first law ofthermodynamics,

AQ=AU+AW

-40= 70-20

=> L^=50J

Sol. 14 (C) Given that PxV

PV~^ = constant

PP= constant

=> ^=-1,

Thermodynamics Laws & Specific Heats of Gases

Molar heat capacity,

R R
C=—- + •

Y-1 l-x

For a diatomic gas, y = 1.4

R R
C=^—-+—=3R

1.4-1 1 + 1

Sol. 15 (A) As we know

Density =

P"

^ V-

New volume, V' =

mass

volume

m

F
m

^_V
«p n

Since the process is adiabatic,
- PV^ = constant -

Let final pressure ofgas isp'

f
P'=rPP

PVi=p'\ —
I n

Sol. 16 (C) Given that R = nC,

R =

p

njR

n =

y-1

y-1

For a monoatomic gas, y = 1.66

1.66-1

1.66
n = = 0.39 « 0.4

Sol. 17 (C) We use AQ = mL=L

Aw-p,iV^-V,)
From first lawofthermodynamics,

AQ-AU+Aw

Aw=AQ-AU

Aw = L-p^(V^-V^)

Sol. 18 (A) Kinetic energy ofwater is

wx9.8x84
— =wx 1000 xAr

Ar=0.2°C

4.2

Sol. 19 (D) For constant pressure
H^=nC^AT

207 = 1 X X 10

C^ =20.7 Jk-' mole-'

(As m= 1)

V
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We use

= =20.7-8.3

= 12.4JIr' mole-"

H^= nCJsT
7/2^1x114x10

Sol. 20 (A) In isobaric process,
W^=p{2V-V)=pV

In isothermal process -

W^--nRT\n
2V

^nRT\n(2)

W.^pV\n{2)

fV, pV 1

W2 pV\n(2) ln(2)

^^2=1^,10(2)

Sol. 21 (B) For the mixture

Here,

C, . =
tIiQ +TI2C,

V2

111

ni+^2

R '

Yi-l.
+ 112

^1+Tl2

^ "Hi + ^2 ^R

R

.Y2-IJ

ni+Tl2

Tl, = 1,112=1
Y, = 1.66,72 = 1.4

Yi-1 72-1

1 1C =-^ymix 1^1 -+•

1.66-1 1.4-1

= 2R

Sol. 22 (C) We use 7? = 8.3Jk "mole "

Sol. 23 (C) Volume cc (diameter)^
Thus, as bubble goes up, its diameter is doubled and hence its
volume becomes (2)^ = 8 times

pV= constant
Pressure at bottom = 8 times pressure at top

H=7h^=lhp
Pw

Sol. 24 (C) For isobaric process,
AQ = nCpAT
AU=nCyAT

From first law of thermodynamics,
AQ=AU+AW
AW=AQ-AU

= n(Cp-Cy)AT
= nRAT

AQ:AU:Aw- -R:-R:R =7:5:2
2 2

Sol. 25 (A) AQ = nCAT

pV
A0= ——xCxAF

^ RT

10^x0.5

8.3x300

= 20080 cal» 20 kcal

Sol. 26 (B) Since the interatomic distance between molecules

is same, it is molar specific heat at constant volume
For a diatomic gas,

x5x(500-300)

433

Sol. 27 (A) For an isothermal process,

AU=0

Sol. 28 (D) As we use

AQ = nCpAT
AU=nCyAT

From first law ofthermodynamics
AQ=AU+AW

AW=AQ-AU

AW=fjRAT

AW nRAT

(As Cp-Cy=R)

R R 2
AQ ~ nCpAT ~ Cp ~ 5^ " 5

Sol. 29 (D) From previous problem solution we use

AU _ nCyAT _Cy _5
AQ nCpAT Cp 7

Sol. 30 (B) For equivalent Y, we use

«, +«2
•+•

Yi-1 Y2-I Yma-1

1 1 2
- + •

1-1 1-1
3 3

1+1 -
2 1 Y.^-1

3+6 _ 2
2 ~Yma-I
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Tmor ^ 9

13

Sol. 31 (B) For adiabatic process we use
7Ypi-Y= constant

= j^ypX-y

T

n =

l-Y

7^2=7]
V^2;

Sol.32 (D) Given that P, =2atm,/'2'= 1atm
r, =27°C,

As the process is sudden, it is considered adiabatic
V P'"V= constant

=> (300)' (2)' -' (r2)'"(I)' -

7-2=300

1-1.4

2) 1.4

7-2=300x0.82
7-2=246^
7-2=-27°C

Sol. 33 (A) For PV^ = constant

P vy = p V'i^ri -^2^2

V^2y
Pi=Px

Sol. 34 (C) We use /? = 2caI/moIe/®C

and

Sol. 35 (C) As

C^ =8caFmoIe/°C
C^, = - 7? = 6 cal/moIe/°C

Ae = «c/r
= 5x6x 10

= 300cai

AfF=0

A2 = At/=300 cal

Sol. 36 (C) As Y= -j and volume becomes half
we use PV^ = constant

v7/5Pvys= p.\^

P' = {2)'"^P
P'=2.6P

Thermodynamics Laws & Specific Heats of Gases

Sol. 37 (D) For adiabatic process
r T I/Y-l
'v\

r'rr V-i

Zl
t;

T,

1 y

vMy

n2/3

A

Sol. 38 (D) Heat supplied in adiabatic process,
Ag = 0

and Ai7=-100J

As work done by the gas,

Aff=-(-100J)
= 100J

Sol.39 (C) Fromfirstlawoftherraodynamics,weuse
^Q = MJ+hW

=> -30=C/^-40-10
=> f/^=20J

Sol. 40 (C) As

and

0=
5x3.6x10^

4.2
cal

Q=mL

_Q_ 5x3.6x10^
L~ 4.2x80x100

54kg

Sol. 41 (D) The maximum temperature will occur at point yl
and minimum temperature will occur point B ofthe cycle, so. At
pointwe use

p. 2>/2+1 4+>/2
-;r = — = 2 + cos 45" =
^0 " V, ^

(4^J2
\2

P V

Similarlyat point B

= t^=2-cos45" =
4-V2
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nRTg
f4-V2l

P V

\2
44-n/2
4-v^J

Sol. 42 (C) TP~^^ - constant; Using gas equation was can
write PV^'^ = constant

It implies Y- "J; The process is adiabatic, thus 0 =0.

Sol. 43 (B) Foramonoatomicgas,
y = 1.6

PV = constant

PVf^ P'
2.4 Y

V+ V
ICQ .

P'=0.96P

Percentage decrease in pressure

P-0.96P
X 100

Sol. 44 (C)

=4%

U^nCJ^T
200 = 5C/120-100)
C^=2Jmole-'A-'

Change oftemperature in degree celcius is same as temperature
difference in kelvin.

Solutions ofAD VANCE MCQs One or More Option Correct

,Sol. 1 (B, C) As gas is expanding work done by the system is
positive and as both p and Vincrease according to gas law T
must also increase.

Sol. 2 (A, B) As the cycle is anticlockwise, the total work is
done on the gas and in complete cycle heat is rejected by the
gas.

Sol. 3 (A, B) As the process is carried out in a closed system
for same pressure and volume, temperaure must be equal and
as internal energy is directly proportional to temperature will
also be same in initial and final state. But as heat supplied and
work done are path functions, no comment can be made on
these hence options (A) and (B) are correct.

Sol. 4 (A, D) As work done by the system is equal to
decrease in internal energy of system which implies heat
supplied to system is zero hence the process is adiabatic and
due to decrease in internal energy temperature decreases.

Sol.5 (B,q 0 = AI/+ W
Q = +ve, as heat is absorbed from the atmosphere
fV=-ve as the volume decrease

As AU =Q~W=+ve - (-ve) = +ve

Thus internal energy increases.

Sol. 6 (All) For insulated chambers

«i+/i2 = «| + W2
(final pressures become equal)

PV 2P.2V ^
RT RT " RT

For left chamber

5P
PV^P'V'̂ -Y V'
For right chamber

5PAPV=P'V'= -y

[3F]

3V

\2V
y ^
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Sol. 7 (C, D) According to the process equation for adiabatic
process PV^ = constant for helium and neon which are
monoatomic gases ratio of specific heats is same so final
pressure will be same but for oxygen which is diatomic y is
different so its pressure will also be different.

Sol. 8 (B, C) Depending upon the type of thermodynamic
process the specific of a material changes due to change in
work done by the substance in different cases. If during heating
a substance volume does not change then work done by it will

be zero hence there will be a single specific heat exist for that
substance.

Sol.9 (All) BydefinitionofFirstLawofthermodynamicsand

the standard process relations of isothermal and adiabatic
process all options given are correct.

Sol. 10 (All) At equilibrium net force on piston is zero or the
force on the two sidesmustbeequal soweusePS= kx^ andthe
energy stored by the spring is equal to work done by the gas as
chamber is insulated and no heat supply is there. As chamber is
insulated process will be nearly adiabatic so change in internal

energy will be equal to work done by the gas and in adiabatic
expansion temperature decreases.

Sol. 11 (A, B, C) PV^ ^ constant

AV
/'oc =>

Bulk modulus

AP

^=-2
P V

^-^=2P
V

As PV=nRT

So A!" oc —r and K x I^.
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Sol. 12 (All) In path 'iaf change in internal energy of gas
is 50 - 20 = 30cal which remain constant for all paths as it
is a state function. Now in path 'ibf\ it is given that heat
supplied is 36 cal hence work done is = 36 - 30 = 6 cal. Then
in return path y?'the change in internal energy will be-30 cal
and if work done is 13 cal on the gas then total heat supplied
to the gas will be = -13 - 30 = -43 cal hence the rejected heat
is 43 cal. If internal energy of state 7' is lOcal then internal
energy at state 'f will be 10 + 30 = 40 cal. If internal energy
at state 'b' is 22 cal then total change in internal energy in
process 7^)'is 22 - 10 = 12 cal and as already calculated work
done in process 'ibf or 'ib' is 6 cal so heat supplied to the
gas along path ib is 12 + 6 = 18 cal.

Sol. 13 (Ail) We use

As

and

from graph work done is

and

and

and

Pb= ^c=^Pa

T =
^ R

AIV=

=4r„

Vr^-V,
iP,-Pc) =0.5 RT,

^^ab=2^Pa-^^b)(Pb-Pa)=2^^ '̂̂
= L5RZ

^^ab=2^^^b-Pa)='̂ -^P'Po

^Qab = ^^ab^^^ab = ^P'Po

^Qab
C =

Tb-T^

Thus cycle efficiency is given as

AW,NET

Ag,AB

= 1R

= — =8.33%.

Thermodynamics Laws & Specific Heats of Gases

Sol. 14 (A, B, D) Given/'J'= Constant
and PV=nRT

=> /'^F= constant

=> PV^'^ = k

From first law ofthermodynamics
AQ=AU+AO

r

CAT=CyT+
PfPf-Pyi

and

C— Cy-^2R

33.34 =
R

+ 2R
y-l

7 = 1.5

, 2

/=4.

i-i
2

Sol.15 (A,B) We use0 which gives C^= 3calhence
the gas is monoatomics so options (A) and (B) can be correct.

Sol. 16 (A, D) Even at higher temperature monoatomic gas

molecules will not have any vibrational energy as these do not
have multiple atoms so dimensions ofmolecules is negligible
and for diatomic gases at higher temperatures degrees of
freedom will be more than 5 so options (A) and (D) are correct.

Sol. 17 (C, D) For an adiabatic Process we use the process
equation PV^= Constant so option (C) is correct and by gas
law option (D) is also correct.

Sol, 18 (A,C,D)

We use AK=3aF'Ar

= 3 x20 X 10~^x50x
10'

= 3 X 10-'^m-3

W=PAV= 105 X3 X 10-7= 3 X10-2j

Q = mCAT= 1X400X50= 2 x 10^ J
A(7«G = 2x ICJ.
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ANSWER & SOLUTIONS

CONCEPTUAL MCQS Single Option Correct

1 (C) 2 (D) 3 (C)

4 (B) 5 (C) 6 (D)

7 (A) 8 (A) 9 (D)
10 (C) . 11 (C) 12 (B)

13 (C)- 14 (B) 15 (D)

16 (A) 17 (C) 18 (B)

19 (A) 20 (C) 21 (B)
22 (D) 23 (D) 24 (D)

NUMERICAL MCQS Single Option Correct

1 (B) 2 (D) 3 (A)

4 (A) 5 •(D) 6 (D)

7 (B) 8 (B) 9 (C)

10 (B) 11 (C) 12 (C)

13 (D) 14 (C) 15 (D)

16 (A) 17 (B) 18 (C)

19 (D) 20 (D) 21 (D)

22 (D) 23 (B) 24 (B)

25 (D) 26 (B) 27 (B)

28 (B) 29 (C) 30 (B)

31 (C) 32 (D) 33 (A)

34 (B) 35 (B) 36 (D)

37 (C) 38 (D) 39 (D)

40 (A) 41 (D) 42 (B)

43 (B) 44 (B) 45 (C)

46 (D) • 47 (A) 48 (D)

49 (D) SO (A) 51 (B)

52 (B) 53 (B) 54 (D)

55 (B) 56 (B) 57 (A)

58 (C) 59 (B) 60 (A)

61 (C) 62 (B) 63 (D)

64 (D) 65 (D) 66 (A)

67 (A) 68 (D) 69 (B)

70 (A) 71 (C) 72 (D)

73 (D) 74 (D) 75 (A)

76 (B) 77 (B) 78 (C)

79 (A) 80 (A) 81 (B)

82 (D) 83 (D) 84 (C)

85 (D) 86 (B) 87 (B)

88 (C) 89 (B) 90 (B)

91 (C) 92 (C) 93 (B)

94 (C)

ADVANCE MCQs One or More Option Correct

1 (A, C) 2 (C, D) 3 (A. C)

4 (B, D) 5 (A, B) 6 (A. B)

7 (D) 8 (D) 9 (A, B. D)

10 (B, D) 11 (C, D) 12 (B)

13 (A. B) 14 (A. B) 15 (A, B, C)

16 (A. B) 17 (A, C) 18 (A, D)

19 (A, D) 20 (A, B)

j

Solutions ofPRACTICEEXERCISE 4.1

(!) Giventhat = Ik^
In steady state we use

dt dt
net

A B

36

J_
kA A kg A

36
Ar^ = y =12®C

(ii) In steady state
Heat power = Conduction rate

-t(6x(6xl0~^)^)
100 =

-3
ID

100x10,-3

(5)

k =
1080x10"^

0.926 W/m°C

(iii) Rate of heat conduction through rod is

do kA 92x10x10"
-=yaOO)=-

= 9.2 cal/s

ifm gm ice melt per second we use

dQ

92 = w X 80

9.2
«=-^g/s

mass melt in one minute is

(1)

(iv) Rate of heat condition through discs is

dQ 200x10x10"-^=2x ^3 x(30)
dt 10

xlOO

= 1.2xlO^J/s
For just 1®C fall in temperature we consider almost same

conduction rate so we use

dt
xr =msAr

1.2 X10^x/=(10x lO^x 10 X10-2 X1000) X4200 X1
/ = 0.035 s
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(V)
100°C. h H 0°C

For steady state we use

dt
net

dt Rod

100

1 I ^2x + -
k,.. A k.

I I Kteel^
( t; -r,

steel A

Thus temperature gradient in rod is

T-,-Tr 100

2x0.2x10"^ 0.5
i '

-3 0.11
xO.ll

1.5x10

-94.517°am

= 0.945®C/cm

/

(vi) r,

Total heat flow through plates is given as

dQ _ 7]-7-,
dt J_ £ +_L £

k\ A k2 A

k\kr2

k-^-\-k2 X

Above expression can be written as

dt

2k^k2

ki+k2 2x

dQ ^eqd

2k\kI'^2

it,+/t2

(vii) In steady state we use

wgv= —(T^-r,)

0.5x0.05
M(10)(0.1) =

2x10"-^
A/=l2.5kg

Heat Transfer"

Here
fi-A

As shown in figure we consider an elemental disc at a distance
X from left face. Then thermal resistance ofthis elemental disc is

given as

d^th ^
dx

r, +•
^2-1

Total thermal resistance offrustum is

!

L

dx

01 +!lZlL.rl\ T X
' L

k%{r2-ry)
r, —--x

L

-/])

L

1__L
0 /•2

L

knr[r2

Thus heat current through frustum is

dQ 7-2-7] it7U-|r2(r2-7])
dt R ih

(ix) Iftemperature ofC is taken as and length ofrods are I,

I and yj2l we use in steady state

BC dt CAdt

^(V27--7-c) kA(Tc-T)
I ~ V2/

2T-42T^^T^-T

3T
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(x) In steady state we use

dt AB dt
+

BC dt

dQ

BD

U{T,-Ts) _kA{Ts-T^) kA{Ts-T^)
L Ltl in

T,-T^ = 2T^-2T^^2T,-2T,
_ T^+2T2+2T^

^ 5

(xi) Rate of heat generation is

V (200)'

R 20

•If outside temperature is Twe use

= 2x103 IF

, 0.2x4.2x1
2x 103= ^(20-7)

0.2x10-2

r=20-4.76 = 15.24°C

Solutions ofPRACTICEEXERCISE 4.2

(i) Iftemperature offilament is Tweuse

500 = 5.7 X10"^ X2 X10"^ X0.5 f
7^=87.72x 1012

=> 7^=3060.37 K

(ii) Radiation rate =(7e^7^ (here weuse^^ =27tA-as/= Im)
=5.7 X10"^ X0.35 X2X3.14 X0.075 x10"^ x(3000)''
= 7611.12W/m

(ill) We use bulb power
• . P = aeA7^

60
A =

ceT"^ 5.7 X10"^ X0.3 x(2000)''
= 2.193 xl0-^m2

(iv) Power radiated by black body is
P =ae(47ir2)7"'

=> Pozp-T"^

P

^2 h

As7'2 =27'j and f2~ ~2

=> /'2=Pi x4=450x4=1800W

(v) If emissivity ofbody is e we use

Power required = Radiation Rate
P=GeA(T'̂ -~T^)

for a block body
P^=aA(T''-Ti)

...(1)

...(2)

ill
(2)

gives = e

210
e= — =0.3

700

439

(vi) As outer radius is same at same temperature, radiation
power will be same so we use

dQ^ms —
dt dt

dT 1 do
=> Rate ofcooling —=

^ dt ms dt

Thus lowermasshollowspherewill coolfaster

(vii) For space station if power generation is P we use
P = aAT^

After enveloping it with a shell ofsame inner and outer area^ if
temperature of space station becomes T, and to keep it in
equilibrium outershellwillbeat temperature 7'now

P^gAT1-gAT'̂ =gAT'̂
=> 7'[=(2)'̂ ''T=2''''x500

= 594.6 K

(viii) Radiation power ofball is

^ =<5e{iuf-)T*
3>

4 d
— 71

3

dT . ,
c— --cencfT

dt

, 7b/n ,7, t

6.e J

t =
pdc

IScre L^o Ti

pdc{^ -1)

d8aer(?

Solutions ofPRACTICEEXERCISE 4.3

(i) Usingaverage form ofNewton's lawof cooling, wehave

and

111
(2)

40-36

5

36-32

t

- k

•- k

40 + 36

2

36 + 32

1 _ H
5 ~ 18

f = 6.11 min

-16

-16

...(I)

...(2)
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(ii) Using average form ofNewton's law ofcooling, we have

and

(2)

from(l)

80-64 ,r'80 + 64

16

64-52 f64 + 52

12
Y=K5^-Ts)

-n

-Tc

16 n-n

12 58-75

T=T,^{T,~T,)e-
64 = 7^+ (80-75)^-^5)

8(58-75) = 6(72-75)

^-kt

Ts=
464-432

= 16''C

16
Y =yt(72-16)

=> A: =0.0571

Now ifin 15 minutes temperature ofbody is 7, we use

52-7
= 0.0571

52+7
-16

=> 104-27= 14.846 + 0.2855 7-9.136

=> 7=43°C

(lii) Using Newton's law of cooling we have

(T-T,) = (T„-^T,)e-'"

T,-Ts
at/= lOmin (7-7,.) =

or

Then at f = /,

g-m) = ±
^ 2

k =

e *'0 = —

^0

ln(2)

10

Tq-Ts

1

10

In(lO)

ln(2)

=33.23 min

xlO

-0)

...(2)

Heat Transfer

(iv) Temperature as a function oftime is given as
7=7o+(7.-7o)e-^'

Slope of curve is

^ =^k{T-.\)e-^=-k{T-T^)
dt

if at 7= 7, slope is tan 0,, we use
tan 8^ = -A<7j - 7q)

and at 7= 72 slopeis tan Oj, we use
tan 02= - k{T2 - 7q)

(2) .
- gives

tan02

tan 01

T2-T,

Ti-T,

...(1)

...(2)

(v) Using average form ofNewton's law ofcooling, we use

40-35
For water

For liquid

(1)

(2)
gives

5

40-35

2

5

m =

k ^40+35
0.1x4200 [ 2

k 1^40+ 35

mx2100 t 2

WX2100

0.1x4200

2x420

-^5 ...(2)

= 0.08kg=80gm
5x2100

As the volume of liquid is same that of water 100 cm^, then
density ofliquid is

m 80x10"^
= 800kg/m^P=~ =

V 100x10"^

Solutions ofPRACTICE EXERCISE 4.4

(i) By wein's displacement law, we use

= constant

^ 7, =X,„ 7,I /rt2 ^

=> 4753 x 6050 = 9506 x 7,

72 =3025K

(ii) Using Stefan's law wein's displacement law we have

X
'"2

256

^2=n\^\ = 81'^.
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(iii) By Wein's displacement law, we use

^=7 =
T

-32.89x10

2000
= 1.445 xlO-^m

= 14450 A

(iv) By plank's radiation law we use

lnhc^

for two wavelengths heighbourhoods Xj & X2 ^^e

EXi
hclhkTr-' _ 1)

Here we use >.j =5000 A;X2 = 10000 A&T=2880kweget

(^^lQ-75)j-g(6.63xlO" '̂̂ x3xl0®)/(5xl0-''xl.38xl0""x2880) _|j
E.

(10^10-7)5[g(6.63xlO~ '̂̂ x3xlO^)/(10xlO~'̂ xl.38xlO*^^x2880)

1 "22002.64"

32 " 32 _ 147.336 _

=4.67

(v) Using Stepan's law we have
7? = ar4

7-=!-
a

n1/4

250x10-

5.67x10"
V ^

= 1.449x10^

= ]449K

Now using Wein's displacement law, the maximum spectral
radiance will be at wavelength given as

b 2.89x10"^ 7
^^7= 1449 -19.9447X10-V

= 19944.7 A

Solutions ofCONCEPTUAL MCQSSingle Option Correct

Sol. 1 (C) As on moon there is no atmospheric pressure, water
starts boiling.

Sol. 2 (D) If temperature ofthe source is increased by 100%
then at temperature 27'the radiation powerofsource is increased
to 16tim^ (fourth power) and at a distance 2rthe powerreceived
will be one fourth of the previous so the power per imit area
received will be 16/4 = 4 times which is 300% increase.

n1/4

44:1

Sol. 3 (C) Thermal radiations are electromagnetic waves and
follow all characters ofEM waves hence option (C) is NOT
Correct.

Sol. 4 (B) Always if temperature of a material increases all
dimensions ofthe material increase.

Sol. 5 (C) According to Plank's law of radiations, the
wavelength of the radiation from a body depends upon its
temperature.

Sol. 6 (D) Total radiation power from a body is given as
P = cseAJ^ where e is emissivityof the bodysurface,A is the
surface area and T is its absolute temperature.

Sol. 7 (A) As water density is maximum at 4®C at the bottom of
lake temperature ofwater will be 4°C and at the top from where
it starts freezing temperature will be equal to that ofatmosphere
-20®C and at the top ofwater layer at the bottom of frozen part
of lake temperature will be 0°C.

Sol. 8 (A) Rate of cooling of a body is the ratio of radiation
power emitted by body and its heat capacity. As dimensions,
surface material and temperature are equal the radiation power
of both spheres will be same but heat capacity ofhollow sphere
is less so it will cool at a faster rate.

Sol. 9 (D) Time taken in freezing a lake is directlyproportional
to the square ofthickness of ice frozen so in this case thickness
is getting doubled so total time will be 32 hours and time to
increase the layer thickness from Icra to 2cm will be 32 - 8 = 24
hours.

Sol. 10 (C) Due to large number of free electrons in metals
conductivity is high as heat is absorbed by free electrons as
their kinetic energy (3/2)^7 and due to diffusion of electrons
heat is quickly transferred to whole volume ofmetal.

Sol. 11 (C) Glass allows most of the solar radiation to pass
through it which heats the greenhouse material and when this
material radiates radiation most ofthis is absorbed by glass and

heat is trapped inside which keeps the greenhouse warm hence
option (C) is correct.

Sol. 12 (B) Due to sudden vaporization of a layer of water
vapour is formed between drop and hot plate which blocks the
conduction ofheat hence option (B) is correct.

Sol. 13 (C) As area ofcross section is different in the rod, the
temperature gradient cannot be constant in the rod in steady
state. In steady state the conduction rate is kA{dTldx) and area
of cross section AB is more than that at CD, temperature
difference across AB will be less.
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Sol. 14 (B) According to Newton's lawof cooling for small Thetime, in which the temperature difference reduces to 1/eOf
temperaturedifference between bodyand surrounding,rate of its initial value, is givenby
cooling is directly proportional to the temperature differenceof
the body with the surrounding. =

msL

2KA
K=

msL

2AM

Sol. 15 (D) In steadystateofarodtherateofheatconduction
isgiven as kA{lSTU) so todouble the rate option (D) iscorrect. Solutions ofNUMERIC^MCQSSingle Option Correct

Sol. 16 (A) Thermal resistance ofPisfour times that of2 and 1 (B) We use
in steady state rate of heat conduction is same in both so we

can use

Cr-0)/P^=(100-7)/Pg
which gives T = 20°C

Sol. 17 (C) In steady state heat conduction rate is given as
kA{lsTll) which comes out to be equal for both rods.

C = Mc

M,

C. Ml

4 1
—TCPr p
J
4 1

3

ijp
^2P

Sol. 18 (B) Air is bad conductor of heat so the layer of air
trapped between two thin blankets increases overall thermal
resistance.

Sol. 19 (A) According to Wein's displacement law we have
the product T = constant.

Sol. 20 (C) For high rate of heat conduction area of cross
section should be large and thickness should be low and for a
thin sampleas heatwillconductquickly no laggingis required.

Sol.21 (B) Electricalquantityanlogous to the temperatureis
electric potentialand the slope is rate of variation of potential
with length which is potential gradient.

Sol. 22 (D) In steadystate ofcondution, temperature gradient
is constant but different in the two rods as their thermal

conductivities are differenthence option (D) is correct.

Sol. 23 (D) As the metal bar is of uniform cross section,
through outthemetal barinsteadystate thetemperature gradient
will be constant hence for a given thickness of XYat every
location in metal bar its temperature difference will be constant.

Sol. 24 (D) Suppose that the temperature of the water in the
first vessel is Oj(r) and that ofthe second is OjCO. then

and

from (1) and (2), we get

dt msL

where 0 = 0,-0.

^/G, KA
»«— = -—(6,-0,)

KA
ms—=

...(1)

...(2)

Sol. 2 (D) We use Q =
I

Qx-Qi

A:i/4(0,-62)/ "^2)^
/ /

k, = L

Sol. 3 (A) We use ^

3.6x3.4x10^

^4(01-02)
I

)t(0.34)(100-0)

3600 0.1

A: = 0.1 Js-' m-»°C-'

Sol. 4 (A) The temperature ofwater in contact with ice is 0°C.

The temperature at bottom of lake is most likely to be 4®C
because at this temperature, water is most dense and settles at
bottom due to natural convection.

Sol. 5 (D) We use P=^sar'

T=
V/4eo-j

Sol. 6 (D) As Stefan's constant is

a = 5.67x10-SW/m^K''

The dimensions ofa is or

Sol. 7 (B) Alec I

(Bothare made of samematerial)

3.
A/,

h 1
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Sol. 8 (B)

k =
"h k^^^2

k =

Ay + A2

For two slabs ofequal thickness and hence equal area,

ki+k2

Sol. 9 (C) We use

jU[10-(-10)] kA[T-(-23)]

L ~ L

20 = 7+23

r=-3°C = 270K:

Sol. 10 (B)

/•."c

* //2 • * HI •

\A B

k. T-,°C

T^C

Lettemperatureofjunction be T^C
Temperature difference across slab^ = (T,- 7'q)°C
Temperature difference across slab5 = (Tq - T^°C
Since both slabs are connected in series, heat current through
both will be equal

k,A{T,-T^) ^:2^(ro-r2)

As

As

in 112

^.=t

•y(7;-7'„)=(r„-r,)A,

T,-T,'=2T„-2T^

T^ + 2T^ = 3Tq

r, - = i2°c

T-2=T^-\2

From (I) and (2), we get

7'[ + 2(r,-12) = 3ro

37^,-24=370

7,-ro=8°C

-d)

443^

Sol. 11 (C) When two rods of same thickness and length are
joined in parallel,

2 2 2

Sol. 12 (C) We use ^ =-kA—
- at dx

AT dQ 10
= ^ =— =20°C/cm

Ax dt k 0.5

Sol. 13 (D) By Wien's displacement law

XT=b

b _ 2892xlQ-^
"14.46x10"^

r=200K

dQ , .dTSol. 14 (C) We use -^ =-kA—
^ ^ dt dx

As

Sol. 15 (D)

(n

dl j_
dx k

dt
- constant

X >x >x
8 m c

I,=2(2

2

.t'-i

Q _ kA{AT)
t I

ky{nr^){AT) k2i-Kri){AT)
/, L

/, 4r,^ 2/2
"•I - -2-x-L _ Zll_v
k2 h
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Sol. 16 (A) Radiation power is
=> P=^ea7^

=> P-(l(Hm2)(l)
(5.67 X10-8 (1000)''

=> P = 5.67J

Sol. 17 (B) We use P x 7"

(7+273)'̂ 1
Pj ~ (287 +273)'* ~16
P, = \6P,

ci7
Sol. 18 (C) We use — =-kiT-T^)

50

Here

In

In

50 jT- 600

j T-Tr J

ro=25°C

50-25

,60-25,

In next 10minutes,Lettemperatureof bodyis T°C
T

dT

T-Tr.

=-/t(600)

1200

f = -yt f dt
i T-T^ J

7-25

50-25

From (1) and (2), we get

'50-25

600

=-^1200-600)

= -600yt

'T-25'
In

60-25
= In

50-25

^ _ r-25
35 ~ 25

=> 7=42.85''C

Sol. 19 (D) As a + r + t=p
=> r + t^q

=> a-p-q

Absorption coefficient, O = — = ——~
P P

Sol. 20 (D) For a block body, e=\

p^AecT^
3=10^x1 xctx(127 +273)*'
CT= 1.17x1(^6

Now, ;7'=^ecf7''
^'=10-4x1x1.17x10-6

X(527+ 273)"
7'=48J

•(1)

Heat Transfer

R (400 +273)"
7 " (800 +273)"Sol. 21 (D) We use — =

Sol. 22 (D)

R
- =0.15

P =
R

0.15
«6.5i?

2A

L.. = k

1 ^ 4 I •

k(2A)(AT)t
Q=

Q-

Q=

I

k(2A)(AT)(l2)

I

k{A){AT)t

{21)

...(I)

...(2)

From (1) and (2), we get

.(2) 2kA{AT){\2) kA{AT)t

I (21)

r=I2x4 = 48s

Sol. 23 (B) As we use

dt

dT

=-KT-T,)

= -kdt

In

T-Tr

49.9

f-^ =-k\dt
J T-'XO J50 ^-30

49.9-30

50-30 J

. ri99
in

Uoo,

= -A(5-0)

^~Sk ...(1)

=> k = 10-3

Let it takes t further seconds to cool down from 49.9 s to 40s

40j JL^ =.k\d,
J 7-30 J

49.9 4 5
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, 1 40-30 ,In! I =-k(t-5)
49.9-30

100^
In

199
...(2)

^ t = 693 s

Let it takes t' further seconds to cool from 40°C to 39.9®C

In
39.9-30^

40-30 .

?'-r=10.05 s

-Kt'-t)

Sol. 24 (B) We use /=
P\

4ndt

Pi

4ndl

4ndf

4nd}
/=

From (1)& (2), we get

to

11

>2^

\2
*2 _ M2

4 J

Sol. 25 (D) We use

k,A{T,-Tj) hA{Tj-T,)

I I

l',T,-Tjk, = k,Tj-k,T^

k, +k-.

Sol. 26 (B) We use

;t,^(A7]) kjAiAT^)

I

AT] _
at; ~ h

I

2k,
= 2

Sol. 27 (B) From Newton's law ofcooling,

dt
= -KT-T^)

ro=20°c

f—^ -k\dt
J r-Fo J

-(1)

...(2)

In

Now,

In

45 jrr 480

J r-20 •'
55

45-20

55-20

35

=-A(480-0)

A: = 7x 10^

480

=-(7x l0^)(/-480)

45

35-20

45-20

-0.5=-(7x 10-^)(r-480)
(r-480) = 730s«12min

Q kAAT
Sol. 28 (B) We use y =-y—

AT is same whether the scale is °C or K

=> rate offlow ofheat remains same.

Sol. 29 (Q T,

As T^~Tg=2TC
k^ = 2kB

^aA^Ja -Tq) _ kgA{TQ - Tg)
L ~ L

2T^~2T, = T,-Tb
^Ta + Tb = 3T,

From (1) and (2),

2i24 + TB)+TB = 3T^
=> . 48+ 3r5 = 3ro

48
T,~T,= -=\6^C

Sol. 30 (B) Rate ofcooling,

at mc

dT A
—r- cc —

at m

..2

1
cc —

r

445

,..(1)

...(2)
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._±)i

dt

10

Sol. 31 (C) From Newton's law ofcooling,

dT

Here,

In

dt
= -k{T-T^

65 ,rr 120

\^ =-k\dt
J T-Tr J

ro=30°C

65-30

75-30
= -yt(120-0)

/t = 2.09 > '̂10-3

To cool from 55''C to 45®C

45

In

55

45-30!

55-30

dT

-(2.09xl0-3){/,-r,)

t^-t^=244s
a4min

Sol. 32 (D) Heat released to room = Heat dissipated out of
room.

Let temperature ofheater is T

r-20=20-(-20)
=> r-20=40

r=60°C

Also, r-10 = 10-(-40)
=> r-io=50

^ r=60°c

Sol. 33 (A) We use R
kA

1 /, \ AM _ M

ko 2' L 2' Ay

^ h ^2-^2
i?2 kiA, I2

A
R2

A
Ry

-1 1 1-1
~ 2^1^1~T

Heat transfer!

H /•
SoL 34 (B) '

kA(AT)

21

k(2A)(AT)

^ I
Dividing (1) by (2), we get

x=8W

Sol. 35 (B) ByWein's displacement law

= constant

^/n2 ^1

7J 420 nm !

=2W

Ti 560 nm

2A

dT
Sol. 36 (D) Rate ofcooling, oc(7^-7'q'')

...(1)

...(2)

[{327 +212,y - (27 +273)'* ]

Ri

R.

[(627 +273)"-(27 +273)'*]

1.215x10" 3

R-y -6.48x10". 16

2 3*3
(V /?,= /?)

2k,k.
Sol. 37 (C) We use k =

k\ +^2

k, = k2 = kAs

Sol. 38 (D) 0°C

_ 2k' ^
'9 k + k

Copper Brass

lO'C

Al=1
h 1

Let temperature of free surface ofbrass is T°C

TOQ
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Sol. 39 (D)

^„,/j(20-Q) k^A{T-20)

I ^ I
4^,(20) = A,(7-20)

80 = 7-20

7=I00"C

i?
//=

is same through both sheets

e-9^ _
R-y

Gi?,-02/?, = 0[i?2-0^2

02^1+0,^2
„ 02^1+01^2

Sol. 40 (A) As

R^ + i?2

//=

„ 1 kAHcc —cc —
R I

Hn

Ay I2
— X —

l_i i
8 ~ 4^
/, 8 _2

4 ~ 17

Sol. 41 (D) As we radiation power

7oc7''

=> 7, cc (400+ 273)^
and

As -^2 = 271
=> (T)'̂ =2(673y
=> 7^ = 4.1x10"

=> 7=(4.1xlO")'^''
=> 7«800K

Sol. 42 (B) As

•/—H

Let area oflayers be^^

^,^(7,-7,) MCT'o-T'fi)

7,-7^=36°C

/ /

2(7,-7,) = 7,-7^

-(1)

27, + 7, = 37,
From (1) and (2), we get

27^+7,-36 = 37^
37,-37,=36

7,-7, = 12°C ,

/:i 5
Sol. 43 (B) As T- = T

3

and

and

We use thermal resistance

Ay A2
Ry R2

7 =
I

74

h ..kiAj
72 k\Ay

yS

h

-^L = 5

h ki "3

Sol.44 (B) lOOxQ ^ _
A

Let length ofrod = I

radius ofrod = r

area of cross-section =A

and thermal conductivity = k

kA(m-0) ml

I ' t

74(100-0) (0.1g)7

^ / I5
For second rod,

0.257 X(4^)X(100-0) _ ^
in ~ Is

Dividing (1) by (2), we get

m = 2x0.25x4x0.1

=:> m = 0.2g

J0°C

Sol. 45 (C) We use mL=
74(01-02

74(0,-0.) ,(/4 X(ic Xp)X7 = ! ^dt

dt

t =

t =

X

dxpLx

^(0,-02)
I J lO.l

= \d,=^\xdx
i tfi J
0

70

10

10.1

10

447

,..{2)

..(])

,.(2)
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2x0.005x5

/ = 2926.56s=48.78 min

Sol. 46 (D) By Stefen'sIawweuse

P=Ae<5T^

=> P=^ea(400)'* ...(1)

when length and breadth is reduced to half, area becomes —

times,

Let rate ofemission is P'

1

P'=^'ca(600)'^

=> P'=—ea(600/
4

Dividing (1) by (2), we get

El. _
P ~ 4

P' 81

^ P ~ 4x16

. 64

Sol. 47 (A) Given that

e=0.35

^=0.25xio-4m2

a=5.67xlO^Wm-2K-^

7'= 3000 K

We use P=AeaP

=> P = 0.25x 10^x0.35x5.67x 10-Sx(3000)'̂
=> /'=40.2W

=4> P«40W

^ecy(400)^

Sol. 48 (D) As we have /=

(7x3600)=^™(1)=
2k{\0)

72.8
k =

504000

= 1.44x1(Heal cm-'

To change from 1cm to 2cm thickness,

t =
0.91x80

2xI.44xl0"^xI0

72.8

' 2.88x10*^^
218.4

—717 = 75.8x10352.88x10^
/ = 21.06/7«21hour

...(2)

Heat Transferj

Sol. 49 (D) As oc —
^ ^ dt I

here we check all given options as

2

(A)

(B)

(Q

(D)

7?,ccy

1
OC

2

xO.5

R^oz\

cc2

16

Y

.R^ccS
Thus the rod of / = 2cm and r = 4cm has highest rate of flow of
heat.

Sol. 50 (A) Lowest rate ofheat is for rod of

l = 2cm,r= 1 cm

Sol. 51 (B) Let temperature ofjunction is T°C

.90°C

0°CI

/] + 12 + '3=0

AO, AO, A03
•+——2. =0

R R R

90°C

T~0 T-90 T-90
=> + + =0

R R R

+r+r-90 +7-90=0

=> 37=180

=> T=60°C

Sol. 52 (B) By Wein's displacement law

XT= constant

T
star

^/"slar 7
sun

7̂sun ^n,"'star 350nm

T
'star 510nm

7
sun

=0.69
star
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I
Sol. 53 (B) As we use Q -

QockA

k^A ]= ^2^2

Sol. 54 (D) As we use Q =
kAAB k{nr )A6/

I

Qi h *2

Sol. 55 (B) Temperature gradient

dT
— =80®am
dx

T 0.5

=.> Jc/r =-80 Jdx
30 0

r-30 =-80(0.5)
iz> r-30=-40

=> r=-io°c

Sol. 56 (B) We use EccT^

Sol.

i5.
10^

(300 +273)^
t

T=5mK

T=5^5TC

57 (A) We use P=AeGp
P = (4jrfi2)ea7^
PccR'^

P-, R}

Sol. 58 (C) Rate ofcooling is

R =

M

eAo

mc

_

A
— X

Wi^2 A

^x 4

1

1

4

^1 _ Ri

^2 A

Sol. 59 (B) As we use

Ql
~Qi

hh.
h^2

2

2j

As Q =
kAATt

I

As Q\ Qi

Sol. 60 (A) As we use 20 =
/t^(100-0V,

2L

ki2A)il0B~0)(2

L
20 = 0=

— =2t
2 2

/. = — = — = ] min
2 4 4

449

...(1)

...(2)

Sol. 61 (C) As we use P=AeaT*
=> P=1x1x5.67x1O-Sx(100O)''
=> P = 56700 J/s

Sol. 62 (B) Given that

We use

i =1 il =1
/2 2-^2 2

Q kAAT
R^— —

t L

Al - AAlx- ^
R.

R

R

!/^ k^A^

1 1 1 2 • 1
= —X —X—= —

2 4 14

i?2 = 4Rj=4cal/s

Sol. 63 (D) As we use

P^ (27 +273)'*
P2 ~ (927 +273)'

P-.

Sol. 64 (D) As we use

1

256

Q _ kA{AT)
t L

Q _ k{2A){AT)
12 L

300

1200

...(1)

Let in second condition, same heat is transfered in t seconds,

Q kiAXAT)

Dividing (1) by (2), we get

Q t
— X —

12 Q

2L

Q t ki2A){AT)
- X X

2L

L k(,A){AT)

r=12x4=48s

...(2)

= 4



Sol. 65 (D) Weuse Pec 7^

I P>

10 (27 + 273r

P2 (327 +273)'*

20

Pi

'sooV _j_
.600J "16

p^=mvs
Thus, energy emitted per second= 160J

Sol. 66 (A) Unit ofthermal resistance = °Cs/caI

Dimensions; [M~^L~^PK\

Sol. 67 (A) As Q^ = Ql
k,A{^T)^ k^A{AT)^

j h- r 2
L 0 L

Sol. 68 (D) As we use

V, t2 30

20

(i.sr)^

11
81

P,«5P,
Percentage change in rate is

-P^P-
AP = xIOO

AP=400%

Sol. 69 (B) As we use

Sol. 70 (A) As we use

KjAi + K2A2

+ A2

K,[nR^]-hK2[Tz(9R^)-JtR^]
KR^+K(9Ji^~Ji^)

K1+8IC2

(27+273y (300)^
P2 (127 +273)" (400)'

3. - —
" 256

3. _ ^
P ' 81

Heat Transfierj

Sol. 71 (C) As we use P=Aeo{P-T^)
=> P= (200 X10"^) X(0.4) X(5.67 x l(r«) x [(527 +273)'*

-(27 + 273)"]
=> P=(4.54 X10-"')x (4.096 x 10"-8.1 x 10^
=> P=4.54x10-'Ox4.015x10"

=> P = 182.3J«186J

Sol. 72 (D) As we use p=AcP (As e=I)

450

450

AK.
ATi

11^
6

16

500 Y
1000J

/>2 = 450x4=1800W

Sol. 73 (D) We use

As

Q kAAT

t~ L
r,=rrA ' B

Ka^a = ^b^b

K^izR/ =K,tzR '̂

K/2R,f =K^,^

Sol. 74 (D) Thermal resistance we use

I
R =

U

h h

AA kiA

A A

h
' " ' X '

kj Aj

5

h 4

Sol. 75 (A) We use
w(10)(84)^=-~y-^=(200m)cal

k=mcAT

200m = m X 10^ x AT

Sol. 76 (B) lOCC

Ar= 25?
10^

= 0.2°C

20cm

T°<Z

6cm

Let temperature ofC is T°C

B

0°C



Heat Transfer

If k is thermal conductivity of rod and^ be the area of cross-
section,

kA{\m-T) U{T-Q)

6 ~ 14

100-r T

^ 6 ~I4
1400 14r=67'

=> 207=1400

=> T=WC

Sol. 77 (B) We use
A%e}<3T'̂

s-

Anr^

r? 7,"

47tr''

Cr, \2
2n

v2r,

5, 2^

^2

^2 =45i = 4P

Sol. 78 (C) We use H-
Q kA{^T)

400x(100xl0'^)xAr
4000 =

0.1

Ar=iO(K:

Sol. 79 (A) From Newton's law ofcooling,

dt
= -KT-T,)

361 jrj, 120

=_i(120-0)
1,365-293 j .

A:=4.76x 1(H

To cool from 344 K to 342 K

342
dT

344
r-293

i„r34^
1344-293

'2

~k^ dt

=-(4.76xl0-^)(/2-fi)

^2 - fi = 84s

Sol. 80 (A) From Newton's law ofcooling,

dt

A
R.

100-40

80-40

Sol. 81 (B) As we use

P=AeGT^

40

451

and total heat

P = 0.1 X1X5.67XIQ-8 X(727+ 273)'̂
P=5670ff

H-P^t

5670x60

4.2

//=81000cal

cal

P^ (27-^273)^Sol.82(D)Weuse ^ = =

P = —
2 0.73

= 1.36/7,

Sol. 83 (D) Units of/:is kcal/w^iC
Dimensions: [MLT~^K~^]

Sol. 84 (C)

200°C

Let thermal resistance ofeach rod is R

Effective thermal resistance between B and D = 2R

R

200°C

We use T ='•B

T =

2R

P]7^+ P2^1

Pj +P2

P(20) + 2P(200)

P + 2P

420P
r,= —=14(7C

Sol. 85 (D) As we use

4 + A2

k^A->rk2A k^+k2
Kr A-^A

20''C

D
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Sol. 86 (B) T, Tb

'2X

We use

Total heat flow through slab,

A^+Aj ~ 2 ~T

Heat flow through x.

K^{2A){l,T)

I

3?.(2^)Ar
H,=

^2 =

2L

k^A(AT)

2LXAiAT)

H, ~ L 2X{2A){AT)

Sol. 87 (B) We use for conduction rate

X^xA(\ 00- 25)' ?.^^(25 - 0)
60 30

30 75 ~ 3

Sol. 88 (C) d- Distance between sun and cloud

•••(1)

...(2)

_ ]_
" 3

i/2- Distance between sun and earth

= Power ofsun = 1.26 x Asz'x- d]
Let the radiusofparticleis r so in equilibrium

orpH

Ps

p = pemission absorption

4a7^=7D-^x

AaP= —^ X1.26 X103 X4jtj2
And, 2

1

And^-

d, =
1.26x10^

' 27^ V5.6x10"®

1.5x10"

2x4x10®
xl5xl0^

d^ -2.81 XlO^m

Sol. 89 (B) When engine turn off

dT K

f dT A: >

Ir-10 "~~c^
25 0

, 10 K

^"T5=-c'
K

k \

In(3)-In(2)=-r

C
/ = 0.4 X—= 5 min

k

When engine turns on

dt C C

= f-
dT +Kt

2T + T^ C

'"k
K

c'

/ =
6

5

= 1.125 min

Sol. 90 (B) We use

' dl dT
tns =y4CT8—

dt dx

dT A 1
oc —oc —

dt m d

Sol. 91 (C) K 2K 1.5K
200°C ' ^ k ' 1&°C

As we use

or,

^ ^(200-01)
Ar ~ 2L

At 2L

(02-18

At ^ ' 11
200- 01 = 201 - 202 = 1.502-27

0, = 116°C, 02= 74^

Sol. 92 (C) As for steady state we use

&
dt

+
dt dt dt

Heat Transfer'



Heat Transfer

2 + 4 +
dt

• dt
= 2J/s

T =T <T

Sol. 93 (B) Rate ofcooling a difFerencin temperature

AT

In first case

At
«:A0

AT
— =a:a0
At

AT=KAQ.AT

Ar=61-59 = 2

A0 = 6O°-3O° = 3O=

A/=4min

AT 2 1
K =

AQAt 30x4 60

For second case

dT=2

A0 =50-30 = 20

dT
dt =

KAB 1
— x20
60

Sol. 94 (C) For thermal resistance we use

We have,

'(as ^ "cDK/

Til
(^^,7)fir

2KA

100-0

21 nl
+ -

KA 2KA

Tc-B
J_
KA

7^=28"

= 6min

Solutions ofADVANCEMCQs One or More Option Correct

S0I.I (A,C)

As

=>

As

^1 =
4100-0)

K^A(m-B)
^2 = L

Q^PJ
T2

^3 =
PA

P,+P,

Sxfi

Q.+Q
/. t.-

Q
t, +/,

and
3VI

fjQ = ^1+^2" 100min

^2='^+^2=^ +7- =
Q.Q Q0^+t2)
t, t.

Q=P.
V.^1 •'•^2

V2 20x80
100

= 16 min

453

Sol. 2 (C, D) Rate ofcooling = Radiation rate/heat capacity.

As the heat capacity ofboth bodies are constant and radiation
rate is same due to same surface area and same temperature, the

ratio ofrate ofcolling of both will be a constant.
W

Sol. 3 (A, C) As the two ends of the rod are at constant

temperature that means the rod is in steady state of thermal
conduction hence throughout the length the temperature

gradient will remain constant and in steady state of thermal
conduction the rate ofheat flow (heat current) is given by the
product of thermal conductivity, cross sectional area and the
temperature gradient.

S0I.4 (B,D) ThisisexplainedmIllustrativeExampIe-4.18hence
option (B) and (D) are correct.

Sol. 5 (A, B) As the two ends of the rod are at constant
temperature that means the rod is in steady state of thermal
conduction and in steady state of thermal conduction the rate

of heat flow (heat current) is given by the product of thermal
conductivity, cross sectional area and the temperature gradient.

Sol. 6 (A, B) ByWein'sLawweuse • -
X^ = b!T^ and X^ = btTg

and given that

IX^-Xg\~ 1pm
Solving the equations we get options (A) and (B) are correct.

Sol. 7 (D) When the temperature ofone end (hotter) start to
decrease, the rod will no longer be in steady state and
continuouslythe tempearturegradientaswell as thermalcurrent
through the rod varies with lime so non ofthe first three options
can be correct.

Sol. 8 (D) As the surface area of both the volumes of water
are unequal the rate ofheat radiation as well as rate ofcooling
will be different. In case of cylinder area is more than that of
spherical shell so for cylindrical case both will be more.

Sol. 9 (A, B,D) The total radiation emitted bya black body is
givenas £• = <7/47^hence options(A), (B)and (D) are correct.
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Sol. 10 (B, D) The rate offall (cooling) oftemperature is the
ratio ofradiation rate to the heat capacity ofthe body so rate of
cooling will be equal only when their heat capacities are equal
i.e. the product of their mass and specific heats (wj) will be
equal. Hence options (B) and (D) are correct.

Sol. 11 (C, D) In this case as the surface areas of the two
cases are same, the mass of water is different so for sphere the
mass is less then that of cube. As temperatures are equal the
radiation rate of both will be same but for sphere due to less
heat capacity it will cool faster.

Sol. 12 (B) As in the situation surface area of the bodies is

not specified we cannot comment on total energyradiated by
thebodies which isgiven bytheareaunderthespectral intensity
curves. If the areas of the two bodies are equal then option (B)
can be correct.

Sol. 13 (A, B) At45°Cweuse

= ^(45-75)= 12
• dt

dQ
dt

at20''C

less

= A:(20-I5)=0.4x5=2W
less

12
A=3q=0.4.

hence option (A) and (B) are correct.

Sol. 14 (A, B) Herethere mustbe someforce providing the
centripetal acceleration for circular motion but we are not
concernedabout it anyoption.As the bodyis sliding the kinetic
friciton onthe bodymustbe|amg=5N anditwillactin tangential
direction i.e. oppositeto directionof velocity.

Sol.15 (A,B, C) Forall bodiesweknowexperimentally high
emissivity implies high absorptivityand if absorption is less
thenradiation willbemore reflected hence options (A), (B)and
(C) are correct.

r

Sol. 16 (A, B) As initially they are at same temperature their
radiation rates will be equal and their absorption rate from
surrounding will also be equal but as time passes, due to the
differencein massesof the two their temperaturewill differand
rates will also be changed at later instants and due to this rate
offall oftemperatures will also be different at later instants.

Heat Transfer

Sol. 17 (A, C) According the Wein's displacement law the
wavelength corresponding to maximum spectral intensity is
inversely proportional to the temperature so the frequency is
directlyproportional to the temperature as X= c/v. Thus option
(A) is correct. As total emitted energy is directly proportional to
fourth powerof absolutetemperature option (C) is also correct.

Sol. 18 (A, D) Bywein's displacement law we use

m

•m^ Tb

•ntB Ta

Ta

Tb TffiA

By Stefan's law, we use

±j1

Eb
Ml
Mb

800

400
= 2

47crc r,BJ
= 4

Sol. 19 (A, D) A cavity radiator is a sealed heated enclosure
with a small opening which allows radiation to escape or enter
and the radiation falling into the opening gets absorbed inside
by multiple reflections and absorptions hence option (A) &
correct and by prevost theory option (D) is also correct.

Sol. 20 (A, B) Integrating we have

^ KAdQ _ .,dQ
= K(2nrL)—

dr dr

J H
0̂.

dt

dm Sjc SOjt

H ~ L 80x4200

7C

4200
Kg/s
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ANSWER & SOLUTIONS

CONCEPTUAL MCQSSingle Option Correct

1 (B) 2 (A) 3 (A)

4 (B) 5 (B) 6 (D)

7 (D) 8 (A) 9 (D)

10 (D) 11 (C) 12 (C)

13 (B) 14 (B) 15 (B)

16 (B) 17 (D) 18 (C)

19 (A) 20 (C) 21 (A)

22 (B) 23 (C) 24 (C)

25 (D) 26 (C) 27 (A)

NUMERICAL MCQSSingle Option Correct

1 (C) 2 (C) 3 (B)

4 (C) 5 (B) 6 (A)

7 (D) 8 (C) 9 (B)

10 (C) 11 (B) 12 (C)

13 (B) 14 (C) 15 (C)

16 (C) 17 (A) 18 (D)

19 (C) 20 (A) 21 (A)

22 (C) 23 (D) 24 (A)

25 (A) 26 (A) 27 (B)

28 (B) 29 (A) 30 (C)

(D) 32 (A) 33 (A)

34 (C) 35 (D) 36 (A)

37 (C) 38 •(C) 39 (C)

40 (C) 41 (C) 42 (B)

43 (C) 44 (D) 45 (A)

46 (A) 47 (C) 48 (A)

49 (B) 50 (A) 51 (B)

52 (C) 53 (B) 54 (C)

55 (A) 56 (B) 57 (A)

58 (B) 59 (C) 60 (B)

61 (B) 62 (C) 63 (B)

64 (D) 65 (B) 66 (B)

67 (B) 68 (B) 69 (B)

70 (D)

ADVANCEMCQs One or More Option Correct

1 (A, C) 2 (A, B, C) 3 (C, D)

4 (A, B, C) 5 (B. C) 6 (B, C, D)

7 (A. B, C) 8 (All) 9 (B. C)

10 (A, B, C) 11 (B, C, D) 12 (A, B, C)

13 (A. C, D) 14 (A, 0. D) 15 (All)

16 (A, C) 17 (A, B. C) 18 (C, D)

19 (A, D) 20 (B. C) 21 (B, C, D)

22 (All) 23 (B, D) 24 (B. C)

25 (B, D) 26 (All) 27 (B, D)

28 (A, D) 29 (B, C, D) 30 (A, D)

Solutions ofPRACTICEEXERCISE 5.1

(i) For SHM

and acceleration at position >' is given as
a=-(S^y

•(1)

Here weuse at;' = 0.02m; a = 0.06 m/s
0.06 = ^ 0.02

=> co^ =3

G>= yfs = 1.732rad/s

0.04
from equation-( 1) A =

Thus time period is T=

max

CO ~ 1.732

271 2x3.14

CO ~ 1.732

= 2.31 XlO'^m

= 3.625 s

(ii) Given equation of SHMis
y = 0.5 sin(27C^)

man will feel weightless ness when (n^A =g

(o=4.472rad/s

CO

=> /= —=0.712Hz
271

(ill) (a) Equation given is

x = asin^|

re-arranging the equation

x = a

l-cos(2co/-7r/2)

j:= - —cos(2cor-7i/2) ...(1)

from equation-(l) theamplitude ofSHM isa/2and time period

Jt
IS —.

CO

Plot ofequation-(l) can be seen infigure blow with mean position

a

x =

0 n 2jt CO/

(b) Differentatingequation-(l) gives

r. . (^ Jt
v = — x2cosinl 2co/-—

= acosm 12G)t-—

V=aco^l-cos^ (2co? - 7t/2)
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= aco

v„ = 2co-

1-

a
—X

2

=> v^-4co^x(a-^)
re-arranging terms we get

a /' n2/- \2
V.

•(!-') =11
r' a

— X

2
=\ ...(2)

equation (2) is an equation ofellipse. Plolled as sho\vn in figure
below

(iv) (a) Time taken in SHM fi^om one end to other is

mean velocity is v

T K
A/=- = -

2 CO

As 2A 2A(o

A/ k/6) n

maximum velocity in SHM is

V 2^mean _ ^

^max ^

(b) Mean acceleration fi^om one end to Centre is

Av .4co Ao) 2A(£?'
^mean' " 7^/4 " ~

and maximum acceleration is

K -

Thus = -
^max ^

(v) Maximum speed ofparticle in SHM is
V

max

rhean speed in SHM is
^/nar=^®

4A 2A<o 2v„

Oscillations and Simple Harmonic Motion

(vl) SHM equation is'
X= 4 sin CO? + 3 sin (co?+63°)

x=4sinco/-l-3 sin co?| j !+3cosco?
29 12

X = — sm CO? + ~ cos CO?

we can rewrite this equation as
x-A sin (co?+0)

where

I ri?7
+ —

[sj

= - -7841 + 144 -6.277 cm

(vii) In SHM we use

fi"om graph
a = -co^x

CO" = tan 45° = 1

co = l

27C
T =271= 6.28 s

CO

Solutions ofPRACTICEEXERCISE,5.2 ;

(i) For a spring block system angular frequency is given as

co= — =207t
V m

=> — =(20Ky
m

IfA is oscillation amplitude, here we use
mg = kA

maximum speed is

^ ^ g
^ (2071)^

1
^x(207c) = —m/s

(2071)^ 271

(ii) At equilibrium ifspring extension is/j we use

mg = kh
after displacing the blockdown byx spring further stretches by

y so its equation ofmotion isgiven as
T-mg = ma

k\h +̂
- mg - ma

kh kx
— + mg = ma

2 4

k
a = —x

Am
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for restoring acceleration we write it as

k

Comparing with

we get

Time period is

4m

a=-(i?x

co =

2n ^ 4m
T= — = 271.—

(0 \ k

= 2x3.14

= 0.1776 s

4x1

5000

(iii) Maximum tension is at lowest positon given as

mv„

I

maximum tension is at extreme position given as

we use mg +
mv„

/
- 2mg cos0Q

and we use = ^2gl(l~cos%)

=> mg+ 2mg(1- cos Og) = 2mgcos Og

3

4

^3^-1
- cos

...(!)

...(2)

(iv) In the given situation when mass is displaced in either
direction, restoring force on it is given as

(^j + k2)x = ma

a =
^1 ^2

m

k^ + ^^2
for restoring nature a = -

comparing with

m

a =-(i)^x

we get co =
^1+^2

m

271 I w
Thus time period is T= — = 27i.I ^

. \ki+k2

(v) In given s>^tem we can consider the two springs in series
combination ofwhich equivalent force constant is given as

k^ki

hence time period ofSHM ofbody is

T= 2n

= 2k
m(^i + k2)

k^ki

457

(vi) For equilibrium ofT-shapedrod, if/7is initial elongation in

spring, we balance the torque about point O as

2Mg Mg .

4Mg = 3kh
On slightly displacing the rod by 0 we use

kih +aQ).a-^^a

2M
(2ay (f] •+l f i(2«r•+

12

8 1 4. .- + —+- \Ma -a
9 36 3

9M

,2q —ka'B

a =

Due to restoring tendency we write

fla = - b
9M'

Comparing with a=-^ ©^0

'4k
we get

Thus time period is

© =

271 , M
r= — = 371J—.

© \ k

...(I)

•a

(vii) In equilibrium as cylinder is submerged at a depth and

if springelongation is Xg weuse

^0+ =•% ...(1)

if cylinder is displacement down further by x and relased, its
equation ofmotion will be

hA(xg +x)+I- +x I S^g~Mg = Ma

k-\-Spg
^ —FT—^M

for restoring acceleration, we use

k + Spg
a —

M

Comparing with a=-©^x
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we get ®

Thus time period is

k+itr^pg
= * [Asbasearea5^ = Tir^l
\M

(0 k + nr pg

(viii) For the elastic wire its equivalent spring constant is given
as

YA

k=T
Thus frequency of oscillations we use

f=± 11 =±
2n\m 27t Vw/

(ix) At equilibrium ifgas pressure is we use

P =—+ i?)go ^ 0

Ifpiston is displaced down by a distance x, volume becomes
V=V^~Ax

As system is isolated, gas pressure P is given as
P{v^-Axy=p^^vi

p=
(v,-Axy

-Y

Fn
=p 11-— = P

go

For motion ofpiston we use
PA-Mg'P(y4=Ma

/ N

"^Ax
P

%o
1-

0 )
A-Mg-P(^ = Ma

yA^R yA"
Mg

L A
+ -Pn

a —
go

MVq

For restoring acceleration we use

X =

•

MVr.

yA

a - —

MVr.

This shows that pistion executes SHM and comparing with

we get

frequency

a=-G^X

yA'

® =

'Ml
I A

2n 271

+ Pn

yA (f + Pn

MV^

Oscillations and Simple Harmonic-Motion

(x) Due to elasticity in rod it sags by weight ofload. Ifits shear
modulus ofelasticity is q for equilibrium ofsystem we use

FIA

sn

[where A is area ofcross section and is its length]

Mg _ qS

If load load is depressed by x we use
F—Mg = Ma

FIA

=> F'=^(5+x)
from (2) we use

^{h+x)-Mg=Ma
_M.v

^ IM

From (1) we use

for restoring acceleration

-L r
^ 5

5

This shows that load executes SHM.

Comparing with
a=-(s?x

- f
1 10

we get

^ frequency =3Hz
27c 27cV2.8x10

.-.(1)

-(2)

(xi) Ifmercury is displaced in tube by a distances, as shown in
figure, the excess pressure done to level difference is

X COS

AP = (x + Xcos 0)pg
Thus restoring force on mercury is given as

Ff^ - AP^- ma
for restoring acceleration we use

,_ xpgS
a=^

m

(1 + cos 0)
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Comparing with

we get

time period

a=-(S?x

(0= j^(l+cos0)
m

2n. m
T- — = 271 I

CO y5pg(l + cos0)

Solutions ofPRACTICE EXERCISE 5.3 -

(i) (a) Angular frequency co we use from figure

Vo=^co [where (0= — rad/s]

459

Total period T=Atj + A/2

- K
m m

+
2ci

(iii) (a) -I i-

a = co(l)
0.25=^cocos(a) ., ,(1) Here we can see from figure that (j) = 7U

Here initial phase

25ni/s

a = -co =

3

and from equation (1)

0.25 = A

/• \ ^ 1 \
n

A = —m
2k

-t=\

(b) Velocityatt= 65'is
v = i4cocos (5co)

3 7t f5Tc'l
= X —COS —

27C 3 3 j
= 0.5 X 0.5 = 0.25 m/s

(ii) During motion the block oscillates as spring block system
while in contact with both left and right springs for half
oscillations so the time it is in contact with either spring is
given by sum ofhalftime period ofboth springs.

\m I m
At = n — + 71 /—

1 \lk.tj Y '^2

Between point Cand D it movesuniformly so for one oscillation for bob is given as
its motion time is

V
A/2= —

(b)

7C 7C 271
from figure (|)= ~ ~

(c)

71 7C StC
from figure ())= - + - = —

(d)

K Ik
from figure <})=7C+ — = —

(iv) Time required to move from equilibrium position to wall

a = p sin M-.t
I '
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. _! a
sin —

PA
As collision is elastic ball will return at same speed so total
oscillation period is

T= nJ~ +2/o

- TC.I—+ 2jAsin~'
g

-I
71 +2 sin

/ \

a

V

vP..

PJ

(v) It we consider k as equivalent force constant of string
then at equilibrium we use after displacing down the particle
Mg = k{l) further by distance 21(so that total length becomes
41)when we release the particle it shoots upward upto natural
length ofspring and time taken by particle can be obtained by

phase diagram as shown in figure as

Here

Time for particle to go fi"om ^ to is

where

t = Q'A

7C 71 271

2"^6 "y

i
(0

\ m V /

27C I /

g

At position B speed ofparticle is

'. = T

, v=coV(2/)'-(/f
= Vsoj/ = yj3gl

After point B string will slack and particle will be in fi"ee fall
motion so time taken by it to go up and come back to point B is
given as

^ \g
Thus total time after which particle will come back to points is

T=2t^ + ^^= —
V^ 3

Oscillations and Simple Harmonic Motion

(vO As shown in figure the phase difference between SHMs
ofA and B is given as

(j)=2sin '
2

V /

K 2n
= 2 X - = —

3 3

4' -I-

•Jia

(vii) Initial speed ofshell before collision

^ ^ V2xl0x0.8 =4m/s

Find speed ofshell after collision

Vj- y]2^ =V2xl0x0.05 -Im/s
As masses of block «fe shell are equal V2 is the block velocity
before collision which is given as

dx
V= — = V2 cos2/' = 1

dt

cos 2t =
^/5
71 771

2/ = - or —
4 4

71 7.K
t = - 01 ~

position at / = — is

7n
orat/ =

(vili) We can use

we use

1

71

1

7?

= 2 + — =2.5m
2

7?:) 1
— ! =2-- = 1.5m

' x = .4 sin CO

y = sin 2co
z = y4sin3cL)

x + z = ^(sin CO + sin 3co)

x + z = 2A sin2cocosco

x + z = 2}'cos CO
/

x + z

C0= COS"' "7
I 2^ J
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1%
r= —=

0)

cos

27U

x + z

(ix) From figure we use

from(l)

from (2)

=>

we use

f=0

x^ =^(1 -cos co)
x^ + X2 = A{1 -cos2co)

A-Xt
cos CO =

A

X] +X2=2A sin^co

. . ^1+^2
Sin*'CO

2A

sm^'co + cos'rco +
2A

A-Xi

Ax^+Ax2 +2A^ +2x\~4Ax^^2A^

A =
2x\

3xi -Xi

(x) We use v
atx = 4cm; v= 13 cm/s

^ 13 =coVvf^
and atX = 5cm; v = 5cm/s

=> 5= (dVv4^-25

(1) .
^ gives

from(l)

13^ ^^-16

A^ -25

169^2_4225 = 5^2_go

164^2 =4145

^2=25.2

A =5.02 cm

13 = (o-v/^^ -16
13= con/25.274-16

= 1

•(1)
.(2)

•0)

.(2)

13
co =

3.312
= 3.925 rad/s

27t 6.28

(xi) Time period of particle is

27C
T 2s

CO

So in 2.5sparticle covers distance 5A
Here maximum speed is 35 =^co

35 35
A = — = . , . = 11.14cm

CO 3.14

In remaining 0.3 sec particle covers is

5=5^+Xo = 55.7+4.59

= 60.29 cm

Solutions ofPRACTICE EXERCISE 5.4

(i) Total energy ofparticle is

1 2 v2
=79.5

2

we use

from (1) we use

79.5x2
^co= A—-— =6.304

v^ = co2^2-coV

(3.2)2 = (6.304)2-co-(O.C43)2

- 39.75-10.24
co2 = ^ =15960

(0.043)2
co= 126.33 rad/s

6.304

461

...(1)

Initial phase of SHM com be calculated from phase diagram
shown in figure so equation ofSHM is

X= 0.05sin(l 26.33/+2. l)m

Oscillation period is

A = 5 cm

-1(j)=90® + cos'
4.3

=90° + 30.68°

= 120.68°

= 2.1 rad

_ ^ _ 6.28
CO ~ 126.33

= 0.05s
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Thus number ofoscillation in 0.4s are

0.4
N=

0.05

Thus total distance travelled by particle is
8x4^=3X4 = 32 >:0.05=I.6m

(ii) Angular frequency ofrod as compound pendulum is

Oscillations and Simple Harmonic Motionl

As shown in figure we find restoring force on central charge at
position P.

1

4718

2e^x

{a-xf- (a+x)^ (x^+a^f^^

=> Fr-
47C8oa'

co =

mgl
mg

&
47teoC3^

fi3-l3
V2/ I a a

If Rodsangularamplitudeis i[)g weuse

00 =

.2

,•4
CO

Mean kinetic energy ofrod is given as

<A^>=

V 3 , 21

6o(a:) p.2
—+^0

3^

(iii) At mean position, KE is maximum so we use

—=8 X10"^
2

=> ^x0.1xa)2x(0.1)2=8xl0-^
=> (0^ = 16

co= 4rad/s

Thus general equation ofSHM here we use

x=w4sin(cor+a)
=> x = 0.1 sin(4/+7c/4)m

(iv) At centre ofsphere net electric field due to charges is zero
hence the fifth charge will be in equilibrium.

Fr = 2KSQa

for restoring acceleration we use

<7=-

27teowo

a=--(o^x

co =

27zsQffia

Comparing with

we get

time period
271 ^ 2nsQma'

r= — = 2n
CO \ e

(v) For equilibrium ofbar we consider the initial extensions in
springs are Aj and then we use

k^h^a~k2h2b ...(1)
and k2h2=fng ...(2)
Ifmass m is displaced down byx we consider further extensions
in springs are Xj and Xj respectively so as bar is hight we use

+Xj)a = ^2(^2 •'••^2)^
and by geometry we have

— +X') =x
a\

'kob'"
k^aj

a:, +^2 =x

x^ =

^ k2b^
k^a'

+ 1

we use equation of motion ofmass as

k2X2 —tng= ma
for restoring acceleration we use

k-,
a = -

m

Comparing with a =- (£?x + C

x + g
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we get 00 =

k\k2
N

m k2 2
+ k\

K I" J /

27c I m / \

=> Timeperiod r= —= 271J—
0) u k^k^

ki + A:i
J

(vO At a displacement 0 from initial position, restoring torque
is given as

Xii = mg{lQ) + 2Km(b)
Restoring angular acceleration is given as

X, (Mgl +2Kb^) „
a = - — =- y

I

a = -co^e
mV

Comparing with

we get

Time period

(£> =

mgl + 2Kb'

\ ml'

271
r= — = 2n.

(0 1

mr

mgl + 2Kb'

(vii)Ifat equilibrium spring elongation is h, we use
kh{b)=mg{a) ...(1)

If mass is displaced down by j; then -its equation of motion is
given as

T-m2 = ma,

and for masseless rod

T(^k\h +x\-

from (1) and (2) we use

k\ h+^b
-mg~ma^

kb'
a, =

for restoring tendency we use

kb'
a, = —

ma

a, =-co^x
b

0)= J
\ m a

(b)

Comparing with

we get

=> Timeperiod
271 2Tza m

r=
CO

...(2)

...(3)

At position ;c= — A, particle velocity is

, ,2 3A coA
V=C0.M-—= —

Using impulse momentum equation we have

mcoA
—-—I- W014 =mvy

=> y/= 2^^
ifnew amplitude is ^'we use

Vy= (nyjA'̂ -x^

—Am =(oJa'̂ --A^
2 V 4

=> =

=> A'= Sa

Solutions ofPRACTICE EXERCISE 5.5

(i) If mass m is displaced to right by x and due to this
extansions in springs are Xj and X2 respectively, we use

A:,X](c) = A2^2(i) + c)
and by geometry we have

— (6+ c)+ X2 =X
C J

2 , /•, n2, k-yfb + Cl + -L\

Xt =

4 4

ki \ c

Restoring force on block is

^R~k^2~ ki

restoring acceleration is given as

F,
a — -

1+^
V k\

b + c

m [, kof b+c
m\ \ + -^

Comparing with a =- co^x

we get m =
kzkic'

m(k^c^ +k2ib +c)'')

463j
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(ii) After displacement of rod by a small angle 0 we use
restoring torque on it is given as

= + kilQ).l

Restoring angular acceleration is given as

Tj? (mgL +Rl^)^
a = -— = - z 0

/

This verifies that system executes SHM and comparing with
a=-0)^0

we get

Time period

co =

mgL + kV

mU

2% _
T In

CO 1 mgL + kV

(ill) In equilibrium ifspring extansion is h, we use

Mg+2mg= kh ...(1)
After displacing mass m down byx its equation ofmotion will
be

F]—mg = ma
for pulley we write

k{h + x/2)-T^-T^-Mg = Mal2

and (T2-T,y=\Mr'-[£^
from equation (1)

Ma
^2 - + ma+ mg

from equation (2)

Ma
kh+ k— -ma —mg— —— -ma-mg-Mg =

/

a =

fa

2

2m + -M
4

for restoring tandency we use

/-

Comparing with

we get

(w) In figure

<7 = -

4m + -M
. 2 •

a =-(0'x

co =

'4m + ~M
2

4R
OC= — =r

3k--

-(I)

...(2)

Ma

at a displacement 0, restoring torque on half cylinder is given
as

Xj^^WrQ

Oscillations and Simple Harmonic Motion

/////>///. 777777777)

restoring angular acceleration is given as

Wr

we use

a=-

a =-

1 3__8_
2 3k

3;c

9;t-l6)^2
6;t

8- g
a =-

971-16 R

g

1= —mR^ - mi^ +m(R - r)^
2

= mR^
1 16 f, 4Y , .16 8

-+ 1 +1+

2 971^ 37tj 971^ 37c

2 371

comparing with

= mR^

we get

time period

a = - co^0

co =
(97t-16)i?

271 (9k-16)R

tt) " 1 2g

(v) As left spring is comparessed by 2A, this will be its

amplitude so before it strikes the right spring its phase will
change by 0 = 7c/3 hence time taken is

_ _0 _ 71/3
CO yfliTTm 3^ 2k

7c m
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After mass strikes right spring it moves in influence of both
springs and let it comes in equilibrium after compressingthe
right springbyx^,we use

2k{A -x^ = kxQ
2kA = 3kx.

2A

If^Q ismaximum compression in right spring, bywork-energy
theorem we write

\(IkilAf (2k) (A
=> 8kA^ —fyQ = 2kA^ + 2kyQ - 4kAyg

2+V^ ,
=> 3'o

(v^ (a) As X= c? cos

and

and

plats are shown in figure

(b) We use

7t
(Sit

4

v = -(3cosm i

(D = -aa)^cos I (at —
4

r~2 2
v= coVa -X

2 2
V X

^ 2 2 '^~2 ~ ^
CO a a

Thus plot will be an ellipse shown in figure

(0, oco)

and <3 = - co^

Thus plot will be a straight line as shown in figure
a

co^o

x = + a.

465

(vii) In from ofdisc when rod is slightly tilled by an angular 0,
we use restoring torque on rod as

we can use

=(w coV^) sin (0-r- (()) X

v2y
't>=

a + -

'"c = «+ 2
ma rrl

1^/?=—

_ morr(jl

Ir. = 0

1-
/

a + —

2

Restoring angular acceleration is

Comparing with

we get

maP'la

«=-T=-^^ ml

~Y

3q)^«3
a = -

21

a = coQ0

co„ =
3co^c7

21

= mco^r

Solutions ofCONCEPTUAL MCQSSingle Option Correct

Sol. 1 (B) We can map the two SHMs as projections of two
uniform circular motions and find the phase angle ofthe position
where the two particles will cross each other. This will happen
at a phase angle 135° from initial positions hence the time to
cover 135°isT(135/360) = 3T/8.



Sol. 2 (A) Potential energyper unit mass of a particle is given
as{l/2)co^jr^ andequating thegiven value with thisexpression
we get the value of co = 400 rad/s and Total energy is
(l/2)co^/4^ which gives theamplitude 10cm.

Sol. 3 (A) From the given equation we have
(0^ = JC^

C0=7t

^ _ JL _ Itt
^ 2n 2;: 2

Sol. 4 (B) On rising up as g decreases the time period of the
pendulum increases and clockwill slowdown and start loosing
time, timelost perunittimecanbegiven asdTIT={\l2)dglg\\Qrt
g = GMIR^ and we can calculate time lost in a day
(86400 seconds) and verify that option (B) is correct.

Sol. 5 (B) The time period ofthe swing is

Where Z^^is thedistance from point ofsuspension tothecentre
ofmass ofchild. As the child stands up; the/g^ydecrease hence
T decreases.

Sol. 6 (D) Givengraph is a sine curve fordisplacmentso force
or acceleration curve will be negative of it.

Sol. 7 (D) Velocity of a particle undergoingSHMis given as
on squaring and simplifying this

expression we can see that this is the equationof an ellipse.

Sol. 8 (A) A hannonic oscillator crosses the mean position
with maximumspeedhencekineticenergyismaximumat mean
position (i.e., A-= 0)
Total energy ofthe harmonic oscillator is a constant.
PBismaximumat the extremeposition.

Sol. 9 (D) As in free fall effective gravity with respect to
support of pendulum will be zero, it will not oscillate and

frequency will be zero.

Sol. 10 (D) Given function can be written as

>' = sin^co/' =
l-cos2co/' I 1

•= cos2co/

=> motion is SHM with time period = = —.

Sol.11 (C) Fromthegiven figure ifwe drawthephasediagram
on circular motion representation it looks like

Oscillations and Simple Harmonic Motion

N-yl/2-^.4/2-H

from figure phase difference between 1 & 2 is given'as

A/2 1 71 _ 7t 5;cCOS0= —= - ^ 0=- or 271-3 =-

Sol. 12 (C) As positive plate under the bob will exert net
downward force on it, this will increase the effective gravity
actingonthebobdueto whichfrequency increases as frequency
is directly proportional to square root ofthe acceleration due to
gravity.

Sol. 13 (B) When block C hits block A, as masses are same
velocities will swap and when the spring compression is
maximum bothblocks A andB wouldbemovingat samespeed
v/2 so that total momentum will remain conserved.

Sol. 14 (B) As the expression is a third order expression in
degree of sinusoidal function hence it is a superposition of
three simple harmonic motions.

Sol.15 (B) Timeperiod ofoscillations fora springblock system
isgiven by2'K{mlKy^ where Kistheequivalent force constant
ofthe springsystem. Herein firstand secondfigureequivalent
force constant isonlyA: whereas inthirdandforuth figure springs
are taken in parallel combination because in both springs
deformations are always equal on displacing the blockso force
constant is Akhence option (B) is correct.

Sol.16 (B) Natural frequency ofoscillator = cOq
Frequency of the applied force = co
Net force acting on oscillator at a displacement

x = w(coo"CO^)a •••(!)
Given that F cc cosco/ •••(2)

From equations (1) and (2) we get

co^) Xcc coscor •••(3)
Also,X=A cos CO/ ... (4)

From equations-(3) and (4), we get

w(cOo - (o^)A cosCO/ oc cosCO/ => .4 cc 1

w(COo -co^)
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Sol. 17 (D) The restoring forceon the particle can begiven by
F=-dU/dx and using displacement very small we can see that
the force is directly proportional to the displacement under
which particle will execute SHM hence option (D) is correct.

Sol. 18 (C) The total energy of a harmonic oscillator is a
constant and it is expressed as

1 2 t
E= 2 (Amplitude)

E is independen to instantaneous displacements.

Sol. 19 (A) The expression oftime period ofa simple pendulum
is

T=2k

467]

Figure-ni: Presenceofelectrostatic forcefirstshiftstheposition
ofthe equilibrium. Here,point C is the new equilibrium position.
When the charge isplaced at pointB adjacent to thepointA,
the ball will subjected to the force ofattraction to the positive
charge as well as the force of gravity. The presence of
electrostatic force will decrease the restoring torque about point
ofsuspension,soeffectiveg will decrease, hence the timeperiod
will increase.

I \ c

mg

T,>T,

Where is the distance between point of suspension and ^
centre ofgravityofbob. As the hole is suddenly unplugged, Sol. 21 (A) T= luyj!/g
first increases then decrease because of shifting ofCM due to

which the time period first increases and then decreases to the
original value.

Sol. 20 (C) Figure-T: When the charge is placed below the
bob ofpendulum in vertical line with the point of suspension,
the ball will subjected to the force ofattraction to the positive
charge as well as the force of gravity. The presence of
electrostatic force will increases the restoring torque about point

of suspension, so effective g will increases, hence the time
period will decreases,

I
I
I
I
I
I

1

T <T1^0

-Q

mg

Figure-II: When point charge is placed at the point of
suspension, the presence ofelectrostatic force will not change
restoring torque about point ofsuspension, so time-period will

not alter.

AT \ Al 1

So, the fractional change in the time period ofa pendulum on

changing the temperature is independent of length of
pendulum.

Sol. 22 ,(B) For a spring block system time period is given as

For the two given springs, we use

r? cc 8l t]
I ky 2

1 2 2 1 1
'• ' 'T F

But ^ =7~ 7^
^1 ^2 ^eq

=> +

Sol. 23 (C) Since, the pendulum started with no kinetic energy,
conservation of energy implies that the potential energy at
extreme position must be equal to the original potential energy,

so the vertical position will be same at other extreme position,
so we use

=> L cos a = / + (L - /) cos 0

Z-cosa-/
cos 0 =

L-l

= cos ^
Z-cosa-/

L-l

Sol. 24 (C) The total time from ^ to C

'̂ >777777777777777777,77777//.
•IXr, -*o-H

B C
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^ac~^ab'̂ ^bc~ 4

Where T = Time period of oscillation of spring-mass system
and can be given by the figure shown as

he
CO

T_
12

-L H - L - ahc~ 4"^12"3"3Va:

Sol. 25 (D) We use equation ofSHM as

x = ^ cos CO X

^ - a = ^ cos CO X

^-3a = ^ cos2cox

cos 2® X= 2 cos^ ®x- 1

A-3a

using

A { A

^3a— 2A^ +2a^4Aa

— ^?
=> A^- 3Aa = A^+ 2a^ - 4Aa

=> 2if=Aa

=> A =2a

fi^om eqation-(l) c7 = 2ctcos cox

1
cos ®X= 2

-1

71 .
®X= y

27C 71

3

r=6x

Sol. 26 (C) We use

KE=

1PE=yW®V
At mean position x = 0
So KE is maximtun and PE is minimum zero.

O)
(2)

(3)

Oscillations and Simple Harmonic Motion!

Sol. 27 (A) We use for spring parts

kl kiSl) 5k
k,= T -

21

Solutions ofNUMERICAL MCQSSingle Option Correct

Sol. 1 (C) The equation giving relation between acceleration
and speed as function of distance fi^om mean position is

a = -(s?x ...(1)

v=(0\la'̂ -x^
fi"om equation (1) and (2) we get

Hence the correct option is (C).

CO

...(2)

Sol. 2 (C) The magnitude ofdisplacement in the given time

interval is y and time taken by the particle to cover adistance
a . ^ . T
— starting fi^om rest is ~.

Hence the magnitude ofaverage velcxiity over given time interval

is

a/2 3a
^mean J' /5 T

Sol. 3 (B) For two particles in SHM along same line below
figure shows the state ofmaximum separation.

Here we use

PQ= c? V2 = 2a sin 0

. „ 1
sin 0 =

= sin"'

Thus phase difference between P&Q\s^ =2^= y

Sol. 4 (C) Due to impulse, the total energy of the particle
becomes

—mfs^A^+ —m(S?A^ = moy^A^
2 2
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Let; A' be the new amplitude.

= nKS?A^

=> A'=yl2A

Sol. 5 (B) Given that potential energy is C/= mV
17=(5ac2 + 100)l(r2

=-(100x)10-2

=> .mcolc=-(100X ]0"^)x
10xlO-Wx = 100xia-2^

=> 0)2= 100

=> j O)=10rad/s

^ _ i£ - 1
^ ^ 2tz 2% %

Sol. 6 (A) Given that acceleration of car is

f=a-bx
For maximum velocity,acceleration should be zero.

a-6x = 0

x =

At X= T , the particle has its maximum velocity.
0

We use

At

vdv
f= —=a~bx
•' dx

v" bx'
— =ax + c
2 2

x = 0;v=0

c = 0

Substituting x= —gives maximum'velocity as

^max ^
Also, the velocity ofthe car should become zero at station B.

bx^
ax =0

2

x = 0;x =
b

2a

T'Distance between the stations is

Alternate :f= a—bx means particle will execute SHM.
At mean position;/^ 0

/
A\* *\C

X = 0 x = alb

• a

'=-b

In the figure shown, 'C is the mean position and ^ & 5 are
extreme positions

2a

=>

Sol. 7 (D) The system acts as a pendulum of length / acting
under effective gravity ofgcosO as shown in figure

Now,/j/2=^5./= 7?+^-/

cos6 =

-> mg sin 9

mgcosGV

=> T=
/x^+/-gx

^2k.-^

Sol. 8 (C) Assuming the speed ofthe spring increases linearly
with distance from O, the speed ofa small element at a distance

'x' ofspring as shown in figure is

V

considering a small element:

"O ^ dx

Total kinetic energy ofspring is

K.E.= \—-dmu^ =j—-(~-dx
•'2 {2 U ) t2

- -myp-
6

Sol. 9 (B) Both the spring-mass s>^tem& torsional pendulum
have no dependence on gravitational acceleration for their
time periods.

Sol. 10 (Q The maximum static frictional force is

/= \ung COS0 - 2 tan0 mg cos0 = 2 mg sin0

Applying Newton's second law to block at lower extreme
position, we have

f~mgs'mQ = m(d^A
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(jp-A = g sin0

3mg sin i
=> A =

Sol. 11 (B) We use

•^0 2n

As CD= A—
'3w

1 mgl

I

where, / is distance between point of suspension and centre of
mass of the body.
Thus, for the stick of length L and mass m fi"equency is

fo=:!l27C ^
"•g-f 1^

{miPni) 271^1 I
when bottom half of the stick is cut off we use

f=±
m

J
m{Lliy 2n

12

Sol. 12 (C) Let mass'w'falls down byx so spring extends by
4x; which causes an extra tension Tin lowest string

- =A(4x)

T={\6k)x
Thus equation of motion of mass m is

T=ma

\6k
^ a=- X

m

Comparing with a-- (ohc

fm
m

we get co =

- _L
In 2n \ m

=1 ll
n \ m

dQ
Sol. 13 (B) Given that— = 2 rad/s

dt

=> 0-2?

Let BP - a

=> X= 0M= a sin0 = a sin(2?)

•y

B

///////////A

Oscillations and Simple Harmonic Motion

Hence Mexecutes SHM within the given time period anddts
acceleration is opposite to 'x' that means towards left.

Sol. 14 (C) We use V=±GiylA^-x^

PE=-hP
2

a = -<iPx

KE= ]^m(sP{A'̂ -yP-)=^k{A'̂ -x^)
—aPx

Ratioofacceleration to displacement = = -aP (constant)

Sol. 15 (C) When the particle crosses point D, its speed is
halfofthe maximum speed. Given that amplitude is 2R

v„

or

or

v =

R

max max

2 R

2

Distance ED=2x=-^R

4^.

d^v
Sol. 16 (C) Given that -— = -K-p

dt

this equation has standard solution v=Vq sin (4Kt+0) where
CO =-Tk . Hence the particle executes SHM with angular
firequency ©=y[K

or frequency/= ——.
2n

Sol. 17 (A) By conservation ofmomentum, we use
2^=3^

2
=> ^'=2^

Initially E.= ~m^V^=
IfA is initial amplitude we use

12 2
Finally £,= --.3. ± jx2

^ 2 ^ 2 3 3 3
Ifyl' is final amplitude, we use

I 2
=> ~KA''^=-V^

2
A'=~A

'-KA-
2
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•Suspension point

Sol. 18 (D)

Time period ofa compound pendulum is given as

= 2711

T= 2% I— = 2n
mgl

a a
—I—

6 2

m vm

12

= 271.
[2V2a

3g

a

Sol.19 (C) Byworkenergytheorumatadisplacementj:, and
^2we have

and

Fx^ -

Fx^- -k'x^= -mv'^
2 2 2 2

-0)

wherex^, are initialand finalextensions and V, v' are initial
and final velocities.

In both cases : force applied is same, and velocity becomes
maximum when F= kx, after which the mass will decelerate

=> F='kx^-{4k)x.^

Substituting in equation-(2), we get

\2
Fx 1

= -mv«
2

Dividing (3)/(l); we get:

4

^ 2

-(3)

Sol.20 (A) Restoringtorqueonrodaftersmallangletiltis
x^=—kyL=—KL?^ (Sincey = Z.0 from figure)

>* = L sin 0 =:/.0

x = Z, cos 6 = Z.0

7771^7777777777777777777777:^:777.

A:i20=- mi:

3

^.0
m

comparingwith a = - co^G

•We get (0= J—
V m

Note: Torque due to mg was already balanced so it is not taken
in calculation.

Sol. 21 (A) Oscillations represented by curve 2 lags in phase
by 7c/2 and the periods are same.Amplitude of curve 2 is double
that of 1.

Sol. 22 (C) Given that

U=2-20x + 5x^

Interaction force on particle is given as

dV
P' = - —=20-I0x

dx

As F is linearly varying with -x, particle is executing SHM
At equilibrium position F= 0
=> 20-10.x = 0

=> ;c-2

Since particle is released at x = - 3, therefore amplitude of
particle is 5

a

a =

H-

mean

2 position ^

471

-3 0 2 7

It will oscillate about x = 2 with an amplitude of5

maximum value ofx will be 7.

Sol.23 (D) P.f.ismaximumatextreraepositionandminimum
at mean position

T
Time to go from extreme position to mean position \s,t = — \

where Tis time period ofSHM. Given that

T

4=5^
=> . r=20s

Sol. 24 (A) Acceleration ofparticle is

7t
a -•

,64,

comparingwith a-- (sFx we get

0) =

(71 7C

64 ~ 8

27C
7-= — = i6s

CO
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There is a time difference of — between ^= 2s to / = 1Os. Hence

particle is again passing through the mean position of SHM
where its speed is maximum at / = 10s

aJi 32-J2
=> A = —— = m.

7C/8 71

Sol. 25 (A) Resultant displacement will be the vector sum of
two displacements:

y= ^Jyf +yl+2y]y2 cos37'

= Ja^ sin^ (ot +b^ sin^ (nt +labsm^

I 2 t2 ^^by-Ja +b +-J- sinco/

Whichshowsthat the particle will performSHM.

Sol. 26 (A) The slope ofX-/graph is the speed.
From graph, the slope ofcurve 1is greatest, hence (A).

Sol. 27 (B) x = 3sin 10071/

3' = 4sin 10071/
Equation ofpath is

T 4

Above is an equation of a straight line having slope —thus

equation ofresulting motion is r = xi +yj= (3i +4j) sin IGOti/.

=> Amplitude is -73^+4^ =5.

Sol.28 (B) The timeperiod offreeoscillation ofpendulum

T=2k J~ =2s
\S

Time taken bybob togofrom extreme positionAtomean position

5 is= —
4

Oscillations and Simple Harmonic Motion

Time taken by bob to move from mean position B to position C
(where its angular displacement a is halfthe angular amplitude

( 2k
P) is found from equation a = P sin

Solving we ~

Total time period ofoscillation is

= 2
r 7^
4 12

2 4
= 3r =-s

Sol. 29 (A) With respect to the cart, equilibrium position of
the pendulum is shown. If displaced bysmall angle 0 from this
position, thenitwillexecute SHM about thisequilibrium position,
time period of which is given by.

/Mfl ^0|

mg

•a=i/3gm/s^

T=2k ~ whereg^^= =2g
V

=> T=1.0s

Sol.30 (Q Amplitudephasordiagramafter superpositionof
all four SHMs isshown in figure 1andfurther simplification in
figure-2&3

10

•2 = 2-

12
12

Figure-(I) Figure-{2)

Resultant amplitude = 6\/2 .

Figure-(3)

Sol.31 (D) In givensituationifwe lookat pendulumfrom

side its effective oscillating length is -4=
V2

Side view ofpendulum
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Thus angular frequency ofoscillations is

S _ l^g
co =

r=27C.
/

V2g "

Sol. 32 (A) At equilibrium
mg sinO = kA

A =
mg sin 6

K

/

As mg sin 0 is constant the time period for spring blocksystem
is given as

Sol. 33 (A) Given = 35.28
o)=4.2

g?A 35.28

(af (4.2)'

Sol. 34 (C) Given that from graph

-mV^ =15 X10-3
2 "

= VO.150 m/s

Aco = VO.150 m/s

L0^. J— = VO.150 m/s
1

4s^ =
n/0.150

100x10-3

0.150
L=—= 1.5m

= 2.0m.

Sol. 35 (D) The equation a = - IOOa: + 50 shows that the
particle performs SHM with mean position at x 0.

Sol. 36 (A) We use

dv
V— =-100cc+50

dx

At

Jvc/v =J(50-100x)cfe
.2 ,rtA.2

— =50x-
2 2

x = 2;v=0

0=100-200 + c

c = 100

+ c

At

v2=2 50a;-
lOOx^

x=0;v=V2[100]

v= I0V2 m/s.

+ 100

Sol. 37 (C) We use

a =- lOOx+50

=> 0)2= 100

=i> co=10rad/s

271 Tt
T= —= -7 seconds

CO 5

X- 0.5 is the mean position (as £7 = 0 at x = 0.5)

From X=2to 0.5m; time required ~ "4 ~ seconds.

Sol. 38 (C) Velocitywill be maximum
where ^=0

=> -100x+50=0

=> X = 1/2

From previous question at x = 1/2:

1
0

1

0

\ \ f

v= J2 + 100 =J2 125

K 2 ^4,

= V225 = 15 m/s.

25

2

473!

Sol. 39 (C) The mean position of particle can be found by
setting F=-5x+ 15 = 0, so the mean position lies at x = 3. One
extreme position is atx = 6. Hence the other extreme position
for this particle undergoing SHM should be at x = 0. Time
taken by particle to reach from x = 6 to x = 0 is 0.5 s, that is

T
— =0.5s, hencer=l second. Hence the equation ofmotion

%

isx = 3+^(sinco/+ ({)Q) where^ = 3, co =27rxi and({)|j= —. So

X= 3 + 3 cos (2tU).

Sol. 40 (C) Fromprevious solution as co = 27iweuse

271
=> r= —= is

CO

and we use r= 27t«

T^k 1x5
/n =

4n^ 4k' 471'

IUpthrust (4mg)

Sol. 41 (C) a = 3g.
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Sol. 42 (B) The density ofliquid is four times that ofcylinder,
hence in equlibrium postion one fourth of the cylinder will
remain submerged. So as the cylinder is released from initial

3/
postion, It moves distance — to reach its equlibrium position.

The upward motion in this duration is SHM.

Therefore attained velocity is ca4

31
Where CO = J— and^ = —

V I 4

Thusv -—Jgimax 2

Sol. 43 (C) The require time is one fourth of time period of

SHM. Therefore t=—=~J~~ .
2(0 4]lg

Sol. 44 (D) From the given data we use
yico sin 0 = 1.6

and ylco cos 0 = 1.2

^ ..4C0 - 2 m/s

Sol. 45 (A) From given equation ofSHM we have
(jL)^=TI^

(O-K

CO 1
=4» /= - —S

2% 2

Sol. 46 (A) Distance travelled by the particle is given as

5k k a
/ = ..4 sin — sin — = —?=.

12 12 V2

Sol. 47 (C) Time period of motion = 6 + 2 = 8s from mean
position to the highest point ofthe wall, it takes Is and covers

distance —=
•ji

Thus

;v2_
A

Mean
position

A - =OJm
>l2

A = \.Om.

Is

O --

Is

Oscillations and Simple Harmonic Motion

Jm m
t:— =2nJ

V

Sol. 49 (B) If spring has the mass then we use oscillation
frequency as

1

•^~27t
m +

M •spring

Equivalent force constant of spring
= 3k (As all are taken in parallel)

1 3k

J_ \}k_
2n\2m

Sol. 50 (A) The spring is never compressed. Hence spring
shall exert least forceon the block when the block is at topmost
position.

Natural length
of spring

— Extreme position

Mean position

F^^^^t^kx^-kA =mg-m(O^A=mg-4 -^mA.

Sol. 51 (B) Just after cutting the string extension in

3mg
spring = and extension in the spring when block is in

mean position =
mg

3mg

k

'mg

' k

2

Natural length

;— Mean position

Extreme position

Amplitude ofoscillation is given as

3mg mg _ 2mg
A =

Sol.48 (A) Force constant ofeachofsprings madebycutting Sol.S2 (C) Comparinggiven equation with sin(©r-Air)
innpartisA^=nAr. we get
Nowrpart are taken in parallel so equivalent force constant is 1q

K =nrK
eq

A = —cm,
71
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CO = 2000718"'

2n .
T=—=10-^8

CO

Maximum velcx:ity= co^=
10

7C.100
X 200071=200 ms

Sol. 53 (B) Phase ofthe motion is (co?+([)).

Using a:= A sin (co/ + (j)) and v = ^co cos{0/'+<j)) for conditions at
/ = 0->^x = ^and K=0then(l)=7i/2.

T
When it passes equilibrium position for the first time ^^ •

271 r 71
Phase = —' — -^ — = 11.

T A 2

Sol. 54 (C) Both the spring are in series

K{2K) 2K

Time period

K" =
K + 2K

T=2kJ-^ where p= mimV"2

K
eq Wj +ni2

Here
m

m 3 ^ 3m
T=2k J 2nJ

2 2K UK

Sol. 55 (A) Just before collision, both P &Q arrive at their
equilibrium position

A fk A
Vp-di—'A——.

^ 2 \m 2

Sol. 56 (B) Speed of0 just before collision is

Sol. 57 (A) The block shall meet after time' = ^where Tis

time period of either isolated spring block system,

T 1 fm _ n [m
" 4 VT ~ 2 VI'

Sol. 58 (B) Maximum KE is acquired by the block when it
passes the mean position ofSHM where 2F= 0 or mg = kx.

////////,

Natural length

mglk
mean position
ofSHM

(]/2)mr=2J

475

1^ 1_
iOO ^ 2C

Applying work energy theorem from position ^ to 5 on the

I ^ 1 r 1
--x200x —

2 UO
/:^-2J =10N|—wl+

kj.= 2.25 J.

Sol. 59 (C) KE^^ =-kA'

A =
2iKE^^) /2x(2.25)

200

9 3
— - —m=15cm.
400 20

Sol. 60 (B) Spring on the left ofthe block are in series, hence
there equivalent is

(2^)(2^) _
I 2k + 2k

Springs on the right of the block are in parallel, hence there
equivalent is

k^= k + 2k^3k
Now againboth k^ and k2 are in parallel

k = k,+k^ = k+3k= 4k
eq 1 i

Hence, frequency ofoscillation is

1
) eg _

^ 2% \ M 2n\M
I \Ak

Sol. 61 (B) When speed of block is maximum, net force on
block is zero. Hence at that instant spring exerts a force of
magnitude 'wg' on block.

Sol. 62 (C) At the instant blockis in equilibriumposition, its
speedis maximum and compression in spring isx given by

kx= mg ...(1)
From conservation of energy

from (1) and (2) we get 14^.

Sol. 63 (B) and co =̂ =2^
V.

A=-
3

CO 4

...(2)

Hence time taken 7, from start ofcompression till block reaches
mean position is given by

L
X= sin co/n where x = —0 4



Time taken by block to reach from mean position to bottom

2k

4(0

2k k L
most position is — = —

4Vg

... K L L ,1
Hence the required time = —j 1- j—sin"' —

4V̂ V 3

Sol. 64 (D) Centre of mass of system is

(lx)^ +M
M + Xx

Time period is maximum when

dx„
= 0

f }op- Mh^
1

2 2

"hp" Mh

.2,

dx

(M+Xx)Xx- X =0

{Mx-i-XxP)- ——=0
2 2

+ 2M: - Mh = 0.

Sol. 65 (B) Consider an observermoving with speed v with
point A in the same direction.

A observer

X

^77777777777777777777777.

In theframe ofobserver, block willhave initial velocityvtowards
left.

i

WTTTTTTTTTTTTTTTTTTTTZ

During maximum extension, the block will come to rest with
respect to the observer. Now, by energy conservation,

mv

Sol. 66 (B) Torque about hinge
2.5 g. 4cos0 - Ig. 100 COS0 = 0

So rod remains stationaryafter the release.

Sol.67 (B) Let the linejoining/45 represents axisv. Bythe
conditionsgiven V coordinateof the particleat time t is

Oscillations and SImpie Harmonic Motion

•= 2V2 cos (Ot

2k 2k

r ~ 2 ^

r = 2-J2 cos Kt

/

/A (2. 2)
X 1

/ 1
/ 1

/ 1
' ' 1

2 '

/b
✓

/

X = r cos 45° = -7= = 2 cos nt
n/2 •

=> '̂ X~~ = - 71^ 2 cos 7C/
=> F^ = ma^ =- 4tP cos Kt.

Sol.68 (B) Theperiodofsmall oscillations ofa hinged/pivoted
rigid body is given by the expression of time period of a
compound pendulum given as T= 2K{Ilmgd) '̂̂ whereI is the
moment ofinertia and d is the distance ofcenter ofmass from

thehinge.Hereweuse/=2^-yj^ =and d= •
Sol. 69 (B) If sphere is displaced byx in upward direction)
fromis equilibriumpositionthen increasein weightis hcg due
to mass ofchain.

Increase in buoyant force due to this is

=

7

^ excess force on chain will be (Xxg ) in down ward

direction.

If a is acceleration of system then its motion equation is

6Xg

1

&

using

•X - {m+ }Ji)a

6Xg
a - -

l{m + Xh)

[-ve sing shows restoring tendency]
Comparing thiswithacceleration ofSHM a = - aPx, weget

6?.g
co =

l{m + Xh)

j7[m +XH)
CO \ 6Xg

7m
h = at equilibrium

3A

T^2k
7.10w 271 35m

l8Xg
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Sol. 70 (D) We use displacement equation of SHM as

2k a
x-Asin —t: for x = —

T ' 2

A 2k
=> T sin —t

2 T

1
Solving we get t = 7 s.

0

Solutions ofADVANCE MCQs One or More Option Correct

Sol. 1 (A, C), When 3kg mass is released the amplitude of its
oscillations is 2m and at a distance Im from the equilibrium
position we can find the speed of it using the relation

V= [(k/m)(A^ - then byconservation of momentum we
can find the resulting speed ofthe combined mass and the new
amplitude using the above relation which gives options (A)

and (C) are correct.

Sol. 2 (A, B, C) Comparing the graph with the relation in
velocity and displacement v= [(k/m){A^ - x^)] wegetoption
(A) and (C) are correct and maximum acceleration ofthe particle
is given by = kA/m which gives option (B) is also correct.

Sol.3 (C,D) Eleminatingtermoftimerfromthetwoequations
we get the relation in x andy as locus ofthe ciuwe traced by the
particle.

Sol. 4 (A, B, C) At KE 0.64 times that of maximum KE the
velocity would be 0.8 times that ofmaximum velocity, now we
can use the relation of velocity and displacement
V= [(k/m){A'̂ - x^)] to verifythat options (A) and (B) are

-correct Option (C\is correct by conservation ofenergy.

Sol. 5 (B,C) The maximum potential energyof linear harmonic
oscillator is equal to the total mechanical energy at extreme
positions of the oscillations hence option (C) is correct. The
maximum kinetic energyoftheoscillator is(l/2)kA^ = lOOJ hence
option (B) is also correct.

Sol. 6 (B, C,D) Due to the Pseudo force on block (considered
external) its mean popsitionwill shift to a distance mg/Kabove
natural length ofspring as net forcenow ismg in upwarddirection
so total distance of block from new mean position is 2mg/K
which will be the amplitude ofoscillations hence option (C) is
correct. During oscillations spring will pass through the natural
length hence option (D) is correct. As block is oscillating under
spring force and other constant forces which do not affect the
SHM frequency hence option (B) is correct.

Sol. 7 (A, B, C) By finding restoring force on particle using
F~-dUldx we can see that force is a linear function ofx which

verifies that particleisexecuting SHMhenceoption(D) iswrong.
From the given expression we have at x = 4 potential energy is
minimum so this is the mean position ofthe oscillating particle
hece option (A) is correct. Ifin this expression we put U= 36J
which will happen at x == 8m or x = Om which are the extreme
positions ofthe oscillations so amplitude ofoscillations is 4m
hece option (B) is correct. At x = 2m we can use the velocity
expressionv = [{klm){A^ - x^)]"^ and find the kinetic energy
and verify that option (C) is also correct.

Sol. 8 (All) Block loses contact at the highest point. Then

1 many

mg

mg—ma u?

— = 5rad s

At lowest point
N —mg+ ma a?
A=2mg(from(l))

Halfway down from mean position,

N = mg + k

...(i)

maP'a=wg+^—

= 1.5 mg

Block has maximum velocity when displacement (and thus
acceleration) is zero, and thus has N = mg.

Sol. 9 (B, C) Differentiating the velocity expression we can
verify that the particle is executing SHM hence option (C) is
correct and substituting the displacement in expression of
acceleration and verify that option (B) is correct.

Sol. 10 (A, B, C) As no external force is acting on the system
both blocks will oscillate about their center of mass. If

compression is 6cm then by mass moment property ofcenter of
mass weuse OTjAx, = W2AX2SO the amplitudeof3kg mass is4cm
and that of 6kg mass is 2cm hence option (B) is correct. The
time period can be obtained either by using concept ofreduced
mass or by splitting the spring in two parts about center of
mass ofthe two blocks in series combination which gives the
3kg blockoscillateswith a spring constant 1200 N/m for which
time period \sT-2k {mlkf^ = Ji/lOsec hence option (A) is
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correct. The maximum momentum of6kg block will be when it
will pass through mean position and given as W/4(]o = 2.4kgm/s
hence option (C) is correct.

Sol. 11 (B, C, D) when the spring has maximum extension by
conservation of momentum we use 5(3) + 2(10) = 7(v) which
gives V= 5m/s and by energy conservation we can obtain the
maximum extension ofspring. Both particles are executing SHM
about their center of mass and in the frame ofcenter of mass by
any one particle's phase analysis we can find the time of

maximum compression which is an extreme position of the
blocks, velocityof center of mass here is 5m/s and with respect
to center ofmass 5kg block is moving at 2m/s away from it and
the force constant of split spring for 5kg mass can be taken as
1120(5+2)/2 = 3920N/m.

Sol. 12 (A,B,C) Byusingthe formulaoftimeperiodofsimple
pendulum option (A) is correct. At angular displacement 5°bob
will have some speed so tension in string is mg cos 5° plus
centrifugal force on bob in frame of bob so option (B) is
correct.Tangential acceleration at this position is mg sin 5°hence
option (C) is correct.

Sol. 13 (A, C,D) As a constant force is applied on the block it
will not affact the SHM frequency hence options (A) and (C)
are correct. From initial position ofrest when force is applied
the new mean position will be at a distance Ffk so this will be
the amplitude of oscillations hence option (B) is wrong.
Maximum speed of oscillations is at mean position which is
given by = A(o so option (D) is not correct.

Sol. 14 (A, C, D) The graph is showing variation ofvelocity
so we cannot predict whether particle is oscillating on +ve or
-ve axis hence option (A) is correct. At position 3 velocity of
particle is positiveand with time increasing soacceleration is in
thedirection ofvelocityhence option (C) is correct.At position
4 velocitybecomes maximum which happens at mean position
where acceleration is zero hence option (D) is correct.

Sol. 15 (All) As at position 1 acceeleration is positive and
displacement from mean position is opposite to direction of
acceleration in SHM hence option (A) is correct.At position 2
acceleration is changing from positive to negative, particle is at
mean position and moving in positive direction hence option
(B) is correct. At position 3 acceleration magnitude is maximum
so this is the extreem position of SHM so potential energy of
particleis maximumhere henceoption(C) is correct. Atposition
4 acceleration is increasingthat meansparticleismovingtoward
extremeposition so its speedwill bedecreasinghece option (D)
is correct.

Sol. 16 (A, C) Net force on ball will be zero at a depth where
buoyant force balances itsweight where pQ = ah hence mean

Oscillations and Simple Harmonic Motion

position of SHM will be at a depth p^/a so this will be the
amplitude ofSHM hence option (A) is correct and other extreme

position ofthe ball will be at a distance twice the amplitude from
the free surface hence option (C) is correct.

Sol. 17 (A, B, C) Due to constant pseudo force on block it will

mexecute SHM with same time period 27c y as constant external
force never changes the frequency of SHM hence options (A)
and (B) are correct. Mean position ofSHM is the position where
pseudo force balances the spring force hence option (C) is
correct. Totalenergyofoscillation is given by(l/2)mw^A^ with
which you can verify that option (D) is not correct.

Sol. 18 (C,D)

+ 4k^v^ =(oVr^ + 471V(^^-x^)
.2

a~-co^x, V=CO \[a

4k

r
coVr^+ 47r^co\^^-x2)

= 47i^(o^A^ = constant

aT co^xT
= -co^F= constant.

Sol. 19 (A, h) =
' ' X ^ ^ X

Thus,Using7^= 2tiJ—

_

^^ '̂(m,g/x)

(7«2^/x)

Energyofoscillation

E- -nnsp-A^
2

Since co andAaresame for both andm,> Wj
E^>E^.

t ' •

Sol. 20 (B, C) At timevelocity of the particle is negative
i.e. going towards From the graph, at time /j, its speedis
decreasing. Therefore particle lies in between and 0.
At time /j, velocity is positive and its magnitude is less than
maximum i.e. it has yet not crossed O.
It lies in between -X and 0.

Phaseofparticleat time/j is (180+ 6j)
Phaseofparticleat time is (270 + G^)
Phasedifference is 90+ (02 - 0j)
02- 0j can be negative making A/< 90° but can not be more
than 90°.
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Sol. 21 (B,C, D) At maximum elongation both blocks should
move with equal velocity.

3m/s
lOm/s

5kg
yt = I120 N/m

A —SMITCRIB— 2kg
B

Bymomentum conservation,

C5x3) + (2x 10)=(5+2)K

K=5m/s

Now, by energy conservation we have

15x32+1 x2x 102= 1(5 +2)1^+ 1ax2
2 2 2 2

Put V and k

X - —m =25 cm
max A

Also first maximum compression occurs at;

4 4 Va- 4 \7xll20 56

(where m reduced mass, m -

Sol. 22 (All) We have

•= V144-9/

This-isSHM(comparetov =©-v/<3^)
we have a=4,co = 3

2%
=> !r=0units

Amplitude a = 4 units.
Acceleration when displacement is 3 units is

a = ii?x

= 32.3 = 27 units.

Obviously in SHM, displacement < distance.

Sol. 23 (B, D) Now as lift starts descending by acceleration
'g' ofdownward, in the frame oflift

////////////z

10

'l'"2

W| +W2

37t

gt——Ar.I.
S \x=!^

li
•mg

Net force = —kx

m m
• X

479j

t=2-K^j—\ minimum potential energy isat themean position =

0whenx = 0.

Sol. 24 (B, C) Bob will oscillate about equilibrium position

a

with amplitude0 = tan ' for any value ofci.

\ia<<g, motion will be SHM, and then

\ equilibrium
position

time period will be 27c
I

Sol.25 (B,D) x = 3sinI00r+8cos250/

sri+cosioor]
= 3 sin 100/+

x = 4 + 3 sin 100/' + 4cos 100^

(x-4) = 5sm(100/+f)

r 4
tan d)= —

1 3
Amplitude = 5 units
Maximum displacement = 9 units.

Sol. 26 (All) Atr=0

71 j-
Displacementx=Xj+X2=4sin —= 2V3m

Resulting Amplitude^ =-^2^ +4^ +2(2)(4)cos7c/3
= V4 +16+8 = = 2V7 m

Maximumspeed=^(i)= 20V7 m/s

Maximumacceleration=i4cd2= 200-/? m/s2

Energyofthemotion = —mo)2^2 =28J

Sol. 27 (B,D) When

and

. -A] KA

KA'

32
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Whenx = ^/2

and

'A"'
4

-

<Ayll5CO

^ 1 2 I m(£>^A^\5K, = -mv, =
' 2 ' 2 16 32

kA
- -kx ~ ~ (Magnitude)

1 (A kA'
= 4U

K2 =C0,M^-|4 p

Oscillations and Simple Harmonic Motion ?

~dU
Sol.29 (B,C,D) F=^—

ox

=> F='32{x-l)N
As motion is simple harmonic andx = 1 isequilibriumposition.

m(o^=32

32
=> co^ = — CO = 4 rad s"'

2 ,

At X= 1,V= 2ms"' (=aco(maximum))
As aco=2

2 1
=> 4~ 2"^
As oscillation is from 0.5 to 1.5 m.

co=4

271
=> ^ =4

T

Sol. 30 (A, D) When block is displaced downwards by x, it
experiences an upward force of

F=-\d^x - d^Ax)
F=-xA{d^-d^)

This force is proportional tox, and hence block executes SHM
Displacement willbesymmetric about equilibrium position. '

=> , KE2= -mvj = =O.STsTj.

Sol. 28 (A,D) Initially,
amplitude = Oq
timeperiod= Tj,

Now, by conservation ofmomentum,

Mv^ =(M+m)v2
MjqCOq = (M+ m)a'co'

Now

(On-

co' =
M + m

r=T.
M + ni

M

Using (3) and (2), we have

° V.Af + w '

(1)

.(2)

(3)

*****
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ANSWER & SOLUTIONS

CONCEPTUAL MCQS Single Option Correct

1 (A) 2 (D) 3 (B)
4 (D) 5 (A) 6 (B) •
7 (A) 8 (B) 9 (A)
10 (B) 11 (D) 12 (D)
13 (C) 14 (B) 15 (B)
16 (D) 17 (B) 18 (C)
19 (D) 20 (B) 21 (D)
22 (A) 23 (C) 24 (B)

NUMERICAL MCQS Single Option Correct

1 (B) 2 (D) 3 (C)

4 (B) 5 (D) 6 (D)
7 (B) 8 (C) 9 (B)
10 (D) 11 (A) 12 (B)

.13 (B) 14 (C) 15 (C)
16 (C) 17 (A) 18 (C)

19 (B) 20 (A) 21 (B)
22 (B) 23 (D) 24 (B)
25 (A) 26 (B) 27 (D)
28 (B) 29 (A) 30 (B)

31 (C) 32 (D) 33 (B)

34 (C) 35 (D) 36 (C)
37 (C.) 38 (C) 39 (B)
40 (D) 41 (B) 42 (B)

43 (B) 44 (B) 45 (B)
46 (D) 47 (C) 48 (A)

49 (B) 50 (D) 51 (C)
52 (C) 53 (A) 54 (A)

55 (D) 56 (B) 57 (A)

58 (A) 59 (D) 60 (C)

61 (C) 62 (C) 63 (D)
64 (C) 65 (A) 66 (C)

67 (A) 68 (A) 69 (C)

70 (D) 71 (B) 72 (A)

73 (D) 74 (A) 75 (C)

76 (B) 77 (B) 78 (C)

79 (B) 80 (C) 81 (B)
82 (A) • 83 (B) 84 (D)

85 (C) 86 (B) 87 (D)

88 (B) 89 (B) 90 (B)

ADVANCE MCQs One or More Option Correct

1 (A, C, D) 2 (A. C) 3 (B, C, D)

4 (B, C) 5 (C, D) 6 (B. D)

7 (B, C) 8 (A, B. C) 9 (A)
10 (A, B) 11 (A, C, D) 12 (A, B)

13 (B, C) 14 (C, D) 15 (B, C, D)

16 (B, C) 17 (All) 18 (A, C)

19 (B, C, D) 20 (A, D) 21 (A, B)

22 (A, B, D) 23 (All) 24 (C, D)

25 (All) 26 (A, B, C) 27 (A, B, C)

28 (A, C, D) 29 (B) 30 (D)

Solutions ofPRACTICE EXERCISE 6.1

(i) In the given equation

=0.25 >= 10"^ sm(500/-0.25.v)
Comparing with

we get

(a) Amplitude

(b) Time period

>'= ^sin(co/'-fcc)

/I =0.25 XIQ-^cm

271 _ 27C __
~ 0 ~ 500 ~

(c) Angular frequency

0 = 500 rad/s

(d) Wavelength

•K

2;r 271

(e) Particle velocity amplitude

=^0=0.25 X10-^x500
= 0.125 cm/s

(f) Particle acceleration amplitude
a„^^ =02^ =(5OOy X0.25x10

= 6.25 cm/s^

(ii) In h is cloud height then distance travelled by sound is
/ = /2cosec(30°) = 2^

2h
we use t= —

* 'V

2h

^ ^~330
=> /? =330 X 4 = 1320m = 1.320 km

(in) Waveequation is>'= 0.5 sin tc(0.01x-3/)
Comparing with standard wave equation

y = A sin(0/-fcc)
we get

A =0.5m

0 = 3tc rad/s

k =0.017tm~'
wave speed is given as

0 371

1-3

k 0.0171
300m/s

(iv) String shapeat time/q is

g(x, /o)=^sin|̂ ^
As wave is propagating in positives direction at speed v, origin
shifts with respect to displacement curve in - x direction at

481



:482

same speed so we replace a: by x - vt' where t' is time elapsed
upto a general time t which is given as

Thus wave equation is

a A A •A Sin

(v) If distance of lighting source is 4 time taken by sound to
reach listener is

-/ /

'"'V. " 330
If / is measured in km we use

/(I OOP)

330
/ =

/(in km) =
t

so iftotal seconds are devided by 3 it directly gives the distance
oflightning source in km.

(vQ When echo merges with clap the time between two claps is

A/- — -0.3s

in this time clap sound goes to wall and reflects back so we use

2d
At= —

V

2d 100

(vii) Wave equations are
y = 0.3 sin(314?-1.57x)

and 3'' = 0.1 sin (314/- 1.57x+1.57)
phase difference between these waves is 1.57 rad = 90°
And ratio of intensities is

\2 „

i2j

(viii) In fiame wave equation is
y = A cos(a)r - Ax)

In frame A'waves velocity is v - F
So motion equation for a point P is

y t

X = .*

k f \ .p

y'

k'

H Vt • x' = x'

-AT- Vl-

y' = A cos[q/-A(x'+ Vt)]
y'=A cos[o/-Ax'-AF?]

W aves

-

( F>

t

1

A cos CO 1 asA = -

(ix) (a) In given equation displacement amplitude and
wavelength are

yf =6x 10"^ m

27C

6.28
=> =3.5m

1.8

Thus
A 6 , -
- = — x 10-5= 1.71x10"^
X 3.5

(b) Velocityamplitude here is
V =y4®=6x 10"5x600= 3.6x 10"^m/s

wave speed is

Thus

CO 600
V = - = — = 333.33 m/s

1.8

3.6x10"^
333.33

= 1.08x10"^

(x) Forthe given equation
= 50 cos (1800/- 53x)

(a) Displacement Amplitude is
y4=50x lO-^m

Wavelength

Thus

2n 2n
X= — = — = 1.185m

A 5.3

A _ 50x10"^
X ~ 1.185

= 4.22 X10-5

(b) Velocity amplitude is
v^„=y4co=50xl0-^xl800

IIUIA

= 9x 10"^m/s

0 1800
Wave velocity

Thus

^ A 5.3

v.. 9^10-^=2.65x10-
339.62

= 339.62 m/s

(c) Relative deformation ofmedium is

53'

dx
= 50x5.3sin(1800/-5.3x)

Thus
5^ A 50x5.3

9x10
If =2.94x10'
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(xi) When rate is 40 per minute, duration between two beats is

60
Ar=-^1.5s

21
=> 1.5

V

When rate is 60 per minute
At'=\s

1 =
2(/-90)

01 /
(2) 8'™^

1.5/-135 = /

0.5/= 135

/ =270m

from (1) we use

=>

5_^
V

540

1.5 =

V=Yy =360 m/s

(xii)Angular frequency is
© = iTzn = 200n rad/s

(a) Phase change ^=co5r = 2007tx2.5x 10

(b) Phase difference

271 ,

1-3

20071 - , 27t
xO.l = — rad

350 35

Solutions ofPRACTICE EXERCISE 6.2

(i) Wave speed on a wire is

Vl4 VW

8x0.64

5x10'
= 32 m/s

...(1)

...(2)

(ii) (a) As displacement becomes zero zoo times per second,
frequency is lOOHz

Wave speed is

Wavelength

\T m
v= J— = J— =30m/s

Vli VO.l

>,= — =0.3m
n

483

(b) Wave equation is
y = A sin(co/- fcc + (j))"

As at / = 0,.particle starts from positive extreme position, we use

([,= -
^ 2

=> ^^ =0.01 cos ^20071/
y = 0.01cos 27C lOOr- —

0.3

(c) Velocity and acceleration ofmedium particles is given as

v= ^ =-0.01 x2007rsin27i:|̂ 100/-^

(iii) Given that

-(?)= 27: sin 27:1 1-— I =-2;: sin] —

= -^/37I =-5.45 m/s

a= ^ =-0.01 x(2007:)2cos27:f 100/--^

=-4000 cos
47:") ,
— I= 2000 m/s .

Vi=2v2

P,S ^PjS

1

(iv) Given that time period
7'=5x4=20m/s

frequency

and

=>

Wave speed

(v) We use

1 1000

r ~ 20
= 50 Hz

x
— =2cm
2

A,=4cm

v = «X,=50 X 0.04 = 2 m/s

V X

3_ ^ JL
vi

.V2=vijlf =340 305

290
= 348.68 m/s

(vO Tension in string is
7'=A:^=160x0.01 = 1.6N
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wave speed is v =

1.6x0.4

0.01
= 8m/s

/ 0.4
time taken by pulse t = — = —= 0.05 s.

V 8

B
(vii) Sound speed v = J—

We use

B=Pv^
=800 X(1330)2 = 1.415 ^ lo^N-m

B =

AV=

V =

^2

= V.

AP

AV

V

APV 2x10^x10"^

B 1.415x10'

= 1.413 X10"^

= 0.141 cm^

(vii!) Sound speed in gases is given as

yRT

V M

m,
02 =470 XJy
H2

= 1880 m/s

(ix) (a) Wave speed

Wavelength

V =

49

p vo.oi
= 70 m/s

V 70
^=~ = 777:=0.159m

n 440

(b) Maximum particle speed is
v^^=^co=0.5 X10 ^x2;cx440

= 1.381 m/s

Maximum particle acceleration is
a^^=^a)2 =0.5x 10--'x(8807t)^

= 3872 m/s

(c) Wave power is P =2T^t?A^\iv
=2 X10 X(440)2 ^ (-0 5 X10-3) ^^o.Ol) x70
=0.667W

,-3

W a ves

(x) No effect occurs on sound speed due to pressure change
at same temperature

(xi) Sound intensity is given as
/=27c2w2^2^

0.8 =2 X10 X(1000)2 ^^2 ^ 13 ^ 330

0.8
A^ = = 93.24 xl0-'2

2x10^x1.3x330

=> ^ =9.656 xl(r^m

Solutions ofPRACTICE EXERCISE 6.3

(i) For a maxima minimum path difference should be X,

2m Obstacle

Dt-

Wavelength

V 360

n ~ 180

IfS and D are separated by d, we use

Path difference '

A= 2M+—-d

for maxima wa use

A = X=2m

2j4+y -d==2

4 + —
4

V. y

= 4 + £/2_4^/

\6=A-Ad - •

=> d=2va

(b) New path difference after displacing the obstacle should

become

3X

5-c

3m

A = — for minima
2

1+x

A= 27(1.5)2+(2 +x)2-3 =3



;Waves

4(2.25+4+.x^ + 4x)=26
a:2+4y-2.75=0

-4 + VI6 + II
X = = 0.598 m.

(ii) Path difference =6.4-6 = 0.4m

V 320
, high wavelength ^ ~ ^ 5^ =0.64 m

^L/

V 320
low wavelength = — - • „ = 0.064m

Destructive interference occurs when

A=(2«+l)|

it happens when

(ui) (a)
lOcm

0.4= (2h + 1)-

0.8
X =

2« + l

Thus coresponding frequencies are

320 320

X "0.8

= 400(2h+1)

=400Hz, 1200Hz, 2000Hz, 2800Hz,

4400 Hz, 5200 Hz...

Frequencyin givenrange are 1200Hz, 2000Hz,2800 Hz,3600Hz
& 4400 Hz.

x(2«+I)

20cm

Path difference 20cm which is four times the wavelength so
being an integral multiple ofwavelength, phase difference is
zero

20cm

(b)

Due to symmetry phase difference at P is zero.

(iv) Due to symmetry phase difference at P Is zero

So waves will constructively interfere at P so intensity at P
becomes four times that ofindividual intensity ofeach source.
Nowifone source is switched offthe intensity atP will be only
due to remaining source so it will be one fourth of resulting
intensity.

(v) Given that

A,= 11.5cm = (2n+l)A;2
& A2-23cm = (2«+l)?.

3X
A, = 34.5cm = (2«+ 1)— .

485

(Destrictive)
(Constructive)

(Destructive)

If there is no maxima or minima between Aj, A2 and A3 that
means « = 0 formaximum wavelengthor minimum frequency.

— =11.5 cm
2

?^=23cm

V 331.2

" X 0.23 = 1440 Hz

(vi) At point P we use three waves with then amplitude given
as

R^ =AZO°

R2 -Azm"

R^ =AZ240°

If we find the resultant we can see from the diagram symmetry
that

"I" ~ ^

(vii) When waves are in phaseresultant intensity is /q = 47,
where/j is intensitybyeach source.
If72= 0.367pThenweuse

^min ~ylh ,

(viii) (a) Path difference between waves at P is
A=0.04m

wavelength
.V 0.5

X= — = =0.1m
n 5

4n

=271x0.04= Y
Thewaves from 5", andiS2 arriveat pointPat different time
and ^2 given as

.0.3
/,= — = 0.6sand
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0.34

equation ofmotion ofcorkit ?q = 3s is

3'=yi+3'2
=A sin(cD + tQ-t^)A sin((o+ (/q-Q)
=^[sin(107r(2.4)) + sin(107i(2.32))]
- 0.04 sin (23.27c)
=-0.02344 m.

(b) If we consider / = 0 the time when cork starts it motion
then the resulting oscillation at cork is given as

471
y = As\xi(S)t + A sin(co/ ——)

where

R̂ sin (cor - 0)

8 = tan '
.(4 sin(47i / 5)

v4 +cos(47c / 5)^

27C
=72°-yrad

27C
Hereinitial phaseof72° (or — rad) willbe therein corkmotion

when second wave arrives at it. Thus time after which cork will

pass through mean position is given as

27C
71--

/ = 0.68 +

= 0.68 +

CO

371

T
IOjc

= 0.68+ 0.06 = 0.74s.

(ix) (a) Path difference is

A= ^(2.4)2+(1)2-2.4
=0.2m

wavelength

phase difference

V 340

27C .

27C

0.4
xO.2 =

(b) Intensity of a point source is

P
7=

47i;x:^

Intensity ofwave from ^ at I) is

257C

47c(2.4)^

Intensity of wave from 5 at D is

(x) We use

L =
2 47t(2.6)^

Thus resulting intensity at D is

25n

25 25

^^4(2.4f i4(2.6f)

= (1.0416-0.9615)2W/m2
= 0.0064 W/m2.

/^ = /j+/2+

f 271
= 7+ 47+ 47 cos I —

= 37.

Waves

W/m^

(xi) When board is moved through 20 cm, path differencewill
be 40cm.

phase difference

wave frequency

271
(j)= — X0.4 = 7C

A

X=0.8m

V 336
„_._=420Hz.

Solutions ofPRACTICE EXERCISE 6.4

(1) Loudness level AL(in dB) = 1Olog —
h

if = 27| we use
Ai(intJ'5) = 101og(2)

= 10 X 0.301= 3.01 nB

(ii) (a) Given that
AL = 30cjB

h30= log-p

-f =10^

(b) We use sound intensity in a medium is related to pressure
amplitude as

j

2pv

=> APo=V7
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^ =̂ 7^ =VI? =31.62

(iii) As loudness level increases by 1^dB we use

h10 =l01og^
A

h

fr''
\^2 I—

(iv) (a) When pressure is maximum at a point, displacement is
zero as pressure and displacement oscillate in phase difference
of7c/2

(b) Pressure amplitude is related to displacementamplitude as

27C

A =
APflA. (10"'̂ afw).(330/1000)
2;:5 2x3.14xl.4x(la?w)

= 3.753 X10"^ m

(v) (a) Intensity of sound due to a point source is

p 20
/= 4x3.14x(6y

= 0.0442 W/m^

(b) Pressure amplitude is given as

APo = ^2pvl

= V2x 1.2x340x0.0442
= 6 Pa

(c) Displacement amplitude is related to intensity as
I-2i^r?A^pv

A =

0.0442

2xl0x(2000)^xl.2x340

= 1.16x lO-^m

(vi) For a point source we use

P
1=

Atvc^

I

h
A-^1

4

10~^x25

625
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= 4x iQ-'^W/m^

(vii) If sound intensity due to each student is I, given that

50 = 101og—
•^0

When student count be comes 100 we use

100/
P = 101og-

- lOlog-^^ +10 log (2)
= 50 + 3.01 = 53.01^/5

(viii) (a) Intensity of wave at 20m from point source is

_ ^
~ 47c(20)^

Intensity at 10m from source is

P

h = 2 =47,471(10)

Loudness level of is

7,2 = 10 log
'0/

4/1
=10 log Y

-'0

= 10 log

= 30 + 6.02

= 36.02 c/B

+10 log4

(b) Sound will not be heard when intensity goes below
reference level so soddens becomes 0 dBi

/o =IO-'̂ w/m2
given that at 20m distanceloudnesslevel is 30f/5

A
30 = 101og

/n

/j =10 ^w/m^
Now for point sources we use

10-^(20)^ = 10-'2(x2)

x| =(20)^ X10^
xj =400x10^

= %/4xl0^ =632.45m.Xt =
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(ix) We use

AL= lOlog
I,

65 = 10 log
N

-f- =10^-^ =3.16x10^
I M

(x) Pressure amplitude is given as

AsP.Iandvaresame for both waves sotheirpressure amplitudes
will be equal.

Solutions ofPRACTICEEXERCISE 6.5

(i) (a) Ifvelocity of waves on wire is V, we use fundamental

frequencies

"o 21
v= 2//7q = 2 X1 x200 = 400m/s

(b) Wave velocityon wire is also given as

It IY
V =

p •Vp5

longitudinal stress

^ 2;^=pv

=8000x(400)2N/m2
= 1.28xI0^N/m"

(c) Maximum acceleration in fundamental mode isat midpoint
given as

a =A(£?

a 800
A =

(sp- (2x200)'

800 1

16x10^ 2000

(ii) For second harmonic we use

2v

21

= 5xl0-^m

v=/y/=256x 1.5=384 m/s.

(Hi) For two loops vibrations, its second harmonic. Its
frequency is given as

2v 1 r - I 90x1.5

21 /^p 1.5 ^12x10"^

= 70.71 Hz

(iv) For harmonic audible by person we use
1400 =x(200)

=> n=lQ

(v) Initially we use frequency offorce,

10

after block is dipped in water we use

21

T 21
11

from (1) & (2) we use

10= llVl-Pa,/P6
^ 100p,= 121p,-121p^

121p
Pb 21

= 5.76x10" kg/m"

(vi) Fundamental frequency ofwire is

1 [F
2/VpS

1

V = = —
a

79x4

Waves

...(1)

...(2)

2x0.5 " )/8000x3.14x(0.04xl0"^)^
=280 Hz

Thus to setup 840Hz, wire should setup in third harmonic for
which wire must be supported at //3 point from one end and
plucked at //6 point to setup oscillations.

(vii) Given wave is

y = A cos(ax + bt)

2%
(a) We use co = 6 and ~ = a

K

2n , b
=> X= — andw= —

a 2%

=> Wave speed

(b) Equation ofreflected wave is
7^ = 0.8^ cos(br-ax-7i) = 0.8z( cos{bt-ax)

Here phase of tc is added due to reflection t^van obstacle.

(c) Aftersuperposition maximum andminimum amplitudes are

Thusmaximum andminimum particle speeds are

and
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Resulting wave is given as

'yR=y^yr
= A cos(d/+ ax)-0.&A cos(bt-ax) + [0.2 A cos (6/-ax)
- 0.2A cos (bt - ax)]

= 2A sin bt sin ax + 0.2 A cos (bt - ax)

(viii) For the given condition we must have
7-2-47-,

if r, & T2 aretensions in leftandrightstrings. Soif4.8 kgmass
is supported at a distance x from left we use for equilibrium of
rod.

7-1 + 7-2-60
=> ' 57, =60

' T^ =\2N
For torque about right and of rod we use

48{x)+12(0.2) = 12(0.4)

4&X= 4.8-2.4 = 2.4

2.4
X=-777 = 0.05m.

48

(ix) (a) In first overtone we use
X.=/=2m

and frequency is

V 200
«,=y =—-lOOHz

(b) As left end is node, we consider it as origin so we use
equation of stationary wave as

y = AQ sin (kx) coscor
we choose cos cor as at x = 50 cm there is an antinode in this

case (first overtone) so wire start from extreme position.

Here
271

k = — =7:andco=27u« = 2007c
k

y = (0.5) sin(7cx) cos(200 Ttr) cm

(x) (a) Asthe three resonantfrequencies ofa stringare 90Hz,
150Hz and210Hz.

Theheightpossible fundamental frequency in theirMCFwhich
is 30 Hz.

90 . 210
(b) Harmonics are — = 3 ; 5 and = 7

30

(c) These are 2"^, 4'̂ ^ and 6'̂ overtones after fundamental
frequencies

(d) For fundamental frequency we use

V

=> v-2«Q/=2x30x0.8=48m/s.

Solutions ofPRACTICE EXERCISE 6.6

(i) (a) For a closed pipe, we use

nr,=
0 4/ 4x0.15

As in closed pipe only odd harmonics are present, we use
=3«f,= 1650Hz

Iht' ^

330
= 550 Hz

= 5«o = 2750Hz
= 7«o = 3850Hz

rt. =9«. = 4950Hz

(b) For an open pipe, we use

«n =
0 21 2x0.15

As in open pipe all harmonics are present, we use
«, =2«q = 2200Hz

330
= 1100 Hz

Of
Un = 3«rt = 3300FIz

'07-
H-, =4«(, = 4400 Hz

n. =5/7^ = 5500 Hz407. u
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(c) For closed pipe last overtone below audible frequency
20000 Hz is17'̂ overtone, given as

'17

and for open pipe last one is overtone given as

= 35x«„ = 35x550=19250Hz

«17^^=18wo= 18x1100-19800Hz

(11)" Giventhat —= 25cm

X= 100 cm

Vibration frequency is

340

(111) (a) As three successive frequencies 425Hz, 595Hz and
765Hz. Then differences are170Hz sowecansee these are5*^,
7*'' and 9'^harmonics of 85Hz frequency thus pipe is a closed
one.

(b) As fundamental frequency is 85Hzweusefora closed pipe

V

"0^ 4/

V 340

4«o " 4x85

(Iv) Resonatingpositionsare separatedby8.5 cm displacement
of pistion so we use

X
— =8.5 cm
2

z:> ^=17 cm

wavespeed is v= wX, = 2000 x 0.17= 340 m/s
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(v) 'Pop' causes the closed pipe to oscillate in fundamental Wave speed is
mode, so we use v = nX = 2000 X 0.16 = 320 m/s

^o~ 4/ •••(!) (b) At frequency 1600 hz wavelength is
where I is such that pressure becomes 1.5 time so by Boyle's
law

P(0.25) = 1.5P./

0.25

1.5

340x1.5

4x0.25

So from equation (1)

= 510flz

(vO Fundamental frequency of tube is

V 340

0 21 2x0.5

An open pipe resonates at all harmonics of fundamental

frequency so the resenating frequencies are
«/j=340N

fi"equencies between 1OOOHz & 2000 Hz are forA'^=3,4,5
1020 Hz, 1360 Hz & 1700 Hz

(vii) From the given resonating lengths we can use

=> 48-14.8 =[ |̂
X=66.4cm.

Thus forgivensituationwavelengthis ^ = 66.4cmso speedof
sound is

v = «X.= 512x0.664

=339.97 m/s

=> Fundamental frequency oftube is

V 339.97

2/ ~ 2x0.6

= 340 Hz

= 283.30 Hz

(viii) Sound wavelength is

V 340
X= — = - Im.

n 340

Resonance occurs when length of tube from open and is —,

3X 5X
—, —,... and so on. Thus for this tube it is at 25cm, 75cm,
4 4 ' '

125cm... Hereminimum length water is suchthat impty length
becomes 75 cm hence

/=120-75 = 45cm

(ix) (a) Given that

— =8cm
2

X=16cm.

V 320
'k= — = TTTT =0.2m

n 1600

distance between adjascent nodes is

X
-=0.1m

(c) For tube closed at both ends all harmonics offundamental
tube resonates so here fundamental frequency is

Ho =2000-1600 = 400Hz

21

1 =
V 320

2^0 ~ 2x400
= 0.4m

All resonating frequency will be from fundamental to
2000Hz

i=> w^=400Hz, 800Hz, 1200Hz, 1600Hz & 2000Hz

Solutions ofPRACTICEEXERCISE 6.7

(i) Given that

V V

= 5
2/o 4/.

330 330
=5

2x0.3 4/c

330
=545

=> /^=0.151376m
When the two pipes are in unison we use

V

if.
V

4?r

/',= ^=0.15m
/^-/;=0.001376m

= 0.1376 cm.

(ii) Initially we use

256-«q =4
because after loading wax on first fork offrequency Nq itreduces
so beat frequency will increases thus we use

«q= 252Hz
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(iii) (a) The angular frequency of resulting wave will be of
average frequency given as

(iOi + 0)2 596jc +6047: _ ^
i " 2COn = = 60071

^ 2t<1 = 2Nit

=> t=N

Thus at r=0,1,2,... time instants maxima occurs sobeat period
here is Is so beat frequency is given as

1Thus frequency is

(Hd/«=^=300Hz

(b) Beat frequency is given as
/s=/i-/2 =302-298=4Hz

(viii) On decreasing length ofwire its frequency increases thus
frequency ofwireinitialywas252Hz.
Thus we use

(c) Ratio ofmaximum ofminimum intensities is

^min

(iv) Giventhat =2«25
and n

A\ - A-)

1"" ^25 ~24X3
«25 =72 Hz

0.2

and

=2x72= 144 Hz

= X 15 = 99Hz

= 16.

(v) When tension in A is increased its frequency increases
and becomes 606 Hz.

Thus

& we use

— = — = 1.01Ha. 606

"B " 600 '

Ha.
Vs

Ta
= 1.02 ,

Tb

(vi) By making combination offrequency differences for the
given beat frequencies ther frequencies are 301Hz, 303Hz and
308Hz

(vii) Let the SHM equations ofthese given frequencies are
yj =^ sin(800 7:0
y2=Aiin (8027:0
y-2=A sin(804 7:^)

Resulting oscillation displacement isgiven as
yR^y\^yi-^yi

=^[sin (800 TiO + sin(802 TtO +sin(8047:0]
=^[(sin 802 Ttf) + 2 sin(8027:/) (cos 2-Kt)\
= ^[1+2cos(27:0]
= R sin (802 7:7)

Thus resulting sound isofaverage frequency 401 Hz and time
varyingamplitudegivenas

i;=4l(l+2cos(2T:7))

Hee R will be maximum when
cos27i7=+1

Thus

(1) .
(2)

difference

1
252 = 2(0.25)

On changing wire length to /' its frequency becomes 256 Hz and
beats becomes zero.

256 =
1

/' 252

0.25 256

/'=0.246m

0.25 - 0.246 = 0.0039 m=0.39 cm.

Solutions ofPRACTICEEXERCISE 6.8

(i) While car isapproaching apparent frequency is

V

-n
apl

whilerecording awayapparent frequency is

"ap2="0
^ V ^

v + v..

...(1)

Given thatpercentage drop in pitch is 10%. Thus weuse

^!^l2Vlxl00 =0

V V

V - v., V + V.
=0.1

v-v.

10
2v.

v + v,
= 1

C J

20v^ = v + v^

V 330
V = —= —= 17.37m/s

19 19

/
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(ii) As both cars are travelling in same direction, we use for Beat frequency
reflected sound

(ill) We use

lp40 +20^
=500
. ^40-10

= 545.45 Hz

AX

A. ^
0.5

100
x3x 10^=1.5 XlOWs

(iv) Apparent frequency received bymotorist directly from ban
is . ,

w, = ^^0
v + v„

Apparentfrequencyreceivedbymotoristfrom reflectedsound
by wall is

"2= "O

Beat frequency

r \
v + v„

v-v.b )

«5 = «2-«i

V-Va V + Vl

Cv'-v2) '

(v) If speed of astronaut is v

The apparent frequency received in echo is

%"= "0
c + v

c-v

%= «o| 1+- «o|l--| [Asv«c]

=>

ap 1.^
c

_ -^"0'
%-«o- ^

c{Ah) ^ 3x10^x10^
2«o 2x5x10^

= 30m/s

(v^ Apparent frequency of direct sound from fork is

V

v + v F J

Apparent frequency of reflected sound from wall is

V-Vz

X ^ • 40m/s

(vii) 99m

= nr.v

V-Vp V+ Vp

_ In^vF
2 T

V -Vp

_ 2x512x330x3

(330)^-(3)2
= 9.3 Hz

152m

I 1

40m/s

From figure iddriver oftrain Breceives the sound atpointP,we
use

^+(152-x)2 ,;c
330 40

(4)2[(99)2 +(152)2 +(^)2_3Q4^j ^ ^33^2^
1073a^ + 4864;c-526480 = 0

^ -4864 +yl(4S64f +4(1073)(52648a)
2x1073

-4864 + 47784

x =

=20m

Thus is figure

cos 0 =

2x1073

132 132
= 0.8

yj(99f +{\32f
Apparent frequency is

%=596

= 596

^app ~ ^0

540 = 620

33O + 4Oxcos0

330-40 COS0

'330 + 32'

.330-32.

(viii) Apparent wavelength becomes

1-^

1-^

= 724 Hz
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c 31

V _

7 " sT

^ V= — x3xlO^ = 3.87xl0^m/s

As this speed in much higher then escape velocity on earth.
This is not attainable.

Solutions ofCONCEPTUALMCQS Single Option Correct

Sol. 1 (A) As Tp> Tg wavelength ofmaximum energy by ^
will be more than that of P and as on earth both wavelengths
received are same hence P is receding with more speed as the
received wavelength by the observer behind a moving source
will increase with the speed.

Sol. 2 (D) Longitudinal at the bottom oflake in the volumeof
water and both longitudinal and trnasverse at the surface of
lake as due to surface tension particles move in elliptical path.

Sol. 3 (B) Whenthe twowaves superpose then the maximum
amplitude willbe4+ 3= 7andminimum willbe4- 3 = 1hence
the ratio ofmaximum to minimum intensity will be 49 and as the
frequencies of the two waves are 200Hz and 202Hz the beat
frequency-wfrhbe^Hz.

Sol. 4 (D) As we know that intensity of a wave is directly
proportional to square of frequency as well as square of
amplitudehence in this caseoption (D) is correct.

Sol. 5 (A). The fundamental frequency of closed pipe is
v/4L = 425Hz. hence option (A) is correct.

Sol. 6 (B) Wave intensityis directlyproportional to squareof
frequency as well as square ofits amplitude henceoption (B)is
correct.

Sol. 7 (A) Frequencyrecievedby aircraft is

v + v.

= n.

then frequencyof reflectedwaves receivedback by radar is

nr, = nR a I -y_ y

V4- V.

V-V„
= 600

= X3 X10^= 1.5 Xio3m/s
12x10^

= 1.5km/s.

v + v.

v-v.
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Sol. 8 (B) As density of moist air is less than that of dry air

and speed ofsound is inversely proportional to the square root

ofthe density ofair, option (B) is correct.

Sol. 9 (A) Here relative to ground the speed ofbullet is more
than that ofsound so bullet will arrive earlier than the sound.

Sol. 10 (B) In this case the speed of bullet relative to ground

is less than that ofsound so it will arrive later than sound.

Sol. 11 (D) The quality of sound is detected by the overtones

present in the sound. As overtones change in a specific device
the sound quality changes by which we can differentiate same
frequency sound from two different types of sound sources.

Sol. 12 (D) As wavelength is more that means galaxy is
receding away from earth at speed given as

v=-^xC=0.05x3x 108=1.5x lO'm/s.

Sol. 13 (C) The wave function can be expressed as
y = (a/2)[ 1 + cos (co^ - Ax)]

So here option is^orrect

Sol. 14 (B) For an open pipe, fundamental frequency is
vl2L = 850Hz hence the given frequency will resonate with
second harmonic ofthe fundamental frequency.

Sol. 15 (B) Themaximumparticlevelocityisgivenbyv=.4co
and the wave velocity is given as F= cufk and the two will be
equal when A = \/k-X/2K.

Sol. 16 (D) Attimetinthegivenequationwecanreplacexby
(x-v/) byshifting of origin due to propagation of wave.

Sol. 17 (B) The given function can be given as a function of
(x - 30 which can be expressed as a wave pulse travelling at a
speed of 3m/s in positivex direction.

Sol. 18 (C) As the waves are coherent (same frequency and
constant phase difference) interference will take place but as
amplitudesare not equalminimumamplitudewill benonzero
hence minimum intensity will be more than zero.

Sol. 19 (D) From the given equation we can see that option
(D) is correct.

Sol. 20 (B) As both sourceand observerare at rest the number
of wavefronts / oscillations reaching to observer per unit time

so frequency received will be same.
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Sol. 21 (D) Resultant Displacement

for j to be zero
(2c-30^ = (2x+3^-6)2

on solving (x- —) (/- 1) = 0

Therefore at x = —, resultant displacement is zero for all values

ofr.

Sol. 22 (A) Maximum pressure variation takes place at nodes.
[Slope ofthe wave function is maximum at nodes]

Sol. 23 (C) The minimum distance between the two particles
having same speed is X/2.

Sol. 24 (B) In figure/C reaches the positionwhere'er already

reached after co/ = —
2

and 'A' reaches the position where '5' already reached after

7C

Solutions ofNUMERICAL MCQS Single Option Correct

Distance 1000
Sol. 1 (B) Time= .. . = — =3.03s

Velocity 330

Sound will be heard after 3.03s. So his watch is set 3s, slower.

V 352
Sol. 2 (D) X = — = 777 m thus during I vibration of fork

n 3o4 ®

352
sound will travel m so during 36 vibration of fork sound

352
will travel 777 x 36=33m.

384

Sol. 3 (C) Wave equations are

and

y, = 10 sin 3jrt + —

^2 =5[sin37t/'+ -J3 cos37rt]

^2 = 5x2

>^2 = 10

^2 = 10

1 • -> >/3
— xsinjTrt-i X cosBtt/
2 2

COS—sin 3nt + sm—cos nt
3 3

sin ^371:/+ —j

...(1)

...(2)

Using sin (A+B) = sin ^ cos 5 + cos A sin B

Comparingequation-(1)and (2)weget ratioofamplitude 1:1.

Waves

Sol. 4 (B) In case of interference of two waves resultant

intensity is give as

/^=/, +/2 +22^1f 2 cos (t>
=> If (|) varies randomly with time, so (cos = 0
=> /=/j+/2

Forn identical waves,I=1q+Iq+ ... = nlQhere7=1OIq.

£7 2 1
Sol. 5 (D) Intensity oc here — = 7 and —^ = ~

COg

\2

Sol. 6 (D) Because the tuning fork is in resonance with air
column in the pipe closed at one end, the frequency is

(2V-I)v
n = —— where77= 1, 2, 3 ... corresponds to different

modeofvibration puttingn = 340Hz,v = 340 m/s, the length of
air column in the pipe can be

. (2A^-1)340 (27V-1) (277-I)xl00
'—77^— - —: w = : cm4x340 4 4

For 77= 1,2,3, ...we get/= 25 cm, 75 cm, 125cm...
As the tube is only 120cm long, length ofair column after water
ispouredin it maybe25 cm or 75cm only, 125cmisnot possible,
the corresponding length ofwater column in the tube will be
(120"25)cm = 95cm or (120-75)cm = 45cm.
Thus minimum length ofwater column is 45 cm.

Sol. 7 (B) Speed of sound in gases is given by v =

vx

yRT

M

S0I.8 (C) Criticalhearingfrequencyforapersonis20,000Hz.
If a closed pipe vibration in mode then frequency of
vibration

(2V-l)v
n=~^=i2N-\X

(where = fundamental frequency of vibration)
Hence 20,000 = (277-1) x 5OO => 77= 7.1« 7
Also, in closed pipe we use

Number of over tones = (No. ofmode of vibration) - 1
= 7-1 = 6.

Sol. 9 (B) We use frequency of wave is

3600
n =

2x60
Hz

V 760
X=-= —=25.3m.

n 30
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Sol. 10 (D) Let = Known frequency= 256Hzbeatfrequency
p =2 Hz, which isdecreasing after loading tuning fork;.4.
Thus we use

n.

"b
«„ = 254Hz

256-n^ =2

Sol. 11 (A) -We use

I, = 101og,o -p andL2=101og'10

So Ij-I, = 101og,o
v'l y

As sound power oc intensity, we use

L2--L, = 101ogio

= 10 logjo

h

f p
£2

R1

400

20

= 10log,o20
-101og(2xi0)
-10{0.301 + l) = 13dB

Sol. 12 (B) Lete bethe endcorrection then according to the
given situation

V 3v

4(/,+e) 4(^2+e)
=> e=2.5 cm=0.025 m.

Sol. 13 (B) Whenobserver moves towards stationary source
then apparent frequency

n= —n=\.2n
V+ Vo

n =

v-l-v/5

V V J

Increment in frequency = 0.2n so percentage change in
0

frequency = ^ 100 = 20%.

Sol. 14 (C) For an isotropic source we use

'"7

-2
1x10

4x10

4

100

,-2

100
=4x lO^pW/m^.

Sol. 15 (C) Frequency offirst over tone ofclosed organ pipe
= Frequency offirst over tone ofopen organ pipe

3v _
4Lj I2

J_ - J- K
4Ij VPi -£-2 \ P2

AAs V = . —

T= Pl = I-Bl
2 3 Vp2 3 ^P2
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Sol. 16 (C) Frequency of vibration of string in 'p' loops is
given as

n^P_ IL
2n m

From Melde's law

p -Jt - constant

IK
^ P2 Vr,

Hence ^ ^(50+15)gm-force
Hence weight removed from the pan

=7',-7-2 =65-28.8 =36.2 gm-force = 0.036 kg-/

7; = 28.8gm-/

1

Sol. 17 (A) Werewrite the givenequationsasy =

For t = 0, this becomesy = , and
(1+ x )

1 1

For t - 2s, this becomesy =

=> 2v=l or v = 0.5m/s.

[l+(x-2v)'] [l+(x-ir]

Sol. 18 (C) We use

Co-efficient of t 628

^ Co-efficient of X 31.4
= 20cm/s. .

X
Sol. 19 (B) Distance between the consecutive node = —

V 20
We use

_ _v _ ^
n n

X 10

^ 2 ~ n •

Sol. 20 (A) Waves 2, =^ sin (kx - (ot) istravelling towards
positive x-direction.

Wave Z2 = A sin (kx + G3t\, is travelling towards negative
x-direction.

Wave Zj = 2 sin (ky - (at) is travelling towards positive
y-direction.

Since waves Zj and Z2 are travelling along the same line so they
will produce stationary wave.
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Sol. 21 (B) We use

Coefficent of/• 1/2

Hence

Coefficent of:c 1/4

c/=v/= 2x8 = 16 m.

= 2m/s

Sol. 22 (B) We have

= 10-^ sin[100^ +{x/50) +0.5]

>>2 = 10"^ sin 100^ + -Vf-,50j l2
Phase difference^

= [100r+(x/50)+1.57]-[100/+(:(/50) +0.5]= 1.07 radians.

Sol. 23 (D) We have

= asin (co?--tc)

and y2 = o cos {(ot -kx) = a sin • 'I'

2

Hence phase difference between these two is —.

Sol. 24 (B) To produce 5 beats/sec. Frequency of one wire
should be increase up to 505 Hz. i.e. increment of 1% in basic
frequency.

n cc yjf or Toe

AT A«

n

=> percentage change in Tension= 2(1%) = 2%.

Sol. 25 (A) •We use
/

V

n =n

V-Vc

V 2v
=3 => V = —.

v-v^ s 3

1 ItSol. 26 (B) If suppose « = frequency ofstring =—.—
2/V w

ny= Frequency oftuning fork =480 Hz
X= Beats heard per second = 10
as tension Tincreases, so increases (t)

Also itisgiven that number ofbeats per sec decreases (i.e. xi)
Hence«^t-w^=x4' ...(i) Wrong

«/-«,t =x>I' ...(ii) > Correct
=> «^ =«^-x =480-10 =470Hz.

Sol. 27 (D) We use

y = 0.021 sin (x+ 30/)
Wave speed is given as

CO 30
v= r- = — =30nVs

X 1

Waves

Using,

30 =

We have

r

-4
1.3x10

r=0.117N.

Sol. 28 (B) Let S be source of sound and P the person or
listner.

The waves from S reach point P directly following the path
SMP andbeing reflected from theceiling at point Afollowing
the path SAP. M is mid-point of SP (i.e. SM = MP) and
ZSMA = 9Q°

Pathdifference between waves reaching P is
isx = SAP-SMP

SAP= SA+AP=2{SA)

A
//////////z

\
h - 25in\

S'-—*—cj \p
M ^

•120 iTi'

SAP =2^[{SMf +{MAf'[ =2^(60^+25^) =no
=> Path difference = = 130-120= 10 m

For constructive interference

Ax= 10 = «X

10
=> Wavelength A. = —

The possible wavelength are A, =10, 5, -^,'2.5...

Sol. 29 (A) We use

^ V ^
n-n

V-Vc v-v/10

n 9

Sol.30 (B) Forstringmassperunit length is

10"

0.4
= 2.5 X10-2 kg/m

Wave Velocity V= J— =
16

2.5x10
-2

= 8 m/s

Forconstructive interference between successive pulses

21 2(0.4)
At . = — =

mm y = 0.1 s

m
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-(After two reflections, the wave pulse is in same phase as it was
produced since in one reflection it's phase changes by, and if at
this moment next identical pulse is produced, then constructive
interference will be obtained.

Sol. 31 (C) Suppose distance ofepicenter ofEarth quake
from point ofobservation

= Speed of S'-wave and = Speed of P-wave then
d=Vffp=v^^ov

45
=> tp- given that t^-tp = 240

4 5 240x8-
^ <s- = ^ '5= =548.5s

i/=v^^=4.5x 548.5 =2468.6 « 2500 km.

Sol. 32 (D) Path difference (Ax)= 50 cm=—m

2^1
Phase difference A(j) = ~ x Ax ^

Total phase difference

=> A= +2(3^cos(2jr/3) =a

Sol. 33 (B) Given that
aj=5, ^2=10

^max («l+^2)' 5 + 10

^min (^i ""^2)

2k 1

Sol. 34 (C) Weknowfrequency — J—5— => woe
2/ p y/p

i.e., graph between wand y/p will be hyperbola.

Sol.35 (D) Frequencyofvibration in tight string

n= ^ ncc ylf
21 \m

Aw 1

2 2
Number ofbeats = Aw= ^ 100-2

Sol. 36 (C) Analyzing option (C) we have

>'= log
x'-t'

x-t
= log(x + t)

[As log a - log 6 = log —]
0

^ ^
dx (x + 0

dx^

dt^

1

1

(x+ty

{x+ty

dy {dxidt)
and — =

dt (x + 0 (x + t)

• ^ ^ y
dx^ ' at^

Which is the general form ofwave equation.
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Sol. 37 (C) vaVr ; and asthere is no change in length

r

X ~ yfr

=> r = (2fT=4T

Sol. 38 (C) We use power transmitted is given as

I It
P= —1X0)^.4^ Fusing

=> P=

?i.a

2P
co =

f=-^=4-2n 2k VA^y/lp
2P

= 30 Hz

Sol. 39 (B)

Dotted shape showspulse position after a short time interval.
Direction ofthe velocities are decided according to direction of
displacements ofthe particles.

Sol. 40 (D) In Sonometer

na-Jf

=> ^=2=E

T = —=>^24
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T-h
7] -7-2 4
-4-^ X100 = X100 =75%

'1

Sol.41 (B) Twoconsecutive frequencies are 420 Hz &480 Hz.
Sothe fundamental frequencywill be 60 Hz

1 450
60 =

2x/ VSxlO"^

/=2.Im

Sol. 42 (B) As we know

I IT

2L Vn

m

InitiallyZ, = 24 cm, T=kx = k{Acm)\ fj,= —

1 Ak _ k
® 2x24 V(m/24)

When it is stretched to the length 26 cm

Z- = 26 cm; T=Ar(6cm); n =
m

1 6k

2x26V(m/26)" '̂̂ '̂ Vm

Sol. 43 (B) The magnitude of phase difference between the
points separated by distance 10 metres

= kx 10 =[10n:xO.]x 10=7r.

Sol.44 (B) Substituting;c = Owehavegiven wavej);=yl sin CO/
atx = 0other should havey=-A sin©/equation sodisplacement
may be zero at all the time.

Sol. 45 (B) Equation ofthe component waves are:
y = A sin(©/-A:x:)and>'= .4sin (©/+ ib:)

where; (ot-kx = constant or ©/ + Ax= cosntant

Diffeentaiting w.r.t.'/';

dx dx
co-a:-j-= 0 and ©+A:—= 0

at at

dx (S3
=> v= —= —andv = - —

c// A: k

This represents the speed of componentwaves.

Sol. 46 (D) At / = 2 second, the position of both pulses are
separatelygiven byfigure-(a) andfigure-(b); the superposition
of bothpulses is given by figure-(c).

Waves

Fig. (a)

Sol. 47 (C); Sol. 48 (A)
Sol. (47 & 48)

For closed pipe,

3"* overtone = 7''' harmonic = «- =
^ 4//

5*^ harmonic = ——
5 44

2v
«7-w,= — =400 Hz

' ^ AL

Fig. (b)

- Fig. (c)

^ TT =200Hz(fundamentalfrequencyofclosedpipe)

Now 3"^ harmonic of closed pipe is equal to 6^ harmonic of
open pipe

V 6v

V V

=> — = —=200Hz
k 44

V

Fundamental frequencyofopen pipe = — = 100Hz
2/n

Further, 4=
330

4x200
= 0.4125 m.

330

Sol. 49 (B) Given11= 525g/m, T=A5N
/= 120 Hz

A =8.5 mm

Angular frequencyco=2jr4=27u(120)= 754rad/s.



Sol. 50 (D) Wave speed v=
45

(0.525)
- 925 ms-1

Sol. 51 (C) Power F= —^cci^A^v

= - X0.525 X(754)2 ^ (8.5 x 10-3)2 x 9 25

= 100W.

Sol.52 '(C) j'j =y^ sin(fcc-coO
.V2":^mSin(fo:-a)r + 4.)
Resultant is obtained by superposition

y=yi+y2

'•y. 2sin -of+^jcos j

Sol. 53 (A) Bysuperpositionprinciple, wewillalwaysseethe
resultanty = (y,+^2) on thestring.

Sol. 54 (A) Slope at any point on the string in wave motion

represents the ratio ofparticle speed to wave speed
=> slope B > slope A

hence > R^.

S0I.55 (D) Refiectedpulsewillbeinvertedasitisreflectedby
a denser medium. The wall exerts force in downward direction.

Sol. 56 (B) We use

y = 0.02 sin (x + 30/) for the given wave:

dx
v= —=-30

dt
(As X+ 30/ = (Constant)

we have wave speed v =

r=pv2 = ^.pA^

=(10-6m2)(8xl03-^)(30)2
m'

=> r=7.2N

Sol. 57 (A) We use

w, =«-,

and K, = —
2 2U

_1_
21, V

T- _ _1_ T
Anr^l 2L Vnr^l

21, 2 2/2
/,:/2 = 1:2

( T

Anr^s
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Sol.58 (A) WehavepowerofawaveisgivenasF^ —

T
and v=.^j ^ wall not change as both Tand pare constant, co will
also not change as it is property of the source only that is
causing the wave motion. Hence to make power half the

amplitude reduces toA^/ ^2 •

Sol. 59 (D) At X - 0 the phase difference should be n for
destructive interference

Alternate solution

We use ^2~ ^ (o>/ + Ax + (t)Q)
Resultant after superposition is

y=y1+^2 =<2 cos (ft)/ - Ax + j) +ocos (co/ +Ax +(|)q)

= 2a cos (»/ +

71

3

y = 0 at X= 0 for any /

•j jr

kx + = — atx = 0
.2 2

471

X COS Ax + -

47t
= —. Hencey2 = a cos (co/ + Ax + —)

Sol. 60 (C) The possible expression will be one which gives
zero displacement at x = 0, A'=L, y = 0 and y = L.

Sol. 61 (C) We use
y(x, /) = 2 sin (0.1 7Dc) cos (100 7:/) compare withy=.4 sin (Ax)cos
CO/

27t
a:=o.17c=—

K

X=20cm

Distance between closet node and antinode is

X 20
— = — = 5 cm
4 4

Sol. 62 (C) As we have

Ifradius is doubled and length is doubled, mass per unit length
will become four times. Hence

2x2/ V4p 2^12
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Sol. 63 (D) SHM equation ofthe particle at a:= 4 is

>'= 4sin(co{t-2) + —)
0

Wave equation', replacing t by

y = 4sin 0)

r^-4^1
/-

—. V )

n

= 4sin(o}{/-2)-A:(A:-4)+ —).
0

Sol. 64 (C) We use

I j 'bc

If - 17? '̂
2V/ =gtsc

^BC

,is

Im +j-x

HL
7

= J 2+

0 2 +

2/^2+^

21(^/3-^/2)=V^/
/4B

V=2(V3-V2)^
'='sc+'.,s=27(1 +>/3-V2)

= 1.3 X 2 =2.6 X = 1.96s = 2s
1181 41

Sol.65 (A) Aw = 384-288 = 96Hz

Thus 288 Hz and 384 Hz (96 x 3; 96 '< 4) are third and fourth
harmonics

=5^ For fundamental mode

X

I = 0-75
A,= 1.5m

q =96

^ v = 96 X 1.5= 144m/s.

Waves:

Sol.66 (C) Fora stringvibrating in its overtone ((«+1)^
harmonic)

- . . f (W + 1)7CX^
}"=2A sin' cos CO/

oooo

ForA:= 2^ = aand« = 3;y =
f47r P

asm —

I 1 3;

. 4n (^]
= ^7. sin — COSO)/ = -t3. cos CO/

3 2

I a/Ja
i.e. at j:= —; the amplitude is

Sol. 67 (A) As linear mass density is

-3

cosco/

3.2gm 3.2x10 3.2 32

40 cm 40x10"^ 40 4000
kg/m

X=2l

We use fundamental frequency

1 !fV

«o=^ =

1000

2/

1

64 2x40x10"^ V32/4000

1000

64

1000 32

-2
x2x40xl0

64 4000

10
T= —N

= T

32

4000
= T

now,^ =

10/8

10"^
-2

•05x10

40x10

10^ 40

8 (.05)
= lO^N/m^

-2

Sol. 68 (A) As we use k = 2/ = 3m

Equation ofstanding wave
3'= 2/4 sin cos CD/

y = A&s amplitude is 2A

...(1)



A~2As\nkx

2% 7C

1 2% Tz n

^ ^,= 4® and Y-^=i +I
=> ^2= 1.25 m

Sol. 69 (C) We use

1 \f 1
«..= TT . — =2/ u [1 2/ yps 21 vp-nr 2lr \p7C

A«f

/ " r

Sol. 70 (D) We use

y" ^

2/ \ n

From equation (1) and (2) eliminate 'n* to get p.

ii=

2/

«+l 1^2

T{r,

A/ ,
"7 =1+0.5 = 1.5%
\jy,

Sol. 71 (B) Weuse v, = . I— =
2mg

V, = .!—= +
Comparing, we get

\l2 ^0-

•////////////.

3- /, m

2m

=

Sol. 72 (A) Tension at midpoint = —mg

v =

5mg

p V2(/«//)

v= ^2^^-

...(1)

...(2)
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Sol. 73 (D) Let be speed ofpulse x distance from bottom of
rope

Then v..=

Then time taken to go from bottom to top will be

L
dxT=\ =2j-(V3-V2).^(2l+x)g U

Sol. 74 (A); Sol. 75 (C); Sol. 76 (B)
Sol. (74 to 76)

-150 cm-

Given displacement amplitude of a point 10 cm from end is

5>/3mm
Also distance with same loop between two point with

displacement amplitude 5-v/3 isalso 10 cm.
Then

5a/3 . SVJ

10 10 10

By symmetry, — = 30 cm

X,=60cm

Now ^ 2p -)• 60 cm

X 27C 7C

=> ^ sin —= 5-73

5v/3
=> A-—^— = I0mm

V3/2
Sincethere willbe 5 loops in string, string is in 4^ overtone.
Potential energy ofstring will be zero at antinodes, which will
be 15 cm from one end.

Sol. 77 (B); Sol. 78 (C); Sol. 79 (B)

Sol. (77 to 79)

Tension in the string should be

4.68 kg
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T=mg
r=46.8N

Speed of wave should be

t 46.8

Power ofwave on string is given as

I
P= —A^co^iiv

= - X{1.12 X10-2)2 X(2kX120)2 X0.117 X10-3 x20

= 0.0834 W.

2k
Sol.80 (C) Weuse ~ =0.025 71

A

1

2 0.025
= 40 cm

The shortestpossible lengthwill be = —= 40 cm.

Sol.81 (B) Forequilibriumofmassi/wweuse

dm.<}?R= 2Tsm —
2

\xRdQ(Si^R-=2T^
)\xii^F? = T

It

dm.^lr

(sP'R^ =<»/?

Also speed of string is co/?
Thevelocity ofdisturbance w.r.t. ground = <»/? + co^ = 2(x)R.

Sol. 82 (A) As V- is same for all, wave with maximum

wavelength will have minimum angular frequency (by v= nX).
Also as X, = X3 thus co, = ©3.

Sol. 83 (B) AB=X

CD=T

AB X

CD ~ T
i.e. wave speed.

Sol. 84 (D) We use wave speed

T (0

T=
(}^\i '420Y

21 J x0.2 = 80N.

Sol. 85 (Q Weuse maximum particle velocity
= 5 cm/s; 7= 4 s

27t K
© =

A =
10

71/2 71
cm.

Sol. 86 (B) We use © = Sti

Also

Given,

©

Ax: = 1.0cm

27C
.^=-Ax

7C 27C

X=16cm_^./
v=^=16x 1.5 =24cm/sec.

Waves

Sol.87 (D) Aswavehasbeenreflected from a rarermedium,
therefore there is no changein phase.Hence equation for the
opposite direction can be written as

y = 0.5A sin (- fcc - ©/+ 0)
= -0.5^ sin (Aa: + ©/'-0)

Sol. 88 (B) Weuse y = a sin — (vt- x)
A

For

2k
y = 2 sin — (24/-;c)

^= l,x=4cm

y = 2sm

= 2 sin

^x20
16

71 .
27t + — =v=2cm

2 '

Sol. 89 (B) Spacing between successive nodes = — using

V=nX

New

Xoc K oc . 1—

X'

^ ~ yfr



IWaves

X' = yl2X
X' ^ X

Sol. 90 (B) Distance between beats = — = 1Om

=> 20mtimepenod, r=4s
=> i^=X/r=20m/4s = 5m/s.

SolutionsofADVANCEMCQsOneorMore Option Correct

Sol. 1 (A, C, D) At points of compressure the pressure is
morethanthatat rarefaction pointshence option (A) iscorrect.
Thepressure amplitude in themedium insoundwave is given
by the expressionmentioned in option (C) hence it is correct
and at any point the variation of preesure is ahead in phase
compared todisplacement variation byanangle 7i/2 hence option
(D) is correct.

Sol.2 (A,C) FirstbyusingDoppler'seffectwecanobtainthe
frequecy of sound recieved by the wall considering it as a
moving observer thenweconsider it asa moving source ofthis
frequency andthen wecanfidn the frequency received bythe
driveras an observer. Theanalysis willresultin option (A)and
(C) correct.

Sol. 3 (B, C, D) Comparing the equation with the general
equation ofthewavey=A sin [1% {tIT-xlX)] wegetoption (B)
iscorrect and aswavelength is4cmwecancalculate thephase
difference between two positions of the medium particle by
using the relation (27t/X)A which gives option(C) and (D) are
correct.

Sol. 4 (B, C) As the support is rigid, the wave is reflected in
opposite phase hence at the support destructive interference
takes place and node will be obtained. Due to nodes and
antinodes at different positions, intensity of wave varies
periodically with distance.

Sol.5 (C, D) As pointD is movingawave fromearth the light
from this point will have a greater wavelengthand point C is
moving toward earth, light from this point will have a short
wavelength, point A and B are at rest in the observer's frame so
lightfrom bothof thesepointswillhavesamewavelength.

Sol. 6 (B,D) In fundamental mode ofopen pipe, at its center
there is displacement node so gas molecules are at rest and
pressure variation will be maximum.

Sol. 7 (B, C) From the equation given the function ofXand?
when compared to (x + v?) we get the wave speed as 1.25 m/s
and the wave has an amplitude of0.8/5 = 0.16m.

503

Sol.8 (A,B, C) Hereycanrepresentallexceptpressure.._
pressure wavesy is the pressure difference not pressure at ^
point. If it represents pressure then according to this equation
pressure can be negative and pressure below vaccum is not
possible.

Sol.9 (A) Maximumspeedofa particlein SHMisy4o.

Sol. 10 (A,B) Wavevelocityofasimpleharmonicpropagating
waveis givenas v = oo/k and groupvelocity is the speed with

which envelope ofamplitude travels which isgiven asv -
^ uk

Sol. 11 (A,C,D) Foraplane wave (One dimensional) thewave
amplitude and intensity remains constant duringpropagation.
Fora pointsource ofspherical wave thewave intensity isgiven
as I=PIAizP-where P is the source Power which remain constant

for the whole spherical wavefrontof the wave all the time.

as in

a

Sol. 12 (A, B) Bydefinition as explained in article 6.2.1, here
options (A) and (B) are correct.

Sol. 13 (B, C) For interference of the waves, these must be
travelling in same directions and coherent and the relation of

maximum and minimum intensities is already explained in
article6.7.1.

Sol. 14 (C, D) Bydefmitionsofconstructive and destructive
interference ofequalamplitude waves option (C)iscorrect and
by definition of beats option (D) is also correct.

Sol.15 (B, C,D) Here comparing thegiven equation withthe
standard equation ofSimple Harmonic Wavey = sin(co?-/b:)
we can have options (B), (C) and (D) are correct.

Sol. 16 (B, C) By comparing the given equation with the
standard equation of a simple harmonic wave
y = A sin(a)?- Ax + ({)) wehave option(B)and (C) are correct.

Sol. 17 (All) Power transmitted on a string is given by
P=l-i^f^A^Qvs =li^f^A^yiv

Sol. 18 (A, C) Standing waves can be produced by
superposition of two coherent waves travelling in opposite
direction. Here on a clamped string incident and reflected wave
can produce stationary wave by superposition on each other.

Sol. 19 (B, C, D) By the standard wave equation
y = A sin(co? - Ax) we can differentiate it twice to obtain v and a

and bythe expressions we cansee that options(B), (C)and (D)
are correct.
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Sol. 20 (A,D) From the situation it is clear that particles P and
Q are in opposite phase so there path difference must be odd

multiple of half the wavelength and particles P and R are in
same phase so there path difference must be a multiple of

wavelength hence option (A) and (D) are correct.

Sol. 21 (A, B) The equation of a simple harmonic wave is

given as
7 = if sin(o)?- fcc)

This equation gives the displacement curve (shape ofa string

in which transverse wave is propagating) as well as it gives the
displacement ofa particle at position x as a function oftime t.

Sol. 22 (A,B,D) As we know that in transmission ofa wave
from one medium to another frequency ofwave always remain
same so with increase in speed wavelength increases. As there
is no absorption or reflection ofwave at the boundary, it means
full wave energy is transmitted hence intensity remain same.

Sol. 23 (All) With the definition ofstationarywave as explained
in article 6.11, all given options are correct.

Sol. 24 (C, D) With the definition of stationary wave as
explained in article 6.11, options (C) and (D) are correct.

Sol. 25 (All) Comparing given equations with the standard
wave equations, all given options are correct.

Sol. 26 (A, B, C) As the two given waves have a phase
differencenil we can use the vectorsuperpositionprincipal for
the wave amplitudes to find the resulting amplitude and obtain
that options (A), (B) and (C) are correct.

Sol. 27 (A, B, C) Given that
n =500 Hz

.4 = 10xl0-^m
p = 1.29 kg/m^
V = 340 m/s

We use

Wavelength

Pressure amplitude

v =

B= pv^ = 1.29 X(340)2 = 1.49 X10^ N/m^

340

2n

0.68
X 10x10-6x1.49x105 = 13.76m

Energy density = 2Tp-rPA^p

Energy flux u

=2 X10X(500)2X (10Xl(r6)2X 1.29
= 6.45xl(Hj/m2

= =2n;2n2^2py-Q 22 J/m2-s

Sol. 28 (A, C, D) Resulting wave equation will be

y = 8 sin 3x cos 2t-R cos 2t
at x = 2.3 we use 7? = 8 sin (6.9) = 4.63 cm

Nodes {R= 0) are obtained where sin (3x) = 0

_ Jt 2jr
—^ X 3 ' 3 ' *"

Antinodes (i? = 8 cm) are obtained where sin (3x) = ± 1

6 ' 2 ' 6

Sol. 29 (B) In the given equations of the two waves are
travelling in opposite directions, rest all parameters are same.

Sol.30 (D) Asv= .—; as P changes, p also changes. Hence
P

P
~ remains constant so speed remains constant.


